International Nuclear Information System (INIS)
Gisin, B V
2002-01-01
We consider the anomalous magnetic moment from an 'optical viewpoint' using an analogy between the motion of a particle with a magnetic moment in a magnetic field and the propagation of an optical pulse through an electro-optical crystal in an electric field. We show that an optical experiment similar to electron magnetic resonance is possible in some electro-optical crystals possessing the Faraday effect. This phenomenon is described by an analogue of the Pauli equation extracted from the Maxwell equation in the slowly varied amplitude approximation. In such an experiment the modulation by rotating fields plays a significant role. From the optical viewpoint the modulation assumes introducing the concept of a point rotation frame with the rotation axis at every point originated from the concept of the optical indicatrix (index ellipsoid). We discuss the connection between the non-classical transformation by transition from one such frame to another and an anomalous magnetic moment
Scaling of rotational inertia of primate mandibles.
Ross, Callum F; Iriarte-Diaz, Jose; Platts, Ellen; Walsh, Treva; Heins, Liam; Gerstner, Geoffrey E; Taylor, Andrea B
2017-05-01
The relative importance of pendulum mechanics and muscle mechanics in chewing dynamics has implications for understanding the optimality criteria driving the evolution of primate feeding systems. The Spring Model (Ross et al., 2009b), which modeled the primate chewing system as a forced mass-spring system, predicted that chew cycle time would increase faster than was actually observed. We hypothesized that if mandibular momentum plays an important role in chewing dynamics, more accurate estimates of the rotational inertia of the mandible would improve the accuracy with which the Spring Model predicts the scaling of primate chew cycle period. However, if mass-related momentum effects are of negligible importance in the scaling of primate chew cycle period, this hypothesis would be falsified. We also predicted that greater "robusticity" of anthropoid mandibles compared with prosimians would be associated with higher moments of inertia. From computed tomography scans, we estimated the scaling of the moment of inertia (I j ) of the mandibles of thirty-one species of primates, including 22 anthropoid and nine prosimian species, separating I j into the moment about a transverse axis through the center of mass (I xx ) and the moment of the center of mass about plausible axes of rotation. We found that across primates I j increases with positive allometry relative to jaw length, primarily due to positive allometry of jaw mass and I xx , and that anthropoid mandibles have greater rotational inertia compared with prosimian mandibles of similar length. Positive allometry of I j of primate mandibles actually lowers the predictive ability of the Spring Model, suggesting that scaling of primate chew cycle period, and chewing dynamics in general, are more strongly influenced by factors other than scaling of inertial properties of the mandible, such as the dynamic properties of the jaw muscles and neural control. Differences in cycle period scaling between chewing and locomotion
Compensations for increased rotational inertia during human cutting turns.
Qiao, Mu; Brown, Brian; Jindrich, Devin L
2014-02-01
Locomotion in a complex environment is often not steady state, but unsteady locomotion (stability and maneuverability) is not well understood. We investigated the strategies used by humans to perform sidestep cutting turns when running. Previous studies have argued that because humans have small yaw rotational moments of inertia relative to body mass, deceleratory forces in the initial velocity direction that occur during the turning step, or 'braking' forces, could function to prevent body over-rotation during turns. We tested this hypothesis by increasing body rotational inertia and testing whether braking forces during stance decreased. We recorded ground reaction force and body kinematics from seven participants performing 45 deg sidestep cutting turns and straight running at five levels of body rotational inertia, with increases up to fourfold. Contrary to our prediction, braking forces remained consistent at different rotational inertias, facilitated by anticipatory changes to body rotational speed. Increasing inertia revealed that the opposing effects of several turning parameters, including rotation due to symmetrical anterior-posterior forces, result in a system that can compensate for fourfold changes in rotational inertia with less than 50% changes to rotational velocity. These results suggest that in submaximal effort turning, legged systems may be robust to changes in morphological parameters, and that compensations can involve relatively minor adjustments between steps to change initial stance conditions.
Kπ=1+ pairing interaction and moments of inertia of superdeformed rotational bands in atomic nuclei
International Nuclear Information System (INIS)
Hamamoto, I.; Nazarewicz, W.
1994-01-01
The effect of the pairing interaction coming from the rotationally induced K π =1 + pair-density on the nuclear moments of inertia is studied. It is pointed out that, contrary to the situation at normal deformations, the inclusion of the K π =1 + pairing may appreciably modify the frequency dependence of the moments of inertia at superdeformed shapes
Spin alignment and collective moment of inertia of the basic rotational band in the cranking model
International Nuclear Information System (INIS)
Tanaka, Yoshihide
1982-01-01
By making an attempt to separate the intrinsic particle and collective rotational motions in the cranking model, the spin alignment and the collective moment of inertia characterizing the basic rotational bands are defined, and are investigated by using a simple i sub(13/2) shell model. The result of the calculation indicates that the collective moment of inertia decreases under the presence of the quasiparticles which are responsible for the increase of the spin alignment of the band. (author)
Rotational inertia of continents: A proposed link between polar wandering and plate tectonics
Kane, M.F.
1972-01-01
A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.
Sensorless interior permanent magnet synchronous motor control with rotational inertia adjustment
Directory of Open Access Journals (Sweden)
Yongle Mao
2016-12-01
Full Text Available Mechanical model is generally required in high dynamic sensorless motor control schemes for zero phase lag estimation of rotor position and speed. However, the rotational inertia uncertainty will cause dynamic estimation errors, eventually resulting in performance deterioration of the sensorless control system. Therefore, this article proposes a high dynamic performance sensorless control strategy with online adjustment of the rotational inertia. Based on a synthetic back electromotive force model, the voltage equation of interior permanent magnet synchronous motor is transformed to that of an equivalent non-salient permanent magnet synchronous motor. Then, an extended nonlinear observer is designed for interior permanent magnet synchronous motor in the stator-fixed coordinate frame, with rotor position, speed and load torque simultaneously estimated. The effect of inaccurate rotational inertia on the estimation of rotor position and speed is investigated, and a novel rotational inertia adjustment approach that employs the gradient descent algorithm is proposed to suppress the dynamic estimation errors. The effectiveness of the proposed control strategy is demonstrated by experimental tests.
Thouless-Valatin rotational moment of inertia from linear response theory
Petrík, Kristian; Kortelainen, Markus
2018-03-01
Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.
The moments of inertia of a rotational band 3/2- [521] isotones odd nuclei
International Nuclear Information System (INIS)
Karahodjaev, A.K.; Kuyjonov, H.
2003-01-01
The moments of inertia are received from experimental data from the following expression for energy of a level with spin I: E I = E 0 +ℎ 2 /2j·I(I+1), K≠l/2. The characteristics of low statuses of a rotational band 3/2 - [521] and inertial parameters 1.75A 1 keV ( A-1=ℎ 2 /2j) for nuclei 155 Dy and 155 Gd are given. The values of inertial parameters 1.75A1 keV for odd nuclei with N = 89, 91, 93, 95, 97, 99, 101 and 103 are presented. At quantity of neutrons N = 89 with increase of mass number of a nucleus the moment of inertia rather quickly grows. In nuclei with quantity of neutrons equal 91 and 93, with increase of mass number the moment of inertia of nuclei slowly changes and since A=159 and A=163, accordingly, begins sharply to grow. In isotones with N = 95, 97 and 99 moments of inertia decrease with increase of quantity neutrons in a nucleus. The reason of various dependence of the moment of inertia from mass number is, the coriolis interaction of an odd particle with even-even kernel and change of parameter of pair correlation because of presence of an odd particle above a kernel
Directory of Open Access Journals (Sweden)
Ramazan-Ali Jafari-Talookolaei
2015-09-01
Full Text Available A finite element (FE model is developed to study the free vibration of a rotating laminated composite beam with a single delamination. The rotary inertia and shear deformation effects, as well as the bending–extension, bending–twist and extension–twist coupling terms are taken into account in the FE model. Comparison between the numerical results of the present model and the results published in the literature verifies the validity of the present model. Furthermore, the effects of various parameters, such as delamination size and location, fiber orientation, hub radius, material anisotropy and rotating speed, on the vibration of the beam are studied in detail. These results provide useful information in the study of the free vibration of rotating delaminated composite beams.
Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics
International Nuclear Information System (INIS)
Chernodub, M.N.; Gongyo, Shinya
2017-01-01
We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation (“cold vacuum cannot rotate”). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.
Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Chernodub, M.N. [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université de Tours,Tours (France); Laboratory of Physics of Living Matter, Far Eastern Federal University,Vladivostok (Russian Federation); Gongyo, Shinya [CNRS, Laboratoire de Mathématiques et Physique Théorique, Université de Tours,Tours (France); Theoretical Research Division, Nishina Center, RIKEN,Saitama (Japan)
2017-01-30
We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation (“cold vacuum cannot rotate”). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.
Effect of the moment of inertia of an electron shell on the rotational g factor of a molecule
International Nuclear Information System (INIS)
Rebane, T.K.
1988-01-01
It is noted that electron currents induced by the rotation of a molecule make a contribution not only to the magnetic moment, but also to the angular momentum of a molecule and to its moment of inertia. An improved equation for the rotational g factor of a molecule, allowing for the contribution of electrons to the moment of inertia, is given. The B 1 summation + /sub u/ excited electronic state of the hydrogen molecule is used as an example to show that the electronic contribution to the moment of inertia amounts to 0.3 to 0.5% (for H 2 and D 2 molecules, respectively) of the value of the nuclear contribution, and its consideration in calculations of g factors is obligatory
Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.
Directory of Open Access Journals (Sweden)
Attila J Bergou
Full Text Available The remarkable maneuverability of flying animals results from precise movements of their highly specialized wings. Bats have evolved an impressive capacity to control their flight, in large part due to their ability to modulate wing shape, area, and angle of attack through many independently controlled joints. Bat wings, however, also contain many bones and relatively large muscles, and thus the ratio of bats' wing mass to their body mass is larger than it is for all other extant flyers. Although the inertia in bat wings would typically be associated with decreased aerial maneuverability, we show that bat maneuvers challenge this notion. We use a model-based tracking algorithm to measure the wing and body kinematics of bats performing complex aerial rotations. Using a minimal model of a bat with only six degrees of kinematic freedom, we show that bats can perform body rolls by selectively retracting one wing during the flapping cycle. We also show that this maneuver does not rely on aerodynamic forces, and furthermore that a fruit fly, with nearly massless wings, would not exhibit this effect. Similar results are shown for a pitching maneuver. Finally, we combine high-resolution kinematics of wing and body movements during landing and falling maneuvers with a 52-degree-of-freedom dynamical model of a bat to show that modulation of wing inertia plays the dominant role in reorienting the bat during landing and falling maneuvers, with minimal contribution from aerodynamic forces. Bats can, therefore, use their wings as multifunctional organs, capable of sophisticated aerodynamic and inertial dynamics not previously observed in other flying animals. This may also have implications for the control of aerial robotic vehicles.
Lavender, Danielle; Taraskin, Sergei N; Mason, Matthew J
2011-12-01
The middle ears of seven species of rodents, including four hamster species, were examined under light microscopy and through micro-CT imaging. Hamsters were found to possess a spectrum of ossicular morphologies ranging from something approaching "freely mobile" (Mesocricetus) to something nearer the "microtype" (Cricetulus), although no hamster has an orbicular apophysis of the malleus. Rats, mice and Calomyscus were found to have typically microtype ossicles. To explore the functional effects of these morphological differences, CT scan data were used to calculate the magnitudes of the moments of inertia and positions of the centres of mass and principal rotational axes for the malleus-incus complexes. Microtype species were found to have much greater ossicular inertias, relative to size, about the "anatomical axis" extending between anterior process of the malleus and short process of the incus; ossicular centres of mass were displaced further from this axis. Calculated inertial values were then put into an existing model of middle ear function (Hemilä et al., 1995), in order to see whether the more accurate data would improve predictions of upper hearing limits. For the rat and mouse they did, but this was not so for the hamster Mesocricetus. This might indicate that the inner rather than the middle ear limits hearing in this species, or might simply reflect other shortcomings of the model. Functional differences appear to exist even among rodent ears of the same general type, but the adaptive significance of these differences remains enigmatic. Copyright © 2011 Elsevier B.V. All rights reserved.
Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio
2016-01-01
The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.
Directory of Open Access Journals (Sweden)
Jairo Vázquez-Guerrero
Full Text Available The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010 and peak force output differed between all loads for each condition (P < 0.045. Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001. There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.
International Nuclear Information System (INIS)
Uma, V.S.; Goel, Alpana; Yadav, Archana; Jain, A.K.
2016-01-01
The band-head spin (I 0 ) of superdeformed (SD) rotational bands in A ∼ 190 mass region is predicted using the variable moment of inertia (VMI) model for 66 SD rotational bands. The superdeformed rotational bands exhibited considerably good rotational property and rigid behaviour. The transition energies were dependent on the prescribed band-head spins. The ratio of transition energies over spin Eγ/ 2 I (RTEOS) vs. angular momentum (I) have confirmed the rigid behaviour, provided the band-head spin value is assigned correctly. There is a good agreement between the calculated and the observed transition energies. This method gives a very comprehensive interpretation for spin assignment of SD rotational bands which could help in designing future experiments for SD bands. (author)
1978-07-01
AISI 4140 steel body, but additional work remains to be done because pure copper behaves differently than gilding metal when subjected to the inertia...bands to AISI 1340 steel bodies used with the 155-mm, M483A1 Projectile. As a result of the effort it was demon- strated that the process is practical...rotating bands to AISI 1340 steel bodies used with the 155-mm, M483A1 Projectile. As a result of the effort it was demonstrated that the process is
Surfactant enhanced non-classical extraction
International Nuclear Information System (INIS)
Szymanowski, J.
2000-01-01
Surfactant enhanced non-classical extractions are presented and discussed. They include micellar enhanced ultrafiltration and cloud point extraction. The ideas of the processes are given and the main features are presented. They are compared to the classical solvent extraction. The fundamental of micellar solutions and their solubilisation abilities are also discussed. (author)
Surfactant enhanced non-classical extraction
International Nuclear Information System (INIS)
Szymanowski, J.
1999-01-01
Surfactant enhanced non-classical extractions are presented and discussed. They include micellar enhanced ultrafiltration and cloud point extraction. The ideas of the processes are given and the main features are presented. They are compared to the classical solvent extraction. The fundamental of micellar solutions and their solubilization abilities are also discussed. (author)
Directory of Open Access Journals (Sweden)
Dario De Domenico
2018-01-01
Full Text Available Existing civil engineering structures having strategic importance, such as hospitals, fire stations, and power plants, often do not comply with seismic standards in force today, as they were designed and built based on past structural guidelines. On the other hand, due to their special importance, structural integrity of such buildings is of vital importance during and after earthquakes, which puts demands on strategies for their seismic protection. In this regard, seismic base isolation has been widely employed; however, the existing limited seismic joint between adjacent buildings may hamper this application because of the large displacements concentrated at the isolation floor. In this paper, we compare two possible remedies: the former is to provide supplemental damping in conventional base isolation systems and the latter consists in a combination of base isolation with supplemental rotational inertia. For the second strategy, a mechanical device, called inerter, is arranged in series with spring and dashpot elements to form the so-called tuned-mass-damper-inerter (TMDI directly connected to an isolation floor. Several advantages of this second system as compared to the first one are outlined, especially with regard to the limitation of floor accelerations and interstory drifts, which may be an issue for nonstructural elements and equipment, in addition to disturbing occupants. Once the optimal design of the TMDI is established, possible implementation of this system into existing structures is discussed.
Non-classical continuum mechanics a dictionary
Maugin, Gérard A
2017-01-01
This dictionary offers clear and reliable explanations of over 100 keywords covering the entire field of non-classical continuum mechanics and generalized mechanics, including the theory of elasticity, heat conduction, thermodynamic and electromagnetic continua, as well as applied mathematics. Every entry includes the historical background and the underlying theory, basic equations and typical applications. The reference list for each entry provides a link to the original articles and the most important in-depth theoretical works. Last but not least, every entry is followed by a cross-reference to other related subject entries in the dictionary.
[Taxonomic theory for non-classical systematics].
Pavlinov, I Ia
2012-01-01
Outlined briefly are basic principles of construing general taxonomic theory for biological systematics considered in the context of non-classical scientific paradigm. The necessity of such kind of theory is substantiated, and some key points of its elaboration are exposed: its interpretation as a framework concept for the partial taxonomic theories in various schools of systematics; elaboration of idea of cognitive situation including three interrelated components, namely subject, object, and epistemic ones; its construing as a content-wisely interpreted quasi-axiomatics, with strong structuring of its conceptual space including demarcation between axioms and inferring rules; its construing as a "conceptual pyramid" of concepts of various levels of generality; inclusion of a basic model into definition of the taxonomic system (classification) regulating its content. Two problems are indicated as fundamental: definition of taxonomic diversity as a subject domain for the systematics as a whole; definition of onto-epistemological status of taxonomic system (classification) in general and of taxa in particular.
International Nuclear Information System (INIS)
Mantri, A.N.
1975-01-01
The equivalence of Harris model equations with those of the generalized variable-moment-of-inertia (GVMI) model given by Das et al. is examined in the light of backbending feature of the rotational states. It is shown that this feature is absent in the Harris model taken to any order. The GVMI model equations are found to be consistent and in one-to-one correspondence with an expansion of the square of the angular velocity in terms of a polynomial in the moment of inertia rather than with the Harris expansion and may give a backbending feature in some cases depending on the relative values of the parameters appearing in the potential energy term
van Putten, M.; Zeelenberg, M.; van Dijk, E.; Tykocinski, O.E.
2013-01-01
Inaction inertia occurs when bypassing an initial action opportunity has the effect of decreasing the likelihood that subsequent similar action opportunities will be taken. This overview of the inaction inertia literature demonstrates the impact of inaction inertia on decision making. Based on
International Nuclear Information System (INIS)
Sugimoto, Norihiko
2015-01-01
Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Department of Physics, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)
2015-12-15
Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.
DEFF Research Database (Denmark)
Qin, Zian; Blaabjerg, Frede; Loh, Poh Chiang
2015-01-01
Power fluctuation caused by wind speed variations may be harmful for the stability of the power system as well as the reliability of the wind power converter, since it may induce thermal excursions in the solder joints of the power modules. Using the wind turbine rotor inertia energy for power...... in the frequency domain for power leveling. Moreover, the impact of other parameters on power leveling, including the time constant of maximum power point tracking (MPPT) and the rotor inertia, are also studied. With the proposed optimal design, the power fluctuations are mitigated as much as possible, while...
Amarante Andrade, Pedro; Švec, Jan G
2016-07-01
Differences in classical and non-classical singing are due primarily to aesthetic style requirements. The head position can affect the sound quality. This study aimed at comparing the head position for famous classical and non-classical male singers performing high notes. Images of 39 Western classical and 34 non-classical male singers during live performances were obtained from YouTube. Ten raters evaluated the frontal rotational head position (depression versus elevation) and transverse head position (retraction versus protraction) visually using a visual analogue scale. The results showed a significant difference for frontal rotational head position. Most non-classical singers in the sample elevated their heads for high notes while the classical singers were observed to keep it around the neutral position. This difference may be attributed to different singing techniques and phonatory system adjustments utilized by each group.
Correspondence and canonicity in non-classical logic
Sourabh, S.
2015-01-01
In this thesis we study correspondence and canonicity for non-classical logic using algebraic and order-topological methods. Correspondence theory is aimed at answering the question of how precisely modal, first-order, second-order languages interact and overlap in their shared semantic environment.
Non classical sources of uranium and their extraction techniques
Energy Technology Data Exchange (ETDEWEB)
Ziegler, V [CEA, 75 - Paris (France)
1978-11-01
Non classical uranium sources are reviewed: phosphates, sea water, porphyric copper tailings, minerals allowing in-situ lixiviation, black carbon shales, coals and lignites, granitic rocks. An economical study has shown which sources could be really operative (phosphates seem the most attractive). The situation of uranium supplies does not seem to be actually modified by exploitation of these resources.
Nonlinear coherent loss for generating non-classical states
International Nuclear Information System (INIS)
Mikhalychev, A; Mogilevtsev, D; Kilin, S
2011-01-01
Here, we discuss a generation of non-classical states of bosonic mode with the help of artificially designed loss, namely the nonlinear coherent loss. We show how to generate superpositions of Fock states, and how it is possible to 'comb' the initial states leaving only states with certain properties in the resulting superposition (for example, a generation of a superposition of Fock states with odd number of particles). We discuss purity of generated states and estimate maximal achievable generation fidelity.
Non-classical Correlations and Quantum Coherence in Mixed Environments
Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang
2018-05-01
We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.
Construction of classical and non-classical coherent photon states
International Nuclear Information System (INIS)
Honegger, Reinhard; Rieckers, Alfred
2001-01-01
It is well known that the diagonal matrix elements of all-order coherent states for the quantized electromagnetic field have to constitute a Poisson distribution with respect to the photon number. The present work gives first the summary of a constructive scheme, developed previously, which determines in terms of an auxiliary Hilbert space all possible off-diagonal elements for the all-order coherent density operators in Fock space and which identifies all extremal coherent states. In terms of this formalism it is then demonstrated that each pure classical coherent state is a uniformly phase locked (quantum) coherent superposition of number states. In a mixed classical coherent state the exponential of the locked phase is shown to be replaced by a rather arbitrary unitary operator in the auxiliary Hilbert space. On the other hand classes for density operators--and for their normally ordered characteristic functions--of non-classical coherent states are obtained, especially by rather weak perturbations of classical coherent states. These illustrate various forms of breaking the classical uniform phase locking and exhibit rather peculiar properties, such as asymmetric fluctuations for the quadrature phase operators. Several criteria for non-classicality are put forward and applied to the elaborated non-classical coherent states, providing counterexamples against too simple arguments for classicality. It is concluded that classicality is only a stable concept for coherent states with macroscopic intensity
CLASSICAL AND NON-CLASSICAL PHILOSOPHICAL ANTHROPOLOGY: COMPARATIVE ANALYSIS
Directory of Open Access Journals (Sweden)
T. A. Kozlova
2018-01-01
Full Text Available Introduction: The goals and values of human life, the search for the meaning of human existence contain the potential for a meaningful, progressive development of philosophical and anthropological ideas at any time in history. One of the tasks of philosophical anthropology is the formation of the image of man, the choice of ways to achieve the ideal, the methods of comprehension and resolution of universal problems. The increasing processes of differentiation in science led to the formation of different views on the nature of man, to the distinction between classical and non-classical philosophical anthropology. А comparative analysis of these trends is given in this article.Materials and methods: The dialectical method is preferred in the question of research methodology, the hermeneutic and phenomenological approaches are used.Results: The development of philosophical anthropology correlates with the challenges of modernity. By tracking the trends of human change, philosophical anthropology changes the approach to the consideration of its main subject of research. The whole array of disciplines that study man comes to new discoveries, new theories, and philosophical anthropology changes its view of the vision, challenging the principles of classical philosophical anthropology.Classical philosophical anthropology elevates the biological nature of man to a pedestal, non-classical philosophical anthropology actualizes questions of language, culture, thinking, understanding, actualizes the hermeneutic and phenomenological approaches. The desire to understand a person in classical philosophical anthropology is based on the desire to fully reveal the biological mechanisms in a person. The perspective of treating a person in nonclassical philosophical anthropology is polyformen: man as a text, as a dreaming self, as an eternal transition. Non-classical philosophical anthropology, goes from the idea of identity to the idea of variability, from
On the moment of inertia of a quantum harmonic oscillator
International Nuclear Information System (INIS)
Khamzin, A. A.; Sitdikov, A. S.; Nikitin, A. S.; Roganov, D. A.
2013-01-01
An original method for calculating the moment of inertia of the collective rotation of a nucleus on the basis of the cranking model with the harmonic-oscillator Hamiltonian at arbitrary frequencies of rotation and finite temperature is proposed. In the adiabatic limit, an oscillating chemical-potential dependence of the moment of inertia is obtained by means of analytic calculations. The oscillations of the moment of inertia become more pronounced as deformations approach the spherical limit and decrease exponentially with increasing temperature.
Non-classical state engineering for quantum networks
International Nuclear Information System (INIS)
Vollmer, Christina E.
2014-01-01
The wide field of quantum information processing and quantum networks has developed very fast in the last two decades. Besides the regime of discrete variables, which was developed first, the regime of continuous variables represents an alternative approach to realize many quantum applications. Non-classical states of light, like squeezed or entangled states, are a fundamental resource for quantum applications like quantum repeaters, quantum memories, quantum key distribution, quantum spectroscopy, and quantum metrology. These states can be generated successfully in the infrared wavelength regime. However, for some tasks other wavelengths, especially in the visible wavelength regime, are desirable. To generate non-classical states of light in this wavelength regime frequency up-conversion can be used, since all quantum properties are maintained in this process. The first part of this thesis deals with the experimental frequency up-conversion of quantum states. Squeezed vacuum states of light at 1550 nm were up-converted to 532 nm and a noise reduction of -1.5 dB at 532 nm was achieved. These states can be used for increasing the sensitivity of gravitational wave detectors or spectroscopic measurements. Furthermore, one part of an entangled state at 1550 nm was up-converted to 532 nm and, thus, entanglement between these two wavelengths was generated and characterized to -1.4 dB following Duan et al. With such a quantum link it is possible to establish a quantum network, which takes advantage of the low optical loss at 1550 nm for information transmission and of atomic transitions around 532 nm for a quantum memory in a quantum repeater. For quantum networks the distribution of entanglement and especially of a quantum key is essential. In the second part of this thesis the experimental distribution of entanglement by separable states is demonstrated. The underlying protocol requires a special three-mode state, which is separable in two of the three splittings. With
Non-classical state engineering for quantum networks
Energy Technology Data Exchange (ETDEWEB)
Vollmer, Christina E.
2014-01-24
The wide field of quantum information processing and quantum networks has developed very fast in the last two decades. Besides the regime of discrete variables, which was developed first, the regime of continuous variables represents an alternative approach to realize many quantum applications. Non-classical states of light, like squeezed or entangled states, are a fundamental resource for quantum applications like quantum repeaters, quantum memories, quantum key distribution, quantum spectroscopy, and quantum metrology. These states can be generated successfully in the infrared wavelength regime. However, for some tasks other wavelengths, especially in the visible wavelength regime, are desirable. To generate non-classical states of light in this wavelength regime frequency up-conversion can be used, since all quantum properties are maintained in this process. The first part of this thesis deals with the experimental frequency up-conversion of quantum states. Squeezed vacuum states of light at 1550 nm were up-converted to 532 nm and a noise reduction of -1.5 dB at 532 nm was achieved. These states can be used for increasing the sensitivity of gravitational wave detectors or spectroscopic measurements. Furthermore, one part of an entangled state at 1550 nm was up-converted to 532 nm and, thus, entanglement between these two wavelengths was generated and characterized to -1.4 dB following Duan et al. With such a quantum link it is possible to establish a quantum network, which takes advantage of the low optical loss at 1550 nm for information transmission and of atomic transitions around 532 nm for a quantum memory in a quantum repeater. For quantum networks the distribution of entanglement and especially of a quantum key is essential. In the second part of this thesis the experimental distribution of entanglement by separable states is demonstrated. The underlying protocol requires a special three-mode state, which is separable in two of the three splittings. With
Rodent Models of Non-classical Progesterone Action Regulating Ovulation
Directory of Open Access Journals (Sweden)
Melinda A. Mittelman-Smith
2017-07-01
Full Text Available It is becoming clear that steroid hormones act not only by binding to nuclear receptors that associate with specific response elements in the nucleus but also by binding to receptors on the cell membrane. In this newly discovered manner, steroid hormones can initiate intracellular signaling cascades which elicit rapid effects such as release of internal calcium stores and activation of kinases. We have learned much about the translocation and signaling of steroid hormone receptors from investigations into estrogen receptor α, which can be trafficked to, and signal from, the cell membrane. It is now clear that progesterone (P4 can also elicit effects that cannot be exclusively explained by transcriptional changes. Similar to E2 and its receptors, P4 can initiate signaling at the cell membrane, both through progesterone receptor and via a host of newly discovered membrane receptors (e.g., membrane progesterone receptors, progesterone receptor membrane components. This review discusses the parallels between neurotransmitter-like E2 action and the more recently investigated non-classical P4 signaling, in the context of reproductive behaviors in the rodent.
Alós-Ferrer, Carlos; Hügelschäfer, Sabine; Li, Jiahui
2016-01-01
Decision inertia is the tendency to repeat previous choices independently of the outcome, which can give rise to perseveration in suboptimal choices. We investigate this tendency in probability-updating tasks. Study 1 shows that, whenever decision inertia conflicts with normatively optimal behavior (Bayesian updating), error rates are larger and decisions are slower. This is consistent with a dual-process view of decision inertia as an automatic process conflicting with a more rational, controlled one. We find evidence of decision inertia in both required and autonomous decisions, but the effect of inertia is more clear in the latter. Study 2 considers more complex decision situations where further conflict arises due to reinforcement processes. We find the same effects of decision inertia when reinforcement is aligned with Bayesian updating, but if the two latter processes conflict, the effects are limited to autonomous choices. Additionally, both studies show that the tendency to rely on decision inertia is positively associated with preference for consistency.
Virtual inertia for variable speed wind turbines
DEFF Research Database (Denmark)
Zeni, Lorenzo; Rudolph, Andreas Jakob; Münster-Swendsen, Janus
2013-01-01
electronic converter and on its impact on the primary frequency response of a power system. An additional control for the power electronics is implemented to give VSWTs a virtual inertia, referring to the kinetic energy stored in the rotating masses, which can be released initially to support the system......’s inertia. A simple Matlab/Simulink model and control of a VSWT and of a generic power system are developed to analyse the primary frequency response following different generation losses in a system comprising VSWTs provided with virtual inertia. The possibility of substituting a 50% share of conventional...... power with wind is also assessed and investigated. The intrinsic problems related to the implementation of virtual inertia are illustrated, addressing their origin in the action of pitch and power control. A solution is proposed, which aims at obtaining the same response as for the system with only...
Moments of Inertia of Disks and Spheres without Integration
Hong, Seok-Cheol; Hong, Seok-In
2013-01-01
Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…
Non-classical neutron beams for fundamental and solid state research
International Nuclear Information System (INIS)
Rauch, H.
2008-01-01
The curious dual nature of the neutron, sometimes a particle, sometimes a wave, is wonderfully manifested in the various non-local interference and quantum contextuality effects observed in neutron interferometry. Non-classical states may become useful for novel fundamental and solid state research. Here we discuss unavoidable quantum losses as they appear in neutron phase-echo and spin rotation experiments and we show how entanglement effects in a single particle system demonstrate quantum contextuality. In all cases of interactions, parasitic beams are produced which cannot be recombined completely with the original beam. This means that a complete reconstruction of the original state would, in principle, be impossible which causes a kind of intrinsic irreversibility. Even small interaction potentials can have huge effects when they are applied in quantum Zeno-like experiments. Recently, it has been shown that an entanglement between external and internal degrees of freedom exists even in single particle systems. This contextuality phenomenon also shows that a quantum system carries much more information than usually extracted. The path towards advanced neutron quantum optics will be discussed. (author)
Non-classical structures of organic compounds: unusual stereochemistry and hypercoordination
International Nuclear Information System (INIS)
Minkin, Vladimir I; Minyaev, Ruslan M; Hoffmann, Roald
2002-01-01
Non-classical structures of organic compounds are defined as molecules containing non-tetrahedral tetracoordinate and/or hypercoordinate carbon atoms. The evolution of the views on this subject is considered and the accumulated theoretical and experimental data on the structures and dynamic transformations of non-classical organic compounds are systematised. It is shown that computational analysis using the methods and the software potential of modern quantum chemistry has now acquired high predictive capacity and is the most important source of data on the structures of non-classical compounds. The bibliography includes 227 references.
Eiras, J N; Monzó, J; Payá, J; Kundu, T; Popovics, J S
2014-02-01
Dynamic non-classical nonlinear analyses show promise for improved damage diagnostics in materials that exhibit such structure at the mesoscale, such as concrete. In this study, nonlinear non-classical dynamic material behavior from standard vibration test data, using pristine and frost damaged cement mortar bar samples, is extracted and quantified. The procedure is robust and easy to apply. The results demonstrate that the extracted nonlinear non-classical parameters show expected sensitivity to internal damage and are more sensitive to changes owing to internal damage levels than standard linear vibration parameters.
2001-01-01
This image shows the global thermal inertia of the Martian surface as measured by the Thermal Emission Spectrometer (TES) instrument on the Mars Global Surveyor. The data were acquired during the first 5000 orbits of the MGS mapping mission. The pattern of inertia variations observed by TES agrees well with the thermal inertia maps made by the Viking Infrared Thermal Mapper experiment, but the TES data shown here are at significantly higher spatial resolution (15 km versus 60 km).The TES instrument was built by Santa Barbara Remote Sensing and is operated by Philip R. Christensen, of Arizona State University, Tempe, AZ.
DEFF Research Database (Denmark)
Rezkalla, Michel M.N.; Martinenas, Sergejus; Zecchino, Antonio
2017-01-01
The high integration of renewable energy resources (inverter connected) replacing conventional generation reduces the available rotational inertia in the power system. This introduces the need for faster regulation services including synthetic inertia services. These services could potentially...... be provided by electric vehicles due to their fast response capability. This work evaluates and experimentally shows the capability and limits of EVs in providing synthetic inertia services. Three series produced EVs are used during the experiment. The results show the performance of the EVs in providing...... synthetic inertia. It shows also that, on the contrary of synchronous inertia, synthetic inertia might lead to unstable frequency behavior....
Nuclear moments of inertia at high spin
International Nuclear Information System (INIS)
Deleplanque, M.A.
1982-10-01
The competition between collective motion and alignment at high spin can be evaluated by measuring two complementary dynamic moments of inertia. The first, I band, measured in γ-γ correlation experiments, relates to the collective properties of the nucleus. A new moment of inertia I/sub eff/ is defined here, which contains both collective and alignment effects. Both of these can be measured in continuum γ-ray spectra of rotational nuclei up to high frequencies. The evolution of γ-ray spectra for Er nuclei from mass 160 to 154 shows that shell effects can directly be observed in the spectra of the lighter nuclei
Materials with complex behaviour II properties, non-classical materials and new technologies
Oechsner, Andreas
2012-01-01
This book reviews developments and trends in advanced materials and their properties; modeling and simulation of non-classical materials and new technologies for joining materials. Offers tools for characterizing and predicting properties and behavior.
Description of the turnover of the dynamical moment of inertia of the superdeformed nuclear state
International Nuclear Information System (INIS)
Yuxin Liu; Jiangang Song; Hong-zhou Sun; Jia-jun Wang; En-guang Zhao
1998-01-01
We propose in this paper an approach to describe the dynamical moment of inertia of superdeformed nuclear states in the spirit of variable moments of inertia. Both the general changing feature and the turnover of dynamical moments of inertia with rotational frequency are well described in our approach. It indicates that the competition between the angular momentum driving effect and the restraining effect plays a crucial role in determining the dynamical moments of inertia of superdeformed nuclear states. (author)
Quantitative characterization of non-classic polarization of cations on clay aggregate stability.
Directory of Open Access Journals (Sweden)
Feinan Hu
Full Text Available Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+ at concentrations from10-5 to 10-1 mol L-1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation-surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability.
Quantitative Characterization of Non-Classic Polarization of Cations on Clay Aggregate Stability
Hu, Feinan; Li, Hang; Liu, Xinmin; Li, Song; Ding, Wuquan; Xu, Chenyang; Li, Yue; Zhu, Longhui
2015-01-01
Soil particle interactions are strongly influenced by the concentration, valence and ion species and the pH of the bulk solution, which will also affect aggregate stability and particle transport. In this study, we investigated clay aggregate stability in the presence of different alkali ions (Li+, Na+, K+, and Cs+) at concentrations from10−5 to 10−1 mol L−1. Strong specific ion effects on clay aggregate stability were observed, and showed the order Cs+>K+>Na+>Li+. We found that it was not the effects of ion size, hydration, and dispersion forces in the cation–surface interactions but strong non-classic polarization of adsorbed cations that resulted in these specific effects. In this study, the non-classic dipole moments of each cation species resulting from the non-classic polarization were estimated. By comparing non-classic dipole moments with classic values, the observed dipole moments of adsorbed cations were up to 104 times larger than the classic values for the same cation. The observed non-classic dipole moments sharply increased with decreasing electrolyte concentration. We conclude that strong non-classic polarization could significantly suppress the thickness of the diffuse layer, thereby weakening the electric field near the clay surface and resulting in improved clay aggregate stability. Even though we only demonstrated specific ion effects on aggregate stability with several alkali ions, our results indicate that these effects could be universally important in soil aggregate stability. PMID:25874864
Growth, unemployment and wage inertia
Raurich, Xavier; Sorolla, Valeri
2014-01-01
We introduce wage setting via efficiency wages in the neoclassical one-sector growth model to study the growth effects of wage inertia. We compare the dynamic equilibrium of an economy with wage inertia with the equilibrium of an economy without wage inertia. We show that wage inertia affects the long run employment rate and that the transitional dynamics of the main economic variables will be different because wages are a state variable when wage inertia is introduced. In particular, we show...
Changes in inertia and effect on turning effort across different wheelchair configurations.
Caspall, Jayme J; Seligsohn, Erin; Dao, Phuc V; Sprigle, Stephen
2013-01-01
When executing turning maneuvers, manual wheelchair users must overcome the rotational inertia of the wheelchair system. Differences in wheelchair rotational inertia can result in increases in torque required to maneuver, resulting in greater propulsion effort and stress on the shoulder joints. The inertias of various configurations of an ultralightweight wheelchair were measured using a rotational inertia-measuring device. Adjustments in axle position, changes in wheel and tire type, and the addition of several accessories had various effects on rotational inertias. The configuration with the highest rotational inertia (solid tires, mag wheels with rearward axle) exceeded the configuration with the lowest (pneumatic tires, spoke wheels with forward axle) by 28%. The greater inertia requires increased torque to accelerate the wheelchair during turning. At a representative maximum acceleration, the reactive torque spanned the range of 11.7 to 15.0 N-m across the wheelchair configurations. At higher accelerations, these torques exceeded that required to overcome caster scrub during turning. These results indicate that a wheelchair's rotational inertia can significantly influence the torque required during turning and that this influence will affect active users who turn at higher speeds. Categorizing wheelchairs using both mass and rotational inertia would better represent differences in effort during wheelchair maneuvers.
Bounds on the moment of inertia of nonrotating neutron stars
International Nuclear Information System (INIS)
Sabbadini, A.G.; Hartle, J.B.
1977-01-01
Upper and lower bounds are placed on the moments of inertia of relativistic, spherical, perfect fluid neutron stars assuming that the pressure p and density p are positive and that (dp/drho) is positive. Bounds are obtained (a) for the moment of inertia of a star with given mass and radius, (b) for the moment of inertia of neutron stars for which the equation of state is known below a given density rho/sub omicron/and (c) for the mass-moment of inertia relation for stars whose equation of state is known below a given density rho/sub omicron/The bounds are optimum ones in the sense that there always exists a configuration consistent with the assumptions having a moment of inertia equal to that of the bound. The implications of the results for the maximum mass of slowly rotating neutron stars are discussed
Development of inertia-increased reactor internal pump
International Nuclear Information System (INIS)
Tanaka, Masaaki; Matsumura, Seiichi; Kikushima, Jun; Kawamura, Shinichi; Yamashita, Norimichi; Kurosaki, Toshikazu; Kondo, Takahisa
2000-01-01
The Reactor Internal Pump (RIP) was adopted for the Reactor Recirculation System (RRS) of Advanced Boiling Water Reactor (ABWR) plants, and ten RIPs are located at the bottom of the reactor pressure vessel. In order to simplify the power supply system for the RIPs, a new inertia-increased RIP was developed, which allows to eliminate the Motor-Generator (M-G) sets. The rotating inertia was increased approximately 2.5 times of current RIP inertia by addition of flywheel on its main shaft. A full scale proving test of the inertia-increased RIP under actual plant operating conditions using full scale test loop was performed to evaluate vibration characteristics and coast down characteristics. From the results of this proving test, the validity of the new inertia-increased RIP and its power supply system (without M-G sets) was confirmed. (author)
Energy Technology Data Exchange (ETDEWEB)
Volovich, Igor V., E-mail: volovich@mi.ras.ru
2016-01-08
We discuss non-classicality of photon antibunching and sub-Poisson photon statistics. The difference K between the variance and the mean of the particle number operator as a measure of non-classicality of a state is discussed. The non-classicality of quantum states, discussed here, is different from another non-classicality, related with Bell's inequalities and entanglement though both can be traced to the violation of an inequality implied by an assumption of classicality that utilized the Cauchy–Schwarz inequality in the derivation. - Highlights: • Non-classicality of photon antibunching and sub-Poisson statistics are discussed. • The Cauchy–Schwarz inequality provides criteria for the non-classicality. • The vacuum contribution makes the superposition of quantum states more classical. • Experiments to generate non-classical superpositions of the Fock states are suggested.
Non-classicality criteria: Glauber-Sudarshan P function and Mandel ? parameter
Alexanian, Moorad
2018-01-01
We calculate exactly the quantum mechanical, temporal Wigner quasiprobability density for a single-mode, degenerate parametric amplifier for a system in the Gaussian state, viz., a displaced-squeezed thermal state. The Wigner function allows us to calculate the fluctuations in photon number and the quadrature variance. We contrast the difference between the non-classicality criteria, which is independent of the displacement parameter ?, based on the Glauber-Sudarshan quasiprobability distribution ? and the classical/non-classical behaviour of the Mandel ? parameter, which depends strongly on ?. We find a phase transition as a function of ? such that at the critical point ?, ?, as a function of ?, goes from strictly classical, for ?, to a mixed classical/non-classical behaviour, for ?.
Non-classical radiation transport in random media with fluctuating densities
International Nuclear Information System (INIS)
Dyuldya, S.V.; Bratchenko, M.I.
2012-01-01
The ensemble averaged propagation kernels of the non-classical radiation transport are studied by means of the proposed application of the stochastic differential equation random medium generators. It is shown that the non-classical transport is favored in long-correlated weakly fluctuating media. The developed kernel models have been implemented in GEANT4 and validated against the d ouble Monte Carlo m odeling of absorptions curves of disperse neutron absorbers and γ-albedos from a scatterer/absorber random mix
Non-stationary pre-envelope covariances of non-classically damped systems
Muscolino, G.
1991-08-01
A new formulation is given to evaluate the stationary and non-stationary response of linear non-classically damped systems subjected to multi-correlated non-separable Gaussian input processes. This formulation is based on a new and more suitable definition of the impulse response function matrix for such systems. It is shown that, when using this definition, the stochastic response of non-classically damped systems involves the evaluation of quantities similar to those of classically damped ones. Furthermore, considerations about non-stationary cross-covariances, spectral moments and pre-envelope cross-covariances are presented for a monocorrelated input process.
Pairing field and moments of inertia of superdeformed nuclei
International Nuclear Information System (INIS)
Chen Yongjing; Chen Yongshou; Xu Fuxin
2002-01-01
The authors have systematically analysed the dynamic moments of inertia of the experimental superdeformed (SD) bands observed in the A = 190, 150 and 60-80 mass regions as functions of rotational frequency. By combining the different mass regions, the dramatic features of the dynamic moments of inertia were found and explained based on the calculations of the pairing fields of SD nuclei with the anisotropic harmonic oscillator quadrupole pairing Hartree-Fock-Bogoliubov model
Weight, gravitation, inertia, and tides
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-11-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix.
Weight, gravitation, inertia, and tides
International Nuclear Information System (INIS)
Pujol, Olivier; Lagoute, Christophe; Pérez, José-Philippe
2015-01-01
This paper deals with the factors that influence the weight of an object near the Earth's surface. They are: (1) the Earth's gravitational force, (2) the centrifugal force due to the Earth's diurnal rotation, and (3) tidal forces due to the gravitational field of the Moon and Sun, and other solar system bodies to a lesser extent. Each of these three contributions is discussed and expressions are derived. The relationship between weight and gravitation is thus established in a direct and pedagogical manner readily understandable by undergraduate students. The analysis applies to the Newtonian limit of gravitation. The derivation is based on an experimental (or operational) definition of weight, and it is shown that it coincides with the Earth’s gravitational force modified by diurnal rotation around a polar axis and non-uniformity of external gravitational bodies (tidal term). Two examples illustrate and quantify these modifications, respectively the Eötvös effect and the oceanic tides; tidal forces due to differential gravitation on a spacecraft and an asteroid are also proposed as examples. Considerations about inertia are also given and some comments are made about a widespread, yet confusing, explanation of tides based on a centrifugal force. Finally, the expression of the potential energy of the tide-generating force is established rigorously in the appendix. (paper)
Development of an Inertia-Increased ABWR Internal Pump
International Nuclear Information System (INIS)
Shirou Takahashi; Kousei Umemori; Kooji Shiina; Tetsuya Totani; Akihiro Sakashita; Norimichi Yamashita; Takahisa Kondo
2002-01-01
It is possible to simplify the reactor internal pump power supply system in the ABWR without affecting the core flow supply when a trip of all RIPs event occurs by eliminating the motor-generator sets and increasing the rotating inertia of the RIPs. This inertia increase due to an additional flywheel, which leads to a gain in weight and length, requires a larger diameter nozzle with a thicker sleeve. However, a thicker sleeve nozzle and a longer and heavier motor casing may change the RIP performance. In the present study, the inertia-increased RIP was verified through full-scale tests. The rotating inertia time constant for coast-down characteristics (behavior of the RIP speed in the event of power loss) for the inertia-increased RIP was doubled compared with the current RIP. The inertia-increased RIP with the thicker sleeve nozzle maintained good performance and its power supply system without motor-generator sets was judged appropriate for the ABWR. (authors)
Nuclear moments of inertia at high spins
International Nuclear Information System (INIS)
Deleplanque, M.A.
1984-01-01
For nuclei in high spin states a yrast-like part of a continuum γ-ray spectrum shows naturally how angular momentum is generated as a function of frequency. In rotational nuclei, the rotational frequency is omega = dE/dI approx. E/sub γ/2, half the collective E2 transition energy. The height of the spectrum for a rotor is proportional to dN/dE/sub γ/ = dI/4d omega. dI/d omega is a dynamic (second derivative of energy with spin) moment of inertia. It contains both alignments and collective effects and is therefore an effective moment of inertia J/sub eff//sup (2)/. It shows how much angular momentum is generated at each frequency. If the collective moment of inertia J/sub band//sup (2)/(omega) is measured (from γ-γ correlation experiments) for the same system, the collective and aligned (Δi) contributions to the increase of angular momentum ΔI in a frequency interval Δ omega can be separated: Δi/ΔI = 1 - J/sub band//sup (2)//J/sub eff//sup (2)/. This is at present the only way to extract such detailed information at the highest spin states where discrete lines cannot be resolved. An example of the spectra obtained in several Er nuclei is shown. They are plotted in units of the moment of inertia J/sub eff//sup (2)/. The high-energy part of the spectra has been corrected for incomplete feeding at these frequencies
International Nuclear Information System (INIS)
XU, J.; DEGRASSI, G.
2000-01-01
A comprehensive benchmark program was developed by Brookhaven National Laboratory (BNL) to perform an evaluation of state-of-the-art methods and computer programs for performing seismic analyses of coupled systems with non-classical damping. The program, which was sponsored by the US Nuclear Regulatory Commission (NRC), was designed to address various aspects of application and limitations of these state-of-the-art analysis methods to typical coupled nuclear power plant (NPP) structures with non-classical damping, and was carried out through analyses of a set of representative benchmark problems. One objective was to examine the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled systems. The examination was performed using parametric variations for three simple benchmark models. This paper presents the comparisons and evaluation of the program participants' results to the BNL exact solutions for the applicable ranges of modeling dynamic characteristic parameters
Non-classical Signature of Parametric Fluorescence and its Application in Metrology
Directory of Open Access Journals (Sweden)
Hamar M.
2014-08-01
Full Text Available The article provides a short theoretical background of what the non-classical light means. We applied the criterion for the existence of non-classical effects derived by C.T. Lee on parametric fluorescence. The criterion was originally derived for the study of two light beams with one mode per beam. We checked if the criterion is still working for two multimode beams of parametric down-conversion through numerical simulations. The theoretical results were tested by measurement of photon number statistics of twin beams emitted by nonlinear BBO crystal pumped by intense femtoseconds UV pulse. We used ICCD camera as the detector of photons in both beams. It appears that the criterion can be used for the measurement of the quantum efficiencies of the ICCD cameras.
Phase-space representation of non-classical behaviour of scalar wave-fields
International Nuclear Information System (INIS)
Canas-Cardona, Gustavo; Castaneda, Roman; Vinck-Posada, Herbert
2011-01-01
The modelling of optical fields by using radiant and virtual point sources for the spatial coherence wavelets in the phase-space representation evidences some effects, conventionally attributed to non-classical correlations of light, although such type of correlations are not explicitly included in the model. Specifically, a light state is produced that has similar morphology to the Wigner Distribution Function of the well-known quantum Schroedinger cat and squeezed states.
Non-classical austenite-martensite interfaces observed in single crystals of Cu-Al-Ni
Czech Academy of Sciences Publication Activity Database
Seiner, Hanuš; Landa, Michal
2009-01-01
Roč. 82, č. 11 (2009), s. 793-807 ISSN 0141-1594 R&D Projects: GA AV ČR(CZ) IAA200100627; GA ČR(CZ) GP202/09/P164 Institutional research plan: CEZ:AV0Z20760514 Keywords : shape memory alloy s * martensitic microstructure * non-classical interfaces * crossing twins Subject RIV: BJ - Thermodynamics Impact factor: 0.935, year: 2009 http://www.informaworld.com
[A non-classical approach to medical practices: Michel Foucault and Actor-Network Theory].
Bińczyk, E
2001-01-01
The text presents an analysis of medical practices stemming from two sources: Michel Foucault's conception and the research of Annemarie Mol and John Law, representatives of a trend known as Actor-Network Theory. Both approaches reveal significant theoretical kinship: they can be successfully consigned to the framework of non-classical sociology of science. I initially refer to the cited conceptions as a version of non-classical sociology of medicine. The identity of non-classical sociology of medicine hinges on the fact that it undermines the possibility of objective definitions of disease, health and body. These are rather approached as variable social and historical phenomena, co-constituted by medical practices. To both Foucault and Mol the main object of interest was not medicine as such, but rather the network of medical practices. Mol and Law sketch a new theoretical perspective for the analysis of medical practices. They attempt to go beyond the dichotomous scheme of thinking about the human body as an object of medical research and the subject of private experience. Research on patients suffering blood-sugar deficiency provide the empirical background for the thesis of Actor-Network Theory representatives. Michel Foucault's conceptions are extremely critical of medical practices. The French researcher describes the processes of 'medicalising' Western society as the emergence of a new type of power. He attempts to sensitise the reader to the ethical dimension of the processes of medicalising society.
IS THERE A NEED FOR THE POST-NON-CLASSICAL METHODOLOGY IN PEDAGOGY?
Directory of Open Access Journals (Sweden)
Vladislav L. Benin
2014-01-01
Full Text Available The publication continues the discussion, started by Yu.V. Larina in ≪Education in Search of the Congruity Principle≫ concerning the modern methodology of pedagogical science; and identifies the criteria of the given principle along with the limitations of the post-non-classical approaches to the humanities.Methods: The methodology involves the analysis of existing view points, formalization of characteristics of post-non-classical science, and reflection of pedagogical principle of cultural conformity.Results: The research outcomes demonstrate that the gradual undermining of the fundamental science results in erosion of methodological background. In case of interdisciplinary subjects, a researcher is forced to integrate different methods and techniques, which provokes further disruption of the methodology.Scientific novelty: The author classifies and extrapolates to the humanities sphere the main characteristics of post-non-classical science; and makes a conclusion about the gradual decline of researchers’ training quality due to the lack of methodological clarity, and aggressive forms of science vulgarization leading to spontaneous development of clipping methodology.The practical significance: Implementation of the research findings can activate both theoretical and methodological aspects of teacher’s training and selfeducation.
Why aortic elasticity differs among classical and non-classical mitral valve prolapsed?
Unlu, Murat; Demirkol, Sait; Aparci, Mustafa; Arslan, Zekeriya; Balta, Sevket; Dogan, Umuttan; Kilicarslan, Baris; Ozeke, Ozcan; Celik, Turgay; Iyisoy, Atila
2014-01-01
Mitral valve prolapse (MVP) is the most common valvular heart disease and characterized by the displacement of an abnormally thickened mitral valve leaflet into the left atrium during systole. There are two types of MVP, broadly classified as classic (thickness ≥5 mm) and non-classic (thickness elastic properties of the aorta in young male patients with classical and non-classical MVP. In the present study, 63 young adult males (mean age: 22.7 ± 4.2) were included. Patients were divided into classic MVP (n = 27) and non-classic MVP (n = 36) groups. Aortic strain, aortic distensibility and aortic stiffness index were calculated by using aortic diameters obtained by echocardiography and blood pressures measured by sphygmomanometer. There was no significant difference between the groups in terms of age, body mass index, left ventricular mass and ejection fraction. When comparing the MVP group it was found that aortic strain and aortic distensibility were increased (p = 0.0027, p = 0.016, respectively) whereas the aortic stiffness index was decreased (p = 0.06) in the classical MVP group. We concluded that the elastic properties of the aorta is increased in patients with classic MVP. Further large scale studies should be performed to understand of morphological and physiological properties of the aorta in patients with MVP.
Significance of non-classical damping in seismic qualification of equipment and piping
Energy Technology Data Exchange (ETDEWEB)
Gupta, Abhinav, E-mail: agupta1@ncsu.edu; Bose, Mrinal K.
2017-06-15
Highlights: • Damping in coupled building-piping or building-equipment systems is nonlclassical. • Significance of nonclassical damping is illustrated. • Classical damping assumption can over predict or under predict response. • Significance of nonclassical damping increases for very light secondary systems. • Composite modal damping is another form of classical damping. - Abstract: This paper presents a discussion on the significance of non-classical damping in coupled primary-secondary systems such as building-equipment or building-piping. Closed-form expressions are used to illustrate that the effect of non-classical damping is significant in systems with tuned or nearly tuned uncoupled modes when the mass-interaction is sufficiently small. Further, simple primary-secondary systems are used to illustrate that composite modal damping is another form of classical damping for which the transformed damping matrix, obtained after pre- and post-multiplication of the damping matrix with the modal matrix, contains only diagonal terms. Both the composite and the classical damping give almost identical results that can be much different from the corresponding results for non-classical damping. Finally, it is shown that consideration of classical damping (ignoring the off-diagonal terms) can give excessively conservative results in nearly tuned primary-secondary systems. For perfectly tuned primary-secondary systems, however, classical damping can give responses that are much lower than what they should be.
Pedagogy in the Era of the Post-Non-Classical Science
Directory of Open Access Journals (Sweden)
V. L. Benin
2015-02-01
Full Text Available The paper considers over again the problem of the low quality of the scientific pedagogic research of the recent time. The author analyses numerous publications concerning the above problem and presents his opinion on the actual reasons for stagnation in the modern national pedagogy. Its crisis is primarily caused by ignoring the complications of the world perception, changing world outlook, as well as by long ago developed but rejected necessity for devising new methodological principles and value- and objective-oriented educational attitudes. The exact forms and methods of professional activity of pedagogic process participants are derived from the definite historically developed complex lying in their foundation. The educational system structure depends on the logic of cultural structure of the related era both from the methodological and organizational viewpoint. However, our pedagogy retains the position of the New Time classical methodology not complying with the non-classical paradigm, all the more so with the post-non-classical science. The demonstrative appeal to synergetics – the attempt of pedagogy to position itself in terms of post-non-classical science – still remains doubtful.Not persisting on the absolute correctness of his position, the author invites teaches and specialists from educational sphere to the scientific discussion to facilitate, even partially, the existing problem solving.
Free piston inertia compressor
Richards, W.D.C.; Bilodeau, D.; Marusak, T.; Dutram, L. Jr.; Brady, J.
A free piston inertia compressor comprises a piston assembly including a connecting rod having pistons on both ends, the cylinder being split into two substantially identical portions by a seal through which the connecting rod passes. Vents in the cylinder wall are provided near the seal to permit gas to escape the cylinder until the piston covers the vent whereupon the remaining gas in the cylinder functions as a gas spring and cushions the piston against impact on the seal. The connecting rod has a central portion of relatively small diameter providing free play of the connecting rod through the seal and end portions of relatively large diameter providing a limited tolerance between the connecting rod and the seal. Finally, the seal comprises a seal ring assembly consisting of a dampener plate, a free floating seal at the center of the dampener plate and a seal retainer plate in one face of the dampener plate.
Heat control in opto-mechanical system using quantum non-classicality
International Nuclear Information System (INIS)
Sharma, Sushamana; Senwar, Subash
2016-01-01
Cooling of matter to the quantum ground state is a primary directive of quantum control. In other words, to extract entropy from a quantum system, efficient indirect quantum measurements may be implemented. The main objective is the cooling of the oscillator either to its motional ground state or to non-classical states, such as low-number Fock states, squeezed states or entangled states. It is shown that the use of quantum control procedure is better choice for even experimental realizations because it leads to a squeezed steady state with less than one phonon on average. The steady state of system corresponds to cooling of the system.
The homology groups of moduli spaces on non-classical Klein surfaces
International Nuclear Information System (INIS)
Zaw, Myint
2001-08-01
We describe the moduli space M-vector±(g,c) of non-classical directed Klein surfaces of genus g=h-c-1 with c≥0 distinguished points as a configuration space B ± (h,c) of classes h-slit pairs in C. Based on this model, we prove that M-vector ± (g,c) is non-orientable for any g and c and we compute the homology groups of the moduli spaces M-vector ± (g,c) for g≤2. (author)
Non-classical solutions of a continuum model for rock descriptions
Directory of Open Access Journals (Sweden)
Mikhail A. Guzev
2014-06-01
Full Text Available The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models' results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory. The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.
Unification of Quantum and Gravity by Non Classical Information Entropy Space
Directory of Open Access Journals (Sweden)
Davide Fiscaletti
2013-09-01
Full Text Available A quantum entropy space is suggested as the fundamental arena describing the quantum effects. In the quantum regime the entropy is expressed as the superposition of many different Boltzmann entropies that span the space of the entropies before any measure. When a measure is performed the quantum entropy collapses to one component. A suggestive reading of the relational interpretation of quantum mechanics and of Bohm’s quantum potential in terms of the quantum entropy are provided. The space associated with the quantum entropy determines a distortion in the classical space of position, which appears as a Weyl-like gauge potential connected with Fisher information. This Weyl-like gauge potential produces a deformation of the moments which changes the classical action in such a way that Bohm’s quantum potential emerges as consequence of the non classical definition of entropy, in a non-Euclidean information space under the constraint of a minimum condition of Fisher information (Fisher Bohm- entropy. Finally, the possible quantum relativistic extensions of the theory and the connections with the problem of quantum gravity are investigated. The non classical thermodynamic approach to quantum phenomena changes the geometry of the particle phase space. In the light of the representation of gravity in ordinary phase space by torsion in the flat space (Teleparallel gravity, the change of geometry in the phase space introduces quantum phenomena in a natural way. This gives a new force to F. Shojai’s and A. Shojai’s theory where the geometry of space-time is highly coupled with a quantum potential whose origin is not the Schrödinger equation but the non classical entropy of a system of many particles that together change the geometry of the phase space of the positions (entanglement. In this way the non classical thermodynamic changes the classical geodetic as a consequence of the quantum phenomena and quantum and gravity are unified. Quantum
Managing the spatial properties and photon correlations in squeezed non-classical twisted light
Zakharov, R. V.; Tikhonova, O. V.
2018-05-01
Spatial photon correlations and mode content of the squeezed vacuum light generated in a system of two separated nonlinear crystals is investigated. The contribution of both the polar and azimuthal modes with non-zero orbital angular momentum is analyzed. The control and engineering of the spatial properties and degree of entanglement of the non-classical squeezed light by changing the distance between crystals and pump parameters is demonstrated. Methods for amplification of certain spatial modes and managing the output mode content and intensity profile of quantum twisted light are suggested.
Non-classic multiscale modeling of manipulation based on AFM, in aqueous and humid ambient
Korayem, M. H.; Homayooni, A.; Hefzabad, R. N.
2018-05-01
To achieve a precise manipulation, it is important that an accurate model consisting the size effect and environmental conditions be employed. In this paper, the non-classical multiscale modeling is developed to investigate the manipulation in a vacuum, aqueous and humid ambient. The manipulation structure is considered into two parts as a macro-field (MF) and a nano-field (NF). The governing equations of the AFM components (consist of the cantilever and tip) in the MF are derived based on the modified couple stress theory. The material length scale parameter is used to study the size effect. The fluid flow in the MF is assumed as the Couette and Creeping flows. Moreover, the NF is modeled using the molecular dynamics. The Electro-Based (ELBA) model is considered to model the ambient condition in the NF. The nanoparticle in the different conditions is taken into account to study the manipulation. The results of the manipulation indicate that the predicted deflection of the non-classical model is less than the classical one. Comparison of the nanoparticle travelled distance on substrate shows that the manipulation in the submerged condition is close to the ideal manipulation. The results of humid condition illustrate that by increasing the relative humidity (RH) the manipulation force decreases. Furthermore, Root Mean Square (RMS) as a criterion of damage demonstrates that the submerged nanoparticle has the minimum damage, however, the minimum manipulation force occurs in superlative humid ambient.
ON THE POLARIZATION OF CREATIVE CONSCIOUSNESS IN NON-CLASSICAL ERA OF RUSSIAN LITERATURE
Directory of Open Access Journals (Sweden)
Oleg Nikolaevich Sklyarov
2014-10-01
Full Text Available The article deals with the phenomenon of "branch" of the total flow of philosophical and aesthetic quest in Russian postsimbolism in the early 20th century and the implications of this polarization in the literary process in the following decades. Special attention is paid to the specifics of the non-classical consciousness, an important feature of which is the intention of the "targeting" of artistic expression. The main lines of development of Russian literature in the 20th century are briefly described. The subject of primary attention of the author are mental peculiarities, features of creative thinking inherited in individuals of every from ideological and artistic "vectors", forming a common paradigm of national literature in the non-classical era. The understanding the specifics of the "middle" line of creative research, defined by the concept of "neotraditionalism" becomes the center of the problem field in the article. In understanding and presentation of the essence of the neotraditional type of creative consciousness author moves into the mainstream, a paved by work of V.I. Tyupa, who proposed in the early 90s as the term itself, taken now adopted by many scientists and methodological principles of neotraditionalism identification as a special type of mental orientation in art.
New fundamental evidence of non-classical structure in the combination of natural concepts.
Aerts, D; Sozzo, S; Veloz, T
2016-01-13
We recently performed cognitive experiments on conjunctions and negations of two concepts with the aim of investigating the combination problem of concepts. Our experiments confirmed the deviations (conceptual vagueness, underextension, overextension etc.) from the rules of classical (fuzzy) logic and probability theory observed by several scholars in concept theory, while our data were successfully modelled in a quantum-theoretic framework developed by ourselves. In this paper, we isolate a new, very stable and systematic pattern of violation of classicality that occurs in concept combinations. In addition, the strength and regularity of this non-classical effect leads us to believe that it occurs at a more fundamental level than the deviations observed up to now. It is our opinion that we have identified a deep non-classical mechanism determining not only how concepts are combined but, rather, how they are formed. We show that this effect can be faithfully modelled in a two-sector Fock space structure, and that it can be exactly explained by assuming that human thought is the superposition of two processes, a 'logical reasoning', guided by 'logic', and a 'conceptual reasoning', guided by 'emergence', and that the latter generally prevails over the former. All these findings provide new fundamental support to our quantum-theoretic approach to human cognition. © 2015 The Author(s).
Discriminating strength: a bona fide measure of non-classical correlations
Farace, A.; De Pasquale, A.; Rigovacca, L.; Giovannetti, V.
2014-07-01
A new measure of non-classical correlations is introduced and characterized. It tests the ability of using a state ρ of a composite system AB as a probe for a quantum illumination task (e.g. see Lloyd 2008 Science 321 1463), in which one is asked to remotely discriminate between the two following scenarios: (i) either nothing happens to the probe, or (ii) the subsystem A is transformed via a local unitary {{R}_{A}} whose properties are partially unspecified when producing ρ. This new measure can be seen as the discrete version of the recently introduced interferometric power measure (Girolami et al 2013 e-print arXiv:1309.1472) and, at least for the case in which A is a qubit, it is shown to coincide (up to an irrelevant scaling factor) with the local quantum uncertainty measure of Girolami, Tufarelli and Adesso (2013 Phys. Rev. Lett. 110 240402). Analytical expressions are derived which allow us to formally prove that, within the set of separable configurations, the maximum value of our non-classicality measure is achieved over the set of quantum-classical states (i.e. states ρ which admit a statistical unravelling where each element of the associated ensemble is distinguishable via local measures on B).
Discriminating strength: a bona fide measure of non-classical correlations
Energy Technology Data Exchange (ETDEWEB)
Farace, A; De Pasquale, A; Giovannetti, V [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa (Italy); Rigovacca, L [Scuola Normale Superiore, I-56126 Pisa (Italy)
2014-07-01
A new measure of non-classical correlations is introduced and characterized. It tests the ability of using a state ρ of a composite system AB as a probe for a quantum illumination task (e.g. see Lloyd 2008 Science 321 1463), in which one is asked to remotely discriminate between the two following scenarios: (i) either nothing happens to the probe, or (ii) the subsystem A is transformed via a local unitary R{sub A} whose properties are partially unspecified when producing ρ. This new measure can be seen as the discrete version of the recently introduced interferometric power measure (Girolami et al 2013 e-print arXiv:1309.1472) and, at least for the case in which A is a qubit, it is shown to coincide (up to an irrelevant scaling factor) with the local quantum uncertainty measure of Girolami, Tufarelli and Adesso (2013 Phys. Rev. Lett. 110 240402). Analytical expressions are derived which allow us to formally prove that, within the set of separable configurations, the maximum value of our non-classicality measure is achieved over the set of quantum-classical states (i.e. states ρ which admit a statistical unravelling where each element of the associated ensemble is distinguishable via local measures on B). (paper)
Discriminating strength: a bona fide measure of non-classical correlations
International Nuclear Information System (INIS)
Farace, A; De Pasquale, A; Giovannetti, V; Rigovacca, L
2014-01-01
A new measure of non-classical correlations is introduced and characterized. It tests the ability of using a state ρ of a composite system AB as a probe for a quantum illumination task (e.g. see Lloyd 2008 Science 321 1463), in which one is asked to remotely discriminate between the two following scenarios: (i) either nothing happens to the probe, or (ii) the subsystem A is transformed via a local unitary R A whose properties are partially unspecified when producing ρ. This new measure can be seen as the discrete version of the recently introduced interferometric power measure (Girolami et al 2013 e-print arXiv:1309.1472) and, at least for the case in which A is a qubit, it is shown to coincide (up to an irrelevant scaling factor) with the local quantum uncertainty measure of Girolami, Tufarelli and Adesso (2013 Phys. Rev. Lett. 110 240402). Analytical expressions are derived which allow us to formally prove that, within the set of separable configurations, the maximum value of our non-classicality measure is achieved over the set of quantum-classical states (i.e. states ρ which admit a statistical unravelling where each element of the associated ensemble is distinguishable via local measures on B). (paper)
Concrete damage diagnosed using the non-classical nonlinear acoustic method
International Nuclear Information System (INIS)
Dao, Zhou; Xiao-Zhou, Liu; Xiu-Fen, Gong; E, Nazarov V; Li, Ma
2009-01-01
It is known that the strength of concrete is seriously affected by damage and cracking. In this paper, six concrete samples under different damage levels are studied. The experimental results show a linear dependence of the resonance frequency shift on strain amplitude at the fundamental frequency, and approximate quadratic dependence of the amplitudes of the second and third harmonics on strain amplitude at the fundamental frequency as well. In addition, the amplitude of the third harmonics is shown to increase with the increase of damage level, which is even higher than that of the second harmonics in samples with higher damage levels. These are three properties of non-classical nonlinear acoustics. The nonlinear parameters increase from 10 6 to 10 8 with damage level, and are more sensitive to the damage level of the concrete than the linear parameters obtained by using traditional acoustics methods. So, this method based on non-classical nonlinear acoustics may provide a better means of non-destructive testing (NDT) of concrete and other porous materials
Immunomodulation of classical and non-classical HLA molecules by ionizing radiation.
Gallegos, Cristina E; Michelin, Severino; Dubner, Diana; Carosella, Edgardo D
2016-05-01
Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules. Copyright © 2016 Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Bohr, A.
1976-01-01
Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra
Non-Classical C–H···X Hydrogen Bonding and Its Role in Asymmetric Organocatalysis
Ajitha, Manjaly John; Huang, Kuo-Wei
2016-01-01
Non-classical hydrogen bonds (NCHBs) have attracted significant interest in the past decade particularly because of their important role in asymmetric catalytic systems. These weak interactions (< 4 kcal/mol) offer much flexibility1 Introduction2 Hydrogen Bonds (HBs) and Non-Classical Hydrogen Bonds (NCHBs)3 Early Developments in NCHBs4 Selected Examples of NCHBs in Organic Transformations5 Recent Examples of NCHBs in Enantioselective Reactions6 Conclusions and Outlook
Orientational dynamics of a triaxial ellipsoid in simple shear flow: Influence of inertia.
Rosén, Tomas; Kotsubo, Yusuke; Aidun, Cyrus K; Do-Quang, Minh; Lundell, Fredrik
2017-07-01
The motion of a single ellipsoidal particle in simple shear flow can provide valuable insights toward understanding suspension flows with nonspherical particles. Previously, extensive studies have been performed on the ellipsoidal particle with rotational symmetry, a so-called spheroid. The nearly prolate ellipsoid (one major and two minor axes of almost equal size) is known to perform quasiperiodic or even chaotic orbits in the absence of inertia. With small particle inertia, the particle is also known to drift toward this irregular motion. However, it is not previously understood what effects from fluid inertia could be, which is of highest importance for particles close to neutral buoyancy. Here, we find that fluid inertia is acting strongly to suppress the chaotic motion and only very weak fluid inertia is sufficient to stabilize a rotation around the middle axis. The mechanism responsible for this transition is believed to be centrifugal forces acting on fluid, which is dragged along with the rotational motion of the particle. With moderate fluid inertia, it is found that nearly prolate triaxial particles behave similarly to the perfectly spheroidal particles. Finally, we also are able to provide predictions about the stable rotational states for the general triaxial ellipsoid in simple shear with weak inertia.
Therapeutic Inertia and Treatment Intensification.
Josiah Willock, Robina; Miller, Joseph B; Mohyi, Michelle; Abuzaanona, Ahmed; Muminovic, Meri; Levy, Phillip D
2018-01-29
This review aims to emphasize how therapeutic inertia, the failure of clinicians to intensify treatment when blood pressure rises or remains above therapeutic goals, contributes to suboptimal blood pressure control in hypertensive populations. Studies reveal that the therapeutic inertia is quite common and contributes to suboptimal blood pressure control. Quality improvement programs and standardized approaches to support antihypertensive treatment intensification are ways to combat therapeutic inertia. Furthermore, programs that utilize non-physician medical professionals such as pharmacists and nurses demonstrate promise in mitigating the effects of this important problem. Therapeutic inertia impedes antihypertensive management and requires a broad effort to reduce its effects. There is an ongoing need for renewed focus and research in this area to improve hypertension control.
Collective inertia in paired systems
International Nuclear Information System (INIS)
Arve, P.O.; Bertsch, G.F.; Michigan State Univ., East Lansing
1988-01-01
Two definitions of the collective inertia are examined. One of them was recently proposed and applied in a calculation of exotic radioactivity. The other expression is the Inglis cranking formula. It is shown that the new formula corresponds to rapid collective motion while the cranking corresponds to slow collective motion. It is also seen that the two forms of the inertia differ only in the choice of the collective momentum. (orig.)
Thermal Inertia of Rocks and Rock Populations
Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.
2001-01-01
The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.
Non-classical crystallization of thin films and nanostructures in CVD and PVD processes
Hwang, Nong Moon
2016-01-01
This book provides a comprehensive introduction to a recently-developed approach to the growth mechanism of thin films and nanostructures via chemical vapour deposition (CVD). Starting from the underlying principles of the low pressure synthesis of diamond films, it is shown that diamond growth occurs not by individual atoms but by charged nanoparticles. This newly-discovered growth mechanism turns out to be general to many CVD and some physical vapor deposition (PVD) processes. This non-classical crystallization is a new paradigm of crystal growth, with active research taking place on growth in solution, especially in biomineralization processes. Established understanding of the growth of thin films and nanostructures is based around processes involving individual atoms or molecules. According to the author’s research over the last two decades, however, the generation of charged gas phase nuclei is shown to be the rule rather than the exception in the CVD process, and charged gas phase nuclei are actively ...
Non-classical homogeneous precipitation mediated by compositional fluctuations in titanium alloys
International Nuclear Information System (INIS)
Nag, S.; Zheng, Y.; Williams, R.E.A.; Devaraj, A.; Boyne, A.; Wang, Y.; Collins, P.C.; Viswanathan, G.B.; Tiley, J.S.; Muddle, B.C.; Banerjee, R.
2012-01-01
This paper presents experimental evidence of homogeneous precipitation of the α-phase within the β matrix of a titanium alloy, and then accounts for this phase transformation by a new, non-classical mechanism involving compositional fluctuations, based on the pseudo-spinodal concept [1]. This mechanism involves local compositional fluctuations of small amplitude which, when of a certain magnitude, can favor thermodynamically certain regions of the β matrix to transform congruently to the α-phase but with compositions far from equilibrium. Subsequently, as measured experimentally using the tomographical atom probe, continuous diffusional partitioning between the parent β- and product α-phases during isothermal annealing drives their compositions towards equilibrium. For a given alloy composition, the decomposition mechanism is strongly temperature dependent, which would be expected for homogeneous precipitation via the compositional fluctuation-mediated mechanism but not necessarily for one based on classical nucleation theory. The applicability of this mechanism to phase transformations in general is noted.
New perspectives for "non-classical" molecules: heavy [1.1.1]propellanes of group 14.
Nied, Dominik; Breher, Frank
2011-07-01
Heavy analogues of hydrocarbons intrigue chemists for a number of reasons, not least because they are often fundamentally different from their carbon counterparts and have remained a challenge for both experimentalists and theoreticians for a long time. The appealing properties of [1.1.1]propellanes of group 14 consisting of inverted tetrahedral bridgehead atoms can mainly be attributed to the particular bonding between the latter. More than 20 years after the first member of this family has been published, several contributions to this area have impressively extended the spectrum of these so-called main-group biradicaloids. Still in its infancy, further perspectives for these "non-classical" molecules are now arising. In this tutorial review, early findings and recent developments in this area are presented. Particular attention is drawn on the relationship of unusual structures and unusual reactivities of main-group element compounds in general and in particular of heavy propellane scaffolds of group 14.
Socio-Cultural Dynamics of Education in the Context of the Post-Non-Classical Science
Directory of Open Access Journals (Sweden)
V. A. Ignatova
2012-01-01
Full Text Available The paper deals with the interrelations between society, education and culture. Using the comparative analysis of classical approaches to defining the above spheres, the author comes to conclusion that the nature of socio-cultural processes can be explored and described most consistently by applying comprehensive models of the post-non-classical science and considering civilization, education and culture in the context of the unified dynamic flow of socio-cultural genesis. The research investigates the dialectics of socio-cultural processes in the light of systematic synergetic approach, the advancing role of education in socio-cultural dynamics being revealed and substantiated. The author emphasizes its inevitably rising priority due to sustained development of civilization bringing about the new environmentally-oriented meta-culture.The obtained results can be used in pedagogic research methodology, designing and modeling the educational process, its content, technology and organization.
Moment of inertia of liquid in a tank
Directory of Open Access Journals (Sweden)
Gyeong Joong Lee
2014-03-01
Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green's 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solutions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.
Khalilimeybodi, Ali; Daneshmehr, Alireza; Sharif-Kashani, Babak
2018-07-01
The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.
International Nuclear Information System (INIS)
Helled, R.
2011-01-01
Knowledge of Saturn's axial moment of inertia can provide valuable information on its internal structure. We suggest that Saturn's angular momentum may be determined by the Solstice Mission (Cassini XXM) by measuring Saturn's pole precession rate and the Lense-Thirring acceleration on the spacecraft, and therefore put constraints on Saturn's moment of inertia. It is shown that Saturn's moment of inertia can change up to ∼2% due to different core properties. However, a determination of Saturn's rotation rate is required to constrain its axial moment of inertia. A change of about seven minutes in rotation period leads to a similar uncertainty in the moment of inertia value as different core properties (mass, radius). A determination of Saturn's angular momentum and rotation period by the Solstice Mission could reveal important information on Saturn's internal structure, in particular, its core properties.
The generation of arbitrary order, non-classical, Gauss-type quadrature for transport applications
International Nuclear Information System (INIS)
Spence, Peter J.
2015-01-01
A method is presented, based upon the Stieltjes method (1884), for the determination of non-classical Gauss-type quadrature rules, and the associated sets of abscissae and weights. The method is then used to generate a number of quadrature sets, to arbitrary order, which are primarily aimed at deterministic transport calculations. The quadrature rules and sets detailed include arbitrary order reproductions of those presented by Abu-Shumays in [4,8] (known as the QR sets, but labelled QRA here), in addition to a number of new rules and associated sets; these are generated in a similar way, and we label them the QRS quadrature sets. The method presented here shifts the inherent difficulty (encountered by Abu-Shumays) associated with solving the non-linear moment equations, particular to the required quadrature rule, to one of the determination of non-classical weight functions and the subsequent calculation of various associated inner products. Once a quadrature rule has been written in a standard form, with an associated weight function having been identified, the calculation of the required inner products is achieved using specific variable transformations, in addition to the use of rapid, highly accurate quadrature suited to this purpose. The associated non-classical Gauss quadrature sets can then be determined, and this can be done to any order very rapidly. In this paper, instead of listing weights and abscissae for the different quadrature sets detailed (of which there are a number), the MATLAB code written to generate them is included as Appendix D. The accuracy and efficacy (in a transport setting) of the quadrature sets presented is not tested in this paper (although the accuracy of the QRA quadrature sets has been studied in [12,13]), but comparisons to tabulated results listed in [8] are made. When comparisons are made with one of the azimuthal QRA sets detailed in [8], the inherent difficulty in the method of generation, used there, becomes apparent
The Concept of Post-Non-Classic al Methodological Strategy by Professor Olexander Oguy
Directory of Open Access Journals (Sweden)
Olha Chervinska
2017-12-01
Full Text Available The article under discussion is a survey of how a literary concept of a prominent Ukrainian German Studies expert Olexandr Dmytrovych Oguy has been developing on the pages of a scientific journal “Problems of Literary Criticism” from 1993 till 2013. The article traces up the stages of progress of scientist’s methodological strategy concerning the so-called concept of post-non-classicism, beginning with his first article in “The Issues”, where he presented an efficient sample of involving the timeless linguistic universals with the purpose of comparing the typologically similar genre forms. In this way, he managed to prove the authenticity of “The Tale of Igor’s Campaign” in historical-typological comparison with the medieval epic works (Issue 1, 1993. After a 15-year break, O. Oguy’s articles “A Three-Dimensional Poetic Space of ‘Lanzelet’ by Ulrich von Zatzikhoven” (review, 2010, “The Historical-Social Genres in Post-Non-Classical Methodology: the Principles of Classification” (2012, “The Principles of Formation of the Middle Age German Literature: Overcoming the Crisis Stages through New Genres” (2013 were published in the journal. Each of these works contains a distinct conceptual program. The review was not restricted by a mere critical analysis of the work by a German researcher Kai Lorenz. It also highlighted the difference between methodological fundamentals of European and Ukrainian scientific text analyses – “different paradigms of foreign and Ukrainian Medievalist Studies”. This scientific text is a topical “transplantation” of analytic methodology of K. Lorenz into Ukrainian philological practice. It was introduced into scientific circulation as the so-called “trichotomic model” of functional types of the interacting spatial structures. The article “The Historical-Social Genres in Post-Non-Classical Methodology: the Principles of Classification” (Issue 86, 2012 is a vivid example of
The generation of arbitrary order, non-classical, Gauss-type quadrature for transport applications
Energy Technology Data Exchange (ETDEWEB)
Spence, Peter J., E-mail: peter.spence@awe.co.uk
2015-09-01
A method is presented, based upon the Stieltjes method (1884), for the determination of non-classical Gauss-type quadrature rules, and the associated sets of abscissae and weights. The method is then used to generate a number of quadrature sets, to arbitrary order, which are primarily aimed at deterministic transport calculations. The quadrature rules and sets detailed include arbitrary order reproductions of those presented by Abu-Shumays in [4,8] (known as the QR sets, but labelled QRA here), in addition to a number of new rules and associated sets; these are generated in a similar way, and we label them the QRS quadrature sets. The method presented here shifts the inherent difficulty (encountered by Abu-Shumays) associated with solving the non-linear moment equations, particular to the required quadrature rule, to one of the determination of non-classical weight functions and the subsequent calculation of various associated inner products. Once a quadrature rule has been written in a standard form, with an associated weight function having been identified, the calculation of the required inner products is achieved using specific variable transformations, in addition to the use of rapid, highly accurate quadrature suited to this purpose. The associated non-classical Gauss quadrature sets can then be determined, and this can be done to any order very rapidly. In this paper, instead of listing weights and abscissae for the different quadrature sets detailed (of which there are a number), the MATLAB code written to generate them is included as Appendix D. The accuracy and efficacy (in a transport setting) of the quadrature sets presented is not tested in this paper (although the accuracy of the QRA quadrature sets has been studied in [12,13]), but comparisons to tabulated results listed in [8] are made. When comparisons are made with one of the azimuthal QRA sets detailed in [8], the inherent difficulty in the method of generation, used there, becomes apparent
Energy Technology Data Exchange (ETDEWEB)
Kandaswamy, Krishna Kumar [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck, 23538 Luebeck (Germany); Pugalenthi, Ganesan [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hartmann, Enno; Kalies, Kai-Uwe [Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Luebeck, 23538 Luebeck (Germany); Moeller, Steffen [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Suganthan, P.N. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Martinetz, Thomas, E-mail: martinetz@inb.uni-luebeck.de [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany)
2010-01-15
Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).
International Nuclear Information System (INIS)
Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hartmann, Enno; Kalies, Kai-Uwe; Moeller, Steffen; Suganthan, P.N.; Martinetz, Thomas
2010-01-01
Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).
Semiclassical shell structure of moments of inertia in deformed Fermi systems
International Nuclear Information System (INIS)
Magner, A.G.; Gzhebinsky, A.M.; Sitdikov, A.S.; Khamzin, A.A.; Bartel, J.
2010-01-01
The collective moment of inertia is derived analytically within the cranking model in the adiabatic mean-field approximation at finite temperature. Using the nonperturbative periodic-orbit theory the semiclassical shell-structure components of the collective moment of inertia are obtained for any potential well. Their relation to the free-energy shell corrections are found semiclassically as being given through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. Shell effects in the moment of inertia disappear exponentially with increasing temperature. For the case of the harmonic-oscillator potential one observes a perfect agreement between semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures. (author)
Neutron star moments of inertia
Ravenhall, D. G.; Pethick, C. J.
1994-01-01
An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.
From resistance to relational inertia
DEFF Research Database (Denmark)
Scheuer, John Damm
-network-theory as a point of departure a new concept – relational inertia – is developed. In this view change agents are theorized as translators who interacts with humans as well as non-humans (objects) in order to construct different types of socio-technical systems which are constructed to perform certain “wished...... inertia that had to be handled in order to succeed with constructing a performative socio-technical risk-management system in practice. Finally it is discussed how this view supplements the resistance to change view and other views with a focus on barriers to change....
NATO Advanced Research Workshop on Squeezed and Non-classical Light
Pike, E; Squeezed and Non-classical Light
1988-01-01
The recent generation in the laboratory of phase squeezed and intensity squeezed light beams has brought to fruition the theoretical predictions of such non-classical phenomena which have been made and developed in recent years by a number of workers in the field of quantum optics. A vigorous development is now underway of both theory and experiment and the first measurements have been coi:Jfirmed and extended already in some half dozen laboratories. Although the fields of application of these novellight sources are as yet somewhat hazy in our minds and some inspired thinking is required along these lines, the pace and excitement of the research is very clear. It is to he hoped that the new possibilities of: making measurements below the quantum shot noise lirnit which is made possible by these squeezed states of light willlead to further fundamental advances in the near future. In this NATO ARW a number of the leaders in the field met in the extremely pleasant surroundings of Cortina d'Ampezzo and th...
Thermodynamics and Kinetics of Prenucleation Clusters, Classical and Non-Classical Nucleation.
Zahn, Dirk
2015-07-20
Recent observations of prenucleation species and multi-stage crystal nucleation processes challenge the long-established view on the thermodynamics of crystal formation. Here, we review and generalize extensions to classical nucleation theory. Going beyond the conventional implementation as has been used for more than a century now, nucleation inhibitors, precursor clusters and non-classical nucleation processes are rationalized as well by analogous concepts based on competing interface and bulk energy terms. This is illustrated by recent examples of species formed prior to/instead of crystal nucleation and multi-step nucleation processes. Much of the discussed insights were obtained from molecular simulation using advanced sampling techniques, briefly summarized herein for both nucleation-controlled and diffusion-controlled aggregate formation. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Directory of Open Access Journals (Sweden)
Mabel Montenegro-Sustaita
2012-01-01
Full Text Available A series of selected 2-substituted imidazolines were synthesized in moderate to excellent yields by a modification of protocols reported in the literature. They were evaluated as potential non-classical bioisosteres of AHL with the aim of counteracting bacterial pathogenicity. Imidazolines 18a, 18e and 18f at various concentrations reduced the violacein production by Chromobacterium violaceum, suggesting an anti-quorum sensing profile against Gram-negative bacteria. Imidazoline 18b did not affect the production of violacein, but had a bacteriostatic effect at 100 µM and a bactericidal effect at 1 mM. Imidazoline 18a bearing a hexyl phenoxy moiety was the most active compound of the series, rendering a 72% inhibitory effect of quorum sensing at 100 µM. Imidazoline 18f bearing a phenyl nonamide substituent presented an inhibitory effect on quorum sensing at a very low concentration (1 nM, with a reduction percentage of 28%. This compound showed an irregular performance, decreasing inhibition at concentrations higher than 10 µM, until reaching 100 µM, at which concentration it increased the inhibitory effect with a 49% reduction percentage. When evaluated on Serratia marcescens, compound 18f inhibited the production of prodigiosin by 40% at 100 μM.
Chem/bio sensing with non-classical light and integrated photonics.
Haas, J; Schwartz, M; Rengstl, U; Jetter, M; Michler, P; Mizaikoff, B
2018-01-29
Modern quantum technology currently experiences extensive advances in applicability in communications, cryptography, computing, metrology and lithography. Harnessing this technology platform for chem/bio sensing scenarios is an appealing opportunity enabling ultra-sensitive detection schemes. This is further facilliated by the progress in fabrication, miniaturization and integration of visible and infrared quantum photonics. Especially, the combination of efficient single-photon sources together with waveguiding/sensing structures, serving as active optical transducer, as well as advanced detector materials is promising integrated quantum photonic chem/bio sensors. Besides the intrinsic molecular selectivity and non-destructive character of visible and infrared light based sensing schemes, chem/bio sensors taking advantage of non-classical light sources promise sensitivities beyond the standard quantum limit. In the present review, recent achievements towards on-chip chem/bio quantum photonic sensing platforms based on N00N states are discussed along with appropriate recognition chemistries, facilitating the detection of relevant (bio)analytes at ultra-trace concentration levels. After evaluating recent developments in this field, a perspective for a potentially promising sensor testbed is discussed for reaching integrated quantum sensing with two fiber-coupled GaAs chips together with semiconductor quantum dots serving as single-photon sources.
Analysis of neoclassical edge plasma transport with gyroviscosity and inertia
International Nuclear Information System (INIS)
Rogister, A.; Antonov, N.
1996-01-01
It is shown that the ambipolarity constraint which results from neoclassical transport theory with gyroviscosity and inertia sets lower limits on the edge density and/or temperature and/or Z eff gradients. Toroidal momentum co, respectively counter, -injection reduces, respectively increases these lower bounds. Generally speaking, co, respectively counter, -injection increases, respectively reduces, the rotation velocities. The theory has so far been developed for the high collisionality regime only. (orig.)
Semiclassical moment of inertia shell-structure within the phase-space approach
International Nuclear Information System (INIS)
Gorpinchenko, D V; Magner, A G; Bartel, J; Blocki, J P
2015-01-01
The moment of inertia for nuclear collective rotations is derived within a semiclassical approach based on the cranking model and the Strutinsky shell-correction method by using the non-perturbative periodic-orbit theory in the phase-space variables. This moment of inertia for adiabatic (statistical-equilibrium) rotations can be approximated by the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. A semiclassical phase-space trace formula allows us to express the shell components of the moment of inertia quite accurately in terms of the free-energy shell corrections for integrable and partially chaotic Fermi systems, which is in good agreement with the corresponding quantum calculations. (paper)
Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks
International Nuclear Information System (INIS)
Bondeson, A.; Chu, M.S.
1996-01-01
The inertia and Landau damping of low-frequency magnetohydrodynamical modes are investigated using the drift-kinetic energy principle for the motion along the magnetic field. Toroidal trapping of the ions decreases the Landau damping and increases the inertia for frequencies below (r/R) 1/2 v thi /qR. The theory is applied to toroidicity-induced Alfvacute en eigenmodes and to resistive wall modes in rotating plasmas. An explanation of the beta-induced Alfvacute en eigenmode is given in terms of the Pfirsch endash Schlueter-like enhancement of inertia at low frequency. The toroidal inertia enhancement also increases the effects of plasma rotation on resistive wall modes. copyright 1996 American Institute of Physics
International Nuclear Information System (INIS)
Madarame, Haruki; Nakamura, Norio; Oomura, Hiroshi.
1983-01-01
Purpose: To enable effective recovery of the thermonuclear reaction energy and effective protection of a cylinder metal against thermal destruction by forming a uniform and stable liquid metal wall to the inside of a cylindrical member. Constitution: Cylindrical body having a lateral axis is rotatably supported so that a liquid metal wall for use in the wet wall type thermonuclear device is formed centrifugally. A liquid metal injection port for injecting the liquid metal to the cylindrical member is disposed to the lateral axis and a liquid metal exit for flowing out the injected liquid metal is disposed to the body of the cylindrical member, so as to form a moving liquid metal layer flowing from the injection port through the inner circumferential surface of the cylindrical member to the liquid metal exit port. Then, the liquid metal is centrifugally forced to the inner surface of the cylindrical body to form a uniform and stable liquid metal wall at the inner surface of the cylindrical body, whereby the reaction energy can effectively be recovered and the cylinder metal can effectively be protected against thermal destruction. (Yoshihara, H.)
DEFF Research Database (Denmark)
Rezkalla, Michel M.N.; Zecchino, Antonio; Martinenas, Sergejus
2017-01-01
The increasing share of distributed and inertia-less resources entails an upsurge in balancing and system stabilisation services. In particular, the displacement of conventional generation reduces the available rotational inertia in the power system, leading to high interest in synthetic inertia....... The interdependency between frequency containment and synthetic inertia control on the transient frequency variation is shown analytically. The capabilities and limits of series produced EVs in providing such services are investigated, first on a simulation based approach and subsequently by using real hardware...
Development of ABWR inertia-increased reactor internal pump and thicker sleeve nozzle
International Nuclear Information System (INIS)
Takahashi, Shirou; Shiina, Kouji; Matsumura, Seiichi
2002-01-01
The conventional reactor internal pumps (RIPs) in the ABWR have an inertia moment coming from the shafts and Motor-Generator sets, enabling the RIPs to continue running for a few seconds, when a trip of all RIPs event occurs. It is possible to simplify the RIPs' power supply system without affecting the core flow supply when the above event occurs by eliminating M-G sets, if the rotating inertia is increased. This inertia increase due to an additional flywheel, which leads to gains in weight and length, requires the larger diameter nozzle with the thicker sleeve. However, too large a nozzle diameter may change the hydraulic performance. In authors' previous study, the optimum nozzle diameter (492 mm) was selected through 1/5-scale test. In this study, the 492 mm nozzle and the inertia-increased RIP were verified through the full-scale tests. The rotating inertia time constant on coastdown characteristics (behavior of the RIP speed in the event of power loss) for the inertia-increased RIP doubled compared with the current RIP. The casing and the shaft vibration were also confirmed to satisfy the design criteria. Moreover, hydraulic performance and heat increase in the motor casing due to the flywheel were evaluated. The inertia increased RIP with the 492 mm nozzle maintained good performance. (author)
Moment of Inertia by Differentiation
Rizcallah, Joseph A.
2015-01-01
The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…
Haro, Helida C.
2010-01-01
The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.
Haro, Helida C.
2010-01-01
The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.
A non-classical view of the modulation of mineral precipitation by organic additives
Ruiz-Agudo, Encarnacion; Ruiz-Agudo, Cristina; Burgos-Cara, Alejandro; Putnis, Christine; Rodriguez-Navarro, Carlos; Putnis, Andrew
2016-04-01
Questions persist on the mechanisms of crystallization of sparingly soluble minerals such as calcium carbonate, calcium oxalate or barium sulphate. Compared to CaCO3, the mechanisms of nucleation and growth in the CaC2O4-H2O or BaSO4-H2O systems have received less attention. These phases are important due to their relevance as biominerals and/or unwanted mineral deposits in technological applications. Growing evidence suggests that sparingly soluble salts form by non-classical nucleation and growth pathways, where pre-nucleation ion associates and amorphous (solid or liquid) precursor phase(s) play a critical role (e.g. Rodríguez-Navarro et al. (2015), Ruiz-Agudo et al. (2015)). Indeed the identification of pre-nucleation species in these systems and their strong interactions with organic compounds (Verch et al. 2011) raises the possibility that the control of organics on biomineralization may begin even earlier than previously thought. A sound knowledge of the physical mechanisms by which acidic macromolecules affect nucleation and early growth may offer general insights concerning the molecular control of biomineralization, as well as being critical for improving strategies to control unwanted mineral deposition or for the synthesis of biomimetic materials. Here we present investigations on the initial stages of the precipitation of these relevant minerals in organic-free solutions to identify the precipitation pathway and to look for any potential precursor phase(s) to the final, crystalline polymorph. As well, we explore the effects that several acidic organic compounds have on the different precipitation stages identified. We find that organic additives such as citric acid, polyacrilic acid or a commercial copolymer of maleic acid/allyl sulfonic acid with phosphonate groups can be active at modifying pre-nucleation stages (destabilizing of pre-nucleation species or hampering the aggregation and growth of pre-nucleation associates) and subsequently strongly
Chimera states in coupled Kuramoto oscillators with inertia
International Nuclear Information System (INIS)
Olmi, Simona
2015-01-01
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry
Chimera states in coupled Kuramoto oscillators with inertia
Energy Technology Data Exchange (ETDEWEB)
Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it [CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino (Italy)
2015-12-15
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.
Chimera states in coupled Kuramoto oscillators with inertia.
Olmi, Simona
2015-12-01
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.
Phylogenetic inertia and Darwin's higher law.
Shanahan, Timothy
2011-03-01
The concept of 'phylogenetic inertia' is routinely deployed in evolutionary biology as an alternative to natural selection for explaining the persistence of characteristics that appear sub-optimal from an adaptationist perspective. However, in many of these contexts the precise meaning of 'phylogenetic inertia' and its relationship to selection are far from clear. After tracing the history of the concept of 'inertia' in evolutionary biology, I argue that treating phylogenetic inertia and natural selection as alternative explanations is mistaken because phylogenetic inertia is, from a Darwinian point of view, simply an expected effect of selection. Although Darwin did not discuss 'phylogenetic inertia,' he did assert the explanatory priority of selection over descent. An analysis of 'phylogenetic inertia' provides a perspective from which to assess Darwin's view. Copyright © 2010 Elsevier Ltd. All rights reserved.
An improved method in the measurement of the moment of inertia
Energy Technology Data Exchange (ETDEWEB)
Peng, Jun, E-mail: pengjun@cimm.com.cn [Key Laboratory for Metrology, Changcheng Institute of Metrology and Measurement (CIMM) Beijing (China); Zhang, Li, E-mail: zhangli@cimm.com.cn [Key Laboratory for Metrology, Changcheng Institute of Metrology and Measurement (CIMM) Beijing (China); School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing (China)
2016-06-28
The moment of inertia calibration system is developed by Changcheng Institute of Metrology and Measurement (CIMM). Rotation table - torsional spring system is used to generate angular vibration, and laser vibrometer is used to measure rotational angle and the vibration period. The object to be measured is mounted on the top of the rotation table. The air-bearing system is elaborately manufactured which reduce the friction of the angular movement and increase measurement accuracy. Heterodyne laser interferometer collaborates with column diffraction grating is used in the measurement of angular movement. Experiment shows the method of measuring oscillating angle and period introduced in this paper is stable and the time resolution is high. When the air damping effect can’t be neglected in moment of inertia measurement, the periodic waveform area ratio method is introduced to calculate damping ratio and obtain the moment of inertia.
International Nuclear Information System (INIS)
Culetu, H.
1990-09-01
A dynamical origin to the Minkowski geometry is suggested in this paper. The Minkowski internal (-x α x α ) 1/2 plays the role of the fifth dimension. We found the energy-momentum vector p μ (associated to a ''motion in scale'') of a ''free'' relativistic particle in position-dependent. When x i and ''t'' are not independent, we are naturally led to the law of inertia. (author). 10 refs
Sun, Xiao; Chai, Guobei; Liu, Wei; Bao, Wenzhuo; Zhao, Xiaoning; Ming, Delie
2018-02-01
Simple cells in primary visual cortex are believed to extract local edge information from a visual scene. In this paper, inspired by different receptive field properties and visual information flow paths of neurons, an improved Combination of Receptive Fields (CORF) model combined with non-classical receptive fields was proposed to simulate the responses of simple cell's receptive fields. Compared to the classical model, the proposed model is able to better imitate simple cell's physiologic structure with consideration of facilitation and suppression of non-classical receptive fields. And on this base, an edge detection algorithm as an application of the improved CORF model was proposed. Experimental results validate the robustness of the proposed algorithm to noise and background interference.
Non-Classical C–H···X Hydrogen Bonding and Its Role in Asymmetric Organocatalysis
Ajitha, Manjaly John
2016-08-17
Non-classical hydrogen bonds (NCHBs) have attracted significant interest in the past decade particularly because of their important role in asymmetric catalytic systems. These weak interactions (< 4 kcal/mol) offer much flexibility in the preorganization of molecular entities required to achieve high enantioselectivity. Herein, we review some recent important organocatalytic asymmetric reactions where a NCHB serves as a critical factor in determining the stereoselectivity.
Calculations of mass and moment of inertia for neutron stars
International Nuclear Information System (INIS)
Moelnvik, T.; Oestgaard, E.
1985-01-01
Masses and moments of inertia for slowly-rotating neutron stars are calculated from the Tolman-Oppenheimer-Volkoff equations and various equations of state for neutron-star matter. We have also obtained pressure and density as a function of the distance from the centre of the star. Generally, two different equations of state are applied for particle densities n>0.47 fm -3 and n -3 . The maximum mass is, in our calculations for all equations of state except for the unrealistic non-relativistic ideal Fermi gas, given by 1.50 Msub(sun) 44 gxcm 2 45 gxcm 2 , which also seem to agree very well with 'experimental results'. The radius of the star corresponding to maximum mass and maximum moment of inertia is given by 8.2 km< R<10.0 km, but a smaller central density rhosub(c) will give a larger radius. (orig.)
More about the moment of inertia of Mars
International Nuclear Information System (INIS)
Kaula, W.M.; Sleep, N.H.; Phillips, R.J.
1989-01-01
The maximum allowable mean moment-of-inertia I of Mars is 0.3650 ·MR 2 because the rate-of-adjustment of the rotation axis is much faster than the rate-of-generation of density heterogeneities, as with any planet. But Mars differs from the other terrestrial planets in that its gravity field is rougher, in the sense of stress-difference implication, and its global tectonics is dominated by one feature, centered on the Tharsis Plateau. Plausible tectonic models of Mars require generation and support that are almost axially symmetric about Tharsis. Hence, unlike other terrestrial planets, Mars likely has two non-hydrostatic components of moments-of-inertia that are nearly equal, and the most probable value of I/MR 2 is slightly less than 0.3650
DEFF Research Database (Denmark)
Rezkalla, Michel M.N.; Zecchino, Antonio; Pertl, Michael
2016-01-01
The displacement of conventional generation by converter connected resources reduces the available rotational inertia in the power system, which leads to faster frequency dynamics and consequently a less stable frequency behavior. Virtual inertia, employing energy storage systems, could be used...... of adjusting the battery charging process (i.e., power flow) according to pre-defined algorithms. On the other hand, in case of islanded operation (i.e., low inertia), some of the EV's technical constraints might cause oscillations. This study presents two control algorithms which show that the EVs are capable...... of providing virtual inertia support. The first controller employs a traditional droop control, while the second one is equipped with an innovative control algorithm to eliminate likely oscillations. It is shown that, the proposed innovative control algorithm compared to the traditional droop control, assures...
Directory of Open Access Journals (Sweden)
Thongchart Kerdphol
2017-05-01
Full Text Available Renewable energy sources (RESs, such as wind and solar generations, equip inverters to connect to the microgrids. These inverters do not have any rotating mass, thus lowering the overall system inertia. This low system inertia issue could affect the microgrid stability and resiliency in the situation of uncertainties. Today’s microgrids will become unstable if the capacity of RESs become larger and larger, leading to the weakening of microgrid stability and resilience. This paper addresses a new concept of a microgrid control incorporating a virtual inertia system based on the model predictive control (MPC to emulate virtual inertia into the microgrid control loop, thus stabilizing microgrid frequency during high penetration of RESs. The additional controller of virtual inertia is applied to the microgrid, employing MPC with virtual inertia response. System modeling and simulations are carried out using MATLAB/Simulink® software. The simulation results confirm the superior robustness and frequency stabilization effect of the proposed MPC-based virtual inertia control in comparison to the fuzzy logic system and conventional virtual inertia control in a system with high integration of RESs. The proposed MPC-based virtual inertia control is able to improve the robustness and frequency stabilization of the microgrid effectively.
Primary uterine inertia in four labrador bitches.
Davidson, Autumn P
2011-01-01
Uterine inertia is a common cause of dystocia in the bitch and is designated as primary (i.e., uterine contractions fail to ever be initiated) or secondary (i.e., uterine contractions cease after a period of time but before labor is completed). The etiology of primary uterine inertia is not well understood. The accurate diagnosis of primary uterine inertia requires the use of tocodynamometry (uterine monitoring). Primary uterine inertia has been postulated to result from a failure of luteolysis resulting in persistently elevated progesterone concentrations. In this study, primary uterine inertia was diagnosed in a series of four bitches in which luteolysis was documented suggesting some other etiopathogenesis for primary uterine inertia.
WAYS TO MANAGE HEATING INERTIA
Directory of Open Access Journals (Sweden)
E. V. Biloshytskyi
2017-08-01
Full Text Available Purpose. The research paper proposes to estimate the effect of heat inertia of the water heating system, in transient operation modes, on the temperature condition in the passenger car, as well as to offer technical solutions intended to reduce the heating system inertia effect and to maintain a stable temperature condition in the passenger car premises in transitional modes of the heating system. Methodology. The author developed the method for controlling the heat transfer of heating system pipes with the help of regulating casing. To control the heating system and the heat transfer of heating pipes, two types of temperature control sensors were used in the passenger car: certain sensors interacted with regulatory casings, while the others interacted with high-voltage tubular heating element control devices. To assess the efficiency of heat interchange regulation of heating pipes and the heating system control, with installed regulating casings, the operation of the heating system with regulating casings and two types of sensors was mathematically modelled. Mathematical modelling used the experimental test data. The results of experimental tests and mathematical modelling were compared. Findings. Currently in operated passenger cars, control of heating appliances is not constructively provided. Automatic maintenance of the set temperature in a passenger car is limited to switching on and off of high-voltage tubular heating elements. The use of regulating casings on heating pipes allows reducing the effects of heat inertia and maintaining stable thermal conditions in a passenger car, using the heating system as a heat accumulator, and also provides the opportunity to realize an individual control of air temperature in the compartment. Originality. For the first time, the paper studied the alternative ways of regulating the temperature condition in a passenger car. Using of the heating system as a heat accumulator. Practical value. The
Semiclassical shell structure in rotating Fermi systems
International Nuclear Information System (INIS)
Magner, A. G.; Sitdikov, A. S.; Khamzin, A. A.; Bartel, J.
2010-01-01
The collective moment of inertia is derived analytically within the cranking model for any rotational frequency of the harmonic-oscillator potential well and at a finite temperature. Semiclassical shell-structure components of the collective moment of inertia are obtained for any potential by using the periodic-orbit theory. We found semiclassically their relation to the free-energy shell corrections through the shell-structure components of the rigid-body moment of inertia of the statistically equilibrium rotation in terms of short periodic orbits. The shell effects in the moment of inertia exponentially disappear with increasing temperature. For the case of the harmonic-oscillator potential, one observes a perfect agreement of the semiclassical and quantum shell-structure components of the free energy and the moment of inertia for several critical bifurcation deformations and several temperatures.
Gross shell structure of moments of inertia
International Nuclear Information System (INIS)
Deleplanque, M.A.; Frauendorf, S.; Pashkevich, V.V.; Chu, S.Y.; Unzhakova, A.
2002-01-01
Average yrast moments of inertia at high spins, where the pairing correlations are expected to be largely absent, were found to deviate from the rigid-body values. This indicates that shell effects contribute to the moment of inertia. We discuss the gross dependence of moments of inertia and shell energies on the neutron number in terms of the semiclassical periodic orbit theory. We show that the ground-state shell energies, nuclear deformations and deviations from rigid-body moments of inertia are all due to the same periodic orbits
Clinical Inertia and Outpatient Medical Errors
National Research Council Canada - National Science Library
O'Connor, Patrick J; Sperl-Hillen, JoAnn M; Johnson, Paul E; Rush, William A; Biltz, George
2005-01-01
.... Clinical inertia is a major factor that contributes to inadequate chronic disease care in patients with diabetes mellitus, hypertension, dyslipidemias, depression, coronary heart disease, and other conditions...
Independent particle Schroedinger Fluid: moments of inertia
International Nuclear Information System (INIS)
Kan, K.K.; Griffin, J.J.
1977-10-01
This philosophy of the Single Particle Schroedinger Fluid, especially as regards the velocity fields which find such a natural role therein, is applied to the study of the moments of inertia of independent Fermion system. It is shown that three simplified systems exhibit the rigid-body rotational velocity field in the limit of large A, and that the leading deviations, both on the average and fluctuating, from this large A limit can be described analytically, and verified numerically. For a single particle in a Hill-Wheeler box the moments are studied numerically, and their large fluctuations identified with the specific energy level degeneracies of its parallelepiped shape. The full assemblage of these new and old results is addressed to the question of the necessary and sufficient condition that the moment have the rigid value. Counterexamples are utilized to reject some conditions, and the conjecture is argued that Unconstrained Shape Equilibrium might be the necessary and sufficient condition. The spheroidal square well problem is identified as a promising test case
Moment of inertia of liquid in a tank
Directory of Open Access Journals (Sweden)
Lee Gyeong Joong
2014-03-01
Full Text Available In this study, the inertial properties of fully filled liquid in a tank were studied based on the potential theory. The analytic solution was obtained for the rectangular tank, and the numerical solutions using Green’s 2nd identity were obtained for other shapes. The inertia of liquid behaves like solid in recti-linear acceleration. But under rotational acceleration, the moment of inertia of liquid becomes small compared to that of solid. The shapes of tank investigated in this study were ellipse, rectangle, hexagon, and octagon with various aspect ratios. The numerical solu¬tions were compared with analytic solution, and an ad hoc semi-analytical approximate formula is proposed herein and this formula gives very good predictions for the moment of inertia of the liquid in a tank of several different geometrical shapes. The results of this study will be useful in analyzing of the motion of LNG/LPG tanker, liquid cargo ship, and damaged ship.
Nuclear inertia for fission in a generalized cranking model
International Nuclear Information System (INIS)
Kunz, J.; Nix, J.R.
1984-01-01
The Inglis cranking model has been widely used to calculate the nuclear inertia associated with collective degrees of freedom. After the inclusion of pairing correlations, theoretical results obtained with the cranking model for nuclear rotations and γ-vibrations were in relatively good agreement with experimental data. Calculations of β-vibrational inertias were also performed in the cranking model for fission deformations. Theoretical results were several times the irrotational values and gave reasonable agreement with experimental spontaneous-fission lifetimes, although in one study a renormalization factor of 0.8 was required. However, as pointed out by many authors, the Inglis cranking model possesses two serious deficiencies. First, problems arise when the single-particle potential contains momentum-dependence terms. Second, in the limit of large pairing strength the inertia approaches zero instead of a finite (irrotational) limit. Alternative approaches to the cranking model which did not lead to such unacceptable results were developed by Migdal, Belyaev and Thouless and Valatin. They showed that these deficiencies of the cranking model are due to a lack of self-consistency, since the reaction of the mean field to the collective motion is neglected in the Inglis model. Previously we used their arguments and developed a generalized cranking model for stationary collective motion. Here it is shown how to develop a time-dependent formalism appropriate to β-vibrations and fission. 10 references
D-dimensional moments of inertia
International Nuclear Information System (INIS)
Bender, C.M.; Mead, L.R.
1995-01-01
We calculate the moments of inertia of D-dimensional spheres and spherical shells, where D is a complex number. We also examine the moments of inertia of fractional-dimensional geometrical objects such as the Cantor set and the Sierpinski carpet and their D-dimensional analogs. copyright 1995 American Association of Physics Teachers
Dynamical moments of inertia for superdeformed nuclei
International Nuclear Information System (INIS)
Obikhod, T.V.
1995-01-01
The method of quantum groups has been applied for calculation the dynamical moments of inertia for the yrast superdeformed bands in 194 Hg and 192 Hg as well as to calculation of the dynamical moments of inertia of superdeformed bands in 150 Gd and 148 Gd
Nuclear moments of inertia and wobbling motions in triaxial superdeformed nuclei
International Nuclear Information System (INIS)
Matsuzaki, Masayuki; Shimizu, Yoshifumi R.; Matsuyanagi, Kenichi
2004-01-01
The wobbling motion excited on triaxial superdeformed nuclei is studied in terms of the cranked shell model plus random phase approximation. First, by calculating at a low rotational frequency the γ dependence of the three moments of inertia associated with the wobbling motion, the mechanism of the appearance of the wobbling motion in positive-γ nuclei is clarified theoretically--the rotational alignment of the πi 13/2 quasiparticle(s) is the essential condition. This indicates that the wobbling motion is a collective motion that is sensitive to the single-particle alignment. Second, we prove that the observed unexpected rotational-frequency dependence of the wobbling frequency is an outcome of the rotational-frequency dependent dynamical moments of inertia
DEFF Research Database (Denmark)
Rezkalla, Michel M.N.; Marinelli, Mattia; Pertl, Michael
2016-01-01
Traditionally the electricity generation is based on rotating synchronous machines which provide inertia to the power system.The increasing share of converter connected energy sources reduces the available rotational inertia in the power system leading to faster frequency dynamics, which may cause...... more critical frequency excursions. Both, virtual inertia and fast primary control could serve as a solution to improvefrequency stability, however, their respective impacts on the system have different consequences, so that the trade-off is not straightforward. This study presents a comparative...... analysis of virtual inertiaand a fast primary control algorithms with respect to rate of change of frequency (ROCOF), frequency nadir and steady state value considering the effect of the dead time which is carried out by a sensitivity analysis. The investigation shows that the virtual inertia controller...
Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas
Riedl, S.; Sánchez Guajardo, E. R.; Kohstall, C.; Hecker Denschlag, J.; Grimm, R.
2011-03-01
We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.
Directory of Open Access Journals (Sweden)
Patrick Grahn
2018-03-01
Full Text Available A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum’s physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space houses energy in balance with the energy of matter in the whole Universe. Likewise, we reason that a local gravitational potential is the vacuum in a local balance with energy that is bound to a body. Since a body couples to the same vacuum universally and locally, we understand that inertial and gravitational masses are identical. By the same token, we infer that gravity and electromagnetism share the similar functional form because both are carried by the vacuum photons as paired and unpaired.
Effect of moment of inertia to H type vertical axis wind turbine aerodynamic performance
International Nuclear Information System (INIS)
Yang, C X; Li, S T
2013-01-01
The main aerodynamic performances (out power out power coefficient torque torque coefficient and so on) of H type Vertical Axis wind Turbine (H-VAWT) which is rotating machinery will be impacted by moment of inertia. This article will use NACA0018 airfoil profile to analyze that moment of inertia through impact performance of H type VAWT by utilizing program of Matlab and theory of Double-Multiple Streamtube. The results showed that the max out power coefficient was barely impacted when moment of inertia is changed in a small area,but the lesser moment of inertia's VAWT needs a stronger wind velocity to obtain the max out power. The lesser moment of inertia's VAWT has a big out power coefficient, torque coefficient and out power before it gets to the point of max out power coefficient. Out power coefficient, torque and torque coefficient will obviously change with wind velocity increased for VAWT of the lesser moment of inertia
Directory of Open Access Journals (Sweden)
Julie Carnesecchi
Full Text Available The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2 addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation.
Carnesecchi, Julie; Malbouyres, Marilyne; de Mets, Richard; Balland, Martial; Beauchef, Gallic; Vié, Katell; Chamot, Christophe; Lionnet, Claire; Ruggiero, Florence; Vanacker, Jean-Marc
2015-01-01
The post-menopausal decrease in estrogen circulating levels results in rapid skin deterioration pointing out to a protective effect exerted by these hormones. The identity of the skin cell type responding to estrogens is unclear as are the cellular and molecular processes they elicit. Here, we reported that lack of estrogens induces rapid re-organization of the human dermal fibroblast cytoskeleton resulting in striking cell shape change. This morphological change was accompanied by a spatial re-organization of focal adhesion and a substantial reduction of their number as evidenced by vinculin and actin co-staining. Cell morphology and cytoskeleton organization was fully restored upon 17β-estradiol (E2) addition. Treatment with specific ER antagonists and cycloheximide respectively showed that the E2 acts independently of the classical Estrogen Receptors and that cell shape change is mediated by non-genomic mechanisms. E2 treatment resulted in a rapid and transient activation of ERK1/2 but not Src or PI3K. We show that human fibroblasts express the non-classical E2 receptor GPR30 and that its agonist G-1 phenocopies the effect of E2. Inhibiting GPR30 through treatment with the G-15 antagonist or specific shRNA impaired E2 effects. Altogether, our data reveal a novel mechanism by which estrogens act on skin fibroblast by regulating cell shape through the non-classical G protein-coupled receptor GPR30 and ERK1/2 activation.
Directory of Open Access Journals (Sweden)
Isabelle Rogowski
Full Text Available This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2. An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.
Rogowski, Isabelle; Creveaux, Thomas; Chèze, Laurence; Macé, Pierre; Dumas, Raphaël
2014-01-01
This study examined the effect of the polar moment of inertia of a tennis racket on upper limb loading in the serve. Eight amateur competition tennis players performed two sets of 10 serves using two rackets identical in mass, position of center of mass and moments of inertia other than the polar moment of inertia (0.00152 vs 0.00197 kg.m2). An eight-camera motion analysis system collected the 3D trajectories of 16 markers, located on the thorax, upper limbs and racket, from which shoulder, elbow and wrist net joint moments and powers were computed using inverse dynamics. During the cocking phase, increased racket polar moment of inertia was associated with significant increases in the peak shoulder extension and abduction moments, as well the peak elbow extension, valgus and supination moments. During the forward swing phase, peak wrist extension and radial deviation moments significantly increased with polar moment of inertia. During the follow-through phase, the peak shoulder adduction, elbow pronation and wrist external rotation moments displayed a significant inverse relationship with polar moment of inertia. During the forward swing, the magnitudes of negative joint power at the elbow and wrist were significantly larger when players served using the racket with a higher polar moment of inertia. Although a larger polar of inertia allows players to better tolerate off-center impacts, it also appears to place additional loads on the upper extremity when serving and may therefore increase injury risk in tennis players.
International Nuclear Information System (INIS)
Prakash, Hari; Mishra, Devendra Kumar
2005-01-01
We present here an example where a non-classical feature of a light beam is enhanced simply by mixing with another classical coherent light beam using a beam splitter. This non-classical feature is amplitude-squared squeezing of a Gaussian light beam expressed by a negative value of Y e or a negative value of the normalized quantity W e which can become more negative on enhancement. Here, these values comprise the density, annihilation and creation operators, respectively
Massive Submucosal Ganglia in Colonic Inertia.
Naemi, Kaveh; Stamos, Michael J; Wu, Mark Li-Cheng
2018-02-01
- Colonic inertia is a debilitating form of primary chronic constipation with unknown etiology and diagnostic criteria, often requiring pancolectomy. We have occasionally observed massively enlarged submucosal ganglia containing at least 20 perikarya, in addition to previously described giant ganglia with greater than 8 perikarya, in cases of colonic inertia. These massively enlarged ganglia have yet to be formally recognized. - To determine whether such "massive submucosal ganglia," defined as ganglia harboring at least 20 perikarya, characterize colonic inertia. - We retrospectively reviewed specimens from colectomies of patients with colonic inertia and compared the prevalence of massive submucosal ganglia occurring in this setting to the prevalence of massive submucosal ganglia occurring in a set of control specimens from patients lacking chronic constipation. - Seven of 8 specimens affected by colonic inertia harbored 1 to 4 massive ganglia, for a total of 11 massive ganglia. One specimen lacked massive ganglia but had limited sampling and nearly massive ganglia. Massive ganglia occupied both superficial and deep submucosal plexus. The patient with 4 massive ganglia also had 1 mitotically active giant ganglion. Only 1 massive ganglion occupied the entire set of 10 specimens from patients lacking chronic constipation. - We performed the first, albeit distinctly small, study of massive submucosal ganglia and showed that massive ganglia may be linked to colonic inertia. Further, larger studies are necessary to determine whether massive ganglia are pathogenetic or secondary phenomena, and whether massive ganglia or mitotically active ganglia distinguish colonic inertia from other types of chronic constipation.
Flapping inertia for selected rotor blades
Berry, John D.; May, Matthew J.
1991-01-01
Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.
Experimental study of the conventional equation to determine a plate's moment of inertia
International Nuclear Information System (INIS)
Pintao, Carlos A F; Filho, Moacir P de Souza; Grandini, Carlos R; Hessel, Roberto
2004-01-01
In this work, we describe an experimental setup in which an electric current is used to determine the angular velocity attained by a plate rotating around a shaft in response to a torque applied for a given period. Based on this information, we show how the moment of inertia of a plate can be determined using a procedure that differs considerably from the ones most commonly used, which generally involve time measurements. Some experimental results are also presented which allow one to determine parameters such as the exponents and constant of the conventional equation of a plate's moment of inertia
Effective moments of inertia and spin cut off parameters in Hf isotopes
International Nuclear Information System (INIS)
Razavi, R.; Sharifzadeh, N.; Farahmand, M.R.
2011-01-01
In all statistical theories the nuclear level density is the most characteristic quantity and plays a major role in the study of nuclear structure. Most experimental data on nuclear level density have been analyzed with analytical functions of the level density. On the basis of statistical models, the effective moments of inertia and spin cut off parameters have been determined for 176 Hf, 178 Hf and 180 Hf nuclei from extensive and complete level schemes and neutron resonance densities in low excitation energy levels. Then, moments of inertia of these nuclei have been determined by nuclear rotational model. The results have been compared with their corresponding rigid body value
Directory of Open Access Journals (Sweden)
Yu.G.Rudoy
2005-01-01
Full Text Available The concept of effective temperature (ET T*(T0, T is used in order to approximately "quantize" the thermodynamic functions of the dynamical object which is in the thermal equilibrium with thermal bath being at constant temperature T (T0=E0/kB, where E0 is the ground-state energy, kB - Boltzmann constant, is the characteristic ``quantum'' temperature of the system itself. On these grounds the extensive comparative investigation is carried out for the ``standard model'' of statistical mechanics - the one-dimensional harmonic oscillator (HO. Three well-known approaches are considered and their thermodynamic consequences thoroughly studied. These are: the exact quantum, or non-classical Planck-Einstein approach, intermediate, or semiclassical Bloch-Wigner approach and, finally, the pure classical, or Maxwell-Boltzmann approach.
Hosseini Shokouh, Seyed Hossein; Raza, Syed Raza Ali; Lee, Hee Sung; Im, Seongil
2014-08-21
On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.
Energy Technology Data Exchange (ETDEWEB)
Kawakatsu, Miho [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan)
2011-08-12
Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.
Directory of Open Access Journals (Sweden)
Christa E Flück
Full Text Available CONTEXT: Steroidogenic acute regulatory protein (StAR is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH. OBJECTIVE: StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. DESIGN: To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. SETTING: Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. PATIENTS: Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. RESULTS: StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30% and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. CONCLUSIONS: StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.
A Reevaluation of the Attentional Inertia Concept
W.J.M.I. Verbeke (Willem)
1992-01-01
textabstractAnderson's (1983) theory about children's attention behavior during television viewing hypothesizes that attention behavior is affected by positive feedback (the inertia hypothesis) and the degree to which a child understands the television program. During an experiment, neither
Moments of inertia in a semiclassical approach
International Nuclear Information System (INIS)
Benchein, K.
1993-01-01
Semiclassical calculations have been performed for 31 nuclei. As a result of preliminary non-fully self-consistent calculations, the moments of inertia in investigated nuclei abd spin degrees of freedom are found
Social inertia and diversity in collaboration networks
Ramasco, J. J.
2007-04-01
Random graphs are useful tools to study social interactions. In particular, the use of weighted random graphs allows to handle a high level of information concerning which agents interact and in which degree the interactions take place. Taking advantage of this representation, we recently defined a magnitude, the Social Inertia, that measures the eagerness of agents to keep ties with previous partners. To study this magnitude, we used collaboration networks that are specially appropriate to obtain valid statitical results due to the large size of publically available databases. In this work, I study the Social Inertia in two of these empirical networks, IMDB movie database and condmat. More specifically, I focus on how the Inertia relates to other properties of the graphs, and show that the Inertia provides information on how the weight of neighboring edges correlates. A social interpretation of this effect is also offered.
Electrohydrodynamics of a viscous drop with inertia.
Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F
2016-05-01
Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.
Testing quantised inertia on emdrives with dielectrics
McCulloch, M. E.
2017-05-01
Truncated-cone-shaped cavities with microwaves resonating within them (emdrives) move slightly towards their narrow ends, in contradiction to standard physics. This effect has been predicted by a model called quantised inertia (MiHsC) which assumes that the inertia of the microwaves is caused by Unruh radiation, more of which is allowed at the wide end. Therefore, photons going towards the wide end gain inertia, and to conserve momentum the cavity must move towards its narrow end, as observed. A previous analysis with quantised inertia predicted a controversial photon acceleration, which is shown here to be unnecessary. The previous analysis also mispredicted the thrust in those emdrives with dielectrics. It is shown here that having a dielectric at one end of the cavity is equivalent to widening the cavity at that end, and when dielectrics are considered, then quantised inertia predicts these results as well as the others, except for Shawyer's first test where the thrust is predicted to be the right size but in the wrong direction. As a further test, quantised inertia predicts that an emdrive's thrust can be enhanced by using a dielectric at the wide end.
A vacuum--generated inertia reaction force
International Nuclear Information System (INIS)
Rueda, Alfonso; Haisch, Bernard
2001-01-01
A clear and succinct covariant approach shows that, in principle, there must be a contribution to the inertia reaction force on an accelerated object by the surrounding vacuum electromagnetic field in which the object is embedded. No details of the vacuum to object electromagnetic interaction need to be specified other than the fact that the object is made of electromagnetically interacting particles. Some interesting consequences of this feature are discussed. This analysis strongly supports the concept that inertia is indeed an opposition of the vacuum fields to any attempt to change the uniform state of motion of material bodies. This also definitely shows that inertia should be viewed as extrinsic to mass and that causing agents and/or mechanisms responsible for the inertia reaction force are neither intrinsic to the notion of mass nor to the entities responsible for the existence of mass in elementary particles (as, e.g., the Higgs field). In other words the mechanism that produces the inertia-reaction-force requires an explicit explanation. This explicit explanation is that inertia is an opposition of the vacuum fields to the accelerated motion of any material entities, i.e., of entities that possess mass. It is briefly commented why the existence of a Higgs field responsible for the generation of mass in elementary particles does not contradict the view presented here. It is also briefly discussed why a strict version of Mach's Principle does really contradict this view, though a broad sense version of Mach's Principle may be in agreement
Cantilever Beam Natural Frequencies in Centrifugal Inertia Field
Jivkov, V. S.; Zahariev, E. V.
2018-03-01
In the advanced mechanical science the well known fact is that the gravity influences on the natural frequencies and modes even for the vertical structures and pillars. But, the condition that should be fulfilled in order for the gravity to be taken into account is connected with the ration between the gravity value and the geometrical cross section inertia. The gravity is related to the earth acceleration but for moving structures there exist many other acceleration exaggerated forces and such are forces caused by the centrifugal accelerations. Large rotating structures, as wind power generators, chopper wings, large antennas and radars, unfolding space structures and many others are such examples. It is expected, that acceleration based forces influence on the structure modal and frequency properties, which is a subject of the present investigations. In the paper, rotating beams are subject to investigations and modal and frequency analysis is carried out. Analytical dependences for the natural resonances are derived and their dependences on the angular velocity and centrifugal accelerations are derived. Several examples of large rotating beams with different orientations of the rotating shaft are presented. Numerical experiments are conducted. Time histories of the beam tip deflections, that depict the beam oscillations are presented.
Effect of Process Variables on the Inertia Friction Welding of Superalloys LSHR and Mar-M247
Mahaffey, D. W.; Senkov, O. N.; Shivpuri, R.; Semiatin, S. L.
2016-08-01
The effect of inertia friction welding process parameters on microstructure evolution, weld plane quality, and the tensile behavior of welds between dissimilar nickel-base superalloys was established. For this purpose, the fine-grain, powder metallurgy alloy LSHR was joined to coarse-grain cast Mar-M247 using a fixed level of initial kinetic energy, but different combinations of the flywheel moment of inertia and initial rotation speed. It was found that welds made with the largest moment of inertia resulted in a sound bond with the best microstructure and room-temperature tensile strength equal to or greater than that of the parent materials. A relationship between the moment of inertia and weld process efficiency was established. The post-weld tensile behavior was interpreted in the context of observed microstructure gradients and weld-line defects.
International Nuclear Information System (INIS)
Yu Lei; Liu Shuxin; Zeng Jinyan
2004-01-01
The microscopic mechanism of the variation with rotational frequency of moments of inertia and their odd-even differences for well-deformed actinide nuclei are analyzed by using the particle-number conserving (PNC) method for treating nuclear pairing interaction. The moments of inertia for bands building on high j intruder orbitals in odd-A nuclei, e.g., the 235 U (ν[743]7/2) band, are found to be much larger than those of ground-state bands in neighboring even-even nuclei. Moreover, there exist large odd-even differences in the ω variation of moments of inertia. All these experimental odd-even differences are reproduced quite well in the PNC calculation, in which the effective monopole and quadrupole pairing interaction strengths are determined by the experimental odd-even differences in binding energies and bandhead moments of inertia, and no free parameter is involved in the PNC calculation
The Early Lunar Orbit and Principal Moments of Inertia
Garrick-Bethell, I.; Zuber, M. T.
2007-12-01
If taken at face value, the principal lunar moments of inertia suggest that the Moon froze in a past tidal and rotational state during a high eccentricity orbit [1]. At this time the Moon may have been in either synchronous rotation or in a 3:2 resonance of spin and mean motion. We have performed further investigations of the plausibility of past high eccentricity lunar orbits on the basis of orbital evolution, the dynamics of entry into any past 3:2 resonance, and tidal dissipation. We have found that the requisite permanent (B-A)/C (where A, B, and C are the principal moments of inertia) for a 3:2 resonance can be achieved in a magma ocean if a density anomaly is present shortly after lunar accretion. In a high eccentricity orbit, tidal dissipation will affect the Moon's ability to develop lithospheric strength. The Moon is presently able to support degree-two loads, while Io, which is approximately the same size as the Moon and strongly heated by tidal dissipation, probably cannot [2]. Therefore, somewhere between the present lunar radioactive heating rate (~1012 W), and Io's observed dissipation (~1014 W), the Moon may develop lithospheric strength. We use 1014 W as a loose upper bound on where freeze-in may begin and find that in a 3:2 resonance tidal dissipation [3] can drop below 1014 W at a = 25 RE and e = 0.17, and the present moments of inertia can be approximately reproduced for lunar values of QM = 475 (where a is the lunar semimajor axis, RE is the Earth radius, and Q is the specific dissipation function). This value of QM is somewhat large, but the biggest problem with a 3:2 resonance that lasts until 25 RE is how to achieve the current low eccentricity synchronous orbit. The required damping cannot be easily achieved unless the Moon is knocked out of a 3:2 resonance by an impactor that would produce a crater approximately 800 km in diameter. In sum, there is no single strong constraint that completely rules out a 3:2 resonance, but it would require a
Virtual Inertia: Current Trends and Future Directions
Directory of Open Access Journals (Sweden)
Ujjwol Tamrakar
2017-06-01
Full Text Available The modern power system is progressing from a synchronous machine-based system towards an inverter-dominated system, with large-scale penetration of renewable energy sources (RESs like wind and photovoltaics. RES units today represent a major share of the generation, and the traditional approach of integrating them as grid following units can lead to frequency instability. Many researchers have pointed towards using inverters with virtual inertia control algorithms so that they appear as synchronous generators to the grid, maintaining and enhancing system stability. This paper presents a literature review of the current state-of-the-art of virtual inertia implementation techniques, and explores potential research directions and challenges. The major virtual inertia topologies are compared and classified. Through literature review and simulations of some selected topologies it has been shown that similar inertial response can be achieved by relating the parameters of these topologies through time constants and inertia constants, although the exact frequency dynamics may vary slightly. The suitability of a topology depends on system control architecture and desired level of detail in replication of the dynamics of synchronous generators. A discussion on the challenges and research directions points out several research needs, especially for systems level integration of virtual inertia systems.
The synthesis of [O-methyl-{sup 11}C]venlafaxine: a non-classical, fast-acting antidepressant
Energy Technology Data Exchange (ETDEWEB)
Gee, A.D.; Gjedde, A. [Aarhus Univ. Hospital, PET Center, Aarhus (Denmark); Smith, D.F. [Aarhus Univ. Psychiatric Hospital, Inst. for Biological Psychiatry, Risskov (Denmark)
1997-01-01
As part of our program to develop PET tracers for the 5-HT reuptake site, venlafaxine, a non-classical, fast-acting antidepressant, was selected as a candidate for labelling with {sup 11}C for in vivo evaluation. [O-methyl-{sup 11}C]venlafaxine was produced by the alkylation of O-desmethyl venlafaxine with [{sup 11}C]methyl iodide followed by HPLC purification and formulation. Radiochemically pure [O-methyl-{sup 11}C]venlafaxine was obtained in a 30 {+-} 5% decay corrected radiochemical yield and a specific activity > 50 GBq/{mu}mol(1.4 Ci/{mu}mol) at the end of synthesis. For a typical production starting with 46 GBq (1.3 Ci) [{sup 11}C]CO{sub 2}, 5.2 GBq (140 mCi) [O-methyl-{sup 11}C]venlafaxine was obtained as a sterile, formulated solution in a synthesis time of 30 min (counted from EOB). (Author).
Ma, H; Zhu, J; Maronski, M; Kotzbauer, P T; Lee, V M-Y; Dichter, M A; Diamond, S L
2002-01-01
Gene transfer into CNS is critical for potential therapeutic applications as well as for the study of the genetic basis of neural development and nerve function. Unfortunately, lipid-based gene transfer to CNS cells is extremely inefficient since the nucleus of these post-mitotic cells presents a significant barrier to transfection. We report the development of a simple and highly efficient lipofection method for primary embryonic rat hippocampal neurons (up to 25% transfection) that exploits the M9 sequence of the non-classical nuclear localization signal of heterogeneous nuclear ribonucleoprotein A1 for targeting beta(2)-karyopherin (transportin-1). M9-assistant lipofection resulted in 20-100-fold enhancement of transfection over lipofection alone for embryonic-derived retinal ganglion cells, rat pheochromocytoma (PC12) cells, embryonic rat ventral mesencephalon neurons, as well as the clinically relevant human NT2 cells or retinoic acid-differentiated NT2 neurons. This technique can facilitate the implementation of promoter construct experiments in post-mitotic cells, stable transformant generation, and dominant-negative mutant expression techniques in CNS cells.
Qu, Yan; Dubyak, George R
2009-06-01
Activation of the P2X7 receptor (P2X7R) triggers a remarkably diverse array of membrane trafficking responses in leukocytes and epithelial cells. These responses result in altered profiles of cell surface lipid and protein composition that can modulate the direct interactions of P2X7R-expressing cells with other cell types in the circulation, in blood vessels, at epithelial barriers, or within sites of immune and inflammatory activation. Additionally, these responses can result in the release of bioactive proteins, lipids, and large membrane complexes into extracellular compartments for remote communication between P2X7R-expressing cells and other cells that amplify or modulate inflammation, immunity, and responses to tissue damages. This review will discuss P2X7R-mediated effects on membrane composition and trafficking in the plasma membrane (PM) and intracellular organelles, as well as actions of P2X7R in controlling various modes of non-classical secretion. It will review P2X7R regulation of: (1) phosphatidylserine distribution in the PM outer leaflet; (2) shedding of PM surface proteins; (3) release of PM-derived microvesicles or microparticles; (4) PM blebbing; (5) cell-cell fusion resulting in formation of multinucleate cells; (6) phagosome maturation and fusion with lysosomes; (7) permeability of endosomes with internalized pathogen-associated molecular patterns; (8) permeability/integrity of mitochondria; (9) exocytosis of secretory lysosomes; and (10) release of exosomes from multivesicular bodies.
Yano, Junko; Noverr, Mairi C.; Fidel, Paul L.
2011-01-01
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4+ T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 Alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators. PMID:22182685
In Vitro Characterization of the Two-Stage Non-Classical Reassembly Pathway of S-Layers
Directory of Open Access Journals (Sweden)
Andreas Breitwieser
2017-02-01
Full Text Available The recombinant bacterial surface layer (S-layer protein rSbpA of Lysinibacillus sphaericus CCM 2177 is an ideal model system to study non-classical nucleation and growth of protein crystals at surfaces since the recrystallization process may be separated into two distinct steps: (i adsorption of S-layer protein monomers on silicon surfaces is completed within 5 min and the amount of bound S-layer protein sufficient for the subsequent formation of a closed crystalline monolayer; (ii the recrystallization process is triggered—after washing away the unbound S-layer protein—by the addition of a CaCl2 containing buffer solution, and completed after approximately 2 h. The entire self-assembly process including the formation of amorphous clusters, the subsequent transformation into crystalline monomolecular arrays, and finally crystal growth into extended lattices was investigated by quartz crystal microbalance with dissipation (QCM-D and atomic force microscopy (AFM. Moreover, contact angle measurements showed that the surface properties of S-layers change from hydrophilic to hydrophobic as the crystallization proceeds. This two-step approach is new in basic and application driven S-layer research and, most likely, will have advantages for functionalizing surfaces (e.g., by spray-coating with tailor-made biological sensing layers.
Kπ=0+ band moment of inertia anomaly
International Nuclear Information System (INIS)
Zeng, J.Y.; Wu, C.S.; Cheng, L.; Lin, C.Z.; China Center of Advanced Science and Technology
1990-01-01
The moments of inertia of K π =0 + bands in the well-deformed nuclei are calculated by a particle-number-conserving treatment for the cranked shell model. The very accurate solutions to the low-lying K π =0 + bands are obtained by making use of an effective K truncation. Calculations show that the main contribution to the moments of inertia comes from the nucleons in the intruding high-j orbits. Considering the fact that no free parameter is involved in the calculation and no extra inert core contribution is added, the agreement between the calculated and the observed moments of inertia of 0 + bands in 168 Er is very satisfactory
Thermal inertia and surface heterogeneity on Mars
Putzig, Nathaniel E.
Thermal inertia derived from temperature observations is critical for understanding surface geology and assessing potential landing sites on Mars. Derivation methods generally assume uniform surface properties for any given observation. Consequently, horizontal heterogeneity and near-surface layering may yield apparent thermal inertia that varies with time of day and season. To evaluate the effects of horizontal heterogeneity, I modeled the thermal behavior of surfaces containing idealized material mixtures (dust, sand, duricrust, and rocks) and differing slope facets. These surfaces exhibit diurnal and seasonal variability in apparent thermal inertia of several 100 tiu, 1 even for components with moderately contrasting thermal properties. To isolate surface effects on the derived thermal inertia of Mars, I mapped inter- annual and seasonal changes in albedo and atmospheric dust opacity, accounting for their effects in a modified derivation algorithm. Global analysis of three Mars years of MGS-TES 2 data reveals diurnal and seasonal variations of ~200 tiu in the mid-latitudes and 600 tiu or greater in the polar regions. Correlation of TES results and modeled apparent thermal inertia of heterogeneous surfaces indicates pervasive surface heterogeneity on Mars. At TES resolution, the near-surface thermal response is broadly dominated by layering and is consistent with the presence of duricrusts over fines in the mid-latitudes and dry soils over ground ice in the polar regions. Horizontal surface mixtures also play a role and may dominate at higher resolution. In general, thermal inertia obtained from single observations or annually averaged maps may misrepresent surface properties. In lieu of a robust heterogeneous- surface derivation technique, repeat coverage can be used together with forward-modeling results to constrain the near-surface heterogeneity of Mars. 1 tiu == J m -2 K -1 s - 2 Mars Global Surveyor Thermal Emission Spectrometer
Acquisition of Inertia by a Moving Crack
Goldman, Tamar; Livne, Ariel; Fineberg, Jay
2010-03-01
We experimentally investigate the dynamics of “simple” tensile cracks. Within an effectively infinite medium, a crack’s dynamics perfectly correspond to inertialess behavior predicted by linear elastic fracture mechanics. Once a crack interacts with waves that it generated at earlier times, this description breaks down. Cracks then acquire inertia and sluggishly accelerate. Crack inertia increases with crack speed v and diverges as v approaches its limiting value. We show that these dynamics are in excellent accord with an equation of motion derived in the limit of an infinite strip [M. Marder, Phys. Rev. Lett. 66, 2484 (1991)PRLTAO0031-900710.1103/PhysRevLett.66.2484].
Filament stretching rheometer: inertia compensation revisited
DEFF Research Database (Denmark)
Szabo, Peter; McKinley, Gareth H.
2003-01-01
The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the e......The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end...
Treating inertia in passive microbead rheology.
Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés; Pilyugina, Ekaterina
2012-02-01
The dynamic modulus G(*) of a viscoelastic medium is often measured by following the trajectory of a small bead subject to Brownian motion in a method called "passive microbead rheology." This equivalence between the positional autocorrelation function of the tracer bead and G(*) is assumed via the generalized Stokes-Einstein relation (GSER). However, inertia of both bead and medium are neglected in the GSER so that the analysis based on the GSER is not valid at high frequency where inertia is important. In this paper we show how to treat both contributions to inertia properly in one-bead passive microrheological analysis. A Maxwell fluid is studied as the simplest example of a viscoelastic fluid to resolve some apparent paradoxes of eliminating inertia. In the original GSER, the mean-square displacement (MSD) of the tracer bead does not satisfy the correct initial condition. If bead inertia is considered, the proper initial condition is realized, thereby indicating an importance of including inertia, but the MSD oscillates at a time regime smaller than the relaxation time of the fluid. This behavior is rather different from the original result of the GSER and what is observed. What is more, the discrepancy from the GSER result becomes worse with decreasing bead mass, and there is an anomalous gap between the MSD derived by naïvely taking the zero-mass limit in the equation of motion and the MSD for finite bead mass as indicated by McKinley et al. [J. Rheol. 53, 1487 (2009)]. In this paper we show what is necessary to take the zero-mass limit of the bead safely and correctly without causing either the inertial oscillation or the anomalous gap, while obtaining the proper initial condition. The presence of a very small purely viscous element can be used to eliminate bead inertia safely once included in the GSER. We also show that if the medium contains relaxation times outside the window where the single-mode Maxwell behavior is observed, the oscillation can be
Procopio, V; Manti, S; Bianco, G; Conti, G; Romeo, A; Maimone, F; Arrigo, T; Cutrupi, M C; Salpietro, C; Cuppari, C
2018-01-30
Uncertainty remains on the pathogenetic mechanisms, model of inheritance as well as genotype-phenotype correlation of FMF disease. To investigate the impact of genetic factors on the FMF phenotype and the disease inheritance model. A total of 107 FMF patients were enrolled. Patients were diagnosed clinically. All patients underwent genetic analysis of the FMF locus on 16p13.3. 9 distinct mutations were detected. Specifically, the 85.98% of patients showed a heterozygous genotype. The most common genotypes were p.Met680Ile/wt and p.Met694Val/wt. The most frequent clinical findings were fever, abdominal pain, joint pain, thoracic pain, and erysipelas-like erythema. Analysis of clinical data did not detect any significant difference in clinical phenotype among heterozygous, homozygous as well as compound homozygous subjects, further supporting the evidence that, contrary to the recessive autosomal inheritance, heterozygous patients fulfilled the criteria of clinical FMF. Moreover, subjects with p.Met694Val/wt and p.Met680Ile/wt genotype reported the most severe clinical phenotype. p.Ala744Ser/wt, p.Glu148Gln/Met680Ile, p.Met680Ile/Met680Ile, p.Met680Ile/Met694Val, p.Pro369Ser/wt, p.Met694Ile/wt, p.Glu148Gln/Glu148Gln, p.Lys695Arg/wt resulted in 100% pathogenicity. The existence of a "non classic" autosomal recessive inheritance as well as of an "atypical" dominant autosomal inheritance with incomplete penetrance and variable expressivity cannot be excluded in FMF. Copyright © 2017 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Xu, J.; DeGrassi, G.; Chokshi, N.
2004-01-01
Under the auspices of the U.S. Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) developed a comprehensive program to evaluate state-of-the-art methods and computer programs for seismic analysis of typical coupled nuclear power plant (NPP) systems with non-classical damping. In this program, four benchmark models of coupled building-piping/equipment systems with different damping characteristics were developed and analyzed by BNL for a suite of earthquakes. The BNL analysis was carried out by the Wilson-θ time domain integration method with the system-damping matrix computed using a synthesis formulation as presented in a companion paper [Nucl. Eng. Des. (2002)]. These benchmark problems were subsequently distributed to and analyzed by program participants applying their uniquely developed methods and computer programs. This paper is intended to offer a glimpse at the program, and provide a summary of major findings and principle conclusions with some representative results. The participant's analysis results established using complex modal time history methods showed good comparison with the BNL solutions, while the analyses produced with either complex-mode response spectrum methods or classical normal-mode response spectrum method, in general, produced more conservative results, when averaged over a suite of earthquakes. However, when coupling due to damping is significant, complex-mode response spectrum methods performed better than the classical normal-mode response spectrum method. Furthermore, as part of the program objectives, a parametric assessment is also presented in this paper, aimed at evaluation of the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled NPP systems. It is believed that the findings and insights learned from this program will be useful in developing new acceptance criteria and providing guidance for future regulatory activities involving license
Konrad, Lutz; Dietze, Raimund; Kirch, Ulrike; Kirch, Herbert; Eva, Alexander; Scheiner-Bobis, Georgios
2011-12-01
The α4 isoform of the Na(+),K(+)-ATPase (sodium pump) is known to be expressed in spermatozoa and to be critical for their motility. In the investigation presented here, we find that the rat-derived Sertoli cell line 93RS2 also expresses considerable amounts of the α4 isoform in addition to the α1 isoform. Since Sertoli cells are not motile, one can assume that the function of the α4 isoform in these cells must differ from that in spermatozoa. Thus, we assessed a potential involvement of this isoform in signaling pathways that are activated by the cardiotonic steroid (CTS) ouabain, a highly specific sodium pump ligand. Treatment of 93RS2 cells with ouabain leads to activation of the c-Src/c-Raf/Erk1/2 signaling cascade. Furthermore, we show for the first time that the activation of this cascade by ouabain results in phosphorylation and activation of the transcription factor CREB. This signaling cascade is induced at low nanomolar concentrations of ouabain, consistent with the involvement of the α4 isoform. This is further supported by experiments involving siRNA: silencing of α4 expression entirely blocks ouabain-induced activation of Erk1/2 whereas silencing of α1 has no effect. The findings of this study unveil new aspects in CTS/sodium pump interactions by demonstrating for the first time ouabain-induced signaling through the α4 isoform. The c-Src/c-Raf/Erk1/2/CREB cascade activated by ouabain is identical to the so-called non-classical signaling cascade that is normally triggered in Sertoli cells by testosterone. Taking into consideration that CTS are produced endogenously, our results may help to gain new insights into the physiological mechanisms associated with male fertility and reproduction. Copyright © 2011 Elsevier B.V. All rights reserved.
Characterization of SLCO5A1/OATP5A1, a solute carrier transport protein with non-classical function.
Directory of Open Access Journals (Sweden)
Katrin Sebastian
Full Text Available Organic anion transporting polypeptides (OATP/SLCO have been identified to mediate the uptake of a broad range of mainly amphipathic molecules. Human OATP5A1 was found to be expressed in the epithelium of many cancerous and non-cancerous tissues throughout the body but protein characterization and functional analysis have not yet been performed. This study focused on the biochemical characterization of OATP5A1 using Xenopus laevis oocytes and Flp-In T-REx-HeLa cells providing evidence regarding a possible OATP5A1 function. SLCO5A1 is highly expressed in mature dendritic cells compared to immature dendritic cells (∼6.5-fold and SLCO5A1 expression correlates with the differentiation status of primary blood cells. A core- and complex- N-glycosylated polypeptide monomer of ∼105 kDa and ∼130 kDa could be localized in intracellular membranes and on the plasma membrane, respectively. Inducible expression of SLCO5A1 in HeLa cells led to an inhibitory effect of ∼20% after 96 h on cell proliferation. Gene expression profiling with these cells identified immunologically relevant genes (e.g. CCL20 and genes implicated in developmental processes (e.g. TGM2. A single nucleotide polymorphism leading to the exchange of amino acid 33 (L→F revealed no differences regarding protein expression and function. In conclusion, we provide evidence that OATP5A1 might be a non-classical OATP family member which is involved in biological processes that require the reorganization of the cell shape, such as differentiation and migration.
Inertia effects in rheometrical flow systems
Waterman, H.A.
1976-01-01
The flow field of a linear viscoelastic material in the orthogonal rheometer, taking fluid inertia into account, has been studied theoretically and an exact solution is given. The flow field of a Newtonian liquid is included in this solution as a special case. The forces on the plates are readily
Nonlinear Inertia Classification Model and Application
Directory of Open Access Journals (Sweden)
Mei Wang
2014-01-01
Full Text Available Classification model of support vector machine (SVM overcomes the problem of a big number of samples. But the kernel parameter and the punishment factor have great influence on the quality of SVM model. Particle swarm optimization (PSO is an evolutionary search algorithm based on the swarm intelligence, which is suitable for parameter optimization. Accordingly, a nonlinear inertia convergence classification model (NICCM is proposed after the nonlinear inertia convergence (NICPSO is developed in this paper. The velocity of NICPSO is firstly defined as the weighted velocity of the inertia PSO, and the inertia factor is selected to be a nonlinear function. NICPSO is used to optimize the kernel parameter and a punishment factor of SVM. Then, NICCM classifier is trained by using the optical punishment factor and the optical kernel parameter that comes from the optimal particle. Finally, NICCM is applied to the classification of the normal state and fault states of online power cable. It is experimentally proved that the iteration number for the proposed NICPSO to reach the optimal position decreases from 15 to 5 compared with PSO; the training duration is decreased by 0.0052 s and the recognition precision is increased by 4.12% compared with SVM.
Topology optimization of inertia driven dosing units
DEFF Research Database (Denmark)
Andreasen, Casper Schousboe
2017-01-01
This paper presents a methodology for optimizing inertia driven dosing units, sometimes referred to as eductors, for use in small scale flow applications. The unit is assumed to operate at low to moderate Reynolds numbers and under steady state conditions. By applying topology optimization...
Effects of Inertia on Evolutionary Prisoner's Dilemma Game
Du, Wen-Bo; Cao, Xian-Bin; Liu, Run-Ran; Wang, Zhen
2012-09-01
Considering the inertia of individuals in real life, we propose a modified Fermi updating rule, where the inertia of players is introduced into evolutionary prisoner's dilemma game (PDG) on square lattices. We mainly focus on how the inertia affects the cooperative behavior of the system. Interestingly, we find that the cooperation level has a nonmonotonic dependence on the inertia: with small inertia, cooperators will soon be invaded by defectors; with large inertia, players are unwilling to change their strategies and the cooperation level remains the same as the initial state; while a moderate inertia can induce the highest cooperation level. Moreover, effects of environmental noise and individual inertia are studied. Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society.
Effects of Inertia on Evolutionary Prisoner's Dilemma Game
International Nuclear Information System (INIS)
Du Wenbo; Cao Xianbin; Liu Runran; Wang Zhen
2012-01-01
Considering the inertia of individuals in real life, we propose a modified Fermi updating rule, where the inertia of players is introduced into evolutionary prisoner's dilemma game (PDG) on square lattices. We mainly focus on how the inertia affects the cooperative behavior of the system. Interestingly, we find that the cooperation level has a nonmonotonic dependence on the inertia: with small inertia, cooperators will soon be invaded by defectors; with large inertia, players are unwilling to change their strategies and the cooperation level remains the same as the initial state; while a moderate inertia can induce the highest cooperation level. Moreover, effects of environmental noise and individual inertia are studied. Our work may be helpful in understanding the emergence and persistence of cooperation in nature and society. (interdisciplinary physics and related areas of science and technology)
Lunar Rotation, Orientation and Science
Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.
2004-12-01
The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.
Experimental study of the moment of inertia of a cone-angular variation and inertia ellipsoid
International Nuclear Information System (INIS)
Pintao, Carlos A F; Souza de Filho, Moacir P; Usida, Wesley F; Xavier, Jose A
2007-01-01
In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque through electric current or frequency measurement is utilized
Dependence of nuclear moments of inertia on the triaxial parameter
International Nuclear Information System (INIS)
Helgesson, J.; Hamamoto, Ikuko
1989-01-01
The dependence of nuclear moments of inertia on the triaxial parameter (γ-variable) is investigated including both the Belyaev term and the Migdal term. The obtained dependence is compared with that of hydrodynamical moments of inertia and other moments of inertia used conventionally. (orig.)
Directory of Open Access Journals (Sweden)
Jie HU
2016-04-01
Full Text Available Objective To screen non-classical 21-hydroxylase deficiency (NC-21OHD from patients diagnosed as polycystic ovary syndrome (PCOS by gene assay. Methods Ninety-eight patients with PCOS were enrolled according to 2003 Rotterdam criteria from Department of Endocrinology, Tangdu Hospital of Fourth Military Medical University, and they were divided into three groups according to the modified Ferriman-Gallway (mF-G score as follows: group A with score 0-2; group B with score 3-5, and group C with score ≥6. Meanwhile, 30 healthy subjects from the Medical Center of the Hospital were recruited as control group. Peripheral blood of all subjects were collected for extracting DNA, the CYP21A2 gene were amplified by 5 pairs of specific primers, and then the PCR products were sequenced by Shanghai Sangon Co. The subjects would accept test for serum cortisol and adrenocorticotropic hormone (ACTH at 8:00am if their CYP21A2 was proved to be abnormal. Results Thirty subjects of control group had no any defects in CYP21A2, but 5 of 98 patients with PCOS were proved to be deficient in CYP21A2, and the genotypes were V281L/920-921insT (P1, V281L/I230M (P2, V281L/Normal (P3, P4, P5, respectively, and all of them were heterozygous mutations. The incidences of NC-21OHD in group C and B were 28.6% and 3.3%, respectively. Genotype P1 had been identified to belong to NC-21OHD, which was consistent with its clinical phenotype. All genotypes P3, P4 and P5 belonged to carriers. But for P2, since I230M hadn't been reported in literature, the patient with V281L/I230M couldn't be classified now. Serum biochemical results showed that only in P1 the cortisol was close to the normal lower level, and ACTH was close to the normal upper limit of the reported level in the literature, and the remainders were all normal. Conclusions Although PCOS and NC-21OHD are very similar in clinical manifestations, they are different completely in the pathogenesis and treatment. So it
Guo, Siqiu; Zhang, Tao; Song, Yulong; Qian, Feng
2018-04-23
This paper presents a particle swarm tracking algorithm with improved inertia weight based on color features. The weighted color histogram is used as the target feature to reduce the contribution of target edge pixels in the target feature, which makes the algorithm insensitive to the target non-rigid deformation, scale variation, and rotation. Meanwhile, the influence of partial obstruction on the description of target features is reduced. The particle swarm optimization algorithm can complete the multi-peak search, which can cope well with the object occlusion tracking problem. This means that the target is located precisely where the similarity function appears multi-peak. When the particle swarm optimization algorithm is applied to the object tracking, the inertia weight adjustment mechanism has some limitations. This paper presents an improved method. The concept of particle maturity is introduced to improve the inertia weight adjustment mechanism, which could adjust the inertia weight in time according to the different states of each particle in each generation. Experimental results show that our algorithm achieves state-of-the-art performance in a wide range of scenarios.
Bounds on the mass and the moment of inertia of nonrotating neutron stars
International Nuclear Information System (INIS)
Sabbadini, A.G.
1976-01-01
Bounds are placed on the mass and the moment of inertia of relativistic, spherical, perfect fluid neutron stars, under minimal assumptions on the equation of state of neutron star matter above nuclear densities. The assumptions are: the pressure p, the density rho, and the derivative dp/d rho are positive. The equation of state is assumed to be known below the density rho 0 = 5 x 10 14 g/cm 3 . The upper bound on the mass of a nonrotating neutron star, under these assumptions, is found to be 5 M/sub solar mass/. Upper and lower bounds on the moment of inertia are derived: for a spherical star of given mass and radius (without assuming a specific equation of state in any density region); for a spherical neutron star of arbitrary mass and radius; for a spherical neutron star of given mass. These bounds are optimum ones, in the sense that there always exists a configuration consistent with the assumptions, having a moment of inertia equal to the bound. Using these results for the moment of inertia, the correction to the upper bound on the mass due to slow rotation is discussed
Nonlinear transient waves in coupled phase oscillators with inertia.
Jörg, David J
2015-05-01
Like the inertia of a physical body describes its tendency to resist changes of its state of motion, inertia of an oscillator describes its tendency to resist changes of its frequency. Here, we show that finite inertia of individual oscillators enables nonlinear phase waves in spatially extended coupled systems. Using a discrete model of coupled phase oscillators with inertia, we investigate these wave phenomena numerically, complemented by a continuum approximation that permits the analytical description of the key features of wave propagation in the long-wavelength limit. The ability to exhibit traveling waves is a generic feature of systems with finite inertia and is independent of the details of the coupling function.
Tidal variations of earth rotation
Yoder, C. F.; Williams, J. G.; Parke, M. E.
1981-01-01
The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.
The latent effect of inertia in the modal choice
DEFF Research Database (Denmark)
Cherchi, Elisabetta; Meloni, Italo; Ortúzar, Juan de Dios
2014-01-01
The existence of habit (leading to inertia) in the choice process has been approached in the literature in a number of ways. In transport, inertia has been studied mainly using “long panel” data, or mixed revealed and stated preference data. In these studies inertia links the choice made in two...... approaches. We assume that inertia is revealed by past behaviour and affects also the initial condition, but we recognise that past behaviour is only an indicator of habitual behaviour, the true process behind the formation of habitual behaviour being latent. We estimate a hybrid choice model using a set...... of revealed and stated mode choice preferences collected in Cagliari (Italy). We found a significant latent inertia in the revealed preference data, indicating that inertia affects the initial conditions. The latent inertia is revealed by the frequency of past behaviour but the effect of trip frequency...
Kalani, Amir; Thomas, Nithin; Sacerdote, Alan; Bahtiyar, Gül
2013-03-18
Non-classic adrenal hyperplasia (NCAH) has been associated with insulin resistance (IR). Therapies such as metformin, thiazolidinediones and lifestyle alterations improve IR and also ameliorate the biochemical and clinical abnormalities of NCAH, much as they do in polycystic ovarian syndrome (PCOS). More recently, bariatric surgery, such as Roux-en-Y gastric bypass (RYGBP), has also been associated with improvement in IR and amelioration of PCOS and may, therefore, be beneficial in NCAH. We report a case of a 39-year-old, deaf-mute, obese woman with NCAH due to 11-hydroxylase deficiency who underwent RYGBP followed by improvement of NCAH manifestations. She was initially treated with metformin and pioglitazone, which lowered serum 11-deoxycortisol from 198 ng/dl (irregular menses normalised as well. We conclude that RYGBP, like other interventions that reduce IR, may be another way of treating non-classic 11-hydroxylase deficiency in selected patients.
Two-fluid turbulence including electron inertia
Energy Technology Data Exchange (ETDEWEB)
Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón I, 1428 Buenos Aires (Argentina); Gonzalez, Carlos; Martin, Luis; Dmitruk, Pablo [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, 1428 Buenos Aires (Argentina)
2014-12-15
We present a full two-fluid magnetohydrodynamic (MHD) description for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure, and electron inertia. According to this description, each plasma species introduces a new spatial scale: the ion inertial length λ{sub i} and the electron inertial length λ{sub e}, which are not present in the traditional MHD description. In the present paper, we seek for possible changes in the energy power spectrum in fully developed turbulent regimes, using numerical simulations of the two-fluid equations in two-and-a-half dimensions. We have been able to reproduce different scaling laws in different spectral ranges, as it has been observed in the solar wind for the magnetic energy spectrum. At the smallest wavenumbers where plain MHD is valid, we obtain an inertial range following a Kolmogorov k{sup −5∕3} law. For intermediate wavenumbers such that λ{sub i}{sup −1}≪k≪λ{sub e}{sup −1}, the spectrum is modified to a k{sup −7∕3} power-law, as has also been obtained for Hall-MHD neglecting electron inertia terms. When electron inertia is retained, a new spectral region given by k>λ{sub e}{sup −1} arises. The power spectrum for magnetic energy in this region is given by a k{sup −11∕3} power law. Finally, when the terms of electron inertia are retained, we study the self-consistent electric field. Our results are discussed and compared with those obtained in the solar wind observations and previous simulations.
Identicity in high-K three quasiparticle rotational bands: a theoretical approach
International Nuclear Information System (INIS)
Kaur, Harjeet; Singh, Pardeep; Malik, Sham S
2015-01-01
The systematics are studied for the identical band phenomenon in high-K three quasiparticle rotational bands. The identical rotational bands based on the same bandhead spin are analyzed on the basis of similarities in γ-ray energies, dynamic moment of inertia and kinematic moment of inertia in particular, which is a function of deformation degrees of freedom, pairing strengths and Nilsson orbitals in nuclei. It is established that a combined effect of all these parameters decides the identicity of the moment of inertia in high-K three quasiparticle rotational bands as the systematics are backed by the Tilted Axis Cranking model calculations. (paper)
Moments of inertia of neutron stars
Energy Technology Data Exchange (ETDEWEB)
Greif, Svenja Kim; Hebeler, Kai; Schwenk, Achim [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)
2016-07-01
Neutron stars are unique laboratories for matter at extreme conditions. While nuclear forces provide systematic constraints on properties of neutron-rich matter up to around nuclear saturation density, the composition of matter at high densities is still unknown. Recent precise observations of 2 M {sub CircleDot} neutron stars made it possible to derive systematic constraints on the equation of state at high densities and also neutron star radii. Further improvements of these constraints require the observation of even heavier neutron stars or a simultaneous measurement of mass and radius of a single neutron star. Since the precise measurement of neutron star radii is an inherently difficult problem, the observation of moment of inertia of neutron stars provides a promising alternative, since they can be measured by pulsar timing experiments. We present a theoretical framework that allows to calculate moments of inertia microscopically, we show results based on state of the art equations of state and illustrate how future measurements of moments of inertia allow to constrain the equation of state and other properties of neutron stars.
Mass and Inertia Parameters for Nuclear Fission
International Nuclear Information System (INIS)
Damgaard, J.; Pauli, H.C.; Strutinsky, V.M.; Wong, C.Y.; Brack, M.; Stenholm-Jensen, A.
1969-01-01
The effective mass parameter and the moments of inertia for a deformed nucleus are evaluated using the cranking-model formalism. Special attention is paid to the dependence of these quantities on the intrinsic structure, which may arise due to shells in deformed nuclei. It is found that these inertial parameters are very much influenced by the shells present. The effective-mass parameter, which appears in an important way in the theory of spontaneous fission, fluctuates in the same manner as the shell-energy corrections. Its values at the fission barrier are up to two or three times larger than those at the equilibrium minima. This correlation comes about because for the effective mass the change in the local density of single-particle states is very important, much more so than the change in the pairing correlation. The moments of inertia which enter in the theory of angular anisotropy of fission fragments, also fluctuate as a function of the deformation. At low temperatures, the fluctuation is large and shows a distinct but more complicated correlation with the shells. At high temperatures, the moments of inertia fluctuate with a smaller amplitude about the rigid-body value in correlation with the energy-shell corrections. For the first-and second barriers, the rigid-body values are essentially reached at a nuclear temperature of 0.8 to 1.0 MeV. (author)
Exploring inertia in a typical state organisation
Directory of Open Access Journals (Sweden)
G. J. Louw
2004-10-01
Full Text Available Those organisations which do not change according to environmental pressures, suffer from organisational inertia. The purpose of this study is to explore the manifestation of organisational inertia in the target organisation. The target population for this study was a group of trainees, representing the geographic and demographic levels of a particular state department. In South Africa, surveys of this nature were only executed in the corporate sector. The results indicate that organisational inertia is a phenomenon that affects both corporate and governmental organisations. Opsomming Organisasies wat nie ooreenkomstig omgewingsdruk verander nie, ly aan organisasietraagheid. Die doel van die studie is om organisasietraagheid te konseptualiseer en die manifestasie daarvan in die teikenorganisasie te ondersoek. Die teikenpopulasie bestaan uit ’n groep kursusgangers wat die demografiese en geografiese samestelling van ‘n tipiese staatsdepartement verteenwoordig. In Suid -Afrika is navorsing van hierdie aard nog net in die korporatiewe sektor uitgevoer. Die resultate toon aan dat organisasietraagheid ‘n faktor is wat beide die korporatiewe omgewing en staatsorganisasies beïnvloed.
Orion Pad Abort 1 Crew Module Inertia Test Approach and Results
Herrera, Claudia; Harding, Adam
2010-01-01
The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module. These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance results calculated post launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test step up that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.
Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J
2016-08-01
Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Inertia in strategy switching transforms the strategy evolution.
Zhang, Yanling; Fu, Feng; Wu, Te; Xie, Guangming; Wang, Long
2011-12-01
A recent experimental study [Traulsen et al., Proc. Natl. Acad. Sci. 107, 2962 (2010)] shows that human strategy updating involves both direct payoff comparison and the cost of switching strategy, which is equivalent to inertia. However, it remains largely unclear how such a predisposed inertia affects 2 × 2 games in a well-mixed population of finite size. To address this issue, the "inertia bonus" (strategy switching cost) is added to the learner payoff in the Fermi process. We find how inertia quantitatively shapes the stationary distribution and that stochastic stability under inertia exhibits three regimes, with each covering seven regions in the plane spanned by two inertia parameters. We also obtain the extended "1/3" rule with inertia and the speed criterion with inertia; these two findings hold for a population above two. We illustrate the above results in the framework of the Prisoner's Dilemma game. As inertia varies, two intriguing stationary distributions emerge: the probability of coexistence state is maximized, or those of two full states are simultaneously peaked. Our results may provide useful insights into how the inertia of changing status quo acts on the strategy evolution and, in particular, the evolution of cooperation.
Pairing effects in rotating nuclei: a semi classical approach
International Nuclear Information System (INIS)
Durand, M.
1985-10-01
The semi-classical phase-space distribution ρ(r,p) is calculated for rotating superfluid nuclei, taking into account the reaction of the pairing field to the rotational motion. Moments of inertia and current distributions calculated by means of this distribution pass continuously from a rigid to an irrotational behaviour
Frequency Stability Enhancement for Low Inertia Systems using Synthetic Inertia of Wind Power
DEFF Research Database (Denmark)
Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde
2017-01-01
stability, this paper proposes supplementary control methods to implement synthetic inertia for doubly-fed induction generator (DFIG) based wind energy system during frequency excursions. Different control strategies and activation schemes are analyzed and implemented on the Western Danish renewable......-based system using-real time digital simulator (RTDS) to propose the best one for the synthetic inertia controller. From the comparative simulation results, it can be concluded that the method using a combination of both the frequency deviation and derivative as input signals, and the under-frequency trigger...
Inertia-confining thermonuclear molten salt reactors
International Nuclear Information System (INIS)
Furukawa, Kazuo; Yamanaka, Chiyoe; Nakai, Sadao; Imon, Shunji; Nakajima, Hidenori; Nakamura, Norio; Kato, Yoshio.
1984-01-01
Purpose: To increase the heat generating efficiency while improving the reactor safety and thereby maintaining the energy balance throughout the reactor. Constitution: In an inertia-confining type D-T thermonuclear reactor, the blanket is made of lithium-containing fluoride molten salts (LiF.BeF 2 , LiF.NaF.KF, LiF.KF, etc) which are cascaded downwardly in a large thickness (50 - 100 cm) along the inner wall of the thermonuclear reaction vessel, and neutrons generated by explosive compression are absorbed to lithium in the molten salts to produce tritium, Heat transportation is carried out by the molten salts. (Ikeda, J.)
Nuclear inertia for fission in a generalized cranking model
International Nuclear Information System (INIS)
Kunz, J.; Nix, J.R.
1984-01-01
A time dependent formalism which is appropriate for β vibrations and fission is developed for a generalized cranking model. The formalism leads to additional terms in the density matrix which affect the nuclear inertia. The case of a harmonic oscillator potential is used to demonstrate the contribution of the pairing gap term on the β vibrational inertia for Pu 240. The inertia remains finite and close to the limiting irrotational value
Moment of inertia and the interacting boson model
International Nuclear Information System (INIS)
Yoshida, N.; Sagawa, H.; Otsuka, T.; Arima, A.
1989-01-01
Mass-number dependence of the moment of inertia is studied in relation with the boson number in the SU(3) limit of the interacting boson model 1 (IBM-1). The analytic formula in the limit indicates the pairing correlation between nucleons is directly related to the moment of inertia in the IBM. It is shown in general that the kink of the moment of inertia coincides with the maximum boson number of each element. (author)
Nuclear moment of inertia and spin distribution of nuclear levels
International Nuclear Information System (INIS)
Alhassid, Y.; Fang, L.; Liu, S.; Bertsch, G.F.
2005-01-01
We introduce a simple model to calculate the nuclear moment of inertia at finite temperature. This moment of inertia describes the spin distribution of nuclear levels in the framework of the spin-cutoff model. Our model is based on a deformed single-particle Hamiltonian with pairing interaction and takes into account fluctuations in the pairing gap. We derive a formula for the moment of inertia at finite temperature that generalizes the Belyaev formula for zero temperature. We show that a number-parity projection explains the strong odd-even effects observed in shell model Monte Carlo studies of the nuclear moment of inertia in the iron region
Delamination detection in reinforced concrete using thermal inertia
International Nuclear Information System (INIS)
Del Grande, N K; Durbin, P F.
1998-01-01
We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations
Drews, Anna; Strandh, Maria; Råberg, Lars; Westerdahl, Helena
2017-06-26
The Major Histocompatibility Complex (MHC) plays a central role in immunity and has been given considerable attention by evolutionary ecologists due to its associations with fitness-related traits. Songbirds have unusually high numbers of MHC class I (MHC-I) genes, but it is not known whether all are expressed and equally important for immune function. Classical MHC-I genes are highly expressed, polymorphic and present peptides to T-cells whereas non-classical MHC-I genes have lower expression, are more monomorphic and do not present peptides to T-cells. To get a better understanding of the highly duplicated MHC genes in songbirds, we studied gene expression in a phylogenetic framework in three species of sparrows (house sparrow, tree sparrow and Spanish sparrow), using high-throughput sequencing. We hypothesize that sparrows could have classical and non-classical genes, as previously indicated though never tested using gene expression. The phylogenetic analyses reveal two distinct types of MHC-I alleles among the three sparrow species, one with high and one with low level of polymorphism, thus resembling classical and non-classical genes, respectively. All individuals had both types of alleles, but there was copy number variation both within and among the sparrow species. However, the number of highly polymorphic alleles that were expressed did not vary between species, suggesting that the structural genomic variation is counterbalanced by conserved gene expression. Overall, 50% of the MHC-I alleles were expressed in sparrows. Expression of the highly polymorphic alleles was very variable, whereas the alleles with low polymorphism had uniformly low expression. Interestingly, within an individual only one or two alleles from the polymorphic genes were highly expressed, indicating that only a single copy of these is highly expressed. Taken together, the phylogenetic reconstruction and the analyses of expression suggest that sparrows have both classical and non-classical
Directory of Open Access Journals (Sweden)
Tiantian Li
2015-04-01
Conclusions: The SQBF had a similar effect to prednisone with regards to enhancing peripheral blood platelet counts in ITP mice. Furthermore, it decreased β-EP levels and increased VIP and SIgA, and protected the thymus. This shows that, on base of the brain-gut axis functions, some non-classical immune vascular active factors or neurotransmitters are also involved in immune responses, and also have relationship with the onset of ITP and bleeding and/or hemostasis. It needs further study to determine whether a change in these active factors is related to immediate hemostasis.
Principal direction of inertia for 3D trajectories from patient-specific TMJ movement.
Kim, Dae-Seung; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Hwang, Soon-Jung; Kim, Seong-Ha; Yi, Won-Jin
2013-03-01
Accurate simulation and evaluation of mandibular movement is fundamental for the analysis of functional changes and effects of the mandible and maxilla before and after surgical treatments. We applied principal axes of inertia to the three-dimensional (3D) trajectories generated by patient-specific simulations of TMJ movements for the functional evaluations of mandible movement. Three-dimensional movements of the mandible and the maxilla were tracked based on a patient-specific splint and an optical tracking system. The dental occlusion recorded on the sprint provided synchronization for initial movement in the tracking and the simulation phases. The translation and rotation recorded during movement tracking was applied sequentially to the mandibular model in relation to a fixed maxilla model. The sequential 3D positions of selected landmarks on the mandible were calculated based on the reference coordinate system. The landmarks selected for analysis were bilateral condyles and pogonion points. The moment of inertia tensor was calculated with respect to the 3D trajectory points. Using the unit vectors along the principal axes derived from the tensor matrix, α, β and γ rotations around z-, y- and x-axes were determined to represent the principal directions as principal rotations respectively. The γ direction showed the higher standard deviation, variation of directions, than other directions at all the landmarks. The mandible movement has larger kinematic redundancy in the γ direction than α and β during mouth opening and closing. Principal directions of inertia would be applied to analyzing the changes in angular motion of trajectories introduced by mandibular shape changes from surgical treatments and also to the analysis of the influence of skeletal deformities on mandibular movement asymmetry. Copyright © 2012 Elsevier Ltd. All rights reserved.
Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches
International Nuclear Information System (INIS)
Eya, I. O.; Urama, J. O.; Chukwude, A. E.
2017-01-01
We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.
Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum.
Callies, Jörn; Ferrari, Raffaele; Bühler, Oliver
2014-12-02
Midlatitude fluctuations of the atmospheric winds on scales of thousands of kilometers, the most energetic of such fluctuations, are strongly constrained by the Earth's rotation and the atmosphere's stratification. As a result of these constraints, the flow is quasi-2D and energy is trapped at large scales—nonlinear turbulent interactions transfer energy to larger scales, but not to smaller scales. Aircraft observations of wind and temperature near the tropopause indicate that fluctuations at horizontal scales smaller than about 500 km are more energetic than expected from these quasi-2D dynamics. We present an analysis of the observations that indicates that these smaller-scale motions are due to approximately linear inertia-gravity waves, contrary to recent claims that these scales are strongly turbulent. Specifically, the aircraft velocity and temperature measurements are separated into two components: one due to the quasi-2D dynamics and one due to linear inertia-gravity waves. Quasi-2D dynamics dominate at scales larger than 500 km; inertia-gravity waves dominate at scales smaller than 500 km.
Angular Momentum Transfer and Fractional Moment of Inertia in Pulsar Glitches
Energy Technology Data Exchange (ETDEWEB)
Eya, I. O.; Urama, J. O.; Chukwude, A. E., E-mail: innocent.eya@unn.edu.ng, E-mail: innocent.eya@gmail.com [Department of Physics and Astronomy, University of Nigeria, Nsukka, Enugu State (Nigeria)
2017-05-01
We use the Jodrell Bank Observatory glitch database containing 472 glitches from 165 pulsars to investigate the angular momentum transfer during rotational glitches in pulsars. Our emphasis is on pulsars with at least five glitches, of which there are 26 that exhibit 261 glitches in total. This paper identifies four pulsars in which the angular momentum transfer, after many glitches, is almost linear with time. The Lilliefore test on the cumulative distribution of glitch spin-up sizes in these glitching pulsars shows that glitch sizes in 12 pulsars are normally distributed, suggesting that their glitches originate from the same momentum reservoir. In addition, the distribution of the fractional moment of inertia (i.e., the ratio of the moment of inertia of neutron star components that are involved in the glitch process) have a single mode, unlike the distribution of fractional glitch size (Δ ν / ν ), which is usually bimodal. The mean fractional moment of inertia in the glitching pulsars we sampled has a very weak correlation with the pulsar spin properties, thereby supporting a neutron star interior mechanism for the glitch phenomenon.
Rotational dynamics with Tracker
International Nuclear Information System (INIS)
Eadkhong, T; Danworaphong, S; Rajsadorn, R; Jannual, P
2012-01-01
We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia (I) of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction (b) for our system. By omitting the effect of such friction, we derive I for a cylindrical plate rotated around its central axis from the other two experiments based on the relation between torque and angular acceleration of rotational motion and conservation of energy. Movies of the rotating plate and hung masses are recorded. As a result, we have the deviation of I from its theoretical value of 0.4% and 3.3%, respectively. Our setup is completely constructed from locally available inexpensive materials and the experimental results indicate that the system is highly reliable. This work should pave the way for those who prefer to build a similar setup from scratch at relatively low cost compared to commercial units. (paper)
Energy Technology Data Exchange (ETDEWEB)
Cowan, Nicolas B. [Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2131 Tech Drive, Evanston, IL 60208 (United States); Voigt, Aiko [Max Planck Institute for Meteorology, Bundesstr. 53, D-20146 Hamburg (Germany); Abbot, Dorian S., E-mail: n-cowan@nortwestern.edu [Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637 (United States)
2012-09-20
In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3 Multiplication-Sign the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A
International Nuclear Information System (INIS)
Cowan, Nicolas B.; Voigt, Aiko; Abbot, Dorian S.
2012-01-01
In order to understand the climate on terrestrial planets orbiting nearby Sun-like stars, one would like to know their thermal inertia. We use a global climate model to simulate the thermal phase variations of Earth analogs and test whether these data could distinguish between planets with different heat storage and heat transport characteristics. In particular, we consider a temperate climate with polar ice caps (like the modern Earth) and a snowball state where the oceans are globally covered in ice. We first quantitatively study the periodic radiative forcing from, and climatic response to, rotation, obliquity, and eccentricity. Orbital eccentricity and seasonal changes in albedo cause variations in the global-mean absorbed flux. The responses of the two climates to these global seasons indicate that the temperate planet has 3× the bulk heat capacity of the snowball planet due to the presence of liquid water oceans. The obliquity seasons in the temperate simulation are weaker than one would expect based on thermal inertia alone; this is due to cross-equatorial oceanic and atmospheric energy transport. Thermal inertia and cross-equatorial heat transport have qualitatively different effects on obliquity seasons, insofar as heat transport tends to reduce seasonal amplitude without inducing a phase lag. For an Earth-like planet, however, this effect is masked by the mixing of signals from low thermal inertia regions (sea ice and land) with that from high thermal inertia regions (oceans), which also produces a damped response with small phase lag. We then simulate thermal light curves as they would appear to a high-contrast imaging mission (TPF-I/Darwin). In order of importance to the present simulations, which use modern-Earth orbital parameters, the three drivers of thermal phase variations are (1) obliquity seasons, (2) diurnal cycle, and (3) global seasons. Obliquity seasons are the dominant source of phase variations for most viewing angles. A pole-on observer
Mohamed, Abdel-Baset A.
2018-04-01
In this paper, some non-classical correlations are investigated for bipartite partitions of two qubits trapped in two spatially separated cavities connected by an optical fiber. The results show that the trace distance discord and Bell's non-locality introduce other quantum correlations beyond the entanglement. Moreover, the correlation functions of the trace distance discord and the Bell's non-locality are very sensitive to the initial correlations, the coupling strengths, and the dissipation rates of the cavities. The fluctuations of the correlation functions between their initial values and gained (loss) values appear due to the unitary evolution of the system. These fluctuations depend on the chosen initial correlations between the two subsystems. The maximal violations of Bell's inequality occur when the logarithmic negativity and the trace distance discord reach certain values. It is shown that the robustness of the non-classical correlations, against the dissipation rates of the cavities, depends on the bipartite partitions reduced density matrices of the system, and is also greatly enhanced by choosing appropriate coupling strengths.
Malerczyk, Claudius; Selhorst, Thomas; Tordo, Noël; Moore, Susan; Müller, Thomas
2009-08-27
Tissue-culture vaccines like purified chick embryo cell vaccine (PCECV) have been shown to provide protection against classical rabies virus (RABV) via pre-exposure or post-exposure prophylaxis. A cross-neutralization study was conducted using a panel of 100 human sera, to determine, to what extent after vaccination with PCECV protection exists against non-classical bat lyssavirus strains like European bat lyssavirus (EBLV) type 1 and 2 and Australian bat lyssavirus (ABLV). Virus neutralizing antibody (VNA) concentrations against the rabies virus variants CVS-11, ABLV, EBLV-1 and EBLV-2 were determined by using a modified rapid fluorescent focus inhibition test. For ABLV and EBLV-2, the comparison to CVS-11 revealed almost identical results (100% adequate VNA concentrations >or=0.5 IU/mL; correlation coefficient r(2)=0.69 and 0.77, respectively), while for EBLV-1 more scattering was observed (97% adequate VNA concentrations; r(2)=0.50). In conclusion, vaccination with PCECV produces adequate VNA concentrations against classical RABV as well as non-classical lyssavirus strains ABLV, EBLV-1, and EBLV-2.
Mars Surface Heterogeneity From Variations in Apparent Thermal Inertia
Putzig, N. E.; Mellon, M. T.
2005-12-01
Current techniques used in the calculation of thermal inertia from observed brightness temperatures typically assume that planetary surface properties are uniform on the scale of the instrument's observational footprint. Mixed or layered surfaces may yield different apparent thermal inertia values at different seasons or times of day due to the nonlinear relationship between temperature and thermal inertia. To obtain sufficient data coverage for investigating temporal changes, we processed three Mars years of observations from the Mars Global Surveyor Thermal Emission Spectrometer and produced seasonal nightside and dayside maps of apparent thermal inertia. These maps show broad regions with seasonal and diurnal differences as large as 200 J m-2 K-1 s-½ at mid-latitudes (60°S to 60°N) and ranging up to 600 J m-2 K-1 s-½ or greater in the polar regions. Comparison of the maps with preliminary results from forward-modeling of heterogeneous surfaces indicates that much of the martian surface may be dominated by (1) horizontally mixed surfaces, such as those containing differing proportions of rocks, sand, dust, duricrust, and localized frosts; (2) higher thermal inertia layers over lower thermal inertia substrates, such as duricrust or desert pavements; and (3) lower thermal inertia layers over higher thermal inertia substrates, such as dust over sand or rocks and soils with an ice table at depth.
Coupling diffusion and maximum entropy models to estimate thermal inertia
Thermal inertia is a physical property of soil at the land surface related to water content. We have developed a method for estimating soil thermal inertia using two daily measurements of surface temperature, to capture the diurnal range, and diurnal time series of net radiation and specific humidi...
Moments of inertia in 162Yb at very high spins
International Nuclear Information System (INIS)
Simon, R.S.; Banaschik, M.V.; Colombani, P.; Soroka, D.P.; Stephens, F.S.; Diamond, R.M.
1976-01-01
Two methods have been used to obtain values of the effective moment of inertia of very-high-spin (20h-bar--50h-bar) states populated in heavy-ion compound-nucleus reactions. The 162 Yb nucleus studied has effective moments of inertia smaller than, but approaching, the rigid-body estimate
Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J
2016-12-08
The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Nielsen, Bo Bjerregaard; Santos, Ilmar F.
2017-01-01
utilise two types of eight-node isoparametric elements. The rotor is modelled as a rigid body without rotational inertia, i.e. as a journal. The bump foil is included via a bilinear version of the simple elastic foundation model. This paper introduces the bilinear simple elastic foundation model, which...
Clinical inertia, uncertainty and individualized guidelines.
Reach, G
2014-09-01
Doctors often do not follow the guidelines of good practice based on evidence-based medicine, and this "clinical inertia" may represent an impediment to efficient care. The aims of this article are as follows: 1) to demonstrate that this phenomenon is often the consequence of a discrepancy between the technical rationality of evidence-based medicine and the modes of reasoning of physicians practiced in "real-life", which is marked by uncertainty and risk; 2) to investigate in this context the meaning of the recent, somewhat paradoxical, concept of "individualized guidelines"; and 3) to revisit the real, essentially pedagogical, place of guidelines in medical practice. Copyright © 2014. Published by Elsevier Masson SAS.
Debats, Nienke B.; Kingma, Idsart; Beek, Peter J.; Smeets, Jeroen B. J.
2012-01-01
How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's “angular mass”) under different force conditions, using the Weber fraction to quantify perceptual precision. Participants rotated a rod around a fixed axis and judged its moment of inertia in a two-alternative forced-choice task. We instructed different levels of exploration force, thereby manipulating the magnitude of both the exploration force and the angular acceleration. These are the two signals that are needed by the nervous system to estimate moment of inertia. Importantly, one can assume that the absolute noise on both signals increases with an increase in the signals' magnitudes, while the relative noise (i.e., noise/signal) decreases with an increase in signal magnitude. We examined how the perceptual precision for moment of inertia was affected by this neural noise. In a first experiment we found that a low exploration force caused a higher Weber fraction (22%) than a high exploration force (13%), which suggested that the perceptual precision was constrained by the relative noise. This hypothesis was supported by the result of a second experiment, in which we found that the relationship between exploration force and Weber fraction had a similar shape as the theoretical relationship between signal magnitude and relative noise. The present study thus demonstrated that the amount of force used to explore an object can profoundly influence the precision by which its properties are perceived. PMID:23028437
Kanady, Jennifer C; Harvey, Allison G
2015-10-01
Sleep inertia is the transitional state from sleep to wake. Research on sleep inertia is important in depression because many people with depression report having difficulty getting out of bed, which contributes to impairment and can impede the implementation of interventions. The first aim was to develop and validate the first self-report measure of sleep inertia, the Sleep Inertia Questionnaire (SIQ). The second aim was to compare reports of sleep inertia across three groups: (1) No-to-Mild-Depression, (2) Analogue-Depression, and (3) Syndromal-Depression. The SIQ demonstrates strong psychometric properties; it has good to excellent internal consistency, strong construct validity, and SIQ severity is associated with less prior sleep duration. Sleep inertia is more severe in the Analogue-Depression and Syndromal-Depression groups compared to the No-to-Mild-Depression group. In conclusion, the SIQ is a reliable measure of sleep inertia and has potential for improving the assessment of sleep inertia in clinical and research settings.
Directory of Open Access Journals (Sweden)
Henning W Zimmermann
Full Text Available BACKGROUND: Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C(+ monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14(+CD16(- and non-classical CD14(+CD16(+ cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that 'non-classical' monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14(+CD16(+ subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14(+CD16(+ macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC in vitro. CD14(+CD16(+ monocytes released abundant proinflammatory cytokines. Furthermore, CD14(+CD16(+, but not CD14(+CD16(- monocytes could directly activate collagen-producing HSC. CONCLUSIONS/SIGNIFICANCE: Our data
Therapeutic inertia amongst general practitioners with interest in diabetes.
Seidu, Samuel; Than, Tun; Kar, Deb; Lamba, Amrit; Brown, Pam; Zafar, Azhar; Hussain, Rizwan; Amjad, Ahmed; Capehorn, Mathew; Martin, Elizabeth; Fernando, Kevin; McMoran, Jim; Millar-Jones, David; Kahn, Shahzada; Campbell, Nigel; Brice, Richard; Mohan, Rahul; Mistry, Mukesh; Kanumilli, Naresh; St John, Joan; Quigley, Richard; Kenny, Colin; Khunti, Kamlesh
2018-02-01
As the therapeutic options in the management of type 2 diabetes increase, there is an increase confusion among health care professionals, thus leading to the phenomenon of therapeutic inertia. This is the failure to escalate or de-escalate treatment when the clinical need for this is required. It has been studied extensively in various settings, however, it has never been reported in any studies focusing solely on primary care physicians with an interest in diabetes. This group is increasingly becoming the focus of managing complex diabetes care in the community, albeit with the support from specialists. In this retrospective audit, we assessed the prevalence of the phenomenon of therapeutic inertia amongst primary care physicians with an interest in diabetes in UK. We also assessed the predictive abilities of various patient level characteristics on therapeutic inertia amongst this group of clinicians. Out of the 240 patients reported on, therapeutic inertia was judged to have occurred in 53 (22.1%) of patients. The full model containing all the selected variables was not statistically significant, p=0.59. So the model was not able to distinguish between situations in which therapeutic inertia occurred and when it did not occur. None of the patient level characteristics on its own was predictive of therapeutic inertia. Therapeutic inertia was present only in about a fifth of patient patients with diabetes being managed by primary care physicians with an interest in diabetes. Copyright © 2017 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Selective effects of weight and inertia on maximum lifting.
Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S
2013-03-01
A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.
Emotional inertia contributes to depressive symptoms beyond perseverative thinking.
Brose, Annette; Schmiedek, Florian; Koval, Peter; Kuppens, Peter
2015-01-01
The autocorrelation or inertia of negative affect reflects how much negative emotions carry over from moment to moment and has been associated with increased depressive symptoms. In this study, we posed three challenges to this association by examining: (1) whether emotional inertia is relevant for depressive symptoms when assessed on a longer timescale than usual; (2) whether inertia is uniquely related to depressive symptoms after controlling for perseverative thoughts; and (3) whether inertia is related to depressive symptoms over and above the within-person association between affect and perseverative thoughts. Participants (N = 101) provided ratings of affect and perseverative thoughts for 100 days; depressive symptoms were reported before and after the study, and again after 2.5 years. Day-to-day emotional inertia was related to depressive symptoms over and above trait and state perseverative thoughts. Moreover, inertia predicted depressive symptoms when adjusting for its association with perseverative thoughts. These findings establish the relevance of emotional inertia in depressive symptoms independent of perseverative thoughts.
Real-Time Measurement of Machine Efficiency during Inertia Friction Welding.
Energy Technology Data Exchange (ETDEWEB)
Tung, Daniel Joseph [The Ohio State Univ., Columbus, OH (United States); Mahaffey, David [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Senkov, Oleg [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Semiatin, Sheldon [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Zhang, Wei [The Ohio State Univ., Columbus, OH (United States)
2017-12-01
Process efficiency is a crucial parameter for inertia friction welding (IFW) that is largely unknown at the present time. A new method has been developed to determine the transient profile of the IFW process efficiency by comparing the workpiece torque used to heat and deform the joint region to the total torque. Particularly, the former is measured by a torque load cell attached to the non-rotating workpiece while the latter is calculated from the deceleration rate of flywheel rotation. The experimentally-measured process efficiency for IFW of AISI 1018 steel rods is validated independently by the upset length estimated from an analytical equation of heat balance and the flash profile calculated from a finite element based thermal stress model. The transient behaviors of torque and efficiency during IFW are discussed based on the energy loss to machine bearings and the bond formation at the joint interface.
Dynamics of Small Inertia-Free Spheroidal Particles in a Turbulent Channel Flow
Challabotla, Niranjan Reddy; Zhao, Lihao; Andersson, Helge I.; Department of Energy; Process Engineering Team
2015-11-01
The study of small non-spherical particles suspended in turbulent fluid flows is of interest in view of the potential applications in industry and the environment. In the present work, we investigated the dynamics of inertia-free spheroidal particles suspended in fully-developed turbulent channel flow at Re τ = 180 by using the direct numerical simulations (DNS) for the Eulerian fluid phase coupled with the Lagrangian point-particle tracking. We considered inertia-free spheroidal particles with a wide range of aspect ratios from 0.01 to 50, i.e. from flat disks to long rods. Although the spheroids passively translate along with the fluid, the particle orientation and rotation strongly depend on the particle shape. The flattest disks were preferentially aligned with their symmetry axis normal to the wall, whereas the longest rods aligned parallel to the wall. Strong mean rotational spin was observed for spherical particles and this has been damped with increasing asphericity both for rod-like and disk-like spheroids. The anisotropic mean and fluctuating fluid vorticity resulted in particle spin anisotropies which exhibited a complex dependence on the particle asphericty. The Research Council of Norway, Notur and COST Action FP1005 are gratefully acknowledged.
International Nuclear Information System (INIS)
Joshi, A.; Lawande, S.V.
1990-01-01
A systematic study of squeezing obtained from k-photon anharmonic oscillator (with interaction hamiltonian of the form (a † ) k , k ≥ 2) interacting with light whose statistics can be varied from sub-Poissonian to poissonian via binomial state of field and super-Poissonian to poissonian via negative binomial state of field is presented. The authors predict that for all values of k there is a tendency increase in squeezing with increased sub-Poissonian character of the field while the reverse is true with super-Poissonian field. They also present non-classical behavior of the first order coherence function explicitly for k = 2 case (i.e., for two-photon anharmonic oscillator model used for a Kerr-like medium) with variation in the statistics of the input light
The cranking moment of inertia in a static potential
International Nuclear Information System (INIS)
Bengtsson, R.; Hamamoto, I.; Ibarra, R.H.
1978-01-01
Taking into account the self-consistency condition for the deformation, the authors estimate the cranking moment of inertia in the absence of pair-correlations for the Woods-Saxon potential and various versions of the modified oscillator potential. The authors investigate the expectation that in a static potential the moment of inertia is almost equal to the rigid-body moment of inertia at the self-consistent deformation. They examine especially the consequence of the presence of the l 2 term in the conventional modified oscillator potential. (Auth.)
Moments of inertia for solids of revolution and variational methods
International Nuclear Information System (INIS)
Diaz, Rodolfo A; Herrera, William J; Martinez, R
2006-01-01
We present some formulae for the moments of inertia of homogeneous solids of revolution in terms of the functions that generate the solids. The development of these expressions exploits the cylindrical symmetry of these objects and avoids the explicit use of multiple integration, providing an easy and pedagogical approach. The explicit use of the functions that generate the solid gives the possibility of writing the moment of inertia as a functional, which in turn allows us to utilize the calculus of variations to obtain new insight into some properties of this fundamental quantity. In particular, minimization of moments of inertia under certain restrictions is possible by using variational methods
International Nuclear Information System (INIS)
El Zaiki, M.I.; Nafie, H.O.; Abd El Mageed, K.E.
1992-01-01
Two methods of calculations have been used to fit the previously presented data on rotationally aligned quasiparticle bands in sup(160,162,164,166)Yb. Backbendings of moment of inertia of the Yrast states can be reproduced reasonably well. The energy levels and the effective moment of inertia for both gs and s-band are calculated and compared with the experimental data. Band crossing interpretations are discussed for each nucleus. The interaction strength calculations are presented. (author). 17 refs., 7 figs., 4 tabs
Time-odd mean fields in covariant density functional theory: Rotating systems
International Nuclear Information System (INIS)
Afanasjev, A. V.; Abusara, H.
2010-01-01
Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.
Medicaid program choice, inertia and adverse selection.
Marton, James; Yelowitz, Aaron; Talbert, Jeffery C
2017-12-01
In 2012, Kentucky implemented Medicaid managed care statewide, auto-assigned enrollees to three plans, and allowed switching. Using administrative data, we find that the state's auto-assignment algorithm most heavily weighted cost-minimization and plan balancing, and placed little weight on the quality of the enrollee-plan match. Immobility - apparently driven by health plan inertia - contributed to the success of the cost-minimization strategy, as more than half of enrollees auto-assigned to even the lowest quality plans did not opt-out. High-cost enrollees were more likely to opt-out of their auto-assigned plan, creating adverse selection. The plan with arguably the highest quality incurred the largest initial profit margin reduction due to adverse selection prior to risk adjustment, as it attracted a disproportionate share of high-cost enrollees. The presence of such selection, caused by differential degrees of mobility, raises concerns about the long run viability of the Medicaid managed care market without such risk adjustment. Copyright © 2017 Elsevier B.V. All rights reserved.
The effect of inertia, viscous damping, temperature and normal ...
Indian Academy of Sciences (India)
Nitish Sinha
2018-04-16
Apr 16, 2018 ... physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic ... However, the present study has shown the appearance of chaos for the specific .... Although chaos is a general man-.
Einstein's equivalence principle instead of the inertia forces
International Nuclear Information System (INIS)
Herreros Mateos, F.
1997-01-01
In this article I intend to show that Einstein's equivalence principle substitutes advantageously the inertia forces in the study and resolution of problems in which non-inertial systems appear. (Author) 13 refs
On the moment of inertia of a proto neutron star
International Nuclear Information System (INIS)
Zhao Xianfeng; Zhang Hua; Jia Huanyu
2010-01-01
The influences of σ * and Φ mesons,temperature and coupling constants of nucleons on the moment of inertia of the proto neutron star (PNS) are examined in the framework of relativistic mean field theory for the baryon octet {n, p, Λ , Σ - , Σ 0 , Σ + , Ξ - , Ξ 0 } system. It is found that, compared with that without considering σ * and Φ mesons, the moment of inertia decreases. It is also found that the higher the temperature, the larger the incompressibility and symmetry energy coefficient, and the larger the moment of inertia of a PNS. The influence of temperature and coupling constants of the nucleons on the moment of inertia of a PNS is larger than that of the σ * and Φ mesons. (authors)
A new inertia weight control strategy for particle swarm optimization
Zhu, Xianming; Wang, Hongbo
2018-04-01
Particle Swarm Optimization is a member of swarm intelligence algorithms, which is inspired by the behavior of bird flocks. The inertia weight, one of the most important parameters of PSO, is crucial for PSO, for it balances the performance of exploration and exploitation of the algorithm. This paper proposes a new inertia weight control strategy and PSO with this new strategy is tested by four benchmark functions. The results shows that the new strategy provides the PSO with better performance.
Relaxation processes in rotational motion
International Nuclear Information System (INIS)
Broglia, R.A.
1986-01-01
At few MeV above the yrast line the normally strong correlations among γ-ray energies in a rotational sequence become weaker. This observation can be interpreted as evidence for the damping of rotational motion in hot nuclei. It seems possible to relate the spreading width of the E2-rotational decay strength to the spread in frequency Δω 0 of rotational bands. The origin of these fluctuations is found in: (1) fluctuations in the occupation of special single-particle orbits which contribute a significant part of the total angular momentum; and (2) fluctuations in the moment of inertia induced by vibrations of the nuclear shape. Estimates of Δω 0 done making use of the hundred-odd known discrete rotational bands in the rare-earth region lead, for moderate spin and excitation energies (I ≅ 30 and U ≅ 3 to 4 MeV), to rotational spreading widths of the order of 60 to 160 keV in overall agreement with the data. 24 refs
Effects of microscale inertia on dynamic ductile crack growth
Jacques, N.; Mercier, S.; Molinari, A.
2012-04-01
The aim of this paper is to investigate the role of microscale inertia in dynamic ductile crack growth. A constitutive model for porous solids that accounts for dynamic effects due to void growth is proposed. The model has been implemented in a finite element code and simulations of crack growth in a notched bar and in an edge cracked specimen have been performed. Results are compared to predictions obtained via the Gurson-Tvergaard-Needleman (GTN) model where micro-inertia effects are not accounted for. It is found that microscale inertia has a significant influence on the crack growth. In particular, it is shown that micro-inertia plays an important role during the strain localisation process by impeding void growth. Therefore, the resulting damage accumulation occurs in a more progressive manner. For this reason, simulations based on the proposed modelling exhibit much less mesh sensitivity than those based on the viscoplastic GTN model. Microscale inertia is also found to lead to lower crack speeds. Effects of micro-inertia on fracture toughness are evaluated.
Effects of moment of inertia on restricted motion swing speed.
Schorah, David; Choppin, Simon; James, David
2015-06-01
In many sports, the maximum swing speed of a racket, club, or bat is a key performance parameter. Previous research in multiple sports supports the hypothesis of an inverse association between the swing speed and moment of inertia of an implement. The aim of this study was to rigorously test and quantify this relationship using a restricted swinging motion. Eight visually identical rods with a common mass but variable moment of inertia were manufactured. Motion capture technology was used to record eight participants' maximal effort swings with the rods. Strict exclusion criteria were applied to data that did not adhere to the prescribed movement pattern. The study found that for all participants, swing speed decreased with respect to moment of inertia according to a power relationship. However, in contrast to previous studies, the rate of decrease varied from participant to participant. With further analysis it was found that participants performed more consistently at the higher end of the moment of inertia range tested. The results support the inverse association between swing speed and moment of inertia but only for higher moment of inertia implements.
Neural predictors of emotional inertia in daily life.
Waugh, Christian E; Shing, Elaine Z; Avery, Bradley M; Jung, Youngkyoo; Whitlow, Christopher T; Maldjian, Joseph A
2017-09-01
Assessing emotional dynamics in the brain offers insight into the fundamental neural and psychological mechanisms underlying emotion. One such dynamic is emotional inertia-the influence of one's emotional state at one time point on one's emotional state at a subsequent time point. Emotion inertia reflects emotional rigidity and poor emotion regulation as evidenced by its relationship to depression and neuroticism. In this study, we assessed changes in cerebral blood flow (CBF) from before to after an emotional task and used these changes to predict stress, positive and negative emotional inertia in daily life events. Cerebral blood flow changes in the lateral prefrontal cortex (lPFC) predicted decreased non-specific emotional inertia, suggesting that the lPFC may feature a general inhibitory mechanism responsible for limiting the impact that an emotional state from one event has on the emotional state of a subsequent event. CBF changes in the ventromedial prefrontal cortex and lateral occipital cortex were associated with positive emotional inertia and negative/stress inertia, respectively. These data advance the blossoming literature on the temporal dynamics of emotion in the brain and on the use of neural indices to predict mental health-relevant behavior in daily life. © The Author (2017). Published by Oxford University Press.
Childs, Peter R N
2010-01-01
Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...
Lee, William H K.
2016-01-01
Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.
International Nuclear Information System (INIS)
Ami, I.; Fellah, M.; Allal, N.H.; Benhamouda, N.; Oudih, M.R.; Belabbas, M.
2011-01-01
Expressions of temperature-dependent perpendicular (ℑ⊥) and parallel (ℑ‖) moments of inertia, including isovector pairing effects, have been established using the cranking method. They are derived from recently proposed temperature-dependent gap equations. The obtained expressions generalize the conventional finite-temperature BCS (FTBCS) ones. Numerical calculations have been carried out within the framework of the schematic Richardson model as well as for nuclei such as N = Z, using the single-particle energies and eigenstates of a deformed Woods–Saxon mean-field. ℑ⊥ and ℑ‖ have been studied as a function of the temperature. It has been shown that the isovector pairing effect on both the perpendicular and parallel moments of inertia is non-negligible at finite temperature. These correlations must thus be taking into account in studies of warm rotating nuclei in the N ≃ Z region. (author)
Lázaro, Pablo; Murga, Nekane; Aguilar, Dolores; Hernández-Presa, Miguel A
2010-12-01
Studies indicate that dyslipidemia is undertreated. Numerous systematic reviews have shown that, even when therapeutic targets set by clinical practice guidelines have not been met, treatment remains unchanged despite the availability of alternatives approaches. The result is increased morbidity and mortality. Our aims were to investigate this phenomenon, known as therapeutic inertia, in patients with dyslipidemia and ischemic heart disease, and to determine its possible causes. national, multicenter, observational study of data obtained from physicians by questionnaire and from the clinical records of patients with ischemic heart disease. Main variable: therapeutic inertia during a consultation, defined as treatment remaining the same despite a change being indicated (e.g. low-density lipoprotein cholesterol >100 mg/dl or >70 mg/dl in diabetics). Covariates: physician, patient and consultation characteristics. multivariate logistic regression analysis of factors associated with therapeutic inertia during a consultation. Overall, 43% of consultations involved therapeutic inertia, and an association with coronary risk factors, including diabetes, did not result in a change in treatment. Therapeutic inertia occurred more frequently when there was a long time between the diagnosis and treatment of dyslipidemia and that of ischemic heart disease. Undertreatment was particularly common in women despite a greater overall risk. The more experienced physicians treated younger patients more appropriately. Clinical practice was improved by educational sessions at conferences. Therapeutic inertia was common in patients with chronic ischemic heart disease and dyslipidemia, irrespective of overall cardiovascular risk. Factors associated with the patient, disease and physician had an influence.
Apparent thermal inertia and the surface heterogeneity of Mars
Putzig, Nathaniel E.; Mellon, Michael T.
2007-11-01
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.
Asymmetric rotator as a detector of monochromatic gravitational waves
International Nuclear Information System (INIS)
Gliner, Eh.B.; Mitrofanov, I.G.
1979-01-01
The interaction between a rotating asymmetric (principal moments of inertia are different) body with a gravitational wave is considered. A resonance rotational detector of monocrhomatic gravitational waves is proposed in which the turning due to the incident wave and the rotation which ensures resonance between the detector and wave correspond to different degrees of freedom. This significantly facilitates the creation of such detectors. The interference due to the gradient of the gravitational acceleration of the Earth and to rotation of the detector as a whole is estimated
Directory of Open Access Journals (Sweden)
Nicole B. Crux
2017-07-01
Full Text Available The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV and hepatitis C virus (HCV, is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C, class Ib (HLA-E, -F, -G, -H, and class II (HLA-DR, -DQ, -DM, and -DP in immune regulation and viral pathogenesis (e.g., HIV and HCV. To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Directory of Open Access Journals (Sweden)
Moayeri H
2002-07-01
Full Text Available Amenorrhea, an absence of menses is a symptom that generally brings teenagers for evaluation. This study was undertaken to determine the etiology of primary amenorrhea with especial concern to non classic congential adrenal hyperplasia (NC-CAH-due 21 hydroxylase deficiency among female adolescents refered to clinics of Pediatric Endocrinology of Tehran and Iran University of Medical sciences and private office. One hundred and five female adolescents were studied. All patients were examined by pediatric endocrinologist.Routine lab tests, FSH, LH, prolactin, T4, TSH, 17-hydroxyprogesterone and in some cases ACTH Stimulation test for screening of NC-CAH due to 21 OH deficiency were performed. Chromosmal analysis, sonography of the ovaries and CT scan or MRI of the brain was performed in some of them. Forty-three patients (41% had ypergonaldotropic hypogonadism and sixty two patiens (59% ahd hypogonadotropic hypogonadism. Turner’s syndrome and constitutional delay of puberty were the most common causes of primary amenorrhea in our study. The frequency of primary amenorrhea in our study. The frequency of primary amenorrhea due to 21-OH deficient NC-CAH was 6.6% in overall (105 cases. This study shows that in a population with high incidence of consanguineous marriages, some rare genetic disorders such as 21 OH deficient NC-CAH are relatively common
Seliger, Barbara
2013-01-01
The non-classical human leukocyte antigen (HLA) class I antigen HLA-G represents a tolerogenic molecule and is involved in the inhibition of natural killer cell and cytotoxic T lymphocyte-mediated cytotoxicity. Under physiological conditions, HLA-G expression is mainly restricted to immune-privileged tissues, whereas it is overexpressed in tumors and transplants as well as in virus-infected cells. Due to its immunosuppressive features, HLA-G is important for pregnancy or organ transplantation and autoimmune diseases as well as cancer immune escape. This review focusses on the expression, regulation, and function of HLA-G in tumor cells andlor in transplants as well as therapeutic tools for enhancing (transplantation) or avoiding (tumor) tolerance. Thus, HLA-G or HLA-G-derived synthetic molecules might be used as therapeutic agents in combination with immunosuppressive drugs to enhance organ tolerance upon transplantation. In addition, HLA-G neoexpressing tumor cells could be targeted by HLA-G-specific microRNAs in order to enhance tumor immunogenicity.
A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm
Shamsi, Mousa; Sedaaghi, Mohammad Hossein
2016-01-01
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO’s parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate. PMID:27560945
Observing the variation of asteroid thermal inertia with heliocentric distance
Rozitis, B.; Green, S. F.; MacLennan, E.; Emery, J. P.
2018-06-01
Thermal inertia is a useful property to characterize a planetary surface, since it can be used as a qualitative measure of the regolith grain size. It is expected to vary with heliocentric distance because of its dependence on temperature. However, no previous investigation has conclusively observed a change in thermal inertia for any given planetary body. We have addressed this by using NEOWISE data and the Advanced Thermophysical Model to study the thermophysical properties of the near-Earth asteroids (1036) Ganymed, (1580) Betulia, and (276 049) 2002 CE26 as they moved around their highly eccentric orbits. We confirm that the thermal inertia values of Ganymed and 2002 CE26 do vary with heliocentric distance, although the degree of variation observed depends on the spectral emissivity assumed in the thermophysical modelling. We also confirm that the thermal inertia of Betulia did not change for three different observations obtained at the same heliocentric distance. Depending on the spectral emissivity, the variations for Ganymed and 2002 CE26 are potentially more extreme than that implied by theoretical models of heat transfer within asteroidal regoliths, which might be explained by asteroids having thermal properties that also vary with depth. Accounting for this variation reduces a previously observed trend of decreasing asteroid thermal inertia with increasing size, and suggests that the surfaces of small and large asteroids could be much more similar than previously thought. Furthermore, this variation can affect Yarkovsky orbital drift predictions by a few tens of per cent.
Inertia in nursing care of hospitalised patients with urinary incontinence.
Artero-López, Consuelo; Márquez-Hernández, Verónica V; Estevez-Morales, María Teresa; Granados-Gámez, Genoveva
2018-04-01
To assess the existence of therapeutic inertia in the nursing care of patients with urinary incontinence during the patient's time in hospital, together with the sociodemographic and professional variables involved. Inertia in care is a problem which appears in the nursing care process. Actions related to inertia can be attributed to not adhering to protocols, clinical guidelines and the lack of prevention measures which have undesirable effects on the efficiency of care. This was a prospective observational study. A total of 132 nursing professionals participated over two consecutive months. Data were collected randomly through the method of systematic, nonparticipative observation of medical practice units and patients' medical records. The results showed a pattern of severely compromised action in the assessment of the pattern of urinary elimination, in actions related to urinary continence, in therapeutic behaviour and in patient satisfaction and were found to be consistent with professional experience (p inertia exists in nursing care in the hospital environment while the patient is hospitalised, in prevention care, in the treatment of urinary incontinence and in the management of records. Contributing to the understanding of the existence of inertia in nursing care raises questions regarding its causes and interventions to predict or monitor it. © 2018 John Wiley & Sons Ltd.
Inertia and Double Bending of Light from Equivalence
Shuler, Robert L., Jr.
2010-01-01
Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.
A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm.
Amoshahy, Mohammad Javad; Shamsi, Mousa; Sedaaghi, Mohammad Hossein
2016-01-01
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.
International Nuclear Information System (INIS)
Rosquist, K.
1980-01-01
Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)
Inertia of rough and vicinal surfaces of helium-4 crystals
International Nuclear Information System (INIS)
Amrit, J.; Legros, P.; Poitrenaud, J.
1995-01-01
This paper reports a study of the inertia of rough and vicinal of 4 He crystals. We have measured the transmission coefficient of ultrasonic waves at frequencies 10, 30, 50 and 70 MHz, across the liquid-solid interface. The experiments are carried out at temperatures ranging between 0.4 and 1.0 K for four crystallographic orientations. Two important phenomena are put to evidence for the first time. We have found the first experimental evidence that the inertia of rough surfaces depends on temperature. For vicinal surfaces, we have shown the strong increase of the inertia as the tilt angle decreases. Our experimental results agree very well with the theoretical predictions
Temperature-dependent particle-number projected moment of inertia
International Nuclear Information System (INIS)
Allal, N. H.; Fellah, M.; Benhamouda, N.; Oudih, M. R.
2008-01-01
Expressions of the parallel and perpendicular temperature-dependent particle-number projected nuclear moment of inertia have been established by means of a discrete projection method. They generalize that of the FTBCS method and are well adapted to numerical computation. The effects of particle-number fluctuations have been numerically studied for some even-even actinide nuclei by using the single-particle energies and eigenstates of a deformed Woods-Saxon mean field. It has been shown that the parallel moment of inertia is practically not modified by the use of the projection method. In contrast, the discrepancy between the projected and FTBCS perpendicular moment of inertia values may reach 5%. Moreover, the particle-number fluctuation effects vary not only as a function of the temperature but also as a function of the deformation for a given temperature. This is not the case for the system energy
Factors associated with clinical inertia: an integrative review
Aujoulat, Isabelle; Jacquemin, Patricia; Rietzschel, Ernst; Scheen, André; Tréfois, Patrick; Wens, Johan; Darras, Elisabeth; Hermans, Michel P
2014-01-01
Failure to initiate or intensify therapy according to evidence-based guidelines is increasingly being acknowledged as a phenomenon that contributes to inadequate management of chronic conditions, and is referred to as clinical inertia. However, the number and complexity of factors associated with the clinical reasoning that underlies the decision-making processes in medicine calls for a critical examination of the consistency of the concept. Indeed, in the absence of information on and justification of treatment decisions that were made, clinical inertia may be only apparent, and actually reflect good clinical practice. This integrative review seeks to address the factors generally associated with clinical inaction, in order to better delineate the concept of true clinical inertia. PMID:24868181
Reduction of nuclear moment of inertia due to pairing interaction
International Nuclear Information System (INIS)
Zeng, J.Y.; Jin, T.H.; Zhao, Z.J.
1994-01-01
The BCS theoretical values of the moments of inertia of even-even nuclei are systematically smaller than the experimental ones by a factor of 10--40%. This long-standing discrepancy disappears in the particle-number-conserving treatment for the cranked shell model, in which the blocking effects are taken into account exactly. The calculated moments of inertia satisfactorily reproduce the experimental data covering a large number of rare-earth even-even nuclei, whose deformations and single-particle states are well characterized (Lund systematics). The pairing interaction strength G is unambiguously determined by the even-odd mass difference. The reduction of the moment of inertia due to the antialignment effect of pairing interaction is discussed and no systematic excessive reduction is found
Electron inertia effects on the planar plasma sheath problem
International Nuclear Information System (INIS)
Duarte, V. N.; Clemente, R. A.
2011-01-01
The steady one-dimensional planar plasma sheath problem, originally considered by Tonks and Langmuir, is revisited. Assuming continuously generated free-falling ions and isothermal electrons and taking into account electron inertia, it is possible to describe the problem in terms of three coupled integro-differential equations that can be numerically integrated. The inclusion of electron inertia in the model allows us to obtain the value of the plasma floating potential as resulting from an electron density discontinuity at the walls, where the electrons attain sound velocity and the electric potential is continuous. Results from numerical computation are presented in terms of plots for densities, electric potential, and particles velocities. Comparison with results from literature, corresponding to electron Maxwell-Boltzmann distribution (neglecting electron inertia), is also shown.
Particle number fluctuations in the moment of inertia
International Nuclear Information System (INIS)
Allal, N.H.; Fellah, M.
1991-01-01
The nonphysical effects due to the false components introduced by the nonconservation of the particle number in the BCS states are eliminated in the theoretical values of the moment of inertia calculated by the microscopic cranking model. The states of the system are obtained by successive projections of the BCS states in the occupation number space. The moment of inertia appears then as a limit of a rapidly convergent sequence. The errors due to this false component have been numerically estimated and appear to be important both in the BCS states and in the matrix elements of the angular momentum. The predicted values of the moment of inertia satisfactorily reproduce the experimental data over a large number of nuclei within rare-earth and actinide regions with discrepancies ranging from 0.1% to 8%
GyroVR: Simulating Inertia in Virtual Reality using Head Worn Flywheels
DEFF Research Database (Denmark)
Gugenheimer, Jan; Wolf, Dennis; Eiríksson, Eyþór Rúnar
2016-01-01
We present GyroVR, head worn flywheels designed to render inertia in Virtual Reality (VR. Motions such as flying, diving or floating in outer space generate kinesthetic forces onto our body which impede movement and are currently not represented in VR. We simulate those kinesthetic forces...... by attaching flywheels to the users head, leveraging the gyroscopic effect of resistance when changing the spinning axis of rotation. GyroVR is an ungrounded, wireless and self contained device allowing the user to freely move inside the virtual environment. The generic shape allows to attach it to different...... positions on the users body. We evaluated the impact of GyroVR onto different mounting positions on the head (back and front) in terms of immersion, enjoyment and simulator sickness. Our results show, that attaching GyroVR onto the users head (front of the Head Mounted Display (HMD)) resulted in the highest...
Hysteretic transitions in the Kuramoto model with inertia.
Olmi, Simona; Navas, Adrian; Boccaletti, Stefano; Torcini, Alessandro
2014-10-01
We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic, and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean-field theory developed by Tanaka, Lichtenberg, and Oishi [Physica D 100, 279 (1997)] allows us to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size, and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of whirling oscillators. The presence of these groups of coherently drifting oscillators induces oscillations in the order parameter. We have shown that the transition remains hysteretic even for randomly diluted networks up to a level of connectivity corresponding to a few links per oscillator. Finally, an application to the Italian high-voltage power grid is reported, which reveals the emergence of quasiperiodic oscillations in the order parameter due to the simultaneous presence of many competing whirling clusters.
Upmanyu, Neha; Dietze, Raimund; Kirch, Ulrike; Scheiner-Bobis, Georgios
2016-11-01
In addition to the ubiquitous α1 isoform of the sodium pump, sperm cells also express a male-specific α4 isoform whose function has been associated with sperm motility, fertility, and capacitation. Here we investigate in the murine spermatogenic cell line GC-2 interactions of the α4 isoform with the cardiotonic steroid ouabain in signaling cascades involved in the non-classical action of steroid hormones. Exposure of GC-2 cells to low concentrations of ouabain stimulates the phosphorylation of Erk1/2 and of the transcription factors CREB and ATF-1. As a consequence of this signaling cascade, ouabain stimulates on the mRNA level the expression of integrins αv, β3 and α5, whose expression is also modulated by the cAMP response element. Increased expression of integrins αv and β3 is also seen in cultures of seminiferous tubules exposed to 10nM ouabain. At the protein level we observed a significant stimulation of β3 integrin expression by ouabain. Abrogation of α4 isoform expression by siRNA leads to the complete suppression of all ouabain-induced signaling mentioned above, including its stimulatory effect on the expression of β3 integrin. The results presented here demonstrate for the first time the induction of signaling cascades through the interaction of ouabain with the α4 isoform in a germ-cell derived cell line. The novel finding that these interactions lead to increased expression of integrins in GC-2 cells and the confirmation of these results in the ex vivo experiments indicate that hormone/receptor-like interactions of ouabain with the α4 isoform might be of significance for male physiology. Copyright © 2016 Elsevier B.V. All rights reserved.
Sequence-dependent rotation axis changes and interaction torque use in overarm throwing.
Hansen, Clint; Rezzoug, Nasser; Gorce, Philippe; Venture, Gentiane; Isableu, Brice
2016-01-01
We examined the role of rotation axes during an overarm throwing task. Participants performed such task and were asked to throw a ball at maximal velocity at a target. The purpose of this study was to examine whether the minimum inertia axis would be exploited during the throwing phases, a time when internal-external rotations of the shoulder are particularly important. A motion capture system was used to evaluate the performance and to compute the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis). More specifically, we investigated whether a velocity-dependent change in rotational axes can be observed in the different throwing phases and whether the control obeys the principle of minimum inertia resistance. Our results showed that the limbs' rotational axis mainly coincides with the minimum inertia axis during the cocking phase and with the shoulder-elbow axis during the acceleration phase. Besides these rotation axes changes, the use of interaction torque is also sequence-dependent. The sequence-dependent rotation axes changes associated with the use of interaction torque during the acceleration phase could be a key factor in the production of hand velocity at ball release.
Moments of inertia and the shapes of Brownian paths
International Nuclear Information System (INIS)
Fougere, F.; Desbois, J.
1993-01-01
The joint probability law of the principal moments of inertia of Brownian paths (open or closed) is computed, using constrained path integrals and Random Matrix Theory. The case of two-dimensional paths is discussed in detail. In particular, it is shown that the ratio of the average values of the largest and smallest moments is equal to 4.99 (open paths) and 3.07 (closed paths). Results of numerical simulations are also presented, which include investigation of the relationships between the moments of inertia and the arithmetic area enclosed by a path. (authors) 28 refs., 2 figs
Frequency Stability Improvement of Low Inertia Systems Using Synchronous Condensers
DEFF Research Database (Denmark)
Nguyen, Ha Thi; Yang, Guangya; Nielsen, Arne Hejde
2016-01-01
of converter interfaced components (wind turbine, HVDC, and Photovoltaic) may have negative effects on the stability of the power system. These components do not have enough inertia response to control frequency excursion, so the power grid can depend on few synchronous machines for frequency regulation...... and reduce the system inertia. Consequently, the frequency stability of the system will be easily jeopardized. To address these issues, the paper studies frequency characteristics of future Western Danish renewable-based system that uses a majority of wind turbine generators. Different scenarios of wind...
Crustal fraction of moment of inertia in pulsars
International Nuclear Information System (INIS)
Atta, Debasis; Mukhopadhyay, Somnath; Basu, D.N.
2015-01-01
In the present work, stability of the β-equilibrated dense nuclear matter is analyzed with respect to the thermodynamic stability conditions. Based on the density dependent M3Y (DDM3Y) effective nucleon-nucleon (NN) interaction, the location of the inner edge of neutron star crusts and core-crust transition density and pressure are calculated and crustal fraction of moment of inertia is determined. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a new limit for the radius of the Vela pulsar
Isolated colonic inertia is not usually the cause of chronic constipation.
Ragg, J; McDonald, R; Hompes, R; Jones, O M; Cunningham, C; Lindsey, I
2011-11-01
Chronic constipation is classified as outlet obstruction, colonic inertia or both. We aimed to determine the incidence of isolated colonic inertia in chronic constipation and to study symptom pattern in those with prolonged colonic transit time. Chronic constipation patients were classified radiologically by surgeon-reported defaecating proctography and transit study into four groups: isolated outlet obstruction, isolated colonic inertia, outlet obstruction plus colonic inertia, or normal. Symptom patterns were defined as stool infrequency (twice weekly or less) or frequent unsuccessful evacuations (more than twice weekly). Of 541 patients with chronic constipation, 289 (53%) were classified as isolated outlet obstruction, 26 (5%) as isolated colonic inertia, 159 (29%) as outlet obstruction plus colonic inertia and 67 (12%) as normal. Of 448 patients (83%) with outlet obstruction, 35% had additional colonic inertia. Only 14% of those with prolonged colonic transit time had isolated colonic inertia. Frequent unsuccessful evacuations rather than stool infrequency was the commonest symptom pattern in all three disease groups (isolated outlet obstruction 86%, isolated colonic inertia 54% and outlet obstruction plus colonic inertia 63%). Isolated colonic inertia is an unusual cause of chronic constipation. Most patients with colonic inertia have associated outlet obstruction. These data question the clinical significance of isolated colonic inertia. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.
On LAM's and SAM's for Halley's rotation
Peale, Stanton J.
1992-01-01
Non principal axis rotation for comet Halley is inferred from dual periodicities evident in the observations. The modes where the spin axis precesses around the axis of minimum moment of inertia (long axis mode or LAM) and where it precesses around the axis of maximum moment of inertia (short axis mode or SAM) are described from an inertial point of view. The currently favored LAM model for Halley's rotation state satisfies observational and dynamical constraints that apparently no SAM can satisfy. But it cannot reproduce the observed post perihelion brightening through seasonal illumination of localized sources on the nucleus, whereas a SAM can easily produce post or pre perihelion brightening by this mechanism. However, the likelihood of a LAM rotation for elongated nuclei of periodic comets such as Halley together with Halley's extreme post perihelion behavior far from the Sun suggest that Halley's post perihelion brightening may be due to effects other than seasonal illumination of localized sources, and therefore such brightening may not constrain its rotation state.
System Inertia in the Changing Paradigm for Biodiversity ...
African Journals Online (AJOL)
The aim of this paper is to show that while there has been a change, at a policy level, from the old “conservation without a human face” to the new development for sustainable development, inertia in the policy implementation agencies has meant that the provisions of these new policy frameworks have not been translated ...
Organic food consumption in China: the moderating role of inertia
Directory of Open Access Journals (Sweden)
Yen Tsai-Fa
2018-01-01
Full Text Available Despite the progressive development of the organic food sector across Taiwan Strait, little is known about how consumers’ self congruity will influence organic food decision through various degrees of attitude and whether or not consumers with various degrees of inertia will vary in their intention to buy organic foods. The current study aims to examine the effect of consumption self congruity on behavioral intention related to organic food consumption under the mediating role of attitude as well as the moderating role of inertia. Research data were collected from organic food consumers across Taiwan Strait via a questionnaire survey, eventually obtaining 500 valid questionnaires for analysis. This study tested the overall model fit and hypotheses through structural equation modeling method (SEM. The results show that consumer attitude significantly mediates the effects of self congruity on organic food purchase intention. Moreover, the moderating effect of inertia is statistical significance, indicating that the relationship between attitude and purchase intention becomes weaker in the condition of consumers with higher degree of inertia. Several implications and suggestions are also discussed for organic food providers and marketers.
Role of inertia in the fracture of rock
International Nuclear Information System (INIS)
Passman, S.L.; Grady, D.E.; Rundle, J.B.
1980-01-01
A theory for the accumulation of damage in one dimension in fast deformation of a brittle material is developed. The theory is consistent with thermodynamics and takes crack inertia into account. The problem of damage accumulation due to a step pulse in strain is solved, and shows good agreement with experimental results
The inertia system coordinate transformation based on the Lobachevsky function
International Nuclear Information System (INIS)
Fadeev, N.G.
2001-01-01
Based on the interpretation of the Lobachevsky function cosΠ(ρ/k) = thρ/k as the function which expresses the constant light velocity principle at k = c (k is the Lobachevsky constant, c is the light velocity), the inertia system coordinate transformation of two kinds (one of them known as Lorentz transformation) have been obtained
Time to wake up: reactive countermeasures to sleep inertia.
Hilditch, Cassie J; Dorrian, Jillian; Banks, Siobhan
2016-12-07
Sleep inertia is the period of impaired performance and grogginess experienced after waking. This period of impairment is of concern to workers who are on-call, or nap during work hours, and need to perform safety-critical tasks soon after waking. While several studies have investigated the best sleep timing and length to minimise sleep inertia effects, few have focused on countermeasures -especially those that can be implemented after waking (i.e. reactive countermeasures). This structured review summarises current literature on reactive countermeasures to sleep inertia such as caffeine, light, and temperature and discusses evidence for the effectiveness and operational viability of each approach. Current literature does not provide a convincing evidence-base for a reactive countermeasure. Caffeine is perhaps the best option, although it is most effective when administered prior to sleep and is therefore not strictly reactive. Investigations into light and temperature have found promising results for improving subjective alertness; further research is needed to determine whether these countermeasures can also attenuate performance impairment. Future research in this area would benefit from study design features highlighted in this review. In the meantime, it is recommended that proactive sleep inertia countermeasures are used, and that safety-critical tasks are avoided immediately after waking.
Moment of Inertia of a Ping-Pong Ball
Cao, Xian-Sheng
2012-01-01
This note describes how to theoretically calculate and experimentally measure the moment of inertia of a Ping-Pong[R] ball. The theoretical calculation results are in good agreement with the experimental measurements that can be reproduced in an introductory physics laboratory.
Inaction inertia, regret, and valuation : A closer look
Zeelenberg, Marcel; Nijstad, Bernard A.; van Putten, Marijke; van Dijk, Eric
Inaction inertia is the phenomenon that one is not likely to act on an attractive opportunity after having bypassed an even more attractive opportunity. So far, all published work has assumed a causal role for the emotion regret in this effect. In a series of 5 experiments we found no support for
Determinacy, stock market dynamics and monetary policy inertia
DEFF Research Database (Denmark)
Pfajfar, Damjan; Santoro, Emiliano
2011-01-01
We study equilibrium determinacy in a New-Keynesian model where the Central Bank responds to asset prices growth. Unlike Taylor-type rules that react to asset prices, the proposed alternative does not harm dynamic stability and in certain cases promotes determinacy by inducing interest-rate inertia....
The Zone of Inertia: Absorptive Capacity and Organizational Change
Godkin, Lynn
2010-01-01
Purpose: The purpose of this paper is to describe how interruptions in organizational learning effect institutional absorptive capacity and contribute to organizational inertia. Design/methodology/approach: An exploratory model is presented as a heuristic to describe how interruptions in organizational learning affect absorptive capacity.…
Obstacles to Reasoning about Inertia in Different Contexts
Yerdelen-Damar, Sevda
2015-01-01
The present study investigated the underlying reasons for difficulties faced by students when they applied the concept of inertia across varying contexts. The participants of the study included five high school students. Data obtained from interviews were interpreted from the perspectives of the coordination class and epistemological framing…
Effects of electron inertia in capacitively coupled radio frequency discharges
International Nuclear Information System (INIS)
Xiang Nong
2004-01-01
The effects of the electron inertia on the plasma and sheath dynamics in capacitively coupled rf discharges with frequency ωω pi are investigated (here, ω and ω pi are the rf frequency and bulk ion plasma frequency, respectively). It is found that the effects of the electron inertia on the plasma density and ion velocity in the quasi-neutral region depend on the ratio of the amplitudes of the discharge current I rf and ion current I B =en 0 C s (here, e is the unit charge, n 0 is the plasma density at center, and C s is the ion sound speed). If the ratio is small so that I rf /I B √(m i /m e ) (here, m i and m e are ion and electron masses, respectively), the ion and time-averaged electron densities, ion velocity, and electric fields are little affected by the electron inertia. Otherwise, the effects of the electron inertia are significant. It is also shown that the assumption that the electrons obey the Boltzmann distribution in the sheath is invalid when the electron flux flowing to the electrode is significant
A method for measuring the inertia properties of rigid bodies
Gobbi, M.; Mastinu, G.; Previati, G.
2011-01-01
A method for the measurement of the inertia properties of rigid bodies is presented. Given a rigid body and its mass, the method allows to measure (identify) the centre of gravity location and the inertia tensor during a single test. The proposed technique is based on the analysis of the free motion of a multi-cable pendulum to which the body under consideration is connected. The motion of the pendulum and the forces acting on the system are recorded and the inertia properties are identified by means of a proper mathematical procedure based on a least square estimation. After the body is positioned on the test rig, the full identification procedure takes less than 10 min. The natural frequencies of the pendulum and the accelerations involved are quite low, making this method suitable for many practical applications. In this paper, the proposed method is described and two test rigs are presented: the first is developed for bodies up to 3500 kg and the second for bodies up to 400 kg. A validation of the measurement method is performed with satisfactory results. The test rig holds a third part quality certificate according to an ISO 9001 standard and could be scaled up to measure the inertia properties of huge bodies, such as trucks, airplanes or even ships.
Lekner, John
2008-01-01
Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…
International Nuclear Information System (INIS)
Noe, C.
1984-01-01
Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr
Effectiveness and clinical inertia in patients with antidiabetic therapy.
Machado-Duque, Manuel Enrique; Ramírez-Riveros, Adriana Carolina; Machado-Alba, Jorge Enrique
2017-06-01
To establish the effectiveness of antidiabetic therapy and the frequency of clinical inertia in the management of type 2 diabetes mellitus in Colombia. A cross-sectional study with follow-up of patients who had been treated for at least 1 year and were receiving medical consultation for antidiabetic treatment. Effectiveness was established when haemoglobin-A1c levels were inertia was reached, which was defined as no therapeutic modifications despite not achieving management controls. Sociodemographic, clinical and pharmacological variables were evaluated, and multivariate analyses were performed. In total, 363 patients with type 2 diabetes mellitus were evaluated, with a mean age of 62.0±12.2 years. A total of 1,016 consultations were evaluated, and the therapy was effective at the end of the follow-up in 57.9% of cases. Clinical inertia was found in 56.8% of patients who did not have metabolic control. The most frequently prescribed medications were metformin (84.0%), glibenclamide (23.4%) and insulin glargine (20.7%). Moreover, 57.6% of the patients were treated with two or more antidiabetic medications. Having metabolic control in the first consult of the follow-up was a protective factor against clinical inertia in the subsequent consultations (OR: 0.08; 95%CI: 0.04-0.15; Pinertia was identifiable and quantifiable and found in similar proportions to other countries. Clinical inertia is a relevant condition given that it interferes with the possibility of controlling this pathology. © 2017 John Wiley & Sons Ltd.
Validity, Reliability, and Inertia of Four Different Temperature Capsule Systems.
Bongers, Coen C W G; Daanen, Hein A M; Bogerd, Cornelis P; Hopman, Maria T E; Eijsvogels, Thijs M H
2018-01-01
Telemetric temperature capsule systems are wireless, relatively noninvasive, and easily applicable in field conditions and have therefore great advantages for monitoring core body temperature. However, the accuracy and responsiveness of available capsule systems have not been compared previously. Therefore, the aim of this study was to examine the validity, reliability, and inertia characteristics of four ingestible temperature capsule systems (i.e., CorTemp, e-Celsius, myTemp, and VitalSense). Ten temperature capsules were examined for each system in a temperature-controlled water bath during three trials. The water bath temperature gradually increased from 33°C to 44°C in trials 1 and 2 to assess the validity and reliability, and from 36°C to 42°C in trial 3 to assess the inertia characteristics of the temperature capsules. A systematic difference between capsule and water bath temperature was found for CorTemp (0.077°C ± 0.040°C), e-Celsius (-0.081°C ± 0.055°C), myTemp (-0.003°C ± 0.006°C), and VitalSense (-0.017°C ± 0.023°C; P 0.05). Comparable inertia characteristics were found for CorTemp (25 ± 4 s), e-Celsius (21 ± 13 s), and myTemp (19 ± 2 s), whereas the VitalSense system responded more slowly (39 ± 6 s) to changes in water bath temperature (P inertia were observed between capsule systems, an excellent validity, test-retest reliability, and inertia was found for each system between 36°C and 44°C after removal of outliers.
Smoothelin expression in the gastrointestinal tract: implication in colonic inertia.
Chan, Owen T M; Chiles, Lauren; Levy, Mary; Zhai, Jing; Yerian, Lisa M; Xu, Haodong; Xiao, Shu-Yuan; Soffer, Edy E; Conklin, Jeffrey L; Dhall, Deepti; Kahn, Melissa E; Balzer, Bonnie L; Amin, Mahul B; Wang, Hanlin L
2013-10-01
Colonic inertia is a frustrating motility disorder to patients, clinicians, and pathologists. The pathogenesis is largely unknown. The aims of this study were to: (1) characterize the expression of smoothelin, a novel smooth muscle-specific contractile protein expressed only by terminally differentiated smooth muscle cells, in the normal gastrointestinal (GI) tract; and (2) determine whether smoothelin is aberrantly expressed in patients with colonic inertia. A total of 57 resections of the normal GI tract (distal esophagus to left colon) were obtained from patients without GI motor dysfunction. Sixty-one colon resections were obtained from patients with a clinical diagnosis of colonic inertia. Smoothelin immunostaining was conducted on full-thickness tissue sections. In the nondysmotile controls, strong and diffuse cytoplasmic staining for smoothelin was observed in both the inner circular and outer longitudinal layers of the muscularis propria (MP) throughout the entire GI tract. The muscularis mucosae (MM) and muscular vessel walls were either completely negative or only patchily and weakly stained. The 1 exception to this pattern was observed in the distal esophagus, in which the MM was also diffusely and strongly stained. In cases with colonic inertia, a moderate to marked reduction of smoothelin immunoreactivity was observed in 15 of 61 (24.6%) colon resections, selectively seen in the outer layer of the MP. The data demonstrate that smoothelin is differentially expressed in the MP and MM of the normal GI tract and suggest that defective smoothelin expression may play a role in the pathogenesis of colonic inertia in a subset of patients.
40 CFR 86.129-00 - Road load power, test weight, and inertia weight class determination.
2010-07-01
... inertia weight class determination. 86.129-00 Section 86.129-00 Protection of Environment ENVIRONMENTAL... power, test weight, and inertia weight class determination. Applicability. Section 86.129-94 (a) applies... testing using paragraphs (e)(1) and (e)(2) of this section. (f)(1) Required test dynamometer inertia...
40 CFR 86.229-94 - Road load force, test weight, and inertia weight class determination.
2010-07-01
... inertia weight class determination. 86.229-94 Section 86.229-94 Protection of Environment ENVIRONMENTAL... § 86.229-94 Road load force, test weight, and inertia weight class determination. (a) Flywheels... vehicle weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up-1,062 1,000 1,000...
40 CFR 86.129-80 - Road load power, test weight, and inertia weight class determination.
2010-07-01
... inertia weight class determination. 86.129-80 Section 86.129-80 Protection of Environment ENVIRONMENTAL... power, test weight, and inertia weight class determination. (a) Flywheels, electrical or other means of... weight (pounds) Equivalent test weight (pounds) Inertia weight class (pounds) Up to 1,062 1,000 1,000 1...
40 CFR 86.529-98 - Road load force and inertia weight determination.
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load force and inertia weight... inertia weight determination. (a)(1) Road load as a function of speed is given by the following equation: F = A + CV2 (2) The values for coefficients A and C and the test inertia are given in Figure F98-9...
Inertia Wheel on Low-Noise Active Magnetic Suspension
Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.
2002-01-01
Magnetic bearings are particularly suited for space applications for a number of reasons: - they are ideally suited for vacuum applications; - the lack of lubrication and wear enhances the reliability and guaranties a long maintenance-free operation - the low drag torque decreases power consumption and reduces the torque exerted on the stator of the machine. - the possibility of insulating actively the spacecraft from the excitation due to unbalance of the rotating system In the case of reaction wheels, a well designed magnetic suspension allows high speed operation with a very low power consumption and vibration level. Conversely, microgravity (and possibly vacuum) operation is an advantage for magnetic bearings. The absence of static forces allows to operate with low current levels, thus reducing electrical noise and allowing to reach even lower vibration levels than in Earth applications of magnetic bearings. Active magnetic bearings (AMB) allow to adapt the working characteristics of the system to the operating needs: it is possible to use the actuators to lock the system during launch (absence of grabbers) and to stiffen the suspension when the spacecraft is accelerated (impulsive phases), while working in conditions optimised for microgravity when this is needed. Magnetic suspension systems designed for microgravity environment cannot be correctly tested on the ground. Testing in ground conditions results in the need of grossly overdesigning the levitation device; furthermore, in some cases ground testing is completely impossible, if not by introducing devices which compensate for the Earth gravitational field. If the compensation for the gravitational force is supplied by the same actuators used for microgravity operation, the actuators and the power amplifiers must be overdesigned and in some cases the suspension can be altogether impossible. They work in conditions which are much different from nominal ones and, above all, it is impossible to reach the
Semiclassical approach to giant resonances of rotating nuclei
International Nuclear Information System (INIS)
Winter, J.
1983-01-01
Quadrupole and isovector dipole resonances of rotating nuclei are investigated in the frame-work of Vlasov equations transformed to a rotating system of reference, which are based on the time-dependent Hartree-method for schematic forces. The parameter free model of the self-consistent vibrating harmonic oscillator potential for the quadrupole mode is extended to a coupling to rotation, which also includes large-amplitude behaviour. A generalization to an exactly solvable two-liquid model describing the isovector mode is established; for rotating nuclei Hilton's explicit result for the eigenfrequencies is obtained. The advantage of using the concept of the classical kinetic momentum in a rotating system also in quantum-mechanical descriptions is demonstrated. It completes the standard transformation of density matrices by a time-odd part realized in a phase-factor and permits a more direct interpretation of rotation effects in terms of the classical forces of inertia. (author)
Pair correlation of super-deformed rotation band
International Nuclear Information System (INIS)
Shimizu, Yoshio
1989-01-01
The effect of pair correlation, one of the most important residual interactions associated with the super-deformed rotation band, is discussed in terms of the characteristics of the rotation band (its effect on the moment of inertia in particular), and the tunneling into an normal deformed state in relation to its effect on the angular momentum dependence of the potential energy plane as a function of the deformation. The characteristics of the rotation band is discussed in terms of the kinematic and dynamic momenta of inertia. It is shown that the pair correlation in a super-deformed rotation band acts to decrease the former and increase the latter momentum mainly due to dynamic pair correlation. A theoretical approach that takes this effect into account can provide results that are consistent with measured momenta, although large differences can occur in some cases. Major conflicts include a large measured kinetic momentum of inertia compared to the theoretical value, and the absence of the abnormality (shape increase) generally seen in low-spin experiments. The former seems likely to be associated with the method of measuring the angular momentum. (N.K.)
International Nuclear Information System (INIS)
Czerski, I.; Szymanski, S.
2005-01-01
According to the damped quantum rotation (DQR) theory, hindered rotation of methyl groups, reflected in NMR spectra, is a quantum mechanical process controlled by two quantum mechanical rate constants k t and k K . The subscripts t and K, designating '' tunneling '' and '' Kramers '', refer to two specific, long-lived quantum coherence in the methyl rotor system each of which engages the space and spin coordinates of the three protons, correlated by the Pauli principle. Only in the instances where k t and k K happen to be equal, the NMR picture will be the same as for a hypothetical CH 3 group undergoing classical jumps between its three equivalent orientations, described by single rate constant k '. Departure of the ratio c = k t /k K from 1 can thus serve as a quick measure of the degree of non classicality in the stochastic dynamics of the methyl group or, in other words, of the magnitude of the DQR effect. When the Arrhenius activation energy, Ea, for k K is about 12 kJmol -1 , the non classicality factor c can exceed 5. This is an inference from our recent single-crystal NMR studies at temperatures 60 - 110 K. On an intuitive ground, there should be an inverse (but hardly linear) correlation between E a and c. Indeed, for strongly hindered methyl group in 9-methyltripticene derivatives for which the activation energies can exceed 37 kJmol -1 , the DQR effect proves to be much smaller, with the corresponding values of c not exceeding 1.20. Nonetheless, for the values of c above 1.10 it can still be clearly seen in liquid-phase NMR spectra. Here we report on our recent liquid-phase NMR experiments with a series of 9-methyltriptycene derivatives for which the values of E a for k K span the range 37.4 - 44.8 kJmol -1 while the respective, average values of c vary between 1.04 and 1.20. It comes out that, within such a narrow variability range of E a , the correlation between c and E a no longer holds. For example, for 1,2,3,4-tetrabromo-9,10-dimethyltriptycene
Rotating Hele-Shaw cell with a time-dependent angular velocity
Anjos, Pedro H. A.; Alvarez, Victor M. M.; Dias, Eduardo O.; Miranda, José A.
2017-12-01
Despite the large number of existing studies of viscous flows in rotating Hele-Shaw cells, most investigations analyze rotational motion with a constant angular velocity, under vanishing Reynolds number conditions in which inertial effects can be neglected. In this work, we examine the linear and weakly nonlinear dynamics of the interface between two immiscible fluids in a rotating Hele-Shaw cell, considering the action of a time-dependent angular velocity, and taking into account the contribution of inertia. By using a generalized Darcy's law, we derive a second-order mode-coupling equation which describes the time evolution of the interfacial perturbation amplitudes. For arbitrary values of viscosity and density ratios, and for a range of values of a rotational Reynolds number, we investigate how the time-dependent angular velocity and inertia affect the important finger competition events that traditionally arise in rotating Hele-Shaw flows.
On the influence of microscale inertia on dynamic ductile crack extension
Jacques, N.; Mercier, S.; Molinari, A.
2012-08-01
The present paper is devoted to the modelling of damage by micro-voiding in ductile solids under dynamic loading conditions. Using a dynamic homogenization procedure, a constitutive damage model accounting for inertial effects due to void growth (microscale inertia or micro-inertia) has been developed. The role played by microscale inertia in dynamic ductile crack growth is investigated with the use of the proposed micromechanical modelling. It is found that micro-inertia has a significant influence on the fracture behaviour. Micro-inertia limits the velocity at which cracks propagate. It also contributes to increase the apparent dynamic toughness of the material.
High-inertia hermetically sealed main coolant pump for next generation passive nuclear power plants
International Nuclear Information System (INIS)
Kujawski, Joseph M.; Nair, Bala R.; Vijuk, Ronald P.
2003-01-01
The main coolant pump for the Westinghouse AP1000 advanced passive nuclear power plant represents a significant scale-up in power, flow capacity, and physical size from its predecessor designed for the smaller AP600 power plant. More importantly, the AP1000 pump incorporates several innovative features that contribute to improved efficiency, operational reliability, and plant safety. The features include an internals design which provides the highest hydraulic efficiency achieved in commercial nuclear power plant applications. Another feature is the use of a distributed inertial mass system in the rotating assembly to develop the high rotational inertia to meet the extended system flow coastdown requirement for core heat removal in the event of loss of power to the pumps. This advanced canned motor pump also incorporates the latest development in higher operating voltage, providing plant designers with the ability to eliminate plant transformers and operate directly on the site electrical bus in many cases. The salient features of the pump design and performance data are presented in this paper. (author)
Estimation of the Rotational Terms of the Dynamic Response Matrix
Directory of Open Access Journals (Sweden)
D. Montalvão
2004-01-01
Full Text Available The dynamic response of a structure can be described by both its translational and rotational receptances. The latter ones are frequently not considered because of the difficulties in applying a pure moment excitation or in measuring rotations. However, in general, this implies a reduction up to 75% of the complete model. On the other hand, if a modification includes a rotational inertia, the rotational receptances of the unmodified system are needed. In one method, more commonly found in the literature, a so called T-block is attached to the structure. Then, a force, applied to an arm of the T-block, generates a moment together with a force at the connection point. The T-block also allows for angular displacement measurements. Nevertheless, the results are often not quite satisfactory. In this work, an alternative method based upon coupling techniques is developed, in which rotational receptances are estimated without the need of applying a moment excitation. This is accomplished by introducing a rotational inertia modification when rotating the T-block. The force is then applied in its centroid. Several numerical and experimental examples are discussed so that the methodology can be clearly described. The advantages and limitations are identified within the practical application of the method.
Effects of electron inertia in collisionless magnetic reconnection
Energy Technology Data Exchange (ETDEWEB)
Andrés, Nahuel, E-mail: nandres@iafe.uba.ar; Gómez, Daniel [Instituto de Astronomía y Física del Espacio, CC. 67, suc. 28, 1428, Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina); Martin, Luis; Dmitruk, Pablo [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Univrsidad de Buenos Aires, Pabellón I, 1428, Buenos Aires (Argentina)
2014-07-15
We present a study of collisionless magnetic reconnection within the framework of full two-fluid MHD for a completely ionized hydrogen plasma, retaining the effects of the Hall current, electron pressure and electron inertia. We performed 2.5D simulations using a pseudo-spectral code with no dissipative effects. We check that the ideal invariants of the problem are conserved down to round-off errors. Our numerical results confirm that the change in the topology of the magnetic field lines is exclusively due to the presence of electron inertia. The computed reconnection rates remain a fair fraction of the Alfvén velocity, which therefore qualifies as fast reconnection.
Effects of additional inertia force on bubble breakup
International Nuclear Information System (INIS)
Pan Liangming; Zhang Wenzhi; Chen Deqi; Xu Jianhui; Xu Jianjun; Huang Yanping
2011-01-01
Through VOF two-phase flow model, the single bubble deformation and breakup in a vertical narrow channel is numerically investigated in the study based on the force balance at the process of bubble breakup. The effect of surface tension force, the additional inertia force and bubble initial shape on bubble breakup are analyzed according to the velocity variation at the break-up point and the minimum necking size when the bubble is breaking up. It is found that the surface tension force, the additional inertia force and the bubble initial shape have significant effects on the bubble breakup through the fluid injection toward to the bubble, which finally induces the onset of bubble breakup. (authors)
Dynamic moments of inertia in Xe, Cs and Ba nuclei
International Nuclear Information System (INIS)
El-Samman, H.; Barci, V.; Gizon, A.
1984-01-01
The γ-rays following the reactions induced by 12 C ions on 115 In, 112 , 117 , 122 Sn and 123 Sb targets have been investigated using six NaI(Tl) detectors in a two-dimensional arrangement. The collective moment of inertia I( 2 ) /sub band/ of 118 , 122 Xe, 123 Cs and 128 , 130 Ba have been extracted from the energy-correlation spectra. The behaviour of these nuclei and the observed differences are interpreted in terms of high-spin collective properties. Data are also presented on the effective moment of inertia I( 2 )/sub eff/ of 118 Xe and 130 Ba measured by sum-spectrometer techniques. 13 references
Motion, inertia and special relativity-a novel perspective
International Nuclear Information System (INIS)
Masreliez, C Johan
2007-01-01
A recent paper by the author proposes that the phenomenon of inertia may be explained if the four metrical coefficients in the Minkowskian line element were to change as a consequence of acceleration. A certain scale factor multiplying the four metrical coefficients was found, which depends solely on velocity. This dynamic scale factor, which is [1-(v/c) 2 )], models inertia as a gravitational-type phenomenon. With this metric the geodesic of general relativity is an identity, and all accelerating trajectories are geodesics. This paper shows that the same scale factor also agrees with special relativity, but offers a new perspective. A new kind of dynamic process involving four-dimensional scale transition is proposed
A comparison of the consequences of thermospheric inertia on Saturn and Earth
Spain, T.; Achilleos, N.; Aruliah, A. L.
2008-09-01
ABSTRACT The ionosphere should react near-instantaneously to magnetospheric control via electric fields and particle precipitation. The neutral gas of the thermosphere becomes stirred up through collisions and momentum transfer with the ionospheric plasma, although with a time lag in response because of its much larger population mass [1]. The thermosphere thus responds to magnetospheric drivers with a modulating influence owing to its inertia. This study investigates the effect of thermospheric inertia on the energy drawn from the magnetosphere and redistributed as Joule heating and acceleration of the neutral gas. The decay of ionospheric currents and consequent magnetic perturbations are also studied. The UCL Saturn model [2] and CTIP Earth [3] model will each be used for 2 simulations: the first a steadystate 'quiet' simulation and the second including the representation of a geomagnetic storm lasting for an extended period that is then turned off. For each planet, comparisons will be made between these two simulations for the period immediately following the storm, when the electric field and particle precipitation drivers of the 'storm' simulations have returned to values in accordance with the 'quiet' models. The differences between the steady state and previously active simulations will be purely due to thermospheric inertia [4]. It is anticipated that the response of the Gas Giant will be very different from the Earth due to differences in the size, rotational speed, flow timescales [5] [6] and composition of the respective planetary environments. References [1] Schunk, R. W., 1987, Physica Scripta, T18, pp. 256- 275, doi: 10.1088/0031-8949/1987/T18/026. [2] Smith, C. G. A. and Aylward, A. D. and Millward, G. H. and Miller, S. and Moore, L. E., 2007, Nature, 445 (7126), pp. 399-401. [3] Millward, G. H. and Moffett, R. J. and Quegan, S. and Fuller-Rowell, T. J., 1996, in The STEP Handbook of Ionospheric Models, R.W. Schunk ed., Utah State University. [4
Energy Technology Data Exchange (ETDEWEB)
Peralta, J.; López-Valverde, M. A. [Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Imamura, T. [Institute of Space and Astronautical Science-Japan Aerospace Exploration Agency 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Read, P. L. [Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford (United Kingdom); Luz, D. [Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL), Observatório Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa (Portugal); Piccialli, A., E-mail: peralta@iaa.es [LATMOS, UVSQ, 11 bd dAlembert, 78280 Guyancourt (France)
2014-07-01
This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the background wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.
Electron-inertia effects on driven magnetic field reconnection
International Nuclear Information System (INIS)
Al-Salti, N.; Shivamoggi, B.K.
2003-01-01
Electron-inertia effects on the magnetic field reconnection induced by perturbing the boundaries of a slab of plasma with a magnetic neutral surface inside are considered. Energetics of the tearing mode dynamics with electron inertia which controls the linearized collisionless magnetohydrodynamics (MHD) are considered with a view to clarify the role of the plasma pressure in this process. Cases with the boundaries perturbed at rates slow or fast compared with the hydromagnetic evolution rate are considered separately. When the boundaries are perturbed at a rate slow compared with the hydromagnetic evolution rate and fast compared with the resistive diffusion rate, the plasma response for early times is according to ideal MHD. A current sheet formation takes place at the magnetic neutral surface for large times in the ideal MHD stage and plasma becomes motionless. The subsequent evolution of the current sheet is found to be divided into two distinct stages: (i) the electron-inertia stage for small times (when the current sheet is very narrow); (ii) the resistive-diffusion stage for large times. The current sheet mainly undergoes exponential damping in the electron-inertia regime while the bulk of the diffusion happens in the resistivity regime. For large times of the resistive-diffusion stage when plasma flow is present, the current sheet completely disappears and the magnetic field reconnection takes place. When the boundaries are perturbed at a rate fast compared even with the hydromagnetic evolution rate, there is no time for the development of a current sheet and the magnetic field reconnection has been found not to take place
Testing for clinical inertia in medication treatment of bipolar disorder.
Hodgkin, Dominic; Merrick, Elizabeth L; O'Brien, Peggy L; McGuire, Thomas G; Lee, Sue; Deckersbach, Thilo; Nierenberg, Andrew A
2016-11-15
Clinical inertia has been defined as lack of change in medication treatment at visits where a medication adjustment appears to be indicated. This paper seeks to identify the extent of clinical inertia in medication treatment of bipolar disorder. A second goal is to identify patient characteristics that predict this treatment pattern. Data describe 23,406 visits made by 1815 patients treated for bipolar disorder during the STEP-BD practical clinical trial. Visits were classified in terms of whether a medication adjustment appears to be indicated, and also whether or not one occurred. Multivariable regression analyses were conducted to find which patient characteristics were predictive of whether adjustment occurred. 36% of visits showed at least 1 indication for adjustment. The most common indications were non-response to medication, side effects, and start of a new illness episode. Among visits with an indication for adjustment, no adjustment occurred 19% of the time, which may be suggestive of clinical inertia. In multivariable models, presence of any indication for medication adjustment was a predictor of receiving one (OR=1.125, 95% CI =1.015, 1.246), although not as strong as clinical status measures. The associations observed are not necessarily causal, given the study design. The data also lack information about physician-patient communication. Many patients remained on the same medication regimen despite indications of side effects or non-response to treatment. Although lack of adjustment does not necessarily reflect clinical inertia in all cases, the reasons for this treatment pattern merit further examination. Copyright © 2016 Elsevier B.V. All rights reserved.
On the Inertia Term of Projectile's Penetration Resistance
Directory of Open Access Journals (Sweden)
Yu Shan
2013-01-01
Full Text Available The effect of the target inertia term of rigid kinetic energy projectiles (KEP’s penetration resistance is investigated using nonlinear dynamic code LS-DYNA and four constitutive models. It is found that the damage number of target can be used to measure the influence of the inertia term. The smaller the damage number is, the less influence the inertia term has. The less dependent the resistance has on projectile velocity, the more accurate it is to treat the resistance as a constant. For the ogive-nose projectile with CRH of 3, when the target is aluminum, steel, or other metals, the threshold velocity for the constant resistance is at least 1258 m/s; when the target is concrete, rock, or other brittle materials, if the velocity of the projectile is greater than 400 m/s or so, the damage number would be very large, and the penetration resistance would clearly depend on the projectile’s velocity. The higher the elastic wave velocity is, the more penetration process is affected by the impact face.
Explicit expression for effective moment of inertia of RC beams
Directory of Open Access Journals (Sweden)
K.A. Patel
Full Text Available AbstractDeflection is an important design parameter for structures subjected to service load. This paper provides an explicit expression for effective moment of inertia considering cracking, for uniformly distributed loaded reinforced concrete (RC beams. The proposed explicit expression can be used for rapid prediction of short-term deflection at service load. The explicit expression has been obtained from the trained neural network considering concrete cracking, tension stiffening and entire practical range of reinforcement. Three significant structural parameters have been identified that govern the change in effective moment of inertia and therefore deflection. These three parameters are chosen as inputs to train neural network. The training data sets for neural network are generated using finite element software ABAQUS. The explicit expression has been validated for a number of simply supported and continuous beams and it is shown that the predicted deflections have reasonable accuracy for practical purpose. A sensitivity analysis has been performed, which indicates substantial dependence of effective moment of inertia on the selected input parameters.
Testing and Validation of the Dynamic Inertia Measurement Method
Chin, Alexander W.; Herrera, Claudia Y.; Spivey, Natalie D.; Fladung, William A.; Cloutier, David
2015-01-01
The Dynamic Inertia Measurement (DIM) method uses a ground vibration test setup to determine the mass properties of an object using information from frequency response functions. Most conventional mass properties testing involves using spin tables or pendulum-based swing tests, which for large aerospace vehicles becomes increasingly difficult and time-consuming, and therefore expensive, to perform. The DIM method has been validated on small test articles but has not been successfully proven on large aerospace vehicles. In response, the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) conducted mass properties testing on an "iron bird" test article that is comparable in mass and scale to a fighter-type aircraft. The simple two-I-beam design of the "iron bird" was selected to ensure accurate analytical mass properties. Traditional swing testing was also performed to compare the level of effort, amount of resources, and quality of data with the DIM method. The DIM test showed favorable results for the center of gravity and moments of inertia; however, the products of inertia showed disagreement with analytical predictions.
Short period tidal variations of earth rotation
Yoder, C. F.; Williams, J. G.; Parke, M. E.; Dickey, J. O.
1981-01-01
It is explained that the tidal deformation of the earth's polar moment of inertia by the moon and sun cause periodic variations in rotation. The short period oscillations give rise to a meter-sized, diurnal signature in the lunar laser ranging data obtained at McDonald Observatory. A solution is given for the scale parameter k/C at fortnightly and monthly tidal frequencies. The results are compared with those obtained by other investigators and with a theoretical estimate which includes the effect of oceans and a decoupled fluid core.
Identical high- K three-quasiparticle rotational bands
Energy Technology Data Exchange (ETDEWEB)
Kaur, Harjeet; Singh, Pardeep [Guru Nanak Dev University, Department of Physics, Amritsar (India)
2016-12-15
A comprehensive study of high-K three-quasiparticle rotational bands in odd-A nuclei indicates the similarity in γ-ray energies and dynamic moment of inertia I{sup (2)}. The extent of the identicality between the rotational bands is evaluated by using the energy factor method. For nuclei pairs exhibiting identical bands, the average relative change in the dynamic moment of inertia I{sup (2)} is also determined. The identical behaviour shown by these bands is attributed to the interplay of nuclear structure parameters: deformation and the pairing correlations. Also, experimental trend of the I(ℎ) vs. ℎω (MeV) plot for these nuclei pairs is shown to be in agreement with Tilted-Axis Cranking (TAC) model calculations. (orig.)
International Nuclear Information System (INIS)
Tangedahl, M.J.; Stone, C.R.
1992-01-01
This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs
Dickey, Jean O.
1995-01-01
The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.
Energy Technology Data Exchange (ETDEWEB)
Viswanathan, K.K.; Kim, Kyung Su; Lee, Jang Hyun [Inha Univ., Incheon (Korea). Dept. of Naval Architecture and Ocean Engineering
2009-12-15
Asymmetric free vibrations of annular cross-ply circular plates are studied using spline function approximation. The governing equations are formulated including the effects of shear deformation and rotary inertia. Assumptions are made to study the cross-ply layered plates. A system of coupled differential equations are obtained in terms of displacement functions and rotational functions. These functions are approximated using Bickley- type spline functions of suitable order. Then the system is converted into the eigenvalue problem by applying the point collocation technique and suitable boundary conditions. Parametric studies have been made to investigate the effect of transverse shear deformation and rotary inertia on frequency parameter with respect to the circumferential node number, radii ratio and thickness to radius ratio for both symmetric and anti-symmetric cross-ply plates using various types of material properties. (orig.)
The role of inertia in modeling decisions from experience with instance-based learning.
Dutt, Varun; Gonzalez, Cleotilde
2012-01-01
One form of inertia is the tendency to repeat the last decision irrespective of the obtained outcomes while making decisions from experience (DFE). A number of computational models based upon the Instance-Based Learning Theory, a theory of DFE, have included different inertia implementations and have shown to simultaneously account for both risk-taking and alternations between alternatives. The role that inertia plays in these models, however, is unclear as the same model without inertia is also able to account for observed risk-taking quite well. This paper demonstrates the predictive benefits of incorporating one particular implementation of inertia in an existing IBL model. We use two large datasets, estimation and competition, from the Technion Prediction Tournament involving a repeated binary-choice task to show that incorporating an inertia mechanism in an IBL model enables it to account for the observed average risk-taking and alternations. Including inertia, however, does not help the model to account for the trends in risk-taking and alternations over trials compared to the IBL model without the inertia mechanism. We generalize the two IBL models, with and without inertia, to the competition set by using the parameters determined in the estimation set. The generalization process demonstrates both the advantages and disadvantages of including inertia in an IBL model.
International Nuclear Information System (INIS)
Speetjens, M. F. M.; Demissie, E. A.; Metcalfe, G.; Clercx, H. J. H.
2014-01-01
Laminar mixing by the inline-mixing principle is a key to many industrial fluids-engineering systems of size extending from micrometers to meters. However, insight into fundamental transport phenomena particularly under the realistic conditions of three-dimensionality (3D) and fluid inertia remains limited. This study addresses these issues for inline mixers with cylindrical geometries and adopts the Rotated Arc Mixer (RAM) as a representative system. Transport is investigated from a Lagrangian perspective by identifying and examining coherent structures that form in the 3D streamline portrait. 3D effects and fluid inertia introduce three key features that are not found in simplified configurations: transition zones between consecutive mixing cells of the inline-mixing flow; local upstream flow (in certain parameter regimes); transition/inertia-induced breaking of symmetries in the Lagrangian equations of motion (causing topological changes in coherent structures). Topological considerations strongly suggest that there nonetheless always exists a net throughflow region between inlet and outlet of the inline-mixing flow that is strictly separated from possible internal regions. The Lagrangian dynamics in this region admits representation by a 2D time-periodic Hamiltonian system. This establishes one fundamental kinematic structure for the present class of inline-mixing flows and implies universal behavior in that all states follow from the Hamiltonian breakdown of one common integrable state. A so-called period-doubling bifurcation is the only way to eliminate transport barriers originating from this state and thus is a necessary (yet not sufficient) condition for global chaos. Important in a practical context is that a common simplification in literature, i.e., cell-wise fully-developed Stokes flow (“2.5D approach”), retains these fundamental kinematic properties and deviates from the generic 3D inertial case only in a quantitative sense. This substantiates its
Accounting for inertia in modal choices: some new evidence using a RP/SP dataset
DEFF Research Database (Denmark)
Cherchi, Elisabetta; Manca, Francesco
2011-01-01
effect is stable along the SP experiments. Inertia has been studied more extensively with panel datasets, but few investigations have used RP/SP datasets. In this paper we extend previous work in several ways. We test and compare several ways of measuring inertia, including measures that have been...... proposed for both short and long RP panel datasets. We also explore new measures of inertia to test for the effect of “learning” (in the sense of acquiring experience or getting more familiar with) along the SP experiment and we disentangle this effect from the pure inertia effect. A mixed logit model...... is used that allows us to account for both systematic and random taste variations in the inertia effect and for correlations among RP and SP observations. Finally we explore the relation between the utility specification (especially in the SP dataset) and the role of inertia in explaining current choices....
International Nuclear Information System (INIS)
Endal, A.S.; Sofia, S.
1979-01-01
Predicted surface rotation velocities are presented for Population I stars at 10, 7, 5, 3, and 1.5M/sub sun/. The surface velocities have been computed for three different cases of angular momentum redistribution: no radial redistribution (rotation on decoupled shells), complete redistribution (rigid-body rotation), and partial redistribution as predicted by detailed consideration of circulation currents in rotation stars. The velocities for these cases are compared to each other and to observed stellar rotation rates (upsilon sin i).Near the main sequence, rotational effects can substantially reduce the moment of inertia of a star, so nonrotating models consistently underestimate the expected velocities for evolving stars. The magnitude of these effects is sufficient to explain the large numbers of Be stars and, perhaps, to explain the bimodal distribution of velocities observed for the O stars.On the red giant branch, angular momentum redistribution reduces the surface velocity by a factor of 2 or more, relative to the velocity expected for no radial redistribution. This removes the discrepancy between predicted and observed rotation rates for the K giants and makes it unlikely that these stars lose significant amounts of angular momentum by stellar winds. Our calculations indicate that improved observations (by the Fourier-transform technique) of the red giants in the Hyades cluster can be used to determine how angular momentum is redistributed by convection
Test of neural inertia in humans during general anaesthesia.
Kuizenga, M H; Colin, P J; Reyntjens, K M E M; Touw, D J; Nalbat, H; Knotnerus, F H; Vereecke, H E M; Struys, M M R F
2018-03-01
Neural inertia is defined as the tendency of the central nervous system to resist transitions between arousal states. This phenomenon has been observed in mice and Drosophila anaesthetized with volatile anaesthetics: the effect-site concentration required to induce anaesthesia in 50% of the population (C 50 ) was significantly higher than the effect-site concentration for 50% of the population to recover from anaesthesia. We evaluated this phenomenon in humans using propofol or sevoflurane (both with or without remifentanil) as anaesthetic agents. Thirty-six healthy volunteers received four sessions of anaesthesia with different drug combinations in a step-up/step-down design. Propofol or sevoflurane was administered with or without remifentanil. Serum concentrations of propofol and remifentanil were measured from arterial blood samples. Loss and return of responsiveness (LOR-ROR), response to pain (PAIN), Patient State Index (PSI) and spectral edge frequency (SEF) were modeled with NONMEM®. For propofol, the C 50 for induction and recovery of anaesthesia was not significantly different across the different endpoints. For sevoflurane, for all endpoints except SEF, significant differences were found. For some endpoints (LOR and PAIN) the difference was significant only when sevoflurane was combined with remifentanil. Our results nuance earlier findings with volatile anaesthetics in mice and Drosophila. Methodological aspects of the study, such as the measured endpoint, influence the detection of neural inertia. A more thorough definition of neural inertia, with a robust methodological framework for clinical studies is required to advance our knowledge of this phenomenon. NCT 02043938. Copyright © 2017 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.
Valeriy P. Ivanskiy
2015-01-01
In the present article author reveals the concept of State, contained in the doctrine of John Locke, but in line with the post-non-classical science, one of the research lines of the event information and quantum legal concept. Despite the diverse palette of the "state" definitions the most appropriate definition is the definition, where it is identified with the union of people - people living in the particular area. Due to the fact that the system of "people" is made up of interconnected co...
High-inertia drive motors and their starting characteristics
International Nuclear Information System (INIS)
Anon.
1980-01-01
The motor for a large reactor coolant pump failed while starting. The motor-application and the motor-failure are discussed in detail. A review of applications of motors for high-inertia drives shows that a motor designed and built to today's industry-standards might be overstressed while experiencing abnormal starting conditions, even though its protection is in accord with accepted practice. The inter-relationship between motor characteristics and characteristics of various types of protection are discussed, briefly. The review concludes that motor specifications and motor standards should be augmented. 1 ref
A dynamic marketing model with best reply and inertia
International Nuclear Information System (INIS)
Bischi, Gian Italo; Cerboni Baiardi, Lorenzo
2015-01-01
In this paper we consider a nonlinear discrete-time dynamic model proposed by Farris et al. (2005) as a market share attraction model with two firms that decide marketing efforts over time according to best reply strategies with naïve expectations. The model also considers an adaptive adjustment toward best reply, a form of inertia or anchoring attitude, and we investigate the effects of heterogeneities among firms. A rich scenario of local and global bifurcations is obtained even with just two competing firms, and a comparison is proposed with apparently similar duopoly models based on repeated best reply dynamics with naïve expectations and adaptive adjustment.
A dynamic inertia weight particle swarm optimization algorithm
International Nuclear Information System (INIS)
Jiao Bin; Lian Zhigang; Gu Xingsheng
2008-01-01
Particle swarm optimization (PSO) algorithm has been developing rapidly and has been applied widely since it was introduced, as it is easily understood and realized. This paper presents an improved particle swarm optimization algorithm (IPSO) to improve the performance of standard PSO, which uses the dynamic inertia weight that decreases according to iterative generation increasing. It is tested with a set of 6 benchmark functions with 30, 50 and 150 different dimensions and compared with standard PSO. Experimental results indicate that the IPSO improves the search performance on the benchmark functions significantly
An object oriented implementation of the Yeadon human inertia model.
Dembia, Christopher; Moore, Jason K; Hubbard, Mont
2014-01-01
We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.
An object oriented implementation of the Yeadon human inertia model
Dembia, Christopher; Moore, Jason K.; Hubbard, Mont
2015-01-01
We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input. PMID:25717365
Bewley, Lee W
2010-01-01
Structural inertia is the overall capacity of an organization to adapt within a market environment. This paper reviews the impact of healthcare investments in information management/information technology (IM/IT) on the strategic management concept of structural inertia. Research indicates that healthcare executives should consider the relative state of structural inertia for their firms and match them with potential IM/IT solutions. Additionally, organizations should favorably consider IM/IT solutions that are comparatively less complex.
Spins of superdeformed rotational bands in Tl isotopes
Energy Technology Data Exchange (ETDEWEB)
Dadwal, Anshul; Mittal, H.M. [Dr. B.R. Ambedkar National Institute of Technology, Jalandhar (India)
2017-01-15
The two-parameter model defined for even-even nuclei viz. soft-rotor formula is used to assign the band-head spin of the 17 rotational bands in Tl isotopes. The least-squares fitting method is employed to obtain the spins of these bands in the A ∝ 190 mass region. The calculated transition energies are found to depend sensitively on the proposed spin. Whenever a correct spin assignment is made, the calculated and experimental transition energies coincide very well. The dynamic moment of inertia is also calculated and its variation with rotational frequency is explored. (orig.)
Mars geodesy, rotation and gravity
International Nuclear Information System (INIS)
Rosenblatt, Pascal; Dehant, Veronique
2010-01-01
This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface. The planet Mars is the center of the discussion. The information one can get from orbitography and radioscience in general concerns the global static gravitational field, the time variation of the gravitational field induced by mass exchange between the atmosphere and the ice caps, the time variation of the gravitational field induced by the tides, the secular changes in the spacecraft's orbit induced by the little moons of Mars named Phobos and Deimos, the gravity induced by particular targets, the Martian ephemerides, and Mars' rotation and orientation. The paper addresses as well the determination of the geophysical parameters of Mars and, in particular, the state of Mars' core and its size, which is important for understanding the planet's evolution. Indeed, the state and dimension of the core determined from the moment of inertia and nutation depend in turn on the percentage of light elements in the core as well as on the core temperature, which is related to heat transport in the mantle. For example, the radius of the core has implications for possible mantle convection scenarios and, in particular, for the presence of a perovskite phase transition at the bottom of the mantle. This is also important for our understanding of the large volcanic province Tharsis on the surface of Mars. (invited reviews)
Directory of Open Access Journals (Sweden)
L. Thomas
Full Text Available Radar measurements at Aberystwyth (52.4° N, 4.1° W of winds at tropospheric and lower stratospheric heights are shown for 12-13 March 1994 in a region of highly curved flow, downstream of the jet maximum. The perturbations of horizontal velocity have comparable amplitudes in the troposphere and lower stratosphere with downward and upward phase propagation, respectively, in these two height regions. The sense of rotation with increasing height in hodographs of horizontal perturbation velocity derived for hourly intervals show downwards propagation of energy in the troposphere and upward propagation in the lower stratosphere with vertical wavelengths of 1.7 to 2.3 km. The results indicate inertia-gravity waves propagating in a direction similar to that of the jet stream but at smaller velocities. Some of the features observed contrast with those of previous observations of inertia-gravity waves propagating transverse to the jet stream. The interpretation of the hodographs to derive wave parameters has taken account of the vertical shear of the background wind transverse to the direction of wave propagation.
Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; middle atmosphere dynamics; waves and tides
Physician and patient characteristics associated with clinical inertia in blood pressure control.
Harle, Christopher A; Harman, Jeffrey S; Yang, Shuo
2013-11-01
Clinical inertia, the failure to adjust antihypertensive medications during patient visits with uncontrolled hypertension, is thought to be a common problem. This retrospective study used 5 years of electronic medical records from a multispecialty group practice to examine the association between physician and patient characteristics and clinical inertia. Hierarchical linear models (HLMs) were used to examine (1) differences in physician and patient characteristics among patients with and without clinical inertia, and (2) the association between clinical inertia and future uncontrolled hypertension. Overall, 66% of patients experienced clinical inertia. Clinical inertia was associated with one physician characteristic, patient volume (odds ratio [OR]=0.998). However, clinical inertia was associated with multiple patient characteristics, including patient age (OR=1.021), commercial insurance (OR=0.804), and obesity (OR=1.805). Finally, patients with clinical inertia had 2.9 times the odds of uncontrolled hypertension at their final visit in the study period. These findings may aid the design of interventions to reduce clinical inertia. ©2013 Wiley Periodicals, Inc.
Krieger, J R; Tellier, L E; Ollukaren, M T; Temenoff, J S; Botchwey, E A
2017-06-01
Rotator cuff tears cause muscle degeneration that is characterized by myofiber atrophy, fatty infiltration, and fibrosis and is minimally responsive to current treatment options. The underlying pathogenesis of rotator cuff muscle degeneration remains to be elucidated, and increasing evidence implicates immune cell infiltration as a significant factor. Because immune cells are comprised of highly heterogeneous subpopulations that exert divergent effects on injured tissue, understanding trafficking and accumulation of immune subpopulations may hold the key to more effective therapies. The present study quantifies subpopulations of immune cells infiltrating the murine supraspinatus muscle after severe rotator cuff injury that includes tenotomy and denervation. Rotator cuff injury stimulates dramatic infiltration of mononuclear phagocytes, enriches mononuclear phagocytes in non-classical subpopulations, and enriches T lymphocytes in T H and T reg subpopulations. The combination of tenotomy plus denervation significantly increases mononuclear phagocyte infiltration, enriches macrophages in the non-classical subpopulation, and decreases T lymphocyte enrichment in T H cells compared to tenotomy alone. Depletion of circulating monocytes via liposomal clodronate accelerates supraspinatus atrophy after tenotomy and denervation. The study may aid rational design of immunologically smart therapies that harness immune cells to enhance outcomes after rotator cuff tears.
Duran-Olivencia, Miguel A.; Goddard, Ben; Kalliadasis, Serafim
2015-11-01
Over the last few decades the classical density-functional theory (DFT) and its dynamic extensions (DDFTs) have become a remarkably powerful tool in the study of colloidal fluids. Recently there has been extensive research to generalise all previous DDFTs finally yielding a general DDFT equation (for spherical particles) which takes into account both inertia and hydrodynamic interactions (HI) which strongly influence non-equilibrium properties. The present work will be devoted to a further generalisation of such a framework to systems of anisotropic particles. To this end, the kinetic equation for the Brownian particle distribution function is derived starting from the Liouville equation and making use of Zwanzig's projection-operator techniques. By averaging over all but one particle, a DDFT equation is finally obtained with some similarities to that for spherical colloids. However, there is now an inevitable translational-rotational coupling which affects the diffusivity of asymmetric particles. Lastly, in the overdamped (high friction) limit the theory is notably simplified leading to a DDFT equation which agrees with previous derivations. We acknowledge financial support from European Research Council via Advanced Grant No. 247031.
Bandyopadhyay, Debades; Bhat, Sajad A.; Char, Prasanta; Chatterjee, Debarati
2018-02-01
We investigate the impact of strange-matter equations of state involving Λ hyperons, Bose-Einstein condensate of K- mesons and first-order hadron-quark phase transition on moment of inertia, quadrupole moment and tidal deformability parameter of slowly rotating neutron stars. All these equations of state are compatible with the 2 M_{solar} constraint. The main findings of this investigation are the universality of the I- Q and I -Love number relations, which are preserved by the EoSs including Λ hyperons and antikaon condensates, but broken in the presence of a first-order hadron-quark phase transition. Furthermore, it is also noted that the quadrupole moment approaches the Kerr value of a black hole for maximum-mass neutron stars.
Independent effects of adding weight and inertia on balance during quiet standing.
Costello, Kerry Elizabeth; Matrangola, Sara Louise; Madigan, Michael Lawrence
2012-04-16
Human balance during quiet standing is influenced by adding mass to the body with a backpack, with symmetrically-applied loads to the trunk, or with obesity. Adding mass to the body increases both the weight and inertia of the body, which theoretically could provide counteracting effects on body dynamics and balance. Understanding the independent effects of adding weight and inertia on balance may provide additional insight into human balance that could lead to novel advancements in balance training and rehabilitation. Therefore, the purpose of this study was to investigate the independent effects of adding weight and inertia on balance during quiet standing. Sixteen normal-weight young adult participants stood as still as possible on a custom-built backboard apparatus under four experimental conditions: baseline, added inertia only, added weight only, and added inertia and weight. Adding inertia by itself had no measurable effect on center of pressure movement or backboard movement. Adding weight by itself increased center of pressure movement (indicated greater effort by the postural control system to stand as still as possible) and backboard movement (indicating a poorer ability of the body to stand as still as possible). Adding inertia and weight at the same time increased center of pressure movement but did not increase backboard movement compared to the baseline condition. Adding inertia and adding weight had different effects on balance. Adding inertia by itself had no effect on balance. Adding weight by itself had a negative effect on balance. When adding inertia and weight at the same time, the added inertia appeared to lessen (but did not eliminate) the negative effect of adding weight on balance. These results improve our fundamental understanding of how added mass influences human balance.
Sulfates on Mars: TES Observations and Thermal Inertia Data
Cooper, C. D.; Mustard, J. F.
2001-05-01
The high resolution thermal emission spectra returned by the TES spectrometer on the MGS spacecraft have allowed the mapping of a variety of minerals and rock types by different sets of researchers. Recently, we have used a linear deconvolution approach to compare sulfate-palagonite soil mixtures created in the laboratory with Martian surface spectra. This approach showed that a number of areas on Mars have spectral properties that match those of sulfate-cemented soils (but neither loose powder mixtures of sulfates and soils nor sand-sized grains of disaggregated crusted soils). These features do not appear to be caused by atmospheric or instrumental effects and are thus believed to be related to surface composition and texture. The distribution and physical state of sulfate are important pieces of information for interpreting surface processes on Mars. A number of different mechanisms could have deposited sulfate in surface layers. Some of these include evaporation of standing bodies of water, aerosol deposition of volcanic gases, hydrothermal alteration from groundwater, and in situ interaction between the atmosphere and soil. The areas on Mars with cemented sulfate signatures are spread across a wide range of elevations and are generally large in spatial scale. Some of the areas are associated with volcanic regions, but many are in dark red plains that have previously been interpreted as duricrust deposits. Our current work compares the distribution of sulfate-cemented soils as mapped by the spectral deconvolution approach with thermal inertia maps produced from both Viking and MGS-TES. Duricrust regions, interpreted from intermediate thermal inertia values, are large regions thought to be sulfate-cemented soils similar to coherent, sulfate-rich materials seen at the Viking lander sites. Our observations of apparent regions of cemented sulfate are also large in spatial extent. This scale information is important for evaluating formation mechanisms for the
Comparative analysis for low-mass and low-inertia dynamic balancing of mechanisms
van der Wijk, V.; Demeulenaere, B.; Gosselin, C.M.; Herder, Justus Laurens
2012-01-01
Dynamic balance is an important feature of high speed mechanisms and robotics that need to minimize vibrations of the base. The main disadvantage of dynamic balancing, however, is that it is accompanied with a considerable increase in mass and inertia. Aiming at low-mass and low-inertia dynamic
Collective gyromagnetic ratio and moment of inertia from density-dependent Hartree-Fock calculations
International Nuclear Information System (INIS)
Sprung, D.W.L.; Lie, S.G.; Vallieres, M.; Quentin, P.
1979-01-01
The collective gyromagnetic ratio and moment of inertia of deformed even-even axially symmetric nuclei are calculated in the cranking approximation using wave functions obtained with the Skyrme force S-III. Good agreement is found for gsub(R), while the moment of inertia is about 20% too small. The cranking formula leads to better agreement than the projection method. (Auth.)
Inertia in travel choice : The role of risk aversion and learning
Chorus, C.; Dellaert, B.
2009-01-01
This paper contributes to literature by showing how travellers that make normatively rational choices exhibit inertia during a series of risky choices. Our analyses complement other studies that conceive inertia as the result of boundedly rational or even non-deliberate, habitual decision-making. We
40 CFR 86.1772-99 - Road load power, test weight, and inertia weight class determination.
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Road load power, test weight, and inertia weight class determination. 86.1772-99 Section 86.1772-99 Protection of Environment ENVIRONMENTAL... for Light-Duty Vehicles and Light-Duty Trucks § 86.1772-99 Road load power, test weight, and inertia...
Inertia and advance in the organic sector: food education in Denmark
DEFF Research Database (Denmark)
Dahl, Astrid; Kristensen, Niels Heine
2005-01-01
Dahl A, & Kristensen NH (2005): Inertia and advance in the organic sector: food education in Denmark. Chapter in Sociological Perspectives of Organic Agriculture. (Edt.: G. Holt and M. Reed). CABI, UK......Dahl A, & Kristensen NH (2005): Inertia and advance in the organic sector: food education in Denmark. Chapter in Sociological Perspectives of Organic Agriculture. (Edt.: G. Holt and M. Reed). CABI, UK...
Thermal inertia of eclipsing binary asteroids : the role of component shape
Mueller, Michael; van de Weijgaert, Marlies
2015-01-01
Thermal inertia controls the temperature distribution on asteroid surfaces. This is of crucial importance to the Yarkovsky effect and for the planning of spacecraft operations on or near the surface. Additionally, thermal inertia is a sensitive indicator for regolith structure.A uniquely direct way
Calculation of nuclear moment of inertia with proper treatment of pairing interaction
International Nuclear Information System (INIS)
Tazaki, S.; Ando, Y.; Hasegawa, M.
1997-01-01
An attempt to calculate nuclear moments of inertia treating the pairing interaction exactly is reported. As usual, hamiltonian is composed of the Nilsson's singleparticle energies and the pairing interaction, but the eigenstates and the eigenvalues are calculated exactly in a realistic, sufficiently large model space. The method of calculating the moment of inertia is presented. (author)
Lin, Jay; Zhou, Steve; Wei, Wenhui; Pan, Chunshen; Lingohr-Smith, Melissa; Levin, Philip
2016-02-01
Clinical inertia is defined as failure to initiate or intensify therapy despite an inadequate treatment response. We assessed the prevalence and identified the predictors of clinical inertia among patients with type 2 diabetes (T2DM) based on personalized goals. Three hemoglobin A1c (A1C) targets (American Diabetes Association A1C inertia was defined as no intensification of treatment during the response period. Demographic and clinical characteristics were analyzed to identify predictors of treatment intensification. Irrespective of A1C target, the majority of patients with T2DM (70.4 to 72.8%) experienced clinical inertia in the 6 months following the index event, with 5.3 to 6.2% of patients intensifying treatment with insulin. Patients with a lower likelihood of intensification were older, used >1 oral antidiabetes drug during the baseline period, and had an above-target A1C more recently. Treatment intensification was associated with patients who had point-of-service insurance, mental illness, an endocrinologist visit in the baseline period, or higher index A1C. The prevalence of clinical inertia among patients with T2DM in a U.S. managed-care setting is high and has increased over more recent years. Factors predicting increased risk of clinical inertia may help identify "at-risk" populations and assist in developing strategies to improve their management.
Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System
Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup
2018-04-01
Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.
On the moment of inertia and surface redshift of neutron star
International Nuclear Information System (INIS)
Li Wenfei; Zhang Fengshou; Chen Liewen
2001-01-01
Using temperature, density and isospin dependent nuclear equation of state, the authors calculated the moment of inertia and surface redshift of neutron star by resolving Tolman-Oppenheimer-Volkoff equation. It is found that the moment of inertia and surface redshift strongly depend on the nuclear equation of state. The equation of state with high value of un-compressibility and symmetry energy strength coefficient provides a big moment of inertia, while effective mass of nucleon has almost no effect on moment of inertia. Meanwhile, the equation of state with high value of un-compressibility and effective mass of nucleon provides a big surface redshift, while the symmetry energy strength coefficient has almost no effect on surface redshift of neutron star. The relationship between moment of inertia and mass is also given. By comparing the calculated results with the one obtained semi-empirically from astronomy, the authors find that a softer equation of state can provide a more reasonable result
Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters
DEFF Research Database (Denmark)
Fang, Jingyang; Li, Hongchang; Tang, Yi
2018-01-01
Renewable energy sources (RESs), e.g. wind and solar photovoltaics, have been increasingly used to meet worldwide growing energy demands and reduce greenhouse gas emissions. However, RESs are normally coupled to the power grid through fast-response power converters without any inertia, leading...... to decreased power system inertia. As a result, the grid frequency may easily go beyond the acceptable range under severe frequency events, resulting in undesirable load-shedding, cascading failures, or even large-scale blackouts. To address the ever-decreasing inertia issue, this paper proposes the concept...... of distributed power system virtual inertia, which can be implemented by grid-connected power converters. Without modifications of system hardware, power system inertia can be emulated by the energy stored in the dc-link capacitors of grid-connected power converters. By regulating the dc-link voltages...
Kidney organ donation: developing family practice initiatives to reverse inertia
2010-01-01
Background Kidney transplantation is associated with greater long term survival rates and improved quality of life compared with dialysis. Continuous growth in the number of patients with kidney failure has not been matched by an increase in the availability of kidneys for transplantation. This leads to long waiting lists, higher treatment costs and negative health outcomes. Discussion Misunderstandings, public uncertainty and issues of trust in the medical system, that limit willingness to be registered as a potential donor, could be addressed by community dissemination of information and new family practice initiatives that respond to individuals' personal beliefs and concerns regarding organ donation and transplantation. Summary Tackling both personal and public inertia on organ donation is important for any community oriented kidney donation campaign. PMID:20478042
The Inertia Reaction Force and Its Vacuum Origin
Rueda, Alfonso; Haisch, Bernard
By means of a covariant approach we show that there must be a contribution to the inertial mass and to the inertial reaction force on an accelerated massive object by the zero-point electromagnetic field. This development does not require any detailed model of the accelerated object other than the knowledge that it interacts electromagnetically. It is shown that inertia can indeed be construed as an opposition of the vacuum fields to any change to the uniform state of motion of an object. Interesting insights originating from this result are discussed. It is argued why the proposed existence of a Higgs field in no way contradicts or is at odds with the above statements. The Higgs field is responsible for assigning mass to elementary particles. It is argued that still the underlying reason for the opposition to acceleration that massive objects present requires an explanation. The explanation proposed here fulfills that requirement.
Therapeutic Inertia in the New Landscape of Multiple Sclerosis Care
Directory of Open Access Journals (Sweden)
Gustavo Saposnik
2018-03-01
Full Text Available The landscape of multiple sclerosis (MS treatment is constantly changing. Significant heterogeneity exists in the efficacy and risks associated with these therapies. Therefore, clinicians have the challenge to tailor treatment based on several factors (disease activity level, risk of progression, individual patient preferences and characteristics, personal expertise, etc., to identify the optimal balance between safety and efficacy. However, most clinicians have limited education in decision-making and formal training in risk management. Together, these factors may lead to therapeutic inertia (TI; defined as the absence of treatment initiation or intensification when therapeutic goals are unmet. TI may lead to suboptimal treatments choices, worse clinical outcomes, and more disability. This article provides a succinct overview on factors influencing TI in MS care.
Effects of Roughness and Inertia on Precursors to Frictional Sliding
Robbins, Mark O.; Salerno, K. Michael
2012-02-01
Experiments show that when a PMMA block on a surface is normally loaded and driven by an external shear force, contact at the interface is modified in discrete precursor slips prior to steady state sliding.[1] Our simulations use an atomistic model of a rough two-dimensional block in contact with a flat surface to investigate the evolution of stress and displacement along the contact between surfaces. The talk will show how local and global stress conditions govern the initiation of interfacial cracks as well as the spatial extension of the cracked region. Inertia also plays an important role in determining the number and size of slips before sliding and influences the distribution of stresses at the interface. Finally, the geometry of surface asperities also influences the interfacial evolution and the total friction force. The relationship between the interfacial stress state and rupture velocity will also be discussed. [1] S.M. Rubinstein, G. Cohen and J. Fineberg, PRL 98, 226103 (2007)
The Dynamics of Online Purchase Visits: Inertia or Switching?
Institute of Scientific and Technical Information of China (English)
Zelin Zhang; Xia Wang; Peter T.L.Popkowski Leszczyc; Xiao Zuo
2016-01-01
This paper studies the dynamics of online purchase patterns,focusing on the impact of the channel used on conversion probability,as well as the transition of channel use over time.A novel data set from a major Chinese online travel agency is used for analysis,consisting of four months of data with 24,337 store visits through three types of channels:direct visit,search advertising and referral.Results of a Bayesian multinomial logit model show that the search channel significantly affects consumers' conversion probability,and show a high degree of inertia in channel use.This finding contrasts sharply with suggestions of previous research that most future purchases will converge to the direct-visit channel.
Parallel algorithms for computation of the manipulator inertia matrix
Amin-Javaheri, Masoud; Orin, David E.
1989-01-01
The development of an O(log2N) parallel algorithm for the manipulator inertia matrix is presented. It is based on the most efficient serial algorithm which uses the composite rigid body method. Recursive doubling is used to reformulate the linear recurrence equations which are required to compute the diagonal elements of the matrix. It results in O(log2N) levels of computation. Computation of the off-diagonal elements involves N linear recurrences of varying-size and a new method, which avoids redundant computation of position and orientation transforms for the manipulator, is developed. The O(log2N) algorithm is presented in both equation and graphic forms which clearly show the parallelism inherent in the algorithm.
The Problem of Inertia in a Friedmann Universe
Kazanas, Demosthenes
2012-01-01
In this talk I will discuss the origin of inertia in a curved spacetime, particularly the spatially flat, open and closed Friedmann universes. This is done using Sciama's law of inertial induction, which is based on Mach's principle, and expresses the analogy between the retarded far fields of electrodynamics and those of gravitation. After obtaining covariant expressions for electromagnetic fields due to an accelerating point charge in Friedmann models, we adopt Sciama's law to obtain the inertial force on an accelerating mass $m$ by integrating over the contributions from all the matter in the universe. The resulting inertial force has the form $F = -kma$ where the constant $k < 1 $ depends on the choice of the cosmological parameters such as $\\Omega_{M},\\ \\Omega_{\\Lambda}, $ and $\\Omega_{R}$. The values of $k$ obtained suggest that inertial contribution from dark matter can be the source for the missing part of the inertial force.
Waste canister closure welding using the inertia friction welding process
International Nuclear Information System (INIS)
Klein, R.F.; Siemens, D.H.; Kuruzar, D.L.
1986-02-01
Liquid radioactive waste presently stored in underground tanks is to undergo a vitrifying process which will immobilize it in a solid form. This solid waste will be contained in a stainless steel canister. The canister opening requires a positive seal weld, the properties and thickness of which are at least equal to those of the canister material. This paper describes the inertia friction welding process and a proposed equipment design concept that will provide a positive, reliable, inspectable, and full thickness seal weld while providing easily maintainable equipment, even though the weld is made in a highly contaminated hot cell. All studies and tests performed have shown the concept to be highly feasible. 2 refs., 6 figs
The earth's equatorial principal axes and moments of inertia
Liu, H. S.; Chao, B. F.
1991-01-01
The earth's equatorial principal moments of inertia are given as A and B, where A is less than B, and the corresponding principal axes are given as a and b. Explicit formulas are derived for determining the orientation of a and b axes and the difference B - A using C(22) and S(22), the two gravitational harmonic coefficients of degree 2 and order 2. For the earth, the a axis lies along the (14.93 deg W, 165.07 deg E) diameter, and the b axis lies perpendicular to it along the (75.07 deg E, 104.93 deg W) diameter. The difference B - A is 7.260 x 10 to the -6th MR2. These quantities for other planets are contrasted, and geophysical implications are discussed.
Family physician clinical inertia in glycemic control among patients with type 2 diabetes.
Bralić Lang, Valerija; Bergman Marković, Biserka; Kranjčević, Ksenija
2015-02-05
Many patients with diabetes do not achieve target values. One of the reasons for this is clinical inertia. The correct explanation of clinical inertia requires a conjunction of patient with physician and health care system factors. Our aim was to determine the rate of clinical inertia in treating diabetes in primary care and association of patient, physician, and health care setting factors with clinical inertia. This was a national, multicenter, observational, cross-sectional study in primary care in Croatia. Each family physician (FP) provided professional data and collected clinical data on 15-25 type 2 diabetes (T2DM) patients. Clinical inertia was defined as a consultation in which treatment change based on glycated hemoglobin (HbA1c) levels was indicated but did not occur. A total of 449 FPs (response rate 89.8%) collected data on 10275 patients. Mean clinical inertia per FP was 55.6% (SD ±26.17) of consultations. All of the FPs were clinically inert with some patients, and 9% of the FPs were clinically inert with all patients. The main factors associated with clinical inertia were: higher percentage of HbA1c, oral anti-diabetic drug initiated by diabetologist, increased postprandial glycemia and total cholesterol, physical inactivity of patient, and administration of drugs other than oral antidiabetics. Clinical inertia in treating patients with T2DM is a serious problem. Patients with worse glycemic control and those whose therapy was initiated by a diabetologist experience more clinical inertia. More research on causes of clinical inertia in treating patients with T2DM should be conducted to help achieve more effective diabetes control.
Factors associated with therapeutic inertia in hypertension: validation of a predictive model.
Redón, Josep; Coca, Antonio; Lázaro, Pablo; Aguilar, Ma Dolores; Cabañas, Mercedes; Gil, Natividad; Sánchez-Zamorano, Miguel Angel; Aranda, Pedro
2010-08-01
To study factors associated with therapeutic inertia in treating hypertension and to develop a predictive model to estimate the probability of therapeutic inertia in a given medical consultation, based on variables related to the consultation, patient, physician, clinical characteristics, and level of care. National, multicentre, observational, cross-sectional study in primary care and specialist (hospital) physicians who each completed a questionnaire on therapeutic inertia, provided professional data and collected clinical data on four patients. Therapeutic inertia was defined as a consultation in which treatment change was indicated (i.e., SBP >or= 140 or DBP >or= 90 mmHg in all patients; SBP >or= 130 or DBP >or= 80 in patients with diabetes or stroke), but did not occur. A predictive model was constructed and validated according to the factors associated with therapeutic inertia. Data were collected on 2595 patients and 13,792 visits. Therapeutic inertia occurred in 7546 (75%) of the 10,041 consultations in which treatment change was indicated. Factors associated with therapeutic inertia were primary care setting, male sex, older age, SPB and/or DBP values close to normal, treatment with more than one antihypertensive drug, treatment with an ARB II, and more than six visits/year. Physician characteristics did not weigh heavily in the association. The predictive model was valid internally and externally, with acceptable calibration, discrimination and reproducibility, and explained one-third of the variability in therapeutic inertia. Although therapeutic inertia is frequent in the management of hypertension, the factors explaining it are not completely clear. Whereas some aspects of the consultations were associated with therapeutic inertia, physician characteristics were not a decisive factor.
Mahabaleshwarkar, Rohan; Gohs, Frank; Mulder, Holly; Wilkins, Nick; DeSantis, Andrea; Anderson, William E; Ejzykowicz, Flavia; Rajpathak, Swapnil; Norton, H James
2017-08-01
Our aim was to determine the extent of clinical inertia and the associated patient and provider factors in patients with type 2 diabetes on metformin monotherapy (MM) at a large integrated health care system in the United States. The study cohort included patients with type 2 diabetes aged 18 to 85 years, on MM between January 2009 and September 2013, who experienced MM failure (had an uncontrolled glycosylated hemoglobin [HbA 1c ] reading (≥8.0% [64 mmol/mol]) after at least 90 days of MM). Clinical inertia was defined as absence of treatment intensification with an add-on therapy within 180 days after the MM failure (index date). The impact of patient and provider factors on clinical inertia was determined using generalized estimating equations. The study cohort consisted of 996 patients; 58% were men and 59% were white, with a mean age of 53 (11.8) years. Of these, 49.8% experienced clinical inertia. Lower HbA 1c at index date, absence of liver diseases, absence of renal diseases, and greater provider age were associated with clinical inertia. The clinical inertia rate in a secondary analysis considering HbA 1c inertia. Considerable clinical inertia rates were observed in our real-world patient population, suggesting the need of interventions to reduce clinical inertia in clinical practice. Information about patient and provider factors affecting clinical inertia provided by this study could help healthcare policymakers plan and implement such interventions. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.
2010-07-01
... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Road load power, test weight, inertia... Procedures § 86.129-94 Road load power, test weight, inertia weight class determination, and fuel temperature... duty trucks 1,2,3 Test weightbasis 4,5 Test equivalent test weight(pounds) Inertia weight class(pounds...
Role of rotational energy component in the dynamics of 16O+198Pt reaction
Directory of Open Access Journals (Sweden)
Sharma Manoj K.
2017-01-01
Full Text Available The role of rotational energy is investigated in reference to the dynamics of 16O+198Pt →214Rn∗ reaction using the sticking (IS and the non-sticking (INS limits of moment of inertia within the framework of dynamical cluster decay model. The decay barrier height and barrier position get significantly modified for the use of sticking or non-sticking choice, which in turn reproduce the evaporation residue and the fusion-fission cross-sections nicely by the IS approach, while the INS approach provides feasible addressal of data only for evaporation residue channel. Moreover, the fragmentation path of decaying fragments of 214Rn∗ compound nucleus gets influenced for different choices of moment of inertia. Beside this, the role of nuclear deformations i.e. static, dynamic quadurpole (β2 and higher order static deformation up to β4 are duly investigated for both choices of the moment of inertia.
Basu, S.; Cetegen, B. M.
2005-01-01
An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over a rotating disk surface is presented for both constant temperature and constant heat flux boundary conditions. The model is found to capture the correct trends of the liquid film thickness variation over the disk surface and compare reasonably well with experimental results over the range of Reynolds and Rossby numbers covering both inertia and rotation dominated regimes. Nusselt number variation over the disk surface shows two types of behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt number magnitudes increasing with higher inlet Reynolds number for both constant wall temperature and heat flux cases. At high rotation rates, the Nusselt number profiles exhibit a peak whose location advances radially outward with increasing film Reynolds number or inertia. The results also compare favorably with the full numerical simulation results from an earlier study as well as with the reported experimental results.
Directory of Open Access Journals (Sweden)
Peter eKoval
2016-01-01
Full Text Available Previous studies have linked higher emotional inertia (i.e., a stronger autoregressive slope of emotions with lower well-being. We aimed to replicate these findings, while extending upon previous research by addressing a number of unresolved issues and controlling for potential confounds. Specifically, we report results from two studies (Ns = 100 & 202 examining how emotional inertia, assessed in response to a standardized sequence of emotional stimuli in the lab, correlates with several measures of well-being. The current studies build on previous research by examining how inertia of both positive emotions (PE and negative emotions (NE are related to both positive (e.g., life satisfaction and negative (e.g., depressive symptoms indicators of well-being, while controlling for between-person differences in the mean level and variability of emotions. Our findings replicated previous research and further revealed that a NE inertia was more strongly associated with lower well-being than PE inertia; b emotional inertia correlated more consistently with negative indicators (e.g., depressive symptoms than positive indicators (e.g., life satisfaction of well-being; and c these relationships were independent of individual differences in mean level and variability of emotions. We conclude, in line with recent findings, that higher emotional inertia, particularly of NE, may indicate increased vulnerability to depression.
Koval, Peter; Sütterlin, Stefan; Kuppens, Peter
2015-01-01
Previous studies have linked higher emotional inertia (i.e., a stronger autoregressive slope of emotions) with lower well-being. We aimed to replicate these findings, while extending upon previous research by addressing a number of unresolved issues and controlling for potential confounds. Specifically, we report results from two studies (Ns = 100 and 202) examining how emotional inertia, assessed in response to a standardized sequence of emotional stimuli in the lab, correlates with several measures of well-being. The current studies build on previous research by examining how inertia of both positive emotions (PE) and negative emotions (NE) relates to positive (e.g., life satisfaction) and negative (e.g., depressive symptoms) indicators of well-being, while controlling for between-person differences in the mean level and variability of emotions. Our findings replicated previous research and further revealed that (a) NE inertia was more strongly associated with lower well-being than PE inertia; (b) emotional inertia correlated more consistently with negative indicators (e.g., depressive symptoms) than positive indicators (e.g., life satisfaction) of well-being; and (c) these relationships were independent of individual differences in mean level and variability of emotions. We conclude, in line with recent findings, that higher emotional inertia, particularly of NE, may be an indicator of increased vulnerability to depression.
Thermal inertia mapping of Mars from 60°S to 60°N
Palluconi, Frank Don; Kieffer, Hugh H.
1981-01-01
Twenty-micrometer brightness temperatures are used to derive the thermal inertia for 81% of the Martian surface between latitudes ±60°. These data were acquired by the two Viking Infrared Thermal Mappers in 1977 and 1978 following the two global dust storms of 1977. The spatial resolution used is 2° in latitude by 2° in longitude and the total range in derived inertia is . The distribution of thermal inertia is strongly bimodal with all values of thermal inertia less than being associated with three disjoint bright regions mostly in the northern hemisphere. Sufficient dust is raised in global storms to provide fine material adequate to produce these low-inertia areas but the specific deposition mechanism has not been defined. At the low resolution used, no complete exposures of clean rock were found. There is some tendency for darker material to be associated with higher thermal inertia, although the trend is far from one to one. The distribution of high- and low-inertia areas is sufficiently nonrandom to produce a variation in whole-disk brightness temperature with central meridian longitude. This variation and the change in surface kinetic temperature associated with dust storms are factors in establishing the whole-disk brightness temperature at radio and infrared wavelengths and will be important for those who use Mars as a calibration source.
Impact of clinical inertia on cardiovascular risk factors in patients with diabetes.
Whitford, David L; Al-Anjawi, Hussam A; Al-Baharna, Marwa M
2014-07-01
To determine whether clinical inertia is associated with simpler interventions occurring more often than complex changes and the association between clinical inertia and outcomes. Prevalence of clinical inertia over a 30 month period for hyperglycaemia, hypertension and dyslipidaemia was calculated in a random sample (n=334) of patients attending a diabetes clinic. Comparisons between prevalence of clinical inertia and outcomes for each condition were examined using parametric tests of association. There was less clinical inertia in hyperglycaemia (29% of consultations) compared with LDL (80% of consultations) and systolic BP (68% of consultations). Consultations where therapy was intensified had a greater reduction in risk factor levels than when no change was made. No association was found between treatment intensity scores and changes in HbA1c, LDL or blood pressure over 30 months. Physicians are no more likely to intervene in conditions where simple therapeutic changes are necessary as opposed to complex changes. Greater clinical inertia leads to poorer outcomes. There continues to be substantial clinical inertia in routine clinical practice. Physicians should adopt a holistic approach to cardiovascular risk reduction in patients with diabetes, adhere more closely to established management guidelines and emphasize personal individualized target setting. Copyright © 2013 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.
Diagnostic inertia in dyslipidaemia: results of a preventative programme in Spain.
Palazón-Bru, Antonio; Sepehri, Armina; Ramírez-Prado, Dolores; Navarro-Cremades, Felipe; Cortés, Ernesto; Rizo-Baeza, Mercedes; Gil-Guillén, Vicente Francisco
2015-01-01
Others have analysed the relationship between inadequate behaviour by healthcare professionals in the diagnosis of dyslipidaemia (diagnostic inertia) and the history of cardiovascular risk factors. However, since no study has assessed cardiovascular risk scores as associated factors, we carried out a study to quantify diagnostic inertia in dyslipidaemia and to determine if cardiovascular risk scores are associated with this inertia. In the Valencian Community (Spain), a preventive programme (cardiovascular, gynaecologic and vaccination) was started in 2003 inviting persons aged ≥40 years to undergo a health check-up at their health centre. This cross-sectional study examined persons with no known dyslipidaemia seen during the first six months of the programme (n = 16, 905) but whose total cholesterol (TC) was ≥5.17 mmol/L. Diagnostic inertia was defined as lack of follow-up to confirm/discard the dyslipidaemia diagnosis. Other variables included in the analysis were gender, history of cardiovascular risk factors/cardiovascular disease, counselling (diet/exercise), body mass index (BMI), age, blood pressure, fasting blood glucose and lipids. TC was grouped as ≥/Inertia was quantified and the adjusted odds ratios calculated from multivariate models. In the overall sample, the rate of diagnostic inertia was 52% (95% CI [51.2-52.7]); associated factors were TC ≥ 6.20 mmol/L, high or "not measured" BMI, hypertension, smoking and higher values of fasting blood glucose, systolic blood pressure and TC. In the REGICOR sample, the rate of diagnostic inertia was 51.9% (95% CI [51.1-52.7]); associated factors were REGICOR high and high or "not measured" BMI. In the SCORE sample the rate of diagnostic inertia was 51.7% (95% CI [50.9-52.5]); associated factors were SCORE high and high or "not measured" BMI. Diagnostic inertia existed in over half the patients and was associated with a greater cardiovascular risk.
The Inertia Weight Updating Strategies in Particle Swarm Optimisation Based on the Beta Distribution
Directory of Open Access Journals (Sweden)
Petr Maca
2015-01-01
Full Text Available The presented paper deals with the comparison of selected random updating strategies of inertia weight in particle swarm optimisation. Six versions of particle swarm optimization were analysed on 28 benchmark functions, prepared for the Special Session on Real-Parameter Single Objective Optimisation at CEC2013. The random components of tested inertia weight were generated from Beta distribution with different values of shape parameters. The best analysed PSO version is the multiswarm PSO, which combines two strategies of updating the inertia weight. The first is driven by the temporally varying shape parameters, while the second is based on random control of shape parameters of Beta distribution.
A class of parallel algorithms for computation of the manipulator inertia matrix
Fijany, Amir; Bejczy, Antal K.
1989-01-01
Parallel and parallel/pipeline algorithms for computation of the manipulator inertia matrix are presented. An algorithm based on composite rigid-body spatial inertia method, which provides better features for parallelization, is used for the computation of the inertia matrix. Two parallel algorithms are developed which achieve the time lower bound in computation. Also described is the mapping of these algorithms with topological variation on a two-dimensional processor array, with nearest-neighbor connection, and with cardinality variation on a linear processor array. An efficient parallel/pipeline algorithm for the linear array was also developed, but at significantly higher efficiency.
The influence of electron inertia on the modulational instability of ion-acoustic waves
International Nuclear Information System (INIS)
Parkes, E.J.
1993-01-01
The influence of electron inertia, ion streaming and weak relativistic effects on the modulational instability of ion-acoustic waves in a collisionless unmagnetized plasma is investigated. The derivative expansion method is used to derive a nonlinear Schroedinger equation, from which an instability criterion is deduced. When electron inertia is ignored, ion streaming and weak relativistic effects have little effect on the instability criterion. It is shown that when electron inertia is taken into account, the instability criterion is sensitive to weakly relativistic ion streaming, but not to the ratio of electron mass to ion mass. (Author)
A Change of Inertia-Supporting the Thrust Vector Control of the Space Launch System
Dziubanek, Adam J.
2012-01-01
The Space Launch System (SLS) is America's next launch vehicle. To utilize the vehicle more economically, heritage hardware from the Space Transportation System (STS) will be used when possible. The Solid Rocket Booster (SRB) actuators could possibly be used in the core stage of the SLS. The dynamic characteristics of the SRB actuator will need to be tested on an Inertia Load Stand (ILS) that has been converted to Space Shuttle Main Engine (SSME). The inertia on the pendulum of the ILS will need to be changed to match the SSME inertia. In this testing environment an SRB actuator can be tested with the equivalent resistence of an SSME.
Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel
International Nuclear Information System (INIS)
Perkins, M.A.
1979-01-01
The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism
Adverse Selection and Inertia in Health Insurance Markets: When Nudging Hurts.
Handel, Benjamin R
2013-12-01
This paper investigates consumer inertia in health insurance markets, where adverse selection is a potential concern. We leverage a major change to insurance provision that occurred at a large firm to identify substantial inertia, and develop and estimate a choice model that also quantifies risk preferences and ex ante health risk. We use these estimates to study the impact of policies that nudge consumers toward better decisions by reducing inertia. When aggregated, these improved individual-level choices substantially exacerbate adverse selection in our setting, leading to an overall reduction in welfare that doubles the existing welfare loss from adverse selection.
Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow
Energy Technology Data Exchange (ETDEWEB)
Loisel, V.; Abbas, M., E-mail: micheline.abbas@ensiacet.fr; Masbernat, O. [Université de Toulouse INPT-UPS: Laboratoire de Génie Chimique and CNRS, Fédération de Recherche FERMaT, Toulouse (France); Climent, E. [Université de Toulouse INPT-UPS: Institut de Mécanique des Fluides de Toulouse and CNRS, Fédération de Recherche FERMaT, Toulouse (France)
2015-12-15
Laminar pressure-driven suspension flows are studied in the situation of neutrally buoyant particles at finite Reynolds number. The numerical method is validated for homogeneous particle distribution (no lateral migration across the channel): the increase of particle slip velocities and particle stress with inertia and concentration is in agreement with former works in the literature. In the case of a two-phase channel flow with freely moving particles, migration towards the channel walls due to the Segré-Silberberg effect is observed, leading to the development of a non-uniform concentration profile in the wall-normal direction (the concentration peaks in the wall region and tends towards zero in the channel core). The particle accumulation in the region of highest shear favors the shear-induced particle interactions and agitation, the profile of which appears to be correlated to the concentration profile. A 1D model predicting particle agitation, based on the kinetic theory of granular flows in the quenched state regime when Stokes number St = O(1) and from numerical simulations when St < 1, fails to reproduce the agitation profile in the wall normal direction. Instead, the existence of secondary flows is clearly evidenced by long time simulations. These are composed of a succession of contra-rotating structures, correlated with the development of concentration waves in the transverse direction. The mechanism proposed to explain the onset of this transverse instability is based on the development of a lift force induced by spanwise gradient of the axial velocity fluctuations. The establishment of the concentration profile in the wall-normal direction therefore results from the combination of the mean flow Segré-Silberberg induced migration, which tends to stratify the suspension and secondary flows which tend to mix the particles over the channel cross section.
Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow
International Nuclear Information System (INIS)
Loisel, V.; Abbas, M.; Masbernat, O.; Climent, E.
2015-01-01
Laminar pressure-driven suspension flows are studied in the situation of neutrally buoyant particles at finite Reynolds number. The numerical method is validated for homogeneous particle distribution (no lateral migration across the channel): the increase of particle slip velocities and particle stress with inertia and concentration is in agreement with former works in the literature. In the case of a two-phase channel flow with freely moving particles, migration towards the channel walls due to the Segré-Silberberg effect is observed, leading to the development of a non-uniform concentration profile in the wall-normal direction (the concentration peaks in the wall region and tends towards zero in the channel core). The particle accumulation in the region of highest shear favors the shear-induced particle interactions and agitation, the profile of which appears to be correlated to the concentration profile. A 1D model predicting particle agitation, based on the kinetic theory of granular flows in the quenched state regime when Stokes number St = O(1) and from numerical simulations when St < 1, fails to reproduce the agitation profile in the wall normal direction. Instead, the existence of secondary flows is clearly evidenced by long time simulations. These are composed of a succession of contra-rotating structures, correlated with the development of concentration waves in the transverse direction. The mechanism proposed to explain the onset of this transverse instability is based on the development of a lift force induced by spanwise gradient of the axial velocity fluctuations. The establishment of the concentration profile in the wall-normal direction therefore results from the combination of the mean flow Segré-Silberberg induced migration, which tends to stratify the suspension and secondary flows which tend to mix the particles over the channel cross section
... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...
High spin rotations of nuclei with the harmonic oscillator potential
International Nuclear Information System (INIS)
Cerkaski, M.; Szymanski, Z.
1978-01-01
Calculations of the nuclear properties at high angular momentum have been performed recently. They are based on the liquid drop model of a nucleus and/or on the assumption of the single particle shell structure of the nucleonic motion. The calculations are usually complicated and involve long computer codes. In this article we shall discuss general trends in fast rotating nuclei in the approximation of the harmonic oscillator potential. We shall see that using the Bohr Mottelson simplified version of the rigorous solution of Valatin one can perform a rather simple analysis of the rotational bands, structure of the yrast line, moments of inertia etc. in the rotating nucleus. While the precision fit to experimental data in actual nuclei is not the purpose of this paper, one can still hope to reach some general understanding within the model of the simple relations resulting in nuclei at high spin. (author)
Nuclear collective rotation in the SU3 model, 2
International Nuclear Information System (INIS)
Kinouchi, Shin-ichi; Kishimoto, Teruo; Kammuri, Tetsuo.
1989-05-01
The collective rotation of a nuclear system with the SU 3 Hamiltonian is described by the quantal dynamical nuclear field theory. An angular frequency in the Coriolis interaction of the driving Hamiltonian is replaced by a total angular momentum operator divided by the corresponding moment of inertia. We consider here the low spin states for a triaxial intrinsic configuration. The rotational effect is taken into account by using the effective quadrupole and angular momentum operators, whose expressions are different depending on whether they refer to the laboratory frame or the body-fixed one. Effective forms of the total Hamiltonian and the particle angular momentum are compared with the exact SU 3 energy and the rotor's angular momentum, respectively. In order to dissolve the disagreement for the effective operators, the perturbing interaction should be supplemented by a residual part of the quadrupole-quadrupole interaction, which restores the rotational invariance of the intrinsic Hamiltonian. (author)
Conceptual design of light ion beam inertia nuclear fusion reactors
International Nuclear Information System (INIS)
1983-07-01
Light ion beam, inertia nuclear fusion system drew attention recently as one of the nuclear fusion systems for power reactors in the history of the research on nuclear fusion. Its beginning seemed to be the judgement that the implosion of fusion fuel pellets with light ions can be realized with the light ions which can be obtained in view of accelerator techniques. Of course, in order to generate practically usable nuclear fusion reaction by this system and maintain it, many technical difficulties must be overcome. This research was carried out for the purpose of discovering such technical problems and searching for their solution. At the time of doing the works, the following policy was adopted. Though their is the difference of fine and rough, the design of a whole reactor system is performed conformably. In order to make comparison with other reactor types and nuclear fusion systems, the design is carried out as the power plant of about one million kWe output. As the extent of the design, the works at conceptual design stage are performed to present the concept of design which satisfies the required function. Basically, the design is made from conservative standpoint. This research of design was started in 1981, and in fiscal 1982, the mutual adjustment among the design of respective parts was performed on the basis of the results in 1981, and the possible revision and new proposal were investigated. (Kako, I.)
Graphical analysis of electron inertia induced acoustic instability
International Nuclear Information System (INIS)
Karmakar, P.K.; Deka, U.; Dwivedi, C.B.
2005-01-01
Recently, the practical significance of the asymptotic limit of m e /m i →0 for electron density distribution has been judged in a two-component plasma system with drifting ions. It is reported that in the presence of drifting ions with drift speed exceeding the ion acoustic wave speed, the electron inertial delay effect facilitates the resonance coupling of the usual fluid ion acoustic mode with the ion-beam mode. In this contribution the same instability is analyzed by graphical and numerical methods. This is to note that the obtained dispersion relation differs from those of the other known normal modes of low frequency ion plasma oscillations and waves. This is due to consideration of electron inertial delay in derivation of the dispersion relation of the ion acoustic wave fluctuations. Numerical calculations of the dispersion relation and wave energy are carried out to depict the graphical appearance of poles and positive-negative energy modes. It is found that the electron inertia induced ion acoustic wave instability arises out of linear resonance coupling between the negative and positive energy modes. Characterization of the resonance nature of the instability in Mach number space for different wave numbers of the ion acoustic mode is presented
Geometrodynamic steering principle reveals the determiners of inertia
International Nuclear Information System (INIS)
Wheeler, J.A.
1988-01-01
What shall the authors need to grasp the essence of quantum gravity? One requirement, at least, is essential: to understand the steering principle of classical geometrodynamics. The authors outline here the physical content of that steering principle - heat of the so-called initial value problem - in its J.W. York, Jr. formulation. The central idea epitomizes itself in a single simple sentence: Mass-energy there determines inertia here. They spell out this steering principle both in its precise form and in its poor man's version. At both levels of analysis considerations of physics and mathematics alike require that the effective mass-energy of gravity waves must make itself felt on the spacetime geometry - and therefore on the gyro-defined local inertial frame of reference - on the same level as matter itself. Additional to the (mass)/(distance) Newtonian potential so familiar as measure of the effect of a nearby mass on the local frame is the Thirring and Lense gravitomagnetic potential, proportional to (angular momentum) x (distance vector)/(distance). The recent proposal of Ciufolini for a dual laser-ranged LAGEOS satellite to detect the thus-predicted gravitomagnetism of the earth is briefly described
Koval, Peter; Butler, Emily A; Hollenstein, Tom; Lanteigne, Dianna; Kuppens, Peter
2015-01-01
The tendency for emotions to be predictable over time, labelled emotional inertia, has been linked to low well-being and is thought to reflect impaired emotion regulation. However, almost no studies have examined how emotion regulation relates to emotional inertia. We examined the effects of cognitive reappraisal and expressive suppression on the inertia of behavioural, subjective and physiological measures of emotion. In Study 1 (N = 111), trait suppression was associated with higher inertia of negative behaviours. We replicated this finding experimentally in Study 2 (N = 186). Furthermore, in Study 2, instructed suppressors and reappraisers both showed higher inertia of positive behaviours, and reappraisers displayed higher inertia of heart rate. Neither suppression nor reappraisal were associated with the inertia of subjective feelings in either study. Thus, the effects of suppression and reappraisal on the temporal dynamics of emotions depend on the valence and emotional response component in question.
Transport from non-classical orbits
International Nuclear Information System (INIS)
Christiansen, J.P.
2001-10-01
From the guiding centre orbit invariants it is possible to construct a map of different orbit shapes in a phase space of three dimensionless variables: normalised toroidal radius y, particle pitch angle ξ, normalised orbit width ρ [1, 2, 3]. The map describes the link between two points in phase space: point 1 (y 1 , ξ 1 , ρ) and point 2 (y 2 , ξ 2 , ρ) where y 1 , y 2 denote the orbit intersection points 1 and 2 with the y(R) axis. An algorithm permits the rapid calculation of point 2 when point 1 is given. The orbit drift excursion Δy = y 2 - y 1 is calculated and converted to Δx = x 2 - x 1 where x denotes a dimensionless flux surface label for a given equilibrium. The mono-energetic distribution function f 0 (Δx) is calculated at fixed ρ 0 (energy) and with a uniform pitch distribution for three tokamaks PBX, JET, MAST. These have been selected because of their variation of inverse aspect ratio ε. A fourth and hypothetical tokamak labelled 'NEOC' (neoclassical) is introduced to compare the results obtained with those predicted by neoclassical theory. A strong dependence of f 0 upon ε is established. An appropriate thermal distribution f(Δx) is also calculated for the four tokamaks and this distribution depends on the profile shapes of normalised temperature and normalised density as well as on the topology of the equilibrium. The thermal distribution functions are shown to exceed the levels assumed in neoclassical transport theory: the mean values are two to four times larger. It is shown that one reason for this excess is due to orbits which traverse the central region of the tokamak. The implications of the results obtained for estimates of transport can then be studied. The magnitude of the drift excursion Δx from a given flux surface x yields by itself no transport. In the limit vertical bar δ vertical bar yξρ (Δx) and δ = (δy, δξ, δρ). The former vector can be calculated in the thermal case. The latter vector describes collisionless changes to y from gyrophase-scattering and changes to ξ, ρ caused by pitch angle scattering and momentum changes in Coulomb collisions. In order to calculate the dependence of this vector upon plasma variables it is necessary to impose the statistical properties associated with the aforementioned collisionless - collisional changes. However, this transport mechanism is augmented by changes δ which occur in the vicinity of those boundaries that separate different orbit topologies; such narrow regions act like 'loss cones' in phase space because the gradient of Δx becomes very large, reaching infinity on the boundaries. (author)
Shell model truncation schemes for rotational nuclei
International Nuclear Information System (INIS)
Halse, P.; Jaqua, L.; Barrett, B.R.
1990-01-01
The suitability of the pair condensate approach for rotational states is studied in a single j = 17/2 shell of identical nucleons interacting through a quadrupole-quadrupole hamiltonian. The ground band and a K = 2 excited band are both studied in detail. A direct comparison of the exact states with those constituting the SD and SDG subspaces is used to identify the important degrees of freedom for these levels. The range of pairs necessary for a good description is found to be highly state dependent; S and D pairs are the major constituents of the low-spin ground band levels, while G pairs are needed for those in the γ-band. Energy spectra are obtained for each truncated subspace. SDG pairs allow accurate reproduction of the binding energy and K = 2 excitation energy, but still give a moment of inertia which is about 30% too small even for the lowest levels
Theory of fast (nonadiabatic) nuclear rotation
International Nuclear Information System (INIS)
Nosov, V.G.; Kamchatnov, A.M.
1977-01-01
The theory of backbending is developed taking into accout the increasing role of nonadiabatic effects, which are concerned with quantum number K violation. Above the transition point, rotation quantum number j (>=) jsub(c) (second-kind transition point), all possible values of the quantity K in the interval -J ( Jsub(c) are obtained. The radius of global nucleon mass distribution in the nucleus is defined from the analysis of the experimental moments of inertia in n-phase. It is in agreement with the radius of distribution of protons alone obtained from electron scattering on nuclei. Assuming the simplest singularity of parametric derivative of the Hamiltonian of the system the general theory of non-temperature (ground state)second-kind phase transitions is developed
Electro-mechanical coupling of rotating 3D beams
Directory of Open Access Journals (Sweden)
Stoykov S.
2016-01-01
Full Text Available A rotating thin-walled beam with piezoelectric element is analysed. The beam is considered to vibrate in space, hence the longitudinal, transverse and torsional deformations are taken into account. The bending deformations of the beam are modelled by assuming Timoshenko's theory. Torsion is included by considering that the cross section rotates as a rigid body but can deform in longitudinal direction due to warping. The warping function is computed preliminary by the finite element method. The equation of motion is derived by the principle of virtual work and discretized in space by the Ritz method. Electro-mechanical coupling is included in the model by considering the internal electrical energy and the electric charge output. The piezo-electric constitutive relations are used in reduced form. The beam is assumed to rotate about a fixed axis with constant speed. The equation of motion is derived in rotating coordinate system, but the influence of the rotation of the coordinate system is taken into account through the inertia forces. Results in time domain are presented for different speeds of rotation and frequencies of vibration. The influence of the speed of rotation and of the frequency of vibration on the electrical output is presented and analysed.
Energy Technology Data Exchange (ETDEWEB)
Melin, Alexander M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Djouadi, Seddik [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Olama, Mohammed M. [ORNL
2017-04-01
In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plus a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.
Don't just do something, stand there! The value and art of deliberate clinical inertia.
Keijzers, Gerben; Cullen, Louise; Egerton-Warburton, Diana; Fatovich, Daniel M
2018-04-01
It can be difficult to avoid unnecessary investigations and treatments, which are a form of low-value care. Yet every intervention in medicine has potential harms, which may outweigh the potential benefits. Deliberate clinical inertia is the art of doing nothing as a positive response. This paper provides suggestions on how to incorporate deliberate clinical inertia into our daily clinical practice, and gives an overview of current initiatives such as 'Choosing Wisely' and the 'Right Care Alliance'. The decision to 'do nothing' can be complex due to competing factors, and barriers to implementation are highlighted. Several strategies to promote deliberate clinical inertia are outlined, with an emphasis on shared decision-making. Preventing medical harm must become one of the pillars of modern health care and the art of not intervening, that is, deliberate clinical inertia, can be a novel patient-centred quality indicator to promote harm reduction. © 2018 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Patient inertia and the status quo bias: when an inferior option is preferred.
Suri, Gaurav; Sheppes, Gal; Schwartz, Carey; Gross, James J
2013-09-01
Medical noncompliance is a major public-health problem. One potential source of this noncompliance is patient inertia. It has been hypothesized that one cause of patient inertia might be the status quo bias-which is the tendency to select the default choice among a set of options. To test this hypothesis, we created a laboratory analogue of the decision context that frequently occurs in situations involving patient inertia, and we examined whether participants would stay with a default option even when it was clearly inferior to other available options. Specifically, in Studies 1 and 2, participants were given the option to reduce their anxiety while waiting for an electric shock. When doing nothing was the status quo option, participants frequently did not select the option that would reduce their anxiety. In Study 3, we demonstrated a simple way to overcome status quo bias in a context relevant to patient inertia.
Characterizing Center of Mass and Moment of Inertia of Soldiers' Loads Packed for Combat
National Research Council Canada - National Science Library
Hasselquist, Leif; Bensel, Carolyn K; Norton, Karen; Piscitelle, Louis; Schiffman, Jeffrey M
2004-01-01
...) location and moment of inertia (MOI) may be influenced in combat load packing. In addition, the physical properties of the combat loads were compared to the properties of a laboratory fabricated backpack...
Cooperation is enhanced by inhomogeneous inertia in spatial prisoner's dilemma game
Chang, Shuhua; Zhang, Zhipeng; Wu, Yu'e.; Xie, Yunya
2018-01-01
Inertia is an important factor that cannot be ignored in the real world for some lazy individuals in the process of decision making. In this work, we introduce a simple classification mechanism of strategy changing in evolutionary prisoner's dilemma games on different topologies. In this model, a part of players update their strategies according to not only the payoff difference, but also the inertia factor, which makes nodes heterogeneous and the system inhomogeneous. Moreover, we also study the impact of the number of neighbors on the evolution of cooperation. The results show that the evolution of cooperation will be promoted to a high level when the inertia factor and the inhomogeneous system are combined. In addition, we find that the more neighbors one player has, the higher density of cooperators is sustained in the optimal position. This work could be conducive to understanding the emergence and persistence of cooperative behavior caused by the inertia factor in reality.
An inertia-free filter line-search algorithm for large-scale nonlinear programming
Energy Technology Data Exchange (ETDEWEB)
Chiang, Nai-Yuan; Zavala, Victor M.
2016-02-15
We present a filter line-search algorithm that does not require inertia information of the linear system. This feature enables the use of a wide range of linear algebra strategies and libraries, which is essential to tackle large-scale problems on modern computing architectures. The proposed approach performs curvature tests along the search step to detect negative curvature and to trigger convexification. We prove that the approach is globally convergent and we implement the approach within a parallel interior-point framework to solve large-scale and highly nonlinear problems. Our numerical tests demonstrate that the inertia-free approach is as efficient as inertia detection via symmetric indefinite factorizations. We also demonstrate that the inertia-free approach can lead to reductions in solution time because it reduces the amount of convexification needed.
[The concentration of ionized and total calcium in the blood of female dogs with uterine inertia].
Kraus, A; Schwab, A
1990-12-01
Blood values of calcium, inorganic phosphate and magnesium were estimated in 26 bitches one day before parturition, on the day of parturition and daily for 6 days post partum. In 17 of these 26 animals the diagnosis was dystocia because of uterine inertia. A comparison of calcium levels between those bitches giving birth spontaneously and those requiring assistance gave no indication that blood calcium deficiency was the cause of uterine inertia.
Effect on the variation of the moment of inertia in band K=1/2
International Nuclear Information System (INIS)
Liu Yanxin; Yu Shaoying; Inner Mongolia Univ. for Nationalities, Tongliao; Chinese Academy of Sciences, Beijing
2004-01-01
The effect on the variation of the moment of inertia in band 171 Yb[521]1/2 is investigated using the particle number conserving (PNC) method for treating the cranked shell model with monopole and Y 20 quadrupole pairing interactions. The experimental moments of inertia of 171 Yb[521]1/2 (signature α=±1/2) and the blocking effect of proton are reproduced well by the PNC calculation, in which no free parameter is involved. (authors)
Nuclear moments of inertia inferred from wobbling motion in the triaxial superdeformed nuclei
International Nuclear Information System (INIS)
Matsuzaki, Masayuki; Shimizu, Yoshifumi R.; Matsuyanagi, Kenichi
2003-01-01
The three moments of inertia associated with the wobbling mode built on the triaxial superdeformed states in Lu-Hf region are investigated by means of the cranked shell model plus random-phase approximation to the configurations with aligned quasiparticle(s). The result indicates that it is crucial to take into account the direct contribution to the moments of inertia from the aligned quasiparticle(s)so as to realize T x > T y in positive-γ shapes. (author)
Directory of Open Access Journals (Sweden)
Valeriy P. Ivanskiy
2015-03-01
Full Text Available In the present article author reveals the concept of State, contained in the doctrine of John Locke, but in line with the post-non-classical science, one of the research lines of the event information and quantum legal concept. Despite the diverse palette of the "state" definitions the most appropriate definition is the definition, where it is identified with the union of people - people living in the particular area. Due to the fact that the system of "people" is made up of interconnected components - people, it is important to know the basis on which to build a state - of man, but under the cut parameters of post-non-classical paradigm. In the John Locke's opinion, birth of a nation as state is a constantly renewed process of transition from the natural state to the politically-legal, which is happened with every "I" subject individually by the closure of the social contract. However, conclusion of the public contract does not imply any written form. Settlement of the agreement, in terms of information and quantum legal concept implies legal transition of the "I" subject (homo juridicus from the vibration status of "ethnicity" to the system "people." In addition, on the basis of the social contract homo juridicus acquire political status by means of which they establish public institutions, giving them their natural rights. Locke divided all natural rights into two groups - primary (inalienable and secondary. Primary law, being the subject of the public contract, in our opinion, belongs to the system of “ethnicity” (legal proto-pattern “I” and is characterized by two aspects. Firstly, individuals did not have the authority to encroach on them. In other words, life, liberty, and property are universal values and are determined by collective archetypes of the unconscious sphere; secondly, the person has no right to transfer them to other people, because it violates the energy-informational balance of the whole of humanity. Therefore
Particle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution
Directory of Open Access Journals (Sweden)
Prabha Umapathy
2010-01-01
Full Text Available This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO. The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW, a time-varying inertia weight (TVIW, and global-local best inertia weight (GLbestIW, are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques.
Magnetic moment of inertia within the torque-torque correlation model.
Thonig, Danny; Eriksson, Olle; Pereiro, Manuel
2017-04-19
An essential property of magnetic devices is the relaxation rate in magnetic switching which strongly depends on the energy dissipation. This is described by the Landau-Lifshitz-Gilbert equation and the well known damping parameter, which has been shown to be reproduced from quantum mechanical calculations. Recently the importance of inertia phenomena have been discussed for magnetisation dynamics. This magnetic counterpart to the well-known inertia of Newtonian mechanics, represents a research field that so far has received only limited attention. We present and elaborate here on a theoretical model for calculating the magnetic moment of inertia based on the torque-torque correlation model. Particularly, the method has been applied to bulk itinerant magnets and we show that numerical values are comparable with recent experimental measurements. The theoretical analysis shows that even though the moment of inertia and damping are produced by the spin-orbit coupling, and the expression for them have common features, they are caused by very different electronic structure mechanisms. We propose ways to utilise this in order to tune the inertia experimentally, and to find materials with significant inertia dynamics.
Effectiveness and clinical inertia in the management of hypertension in patients in Colombia.
Machado-Duque, Manuel Enrique; Ramírez-Valencia, Diana Marcela; Medina-Morales, Diego Alejandro; Machado-Alba, Jorge Enrique
2015-11-01
Determine the effectiveness of treatment and the frequency of clinical inertia in the management of hypertension in Colombian patients. A retrospective study with prospective follow-up of individuals on antihypertensive medication who were treated on medical consultation for 1 year was conducted in 20 Colombian cities. Clinical inertia was considered when no modification of therapy occurred despite not achieving control goals. A total of 355 hypertensive patients were included. From a total of 1142 consultations, therapy was effective in 81.7% of cases. In 18.3% of the cases, the control goal was not achieved, and of these, 81.8% were considered clinical inertia. A logistic regression showed that the use of antidiabetics (odds ratio: 2.31; 95% confidence interval: 1.290-4.167; P = .008) was statistically associated with an increased risk of clinical inertia. With a determination of the frequency of inertia and the high effectiveness of antihypertensive treatment, valuable information can be provided to understand the predictors of clinical inertia. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.
Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.
Luo, Zheng Yuan; Wang, Shu Qi; He, Long; Xu, Feng; Bai, Bo Feng
2013-10-28
A three-dimensional (3D) simulation study of the effect of inertia on the dynamics of vesicles and red blood cells (RBCs) has not been reported. Here, we developed a 3D model based on the front tracking method to investigate how inertia affects the dynamics of spherical/non-spherical vesicles and biconcave-shaped RBCs with the Reynolds number ranging from 0.1 to 10. The results showed that inertia induced non-spherical vesicles transitioned from tumbling to swinging, which was not observed in previous 2D models. The critical viscosity ratio of inner/outer fluids for the tumbling–swinging transition remarkably increased with an increasing Reynolds number. The deformation of vesicles was greatly enhanced by inertia, and the frequency of tumbling and tank-treading was significantly decreased by inertia. We also found that RBCs can transit from tumbling to steady tank-treading through the swinging regime when the Reynolds number increased from 0.1 to 10. These results indicate that inertia needs to be considered at moderate Reynolds number (Re ~ 1) in the study of blood flow in the human body and the flow of deformable particle suspension in inertial microfluidic devices. The developed 3D model provided new insights into the dynamics of RBCs under shear flow, thus holding great potential to better understand blood flow behaviors under normal/disease conditions.
Emotional inertia and external events: The roles of exposure, reactivity, and recovery.
Koval, Peter; Brose, Annette; Pe, Madeline L; Houben, Marlies; Erbas, Yasemin; Champagne, Dominique; Kuppens, Peter
2015-10-01
Increased moment-to-moment predictability, or inertia, of negative affect has been identified as an important dynamic marker of psychological maladjustment, and increased vulnerability to depression in particular. However, little is known about the processes underlying emotional inertia. The current article examines how the emotional context, and people's responses to it, are related to emotional inertia. We investigated how individual differences in the inertia of negative affect (NA) are related to individual differences in exposure, reactivity, and recovery from emotional events, in daily life (assessed using experience sampling) as well as in the lab (assessed using an emotional film-clip task), among 200 participants commencing their first year of tertiary education. This dual-method approach allowed us to assess affective responding on different timescales, and in response to standardized as well as idiographic emotional stimuli. Our most consistent finding, across both methods, was that heightened NA inertia is related to decreased NA recovery following negative stimuli, suggesting that higher levels of inertia may be mostly driven by impairments in affect repair following negative events. (c) 2015 APA, all rights reserved).
Martínez, G M; Rennó, N; Fischer, E; Borlina, C S; Hallet, B; de la Torre Juárez, M; Vasavada, A R; Ramos, M; Hamilton, V; Gomez-Elvira, J; Haberle, R M
2014-08-01
The analysis of the surface energy budget (SEB) yields insights into soil-atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ∼10 4 m 2 to ∼10 7 m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ∼10 2 m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I = 452 J m -2 K -1 s -1/2 (SI units used throughout this article) is found at YKB followed by PL with I = 306 and RCK with I = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars.
Decoupling Identification for Serial Two-Link Two-Inertia System
Oaki, Junji; Adachi, Shuichi
The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.
Analysis on the influence of the pump start transient performance with different inertia impeller
International Nuclear Information System (INIS)
Tang, Y; Cheng, J; Liu, E H; Tang, L D
2012-01-01
Centrifugal pump start-up time is very short, in the boot process, the instantaneous head and flow will have an impact role to the pipeline, and however the moment of inertia is one of the main factors affecting centrifugal pump boot acceleration. We analyzed the pump start-up transient characteristics with the different moment of inertia of the impeller corresponding to the different materials, there are three different moment of inertia of the impeller have been selected. At first, we use the 'Flowmaster' fluid system simulation software do the outer characteristics simulation to the selected-model, get the time - flow and the time - speed curve. Then, do the experiments research in the process when pump start-up, and compare with the simulation result. At last use the outer characteristics simulation result as the boundary, using the ANASYS CFX software do the transient simulation to the three groups with different inertia pump impeller, and draw the pressure distribution picture. In according to the analysis, we can confirm that the impact of inertia is one of the factors in the stability during the pump star, and we can get that the greater moment of inertia, the longer the boot stable. We also can get that combined Flowmaster with ANSYS can solved engineering practice problem in fluid system conveniently, and take it easy to solve the similar problem.
Isableu, B; Rezzoug, N; Mallet, G; Bernardin, D; Gorce, P; Pagano, C C
2009-12-29
We examined the roles of inertial (e(3)), shoulder-centre of mass (SH-CM) and shoulder-elbow articular (SH-EL) rotation axes in the non-visual control of unconstrained 3D arm rotations. Subjects rotated the arm in elbow configurations that yielded either a constant or variable separation between these axes. We hypothesized that increasing the motion frequency and the task complexity would result in the limbs' rotational axis to correspond to e(3) in order to minimize rotational resistances. Results showed two velocity-dependent profiles wherein the rotation axis coincided with the SH-EL axis for S and I velocities and then in the F velocity shifted to either a SH-CM/e(3) trade-off axis for one profile, or to no preferential axis for the other. A third profile was velocity-independent, with the SH-CM/e(3) trade-off axis being adopted. Our results are the first to provide evidence that the rotational axis of a multi-articulated limb may change from a geometrical axis of rotation to a mass or inertia based axis as motion frequency increases. These findings are discussed within the framework of the minimum inertia tensor model (MIT), which shows that rotations about e(3) reduce the amount of joint muscle torque that must be produced by employing the interaction torque to assist movement.
On connection of rotation and internal motion in deformed nuclei
International Nuclear Information System (INIS)
Krutov, V.A.
1979-01-01
In the semiphenomenological nuclear madel (SPNM) the problem of ''overestimate of Coriolis interaction'' is shown to be easily solved. The rotation and internal motion coupling operator H(rot/in) is used. Overdetermination of the operator H(rot/in) has been generalized and extended into schemes of strong and weak coupling. In this case both schemes of coupling are transformed from approximate into precise ones and become applicable for any nuclear deformation. As examples of application of the theory considered are the matrix elements of the E2-transitions and inertia parameters of a 235 U nucleus
Nonlinear dynamics of rotating shallow water methods and advances
Zeitlin, Vladimir
2007-01-01
The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa
International Nuclear Information System (INIS)
Bohr, A.
1977-01-01
History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)
Restorick, S M; Durant, L; Kalra, S; Hassan-Smith, G; Rathbone, E; Douglas, M R; Curnow, S J
2017-08-01
Considerable attention has been given to CCR6 + IL-17-secreting CD4 + T cells (Th17) in the pathology of a number of autoimmune diseases including multiple sclerosis (MS). However, other Th subsets also play important pathogenic roles, including those that secrete IFNγ and GM-CSF. CCR6 expression by Th17 cells allows their migration across the choroid plexus into the cerebrospinal fluid (CSF), where they are involved in the early phase of experimental autoimmune encephalomyelitis (EAE), and in MS these cells are elevated in the CSF during relapses and contain high frequencies of autoreactive cells. However, the relatively low frequency of Th17 cells suggests they cannot by themselves account for the high percentage of CCR6 + cells in MS CSF. Here we identify the dominant CCR6 + T cell subsets in both the blood and CSF as non-classic Th1 cells, including many that secrete GM-CSF, a key encephalitogenic cytokine. In addition, we show that Th cells secreting GM-CSF but not IFNγ or IL-17, a subset termed GM-CSF-only-secreting Th cells, also accumulate in the CSF. Importantly, in MS the proportion of IFNγ- and GM-CSF-secreting T cells expressing CCR6 was significantly enriched in the CSF, and was elevated in MS, suggesting these cells play a pathogenic role in this disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Howard, Kellie; Cherezova, Lidia; DeMaster, Laura K; Rose, Timothy M
2017-11-01
The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif. The RG-NLS interacts uniquely with importin β1, which mediates nuclear import and accumulation of RV2 LANA in the nucleolus. The alternative nuclear import and localization of RV2 LANA homologs may contribute to the dominant RV2 lytic replication phenotype. Copyright © 2017. Published by Elsevier Inc.
Do axes of rotation change during fast and slow motions of the dominant and non-dominate arms?
Directory of Open Access Journals (Sweden)
Pagano Christopher
2011-12-01
Full Text Available The velocity-dependent change in rotational axes observed in the control of unconstrained 3D arm rotations for the dominant limb seems to conform to a minimum inertia resistance (MIR principle [4]. This is an efficient biomechanical solution that allows for the reduction of torques. We tested whether the MIR principle governs rotating movement when subjects were instructed to maintain the shoulder-elbow joint axis close to horizontal for both dominant and non dominant limbs. Subjects (n=12 performed externalinternal rotations of their arms in two angular positions (90° versus 150°, two angular velocities (slow (S versus fast (F, and in two sensory conditions (kinaesthetic (K versus visuo- kinaesthetic (VK. We expected more scattered displacements of the rotation axis employed for rotating the non dominant limb compared to the dominant limb. The results showed that the rotational axis of a multiarticulated limb coincided with SH-EL at S & F velocity for both arms.
Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions
International Nuclear Information System (INIS)
Dolan, Brian P
2014-01-01
Conditions for thermodynamic stability of asymptotically anti-de Sitter (AdS) rotating black holes in D-dimensions are determined. Local thermodynamic stability requires not only positivity conditions on the specific heat and the moment of inertia tensor but it is also necessary that the adiabatic compressibility be positive. It is shown that, in the absence of a cosmological constant, neither rotation nor charge is sufficient to ensure full local thermodynamic stability of a black hole. Thermodynamic stability properties of AdS Myers–Perry black holes are investigated for both singly spinning and multi-spinning black holes. Simple expressions are obtained for the specific heat and moment of inertia tensor in any dimension. An analytic expression is obtained for the boundary of the region of parameter space in which such space-times are thermodynamically stable. (paper)
The effect of directional inertias added to pelvis and ankle on gait
2013-01-01
Background Gait training robots should display a minimum added inertia in order to allow normal walking. The effect of inertias in specific directions is yet unknown. We set up two experiments to assess the effect of inertia in anteroposterior (AP) direction to the ankle and AP and mediolateral (ML) direction to the pelvis. Methods We developed an experimental setup to apply inertia in forward backward and or sideways directions. In two experiments nine healthy subjects walked on a treadmill at 1.5 km/h and 4.5 km/h with no load and with AP loads of 0.3, 1.55 and 3.5 kg to the left ankle in the first experiment and combinations of AP and ML loads on the pelvis (AP loads 0.7, 4.3 and 10.2 kg; ML loads 0.6, 2.3 and 5.3 kg). We recorded metabolic rate, EMG of major leg muscles, gait parameters and kinematics. Results & discussion Adding 1.55 kg or more inertia to the ankle in AP direction increases the pelvis acceleration and decreases the foot acceleration in AP direction both at speeds of 4.5 km/h. Adding 3.5 kg of inertia to the ankle also increases the swing time as well as AP motions of the pelvis and head-arms-trunk (HAT) segment. Muscle activity remains largely unchanged. Adding 10.2 kg of inertia to the pelvis in AP direction causes a significant decrease of the pelvis and HAT segment motions, particularly at high speeds. Also the sagittal back flexion increases. Lower values of AP inertia and ML inertias up to 5.3 kg had negligible effect. In general the found effects are larger at high speeds. Conclusions We found that inertia up to 2 kg at the ankle or 6 kg added to the pelvis induced significant changes, but since these changes were all within the normal inter subject variability we considered these changes as negligible for application as rehabilitation robotics and assistive devices. PMID:23597391
Characteristics of steady vibration in a rotating hub-beam system
Zhao, Zhen; Liu, Caishan; Ma, Wei
2016-02-01
A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.
On the macroscopic modeling of dilute emulsions under flow in the presence of particle inertia
Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.
2018-03-01
Recently, Mwasame et al. ["On the macroscopic modeling of dilute emulsions under flow," J. Fluid Mech. 831, 433 (2017)] developed a macroscopic model for the dynamics and rheology of a dilute emulsion with droplet morphology in the limit of negligible particle inertia using the bracket formulation of non-equilibrium thermodynamics of Beris and Edwards [Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press on Demand, 1994)]. Here, we improve upon that work to also account for particle inertia effects. This advance is facilitated by using the bracket formalism in its inertial form that allows for the natural incorporation of particle inertia effects into macroscopic level constitutive equations, while preserving consistency to the previous inertialess approximation in the limit of zero inertia. The parameters in the resultant Particle Inertia Thermodynamically Consistent Ellipsoidal Emulsion (PITCEE) model are selected by utilizing literature-available mesoscopic theory for the rheology at small capillary and particle Reynolds numbers. At steady state, the lowest level particle inertia effects can be described by including an additional non-affine inertial term into the evolution equation for the conformation tensor, thereby generalizing the Gordon-Schowalter time derivative. This additional term couples the conformation and vorticity tensors and is a function of the Ohnesorge number. The rheological and microstructural predictions arising from the PITCEE model are compared against steady-shear simulation results from the literature. They show a change in the signs of the normal stress differences that is accompanied by a change in the orientation of the major axis of the emulsion droplet toward the velocity gradient direction with increasing Reynolds number, capturing the two main signatures of particle inertia reported in simulations.
On the role of micro-inertia in enriched continuum mechanics.
Madeo, Angela; Neff, Patrizio; Aifantis, Elias C; Barbagallo, Gabriele; d'Agostino, Marco Valerio
2017-02-01
In this paper, the role of gradient micro-inertia terms [Formula: see text] and free micro-inertia terms [Formula: see text] is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term [Formula: see text] alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term [Formula: see text] alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia [Formula: see text], in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia [Formula: see text] on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.
Sleep inertia during a simulated 6-h on/6-h off fixed split duty schedule.
Hilditch, Cassie J; Short, Michelle; Van Dongen, Hans P A; Centofanti, Stephanie A; Dorrian, Jillian; Kohler, Mark; Banks, Siobhan
Sleep inertia is a safety concern for shift workers returning to work soon after waking up. Split duty schedules offer an alternative to longer shift periods, but introduce additional wake-ups and may therefore increase risk of sleep inertia. This study investigated sleep inertia across a split duty schedule. Sixteen participants (age range 21-36 years; 10 females) participated in a 9-day laboratory study with two baseline nights (10 h time in bed, [TIB]), four 24-h periods of a 6-h on/6-h off split duty schedule (5-h TIB in off period; 10-h TIB per 24 h) and two recovery nights. Two complementary rosters were evaluated, with the timing of sleep and wake alternating between the two rosters (2 am/2 pm wake-up roster versus 8 am/8 pm wake-up roster). At 2, 17, 32 and 47 min after scheduled awakening, participants completed an 8-min inertia test bout, which included a 3-min psychomotor vigilance test (PVT-B), a 3-min Digit-Symbol Substitution Task (DSST), the Karolinska Sleepiness Scale (KSS), and the Samn-Perelli Fatigue Scale (SP-Fatigue). Further testing occurred every 2 h during scheduled wakefulness. Performance was consistently degraded and subjective sleepiness/fatigue was consistently increased during the inertia testing period as compared to other testing times. Morning wake-ups (2 am and 8 am) were associated with higher levels of sleep inertia than later wake-ups (2 pm and 8 pm). These results suggest that split duty workers should recognise the potential for sleep inertia after waking, especially during the morning hours.
Lebeau, Jean-Pierre; Cadwallader, Jean-Sébastien; Aubin-Auger, Isabelle; Mercier, Alain; Pasquet, Thomas; Rusch, Emmanuel; Hendrickx, Kristin; Vermeire, Etienne
2014-07-02
Therapeutic inertia has been defined as the failure of health-care provider to initiate or intensify therapy when therapeutic goals are not reached. It is regarded as a major cause of uncontrolled hypertension. The exploration of its causes and the interventions to reduce it are plagued by unclear conceptualizations and hypothesized mechanisms. We therefore systematically searched the literature for definitions and discussions on the concept of therapeutic inertia in hypertension in primary care, to try and form an operational definition. A systematic review of all types of publications related to clinical inertia in hypertension was performed. Medline, EMbase, PsycInfo, the Cochrane library and databases, BDSP, CRD and NGC were searched from the start of their databases to June 2013. Articles were selected independently by two authors on the basis of their conceptual content, without other eligibility criteria or formal quality appraisal. Qualitative data were extracted independently by two teams of authors. Data were analyzed using a constant comparative qualitative method. The final selection included 89 articles. 112 codes were grouped in 4 categories: terms and definitions (semantics), "who" (physician, patient or system), "how and why" (mechanisms and reasons), and "appropriateness". Regarding each of these categories, a number of contradictory assertions were found, most of them relying on little or no empirical data. Overall, the limits of what should be considered as inertia were not clear. A number of authors insisted that what was considered deleterious inertia might in fact be appropriate care, depending on the situation. Our data analysis revealed a major lack of conceptualization of therapeutic inertia in hypertension and important discrepancies regarding its possible causes, mechanisms and outcomes. The concept should be split in two parts: appropriate inaction and inappropriate inertia. The development of consensual and operational definitions
Ritchie, Hannah K; Burke, Tina M; Dear, Tristan B; Mchill, Andrew W; Axelsson, John; Wright, Kenneth P
2017-10-01
Sleep inertia is affected by circadian phase, with worse performance upon awakening from sleep during the biological night than biological day. Visual search/selective visual attention performance is known to be sensitive to sleep inertia and circadian phase. Individual differences exist in the circadian timing of habitual wake time, which may contribute to individual differences in sleep inertia. Because later chronotypes awaken at an earlier circadian phase, we hypothesized that later chronotypes would have worse visual search performance during sleep inertia than earlier chronotypes if awakened at habitual wake time. We analysed performance from 18 healthy participants [five females (22.1 ± 3.7 years; mean ± SD)] at ~1, 10, 20, 30, 40 and 60 min following electroencephalogram-verified awakening from an 8 h in-laboratory sleep opportunity. Cognitive throughput and reaction times of correct responses were impaired by sleep inertia and took ~10-30 min to improve after awakening. Regardless whether chronotype was defined by dim light melatonin onset or mid-sleep clock hour on free days, derived from the Munich ChronoType Questionnaire, the duration of sleep inertia for cognitive throughput and reaction times was longer for later chronotypes (n = 7) compared with earlier chronotypes (n = 7). Specifically, performance for earlier chronotypes showed significant improvement within ~10-20 min after awakening, whereas performance for later chronotypes took ~30 min or longer to show significant improvement (P inertia contributes to longer-lasting impairments in morning performance in later chronotypes. © 2017 European Sleep Research Society.
Studies of the nuclear inertia in fission and heavy-ion reactions
International Nuclear Information System (INIS)
Moeller, P.; Nix, J.R.
1978-01-01
On the basis of the non-self-consistent cranking model the authors study some aspects of the nuclear inertia of interest in fission and heavy-ion reactions. First, the authors consider in the adiabatic limit the inertia for a doubly closed-shell nucleus in a deformed spheroidal harmonic-oscillator single-particle potential plus a small perturbation. When expressed in terms of a coordinate that describes the deformation of the nuclear matter distribution, the inertia for small oscillations about a spherical shape is exactly equal to the incompressible, irrotational value. For large distortions it deviates from the incompressible, irrotational value by up to about +-1% away from level crossings. Second, in order to study the dependence of the inertia upon a level crossing, two levels of the above system are considered. This is done both in the adiabatic limit and for large collective velocities. At level crossings the adiabatic inertia relative to the deformation of the matter distribution diverges as 1/modΔV, where modΔV is the magnitude of the perturbation. However, for large collective velocities the contribution to the inertia from a level crossing is less than 4modΔV(d(rsub(m))/dt) 2 where d(rsub(m))/dt is the collective velocity of the matter distribution. Although the effect of large velocities on the remaining levels of the many-body system or the effect of a statistical ensemble of states has not been considered, some of the results suggest that for high excitation energies and moderately large collective velocities the nuclear inertia approaches approximately the irrotational value. (Auth.)
Diagnostic inertia in dyslipidaemia: results of a preventative programme in Spain
Directory of Open Access Journals (Sweden)
Antonio Palazón-Bru
2015-07-01
Full Text Available Others have analysed the relationship between inadequate behaviour by healthcare professionals in the diagnosis of dyslipidaemia (diagnostic inertia and the history of cardiovascular risk factors. However, since no study has assessed cardiovascular risk scores as associated factors, we carried out a study to quantify diagnostic inertia in dyslipidaemia and to determine if cardiovascular risk scores are associated with this inertia. In the Valencian Community (Spain, a preventive programme (cardiovascular, gynaecologic and vaccination was started in 2003 inviting persons aged ≥40 years to undergo a health check-up at their health centre. This cross-sectional study examined persons with no known dyslipidaemia seen during the first six months of the programme (n = 16, 905 but whose total cholesterol (TC was ≥5.17 mmol/L. Diagnostic inertia was defined as lack of follow-up to confirm/discard the dyslipidaemia diagnosis. Other variables included in the analysis were gender, history of cardiovascular risk factors/cardiovascular disease, counselling (diet/exercise, body mass index (BMI, age, blood pressure, fasting blood glucose and lipids. TC was grouped as ≥/<6.20 mmol/L. In patients without cardiovascular disease and <75/≤65 years (n = 15, 778/13, 597, the REGICOR (REgistre GIroní del COr/SCORE (Systematic COronary Risk Evaluation cardiovascular risk functions were used to classify risk (high/low. Inertia was quantified and the adjusted odds ratios calculated from multivariate models. In the overall sample, the rate of diagnostic inertia was 52% (95% CI [51.2–52.7]; associated factors were TC ≥ 6.20 mmol/L, high or “not measured” BMI, hypertension, smoking and higher values of fasting blood glucose, systolic blood pressure and TC. In the REGICOR sample, the rate of diagnostic inertia was 51.9% (95% CI [51.1–52.7]; associated factors were REGICOR high and high or “not measured” BMI. In the SCORE sample the rate of diagnostic
Rotationally invariant correlation filtering
International Nuclear Information System (INIS)
Schils, G.F.; Sweeney, D.W.
1985-01-01
A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired
The Bumper Boats Effect: Effect of Inertia on Self Propelled Active Particles Systems
Dai, Chengyu; Bruss, Isaac; Glotzer, Sharon
Active matter has been well studied using the standard Brownian dynamics model, which assumes that the self-propelled particles have no inertia. However, many examples of active systems, such as sub-millimeter bacteria and colloids, have non-negligible inertia. Using particle-based Langevin Dynamics simulation with HOOMD-blue, we study the role of particle inertia on the collective emergent behavior of self-propelled particles. We find that inertia hinders motility-induced phase separation. This is because the effective speed of particles is reduced due to particle-particle collisions-\\x9Dmuch like bumper boats, which take time to reach terminal velocity after a crash. We are able to fully account for this effect by tracking a particle's average rather than terminal velocity, allowing us to extend the standard Brownian dynamics model to account for the effects of momentum. This study aims to inform experimental systems where the inertia of the active particles is non-negligible. We acknowledge the funding support from the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award # DE-SC0000989.
Under-treatment of type 2 diabetes: Causes and outcomes of clinical inertia.
Bailey, Clifford J
2016-12-01
To assess the impact of clinical inertia on type 2 diabetes (T2D) care. PubMed database search from January 2000 until December 2015. Clinical inertia, defined as resistance to initiate or intensify treatment in a patient not at the evidence-based glycated haemoglobin goal, is conservatively estimated to occur in at least 25% of patients with T2D. Consequently, many patients with diagnosed and treated T2D experience extended periods, in some cases years, of ineffectively controlled hyperglycaemia, potentially causing serious microvascular and macrovascular harm. Delayed treatment does not appear to be specific to primary care, but also occurs in the specialist setting. The causes of clinical inertia appear to be complex, involving both reasonable and unacceptable delays on the part of the clinician and poor compliance with treatment regimens on the part of the patient. Evidence suggests that the clinical and organisational context may be particularly important in reinforcing clinical inertia, notably the increasingly severe time constraints for diagnosis and management of multiple morbidities, consideration of complex guidelines, assessment of cost and appreciation of patient concerns, all of which may hamper prioritisation of the important issue of under-treatment. Since the pharmacotherapeutic tools for good control of blood glucose exist in all advanced healthcare systems, initiatives to address the important and widespread problem of clinical inertia may require focused campaigns that encourage attention to guideline recommendations and their adaptation for individualised care. © 2016 John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Lecocq, F.; Hourcade, J.-C.; Ha Duong, M.
1998-01-01
Current debates on climate mitigation emphasize the role of the inertia of the economic system. Our aim in this paper is to study in more depth how sectorally differentiated inertia impacts on optimal CO 2 -emission abatement policies. Using the STARTS model, we show that optimal abatement levels and costs differ sensibly among sectors. Differential inertia is the critical determinant of this trade-off, especially in the case of a 20-year delay in the action, or in an underestimation of the growth of the transportation sector. In particular, the burden of any additional abatement effort falls on the most flexible sector, i.e. the industry. Debates on mitigation emphasize the role of inertia of the economic system. This paper aims at studying more in depth how sectorally differentiated inertia should influence optimal CO 2 emission abatement policies. Using a two-sector version of STARTS, we show that under perfect expectations, optimal abatement profiles and associated costs differ sensibly between a flexible and a rigid sector (transportation). In a second step, we scrutinize the role of the uncertainty by testing the case of a 20-year delay of action and an underestimated growth of the transportation sector. We do this for three concentration ceilings and we point out the magnitude of the burden which falls on the flexible sector. We derive some policy implications for the ranking of public policies and for incentive instruments to be set up at international level. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Constraining the radius of neutron stars through the moment of inertia
International Nuclear Information System (INIS)
Greif, S.K.
2017-01-01
Neutron star observations provide systematic constraints on the nuclear equation of state like the recent discovery of 2 M neutron stars. While neutron star masses can be measured very precisely, their radii are inherently difficult to measure due to the influence from large systematic uncertainties. A promising alternative access to this information is the moment of inertia, which provides constraints for both radii and the equation of state. This will be possible in the future using pulsar timing observations. We present a theoretical framework for calculating moments of inertia microscopically. We use state-of-the-art equations of state that are based on chiral effective field theory interactions and fulfill the requirements of causality and of reproducing 2 M neutron stars. This allows us to generate a large set of equations of state that predict combinations of masses, radii, and moments of inertia. We investigate the impact of a moment of inertia measurement on the radius within this general setup. Based on our results, we show how future measurements of moments of inertia constrain radii of neutron stars and thus the equation of state. (author)
Two-dimensional plasma expansion in a magnetic nozzle: Separation due to electron inertia
International Nuclear Information System (INIS)
Ahedo, Eduardo; Merino, Mario
2012-01-01
A previous axisymmetric model of the supersonic expansion of a collisionless, hot plasma in a divergent magnetic nozzle is extended here in order to include electron-inertia effects. Up to dominant order on all components of the electron velocity, electron momentum equations still reduce to three conservation laws. Electron inertia leads to outward electron separation from the magnetic streamtubes. The progressive plasma filling of the adjacent vacuum region is consistent with electron-inertia being part of finite electron Larmor radius effects, which increase downstream and eventually demagnetize the plasma. Current ambipolarity is not fulfilled and ion separation can be either outwards or inwards of magnetic streamtubes, depending on their magnetization. Electron separation penalizes slightly the plume efficiency and is larger for plasma beams injected with large pressure gradients. An alternative nonzero electron-inertia model [E. Hooper, J. Propul. Power 9, 757 (1993)] based on cold plasmas and current ambipolarity, which predicts inwards electron separation, is discussed critically. A possible competition of the gyroviscous force with electron-inertia effects is commented briefly.
Waking up is the hardest thing I do all day: Sleep inertia and sleep drunkenness.
Trotti, Lynn M
2017-10-01
The transition from sleep to wake is marked by sleep inertia, a distinct state that is measurably different from wakefulness and manifests as performance impairments and sleepiness. Although the precise substrate of sleep inertia is unknown, electroencephalographic, evoked potential, and neuroimaging studies suggest the persistence of some features of sleep beyond the point of awakening. Forced desynchrony studies have demonstrated that sleep inertia impacts cognition differently than do homeostatic and circadian drives and that sleep inertia is most intense during awakenings from the biological night. Recovery sleep after sleep deprivation also amplifies sleep inertia, although the effects of deep sleep vary based on task and timing. In patients with hypersomnolence disorders, especially but not exclusively idiopathic hypersomnia, a more pronounced period of confusion and sleepiness upon awakening, known as "sleep drunkenness", is common and problematic. Optimal treatment of sleep drunkenness is unknown, although several medications have been used with benefit in small case series. Difficulty with awakening is also commonly endorsed by individuals with mood disorders, disproportionately to the general population. This may represent an important treatment target, but evidence-based treatment guidance is not yet available. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of rotary inertia of concentrated masses on the natural vibration of fluid conveying pipes
International Nuclear Information System (INIS)
Kang, Myeong Gie
1999-01-01
Effects of the rotary inertia of concentrated masses on the natural vibrations of fluid conveying pipes have been studied by theoretical modeling and computer simulation. For analysis, two boundary conditions for pipe ends, simply supported and clamped-clamped, are assumed and Galerkin's method is used for transformation of the governing equation to the eigenvalues problem and the natural frequencies and mode shapes for the system have been calculated by using the newly developed computer code. Moreover, the critical velocities related to a system instability have been investigated. The main conclusions for the present study are (1) rotary inertia gives much change on the higher natural frequencies and mode shapes and its effect is visible when it has small value, (2) The number and location of nodes can be changed by rotary inertia, (3) By introducing rotary inertia, the second natural frequency approaches to the first as the location of the concentrated mass approaches to the midspan of the pipe, and (4) The critical fluid velocities to initiate the system unstable are unchanged by introduction of rotary inertia and the first three velocities are π, 2π, and 3π for the simply supported pipe and 2π, 8.99 and 12.57 for the clamped-clamped pipe. (author). 16 refs., 7 figs., 3 tabs
Directory of Open Access Journals (Sweden)
Lihang Feng
Full Text Available Wheel force transducer (WFT, which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong
2015-01-01
Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.
Theory of superfluidity and drag force in the one-dimensional Bose gas
Cherny, A.Y.; Caux, J.-S.; Brand, J.
2012-01-01
The one-dimensional Bose gas is an unusual superfluid. In contrast to higher spatial dimensions, the existence of non-classical rotational inertia is not directly linked to the dissipationless motion of infinitesimal impurities. Recently, experimental tests with ultracold atoms have begun and
Effects of solar radiation pressure torque on the rotational motion of an artificial satellite
Zanardi, Maria Cecilia F. P. S.; Vilhenademoraes, Rodolpho
1992-01-01
The motion of an artificial satellite about its center of mass is studied considering torques due to the gravity gradient and direct solar radiation pressure. A model for direct solar radiation torque is derived for a circular cylindrical satellite. An analytical solution is obtained by the method of variation of the parameters. This solution shows that the angular variables have secular variation but that the modulus of the rotational angular momentum, the projection of rotational angular momentum on the z axis of the moment of inertia and inertial axis z, suffer only periodic variations. Considering a hypothetical artificial satellite, a numerical application is demonstrated.
Effect of the moment-of-inertia variation on Coulomb-nuclear interference in heavy ion scattering
International Nuclear Information System (INIS)
Bolotin, Yu.L.; Gonchar, V.Yu.; Inopin, E.V.; Chekanov, N.A.
1987-01-01
Effect of moment-of-inertia (MI) variation on probabilities of the Coulomb excitation of nucleus rotational states (RS) is investigated. The calculation is performed in the generalized quasiclassical approximation. Cillisions with an aimed parameter equal to 0 and recording of scattered ion at angles close to 180 deg were considered. Effect of MI dependence on angular momentum (AM) on the RS Coulomb excitation probability in the 86 Kr+ 238 U process at 400 MeV 86 Kr has been studied. For small AMs (I < 10), when the MI variation can be neglected, the Coulomb-nuclear interference leads to a marked shift of RS excitation probability maxima. However, with increasing transferred AM the convergence of probabilities conditioned with mutual compensation of phases shift related to the MI variation and Coulomb-nucleus interference, is noted. It is also noted that correct parameters of deformed nuclei extracted from experiments on the Coulomb excitation of high-spin states can be obtained only during simultaneous accountancy of both the Coulomb-nuclear interference and the MI variation of excited nuclei
International Nuclear Information System (INIS)
Auluck, S.K.H.
2002-01-01
Snowplow shocks are supersonic flows in plasmas driven by a magnetic piston, in which the material impacted by the piston 'sticks' to it, resulting in accretion of the plasma near the piston. The density front and the magnetic piston move together as a single structure. A typical example of a snowplow shock is the plasma focus sheath. When normally neglected electron-inertia (EI) terms in the fluid model of the plasma are taken into account, a time scale ω p -1 and a space scale cω p -1 are introduced which are negligible in the bulk of the plasma but are non-negligible in a transition region between the no-plasma region and the dense plasma. As a result 'no-plasma' initial conditions are not valid for the fluid equations obtained by neglecting EI. A resonant coupling between two electron plasma modes via the Hall term is shown to result in spontaneous generation of axial magnetic field and rotation even in the presence of perfect azimuthal symmetry in the low density precursor plasma formed before the ideal plasma phase. Related physics issues such as spontaneous symmetry breaking mechanism are discussed
From rotating atomic rings to quantum Hall states.
Roncaglia, M; Rizzi, M; Dalibard, J
2011-01-01
Considerable efforts are currently devoted to the preparation of ultracold neutral atoms in the strongly correlated quantum Hall regime. However, the necessary angular momentum is very large and in experiments with rotating traps this means spinning frequencies extremely near to the deconfinement limit; consequently, the required control on parameters turns out to be too stringent. Here we propose instead to follow a dynamic path starting from the gas initially confined in a rotating ring. The large moment of inertia of the ring-shaped fluid facilitates the access to large angular momenta, corresponding to giant vortex states. The trapping potential is then adiabatically transformed into a harmonic confinement, which brings the interacting atomic gas in the desired quantum-Hall regime. We provide numerical evidence that for a broad range of initial angular frequencies, the giant-vortex state is adiabatically connected to the bosonic ν = 1/2 Laughlin state.
Directory of Open Access Journals (Sweden)
Matthias Hunstig
2017-02-01
Full Text Available Piezoelectric inertia motors—also known as stick-slip motors or (smooth impact drives—use the inertia of a body to drive it in small steps by means of an uninterrupted friction contact. In addition to the typical advantages of piezoelectric motors, they are especially suited for miniaturisation due to their simple structure and inherent fine-positioning capability. Originally developed for positioning in microscopy in the 1980s, they have nowadays also found application in mass-produced consumer goods. Recent research results are likely to enable more applications of piezoelectric inertia motors in the future. This contribution gives a critical overview of their historical development, functional principles, and related terminology. The most relevant aspects regarding their design—i.e., friction contact, solid state actuator, and electrical excitation—are discussed, including aspects of control and simulation. The article closes with an outlook on possible future developments and research perspectives.
Measurement of whole-body human centers of gravity and moments of inertia.
Albery, C B; Schultz, R B; Bjorn, V S
1998-06-01
With the inclusion of women in combat aircraft, the question of safe ejection seat operation has been raised. The potential expanded population of combat pilots would include both smaller and larger ejection seat occupants, which could significantly affect seat performance. The method developed to measure human whole-body CG and MOI used a scale, a knife edge balance, and an inverted torsional pendulum. Subjects' moments of inertia were measured along six different axes. The inertia tensor was calculated from these values, and principal moments of inertia were then derived. Thirty-eight antropometric measurements were also taken for each subject to provide a means for direct correlation of inertial properties to body dimensions and for modeling purposes. Data collected in this study has been used to validate whole-body mass properties predictions. In addition, data will be used to improve Air Force and Navy ejection seat trajectory models for the expanded population.
Newton's second law versus modified-inertia MOND: A test using the high-latitude effect
International Nuclear Information System (INIS)
Ignatiev, A. Yu.
2008-01-01
The modified-inertia MOND is an approach that proposes a change in Newton's second law at small accelerations as an alternative to dark matter. Recently it was suggested that this approach can be tested in terrestrial laboratory experiments. One way of doing the test is based on the static high-latitude equinox modified-inertia effect: around each equinox date, 2 spots emerge on the Earth where static bodies experience spontaneous displacement due to the violation of Newton's second law required by the modified-inertia MOND. Here, a detailed theory of this effect is developed and estimates of the magnitude of the signal due to the effect are obtained. The expected displacement of a mirror in a gravitational-wave interferometer is found to be about 10 -14 m. Some experimental aspects of the proposal are discussed
Directory of Open Access Journals (Sweden)
Klaus Kramer
2017-03-01
Full Text Available We propose a Cellular Automata (CA model in which three ubiquitous and relevant processes in nature are present, namely, spatial competition, distinction between dynamically stronger and weaker agents and the existence of an inner resistance to changes in the actual state S n (=−1,0,+1 of each CA lattice cell n (which we call inertia. Considering ensembles of initial lattices, we study the average properties of the CA final stationary configuration structures resulting from the system time evolution. Assuming the inertia a (proper control parameter, we identify qualitative changes in the CA spatial patterns resembling usual phase transitions. Interestingly, some of the observed features may be associated with continuous transitions (critical phenomena. However, certain quantities seem to present jumps, typical of discontinuous transitions. We argue that these apparent contradictory findings can be attributed to the inertia parameter’s discrete character. Along the work, we also briefly discuss a few potential applications for the present CA formulation.
Neutron-proton pairing effect on the proton-rich nuclei moment of inertia
International Nuclear Information System (INIS)
Mokhtari, D.; Ami, I.; Fellah, M.; Allal, N.H.; Fellah, M.; Allal, N.H.
2008-01-01
The neutron-proton (n-p) pairing effect on the nuclear moment of inertia is studied within the BCS approximation in the isovector case. An analytical expression of the moment of inertia is established by means of the cranking model. This expression generalizes the usual BCS one (i.e. when only the pairing between like-particles is considered). The moment of inertia of N = Z even-even nuclei, for which experimental values are known, i.e., such as 32 ≤ A ≤ 80, has been numerically evaluated, with and without inclusion of the n-p pairing effect. The used single-particle and Eigen-states are those of a deformed Woods-Saxon mean field. It turns out that the inclusion of the n-p pairing improves the obtained values when compared to the usual BCS approximation, since the average discrepancies with the experimental data are respectively 7% and 37%. (authors)
Neutron-proton pairing effect on the proton-rich nuclei moment of inertia
Energy Technology Data Exchange (ETDEWEB)
Mokhtari, D.; Ami, I.; Fellah, M.; Allal, N.H. [Laboratoire de Physique Theorique, Faculte de Physique, USTHB, Algiers (Algeria); Fellah, M.; Allal, N.H. [Centre de Recherche Nucleaire d' Alger, COMENA, Algiers (Algeria)
2008-07-01
The neutron-proton (n-p) pairing effect on the nuclear moment of inertia is studied within the BCS approximation in the isovector case. An analytical expression of the moment of inertia is established by means of the cranking model. This expression generalizes the usual BCS one (i.e. when only the pairing between like-particles is considered). The moment of inertia of N = Z even-even nuclei, for which experimental values are known, i.e., such as 32 {<=} A {<=} 80, has been numerically evaluated, with and without inclusion of the n-p pairing effect. The used single-particle and Eigen-states are those of a deformed Woods-Saxon mean field. It turns out that the inclusion of the n-p pairing improves the obtained values when compared to the usual BCS approximation, since the average discrepancies with the experimental data are respectively 7% and 37%. (authors)
Neutron-proton isovector pairing effect on the nuclear moment of inertia
International Nuclear Information System (INIS)
Mokhtari, D.; Ami, I.; Fellah, M.; Allal, N.H.
2008-01-01
The neutron-proton (n-p) isovector pairing effect on the nuclear moment of inertia has been studied within the framework of the BCS approximation. An analytical expression of the moment of inertia, that explicitly depends upon the n-p pairing, has been established using the Inglis cranking model. The model was first tested numerically for nuclei such as N = Z and whose experimental values of the moment of inertia are known (i.e. such as 16 ≤ Z ≤ 40). It has been shown that the n-p pairing effect is non-negligible and clearly improves the theoretical predictions when compared to those of the pairing between like particles. Secondly, predictions have been established for even-even proton-rich rare-earth nuclei. It has been shown that the n-p pairing effect is non-negligible when N = Z and rapidly decreases with increasing values of (N-Z). (author)
A Virtual Inertia Control Strategy for DC Microgrids Analogized with Virtual Synchronous Machines
DEFF Research Database (Denmark)
Wu, Wenhua; Chen, Yandong; Luo, An
2017-01-01
In a DC microgrid (DC-MG), the dc bus voltage is vulnerable to power fluctuation derived from the intermittent distributed energy or local loads variation. In this paper, a virtual inertia control strategy for DC-MG through bidirectional grid-connected converters (BGCs) analogized with virtual...... synchronous machine (VSM) is proposed to enhance the inertia of the DC-MG, and to restrain the dc bus voltage fluctuation. The small-signal model of the BGC system is established, and the small-signal transfer function between the dc bus voltage and the dc output current of the BGC is deduced. The dynamic...... for the BGC is introduced to smooth the dynamic response of the dc bus voltage. By analyzing the control system stability, the appropriate virtual inertia control parameters are selected. Finally, simulations and experiments verified the validity of the proposed control strategy....
Konovalov, P V; Mitrofanova, L B; Gorshkov, A N; Ovsyannikov, F A
2015-01-01
to reveal the morphological features of the lower uterine segment myometrium in connective tissue dysplasia (CTD) in women with uterine inertia. Histological, immunohistochemical (with antibodies against collagen types I and III, matrix metalloproteinases 1 and 9 (MMR-1, MMP-9), tissue inhibitor of metalloproteinase 1 (TIMP-1), fibronectin; fibulin-5, connexin-43), electron microscopic, and electron immunocytochemical studies with morphometry of myometrial fragments from 15 parturient women with CTD and uterine inertia (a study group) and those from 10 women without CTD (a control group). The myometrium in CTD exhibited the decreased expression of connextin-43, fibulin-5, TIMP-1, collagens types I and III with collagen type III predominance and the unchanged levels of fibronectin and MMP-1 and MMP-9. Electron microscopy and immunocytochemistry showed fewer intercellular contacts and the dramatically lower expression of connexin-43 than in the control. A set of found myometrial changes in women with uterine inertia is a manifestation of CTD.
Changing Provider Behavior in the Context of Chronic Disease Management: Focus on Clinical Inertia.
Lavoie, Kim L; Rash, Joshua A; Campbell, Tavis S
2017-01-06
Widespread acceptance of evidence-based medicine has led to the proliferation of clinical practice guidelines as the primary mode of communicating current best practices across a range of chronic diseases. Despite overwhelming evidence supporting the benefits of their use, there is a long history of poor uptake by providers. Nonadherence to clinical practice guidelines is referred to as clinical inertia and represents provider failure to initiate or intensify treatment despite a clear indication to do so. Here we review evidence for the ubiquity of clinical inertia across a variety of chronic health conditions, as well as the organizational and system, patient, and provider factors that serve to maintain it. Limitations are highlighted in the emerging literature examining interventions to reduce clinical inertia. An evidence-based framework to address these limitations is proposed that uses behavior change theory and advocates for shared decision making and enhanced guideline development and dissemination.
Egerton-Warburton, Diana; Cullen, Louise; Keijzers, Gerben; Fatovich, Daniel M
2018-06-01
Appropriate deliberate clinical inertia refers to the art of doing nothing as a positive clinical response. It includes shared decision-making to improve patient care with the use of clinical judgement. We discuss common clinical scenarios where the use of deliberate clinical inertia can occur. The insertion of peripheral intravenous cannulae, investigating patients with suspected renal colic and the investigation of low risk chest pain are all opportunities for the thoughtful clinician to 'stand there' and use effective patient communication to avoid low value tests and procedures. Awareness is key to identifying these opportunities to practice deliberate clinical inertia, as many of the situations may be so much a part of our environment that they are hidden in plain view. © 2018 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Atmospheric effects on the remote determination of thermal inertia on Mars
International Nuclear Information System (INIS)
Haberle, R.M.; Jakosky, B.M.
1991-01-01
Measurements of the IR brightness temperature at the Martian surface at many different times of day are presently compared with temperatures predicted by thermal models which allow sunlight to reach the surface unattenuated, in order to determine the thermal inertia of the uppermost 1-10 cm of the Martian surface. The consequences of the assumptions made are assessed in view of results from a different thermal model which invokes radiation-transfer through a dusty CO2 atmosphere, as well as sensible heat-exchange with the surface. Smaller thermal inertias imply smaller particle sizes; the results obtained suggest that low thermal-inertia regions consist of 5-micron, rather than 50-micron, particle sizes. 52 refs
Study on Inertia as a Gravity Induced Property of Mass, in an Infinite Hubble Expanding Universe
Directory of Open Access Journals (Sweden)
Jeroen van Engelshoven
2013-01-01
Full Text Available Mass is experienced to have two intrinsic properties: inertia (resistance to acceleration and gravity (attraction to other masses. In this paper we evaluate the gravitational effect of all masses of the universe on an accelerated mass, starting from linearized general relativity. The gravitational interaction of all masses in a finite static universe model is shown to create a finite resistance to acceleration, which is inertia. Then, we propose a generalization of the linearized theory and evaluate the Hubble expanding universe. It is shown that the gravitational impact of an infinite expanding universe creates finite inertia, according to . The Friedmann critical mass density is found to be valid. The Mach principle is made explicit. The value and sign of the gravitational constant G are found to be of no consequence on an astronomical scale.
Parameterization of rotational spectra
International Nuclear Information System (INIS)
Zhou Chunmei; Liu Tong
1992-01-01
The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented
Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.
2013-01-01
This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:
Energy Technology Data Exchange (ETDEWEB)
Jain, Shweta; Sharma, Prerana [Physics Department, Ujjain Engineering College, Ujjain, MP-456010 (India); Kaothekar, Sachin [Physics Department, Mahakal Institute of Technology, Ujjain, MP-456664 (India); Chhajlani, R. K., E-mail: sackaothekar@gmail.com [Retired, School of Studies in Physics, Vikram University Ujjain, MP-456010 (India)
2016-10-01
The thermal instability of an infinite homogeneous, thermally conducting, and rotating plasma, incorporating finite electrical resistivity, finite electron inertia, and an arbitrary radiative heat-loss function in the presence of finite Larmor radius corrections and Hall current, has been studied. Analysis has been made with the help of linearized magnetohydrodynamics (MHD) equations. A general dispersion relation is obtained using the normal mode analysis method, and the dispersion relation is discussed for longitudinal propagation and transverse propagation separately. The dispersion relation has been solved numerically to obtain the dependence of the growth rate on the various parameters involved. The conditions of modified thermal instability and stability are discussed in the different cases of interest.
Stereovision-based pose and inertia estimation of unknown and uncooperative space objects
Pesce, Vincenzo; Lavagna, Michèle; Bevilacqua, Riccardo
2017-01-01
Autonomous close proximity operations are an arduous and attractive problem in space mission design. In particular, the estimation of pose, motion and inertia properties of an uncooperative object is a challenging task because of the lack of available a priori information. This paper develops a novel method to estimate the relative position, velocity, angular velocity, attitude and the ratios of the components of the inertia matrix of an uncooperative space object using only stereo-vision measurements. The classical Extended Kalman Filter (EKF) and an Iterated Extended Kalman Filter (IEKF) are used and compared for the estimation procedure. In addition, in order to compute the inertia properties, the ratios of the inertia components are added to the state and a pseudo-measurement equation is considered in the observation model. The relative simplicity of the proposed algorithm could be suitable for an online implementation for real applications. The developed algorithm is validated by numerical simulations in MATLAB using different initial conditions and uncertainty levels. The goal of the simulations is to verify the accuracy and robustness of the proposed estimation algorithm. The obtained results show satisfactory convergence of estimation errors for all the considered quantities. The obtained results, in several simulations, shows some improvements with respect to similar works, which deal with the same problem, present in literature. In addition, a video processing procedure is presented to reconstruct the geometrical properties of a body using cameras. This inertia reconstruction algorithm has been experimentally validated at the ADAMUS (ADvanced Autonomous MUltiple Spacecraft) Lab at the University of Florida. In the future, this different method could be integrated to the inertia ratios estimator to have a complete tool for mass properties recognition.
A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys
Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan
2015-04-01
Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.
Reach, G; Pechtner, V; Gentilella, R; Corcos, A; Ceriello, A
2017-12-01
Many people with type 2 diabetes mellitus (T2DM) fail to achieve glycaemic control promptly after diagnosis and do not receive timely treatment intensification. This may be in part due to 'clinical inertia', defined as the failure of healthcare providers to initiate or intensify therapy when indicated. Physician-, patient- and healthcare-system-related factors all contribute to clinical inertia. However, decisions that appear to be clinical inertia may, in fact, be only 'apparent' clinical inertia and may reflect good clinical practice on behalf of the physician for a specific patient. Delay in treatment intensification can happen at all stages of treatment for people with T2DM, including prescription of lifestyle changes after diagnosis, introduction of pharmacological therapy, use of combination therapy where needed and initiation of insulin. Clinical inertia may contribute to people with T2DM living with suboptimal glycaemic control for many years, with dramatic consequences for the patient in terms of quality of life, morbidity and mortality, and for public health because of the huge costs associated with uncontrolled T2DM. Because multiple factors can lead to clinical inertia, potential solutions most likely require a combination of approaches involving fundamental changes in medical care. These could include the adoption of a person-centred model of care to account for the complex considerations influencing treatment decisions by patients and physicians. Better patient education about the progressive nature of T2DM and the risks inherent in long-term poor glycaemic control may also reinforce the need for regular treatment reviews, with intensification when required. Copyright © 2017 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Khunti, Kamlesh; Gomes, Marilia B; Pocock, Stuart; Shestakova, Marina V; Pintat, Stéphane; Fenici, Peter; Hammar, Niklas; Medina, Jesús
2018-02-01
Therapeutic inertia, defined as the failure to initiate or intensify therapy in a timely manner according to evidence-based clinical guidelines, is a key reason for uncontrolled hyperglycaemia in patients with type 2 diabetes. The aims of this systematic review were to identify how therapeutic inertia in the management of hyperglycaemia was measured and to assess its extent over the past decade. Systematic searches for articles published from January 1, 2004 to August 1, 2016 were conducted in MEDLINE and Embase. Two researchers independently screened all of the titles and abstracts, and the full texts of publications deemed relevant. Data were extracted by a single researcher using a standardized data extraction form. The final selection for the review included 53 articles. Measurements used to assess therapeutic inertia varied across studies, making comparisons difficult. Data from low- to middle-income countries were scarce. In most studies, the median time to treatment intensification after a glycated haemoglobin (HbA1c) measurement above target was more than 1 year (range 0.3 to >7.2 years). Therapeutic inertia increased as the number of antidiabetic drugs rose and decreased with increasing HbA1c levels. Data were mainly available from Western countries. Diversity of inertia measures precluded meta-analysis. Therapeutic inertia in the management of hyperglycaemia in patients with type 2 diabetes is a major concern. This is well documented in Western countries, but corresponding data are urgently needed in low- and middle-income countries, in view of their high prevalence of type 2 diabetes. © 2017 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
International Nuclear Information System (INIS)
Ruspini, L.C.
2012-01-01
Highlights: ► The stability influence of piping fluid inertia on two-phase instabilities is studied. ► Inlet inertia stabilizes the system while outlet inertia destabilizes it. ► High-order modes oscillations are found and analyzed. ► The effect of compressible volumes in the system is studied. ► Inlet compressibility destabilizes the system while outlet comp. stabilizes it. - Abstract: The most common kind of static and dynamic two-phase flow instabilities namely Ledinegg and density wave oscillations are studied. A new model to study two-phase flow instabilities taking into account general parameters from real systems is proposed. The stability influence of external parameters such as the fluid inertia and the presence of compressible gases in the system is analyzed. High-order oscillation modes are found to be related with the fluid inertia of external piping. The occurrence of high-order modes in experimental works is analyzed with focus on the results presented in this work. Moreover, both inertia and compressibility are proven to have a high impact on the stability limits of the systems. The performed study is done by modeling the boiling channel using a one dimensional equilibrium model. An incompressible transient model describes the evolution of the flow and pressure in the non-heated regions and an ideal gas model is used to simulate the compressible volumes in the system. The use of wavelet decomposition analysis is proven to be an efficient tool in stability analysis of several frequencies oscillations.
Hilditch, Cassie J; Dorrian, Jillian; Banks, Siobhan
2017-04-01
Napping is a widely used countermeasure to sleepiness and impaired performance caused by sleep loss and circadian pressure. Sleep inertia, the period of grogginess and impaired performance experienced after waking, is a potential side effect of napping. Many industry publications recommend naps of 30 min or less to avoid this side effect. However, the evidence to support this advice is yet to be thoroughly reviewed. Electronic databases were searched, and defined criteria were applied to select articles for review. The review covers literature on naps of 30 min or less regarding (a) sleep inertia, (b) slow-wave sleep (SWS) and (c) the relationship between sleep inertia and SWS. The review found that although the literature on short afternoon naps is relatively comprehensive, there are very few studies on naps of 30 min or less at night. Studies have mixed results regarding the onset of SWS and the duration and severity of sleep inertia following short naps, making guidelines regarding their use unclear. The varying results are likely due to differing sleep/wake profiles before the nap of interest and the time of the day at waking. The review highlights the need to have more detailed guidelines about the implementation of short naps according to the time of the day and prior sleep/wake history. Without this context, such a recommendation is potentially misleading. Further research is required to better understand the interactions between these factors, especially at night, and to provide more specific recommendations. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic ocean-tide effects on Earth's rotation
Dickman, S. R.
1993-01-01
This article develops 'broad-band' Liouville equations which are capable of determining the effects on the rotation of the Earth of a periodic excitation even at frequencies as high as semi-diurnal; these equations are then used to predict the rotational effects of altimetric, numerical and 32-constituent spherical harmonic ocean-tide models. The rotational model includes a frequency-dependent decoupled core, the effects of which are especially marked near retrograde diurnal frequencies; and a fully dynamic oceanic response, whose effects appear to be minor despite significant frequency dependence. The model also includes solid-earth effects which are frequency dependent as the result of both anelasticity at long periods and the fluid-core resonance at nearly diurnal periods. The effects of both tidal inertia and relative angular momentum on Earth rotation (polar motion, length of day, 'nutation' and Universal Time) are presented for 32 long- and short-period ocean tides determined as solutions to the author's spherical harmonic tide theory. The lengthening of the Chandler wobble period by the pole tide is also re-computed using the author's full theory. Additionally, using the spherical harmonic theory, tidal currents and their effects on rotation are determined for available numerical and altimetric tide height models. For all models, we find that the effects of tidal currents are at least as important as those of tide height for diurnal and semi-diurnal constituents.
Extended I-Love relations for slowly rotating neutron stars
Gagnon-Bischoff, Jérémie; Green, Stephen R.; Landry, Philippe; Ortiz, Néstor
2018-03-01
Observations of gravitational waves from inspiralling neutron star binaries—such as GW170817—can be used to constrain the nuclear equation of state by placing bounds on stellar tidal deformability. For slowly rotating neutron stars, the response to a weak quadrupolar tidal field is characterized by four internal-structure-dependent constants called "Love numbers." The tidal Love numbers k2el and k2mag measure the tides raised by the gravitoelectric and gravitomagnetic components of the applied field, and the rotational-tidal Love numbers fo and ko measure those raised by couplings between the applied field and the neutron star spin. In this work, we compute these four Love numbers for perfect fluid neutron stars with realistic equations of state. We discover (nearly) equation-of-state independent relations between the rotational-tidal Love numbers and the moment of inertia, thereby extending the scope of I-Love-Q universality. We find that similar relations hold among the tidal and rotational-tidal Love numbers. These relations extend the applications of I-Love universality in gravitational-wave astronomy. As our findings differ from those reported in the literature, we derive general formulas for the rotational-tidal Love numbers in post-Newtonian theory and confirm numerically that they agree with our general-relativistic computations in the weak-field limit.
Kubiak, Marta; Mège, Daniel; Gurgurewicz, Joanna; Ciazela, Jakub
2015-04-01
Thermal inertia (P) is an important property of geologic surfaces that essentially describes the resistance to temperature (T) change as heat is added. Most remote sensing data describe the surface only. P is a volume property that is sensitive to the composition of the subsurface, down to a depth reached by the diurnal heating wave. As direct measurement of P is not possible on Mars, thermal inertia models (Fergason et al., 2006) and deductive methods (the Apparent Thermal Inertia: ATI and Differential Apparent Thermal Inertia: DATI) are used to estimate it. ATI is computed as (1 - A) / (Tday - Tnight), where A is albedo. Due to the lack of the thermal daytime images with maximum land surface temperature (LST) and nighttime images with minimum LST in Valles Marineris region, the ATI method is difficult to apply. Instead, we have explored the DATI technique (Sabol et al., 2006). DATI is calculated based on shorter time (t) intervals with a high |ΔT/Δt| gradient (in the morning or in the afternoon) and is proportional to the day/night temperature difference (ATI), and hence P. Mars, which exhibits exceptionally high |ΔT/Δt| gradients due to the lack of vegetation and thin atmosphere, is especially suitable for the DATI approach. Here we present a new deductive method for high-resolution differential apparent thermal inertia (DATI) mapping for areas of highly contrasted relief (e.g., Valles Marineris). Contrary to the thermal inertia models, our method takes local relief characteristics (slopes and aspects) into account. This is crucial as topography highly influences A and ΔT measurements. In spite of the different approach, DATI values in the flat areas are in the same range as the values obtained by Fergason et al. (2006). They provide, however, more accurate information for geological interpretations of hilly or mountainous terrains. Sabol, D. E., Gillespie, A. R., McDonald, E., and Danilina, I., 2006. Differential Thermal Inertia of Geological Surfaces. In
Importance of Upper-Limb Inertia in Calculating Concentric Bench Press Force
RAMBAUD, O; RAHMANI, A; MOYEN, B; BOURDIN, M
2008-01-01
The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 6 4.1 years, 184.6 6 5.5 cm, 99.5 6 18.6 kg) ...
Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix
Llama, Eduardo Garcia
2011-01-01
In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.
Material inertia and size effects in the Charpy V-notch test
DEFF Research Database (Denmark)
Desandre, D. A.; Benzerga, A. A.; Tvergaard, Viggo
2004-01-01
The effect of material inertia on the size dependence of the absorbed energy in the Charpy V-notch test is investigated. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation and the re......The effect of material inertia on the size dependence of the absorbed energy in the Charpy V-notch test is investigated. The material response is characterized by an elastic-viscoplastic constitutive relation for a porous plastic solid, with adiabatic heating due to plastic dissipation...
Inducverters: PLL-Less Converters with Auto-Synchronization and Emulated Inertia Capability
DEFF Research Database (Denmark)
Ashabani, Mahdi; Freijedo Fernandez, Francisco Daniel; Golestan, Saeed
2016-01-01
current information and can track grid frequency, angle and voltage amplitude variations while feeding constant amount of power which is of high interest in frequency varying grids and also in the case of grid voltage angle jump. Another advantage of the inducverter is that it introduces virtual inertia...... impedance. The controller also offers stable and high-performance synchronization and operation under unbalanced and/or distorted grid conditions. The work beside synchronous current converters give a bird’s eye view to research in the new area of PLL-less and virtual inertia-based operation of VSCs...
Frequency participation by using virtual inertia in wind turbines including energy storage
DEFF Research Database (Denmark)
Xiao, Zhao xia; Huang, Yu; Guerrero, Josep M.
2017-01-01
With the increase of wind generation penetration, power fluctuations and weak inertia may attempt to the power system frequency stability. In this paper, in order to solve this problem, a hierarchical control strategy is proposed for permanent magnet synchronous generator (PMSG) based wind turbine...... (WT) and battery unit (BU). A central controller forecasts wind speed and determines system operation states to be sent to the local controllers. These local controllers include MPPT, virtual inertia, and pitch control for the WT; and power control loops for the BU. The proposed approach achieve...
Inertia effects in the laminar radial flow of a power law fluid with an electromagnetic field
International Nuclear Information System (INIS)
Chen, C.-K.; Chen, K.-H.; Wu, C.-Y.
1984-01-01
An approximate study of the pressure distribution for the radial flow of a non-newtonian (power law) fluid between two parallel disks in the presence of an axial electrical field is obtained by using the momentum and energy integral methods. For a non-newtonian fluid it is shown that the inertia effect must be considered to be significant for the pressure distribution, especially for the power law fluids with n >= 1. Furthermore, it is seen that the inertia effect will also lower the load capacity of the disks. (Auth.)
Four-dimensional Hooke's law can encompass linear elasticity and inertia
International Nuclear Information System (INIS)
Antoci, S.; Mihich, L.
1999-01-01
The question is examined whether the formally straightforward extension of Hooke's time-honoured stress-strain relation to the four dimensions of special and of general relativity can make physical sense. The four-dimensional Hooke law is found able to account for the inertia of matter; in the flat-space, slow-motion approximation the field equations for the displacement four-vector field ξ i can encompass both linear elasticity and inertia. In this limit one just recovers the equations of motion of the classical theory of elasticity
Directory of Open Access Journals (Sweden)
Stergioulas Nikolaos
2003-01-01
Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.
DEFF Research Database (Denmark)
Gramkow, Claus
1999-01-01
In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...
Directory of Open Access Journals (Sweden)
Ming Yang
2018-03-01
Full Text Available In this paper, an on-line parameter identification algorithm to iteratively compute the numerical values of inertia and load torque is proposed. Since inertia and load torque are strongly coupled variables due to the degenerate-rank problem, it is hard to estimate relatively accurate values for them in the cases such as when load torque variation presents or one cannot obtain a relatively accurate priori knowledge of inertia. This paper eliminates this problem and realizes ideal online inertia identification regardless of load condition and initial error. The algorithm in this paper integrates a full-order Kalman Observer and Recursive Least Squares, and introduces adaptive controllers to enhance the robustness. It has a better performance when iteratively computing load torque and moment of inertia. Theoretical sensitivity analysis of the proposed algorithm is conducted. Compared to traditional methods, the validity of the proposed algorithm is proved by simulation and experiment results.
Effects of microscale inertia on heat or mass transfer from a drop
Krishnamurthy, Deepak; Subramanian, Ganesh
2012-11-01
Heat or mass transport from suspensions of solid particles or drops is ubiquitous in many industrial processes. In the zero inertia limit the transport is diffusion limited owing to the presence of closed streamlines around each particle. A small but finite amount of inertia though, results in a vastly different picture, greatly enhancing transport by destroying the closed streamline configuration. We develop a theoretical formulation to study the effects of weak inertia on transport from a density-matched drop in a 2D linear flow. It is shown that, unlike a solid particle, the near-surface streamlines are closed only when the viscosity ratio (λ) exceeds a critical value λc = 2 α / (1- α) , where α is the linear flow parameter measuring relative magnitudes of extension and vorticity. The velocity field on the drop surface can be characterized using a complex-valued analogue of the (C, τ) coordinate system used to describe Jeffrey orbits of an axisymmetric particle. In the open-streamline case (λ λ c) , similar to the solid particle, inertia plays a crucial role, and the Nusselt number must scale as G(α, λ)Re1/2Pe1/2. A methodology is developed to analyze the convection along spiraling streamlines using a physically motivated choice of coordinate system on the drop surface.
Christoffel symbols and inertia in flat space-time theory. [Curvilinear coordinate systems
Energy Technology Data Exchange (ETDEWEB)
Krause, J [Universidad Central de Venezuela, Caracas
1976-11-01
A necessary and sufficient criterion of inertia is presented, for the flat space-time theory of general frames of reference, in terms of the vanishing of some typical components of the affine connection pertaining to curvilinear coordinate systems. The physical identification of inertial forces thus arises in the context of the special theory of relativity.
Bechert, M.; Scheid, B.
2017-11-01
The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.
Effect of particle inertia and gravity on the turbulence in a suspension
Ooms, G.; Poesio, P.
2005-01-01
A theoretical model is presented for the effect of particle inertia and gravity on the turbulence in a homogeneous suspension. It is an extension of the one-fluid model developed by L’vov, Ooms, and Pomyalov [Phys. Rev. E 67, 046314 (2003)] , in which the effect of gravity was not considered. In the
Constraints on the Moment of Inertia of a Proto Neutron Star from the ...
Indian Academy of Sciences (India)
0} system. It is found that for a proto neu- tron star, the mass, the moment of inertia and their own maximum values as a function of .... Our previous work shows that such hyperon coupling constants can give the neutron star matter a better ...
Moment inertia pump analysis used in the Rsg-Gas primary coolant loop under lofa condition
International Nuclear Information System (INIS)
Sudarmono; Setiyanto; Dhandhang, P.; Dibyo, S.; Royadi
1998-01-01
The moment inertia of primary cooling system analysis under LOFA condition has been done. It is potentially one of limiting design constraints of the RSG-GAS safety because the coolant flow rate reduces very rapidly under LOFA condition due to the low inertia circulation pumps. If a loss of flow accident occurs, the mass flow will decrease rapidly and the heat transfer coefficient between cladding and coolant will also decreases. As a consequence the fuel and cladding temperature will increase. The whole core was represented by the 1/4 sector and divided into 19 subchannels and 40 axial nodes. In the present study, moment inertia of pump analysis for RSG-GAS reactor was performed with COBRA-IV-I subchannel code. As the DNB correlation, W-3 Correlation was selected for base case. The flow and power transients under pump trip accident were determined from experiments. The result above compared with the design data are 75 kg m 2 and 81 Kg m 2 respectively. The result shows that the RSG-GAS requires the inertia more than 75 kg m 2
Debats, N.B.; Kingma, I.; Beek, P.J.; Smeets, J.B.J.
2012-01-01
How does the magnitude of the exploration force influence the precision of haptic perceptual estimates? To address this question, we examined the perceptual precision for moment of inertia (i.e., an object's "angular mass") under different force conditions, using the Weber fraction to quantify
Crustal moment of inertia of glitching pulsars with the KDE0v1 Skyrme interaction
Energy Technology Data Exchange (ETDEWEB)
Madhuri, K.; Routray, T.R.; Pattnaik, S.P. [Sambalpur University, School of Physics, Jyotivihar (India); Basu, D.N. [Variable Energy Cyclotron Center, Kolkata (India)
2017-07-15
The mass, radius and crustal fraction of moment of inertia in neutron stars are calculated using β-equilibrated nuclear matter obtained from the Skyrme effective interaction. The transition density, pressure and proton fraction at the inner edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability conditions using the KDE0v1 set. The neutron star masses obtained by solving the Tolman-Oppenheimer-Volkoff equations using neutron star matter obtained from this set are able to describe highly massive compact stars ∝ 2M {sub CircleDot}. The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for the radius of the Vela pulsar, R ≥ 3.69 + 3.44M/M {sub CircleDot}. Present calculations suggest that the crustal fraction of the total moment of inertia can be ∝ 6.3% due to crustal entrainment caused by the Bragg reflection of unbound neutrons by lattice ions. (orig.)
On the origin of the inertia: The modified Newtonian dynamics theory
International Nuclear Information System (INIS)
Gine, Jaume
2009-01-01
It is shown that the identity between inertial mass and gravitational mass is an assumption to establish the equivalence principle. In the context of Sciama's inertia theory, the identity between the inertial mass and the gravitational mass is discussed and a certain condition which must be experimentally satisfied is given. The inertial force proposed by Sciama, in a simple case, is derived from Assis' inertia theory based in the introduction of a Weber type force. The origin of the inertial force is totally justified taking into account that the Weber force is, in fact, an approximation of a simple retarded potential, see [Gine J. On the origin of the anomalous precession of Mercury's perihelion. . Gine J. On the origin of deflection of the light. Chaos, Solitons and Fractals 2008;35(1):1-6]. The way how the inertial forces are also derived from some solutions of the general relativistic equations is presented. We wonder whether the theory of inertia of Assis is included in the framework the General Relativity. In the context of the inertia developed in the present paper, we establish the relation between the constant acceleration a 0 , that appears in the classical modified Newtonian dynamics (MOND) theory, with the Hubble constant H 0 , i.e. a 0 ∼ cH 0 .
Thermal Inertia of near-Earth Asteroids and Strength of the Yarkovsky Effect
Delbo, Marco; Dell'Oro, A.; Harris, A. W.; Mottola, S.; Mueller, M.
2006-01-01
Thermal inertia is the physical parameter that controls the temperature distribution over the surface of an asteroid. It affects the strength of the Yarkovsky effect, which causes orbital drift of km-sized asteroids and is invoked to explain the delivery of near-Earth asteroids (NEAs) from the main
MPC for Wind Power Gradients - Utilizing Forecasts, Rotor Inertia, and Central Energy Storage
DEFF Research Database (Denmark)
Hovgaard, Tobias Gybel; Larsen, Lars F. S.; Jørgensen, John Bagterp
2013-01-01
decentralized energy storage in the turbines’ inertia combined with a central storage unit or deferrable consumers can be utilized to achieve this goal at a minimum cost. We propose a variation on model predictive control to incorporate predictions of wind speed. Due to the aerodynamics of the turbines...