Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team
2017-01-01
The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.
Xiang-Gruess, M; Duschl, W J
2009-01-01
We study global non-axisymmetric stationary perturbations of aligned and unaligned logarithmic spiral configurations in an axisymmetric composite differentially rotating disc system of scale-free stellar and isopedically magnetized gas discs coupled by gravity. The gas disc is threaded across by a vertical magnetic field $B_z$ with a constant dimensionless isopedic ratio $\\lambda\\equiv 2\\pi\\sqrt{G} \\Sigma^{(g)}/B_z$ of surface gas mass density $\\Sigma^{(g)}$ to $B_z$ with $G$ being the gravitational constant. Our exploration focuses on the relation between $\\lambda$ and the dark matter amount represented by a ratio $f\\equiv\\bar{\\Phi}/\\Phi$ in order to sustain stationary perturbation configurations, where $\\bar{\\Phi}$ is the gravitational potential of a presumed axisymmetric halo of dark matter and $\\Phi$ is the gravitational potential of the composite disc matter. High and low $\\lambda$ values correspond to relatively weak and strong magnetic fields given the same gas surface mass density, respectively. The m...
A dynamo model for axisymmetric and non-axisymmetric solar magnetic fields
Jiang, J
2007-01-01
Increasing observations are becoming available about a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. It indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric alpha2-Omega dynamo model is set up to discuss the characteristics of the axisymmetric m=0 and the first non-axisymmetric m=1 modes and to provide further the theoretical bases to explain the active longitude, flip-flop and other non-axisymmetric phenomena. The model consists of a updated solar internal differential rotation, a turbulent diffusivity varied with depth and an alpha-effect working at the tachocline in rotating spherical systems. The difference between the alpha2-Omega and the alpha-Omega models and the conditions to favor the non-axisymmetric modes with the solar-like parameters are also presented.
Non-axisymmetric instabilities in discs with imposed zonal flows
Vanon, R.; Ogilvie, G. I.
2016-12-01
We conduct a linear stability calculation of an ideal Keplerian flow on which a sinusoidal zonal flow is imposed. The analysis uses the shearing sheet model and is carried out both in isothermal and adiabatic conditions, with and without self-gravity (SG). In the non-SG regime, a structure in the potential vorticity (PV) leads to a non-axisymmetric Kelvin-Helmholtz (KH) instability; in the short-wavelength limit its growth rate agrees with the incompressible calculation by Lithwick, which only considers perturbations elongated in the streamwise direction. The instability's strength is analysed as a function of the structure's properties, and zonal flows are found to be stable if their wavelength is ≳8 H, where H is the disc's scaleheight, regardless of the value of the adiabatic index γ. The non-axisymmetric KH instability can operate in Rayleigh-stable conditions, and it therefore represents the limiting factor to the structure's properties. Introducing SG triggers a second non-axisymmetric instability, which is found to be located around a PV maximum, while the KH instability is linked to a PV minimum, as expected. In the adiabatic regime, the same gravitational instability is detected even when the structure is present only in the entropy (not in the PV) and the instability spreads to weaker SG conditions as the entropy structure's amplitude is increased. This eventually yields a non-axisymmetric instability in the non-SG regime, albeit of weak strength, localized around an entropy maximum.
Pajares, Andres; Schuster, Eugenio
2016-10-01
Plasma density and temperature regulation in future tokamaks such as ITER is arising as one of the main problems in nuclear-fusion control research. The problem, known as burn control, is to regulate the amount of fusion power produced by the burning plasma while avoiding thermal instabilities. Prior work in the area of burn control considered different actuators, such as modulation of the auxiliary power, modulation of the fueling rate, and controlled impurity injection. More recently, the in-vessel coil system was suggested as a feasible actuator since it has the capability of modifying the plasma confinement by generating non-axisymmetric magnetic fields. In this work, a comprehensive, model-based, nonlinear burn control strategy is proposed to integrate all the previously mentioned actuators. A model to take into account the influence of the in-vessel coils on the plasma confinement is proposed based on the plasma collisionality and the density. A simulation study is carried out to show the capability of the controller to drive the system between different operating points while rejecting perturbations. Supported by the US DOE under DE-SC0010661.
Precession-driven flows in non-axisymmetric ellipsoids
Noir, Jerome
2014-01-01
We study the flow forced by precession in rigid non-axisymmetric ellipsoidal containers. To do so, we revisit the inviscid and viscous analytical models that have been previously developed for the spheroidal geometry by, respectively, Poincar\\'e (Bull. Astronomique, vol. XXVIII, 1910, pp. 1-36) and Busse (J. Fluid Mech., vol. 33, 1968, pp. 739-751), and we report the first numerical simulations of flows in such a geometry. In strong contrast with axisymmetric spheroids, where the forced flow is systematically stationary in the precessing frame, we show that the forced flow is unsteady and periodic. Comparisons of the numerical simulations with the proposed theoretical model show excellent agreement for both axisymmetric and non-axisymmetric containers. Finally, since the studied configuration corresponds to a tidally locked celestial body such as the Earth's Moon, we use our model to investigate the challenging but planetary-relevant limit of very small Ekman numbers and the particular case of our Moon.
Ballistics Modeling for Non-Axisymmetric Hypervelocity Smart Bullets
2014-06-03
1DoD PETTT, Dynamics Research Corporation, Andover, MA; on-site at NRL. Railgun 67-6754-04 Ballistics Modeling for non-Axisymmetric Hypervelocity...report is concerned with calculating the trajectory of the projectile fired from an electromagnetic launcher, or railgun , which attains supersonic...at supersonic speeds [1]. In the case of a railgun , there is no requirement involving a casing or high pressure seal. Instead, there is a requirement
Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry
Energy Technology Data Exchange (ETDEWEB)
Long-Poe Ku and Allen H. Boozer
2009-06-05
If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.
Non-axisymmetric instabilities in discs with imposed zonal flows
Vanon, R
2016-01-01
We conduct a linear stability calculation of an ideal Keplerian flow on which a sinusoidal zonal flow is imposed. The analysis uses the shearing sheet model and is carried out both in isothermal and adiabatic conditions, with and without self-gravity (SG). In the non-SG regime a structure in the potential vorticity (PV) leads to a non-axisymmetric Kelvin-Helmholtz (KH) instability; in the short-wavelength limit its growth rate agrees with the incompressible calculation by Lithwick (2007), which only considers perturbations elongated in the streamwise direction. The instability's strength is analysed as a function of the structure's properties, and zonal flows are found to be stable if their wavelength is $\\gtrsim 8H$, where $H$ is the disc's scale height, regardless of the value of the adiabatic index $\\gamma$. The non-axisymmetric KH instability can operate in Rayleigh-stable conditions, and it therefore represents the limiting factor to the structure's properties. Introducing SG triggers a second non-axisym...
A Non-axisymmetric Spherical α2-Dynamo
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Using the Chebyshev-tau method, the generation of oscillatory nonaxisymmetric stellar magnetic fields by the α2-dynamo is studied in spherical geometry. Following the boundary conditions given by Schubert & Zhang, the spherical α2-dynamo consists of a fully convective spherical shell with inner radius ri and outer radius ro. A comparison of the critical dynamo numbers of axisymmetric and φ-dependent modes for different thicknesses of the convective shell and different α-profiles leads to the following qualitative results: (I) when the angular factor of α-profile is sinnθ cosθ (n = 1, 2, 4) the solutions of the α2-dynamo are oscillatory and non-axisymmetric, (ii) the thinner the convective shell, the more easily is the nonaxisymmetric mode excited and the higher is the latitudinal wave number, (iii) the thickness of the outer convective shell has an effect on the symmetries of the magnetic fields.
Refraction and Shielding of Noise in Non-Axisymmetric Jets
Khavaran, Abbas
1996-01-01
This paper examines the shielding effect of the mean flow and refraction of sound in non-axisymmetric jets. A general three-dimensional ray-acoustic approach is applied. The methodology is independent of the exit geometry and may account for jet spreading and transverse as well as streamwise flow gradients. We assume that noise is dominated by small-scale turbulence. The source correlation terms, as described by the acoustic analogy approach, are simplified and a model is proposed that relates the source strength to 7/2 power of turbulence kinetic energy. Local characteristics of the source such as its strength, time- or length-scale, convection velocity and characteristic frequency are inferred from the mean flow considerations. Compressible Navier Stokes equations are solved with a k-e turbulence model. Numerical predictions are presented for a Mach 1.5, aspect ratio 2:1 elliptic jet. The predicted sound pressure level directivity demonstrates favorable agreement with reported data, indicating a relative quiet zone on the side of the major axis of the elliptic jet.
Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Lanctot, M. J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Izzo, V. A. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Lazarus, E. A.; Hirshman, S. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Park, J.-K.; Lazerson, S.; Reiman, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Cooper, W. A. [Association Euratom-Confederation Suisse, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Turco, F. [Columbia University, 116th St and Broadway, New York, New York 10027 (United States)
2013-05-15
With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10{sup −3} relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.
A solvable model of axisymmetric and non-axisymmetric droplet bouncing.
Andrew, Matthew; Yeomans, Julia M; Pushkin, Dmitri O
2017-02-07
We introduce a solvable Lagrangian model for droplet bouncing. The model predicts that, for an axisymmetric drop, the contact time decreases to a constant value with increasing Weber number, in qualitative agreement with experiments, because the system is well approximated as a simple harmonic oscillator. We introduce asymmetries in the velocity, initial droplet shape, and contact line drag acting on the droplet and show that asymmetry can often lead to a reduced contact time and lift-off in an elongated shape. The model allows us to explain the mechanisms behind non-axisymmetric bouncing in terms of surface tension forces. Once the drop has an elliptical footprint the surface tension force acting on the longer sides is greater. Therefore the shorter axis retracts faster and, due to the incompressibility constraints, pumps fluid along the more extended droplet axis. This leads to a positive feedback, allowing the drop to jump in an elongated configuration, and more quickly.
Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks
Energy Technology Data Exchange (ETDEWEB)
Hanson, James D. [Auburn University, Auburn, Alabama; Anderson, D.T. [University of Wisconsin, Madison; Cianciosa, M. [Auburn University, Auburn, Alabama; Franz, P. [EURATOM / ENEA, Italy; Harris, J. H. [Oak Ridge National Laboratory (ORNL); Hartwell, G. H. [Auburn University, Auburn, Alabama; Hirshman, Steven Paul [ORNL; Knowlton, Stephen F. [Auburn University, Auburn, Alabama; Lao, Lang L. [General Atomics, San Diego; Lazarus, Edward Alan [ORNL; Marrelli, L. [Association EURATOM ENEA Fusion, Consorzio RFX, Padua, Italy; Maurer, D. A. [Auburn University, Auburn, Alabama; Schmitt, J. C. [Princeton Plasma Physics Laboratory (PPPL); Sontag, A. C. [Oak Ridge National Laboratory (ORNL); Stevenson, B. A. [Auburn University, Auburn, Alabama; Terranova, D. [Association EURATOM ENEA Fusion, Consorzio RFX, Padua, Italy
2013-01-01
Axisymmetric equilibrium reconstruction using magnetohydrodynamic equilibrium solutions to the Grad Shafranov equation has long been an important tool for interpreting tokamak experiments. This paper describes recent results in non-axisymmetric (three-dimensional) equilibrium reconstruction of nominally axisymmetric plasmas (tokamaks and reversed field pinches (RFPs)), and fully non-axisymmetric plasmas (stellarators). Results from applying the V3FIT code to CTH and HSX stellarator plasmas, RFX-mod RFP plasmas and the DIII-D tokamak are presented.
Versatile controllability of non-axisymmetric magnetic perturbations in KSTAR experiments
Energy Technology Data Exchange (ETDEWEB)
Han, Hyunsun, E-mail: hyunsun@nfri.re.kr; Jeon, Y.M.; Hahn, S.H.; Ahn, H.S.; Bak, J.G.; In, Y.; Kim, J.; Woo, M.H.; Kim, H.S.; Jin, J.K.; Park, B.H.; Yoon, S.W.
2016-10-15
Highlights: • A newly upgraded In-Vessel Control Coil(IVCC) system has been installed in KSTAR. • The system consists of broadband power supplies and a current connection patch panel. • The system has been confirmed for various dynamic demands of 3D magnetic field configurations. • It can help expand understanding of the 3D tokamak physics. - Abstract: A newly upgraded IVCC (In-Vessel Control Coil) system equipped with four broadband power supplies, along with a current connection patch panel, are introduced with a discussion of their capabilities on various KSTAR experiments. Until the 2014 KSTAR experimental campaign, the non-axisymmetric field configuration could not be changed in a shot, let alone the limited number of accessible configurations. With the installation of the new power supplies, such restrictions have been greatly reduced. Based on the 2015 KSTAR run-campaign, this new system was confirmed to easily cope with various dynamic demands for toroidal and poloidal phases of the 3D magnetic field in a shot. With newly equipped magnetic sensors, this enables us to extend the operational options and further explore the 3D physics for tokamak plasmas.
Plasma confinement system and methods for use
Energy Technology Data Exchange (ETDEWEB)
Jarboe, Thomas R.; Sutherland, Derek
2017-09-05
A plasma confinement system is provided that includes a confinement chamber that includes one or more enclosures of respective helicity injectors. The one or more enclosures are coupled to ports at an outer radius of the confinement chamber. The system further includes one or more conductive coils aligned substantially parallel to the one or more enclosures and a further set of one or more conductive coils respectively surrounding portions of the one or more enclosures. Currents may be provided to the sets of conductive coils to energize a gas within the confinement chamber into a plasma. Further, a heat-exchange system is provided that includes an inner wall, an intermediate wall, an outer wall, and pipe sections configured to carry coolant through cavities formed by the walls.
Magnetic helicity in non-axisymmetric mean-field solar dynamo
Pipin, V V
2016-01-01
The paper address the effects of magnetic helicity conservation in a non-linear nonaxisymmetric mean-field solar dynamo model. We study the evolution of the shallow non-axisymmetric magnetic field perturbation with the strength about 10G in the solar convection zone. The dynamo evolves from the pure axisymmetric stage through the short (about 2 years) transient phase when the non-axisymmetric m=1 dynamo mode is dominant to the final stage where the axisymmetry of the dynamo is almost restored. It is found that magnetic helicity is transferred forth and back over the spectral space during the transient phase. Also our simulations shows that the non-axisymmetric distributions of magnetic helicity tend to follows the regions of the Hale polarity rule.
Matsuoka, Seikichi; Kanno, Ryutaro; Sugama, Hideo
2015-01-01
In evaluating neoclassical transport by radially-local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport are investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight $\\delta f$ Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas $\\rm \\textbf{1}$, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transpo...
EFFECTS OF LARGE-SCALE NON-AXISYMMETRIC PERTURBATIONS IN THE MEAN-FIELD SOLAR DYNAMO
Energy Technology Data Exchange (ETDEWEB)
Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences (Russian Federation); Kosovichev, A. G. [W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)
2015-11-10
We explore the response of a nonlinear non-axisymmetric mean-field solar dynamo model to shallow non-axisymmetric perturbations. After a relaxation period, the amplitude of the non-axisymmetric field depends on the initial condition, helicity conservation, and the depth of perturbation. It is found that a perturbation that is anchored at 0.9 R{sub ⊙} has a profound effect on the dynamo process, producing a transient magnetic cycle of the axisymmetric magnetic field, if it is initiated at the growing phase of the cycle. The non-symmetric, with respect to the equator, perturbation results in a hemispheric asymmetry of the magnetic activity. The evolution of the axisymmetric and non-axisymmetric fields depends on the turbulent magnetic Reynolds number R{sub m}. In the range of R{sub m} = 10{sup 4}–10{sup 6} the evolution returns to the normal course in the next cycle, in which the non-axisymmetric field is generated due to a nonlinear α-effect and magnetic buoyancy. In the stationary state, the large-scale magnetic field demonstrates a phenomenon of “active longitudes” with cyclic 180° “flip-flop” changes of the large-scale magnetic field orientation. The flip-flop effect is known from observations of solar and stellar magnetic cycles. However, this effect disappears in the model, which includes the meridional circulation pattern determined by helioseismology. The rotation rate of the non-axisymmetric field components varies during the relaxation period and carries important information about the dynamo process.
A viable non-axisymmetric non-force-free field to represent solar active regions
Prasad, A
2016-01-01
A combination of analytical calculations and vectormagnetogram data are utilized to develop a non-axisymmetric non-force-free magnetic field and asses its viability in describing solar active regions. For the purpose, we construct a local spherical shell where a planar surface, tangential to the inner sphere, represents a Cartesian cutout of an active region. The magnetic field defined on the surface is then correlated with magnetograms. The analysis finds the non-axisymmetric non-force-free magnetic field, obtained by a superposition of two linear-force-free fields, correlates reasonably well with magnetograms.
Gravitational wave momentum extraction in non-axisymmetric Robinson-Trautman spacetimes
Aranha, R F; Tonini, E V
2014-01-01
We examine numerically the gravitational wave recoil in non-axisymmetric Robinson-Trautman spacetimes. We construct characteristic initial data for the Robinson-Trautman dynamics which are interpreted as corresponding to the early post-merger state of two boosted colliding black holes with a common apparent horizon. Our analysis is based on the Bondi-Sachs energy-momentum conservation laws which regulate the radiative transfer processes involved in the emission of gravitational waves. We evaluate the Bondi-Sachs momentum flux carried out by gravitational waves and the associated net kick velocity defined (in a zero-initial-Bondi-momentum frame) as proportional to the total gravitational wave impulse imparted on the system. The kick velocity distributions are obtained and analyzed for two distinct classes of initial data corresponding to the early post-merger state of (i) non-head-on collisions and (ii) head-on collisions of black holes. For the first class (i), the net gravitational wave momentum fluxes and a...
Non-axisymmetric ideal equilibrium and stability of ITER plasmas with rotating RMPs
Ham, C. J.; Cramp, R. G. J.; Gibson, S.; Lazerson, S. A.; Chapman, I. T.; Kirk, A.
2016-08-01
The magnetic perturbations produced by the resonant magnetic perturbation (RMP) coils will be rotated in ITER so that the spiral patterns due to strike point splitting which are locked to the RMP also rotate. This is to ensure even power deposition on the divertor plates. VMEC equilibria are calculated for different phases of the RMP rotation. It is demonstrated that the off harmonics rotate in the opposite direction to the main harmonic. This is an important topic for future research to control and optimize ITER appropriately. High confinement mode (H-mode) is favourable for the economics of a potential fusion power plant and its use is planned in ITER. However, the high pressure gradient at the edge of the plasma can trigger periodic eruptions called edge localized modes (ELMs). ELMs have the potential to shorten the life of the divertor in ITER (Loarte et al 2003 Plasma Phys. Control. Fusion 45 1549) and so methods for mitigating or suppressing ELMs in ITER will be important. Non-axisymmetric RMP coils will be installed in ITER for ELM control. Sampling theory is used to show that there will be significant a {{n}\\text{coils}}-{{n}\\text{rmp}} harmonic sideband. There are nine coils toroidally in ITER so {{n}\\text{coils}}=9 . This results in a significant n = 6 component to the {{n}\\text{rmp}}=3 applied field and a significant n = 5 component to the {{n}\\text{rmp}}=4 applied field. Although the vacuum field has similar amplitudes of these harmonics the plasma response to the various harmonics dictates the final equilibrium. Magnetic perturbations with toroidal mode number n = 3 and n = 4 are applied to a 15 MA, {{q}95}≈ 3 burning ITER plasma. We use a three-dimensional ideal magnetohydrodynamic model (VMEC) to calculate ITER equilibria with applied RMPs and to determine growth rates of infinite n ballooning modes (COBRA). The {{n}\\text{rmp}}=4 case shows little change in ballooning mode growth rate as the RMP is
Indian Academy of Sciences (India)
Smitadhi Ganguly; A Nandi; S Neogy
2014-06-01
Unlike structural dynamics, the three-dimensional finite-element model of non-axisymmetric rotors on orthotropic bearings generates a large gyroscopic system with parametric stiffness. The present work explores the use of mass-lumping in stability analysis of such systems. Using a variant of Hill’s method, the problem reduces to a generalized Eigen value problem of order $nm \\times nm$, with as the order of the system in state vector representation and as the number of terms in the assumed solution. The matrices in both the sides of the Eigen value problem are expressed in terms of Kronecker products where the mass-matrix appears twice as a sub-matrix in both the sides of the equation. A particular one or both of them can be made diagonal. Both options produce sufficiently accurate results with considerable savings, even with a coarse mesh.
Liu, Jianyong; Lu, Yajun; Li, Zhiping
2010-05-01
Non-axisymmetric wake impact experiments were carried out after the best exciting frequency for a low speed axial compressor had been found by axisymmetric wake impact experiments. When the number and circumferential distribution of inlet guide vanes (IGV) are logical the wakes of non-axisymmetric IGVs can exert beneficial unsteady exciting effect on their downstream rotor flow fields and improve the compressor’s performance. In the present paper, four non-axisymmetric wake impact plans were found working better than the axisymmetric wake impact plan. Compared with the base plan, the best non-axisymmetric plan increased the compressor’s peak efficiency, and the total pressure rise by 1.1 and 2%, and enhanced the stall margin by 4.4%. The main reason why non-axisymmetric plans worked better than the axisymmetric plan was explained as the change of the unsteady exciting signal arising from IGV wakes. Besides the high-frequency components, the non-axisymmetric plan generated a beneficial low-frequency square-wave exciting signal and other secondary frequency components. Compared with the axisymmetric plan, multi-frequency exciting wakes arising from the non-axisymmetric plans are easier to get coupling relation with complex vortices such as clearance vortices, passage vortices and shedding vortices.
Modeling Sound Propagation Through Non-Axisymmetric Jets
Leib, Stewart J.
2014-01-01
A method for computing the far-field adjoint Green's function of the generalized acoustic analogy equations under a locally parallel mean flow approximation is presented. The method is based on expanding the mean-flow-dependent coefficients in the governing equation and the scalar Green's function in truncated Fourier series in the azimuthal direction and a finite difference approximation in the radial direction in circular cylindrical coordinates. The combined spectral/finite difference method yields a highly banded system of algebraic equations that can be efficiently solved using a standard sparse system solver. The method is applied to test cases, with mean flow specified by analytical functions, corresponding to two noise reduction concepts of current interest: the offset jet and the fluid shield. Sample results for the Green's function are given for these two test cases and recommendations made as to the use of the method as part of a RANS-based jet noise prediction code.
Modeling non-stationary, non-axisymmetric heat patterns in DIII-D tokamak
Ciro, D; Caldas, I L
2016-01-01
Non-axisymmetric stationary magnetic perturbations lead to the formation of homoclinic tangles near the divertor magnetic saddle in tokamak discharges. These tangles intersect the divertor plates in static helical structures that delimit the regions reached by open magnetic field lines reaching the plasma column and leading the charged particles to the strike surfaces by parallel transport. In this article we introduce a non-axisymmetric rotating magnetic perturbation to model the time development of the three-dimensional magnetic field of a single-null DIII-D tokamak discharge developing a rotating tearing mode. The stable and unstable manifolds of the asymmetric magnetic saddle are calculated through an adaptive method providing the manifold cuts at a given poloidal plane and the strike surfaces. For the modeled shot, the experimental heat pattern and its time development are well described by the rotating unstable manifold, indicating the emergence of homoclinic lobes in a rotating frame due to the plasma ...
Storage of energy in confined quantum systems
Malbouisson, A. P. C.
2002-01-01
Using the non-perturbative method of {\\it dressed} states introduced in previous publications [N.P.Andion, A.P.C. Malbouisson and A. Mattos Neto, J.Phys.{\\bf A34}, 3735, (2001); G. Flores-Hidalgo, A.P.C. Malbouisson, Y.W. Milla, Phys. Rev. A, {\\bf 65}, 063314 (2002)], we study the evolution of a confined quantum mechanical system embedded in a {\\it ohmic} environment. Our approach furnishes a theoretical mechanism to control inhibition of the decay of excited quantum systems in cavities, in b...
Emergency Entry with One Control Torque: Non-Axisymmetric Diagonal Inertia Matrix
Llama, Eduardo Garcia
2011-01-01
In another work, a method was presented, primarily conceived as an emergency backup system, that addressed the problem of a space capsule that needed to execute a safe atmospheric entry from an arbitrary initial attitude and angular rate in the absence of nominal control capability. The proposed concept permits the arrest of a tumbling motion, orientation to the heat shield forward position and the attainment of a ballistic roll rate of a rigid spacecraft with the use of control in one axis only. To show the feasibility of such concept, the technique of single input single output (SISO) feedback linearization using the Lie derivative method was employed and the problem was solved for different number of jets and for different configurations of the inertia matrix: the axisymmetric inertia matrix (I(sub xx) > I(sub yy) = I(sub zz)), a partially complete inertia matrix with I(sub xx) > I(sub yy) > I(sub zz), I(sub xz) not = 0 and a realistic complete inertia matrix with I(sub xx) > I(sub yy) > I)sub zz), I(sub ij) not= 0. The closed loop stability of the proposed non-linear control on the total angle of attack, Theta, was analyzed through the zero dynamics of the internal dynamics for the case where the inertia matrix is axisymmetric (I(sub xx) > I(sub yy) = I(sub zz)). This note focuses on the problem of the diagonal non-axisymmetric inertia matrix (I(sub xx) > I(sub yy) > I(sub zz)), which is half way between the axisymmetric and the partially complete inertia matrices. In this note, the control law for this type of inertia matrix will be determined and its closed-loop stability will be analyzed using the same methods that were used in the other work. In particular, it will be proven that the control system is stable in closed-loop when the actuators only provide a roll torque.
Stability and Transport in Magnetic Confinement Systems
Weiland, Jan
2012-01-01
Stability and Transport in Magnetic Confinement Systems provides an advanced introduction to the fields of stability and transport in tokamaks. It serves as a reference for researchers with its highly-detailed theoretical background, and contains new results in the areas of analytical nonlinear theory of transport using kinetic theory and fluid closure. The use of fluid descriptions for advanced stability and transport problems provide the reader with a better understanding of this topic. In addition, the areas of nonlinear kinetic theory and fluid closure gives the researcher the basic knowledge of a highly relevant area to the present development of transport physics.
Suppression of edge localized mode crashes by multi-spectral non-axisymmetric fields in KSTAR
Kim, Jayhyun; Park, Gunyoung; Bae, Cheonho; Yoon, Siwoo; Han, Hyunsun; Yoo, Min-Gu; Park, Young-Seok; Ko, Won-Ha; Juhn, June-Woo; Na, Yong Su; The KSTAR Team
2017-02-01
Among various edge localized mode (ELM) crash control methods, only non-axisymmetric magnetic perturbations (NAMPs) yield complete suppression of ELM crashes beyond their mitigation, and thus attract more attention than others. No other devices except KSTAR, DIII-D, and recently EAST have successfully achieved complete suppression with NAMPs. The underlying physics mechanisms of these successful ELM crash suppressions in a non-axisymmetric field environment, however, still remain uncertain. In this work, we investigate the ELM crash suppression characteristics of the KSTAR ELMy H-mode discharges in a controlled multi-spectral field environment, created by both n=2 middle reference and n=1 top/bottom proxy in-vessel control coils. Interestingly, the attempts have produced a set of contradictory findings, one expected (ELM crash suppression enhancement with the addition of n = 1 to the n = 2 field at relatively low heating discharges) and another unexpected (ELM crash suppression degradation at relatively high heating discharges) from the earlier findings in DIII-D. This contradiction indicates the dependence of the ELM crash suppression characteristics on the heating level and the associated kink-like plasma responses. Preliminary linear resistive MHD plasma response simulation shows the unexpected suppression performance degradation to be likely caused by the dominance of kink-like plasma responses over the island gap-filling effects.
Energy Technology Data Exchange (ETDEWEB)
Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2014-09-30
The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10^{-4} of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in
Energy Technology Data Exchange (ETDEWEB)
Strait, E. J. [General Atomics, San Diego, CA (United States); Park, J. -K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Marmar, E. S. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ahn, J. -W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Berkery, J. W. [Columbia Univ., New York, NY (United States); Burrell, K. H. [General Atomics, San Diego, CA (United States); Canik, J. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Ferraro, N. M. [General Atomics, San Diego, CA (United States); Garofalo, A. M. [General Atomics, San Diego, CA (United States); Gates, D. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Greenwald, M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kim, K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); King, J. D. [General Atomics, San Diego, CA (United States); Lanctot, M. J. [General Atomics, San Diego, CA (United States); Lazerson, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Liu, Y. Q. [Culham Science Centre, Abingdon (United Kingdom). Euratom/CCFE Association; Logan, N. C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Lore, J. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menard, J. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Nazikian, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Shafer, M. W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Paz-Soldan, C. [General Atomics, San Diego, CA (United States); Reiman, A. H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Rice, J. E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Sabbagh, S. A. [Columbia Univ., New York, NY (United States); Sugiyama, L. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Turnbull, A. D. [General Atomics, San Diego, CA (United States); Volpe, F. [Columbia Univ., New York, NY (United States); Wang, Z. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wolfe, S. M. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2014-09-30
The goal of the 2014 Joint Research Target (JRT) has been to conduct experiments and analysis to investigate and quantify the response of tokamak plasmas to non-axisymmetric (3D) magnetic fields. Although tokamaks are conceptually axisymmetric devices, small asymmetries often result from inaccuracies in the manufacture and assembly of the magnet coils, or from nearby magnetized objects. In addition, non-axisymmetric fields may be deliberately applied for various purposes. Even at small amplitudes of order 10^{-4} of the main axisymmetric field, such “3D” fields can have profound impacts on the plasma performance. The effects are often detrimental (reduction of stabilizing plasma rotation, degradation of energy confinement, localized heat flux to the divertor, or excitation of instabilities) but may in some case be beneficial (maintenance of rotation, or suppression of instabilities). In general, the magnetic response of the plasma alters the 3D field, so that the magnetic field configuration within the plasma is not simply the sum of the external 3D field and the original axisymmetric field. Typically the plasma response consists of a mixture of local screening of the external field by currents induced at resonant surfaces in the plasma, and amplification of the external field by stable kink modes. Thus, validated magnetohydrodynamic (MHD) models of the plasma response to 3D fields are crucial to the interpretation of existing experiments and the prediction of plasma performance in future devices. The non-axisymmetric coil sets available at each facility allow well-controlled studies of the response to external 3D fields. The work performed in support of the 2014 Joint Research Target has included joint modeling and analysis of existing experimental data, and collaboration on new experiments designed to address the goals of the JRT. A major focus of the work was validation of numerical models through quantitative comparison to experimental data, in
Non-axisymmetric Structure of Accretion Disks in Be/X-ray Binaries
Hayasaki, K; Hayasaki, Kimitake; Okazaki, Atsuo T.
2004-01-01
The non-axisymmetric structure of accretion disks around the neutron star in Be/X-ray binaries is studied by analyzing the results from three dimensional (3D) Smoothed Particle Hydrodynamics (SPH) simulations. It is found that ram pressure due to the phase-dependent mass transfer from the Be-star disk excites a one-armed, trailing spiral structure in the accretion disk around the neutron star. The spiral wave has a transient nature; it is excited around the periastron, when the material is transferred from the Be disk, and is gradually damped afterwards. It is also found that the orbital phase-dependence of the mass-accretion rate is mainly caused by the inward propagation of the spiral wave excited in the accretion disk.
Volponi, Francesco
2013-01-01
Discs with a rotation profile depending on radius and height are subject to an axisymmetric linear instability, the vertical shear instability. Here we show that non-axisymmetric perturbations, while eventually stabilized, can sustain huge exponential amplifications with growth rate close to the axisymmetric one. Transient growths are therefore to all effects genuine instabilities. The ensuing angular momentum transport is positive. These growths occur when the product of the radial times the vertical wavenumbers (both evolving with time) is positive for a positive local vertical shear, or negative for a negative local vertical shear. We studied, as well, the interaction of these vertical shear induced growths with a convective instability. The asymptotic behaviour depends on the relative strength of the axisymmetric vertical shear (s_v) and convective (s_c) growth rates. For s_v > s_c we observed the same type of behaviour described above - large growths occur with asymptotic stabilization. When s_c > s_v th...
Towards Simulating Non-Axisymmetric Influences on Aircraft Plumes for Signature Prediction
Kenzakowski, D. C.; Shipman, J. D.; Dash, S. M.
2000-01-01
A methodology for efficiently including three-dimensional effects on aircraft plume signature is presented. First, exploratory work on the use of passive mixing enhancement devices, namely chevrons and tabs, in IR signature reduction for external turbofan plumes is demonstrated numerically and experimentally. Such small attachments, when properly designed, cause an otherwise axisymmetric plume to have significant 3D structures, affecting signature prediction. Second, an approach for including non-axisymmetric and installation effects in plume signature prediction is discussed using unstructured methodology. Unstructured flow solvers, using advanced turbulence modeling and plume thermochemistry, facilitate the modeling of aircraft effects on plume structure that previously have been neglected due to gridding complexities. The capabilities of the CRUNCH unstructured Navier-Stokes solver for plume modeling is demonstrated for a passively mixed turbofan nozzle, a generic fighter nozzle, and a complete aircraft.
Unsteady heat transfer in non-axisymmetric Homann stagnation-point flows
Mahapatra, T. R.; Sidui, S.
2017-04-01
An analysis is carried out to study the unsteady non-axisymmetric Homann's stagnation-point flow and heat transfer of an incompressible viscous fluid over a rigid plate in the presence of time-dependent free stream. The temperature of the plate is assumed to be higher than the ambient fluid temperature. Using similarity variables, the governing partial differential equations are transformed into nonlinear ordinary differential equations. These equations are then solved numerically using fourth-order Runge-Kutta method with shooting technique. The effects of the shear-to-strain rate ratio parameter γ (γ =b/a where a and b are the strain rate and shear rate of the stagnation-point flow, respectively) and the unsteadiness parameter λ on wall shear stress parameters, dimensionless velocities, rate of heat transfer at the wall and dimensionless temperature are analysed. It is found that the large-γ asymptotes do not depend on the parameter λ.
Three-dimensional non-axisymmetric Lamb's problem for saturated soil
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on the integral transformation method with which the combinatory integral transform of the displacements and the combinatory integral transform of the stresses are presented, the three-dimensional (3-D) non-axisymmetric governing dynamic equation in the Biot's theory of two-phase medium is solved. Integral solutions with the soil skeleton displacements and pore pressure as the main unknown quantity are obtained. On the basis of this solution, a systematic study on Lamb's problems for saturated soils is performed. Considering the case of drained surface and the case of undrained surface, the integral solutions for surface radial, vertical and circumferential direction displacements under the vertical surface force and horizontal surface force are obtained,which would be reduced to the solutions of the classical Lamb's problem. So, the correctness of the solutions would be verified. The numerical example indicates that the two-dimensional (2-D) model cannot be applied to 3-D problem accurately.
Three-dimensional non-axisymmetric Lamb’ s problem for saturated soil
Institute of Scientific and Technical Information of China (English)
黄义; 张玉红
2000-01-01
Based on the integral transformation method with which the combinatory integral transform of the displacements and the combinatory integral transform of the stresses are presented, the three-dimensional (3-D) non-axisymmetric governing dynamic equation in the Biot’s theory of two-phase medium is solved. Integral solutions with the soil skeleton displacements and pore pressure as the main unknown quantity are obtained. On the basis of this solution, a systematic study on Lamb’ s problems for saturated soils is performed. Considering the case of drained surface and the case of undrained surface, the integral solutions for surface radial, vertical and circumferential direction displacements under the vertical surface force and horizontal surface force are obtained, which would be reduced to the solutions of the classical Lamb’s problem. So, the correctness of the solutions would be verified. The numerical example indicates that the two-dimensional (2-D) model cannot be applied to 3-D problem accurately.
Non-axisymmetric flexural vibrations of free-edge circular silicon wafers
Energy Technology Data Exchange (ETDEWEB)
Dmitriev, A.V., E-mail: dmitriev@hbar.phys.msu.ru; Gritsenko, D.S.; Mitrofanov, V.P., E-mail: mitr@hbar.phys.msu.ru
2014-02-07
Non-axisymmetric flexural vibrations of circular silicon (111) wafers are investigated. The modes with azimuthal index 2⩽k⩽30 are electrostatically excited and monitored by a capacitive sensor. The splitting of the mode frequencies associated with imperfection of the wafer is observed. The measured loss factors for the modes with 6≲k≲26 are close to those calculated according to the thermoelastic damping theory, while clamping losses likely dominate for k≲6, and surface losses at the level of inverse Q-factor Q{sup −1}≈4×10{sup −6} prevail for the modes with large k. The modes demonstrate nonlinear behavior of mainly geometrical origin at large amplitudes.
Experimental study of libration-driven zonal flows in non-axisymmetric containers
Noir, Jerome; Bars, Michael Le; Sauret, Alban; Aurnou, J M; 10.1016/j.pepi.2012.05.005
2013-01-01
Orbital dynamics that lead to longitudinal libration of celestial bodies also result in an elliptically deformed equatorial core-mantle boundary. The non-axisymmetry of the boundary leads to a topographic coupling between the assumed rigidmantle and the underlying low viscosity fluid.The present experimental study investigates theeffect of non axisymmetric boundaries on the zonal flow driven by longitudinal libration. For large enough equatorial ellipticity, we report intermittent space-filling turbulence in particular bands of resonant frequency correlated with larger amplitude zonal flow. The mechanism underlying the intermittent turbulence has yet to be unambiguously determined. Nevertheless, recent numerical simulations in triaxial and biaxial ellipsoids suggest that it may be associated with the growth and collapse of an elliptical instability (Cebron et al., 2012). Outside of the band of resonance, we find that the background flow is laminar and the zonal flow becomes independent of the geometry at firs...
Ultrafast chemistry in complex and confined systems
Indian Academy of Sciences (India)
Partha Dutta; Kankan Bhattacharyya
2004-01-01
Self-organized molecular assemblies play a crucial role in many natural and biological processes. Recent applications of ultrafast laser spectroscopy and computer simulations revealed that chemistry in a confined environment is fundamentally different from that in ordinary solutions. Many recent examples of slow dynamics in constrained environments and their biological implications are discussed.
Energy Technology Data Exchange (ETDEWEB)
Fujisawa, Nobuyuki, E-mail: fujisawa@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, Niigata (Japan); Kanatani, Nobuaki [Graduate School of Science and Technology, Niigata University, Niigata (Japan); Yamagata, Takayuki, E-mail: yamagata@eng.niigata-u.ac.jp [Visualization Research Center, Niigata University, Niigata (Japan); Takano, Tsuyoshi [Graduate School of Science and Technology, Niigata University, Niigata (Japan)
2015-04-15
Highlights: • Pipe-wall thinning due to flow accelerated corrosion is studied. • Pipeline geometry consists of elbow and orifice in swirling flow. • Velocity field and mass transfer rate are measured in pipeline. • Non-axisymmetric pipe-wall thinning occurs behind orifice. - Abstract: In this study, the mechanism of non-axisymmetric pipe-wall thinning that led to a pipeline break in the Mihama nuclear power plant in 2004 is evaluated in a scale-model experiment in a water tunnel having an elbow and orifice under the influence of swirling flow. The velocity fields are measured by stereo particle image velocimetry, and the mass transfer rate is measured by a benzoic acid dissolution method at Reynolds number Re = 3 × 10{sup 4} with and without swirling flow. The non-axisymmetric swirling flow is found to be generated behind the elbow, even when the axisymmetric swirling flow is supplied in the upstream of the elbow. The secondary flow generated in the elbow is not suppressed in the pipeline 10 diameters downstream of elbow in the swirling flow, and in this flow geometry, the non-axisymmetry of the flow is greatly magnified downstream of the orifice. The measured mass transfer rates downstream of the orifice under the influence of swirling flow indicate that the Sherwood number distribution on one side of the pipe is enhanced and that on the other side is reduced owing to the appearance of the non-axisymmetric swirling flow, which results in the occurrence of non-axisymmetric pipe-wall thinning downstream of the orifice.
Gravitational wave recoils in non-axisymmetric Robinson-Trautman spacetimes
Aranha, R F; Tonini, E V
2014-01-01
We examine the gravitational wave recoil waves and the associated net kick velocities in non-axisymmetric Robinson-Trautman spacetimes. We use characteristic initial data for the dynamics corresponding to non-head-on collisions of black holes. We make a parameter study of the kick distributions, corresponding to an extended range of the incidence angle $\\rho_0$ in the initial data. For the range of $\\rho_0$ examined ($3^{\\circ} \\leq \\rho_0 \\leq 110^{\\circ}$) the kick distributions as a function of the symmetric mass parameter $\\eta$ satisfy a law obtained from an empirical modification of the Fitchett law, with a parameter $C$ that accounts for the non-zero net gravitational momentum wave fluxes for the equal mass case. The law fits accurately the kick distributions for the range of $\\rho_0$ examined, with a rms normalized error of the order of $5 \\%$. For the equal mass case the nonzero net gravitational wave momentum flux increases as $\\rho_0$ increases, up to $\\rho_0 \\simeq 55^{\\circ}$ beyond which it decr...
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions,drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated.
Weisberg, D. B.; Paz-Soldan, C.; Lanctot, M. J.; Strait, E. J.; Evans, T. E.
2016-10-01
The plasma response to proposed 3D coil geometries in the DIII-D tokamak is investigated using the linear MHD plasma response code MARS-F. An extensive examination of low- and high-field side coil arrangements shows the potential to optimize the coupling between imposed non-axisymmetric magnetic perturbations and the total plasma response by varying the toroidal and poloidal spectral content of the applied field. Previous work has shown that n=2 and n=3 perturbations can suppress edge-localized modes (ELMs) in cases where the applied field's coupling to resonant surfaces is enhanced by amplifying marginally-stable kink modes. This research is extended to higher n-number configurations of 2 to 3 rows with up to 12 coils each in order to advance the physical understanding and optimization of both the resonant and non-resonant responses. Both in- and ex-vessel configurations are considered. The plasma braking torque is also analyzed, and coil geometries with favorable plasma coupling characteristics are discussed. Work supported by GA internal funds.
Chao, Wei-Yang; Chen, Yi-Yung; Whang, Allen Jong-Woei; Lu, Ming-Jun
2011-10-01
With the rapid development of various types of digi-readers, such as i-Pad, Kindle, and so on, non-self-luminous type has an advantage, low power consumption. This type of digi-reader reflects the surrounding light to display so it is no good at all to read under dim environment. In this paper, we design a LED lamp for a square lighted range with low power consumption. The e-book is about 12cm x 9cm, the total flux of LED is 3 Lm, and the LED lamp is put on the upper brink of the panel with 6cm height and 45 degree tilted angle. For redistributing the energy, the LED lamp has a freeform lens to control the light of small view angle and a non-axisymmetrical reflector to control the light of large view angle and create a rectangular-like spot. In accordance with the measurement data, the proposed optical structure achieves that the power consumption of LED light source is only 90mW, the average illumination is about 200 Lux, the uniformity of illumination is over 0.7, and the spot is rectangular-like with precise light/dark cutting-off line. Our designed optical structure significantly increases the efficiency of light using and meets the environmental goal of low energy consumption.
Collapse of a non-axisymmetric, impact-created air cavity in water
Enriquez, Oscar R; Gekle, Stephan; Schmidt, Laura E; Lohse, Detlef; Van Der Meer, Devaraj
2011-01-01
The axisymmetric collapse of a cylindrical air cavity in water follows a universal power law with logarithmic corrections. Nonetheless, it has been suggested that the introduction of a small azimuthal disturbance induces a long term memory effect, reflecting in oscillations which are no longer universal but remember the initial condition. In this work, we show that the walls of a non-axisymmetric, impact-created cavity indeed oscillate with a nearly constant amplitude and increasing frequency as they collapse. The cavities are characterized by azimuthal harmonic disturbances with a single mode number $m$ and amplitude $a_m$. Our experimental setup allows us to investigate the influence of these two parameters in greater depth than any previous studies. For small initial distortion amplitude (1 or 2 % of the mean disc radius), the cavity walls oscillate linearly with nearly constant amplitude. Non-linear effects, if at all, are observed only at the very end of the collapse. As the amplitude is increased, non-l...
Non-Axisymmetric Inflatable Pressure Structure (NAIPS) Full-Scale Pressure Test
Jones, Thomas C.; Doggett, William R.; Warren, Jerry E.; Watson, Judith J.; Shariff, Khadijah; Makino, Alberto; Yount, Bryan C.
2017-01-01
Inflatable space structures have the potential to significantly reduce the required launch volume for large pressure vessels required for exploration applications including habitats, airlocks and tankage. In addition, mass savings can be achieved via the use of high specific strength softgoods materials, and the reduced design penalty from launching the structure in a densely packaged state. Large inclusions however, such as hatches, induce a high mass penalty at the interfaces with the softgoods and in the added rigid structure while reducing the packaging efficiency. A novel, Non-Axisymmetric Inflatable Pressure Structure (NAIPS) was designed and recently tested at NASA Langley Research Center to demonstrate an elongated inflatable architecture that could provide areas of low stress along a principal axis in the surface. These low stress zones will allow the integration of a flexible linear seal that substantially reduces the added mass and volume of a heritage rigid hatch structure. This paper describes the test of the first full-scale engineering demonstration unit (EDU) of the NAIPS geometry and a comparison of the results to finite element analysis.
Normal modes of confined cold ionic systems
Energy Technology Data Exchange (ETDEWEB)
Schiffer, J.P.; Dubin, D.H. [Univ. of California, San Diego, CA (United States)
1995-08-01
The normal modes of a cloud of confined ions forming a strongly-correlated plasma were investigated. The results of molecular-dynamics simulations were compared to predictions of a cold fluid mode. Mode frequencies are observed to shift slightly compared to the cold fluid predictions, and the modes are also observed to damp in time. Simulations also reveal a set of torsional oscillations which have no counterpart in cold fluid theory. The frequency shift, damping, and torsional effects are compared to a model that treats trapped plasmas as a visco-elastic spheroid. It may be possible to measure high-frequency bulk and shear moduli of a strongly-correlated plasma from mode excitation experiments on trapped non-neutral plasmas. An example of the results of the calculation is presented.
Finite Element Simulation on the Spin-forming of the 3D Non-axisymmetric Thin-Walled Tubes
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The roller movement trace for the 3D non-axisymmetric thin-walled tubes is a complex space curve. Besides the roller rotation caused by contact with the blank, the roller rotates around the workpiece together with the main spindle, and also moves simultaneously along the direction of the revolution radius. The method to correctly establish the finite element (FE) models of the metal spinning is based on the MSC. MARC software was introduced. The calculation formulas considering both the revolution and rotation of the roller were obtained by the mathematical deduction. The saving calculation points m should be a multiple of 4 for one revolution of the roller around the workpiece to obtain the maximum forming force for the spinning of the 3D non-axisymmetric thin-walled tubes. The simulation results conform well to the experimental ones for several spinning methods; the maximum error is less than ±15%.
Kim, Kimin; Jeon, Y. M.; Park, J.-K.; Ko, W. H.; In, Y.; Choe, W.; Kim, J.; Lee, S. G.; Yoon, S. W.; Kwak, J. G.; Oh, Y. K.
2017-03-01
The variation of a magnetic braking profile by non-axisymmetric magnetic fields has been experimentally demonstrated and numerically validated in the KSTAR tokamak. Two types of n = 2 non-resonant magnetic fields were applied by changing the relative phase of non-axisymmetric field coils. One is even parity, of which non-resonant fields deeply penetrate into the plasma core, and the other is odd parity localized at the plasma edge. The even and odd parity produced significantly different perturbed magnetic field structures, and thereby drove global and edge-dominant toroidal rotation damping, respectively. These distinct braking profiles are consistently reproduced by drift-kinetic particle simulations, indicating the possibility of the predictive utilization of non-resonant magnetic fields for rotation profile control.
Reese, D; Rieutord, M
2004-01-01
We carry out numerical and mathematical investigations of shear Alfven waves inside of a spherical shell filled with an incompressible conducting fluid, and bathed in a strong dipolar magnetic field. We focus on axisymmetric toroidal and non-axisymmetric modes, in continuation of a previous work by Rincon & Rieutord (2003). Analytical expressions are obtained for toroidal eigenmodes and their corresponding frequencies at low diffusivities. These oscillations behave like magnetic shear layers, in which the magnetic poles play a key role, and hence become singular when diffusivities vanish. It is also demonstrated that non-axisymmetric modes are split into two categories, namely poloidal or toroidal types, following similar asymptotic behaviours as their axisymmetric counterparts when the diffusivities become arbitrarily small.
Neoclassical toroidal torque generation by auxiliary heating in non-axisymmetric tori
Lazzaro, E.; Nowak, S.; Sauter, O.
2016-12-01
In conditions of ideal axisymmetry, for a magnetized plasma in a generic bounded domain, necessarily toroidal, the uniform absorption of external energy (e.g. rf or isotropic alpha heating) clearly cannot give rise to net forces or torques. A rather common experimental observation on contemporary tokamaks is that the near central absorption of auxiliary heating power (often ICH, ECH, and LHCD) and current drive in presence of non axisymmetric magnetic perturbations, including tearing modes, drives a bulk plasma rotation in the co - I p direction. Also growing tearing modes provide a nonlinear magnetic braking that tends to flatten the rotation profile and clamp it at the q-rational surfaces. The physical origin of the torque associated with P aux absorption could be due the effects of asymmetry in deposition or in the equilibrium configuration, but here we consider also the effect of the response of the so called neoclassical offset velocity to the power dependent heat flow increment. The neoclassical toroidal viscosity (NTV), due to error fields, internal magnetic kink or tearing modes tends to relax the plasma rotation to this asymptotic speed, which in absence of auxiliary heating is of the order of the ion diamagnetic velocity. It can be shown by a kinetic calculation, this offset velocity is a function of the absorbed heat and therefore of the injected auxiliary power, thereby forcing the plasma rotation in a direction opposite to the initial, to large values. The problem is discussed in the frame of the theoretical models of neoclassical toroidal viscosity.
CSIR Research Space (South Africa)
Shatalov, MY
2007-04-01
Full Text Available and Department of Mathematics and Statistics P.B.X680, Pretoria 0001 FIN-40014 Tshwane University of Technology, South Africa e-mail: mshatlov@csir.co.za **School of Physics, University of Witwatersrand, Po Box 2050, Johannesburg, South Africa, e-mail: arthur....every@wits.ac.za ***Sensor Science and Technology (SST) of CSIR Material Science and Manufacturing, P.O. Box 395, Pretoria 0001, CSIR, South Africa e-mail: ayenwongfai@csir.co.za Abstract: Coupled electro-mechanical non- axisymmetric vibrations are considered in a...
Computer simulation of confined and flexoelectric liquid crystalline systems
Barmes, F
2003-01-01
In this Thesis, systems of confined and flexoelectric liquid crystal systems have been studied using molecular computer simulations. The aim of this work was to provide a molecular model of a bistable display cell in which switching is induced through the application of directional electric field pulses. In the first part of this Thesis, the study of confined systems of liquid crystalline particles has been addressed. Computation of the anchoring phase diagrams for three different surface interaction models showed that the hard needle wall and rod-surface potentials induce both planar and homeotropic alignment separated by a bistability region, this being stronger and wider for the rod-surface varant. The results obtained using the rod-sphere surface model, in contrast, showed that tilled surface arrangements can be induced by surface absorption mechanisms. Equivalent studies of hybrid anchored systems showed that a bend director structure can be obtained in a slab with monostable homeotropic anchoring at the...
Radiation and confinement in 0D fusion systems codes
Lux, H.; Kemp, R.; Fable, E.; Wenninger, R.
2016-07-01
In systems modelling for fusion power plants, it is essential to robustly predict the performance of a given machine design (including its respective operating scenario). One measure of machine performance is the energy confinement time {τ\\text{E}} that is typically predicted from experimentally derived confinement scaling laws (e.g. IPB98(y,2)). However, the conventionally used scaling laws have been derived for ITER which—unlike a fusion power plant—will not have significant radiation inside the separatrix. In the absence of a new high core radiation relevant confinement scaling, we propose an ad hoc correction to the loss power {{P}\\text{L}} used in the ITER confinement scaling and the calculation of the stored energy {{W}\\text{th}} by the radiation losses from the ‘core’ of the plasma {{P}\\text{rad,\\text{core}}} . Using detailed ASTRA / TGLF simulations, we find that an appropriate definition of {{P}\\text{rad,\\text{core}}} is given by 60% of all radiative losses inside a normalised minor radius {ρ\\text{core}}=0.75 . We consider this an improvement for current design predictions, but it is far from an ideal solution. We therefore encourage more detailed experimental and theoretical work on this issue.
Confinement Vessel Assay System: Design and Implementation Report
Energy Technology Data Exchange (ETDEWEB)
Frame, Katherine C. [Los Alamos National Laboratory; Bourne, Mark M. [Los Alamos National Laboratory; Crooks, William J. [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Gomez, Cipriano D. [Retired CMR-OPS: OPERATIONS; Miko, David K. [Los Alamos National Laboratory; Salazar, William R. [Los Alamos National Laboratory; Stange, Sy [Los Alamos National Laboratory; Vigil, Georgiana M. [Los Alamos National Laboratory
2012-07-18
Los Alamos National Laboratory has a number of spherical confinement vessels remaining from tests involving nuclear materials. These vessels have an inner diameter of 6 feet with 1- to 2-inch thick steel walls. The goal of the Confinement Vessel Disposition (CVD) project is to remove debris and reduce contamination inside the vessels. We have developed a neutron assay system for the purposes of Materials Control and Accountability (MC&A) measurements of the vessel prior to and after cleanout. We present our approach to confronting the challenges in designing, building, and testing such a system. The system was designed to meet a set of functional and operational requirements. A Monte Carlo model was developed to aid in optimizing the detector design as well as to predict the systematic uncertainty associated with confinement vessel measurements. Initial testing was performed to optimize and determine various measurement parameters, and then the system was characterized using {sup 252}Cf placed a various locations throughout the measurement system. Measurements were also performed with a {sup 252}Cf source placed inside of small steel and HDPE shells to study the effect of moderation. These measurements compare favorably with their MCNPX model equivalent, making us confident that we can rely on the Monte Carlo simulation to predict the systematic uncertainty due to variations in response to material that may be localized at different points within a vessel.
Nature of ordering in confined crystalline ionic systems
Energy Technology Data Exchange (ETDEWEB)
Schiffer, J.P.
1995-08-01
Simulations continued studying the properties of systems of ions confined in ion traps or storage rings and cooled to very low temperatures, forming a strongly correlated non-neutral plasma. In particular the computer simulation of a large system of 20000 ions in isotropic confinement was continued to investigate whether a transition to the body-centered cubic order that is characteristic of infinite systems might occur. The simulations so far have not provided a conclusive answer. The systems show a characteristic shell structure, 18 spherical shells, very similar to what was seen in smaller simulations. Simulations were also done with the same number of ions in anisotropic confinement. Here a surprising result is seen -- instead of forming a series of spheroidal shells, the anisotropy causes the outer shell to be spheroidal -- but the inner ones are formed at a fixed distance from the outermost shell -- giving shapes that are not spheroids and exhibit discontinuous edges. The relevance of these phenomena to ion traps needs to be investigated.
Universality classes and critical phenomena in confined liquid systems
Directory of Open Access Journals (Sweden)
A.V. Chalyi
2013-06-01
Full Text Available It is well known that the similar universal behavior of infinite-size (bulk systems of different nature requires the same basic conditions: space dimensionality; number components of order parameter; the type (short- or long-range of the intermolecular interaction; symmetry of the fluctuation part of thermodynamical potential. Basic conditions of similar universal behavior of confined systems needs the same supplementary conditions such as the number of monolayers for a system confinement; low crossover dimensionality, i.e., geometric form of restricted volume; boundary conditions on limiting surfaces; physical properties under consideration. This review paper is aimed at studying all these conditions of similar universal behavior for diffusion processes in confined liquid systems. Special attention was paid to the effects of spatial dispersion and low crossover dimensionality. This allowed us to receive receiving correct nonzero expressions for the diffusion coefficient at the critical point and to take into account the specific geometric form of the confined liquid volume. The problem of 3D⇔2D dimensional crossover was analyzed. To receive a smooth crossover for critical exponents, the Kawasaki-like approach from the theory of mode coupling in critical dynamics was proposed. This ensured a good agreement between data of computer experiment and theoretical calculations of the size dependence of the critical temperature Tc(H of water in slitlike pores. The width of the quasi-elastic scattering peak of slow neutrons near the structural phase transition in the aquatic suspensions of plasmatic membranes (mesostructures with the typical thickness up to 10 nm was studied. It was shown that the width of quasi-elastic peak of neutron scattering decreases due to the process of cell proliferation, i.e., with an increase of the membrane size (including the membrane thickness. Thus, neutron studies could serve as an additional diagnostic test for the
Modeling and Prediction of the Noise from Non-Axisymmetric Jets
Leib, Stewart J.
2014-01-01
mean flows which were meant to represent noise reduction concepts being considered by NASA. Testing (Ref. 5) showed that the method was feasible for the types of mean flows of interest in jet noise applications. Subsequently, this method was further developed to allow use of mean flow profiles obtained from a Reynolds-averaged Navier-Stokes (RANS) solution of the flow. Preliminary testing of the generalized code was among the last tasks completed under this contract. The stringent noise-reduction goals of NASA's Fundamental Aeronautics Program suggest that, in addition to potentially complex exhaust nozzle geometries, next generation aircraft will also involve tighter integration of the engine with the airframe. Therefore, noise generated and propagated by jet flows in the vicinity of solid surfaces is expected to be quite significant, and reduced-order noise prediction tools will be needed that can deal with such geometries. One important source of noise is that generated by the interaction of a turbulent jet with the edge of a solid surface (edge noise). Such noise is generated, for example, by the passing of the engine exhaust over a shielding surface, such as a wing. Work under this task supported an effort to develop a RANS-based prediction code for edge noise based on an extension of the classical Rapid Distortion Theory (RDT) to transversely sheared base flows (Refs. 6 and 7). The RDT-based theoretical analysis was applied to the generic problem of a turbulent jet interacting with the trailing edge of a flat plate. A code was written to evaluate the formula derived for the spectrum of the noise produced by this interaction and results were compared with data taken at NASA Glenn for a variety of jet/plate configurations and flow conditions (Ref. 8). A longer-term goal of this task was to work toward the development of a high-fidelity model of sound propagation in spatially developing non-axisymmetric jets using direct numerical methods for solving the relevant
Quench Dynamics in Confined 1+1-Dimensional Systems
Engelhardt, Dalit
2015-01-01
We present a scheme for investigating the response of confined 1+1-dimensional systems to a quantum quench and consider the extent to which a system whose post-quench dynamics are near-integrable may be analyzed by an application of boundary CFT techniques. As the main example we present a model of a split-momentum quench in a finite 1D geometry, a setup analogous to that of the experiment of Kinoshita, Wenger, and Weiss [Nature 440, 900 (2006)]. We analytically derive the form of the expected momentum distributions and describe how such information may be used to assess the extent of integrability breaking in realistic systems.
Plasma transport simulation modeling for helical confinement systems
Energy Technology Data Exchange (ETDEWEB)
Yamazaki, K.; Amano, T.
1991-08-01
New empirical and theoretical transport models for helical confinement systems are developed based on the neoclassical transport theory including the effect of radial electric field and multi-helicity magnetic components, and the drift wave turbulence transport for electrostatic and electromagnetic modes, or the anomalous semi-empirical transport. These electron thermal diffusivities are compared with CHS (Compact Helical System) experimental data, which indicates that the central transport coefficient of the ECH plasma agrees with the neoclassical axi-symmetric value and the transport outside the half radius is anomalous. On the other hand, the transport of NBI-heated plasmas is anomalous in the whole plasma region. This anomaly is not explained by the electrostatic drift wave turbulence models in these flat-density-profile discharges. For the detailed prediction of plasma parameters in LHD (Large Helical Device), 3-D(dimensional) equilibrium/1-D transport simulations including empirical or drift wave turbulence models are carried out, which suggests that the global confinement time of LHD is determined mainly by the electron anomalous transport near the plasma edge region rather than the helical ripple transport in the core region. Even if the ripple loss can be eliminated, the increase of the global confinement is 10%. However, the rise in the central ion temperature is more than 20%. If the anomalous loss can be reduced to the half level of the present scaling, like so-called `H-mode` of the tokamak discharge, the neoclassical ripple loss through the ion channel becomes important even in the plasma core. The 5% radial inward shift of the plasma column with respect to the major radius is effective for improving plasma confinement and raising more than 50% of the fusion product by reducing this neoclassical asymmetric ion transport loss and increasing 10% in the plasma radius. (author).
Frassinetti, L.; Olofsson, K. E. J.; Fridström, R.; Setiadi, A. C.; Brunsell, P. R.; Volpe, F. A.; Drake, J.
2013-08-01
A new method for the estimate of the wall diffusion time of non-axisymmetric fields is developed. The method based on rotating external fields and on the measurement of the wall frequency response is developed and tested in EXTRAP T2R. The method allows the experimental estimate of the wall diffusion time for each Fourier harmonic and the estimate of the wall diffusion toroidal asymmetries. The method intrinsically considers the effects of three-dimensional structures and of the shell gaps. Far from the gaps, experimental results are in good agreement with the diffusion time estimated with a simple cylindrical model that assumes a homogeneous wall. The method is also applied with non-standard configurations of the coil array, in order to mimic tokamak-relevant settings with a partial wall coverage and active coils of large toroidal extent. The comparison with the full coverage results shows good agreement if the effects of the relevant sidebands are considered.
Liu, L H
2003-01-01
A multi-wavelength inversion method is extended to reconstruct the time-averaged temperature distribution in non-axisymmetric turbulent unconfined sooting flame by the multi-wavelength measured data of low time-resolution outgoing emission and transmission radiation intensities. Gaussian, beta and uniform distribution probability density functions (PDF) are used to simulate the turbulent fluctuation of temperature, respectively. The reconstruction of time-averaged temperature consists of three steps. First, the time-averaged spectral absorption coefficient is retrieved from the time-averaged transmissivity data by an algebraic reconstruction technique. Then, the time-averaged blackbody spectral radiation intensity is estimated from the outgoing spectral emission radiation intensities. Finally, the time-averaged temperature is approximately reconstructed from the multi-wavelength time-averaged spectral emission radiation data by the least-squares method. Noisy input data have been used to test the performance ...
Zestanakis, P A; Anastassiou, G; Hizanidis, K
2015-01-01
The presence of non-axisymmetric perturbations in an axisymmetric magnetic field equilibrium renders the Guiding Center (GC) particle motion non-integrable and may result in particle, energy and momentum redistribution, due to resonance mechanisms. We analyse these perturbations in terms of their spectrum, as observed by the particles in the frame of unperturbed GC motion. We calculate semi-analytically the exact locations and strength of resonant spectral components of multiple perturbations. The presented Orbital Spectrum Analysis (OSA) method is based on an exact Action-Angle transform that fully takes into account Finite Orbit Width (FOW) effects. The method provides insight into the particle dynamics and enables the prediction of the effect of any perturbation to all different types of particles and orbits in a given, analytically or numerically calculated, axisymmetric equilibrium.
Monte-Carlo fluid approaches to detached plasmas in non-axisymmetric divertor configurations
Feng, Y.; Frerichs, H.; Kobayashi, M.; Reiter, D.
2017-03-01
Fluid transport modeling in three-dimensional boundaries of toroidal confinement devices is reviewed with the emphasis on a Monte-Carlo approach to simulate detached plasmas. The loss of axisymmetry in such configurations presents a major challenge for numerical implementation of the standard fluid model widely applied to fusion experimental devices. A large-scale effort has been made to address this problem under complementary aspects including different magnetic topologies and numerical techniques. In this paper, we give a brief review of the different strategies pioneered and the challenges involved. A more detailed description is provided for the Monte-Carlo code—EMC3-Eirene, where the physics model and the basic idea behind the applied Monte-Carlo method are presented. The focus is put on its applications to detachment studies for stellarators and tokamaks. Here, major achievements and difficulties encountered are described. Model limitations and further development plans are discussed.
CSIR Research Space (South Africa)
Every, AG
2010-01-01
Full Text Available at www.sciencedirect.com Physics Procedia 00 (2009) 000?000 www.elsevier.com/locate/procedia International Congress on Ultrasonics, Universidad de Santiago de Chile, January 2009 Progress in the analysis of non-axisymmetric wave propagation in a...
CSIR Research Space (South Africa)
Snedden, Glen C
2007-09-01
Full Text Available to performing tests on blading featuring non-axisymmetric endwalls in a lowspeed, rotating environment. The test rig has been refurbished in such a way as to dramatically improve the measurement standards and to provide the highest degree of commonality...
CSIR Research Space (South Africa)
Bergh, J
2012-06-01
Full Text Available improvements could be obtained through the design of custom end walls for the turbine. This investigation therefore covers the design of custom non-axisymmetric end wall contours for the rotor row of an annular turbine rig with unshrouded blades (the same rig...
Confinement-Induced Resonances in Ultracold Atom-Ion Systems
Melezhik, Vladimir S
2016-01-01
We investigate confinement-induced resonances in a system composed by a tightly trapped ion and a moving atom in a waveguide. We determine the conditions for the appearance of such resonances in a broad region -- from the "long-wavelength" limit to the opposite case when the typical length scale of the atom-ion interaction essentially exceeds the transverse waveguide width. We find considerable dependence of the resonance position on the atomic mass which, however, disappears in the "long-wavelength" limit, where the result for the confined atom-atom scattering is reproduced. We also derive an analytic formula for the resonance position in the "long-wavelength zero-energy" limit. Our results, which can be investigated in current experiments, indicate a strategy to determine the atom-ion scattering length, the temperature of the atomic ensemble in the presence of an ion impurity, and a pathway to control the atom-phonon coupling in a one dimensional ion crystal in interaction with an atomic quantum gas.
Energy Technology Data Exchange (ETDEWEB)
Liu, L.H. E-mail: liulh_hit@263.net; Man, G.L
2003-05-01
A multi-wavelength inversion method is extended to reconstruct the time-averaged temperature distribution in non-axisymmetric turbulent unconfined sooting flame by the multi-wavelength measured data of low time-resolution outgoing emission and transmission radiation intensities. Gaussian, {beta} and uniform distribution probability density functions (PDF) are used to simulate the turbulent fluctuation of temperature, respectively. The reconstruction of time-averaged temperature consists of three steps. First, the time-averaged spectral absorption coefficient is retrieved from the time-averaged transmissivity data by an algebraic reconstruction technique. Then, the time-averaged blackbody spectral radiation intensity is estimated from the outgoing spectral emission radiation intensities. Finally, the time-averaged temperature is approximately reconstructed from the multi-wavelength time-averaged spectral emission radiation data by the least-squares method. Noisy input data have been used to test the performance of the proposed inversion method. The results show that the time-averaged temperature distribution can be estimated with good accuracy, even with noisy input data. The accuracy of the estimation decreases with the increase of turbulent fluctuation intensity of temperature and the effects of assumed PDF on the reconstruction of temperature are small.
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
Lanctot, M. J.; Park, J.-K.; Piovesan, P.; Sun, Y.; Buttery, R. J.; Frassinetti, L.; Grierson, B. A.; Hanson, J. M.; Haskey, S. R.; In, Y.; Jeon, Y. M.; La Haye, R. J.; Logan, N. C.; Marrelli, L.; Orlov, D. M.; Paz-Soldan, C.; Wang, H. H.; Strait, E. J.
2017-05-01
In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ˜ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the "overlap" field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the "critical overlap fields" at which magnetic islands form are similar for applied n = 1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).
Energy Technology Data Exchange (ETDEWEB)
Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine); Kernbichler, Winfried; Martitsch, Andreas F.; Heyn, Martin F. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Maassberg, Henning [Max-Planck Institut für Plasmaphysik, D-17491 Greifswald (Germany)
2014-09-15
The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such that the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.
Magnetic self organization, MHD active control and confinement in RFX-mod
Energy Technology Data Exchange (ETDEWEB)
Marrelli, L; Zanca, P; Valisa, M; Marchiori, G; Alfier, A; Bonomo, F; Gobbin, M; Piovesan, P; Terranova, D; Agostini, M; Alessi, C; Antoni, V; Apolloni, L; Auriemma, F; Barana, O; Bettini, P; Bolzonella, T; Bonfiglio, D; Brombin, M; Buffa, A; Canton, A; Cappello, S; Carraro, L; Cavazzana, R; Cavinato, M; Chitarin, G; Bello, S Dal; Lorenzi, A De; Escande, D F; Fassina, A; Franz, P; Gadani, G; Gaio, E; Gazza, E; Giudicotti, L; Gnesotto, F; Grando, L; Guo, S C; Innocente, P; Lorenzini, R; Luchetta, A; Malesani, G; Manduchi, G; Marcuzzi, D; Martin, P; Martini, S; Martines, E; Masiello, A; Milani, F; Moresco, M; Murari, A; Novello, L; Ortolani, S; Paccagnella, R; Pasqualotto, R; Peruzzo, S; Piovan, R; Pizzimenti, A; Pomaro, N; Predebon, I; Puiatti, M E; Rostagni, G; Sattin, F; Scarin, P; Serianni, G; Sonato, P; Spada, E; Soppelsa, A; Spizzo, G; Spolaore, M; Taccon, C; Taliercio, C; Toigo, V; Vianello, N; Zaccaria, P; Zaniol, B; Zanotto, L; Zilli, E; Zollino, G; Zuin, M [Consorzio RFX, Associazione EURATOM-ENEA sulla fusione, Corso Stati Uniti, 4, 35127-Padova (Italy)
2007-12-15
RFX-mod is a reversed field pinch (RFP) experiment equipped with a system that actively controls the magnetic boundary. In this paper we describe the results of a new control algorithm, the clean mode control (CMC), in which the aliasing of the sideband harmonics generated by the discrete saddle coils is corrected in real time. CMC operation leads to a smoother (i.e. more axisymmetric) boundary. Tearing modes rotate (up to 100 Hz) and partially unlock. Plasma-wall interaction diminishes due to a decrease of the non-axisymmetric shift of the plasma column. With the ameliorated boundary control, plasma current has been successfully increased to 1.5 MA, the highest for an RFP. In such regimes, the magnetic dynamics is dominated by the innermost resonant mode, the internal magnetic field gets close to a pure helix and confinement improves.
Magnetic self organization, MHD active control and confinement in RFX-mod
Marrelli, L.; Zanca, P.; Valisa, M.; Marchiori, G.; Alfier, A.; Bonomo, F.; Gobbin, M.; Piovesan, P.; Terranova, D.; Agostini, M.; Alessi, C.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barana, O.; Bettini, P.; Bolzonella, T.; Bonfiglio, D.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Chitarin, G.; Dal Bello, S.; DeLorenzi, A.; Escande, D. F.; Fassina, A.; Franz, P.; Gadani, G.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Grando, L.; Guo, S. C.; Innocente, P.; Lorenzini, R.; Luchetta, A.; Malesani, G.; Manduchi, G.; Marcuzzi, D.; Martin, P.; Martini, S.; Martines, E.; Masiello, A.; Milani, F.; Moresco, M.; Murari, A.; Novello, L.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Peruzzo, S.; Piovan, R.; Pizzimenti, A.; Pomaro, N.; Predebon, I.; Puiatti, M. E.; Rostagni, G.; Sattin, F.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spizzo, G.; Spolaore, M.; Taccon, C.; Taliercio, C.; Toigo, V.; Vianello, N.; Zaccaria, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zollino, G.; Zuin, M.
2007-12-01
RFX-mod is a reversed field pinch (RFP) experiment equipped with a system that actively controls the magnetic boundary. In this paper we describe the results of a new control algorithm, the clean mode control (CMC), in which the aliasing of the sideband harmonics generated by the discrete saddle coils is corrected in real time. CMC operation leads to a smoother (i.e. more axisymmetric) boundary. Tearing modes rotate (up to 100 Hz) and partially unlock. Plasma-wall interaction diminishes due to a decrease of the non-axisymmetric shift of the plasma column. With the ameliorated boundary control, plasma current has been successfully increased to 1.5 MA, the highest for an RFP. In such regimes, the magnetic dynamics is dominated by the innermost resonant mode, the internal magnetic field gets close to a pure helix and confinement improves.
Experiments on Plasma Injection into a Centrifugally Confined System
Messer, S.; Bomgardner, R.; Brockington, S.; Case, A.; Witherspoon, F. D.; Uzun-Kaymak, I.; Elton, R.; Young, W.; Teodorescu, C.; Morales, C. H.; Ellis, R. F.
2009-11-01
We describe the cross-field injection of plasma into a centrifugally-confined system. Two different types of plasma railgun have been installed on the Maryland Centrifugal Experiment (MCX) in an attempt to drive that plasma's rotation. The initial gun was a coaxial device designed to mitigate the blowby instability. The second one was a MiniRailgun with a rectangular bore oriented so that the MCX magnetic field augments the railgun's internal magnetic field. Tests at HyperV indicate this MiniRailgun reaches much higher densities than the original gun, although muzzle velocity is slightly reduced. We discuss the impact of these guns on MCX for various conditions. Initial results show that even for a 2 kG field, firing the MiniRailgun modifies oscillations of the MCX diamagnetic loops and can impact the core current and voltage. The gun also has a noticeable impact on MCX microwave emissions. These observations suggest plasma enters the MCX system. We also compare diagnostic data collected separately from MCX for these and other guns, focussing primarily on magnetic measurements.
Energy Technology Data Exchange (ETDEWEB)
Ma, X., E-mail: xzm0005@auburn.edu; Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Cianciosa, M. R. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37830 (United States)
2015-12-15
Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.
Reference Magnetic Coordinates (RMC) for toroidal confinement systems
Zakharov, Leonid; Kolemen, Egemen; Lazerson, Samuel
2012-03-01
Because of intrinsic anisotropy of high temperature plasma with respect to magnetic field, use of proper coordinates is of high priority for both theory and numerical methods. While in axisymmetric case, the poloidal flux function Y(r,z)=const determines proper flux coordinates, in 3-D, such a function does not exist. The destruction of nested magnetic surfaces even by small 3-D perturbations leads to a sudden change of topology of magnetic field. As a result, the coordinate systems can no longer be based on tracing the magnetic field lines resulting in difficulties for theory and 3-D numerical simulations. The RMC coordinates a,θ,ζ presented here (introduced in 1998 but not really used) are nested toroidal coordinates, which are best aligned with an ergodic confinement fields. In particular, in RMC the vector potential of the magnetic field has an irreducible form A = φ00(a)∇θ +[Y00(a) +ψ^*(a,θ,ζ)]∇ζ , where 3-D function ψ^* contains only resonant Fourier harmonics of angle coordinates. RMC can be generated and advanced using a fast (Newton) algorithm not involving the field line tracing.
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
Lanctot, Matthew J.
2016-10-01
In several tokamaks, non-axisymmetric magnetic field studies show applied n=2 fields can lead to disruptive n=1 locked modes, suggesting nonlinear mode coupling. A multimode plasma response to n=2 fields can be observed in H-mode plasmas, in contrast to the single-mode response found in Ohmic plasmas. These effects highlight a role for n >1 error field correction in disruption avoidance, and identify additional degrees of freedom for 3D field optimization at high plasma pressure. In COMPASS, EAST, and DIII-D Ohmic plasmas, n=2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q 3 and low density. Similar to previous studies, the thresholds are correlated with the ``overlap'' field for the dominant linear ideal MHD plasma mode calculated with the IPEC code. The overlap field measures the plasma-mediated coupling of the external field to the resonant field. Remarkably, the critical overlap fields are similar for n=1 and 2 fields with m >nq fields dominating the drive for resonant fields. Complementary experiments in RFX-Mod show fields with m elicit transport responses with differing poloidal spectrum dependences, including a reduction in toroidal angular momentum that is not fully recoverable using fields that imperfectly match the applied field. These results have motivated an international effort to document n=2 error field thresholds in order to establish control requirements for ITER. This work highlights unique requirements for n >1 control, including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression). Optimal multi-harmonic (n=1 and n=2) error field control may be achieved using control algorithms that continuously respond to time-varying 3D field sources and plasma parameters. Supported by the US DOE under DE-FC02-04ER54698.
Molecular modeling in confined polymer and biomembrane systems
Directory of Open Access Journals (Sweden)
Jayeeta Ghosh
2009-07-01
Full Text Available The computational study of soft materials under confinement for bio- and nanotechnology still poses significantchallenges but has come a long way in the last decade. It is possible to realistically model and understand the fundamentalmechanisms which are at play if soft materials are confined to nanometer dimensions. Here, we present several recentexamples of such studies. Thin polymer films are abundantly used as friction modifiers or steric stabilizers. We show howsystematic modeling can shed light on the interplay between entropic and energetic interactions. Thin glassy films arecritical for the success of nanolithography. For that we have to understand the effect of confinement on the glass transitionbehavior in order to guarantee the stability and integrity of the lithographic masks. Simulations aim to understand the fundamental differences in the densities of states of glass formers in bulk and under confinement. With the advent of bionanotechnology the structure and phase behavior of lipid membranes as models for cellular membranes at the nano scale length is of importance due to implications in understanding the role of the lipids in biochemical membrane processes.
Doi, Hideo; Yasuoka, Kenji
2017-05-01
Confined systems exhibit interesting properties that are applied to the fields of lubrication, adhesion and nanotechnology. The replica exchange molecular simulation method was applied to calculate the phase equilibrium points of Lennard-Jones particles in a two-dimensional confined system. The liquid-solid phase equilibrium points and the solid structure with a dependency of the slit width were determined and the order parameter of the solid structure was analyzed. Such confined systems are shown to be favorable for manipulation of the phase equilibrium points.
Quantum confinement effects in low-dimensional systems
Indian Academy of Sciences (India)
D Topwal
2015-06-01
The confinement effects of electrons in ultrathin films and nanowires grown on metallic and semiconducting substrates investigated using band mapping of their electronic structures using angle-resolved photoemission spectroscopy is discussed here. It has been shown that finite electron reflectivity at the interface is sufficient to sustain the formation of quantum well states and weak quantum well resonance states even in closely matched metals. The expected parabolic dispersion of sp-derived quantum well states for free-standing layers undergoes deviations from parabolic behaviour and modifications due to the underlying substrate bands, suggesting the effects of strong hybridization between the quantum well states and the substrate bands. Electron confinement effects in low dimensions as observed from the dispersionless features in the band structures are also discussed.
Sellwood, J A
2015-01-01
This posting announces public availability of version 1.2 of the DiskFit software package developed by the authors, which may be used to fit simple non-axisymmetric models either to images or to velocity fields of disk galaxies. Here we give an outline of the capability of the code and provide the link to downloading executables, the source code, and a comprehensive on-line manual. We argue that in important respects the code is superior to rotcur for fitting kinematic maps and to galfit for fitting multi-component models to photometric images.
PREFACE: International Conference on Optics of Excitons in Confined Systems
Viña, Luis; Tejedor, Carlos; Calleja, José M.
2010-01-01
The OECS11 (International Conference on Optics of Excitons in Confined Systems) was the eleventh of a very successful series of conferences that started in 1987 in Rome (Italy). Afterwards the conference was held at Naxos (Sicily, Italy, 1991), Montpellier (France, 1993), Cortona (Italy, 1995), Göttingen (Germany, 1997), Ascona (Switzerland, 1999), Montpellier (France, 2001), Lecce (Italy, 2003), Southampton (UK, 2005) and Patti (Sicily, Italy, 2007). It is addressed to scientists who lead fundamental and applied research on the optical properties of excitons in novel condensed-matter nanostructures. The 2009 meeting (7-11 September 2009) has brought together a large representation of the world leading actors in this domain, with the aim of stimulating the exchange of ideas, promoting international collaborations, and coordinating research on the newest exciton-related issues such as quantum information science and exciton quantum-collective phenomena. The meeting has included invited lectures, contributed oral presentations and posters, covering the following general topics: low-dimensional heterostructures: quantum wells, quantum wires and quantum dots polaritons quantum optics with excitons and polaritons many-body effects under coherent and incoherent excitation coherent optical spectroscopy quantum coherence and quantum-phase manipulation Bose-Einstein condensation and other collective phenomena excitons in novel materials The OECS 11 was held at the campus of the Universidad Autónoma de Madrid in Cantoblanco. The scientific program was composed of more than 200 contributions divided into 16 invited talks, 44 oral contributions and 3 poster sessions with a total of 150 presentations. The scientific level of the presentations was guaranteed by a selection process where each contribution was rated by three members of the Program Committee. The Conference has gathered 238 participants from 21 different countries, with the following distribution: Germany (43
Energy Technology Data Exchange (ETDEWEB)
Dick, J.D.; Grover, G.A.; O`Brien, P.M., Fluor Daniel Hanford
1997-03-05
The Plutonium Finishing Plant Heating Ventilation and Cooling system provides for the confinement of radioactive releases to the environment and provides for the confinement of radioactive contamination within designated zones inside the facility. This document identifies the components and procedures necessary to ensure the HVAC system provides these functions. Appendices E through J provide a snapshot of non-safety class HVAC equipment and need not be updated when the remainder of the document and Appendices A through D are updated.
Structures and Dynamics of a Two-Dimensional Confined Dusty Plasma System
Institute of Scientific and Technical Information of China (English)
HUANG Feng; LIU Yan-Hong; WANG Long
2005-01-01
The influence of the confining potential strength and temperature on the structures and dynamics of a two-dimensional (2D) dusty plasma system is investigated through molecular dynamic (MD) simulation. The circular symmetric confining potential leads to the nonuniform packing of particles, that is, an inner core with a hexagon lattice surrounded by a few outer circular shells. Under the appropriate confining potential and temperature, the particle trajectories on middle shells form a series of concentric and nested hexagons due to tangential movements of particles.Mean square displacement, self-diffusion constant, pair correlation function, and the nearest bond are used to characterize the structural and dynamical properties of the system. With the increase of the confining potential, the radial and tangential movements of particles have different behaviors. With the increase of temperature, the radial and tangential motions strengthen, particle trajectories gradually become disordered, and the system gradually changes from a crystal or liquid state to a gas state.
Confinement of Mg-MgH2 systems into carbon nanotubes changes hydrogen sorption energetics.
Liang, Jian-jie; Kung, W-C Paul
2005-09-29
The density functional theory (DFT) method was used to study the effect of nanoconfinement on the energetics of Mg-MgH2 systems. Varying levels of loading of the Mg/MgH2 particles into a (10,10) carbon nanotube were examined, and the corresponding energetics were computed. A clear trend was observed that, as the level of loading increases (increasing confinement), the net energy change in the hydrogen sorption/desorption processes decreases to a significant level when the loading approaches the maximum. The confinement was found not to depend on the tube length of the confining nanotubes.
Interfaces in the confined Ising system with competing surface fields
De Virgiliis, A.; Albano, E. V.; Müller, M.; Binder, K.
2005-07-01
When a magnetic Ising film is confined in a L×M geometry (L≪M) short-range competing magnetic fields ( h1) are applied at opposite walls along the M-direction, a (weakly rounded) localization-delocalization transition of the interface between domains of different orientation that runs parallel to walls can be observed. This transition is the precursor of a wetting phase transition that occurs in the limit of infinite film thickness (L→∞) at the critical curve Tw(h1). For TTw(h1)) such an interface is bound to (unbound from) the walls, while right at Tw(h1) the interface is freely fluctuating around the center of the film. We present extensive Monte Carlo simulations of Ising stripes in the L×M geometry, in order to describe both the localization-delocalization transition and the properties of the delocalized interface. To this aim, we take advantage of several available theoretical results. We make use of a suitable algorithm to define the local position of the interface along the film, such that its probability distribution can be used to account for the transition itself and the fluctuations in the local position of the interface (capillary waves). After describing the interface localization-delocalization transition, we pay attention to the properties of the delocalized interface with an emphasis on the effects of confinement. We analyze several quantities of interest in terms of the film thickness L. The width of the capillary waves (s) can be related to the width of the magnetization profiles (w) by means of a simple approximation. From this relation we estimate a value for the intrinsic width (w0) of the interface which agrees with the theoretical one. Also the correlation length ξ∥ along the film is considered, and the behavior ξ∥∼L2 compares very well to available exact results. Additionally, the interfacial stiffness βΓ obtained from the Fourier spectrum of the capillary waves reproduces the asymptotic theoretical value.
Economic and environmental issues associated with confinement and pasture-based dairy systems
Milk is produced in a continuum of dairy systems from full confinement to full pasture grazing. Climate, available feeds, and milk price: feed cost ratio influence the preferred system. All dairy systems have an environmental impact and inputs to maximise profit may lead to pollution levels unacce...
Frequency-dependent polarizabilities and shielding factors for confined one-electron systems
Montgomery, H. E., Jr.; Pupyshev, Vladimir I.
2017-01-01
Frequency-dependent dipole polarizabilities and shielding factors are calculated for the ground state of spherically symmetric screened one-electron systems embedded in an impenetrable spherical cavity. Coulomb, Yukawa, Hulthén and exponential cosine-screened Coulomb potentials are considered. In contrast to free systems, Dirichlet boundary conditions introduce a contribution to the shielding factor that results from an integral over the surface of the confining boundary. This is a fundamental difference between free and confined systems and results in unexpected modifications to some of the classic relations for free systems. The methods derived also give a simple expression for the polarizability of the confined harmonic oscillator as an example of extending the methods of this work to potentials beyond the four studied.
Aurora inertial confinement fusion laser control and data acquisition system
Energy Technology Data Exchange (ETDEWEB)
Bowling, P.S.; Burczyk, L.; Dingler, R.D.; Shurter, R.B. (Los Alamos National Lab., P.O. Box 1663, AT-8 MS H811, Los Alamos, NM 87545)
1987-05-01
Aurora is a complex krypton fluoride excimer research laser supported by a computerized control and data acquisition system. Aurora's requirements for control, data aquisition, and data analysis are met with specific application of minicomputer and microcomputer capabilities coupled with internally developed custom hardware and software. A control system that provides an operator with the ability to charge and fire the integrated laser system safely and remotely is described. A data aquisition system that acquires, stores, and processes laser system data is also described. This data acquisition system provides the experimentalists with support tools for better understanding the laser system.
Energy Technology Data Exchange (ETDEWEB)
Briesemeister, A.R., E-mail: briesemeister@fusion.gat.com [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Isler, R.C. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Allen, S.L. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Ahn, J.-W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States); Unterberg, E.A.; Hillis, D.L. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Fenstermacher, M.E.; Meyer, W.H. [Lawrence Livermore National Laboratory, 700 East Ave, Livermore, CA 94550 (United States)
2015-08-15
Externally applied non-axisymmetric magnetic fields are shown to have little effect on the impurity ion flow velocity and temperature as measured by the multichord divertor spectrometer in the DIII-D divertor for both attached and detached conditions. These experiments were performed in H-mode plasmas with the grad-B drift toward the target plates, with and without n = 3 resonant magnetic perturbations (RMPs). The flow velocity in the divertor is shown to change by as much as 30% when deuterium gas puffing is used to create detachment of the divertor plasma. No measurable changes in the C III flow were observed in response to the RMP fields for the conditions used in this work. Images of the C III emission are used along with divertor Thomson scattering to show that the local electron and C III temperatures are equilibrated for the conditions shown.
On the stochastic behaviors of locally confined particle systems
Energy Technology Data Exchange (ETDEWEB)
Li, Yao, E-mail: yaoli@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)
2015-07-15
We investigate a class of Hamiltonian particle systems and their stochastic behaviors. Using both rigorous proof and numerical simulations, we show that the geometric configuration can qualitatively change key statistical characteristics of the particle system, which are expected to be retained by stochastic modifications. In particular, whether a particle system has an exponential mixing rate or a polynomial mixing rate depends on whether the geometric setting allows a slow particle being reached by adjacent fast particles.
Soliton physics with semiconductor exciton-polaritons in confined systems
Sich, Maksym; Skryabin, Dmitry V.; Krizhanovskii, Dmitry N.
2016-10-01
In the past decade, there has been a significant progress in the study of non-linear polariton phenomena in semiconductor microcavities. One of the key features of non-linear systems is the emergence of solitons. The complexity and the inherently strong nonlinearity of the polariton system made it a perfect sandpit for observing solitonic effects in half-light half-matter environment. This review focuses on the theory and the latest experimental elucidating physics as well as potential applications of conservative and dissipative solitons in exciton-polariton systems. xml:lang="fr"
Quail (Coturnixcoturnix japonica welfare in two confinement systems
Directory of Open Access Journals (Sweden)
W.M. Nordi
2012-08-01
Full Text Available The intensification of animal production systems presents a potential impact on the welfare of animals. The objective of this work was to assess the welfare of quail Coturnixcoturnix japonicain two maintenance systems: battery cages (BC,and enriched aviary (EA,with saw-dust bedding, sand-bathing area and nests. The experiment procedure involved eight animals per holding area and four repetitions per treatment, an overall of 64 quails. Welfare was assessed through behavioral freedom, sanitary freedom (feather condition and injuries, blood analyses and glicocorticoid metabolites measurement in droppings. Results are presented in the BC order, followed by EA. Water drinking behavior and agonistic behavior were different between treatments (P<0.05. Feather condition was adequate in both treatments, except for the head in BC quails. Blood data were statistically different forred blood cells, hematocrit, hemoglobin, blood proteins, eosinophils, heterophils, lymphocytes and heterophil: lymphocyte ratio. Glicocorticoid metabolites levels were significantly different between maintenance systems. The behavioral and physiological welfare indicators showed higher welfare degree for quails in enriched aviary as compared to battery cages system.
Program status 3. quarter -- FY 1990: Confinement systems programs
Energy Technology Data Exchange (ETDEWEB)
NONE
1990-07-24
Highlights of the DIII-D Research Operations task are: completed five weeks tokamak operations; initiated summer vent; achievement of 10.7% beta; carried out first dimensionless transport scaling experiment; completed IBW program; demonstrated divertor heat reduction with gas puffing; field task proposals presented to OFE; presentation of DIII-D program to FPAC; made presentation to Admiral Watkins; and SAN safety review. Summaries are given on research programs, operations, program development, hardware development, operations support and collaborative efforts. Brief summaries of progress on the International Cooperation task include: TORE SUPRA, ASDEX, JFT-2M, and JET. Funding for work on CIT physics was received this quarter. Several physics R and D planning tasks were initiated. Earlier in FY90, a poloidal field coil shaping system (PFC) was found for DIGNITOR. This quarter more detailed analysis has been done to optimize the design of the PFC system.
Emergence of chaos in a spatially confined reactive system
Voorsluijs, Valérie; De Decker, Yannick
2016-11-01
In spatially restricted media, interactions between particles and local fluctuations of density can lead to important deviations of the dynamics from the unconfined, deterministic picture. In this context, we investigated how molecular crowding can affect the emergence of chaos in small reactive systems. We developed to this end an amended version of the Willamowski-Rössler model, where we account for the impenetrability of the reactive species. We analyzed the deterministic kinetics of this model and studied it with spatially-extended stochastic simulations in which the mobility of particles is included explicitly. We show that homogeneous fluctuations can lead to a destruction of chaos through a fluctuation-induced collision between chaotic trajectories and absorbing states. However, an interplay between the size of the system and the mobility of particles can counterbalance this effect so that chaos can indeed be found when particles diffuse slowly. This unexpected effect can be traced back to the emergence of spatial correlations which strongly affect the dynamics. The mobility of particles effectively acts as a new bifurcation parameter, enabling the system to switch from stationary states to absorbing states, oscillations or chaos.
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems
DEFF Research Database (Denmark)
Andersen, Molte Emil Strange; Salami Dehkharghani, Amin; Volosniev, A. G.;
2016-01-01
beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly...
Determination of phase equilibria in confined systems by open pore cell Monte Carlo method.
Miyahara, Minoru T; Tanaka, Hideki
2013-02-28
We present a modification of the molecular dynamics simulation method with a unit pore cell with imaginary gas phase [M. Miyahara, T. Yoshioka, and M. Okazaki, J. Chem. Phys. 106, 8124 (1997)] designed for determination of phase equilibria in nanopores. This new method is based on a Monte Carlo technique and it combines the pore cell, opened to the imaginary gas phase (open pore cell), with a gas cell to measure the equilibrium chemical potential of the confined system. The most striking feature of our new method is that the confined system is steadily led to a thermodynamically stable state by forming concave menisci in the open pore cell. This feature of the open pore cell makes it possible to obtain the equilibrium chemical potential with only a single simulation run, unlike existing simulation methods, which need a number of additional runs. We apply the method to evaluate the equilibrium chemical potentials of confined nitrogen in carbon slit pores and silica cylindrical pores at 77 K, and show that the results are in good agreement with those obtained by two conventional thermodynamic integration methods. Moreover, we also show that the proposed method can be particularly useful for determining vapor-liquid and vapor-solid coexistence curves and the triple point of the confined system.
Program status 3. quarter -- FY 1994: Confinement systems programs
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-07-19
Highlights of the DIII-D Research Operations are: began experimental research operations; successfully passed radiative divertor project review; presented papers at PSI, Diagnostics, and EPS meetings and prepared IAEA synopses; new computer speeds up data acquisition; completed installation of FWCD antennas with Faraday shields; and completed report of radiative divertor preliminary design with review committee. Summaries are given for progress in research programs; operations; mechanical engineering; electrical engineering; upgrade project; operations support; and collaborative efforts. Brief summaries are given for progress on the International Cooperation task which include JET, ASDEX, TEXTOR, TORE SUPRA, JAERI, TRINTI, T-10, and ARIES support. The work in support of the development plan for the TPX (Tokamak Physics Experiment) goals and milestones continued. Progress in improving on existing models and codes leading to improved understanding of experiments is given. Highlights from the User Service Center are: 18 gigabytes of disks were purchased for exclusive fusion use; a Hewlett-Packard 9000 Series 800 T500 computer was selected as the fusion complete server; the first VAX was removed from the USC cluster; security vulnerability on HP VUE software was corrected; and a cleanup script was developed for the NERSC Cray system. A list of personnel and their assignments is given for the ITER Design Engineering task.
An interpolatory ansatz captures the physics of one-dimensional confined Fermi systems.
Andersen, M E S; Dehkharghani, A S; Volosniev, A G; Lindgren, E J; Zinner, N T
2016-01-01
Interacting one-dimensional quantum systems play a pivotal role in physics. Exact solutions can be obtained for the homogeneous case using the Bethe ansatz and bosonisation techniques. However, these approaches are not applicable when external confinement is present. Recent theoretical advances beyond the Bethe ansatz and bosonisation allow us to predict the behaviour of one-dimensional confined systems with strong short-range interactions, and new experiments with cold atomic Fermi gases have already confirmed these theories. Here we demonstrate that a simple linear combination of the strongly interacting solution with the well-known solution in the limit of vanishing interactions provides a simple and accurate description of the system for all values of the interaction strength. This indicates that one can indeed capture the physics of confined one-dimensional systems by knowledge of the limits using wave functions that are much easier to handle than the output of typical numerical approaches. We demonstrate our scheme for experimentally relevant systems with up to six particles. Moreover, we show that our method works also in the case of mixed systems of particles with different masses. This is an important feature because these systems are known to be non-integrable and thus not solvable by the Bethe ansatz technique.
A two-stage approach to relaxation in billiard systems of locally confined hard spheres.
Gaspard, Pierre; Gilbert, Thomas
2012-06-01
We consider the three-dimensional dynamics of systems of many interacting hard spheres, each individually confined to a dispersive environment, and show that the macroscopic limit of such systems is characterized by a coefficient of heat conduction whose value reduces to a dimensional formula in the limit of vanishingly small rate of interaction. It is argued that this limit arises from an effective loss of memory. Similarities with the diffusion of a tagged particle in binary mixtures are emphasized.
Giesecke, Andre; Burguete, Javier
2012-01-01
We have performed numerical simulations of the kinematic induction equation in order to examine the dynamo efficiency of an axisymmetric von-K\\'arm\\'an-like flow subject to time-dependent non-axisymmetric velocity perturbations. The numerical model is based on the setup of the French Von-K\\'arm\\'an-Sodium dynamo (VKS) and on the flow measurements from a model water experiment conducted at the University of Navarra in Pamplona, Spain. Our simulations show that the interactions of azimuthally drifting flow perturbations with the fundamental drift of the magnetic eigenmode (caused by the inevitable equatorial symmetry breaking of the basic flow) essentially determine the temporal behavior of the dynamo state. We find two distinct regimes of dynamo action that depend on the (prescribed) drift frequency of an ($m=2$) vortex-like flow perturbation. For comparatively slowly drifting vortices we observe a narrow window with enhanced growth-rates and a drift of the magnetic eigenmode that is synchronized with the pert...
Institute of Scientific and Technical Information of China (English)
H. Tian; J. Wang; W.P. Dong; J. Chen; Z. Zhao; G.M. Wu
2005-01-01
Traditionally a rotary forging process is a kind of metal forming method where a conic upper die, whose axis is deviated an angle from the axis of machine, forges a billet continuously and partially to finish the whole deformation. For the rotary forging process simulation, more researches were focused on simulating the simple stage forming process with axisymmetric part geometry. Whereas in this paper, the upper die is not cone-shaped, and the billet is non-axisymmetric. So the movement of the punch is much more complicated than ever. The 3D FEM simulation models for the preforming & final forming processes are set up after carefully studying the complicated movement pattern. Deform-3D is used to simulate the material flow, and the boundary nodal resisting forces calculated by the final stage process simulation is used to analyze the final forming die strength. The CAE analysis of the die shows that the design of the final forming die is not reasonable with lower pre-stress which is easy to crack at the critical comers. An optimum die design is also provided with higher pre-stress, and verified by CAE analysis.
Numerical and experimental investigation of a confined plunging liquid jet system
Mishra, A
2012-01-01
In a confined plunging liquid jet (CPLJ) system, a liquid jet is allowed to fall in a partially submerged narrow downcomer tube. Liquid jet impingement at gas-liquid interface leads to entrainment of gas, which is dispersed down the downcomer tube in to outer pool in form of bubbles. This simple phenomenon of gas entrainment bears great industrial significance. It facilitates an efficient gas liquid contacting device, which can be used for waste water aeration and lake destratification etc. I...
Masselon, Chloé; Colin, Annie; Olmsted, Peter D
2010-02-01
In this paper we report on the influence of different geometric and boundary constraints on nonlocal (spatially inhomogeneous) effects in wormlike micellar systems. In a previous paper, nonlocal effects were observable by measuring the local rheological flow curves of micelles flowing in a microchannel under different pressure drops, which appeared to differ from the flow curve measured using conventional rheometry. Here we show that both the confinement and the boundary conditions can influence those nonlocal effects. The role of the nature of the surface is analyzed in detail using a simple scalar model that incorporates inhomogeneities, which captures the flow behavior in both wide and confined geometries. This leads to an estimate for the nonlocal "diffusion" coefficient (i.e., the shear curvature viscosity) which corresponds to a characteristic length from 1 to 10 microm.
Energy Technology Data Exchange (ETDEWEB)
Bussard, R.W.; King, K.E.
1991-04-19
A large body of work over the past 35 years has been devoted to the study of cusp confinement of electrons, ions, and plasmas. Nearly all of this has examined single particle electron (or ion) motion or the motion of particles in neutral plasmas within cusped magnetic systems, generally without internal electric potential fields. In this note the problem of electron motion, confinement and losses is analyzed in the non-LTE, electron-rich plasma system with anisotropic radial energy in both species, in multicusp Polywell geometry. The bulk problem is treated as one-dimensional, with arbitrary spatial indices of radial B and E field variation. Bulk diamagnetic collective effects are modelled as they influence this 1-D spatial variation of B field, but electron entry into single cusp volumes includes elements of the geometric effects of the real 3-D configuration. Electron motions in mirror reflection regions are analyzed on the usual basis of conservation of magnetic moment of the electron at entry into the confining cusp. However, turning points of this motion are modified to account for the effects of diamagnetic currents on this process. Comparison with non-Polywell models is made where useful and appropriate. Further details are given in the following sections.
Koci, Tomas; Bachmann, Michael
2015-10-01
By means of advanced parallel replica-exchange Monte Carlo methods we examine the influence of elasticity and confinement on the structural transitions of linear systems with restricted bonded interaction. For this purpose, we adopt a model for coarse-grained flexible polymers of finite length in the dilute regime. Hyperphase diagrams are constructed using energy-dependent canonical quantities to demonstrate the effects of the changes in the range of the confined interaction on the liquid and solid structural phases. With increasing bonded interaction range we observe the disappearance of the liquid phase and the fusion of the gas-liquid (or Θ) and the liquid-solid transitions. One of the most remarkable features, the liquid-gas transition, changes from second to first order if the confined interaction range exceeds a threshold that separates polymeric from nonpolymeric systems. The notoriously difficult sampling of the entropically suppressed conformations in the region of very strong first-order transitions is improved by using multiple Gaussian modified ensembles.
Selective confinement of vibrations in composite systems with alternate quasi-regular sequences
Energy Technology Data Exchange (ETDEWEB)
Montalban, A. [Departamento de Ciencia y Tecnologia de Materiales, Division de Optica, Universidad Miguel Hernandez, 03202 Elche (Spain); Velasco, V.R. [Instituto de Ciencia de Materiales de Madrid, CSIC, Sor Juana Ines de la Cruz 3, 28049 Madrid (Spain)]. E-mail: vrvr@icmm.csic.es; Tutor, J. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Fernandez-Velicia, F.J. [Departamento de Fisica de los Materiales, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia, Senda del Rey 9, 28080 Madrid (Spain)
2007-01-01
We have studied the atom displacements and the vibrational frequencies of 1D systems formed by combinations of Fibonacci, Thue-Morse and Rudin-Shapiro quasi-regular stacks and their alternate ones. The materials are described by nearest-neighbor force constants and the corresponding atom masses, particularized to the Al, Ag systems. These structures exhibit differences in the frequency spectrum as compared to the original simple quasi-regular generations but the most important feature is the presence of separate confinement of the atom displacements in one of the sequences forming the total composite structure for different frequency ranges.
Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices
Evans, T. E.
2015-12-01
Controlling the boundary layer in fusion-grade, high-performance, plasma discharges is essential for the successful development of toroidal magnetic confinement power generating systems. A promising approach for controlling the boundary plasma is based on the use of small, externally applied, edge resonant magnetic perturbation (RMP) fields (δ b\\bot\\text{ext}≈ {{10}-4}\\to {{10}-3}~\\text{T} ). A long-term focus area in tokamak fusion research has been to find methods, involving the use of non-axisymmetric magnetic perturbations to reduce the intense particle and heat fluxes to the wall. Experimental RMP research has progressed from the early pioneering work on tokamaks with material limiters in the 1970s, to present day research in separatrix-limited tokamaks operated in high-confinement mode, which is primarily aimed at the mitigation of the intermittent fluxes due edge localized modes (ELMs). At the same time, theoretical research has evolved from analytical models to numerical simulations, including the full 3D complexities of the problem. Following the first demonstration of ELM suppression in the DIII-D tokamak during 2003, there has been a rapid worldwide growth in theoretical, numerical and experimental edge RMP research resulting in the addition of ELM control coils to the ITER baseline design (Loarte et al 2014 Nucl. Fusion 54 033007). This review provides an overview of edge RMP research including a summary of the early theoretical and numerical background along with recent experimental results on improved particle and energy confinement in tokamaks triggered by edge RMP fields. The topics covered make up the basic elements needed for developing a better understanding of 3D magnetic perturbation physics, which is required in order to utilize the full potential of edge RMP fields in fusion relevant high performance, H-mode, plasmas.
Van Diejen, J F
1997-01-01
Two families (type $A$ and type $B$) of confluent hypergeometric polynomials in several variables are studied. We describe the orthogonality properties, differential equations, and Pieri type recurrence formulas for these families. In the one-variable case, the polynomials in question reduce to the Hermite polynomials (type $A$) and the Laguerre polynomials (type $B$), respectively. The multivariable confluent hypergeometric families considered here may be used to diagonalize the rational quantum Calogero models with harmonic confinement (for the classical root systems) and are closely connected to the (symmetric) generalized spherical harmonics investigated by Dunkl.
A Methodology for Modeling Electromagnetic Confinement Systems: Application to Levitation Melting
El-Kaddah, Nagy; Natarajan, Thinium T.
A modeling strategy is presented for computing the electromagnetic field and the shape of the molten metal in electromagnetic confinement systems. This strategy involves the use of a hybrid finite element/integral technique to calculate the electromagnetic field and force distribution in the melt. The free surface shape is determined from minimization of electromagnetic, gravitational and surface tension energies using the Lagrange method of multipliers. This approach was applied to model the electromagnetic levitation melting process. The model was found to accurately predict the measured shape of levitated droplets.
Theoretical analysis on two-photon absorption spectroscopy in a confined four-level atomic system
Institute of Scientific and Technical Information of China (English)
Yuanyuan Li; Jintao Bai; Li Li; Yanpeng Zhang; Xun Hou
2009-01-01
We investigate theoretically two-photon absorption spectroscopy modified by a control field in a confined Y-type four-level system. Dicke-narrowing effect occurs both in two-photon absorption lines and the dips of transparency against two-photon absorption due to enhanced contribution of slow atoms. We also find that the suppression and the enhancement of two-photon absorption can be modified by changing the strength of the control field and the detuning of three laser fields. This control of two-photon absorption may have some applications in information processing and optical devices.
Banerjee, D; Jiang, F -J; Wiese, U -J
2013-01-01
We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The $(2+1)$-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi-stranded strings between charge-anti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate $SO(2)$ global symmetry. The low-energy physics is described by a $(2+1)$-d $\\mathbb{R}P(1)$ effective field theory, perturbed by a dangerously irrelevant $SO(2)$ breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidat...
White, S L; Benson, G A; Washburn, S P; Green, J T
2002-01-01
This 4-yr study examined total lactation performance of dairy cows in two feeding systems: pasture-based and confinement. Spring and fall calving herds were used and each seasonal herd had 36 cows on pasture and 36 cows in confinement with 282 Holstein and 222 Jersey cows included over seven seasonal replicates. Pasture-fed cows received variable amounts of grain and baled haylage depending upon pasture availability. Confinement cows received a total mixed ration with corn silage as the primary forage. Data were collected on milk production, feed costs, and other costs. Pasture-fed cows produced 11.1% less milk than confinement cows. Across treatments, Jerseys produced 23.3% less milk than Holsteins, but calving season and various interactions were not significant. Feed costs averaged $0.95/cow per day lower for pastured cows than confinement cows. Feed costs were lower for Jerseys than Holsteins and for cows calving in spring. Income over feed costs averaged $7.05 +/- 0.34 for confinement Holsteins, $6.89 +/- 0.34 for pastured Holsteins, $5.68 +/- 0.34 for confinement Jerseys, and $5.36 +/- 0.34 for pastured Jerseys; effects of breed were significant but treatment, season, and interactions were not. Economic factors such as labor for animal care, manure handling, forage management, and cow culling rates favored pastured cows. Higher fertility and lower mastitis among Jerseys partially offsets lower income over feed cost compared with Holsteins. Milk production was lower in this study for pasture-based systems but lower feed costs, lower culling costs, and other economic factors indicate that pasture-based systems can be competitive with confinement systems.
Heating, current drive and confinement regimes with the JET ICRH and LHCD systems
DEFF Research Database (Denmark)
Jacquinot, J.; Adams, J.M.; Altmann, H.;
1991-01-01
During its 1990 operation, 2 large RF systems were available on JET. The Ion Cyclotron Resonance Heating (ICRH) system was equipped with new beryllium screens and with feedback matching systems. Specific impurities generated by ICRH were reduced to negligible levels even in the most stringent H......-mode conditions. A maximum power of 22 MW was coupled to L-mode plasmas. High quality H-modes (tau-E greater-than-or-equal-to 2.5 tau-EG) were achieved using dipole phasing. A new high confinement mode was discovered. It combines the properties of the H-mode regime to the low central diffusivities obtained....... Paradoxically, LHCD induces central heating particularly in combination with ICRH. Finally we present the first observations of the synergistic acceleration of fast electrons by Transit Time Magnetic Pumping (TTMP) (from ICRH) and Electron Landau Damping (ELD) (from LHCD). The synergism generates TTMP current...
Energy Technology Data Exchange (ETDEWEB)
Valenzuela, Octavio; Hernandez-Toledo, Hector; Cano, Mariana; Pichardo, Bárbara [Instituto de Astronomía, Universidad Nacional Autonóma de Mexico, A.P. 70-264, 04510 México, D.F. (Mexico); Puerari, Ivanio [Instituto Nacional de Astrofísica Optica y Electrónica, Calle Luis Enrique Erro 1, 72840 Sta. Maria Tonantzintla, Puebla (Mexico); Buta, Ronald [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Groess, Robert, E-mail: octavio@astro.unam.mx [School of Computational and Applied Mathematics, University of Witwatersrand, Private Bag 3, WITS 2050 (South Africa)
2014-02-01
We present the result of an extensive search for non-axisymmetric structures in the dwarf satellite galaxy of M81, NGC 2976, using multiwavelength archival observations. The galaxy is known to present kinematic evidence for a bisymmetric distortion; however, the stellar bar presence is controversial. This controversy motivated the possible interpretation of NGC 2976 as presenting an elliptical disk triggered by a prolate dark matter halo. We applied diagnostics used in spiral galaxies in order to detect stellar bars or spiral arms. The m = 2 Fourier phase has a jump around 60 arcsec, consistent with a central bar and bisymmetric arms. The CO, 3.6 μm surface brightness, and the dust lanes are consistent with a gas-rich central bar and possibly with gaseous spiral arms. The bar-like feature is offset close to 20° from the disk position angle, in agreement with kinematic estimations. The kinematic jumps related to the dust lanes suggest that the bar perturbation in the disk kinematics is non-negligible and the reported non-circular motions, the central gas excess, and the nuclear X-ray source (active galactic nucleus/starburst) might be produced by the central bar. Smoothed particle hydrodynamics simulations of disks inside triaxial dark halos suggest that the two symmetric spots at 130 arcsec and the narrow arms may be produced by gas at turning points in an elliptical disk, or, alternatively, the potential ellipticity can be produced by a tidally induced strong stellar bar/arms; in both cases the rotation curve interpretation is, importantly, biased. The M81 group is a natural candidate to trigger the bisymmetric distortion and the related evolution as suggested by the H I tidal bridge detected by Chynoweth et al. We conclude that both mechanisms, the gas-rich bar and spiral arms triggered by the environment (tidal stirring) and primordial halo triaxiality, can explain most of the NGC 2976 non-circular motions, mass redistribution, and nuclear activity
Behavioral responses of dairy heifers confined to the evaporative cooling system
Directory of Open Access Journals (Sweden)
Gianni Aguiar da Silva
2013-03-01
Full Text Available The research aimed to evaluate the influence of evaporative cooling system (AECS on the behavioral variables of Holstein dairy heifers kept in confinement. Twelve heifers were used, divided into three treatments: 1 ventilation and fogging by AECS when the temperature reached 25°C at any humidity, 2 ventilation and fogging by AECS when the temperature reached 25°C with relative humidity less than or equal to 70% and, 3 without cooling system. The experimental design consisted of a latin rectangle repeated twice. The environmental variables (dry bulb temperature, black globe temperature and relative humidity were collected daily through dataloggers throughout the experiment. In behavioral analysis were observed postures (standing and lying, the activities of the animals and the places where they were in the pen, in 15 minute intervals. However, there was no difference in the behavioral variables of animals between treatments.
Launching of Microwaves into a Dense Plasma in Open Confinement Systems
Energy Technology Data Exchange (ETDEWEB)
Timofeev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)
2001-02-15
A study is made of the propagation of microwave beams in a plasma and their passage through the critical surface. It is shown that, in order for microwaves to penetrate deeply into a dense plasma, it is necessary to launch them through a magnetic mirror at a slight angle to the device axis. The characteristic features of ray trajectories are analyzed both ahead of and behind the critical surface. In a dense plasma behind the critical surface, microwaves tend to run out of the axial region toward the plasma periphery. This tendency may be unfavorable for heating plasmas whose radial density profiles are strongly peaked about the system axis. The problems under analysis are particularly important for assessing the prospects for ECR heating of dense plasmas in open confinement systems.
The effect of system boundaries on the mean free path for confined gases
Directory of Open Access Journals (Sweden)
Sooraj K. Prabha
2013-10-01
Full Text Available The mean free path of rarefied gases is accurately determined using Molecular Dynamics simulations. The simulations are carried out on isothermal argon gas (Lennard-Jones fluid over a range of rarefaction levels under various confinements (unbounded gas, parallel reflective wall and explicit solid platinum wall bounded gas in a nanoscale domain. The system is also analyzed independently in constitutive sub-systems to calculate the corresponding local mean free paths. Our studies which predominate in the transition regime substantiate the boundary limiting effect on mean free paths owing to the sharp diminution in molecular free paths near the planar boundaries. These studies provide insight to the transport phenomena of rarefied gases through nanochannels which have established their potential in microscale and nanoscale heat transfer applications.
Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system
Energy Technology Data Exchange (ETDEWEB)
Cardenas, Paulo C; RodrIguez, Boris A [Instituto de Fisica, Universidad de Antioquia, AA 1226 MedellIn (Colombia); Quesada, Nicolas [McLennan Physical Laboratories, University of Toronto, 60 St George Street, Toronto, ON, M5S 1A7 (Canada); Vinck-Posada, Herbert, E-mail: pcardenas@fisica.udea.edu.co [Departamento de Fisica, Universidad Nacional de Colombia, Ciudad Universitaria, Bogota (Colombia)
2011-07-06
We present a study of the strong coupling between radiation and matter, considering a system of two quantum dots, which are in mutual interaction and interact with a single mode of light confined in a semiconductor nanocavity. We take into account dissipative mechanisms such as the escape of the cavity photons, decay of the quantum dot excitons by spontaneous emission, and independent exciton pumping. It is shown that the mutual interaction between the dots can be measured off-resonance only if the strong coupling condition is reached. Using the quantum regression theorem, a reasonable definition of the dynamical coupling regimes is introduced in terms of the complex Rabi frequency. Finally, the emission spectrum for relevant conditions is presented and compared with the above definition, demonstrating that the interaction between the excitons does not affect the strong coupling.
Sternberger, Antoine; Pelat, Adrien; Génevaux, Jean-Michel
2017-06-01
The use of granular media to induce vibration energy's dissipation in lighter huge industrial structures permits to decrease the mass of the structure and consequently to spare the construction's cost and to satisfy oil consumption. In fact, when the structure in which the granular media is in contact overtakes an acceleration threshold, relative movements of the grains appears which lead to a dissipation of energy. When the grains are confined inside a cavity, the dissipation's level depends on several parameters (the acceleration's amplitude, the frequency, the grain's characteristics, the cavity's dimensions, the cavity's filling ratio, the fluid between the particles, etc.). This study quantifies the influence of several parameters by exciting uniformly a given volume of grains. A modal damping coefficient of a single degree of freedom system (SDOF) can be thus calculated as a function of the preceding parameters.
Enhanced Quantum Confined Stark Effect in a mesoporous hybrid multifunctional system
Gogoi, M.; Deb, P.; Sen, D.; Mazumder, S.; Kostka, A.
2014-06-01
Quantum Confined Stark Effect in hybrid of CdTe quantum dot with superparamagnetic iron oxide nanoparticles in both nonporous and mesoporous silica matrix has been realized. The observed QCSE is due to the local electric field induced by charge dispersion at SiO2/polar solvent interface. Enhanced Stark shift of 89.5 meV is observed in case of mesoporous hybrid structure and the corresponding local electric field has been evaluated as 4.38×104 V/cm. The enhancement is assumed to be caused by greater density of charge in the mesoporous hybrid. The conjugation of superparamagnetic nanoparticles in this tailored hybrid microstructure has not imparted any alteration to the Stark shift, but has added multifunctional attribute. The present study on the local electric field induced enhanced QCSE with wavelength modulation towards red end paves the way of developing magneto-fluorescent hybrid systems for biomedical imaging application.
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber
Energy Technology Data Exchange (ETDEWEB)
Dechana, A. [Program of Physics and General Science, Faculty of Science and Technology, Songkhla Rajabhat University, Songkhla 90000 (Thailand); Thamboon, P. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)
2014-10-15
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.
Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber
Dechana, A.; Thamboon, P.; Boonyawan, D.
2014-10-01
A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.
Energy Technology Data Exchange (ETDEWEB)
Spane, F.A. Jr.; Vermeul, V.R.
1994-09-01
Pacific Northwest Laboratory, as part of the Hanford Site Ground-Water Surveillance Project, examines the potential for offsite migration of contamination within the upper basalt confined aquifer system. For the past 40 years, hydrologic testing of the upper basalt confined aquifer has been conducted by a number of Hanford Site programs. Hydraulic property estimates are important for evaluating aquifer flow characteristics (i.e., ground-water flow patterns, flow velocity, transport travel time). Presented are the first comprehensive Hanford Site-wide summary of hydraulic properties for the upper basalt confined aquifer system (i.e., the upper Saddle Mountains Basalt). Available hydrologic test data were reevaluated using recently developed diagnostic test analysis methods. A comparison of calculated transmissivity estimates indicates that, for most test results, a general correspondence within a factor of two between reanalysis and previously reported test values was obtained. For a majority of the tests, previously reported values are greater than reanalysis estimates. This overestimation is attributed to a number of factors, including, in many cases, a misapplication of nonleaky confined aquifer analysis methods in previous analysis reports to tests that exhibit leaky confined aquifer response behavior. Results of the test analyses indicate a similar range for transmissivity values for the various hydro-geologic units making up the upper basalt confined aquifer. Approximately 90% of the calculated transmissivity values for upper basalt confined aquifer hydrogeologic units occur within the range of 10{sup 0} to 10{sup 2} m{sup 2}/d, with 65% of the calculated estimate values occurring between 10{sup 1} to 10{sup 2} m{sup 2}d. These summary findings are consistent with the general range of values previously reported for basalt interflow contact zones and sedimentary interbeds within the Saddle Mountains Basalt.
Energy Technology Data Exchange (ETDEWEB)
NONE
1999-11-01
The objective of this project was to develop a explosion suppression system capable to confine and extinguish gas explosions of the type produced in sub level caving faces when blasting to the coal pillar. Existing systems, such as triggered barriers, were considered not to be valid because of size, weight, cost, and other operational constraints. The research activities have been focused in the development of a mixed water/air spray system that should be manually activated some second before blasting. Two prototypes have been developed and tested, the first one using nozzle operating at the standard ranges of pressure that are normally available in underground coal mines, and a second one based in high-pressure nozzles. In this case, bottles containing a pressurized air/water mixtures are required. The works carried out included theoretical studies, hydraulic nozzles characterization, and modelling of the explosion phenomena using the AutoReaGas code. Besides, extensive testing of the prototypes has been carried out in an underground explosion test facility that has been set up specially for this project at the Barredo Pit in Mieres (Asturias). The results obtained show that the low-pressure system is not valid for this particular application, whereas the high-pressure yielded a more promising performance. However, further testing is required to confirm these results.
Kosevich, Yuriy A.; Savin, Alexander V.
2016-10-01
We provide molecular dynamics simulation of heat transport and energy diffusion in one-dimensional molecular chains with different interparticle pair potentials at zero and non-zero temperature. We model the thermal conductivity (TC) and energy diffusion (ED) in the chain of coupled rotators and in the Lennard-Jones chain either without or with the confining parabolic interparticle potential. The considered chains without the confining potential have normal TC and ED at non-zero temperature, while the corresponding chains with the confining potential are characterized by anomalous (diverging with the system length) TC and superdiffusion of energy. Similar effect is produced by the anharmonic quartic confining pair potential. We confirm in such a way that, surprisingly, the confining pair potential makes both heat transport and energy diffusion anomalous in one-dimensional phononic systems. We show that the normal TC is always accompanied by the normal ED in the thermalized anharmonic chains, while the superdiffusion of energy occurs in the thermalized chains with only anomalous heat transport.
Energy Technology Data Exchange (ETDEWEB)
Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. [Sandia National Labs., Albuquerque, NM (United States)
1991-09-01
This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.
Energy Technology Data Exchange (ETDEWEB)
Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. (Sandia National Labs., Albuquerque, NM (United States))
1991-09-01
This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.
Transitional Disks as Signposts of Young, Multiplanet Systems
Dodson-Robinson, Sarah E
2011-01-01
Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiple planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without over-producing infrared excess flux. Rather than assuming the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction o...
Washburn, S P; White, S L; Green, J T; Benson, G A
2002-01-01
Dairy cows in confinement and pasture-based feeding systems were compared across four spring-calving and three fall-calving replicates for differences in reproduction, mastitis, body weights, and body condition scores. Feeding systems and replicates included both Jersey and Holstein cows. Cows in confinement were fed a total mixed ration, and cows on pasture were supplemented with concentrates and provided baled hay or haylage when pasture supply was limiting. Breeding periods were for 75 d in spring or fall. Reproductive performance did not differ significantly due to feeding system or season. Jerseys had higher conception rates (59.6 vs. 49.5 +/- 3.3%) and higher percentages of cows pregnant in 75 d (78.1 vs. 57.9 +/- 3.9%) than Holsteins. Cows in confinement had 1.8 times more clinical mastitis and eight times the rate of culling for mastitis than did cows on pasture. Jerseys had half as many clinical cases of mastitis per cow as Holsteins. Only 41 +/- 5% of confinement Holsteins remained for a subsequent lactation, starting within the defined calving season compared with 51 +/- 5% of pastured Holsteins and 71 and 72 +/- 5% of Jerseys, respectively. Body weights and condition scores were generally higher for confinement cows than pastured cows, and Jerseys had higher condition scores and lower body weights than Holsteins. In summary, pastured cows had fewer clinical cases of mastitis, lower body condition scores, and lower body weights than confinement cows. Holsteins were less likely to rebreed, had more mastitis, higher culling rates, and lower body condition scores than Jerseys.
Medusa: a novel gene drive system for confined suppression of insect populations.
Directory of Open Access Journals (Sweden)
John M Marshall
Full Text Available Gene drive systems provide novel opportunities for insect population suppression by driving genes that confer a fitness cost into pest or disease vector populations; however regulatory issues arise when genes are capable of spreading across international borders. Gene drive systems displaying threshold properties provide a solution since they can be confined to local populations and eliminated through dilution with wild-types. We propose a novel, threshold-dependent gene drive system, Medusa, capable of inducing a local and reversible population crash. Medusa consists of four components--two on the X chromosome, and two on the Y chromosome. A maternally-expressed, X-linked toxin and a zygotically-expressed, Y-linked antidote results in suppression of the female population and selection for the presence of the transgene-bearing Y because only male offspring of Medusa-bearing females are protected from the effects of the toxin. At the same time, the combination of a zygotically-expressed, Y-linked toxin and a zygotically-expressed, X-linked antidote selects for the transgene-bearing X in the presence of the transgene-bearing Y. Together these chromosomes create a balanced lethal system that spreads while selecting against females when present above a certain threshold frequency. Simple population dynamic models show that an all-male release of Medusa males, carried out over six generations, is expected to induce a population crash within 12 generations for modest release sizes on the order of the wild population size. Re-invasion of non-transgenic insects into a suppressed population can result in a population rebound; however this can be prevented through regular releases of modest numbers of Medusa males. Finally, we outline how Medusa could be engineered with currently available molecular tools.
Development of the large neutron imaging system for inertial confinement fusion experiments.
Caillaud, T; Landoas, O; Briat, M; Kime, S; Rossé, B; Thfoin, I; Bourgade, J L; Disdier, L; Glebov, V Yu; Marshall, F J; Sangster, T C
2012-03-01
Inertial confinement fusion (ICF) requires a high resolution (~10 μm) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MégaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a (60)Co γ-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 μm were obtained and are compared to x-ray images of comparable resolution.
Development of the large neutron imaging system for inertial confinement fusion experiments
Energy Technology Data Exchange (ETDEWEB)
Caillaud, T.; Landoas, O.; Briat, M.; Kime, S.; Rosse, B.; Thfoin, I.; Bourgade, J. L.; Disdier, L. [CEA, DAM, DIF, F-91297 Arpajon (France); Glebov, V. Yu.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)
2012-03-15
Inertial confinement fusion (ICF) requires a high resolution ({approx}10 {mu}m) neutron imaging system to observe deuterium and tritium (DT) core implosion asymmetries. A new large (150 mm entrance diameter: scaled for Laser MegaJoule [P. A. Holstein, F. Chaland, C. Charpin, J. M. Dufour, H. Dumont, J. Giorla, L. Hallo, S. Laffite, G. Malinie, Y. Saillard, G. Schurtz, M. Vandenboomgaerde, and F. Wagon, Laser and Particle Beams 17, 403 (1999)]) neutron imaging detector has been developed for such ICF experiments. The detector has been fully characterized using a linear accelerator and a {sup 60}Co {gamma}-ray source. A penumbral aperture was used to observe DT-gas-filled target implosions performed on the OMEGA laser facility. [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)] Neutron core images of 14 MeV with a resolution of 15 {mu}m were obtained and are compared to x-ray images of comparable resolution.
Inertial confinement fusion reaction chamber and power conversion system study. Final report
Energy Technology Data Exchange (ETDEWEB)
Maya, I.; Schultz, K.R.; Bourque, R.F.; Cheng, E.T.; Creedon, R.L.; Norman, J.H.; Price, R.J.; Porter, J.; Schuster, H.L.; Simnad, M.J.
1985-10-01
This report summarizes the results of the second year of a two-year study on the design and evaluation of the Cascade concept as a commercial inertial confinement fusion (ICF) reactor. We developed a reactor design based on the Cascade reaction chamber concept that would be competitive in terms of both capital and operating costs, safe and environmentally acceptable in terms of hazard to the public, occupational exposure and radioactive waste production, and highly efficient. The Cascade reaction chamber is a double-cone-shaped rotating drum. The granulated solid blanket materials inside the rotating chamber are held against the walls by centrifugal force. The fusion energy is captured in a blanket of solid carbon, BeO, and LiAlO/sub 2/ granules. These granules are circulated to the primary side of a ceramic heat exchanger. Primary-side granule temperatures range from 1285 K at the LiAlO/sub 2/ granule heat exchanger outlet to 1600 K at the carbon granule heat exchanger inlet. The secondary side consists of a closed-cycle gas turbine power conversion system with helium working fluid, operating at 1300 K peak outlet temperature and achieving a thermal power conversion efficiency of 55%. The net plant efficiency is 49%. The reference design is a plant producing 1500 MW of D-T fusion power and delivering 815 MW of electrical power for sale to the utility grid. 88 refs., 44 figs., 47 tabs.
Energy Technology Data Exchange (ETDEWEB)
Makowitz, H.; Powell, J.R.; Wiswall, R.
1980-01-01
Parametric system studies of an inertial confinement fusion (ICF) reactor system to transmute fission products from a LWR economy have been carried out. The ICF reactors would produce net power in addition to transmuting fission products. The particular ICF concept examined is an impact fusion approach termed HYPERFUSE, in which hypervelocity pellets, traveling on the order of 100 to 300 km/sec, collide with each other or a target block in a reactor chamber and initiate a thermonuclear reaction. The DT fusion fuel is contained in a shell of the material to be transmuted, e.g., /sup 137/Cs, /sup 90/Sr, /sup 129/I, /sup 99/Tc, etc. The 14-MeV fusion neutrons released during the pellet burn cause transmutation reactions (e.g., (n,2n), (n,..cap alpha..), (n,..gamma..), etc.) that convert the long-lived fission products (FP's) either to stable products or to species that decay with a short half-life to a stable product. The transmutation parametric studies conclude that the design of the hypervelocity projectiles should emphasize the achievement of high densities in the transmutation regions (greater than the DT fusion fuel density), as well as the DT ignition and burn criterion (rho R = 1.0 to 3.0) requirements. These studies also indicate that masses on the order of 1.0 g at densities of rho greater than or equal to 500.0 g/cm/sup 3/ are required for a practical fusion-based fission product transmutation system.
Directory of Open Access Journals (Sweden)
Paolo eMalgaretti
2013-11-01
Full Text Available Transport in small-scale biological and soft-matter systems typically occurs under confinement conditions in which particles proceed through obstacles and irregularities of the boundaries that may significantly alter their trajectories. A transport model that assimilates the confinement to the presence of entropic barriers provides an efficient approach to quantify its effect on the particle current and the diffusion coefficient. We review the main peculiarities of entropic transport and treat two cases in which confinement effects play a crucial role, with the appearance of emergent properties. The presence of entropic barriers modifies the mean first-passage time distribution and therefore plays a very important role in ion transport through micro- and nano-channels. The functionality of molecular motors, modeled as Brownian ratchets, is strongly affected when the motor proceeds in a confined medium that may constitute another source of rectification. The interplay between ratchet and entropic rectification gives rise to a wide variety of dynamical behaviors, not observed when the Brownian motor proceeds in an unbounded medium. Entropic transport offers new venues of transport control and particle manipulation and new ways to engineer more efficient devices for transport at the nanoscale.
Hazeltine, R D
2003-01-01
Detailed and authoritative, this volume examines the essential physics underlying international research in magnetic confinement fusion. It offers readable, thorough accounts of the fundamental concepts behind methods of confining plasma at or near thermonuclear conditions. Designed for a one- or two-semester graduate-level course in plasma physics, it also represents a valuable reference for professional physicists in controlled fusion and related disciplines.
Economics of fertility in high-yielding dairy cows on confined TMR systems.
Cabrera, V E
2014-05-01
The objective of this review paper was to summarise the latest findings in dairy cattle reproductive economics with an emphasis on high yielding, confined total mixed ration systems. The economic gain increases as the reproductive efficiency improves. These increments follow the law of diminishing returns, but are still positive even at high reproductive performance. Reproductive improvement results in higher milk productivity and, therefore, higher milk income over feed cost, more calf sales and lower culling and breeding expenses. Most high-yielding herds in the United States use a combination of timed artificial insemination (TAI) and oestrous detection (OD) reproductive programme. The ratio of achievable pregnancies between OD and TAI determines the economic value difference between both and their combinations. Nonetheless, complex interactions between reproductive programme, herd relative milk yield, and type of reproductive programme are reported. For example, higher herd relative milk yield would favour programme relying more on TAI. In addition, improved reproductive efficiency produces extra replacements. The availability of additional replacements could allow more aggressive culling policies (e.g. less services for non-pregnant cows) to balance on-farm supply and demand of replacements. Balancing heifer replacement availability in an efficient reproductive programme brings additional economic benefits. New technologies such as the use of earlier chemical tests for pregnancy diagnosis could be economically effective depending on the goals and characteristics of the farm. Opportunities for individual cow reproductive management within defined reproductive programme exist. These decisions would be based on economic metrics derived from the value of a cow such as the value of a new pregnancy, the cost of a pregnancy loss, or the cost of an extra day open.
Reese, Ronald S.
2014-01-01
The successful implementation of aquifer storage and recovery (ASR) as a water-management tool requires detailed information on the hydrologic and hydraulic properties of the potential water storage zones. This report presents stratigraphic and hydrogeologic sections of the upper part of the Floridan aquifer system and the overlying confining unit or aquifer system in the Lake Okeechobee area, and contour maps of the upper contacts of the Ocala Limestone and the Arcadia Formation, which are represented in the sections. The sections and maps illustrate hydrogeologic factors such as confinement of potential storage zones, the distribution of permeability within the zones, and geologic features that may control the efficiency of injection, storage, and recovery of water, and thus may influence decisions on ASR activities in areas of interest to the Comprehensive Everglades Restoration Plan.
Energy Technology Data Exchange (ETDEWEB)
Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo (ed.)
2005-07-01
The Frascati Tokamak Upgrade (FTU) is a compact, high-magnetic-field tokamak capable of operating at density and magnetic field values similar to, or even encompassing, those of International Thermonuclear Experimental Reactor (ITER) and therefore provides a unique opportunity to explore physics issues that are directly relevant to ITER. During 2004 the experimental activities were focussed on fully exploiting the lower hybrid system (for generating and controlling the plasma current) and the electron cyclotron heating system (joint experiment with the Institute of Plasma Physics of the National Research Council, Milan). With all four gyrotrons in operation, full electron cyclotron power was achieved up to a record level of 1.5 MW. By simultaneously injecting lower hybrid waves, to tailor the plasma current radial profile, and electron cyclotron waves, to heat the plasma centre, good confinement regimes with internal transport barriers were obtained at the highest plasma density values ever achieved for this operation regime (n {approx}1.5X10{sup 20}m{sup -3}). Specific studies were devoted to optimising the coupling of lower hybrid waves to the plasma (by real-time control of the plasma position) and to generating current by electron cyclotron current drive. The new scanning CO{sub 2} interferometer (developed by the Reversed Field Experiment Consortium) for high spatial and time resolution (1 cm/50 {mu}s) density profile measurements was extensively used. The Thomson scattering diagnostic was upgraded and enabled observation of scattered signals associated with the Confinement background plasma dynamics. As for theoretical studies on the dynamics of turbulence in plasmas, the transition from Bohm-like scaling to gyro-Bohm scaling of the local plasma diffusivity was demonstrated on the basis of a generalised four wave model (joint collaboration with Princeton Plasma Physics Laboratory and the University of California at Irvine). The transition from weak to strong
Polymer mixtures in confined geometries: Model systems to explore phase transitions
Indian Academy of Sciences (India)
K Binder; M Müller; A Cavallo; E V Albano
2005-06-01
While binary (A,B) symmetric polymer mixtures in = 3 dimensions have an unmixing critical point that belongs to the 3 Ising universality class and crosses over to mean field behavior for very long chains, the critical behavior of mixtures confined into thin film geometry falls in the 2 Ising class irrespective of chain length. The critical temperature always scales linearly with chain length, except for strictly two-dimensional chains confined to a plane, for which c 5/8 (this unusual exponent describes the fractal contact line between segregated chains in dense melts in two spatial dimensions, = 2). When the walls of the thin film are not neutral, but preferentially attract one species, complex phase diagrams occur due to the interplay between capillary condensation and wetting phenomena. For `competing walls' (one wall prefers A, the other prefers B) particularly interesting interface localization–delocalization transitions occur, while analogous phenomena in wedges are related to the `filling transition'.
12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems
Energy Technology Data Exchange (ETDEWEB)
Berk, Herbert L.; Breizman, Boris N.
2014-02-21
The 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems took place in Austin, Texas (7–11 September 2011). This meeting was organized jointly with the 5th IAEA Technical Meeting on Theory of Plasma Instabilities (5–7 September 2011). The two meetings shared one day (7 September 2011) with presentations relevant to both groups. Some of the work reported at these meetings was then published in a special issue of Nuclear Fusion [Nucl. Fusion 52 (2012)]. Summaries of the Energetic Particle Conference presentations were given by Kazuo Toi and Boris Breizman. They respectively discussed the experimental and theoretical progress presented at the meeting. Highlights of this meeting include the tremendous progress that has been achieved in the development of diagnostics that enables the ‘viewing’ of internal fluctuations and allows comparison with theoretical predictions, as demonstrated, for example, in the talks of P. Lauber and M. Osakabe. The need and development of hardened diagnostics in the severe radiation environment, such as those that will exist in ITER, was discussed in the talks of V. Kiptily and V.A. Kazakhov. In theoretical studies, much of the effort is focused on nonlinear phenomena. For example, detailed comparison of theory and experiment on D-III-D on the n = 0 geodesic mode was reported in separate papers by R. Nazikian and G. Fu. A large number of theoretical papers were presented on wave chirping including a paper by B.N. Breizman, which notes that wave chirping from a single frequency may emanate continuously once marginal stability conditions have been established. Another area of wide interest was the detailed study of alpha orbits in a burning plasma, where losses can come from symmetry breaking due to finite coil number or magnetic field imperfections introduced by diagnostic or test modules. An important area of development, covered by M.A. Hole and D.A. Spong, is concerned with the self
Institute of Scientific and Technical Information of China (English)
路传同; 胡建平; 周春健; 侯冲
2012-01-01
传统磁吸式精密播种机所采用的排种元件是单个的圆柱形磁体,产生的磁场是轴对称的,因此处于对称位置的磁粉包衣种子所受磁吸力相等,磁力差为零.研究发现这类排种元件容易吸附到处于对称位置的多粒种子,导致重播率增加.为提高磁粉包衣种子间的磁力差、降低重播率,该文提出一种能够在排种空间中产生非轴对称磁场的磁力排种元件,所设计的排种元件采用添加磁场偏置永磁体的方法来使磁场成为非轴对称的.通过磁场有限元分析的方法对两类排种元件在排种空间里的磁场特性进行分析.分析表明,该非轴对称磁场的磁场能够增加磁场中对称位置的磁场力差.排种性能对比试验也表明非轴对称磁场排种元件相对于轴对称磁场排种元件能够降低4％的重播率.%Traditional magnetic precision seeding element is a single cylindrical magnet,and it generates axisymmetric magnetic field,therefore the magnetic force that the magnetic powder coated seeds suffered in the symmetrical position is equal,and it's magnetic force deviation is zero.Studies showed that this kind of seeding elements easily adsorbed multiple seed in the symmetrical position,resulting multiple index increased.In order to increase the magnetic force deviation between seeds and reduce the multiple indexes,this paper put forward a new magnetic seeding element which was added a bias magnet in the main magnets,producing non-axisymmetric magnetic field.The magnetic field characteristics of the two kinds of seeding element were analyzed in the seed-metering space by using the method of the magnetic field tinite element.The analysis showed that the non-axisymmetric magnetic seeding element can increased the magnetic force deviation in the symmetrical position.The comparison tests of seed-metering performance also showed that the non-axisymmetric magnetic seeding element can significantly reduced the multiple
2008-01-01
This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role in the description of very small magnetic systems ranging from microelements, which form the basis of magnetic sensors, to magnetic nano-contacts. The spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, and
Polymer mixtures in confined geometries: Model systems to explore phase transitions
Binder, K.; Müller, M.; Cavallo, A.; Albano, E. V.
2005-06-01
While binary (A,B) symmetric polymer mixtures in d=3 dimensions have an unmixing critical point that belongs to the 3d Ising universality class and crosses over to mean field behavior for very long chains, the critical behavior of mixtures confined into thin film geometry falls in the 2d Ising class irrespective of chain length. The critical temperature always scales linearly with chain length, except for strictly two-dimensional chains confined to a plane, for which T_{c} propto N^{5/8} (this unusual exponent describes the fractal contact line between segregated chains in dense melts in two spatial dimensions, d=2). When the walls of the thin film are not neutral, but preferentially attract one species, complex phase diagrams occur due to the interplay between capillary condensation and wetting phenomena. For `competing walls' (one wall prefers A, the other prefers B) particularly interesting interface localization-delocalization transitions occur, while analogous phenomena in wedges are related to the `filling transition'.
No confinement without Coulomb confinement
Zwanziger, D
2003-01-01
We compare the physical potential $V_D(R)$ of an external quark-antiquark pair in the representation $D$ of SU(N), to the color-Coulomb potential $V_{\\rm coul}(R)$ which is the instantaneous part of the 44-component of the gluon propagator in Coulomb gauge, $D_{44}(\\vx,t) = V_{\\rm coul}(|\\vx|) \\delta(t)$ + (non-instantaneous). We show that if $V_D(R)$ is confining, $\\lim_{R \\to \\infty}V_D(R) = + \\infty$, then the inequality $V_D(R) \\leq - C_D V_{\\rm coul}(R)$ holds asymptotically at large $R$, where $C_D > 0$ is the Casimir in the representation $D$. This implies that $ - V_{\\rm coul}(R)$ is also confining.
Quantum propagation and confinement in 1D systems using the transfer-matrix method
Pujol, Olivier; Carles, Robert; Pérez, José-Philippe
2014-05-01
The aim of this article is to provide some Matlab scripts to the teaching community in quantum physics. The scripts are based on the transfer-matrix formalism and offer a very efficient and versatile tool to solve problems of a physical object (electron, proton, neutron, etc) with one-dimensional (1D) stationary potential energy. Resonant tunnelling through a multiple-barrier or confinement in wells of various shapes is particularly analysed. The results are quantitatively discussed with semiconductor heterostructures, harmonic and anharmonic molecular vibrations, or neutrons in a gravity field. Scripts and other examples (hydrogen-like ions and transmission by a smooth variation of potential energy) are available freely at http://www-loa.univ-lille1.fr/˜pujol in three languages: English, French and Spanish.
Kallikragas, Dimitrios Theofanis
Supercritical water (SCW) is the intended heat transfer fluid and potential neutron moderator in the proposed GEN-IV Supercritical Water Cooled Reactor (SCWR). The oxidative environment poses challenges in choosing appropriate design materials, and the behaviour of SCW within crevices of the passivation layer is needed for developing a corrosion control strategy to minimize corrosion. Molecular Dynamics simulations have been employed to obtain diffusion coefficients, coordination number and surface density characteristics, of water and chloride in nanometer-spaced iron hydroxide surfaces. Diffusion models for hydrazine are evaluated along with hydration data. Results demonstrate that water is more likely to accumulate on the surface at low density conditions. The effect of confinement on the water structure diminishes as the gap size increases. The diffusion coefficient of chloride decreases with larger surface spacing. Clustering of water at the surface implies that the SCWR will be most susceptible to pitting corrosion and stress corrosion cracking.
Analysis of the physics and performance of inertial confinement fusion systems. [NORCLA
Energy Technology Data Exchange (ETDEWEB)
Velarde, G.; Aragones, J.M.; Arroyo, R.; Gago, J.A.; Honrubia, J.J.; Martinez Fanegas, F.; Martinez-Val, J.M.; Minguez, E.; Ocana, J.L.; Pena, J.J.
1984-01-01
The physics of the relevant thermohydrodynamic and nuclear processes immersed in the study of inertial confinement fusion (ICF) is reviewed in the present paper. Our analysis of ICF targets includes the deposition of heavy and light ion beams, coupled to the THD evolution; the effects of pressure ionization and electron degeneracy on the conductivity and EOS; the ion and electron temperatures; the equilibrium radiation diffusion; and the fusion born alpha and neutron detailed transport. Numerical results for a single-shell multi-layered DT target obtained with our upgraded NORCLA code are presented and discussed in detail. This target performance, although not fully optimized, would feed a fusion power plant of 1000 MW(e) with a recirculating energy fraction below 25%, with a heavy ion driver efficiency over 15% and a repetition rate over 7 Hz.
Ohgaki, H.; Daito, I.; Zen, H.; Kii, T.; Masuda, K.; Misawa, T.; Hajima, R.; Hayakawa, T.; Shizuma, T.; Kando, M.; Fujimoto, S.
2017-07-01
A Neutron/Gamma-ray combined inspection system for hidden special nuclear materials (SNMs) in cargo containers has been developed under a program of Japan Science and Technology Agency in Japan. This inspection system consists of an active neutron-detection system for fast screening and a laser Compton backscattering gamma-ray source in coupling with nuclear resonance fluorescence (NRF) method for precise inspection. The inertial electrostatic confinement fusion device has been adopted as a neutron source and two neutron-detection methods, delayed neutron noise analysis method and high-energy neutron-detection method, have been developed to realize the fast screening system. The prototype system has been constructed and tested in the Reactor Research Institute, Kyoto University. For the generation of the laser Compton backscattering gamma-ray beam, a race track microtron accelerator has been used to reduce the size of the system. For the NRF measurement, an array of LaBr3(Ce) scintillation detectors has been adopted to realize a low-cost detection system. The prototype of the gamma-ray system has been demonstrated in the Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology. By using numerical simulations based on the data taken from these prototype systems and the inspection-flow, the system designed by this program can detect 1 kg of highly enriched 235U (HEU) hidden in an empty 20-ft container within several minutes.
Amoeboid motion in confined geometry
Wu, Hao; Hu, Wei-Fan; Farutin, Alexander; Rafaï, Salima; Lai, Ming-Chih; Peyla, Philippe; Misbah, Chaouqi
2015-01-01
Cells of the immune system, as well as cancer cells, migrating in confined environment of tissues undergo frequent shape changes (described as amoeboid motion) that enable them to move forward through these porous media without the assistance of adhesion sites. In other words, they perform amoeboid swimming (AS) while using extracellular matrices and cells of tissues as support. We introduce a simple model of AS in a confined geometry solved by means of 2D numerical simulations. We find that confinement promotes AS, unless being so strong that it restricts shape change amplitude. A straight AS trajectory in the channel is found to be unstable, and ample lateral excursions of the swimmer prevail. For weak confinement, these excursions are symmetric, while they become asymmetric at stronger confinement, whereby the swimmer is located closer to one of the two walls. This is a spontaneous symmetry-breaking bifurcation. We find that there exists an optimal confinement for migration. We provide numerical results as...
Mayoral-Villa, Estela; Alvarado-Rodríguez, Carlos E; Klapp, Jaime; Gómez-Gesteira, Moncho; Sigalotti, Leonardo Di G
2016-04-01
A smoothed particle hydrodynamics (SPH) model is presented for simulating the decay chain transport of radionuclides in confined aqueous solutions. The SPH formulation is based on the open-source parallel code DualSPHysics extended to solve the advective-diffusion equation for the evolution of the concentration field coupled to the fluid-dynamic equations, including the effects of radioactive decay of the tracer contaminants. The performance of the method is demonstrated for environmental engineering problems dealing with the transport of contaminants in still and flowing water. The results from a series of benchmark test calculations are described in two- and three-space dimensions, where the advection, diffusion, and radioactive decay modes are tested separately and in combined form. The accuracy of the present SPH transport model is shown by direct comparison with the analytical solutions and results from other SPH approaches. For a given problem, convergence of the SPH solution is seen to increase with decreasing particle size and spacing.
Mayoral-Villa, Estela; Alvarado-Rodríguez, Carlos E.; Klapp, Jaime; Gómez-Gesteira, Moncho; Di G. Sigalotti, Leonardo
2016-04-01
A smoothed particle hydrodynamics (SPH) model is presented for simulating the decay chain transport of radionuclides in confined aqueous solutions. The SPH formulation is based on the open-source parallel code DualSPHysics extended to solve the advective-diffusion equation for the evolution of the concentration field coupled to the fluid-dynamic equations, including the effects of radioactive decay of the tracer contaminants. The performance of the method is demonstrated for environmental engineering problems dealing with the transport of contaminants in still and flowing water. The results from a series of benchmark test calculations are described in two- and three-space dimensions, where the advection, diffusion, and radioactive decay modes are tested separately and in combined form. The accuracy of the present SPH transport model is shown by direct comparison with the analytical solutions and results from other SPH approaches. For a given problem, convergence of the SPH solution is seen to increase with decreasing particle size and spacing.
Dunn, M.; Watson, D. K.; Loeser, J. G.
2006-08-01
In this paper, we develop an analytic N-body wave function for identical particles under quantum confinement with a general two-body interaction. A systematic approach to correlation is developed by combining three theoretical methods: dimensional perturbation theory, the FG method of Wilson et. al., and the group theory of the symmetric group. Analytic results are achieved for a completely general interaction potential. Unlike conventional perturbation methods which are applicable only for weakly interacting systems, this analytic approach is applicable to both weakly and strongly interacting systems. This method directly accounts for each two-body interaction, rather than an average interaction so even lowest-order results include beyond-mean-field effects. One major advantage is that N appears as a parameter in the analytical expressions for the energy so results for different N are easy to obtain.
Energy Technology Data Exchange (ETDEWEB)
Bedier, P.O.; Libmann, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Mecanique et de Technologie
1995-12-31
The objective of the Crisis Technical Center (CTC) of the French Institute for Nuclear Protection and Safety (IPSN) is to estimates the consequences of a given nuclear accident on the populations and the environment. ALIBABA is a data processing tool available at the CTC and devoted to the detection of confinement leaks in 900 MWe PWR reactors using the activity values measured by the captors of the installation. The heart of this expert system is a structural and functional representation of the different components directly involved in the leak detection (isolating valves, ventilation systems, electric boards etc..). This tool can manage the availability of each component to make qualitative and quantitative balance-sheets. This paper presents the ALIBABA software, an industrial prototype realized with the SPIRAL knowledge base systems generator at the CEA Reactor Studies and Applied Mathematics Service (SERMA) and commercialized by CRIL-Ingenierie Society. It describes the techniques used for the modeling of PWR systems and for the visualization of the survey. The functionality of the man-machine interface is discussed and the means used for the validation of the software are summarized. (J.S.). 6 refs.
Institute of Scientific and Technical Information of China (English)
史建新; 孙宝芝; 刘尚华; 韩文静; 张国磊; 赵颍杰; 干依燃
2015-01-01
Taking the high-temperature gas-cooled reactor ( HTGR) steam generator ( SG) at Argonne National La-boratory ( ANL) as the prototype, in combination with the structural characteristics and working process of the SG, a physical model of single helically coiled tube was made. The processes of flow, single phase convective heat trans-fer and boiling phase change heat transfer of secondary loop fluid in a helically coiled tube were simulated to inves-tigate the non-axisymmetric distribution of thermal-hydraulic characteristics in a HTGR steam generator. The results show that the distribution of key parameters around the circumference of a HTGR steam generator, such as wall temperature and velocity, is non-axisymmetric; besides, in the single-phase area, the circumferential distribution of key parameters along the cross section of tube is completely opposite to that in the two-phase area. The velocity is greater, heat transfer is more intense and wall temperature is lower along the outside of helically coiled tubes in the single-phase area due to centrifugal force. Steam gathers along the inside of the helically coiled tube due to the dual role of buoyancy lift and centrifugal force in the two vapor-liquid phases after having entered the two-phase flow are-a. Heat transfer is enhanced because of bubble disturbance, and therefore wall temperature is lower at this location.%为了研究高温气冷堆蒸汽发生器热工水力参数非轴对称分布特性,以阿贡国家实验室蒸汽发生器为原型,结合其结构特点及工作过程建立单根螺旋管物理模型,模拟蒸汽发生器螺旋管内二回路流体的流动、单相对流换热及相变换热过程. 计算结果表明:高温气冷堆蒸汽发生器的壁温、流速等关键参数均呈非轴对称分布,且单相区和相变区关键参数沿管截面周向分布趋势完全相反. 单相区由于离心力作用螺旋管外侧水的流速大,换热剧烈,壁温低;进入相变区后由于汽液
Energy Technology Data Exchange (ETDEWEB)
Contreras-Astorga, A., E-mail: alonso.contreras.astorga@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Tristao, S., E-mail: hetsudoyaguiu@gmail.com [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)
2016-01-08
This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.
Bakke, K.
2015-07-01
The behaviour of the Landau-Aharonov-Casher system is discussed by showing a case where the external electric field cannot yield the Landau-Aharonov-Casher quantization under the influence of rotating effects in the cosmic string spacetime, but it can yield bound states solutions to the Schrödinger-Pauli equation analogous to having the Landau-Aharonov-Casher system confined to a hard-wall confining potential under the influence of rotating effects and the topology of the cosmic string spacetime (by assuming ω ρ≪1 and neglecting the effects of a gravitational self-force on the particle).
Structure and Spectrum of Binary Classic Systems Confined in a Parabolic Trap
Institute of Scientific and Technical Information of China (English)
YANG Wen; ZENG Zhi
2009-01-01
@@ The static and dynamic properties of the two-dimensional classic system of two-species interacting charged par-ticles in a parabolic trap are studied. The ground state energy and configuration for different kinds of binary systems are obtained by Monte Carlo simulation and Newton optimization. The spectrum and normal modes vectors can be gained by diagonalizing the dynamical matrix of the system. It is found that the total particle number, particle number and mass-to-charge ratio of each species are decisive factors for the system structure and spectrum. The three intrinsic normal modes of single species Coulomb clusters are inherent, concluded from our numerical simulations and analytical results.
Variations of Solar Non-axisymmetric Activity
Gyenge, N; Ludmány, A
2014-01-01
The temporal behaviour of solar active longitudes has been examined by using two sunspot catalogues, the Greenwich Photoheliographic Results (GPR) and the Debrecen Photoheliographic Data (DPD). The time-longitude diagrams of the activity distribution reveal the preferred longitudinal zones and their migration with respect to the Carrington frame. The migration paths outline a set of patterns in which the activity zone has alternating prograde/retrograde angular velocities with respect to the Carrington rotation rate. The time profiles of these variations can be described by a set of successive parabolae. Two similar migration paths have been selected from these datasets, one northern path during cycles 21 - 22 and one southern path during cycles 13 - 14, for closer examination and comparison of their dynamical behaviours. The rates of sunspot emergence exhibited in both migration paths similar periodicities, close to 1.3 years. This behaviour may imply that the active longitude is connected to the bottom of c...
Energy Technology Data Exchange (ETDEWEB)
Kovrizhnykh, L. M., E-mail: lmkov@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2015-12-15
Various methods of determining the ambipolar electric field in toroidal magnetic systems (predominantly, in stellarators) and the evolution of views on this problem are discussed. Paradoxes encountered in solving this problem are analyzed, and ways of resolving them are proposed.
Confined helium on Lagrange meshes
Baye, Daniel
2015-01-01
The Lagrange-mesh method has the simplicity of a calculation on a mesh and can have the accuracy of a variational method. It is applied to the study of a confined helium atom. Two types of confinement are considered. Soft confinements by potentials are studied in perimetric coordinates. Hard confinement in impenetrable spherical cavities is studied in a system of rescaled perimetric coordinates varying in [0,1] intervals. Energies and mean values of the distances between electrons and between an electron and the helium nucleus are calculated. A high accuracy of 11 to 15 significant figures is obtained with small computing times. Pressures acting on the confined atom are also computed. For sphere radii smaller than 1, their relative accuracies are better than $10^{-10}$. For larger radii up to 10, they progressively decrease to $10^{-3}$, still improving the best literature results.
SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems
Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.
2017-06-01
Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.
DEFF Research Database (Denmark)
Loft, Niels Jakob Søe; Kristensen, Lasse Bjørn; Thomsen, Anders
2016-01-01
We consider a one-dimensional system of particles with strong zero-range interactions. This system can be mapped onto a spin chain of the Heisenberg type with exchange coefficients that depend on the external trap. In this paper, we present an algorithm that can be used to compute these exchange...... trap and a box trap with a superimposed asymmetric tilted potential. For these examples, the computation time typically scales with the number of particles as O(N3.5±0.4). Computation times are around 10 s for N=10 particles and less than 10 min for N=20 particles....
An interpretation of size-scale plasticity in geometrically confined systems.
Espinosa, H D; Berbenni, S; Panico, M; Schwarz, K W
2005-11-22
The mesoscopic constitutive behavior of face-centered cubic metals as a function of the system characteristic dimension recently has been investigated experimentally. Strong size effects have been identified in both polycrystalline submicron thin films and single crystal micro pillars. The size effect is manifested as an increase in strength and hardening rate as the system dimensions are decreased. In this article, we provide a mechanistic interpretation for the observed mesoscopic behavior. By performing 3D discrete dislocation dynamics simulations of grains representative of the system microstructure and associated characteristic dimensions, we show that the experimentally observed size effects can be qualitatively described. In these simulations, a constant density of dislocation sources per unit of grain boundary area is modeled by sources randomly distributed at grain boundaries. The source length (strength) is modeled by a Gaussian distribution, in which average and standard deviation is independent of the system characteristic dimension. The simulations reveal that two key concepts are at the root of the observed plasticity size effect. First, the onset of plasticity is governed by a dislocation nucleation-controlled process (sources of various length, i.e., strengths, in our model). Second, the hardening rate is controlled by source exhaustion, i.e., sources are active only once as a result of the limited dislocation mobility arising from size and boundary effects. The model postulated here improves our understanding of why "smaller is stronger" and provides predictive capabilities that should enhance the reliable design of devices in applications such as microelectronics and micro/nano-electro-mechanical systems.
Topological confinement and superconductivity
Energy Technology Data Exchange (ETDEWEB)
Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory
2008-01-01
We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.
Confined Phase Envelope of Gas-Condensate Systems in Shale Rocks
Nagy, Stanislaw; Siemek, Jakub
2014-12-01
Natural gas from shales (NGS) and from tight rocks are one of the most important fossil energy resource in this and next decade. Significant increase in gas consumption, in all world regions, will be marked in the energy sector. The exploration of unconventional natural gas & oil reservoirs has been discussed recently in many conferences. This paper describes the complex phenomena related to the impact of adsorption and capillary condensation of gas-condensate systems in nanopores. New two phase saturation model and new algorithm for search capillary condensation area is discussed. The algorithm is based on the Modified Tangent Plane Criterion for Capillary Condensation (MTPCCC) is presented. The examples of shift of phase envelopes are presented for selected composition of gas-condensate systems. Gaz ziemny z łupków (NGS) oraz z ze złóż niskoprzepuszczalnych (typu `tight') staje się jednym z najważniejszych zasobów paliw kopalnych, w tym i następnym dziesięcioleciu. Znaczący wzrost zużycia gazu we wszystkich regionach świata zaznacza się głównie w sektorze energetycznym. Rozpoznawanie niekonwencjonalnych złóż gazu ziemnego i ropy naftowej w ostatnim czasie jest omawiane w wielu konferencjach. Niniejszy artykuł opisuje złożone zjawiska związane z wpływem adsorpcji i kapilarnej kondensacji w nanoporach w złożach gazowo-kondensatowych. Pokazano nowy dwufazowy model równowagowy dwufazowy i nowy algorytm wyznaczania krzywej nasycenia w obszarze kondensacji kapilarnej. Algorytm bazuje na kryterium zmodyfikowanym płaszczyzny stycznej dla kapilarnej kondensacji (MTPCCC). Przykłady zmiany krzywych nasycenia są przedstawiane w wybranym składzie systemów gazowo- kondensatowych
A hydrodynamic linear instability in a system of confined colloidal rollers
Donev, Aleksandar; Delmotte, Blaise; Driscoll, Michelle; Chaikin, Paul
2016-11-01
In a typical flow instability, the fastest growing wavelength is selected by two or more competing stresses. In this talk I will discuss a very different kind of instability, controlled by a single geometric parameter. We study theoretically a new instability which has been observed experimentally and numerically: the fingering of a front of suspended microrollers near a floor. Our continuum model shows that this instability is linear and that the size scale selection arises only from hydrodynamic interactions between the particles and the wall, independently of the driving forces and viscosity. We believe that this instability mechanism is quite generic and selects the instability length scale in a number of suspension/colloid systems near a wall. This work was supported primarily by the Materials Research Science and Engineering Center (MRSEC) program of the National Science Foundation under Award Number DMR-1420073.
Tools for Predicting Optical Damage on Inertial Confinement Fusion-Class Laser Systems
Energy Technology Data Exchange (ETDEWEB)
Nostrand, M C; Carr, C W; Liao, Z M; Honig, J; Spaeth, M L; Manes, K R; Johnson, M A; Adams, J J; Cross, D A; Negres, R A; Widmayer, C C; Williams, W H; Matthews, M J; Jancaitis, K S; Kegelmeyer, L M
2010-12-20
Operating a fusion-class laser to its full potential requires a balance of operating constraints. On the one hand, the total laser energy delivered must be high enough to give an acceptable probability for ignition success. On the other hand, the laser-induced optical damage levels must be low enough to be acceptably handled with the available infrastructure and budget for optics recycle. Our research goal was to develop the models, database structures, and algorithmic tools (which we collectively refer to as ''Loop Tools'') needed to successfully maintain this balance. Predictive models are needed to plan for and manage the impact of shot campaigns from proposal, to shot, and beyond, covering a time span of years. The cost of a proposed shot campaign must be determined from these models, and governance boards must decide, based on predictions, whether to incorporate a given campaign into the facility shot plan based upon available resources. Predictive models are often built on damage ''rules'' derived from small beam damage tests on small optics. These off-line studies vary the energy, pulse-shape and wavelength in order to understand how these variables influence the initiation of damage sites and how initiated damage sites can grow upon further exposure to UV light. It is essential to test these damage ''rules'' on full-scale optics exposed to the complex conditions of an integrated ICF-class laser system. Furthermore, monitoring damage of optics on an ICF-class laser system can help refine damage rules and aid in the development of new rules. Finally, we need to develop the algorithms and data base management tools for implementing these rules in the Loop Tools. The following highlights progress in the development of the loop tools and their implementation.
2015-01-01
We provide molecular dynamics simulation of heat transport and thermal energy diffusion in one-dimensional molecular chains with different interparticle pair potentials at zero and non-zero temperature. We model the thermal conductivity (TC) and energy diffusion in the coupled rotator chain and in the Lennard-Jones chain either without or with the confining parabolic interatomic potential. The considered chains without the confining potential have normal TC and energy diffusion, while the cor...
Zhao, Xujun; Hernandez-Ortiz, Juan; Karpeyev, Dmitry; de Pablo, Juan; Smith, Barry
In this work, we present an efficient parallel particle-in-mesh method for Brownian Dynamics simulations of many-particle systems confined in micro- and nano-fluidic devices. A general geometry Ewald-like method (GGEM) combined with finite element method is used to account for the hydrodynamic interaction. A fast parallel Krylov-type iterative solver with hybrid preconditioning techniques is developed for solving the large sparse systems of equations arising from finite element discretization of the Stokes equations. In addition, the current computer code is developed based on PETSc, a scalable library of numerical algorithms developed at Argonne, SLEPc - Scalable Library for Eigenvalue Problem Computations, and libMesh, a finite element library for numerical solution of PDEs built on top of PETSc, which allows for direct simulation of large scale systems with arbitrary confined geometries. This scheme is applied to Brownian dynamics simulations of flowing confined polymer solutions and colloidal dispersions in micro-fluid channels. The effects of hydrodynamics interactions and geometric confinement on the migration phenomena are illustrated.
Contact line motion in confined liquid–gas systems: Slip versus phase transition
Xu, Xinpeng
2010-11-30
In two-phase flows, the interface intervening between the two fluid phases intersects the solid wall at the contact line. A classical problem in continuum fluid mechanics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics. In one-component two-phase (liquid–gas) systems, the contact line can move through the mass transport across the interface while in two-component (binary) fluids, the contact line can move through diffusive transport across the interface. While these mechanisms alone suffice to remove the stress singularity, the role of fluid slip at solid surface needs to be taken into account as well. In this paper, we apply the diffuse-interface modeling to the study of contact line motion in one-component liquid–gas systems, with the fluid slip fully taken into account. The dynamic van der Waals theory has been presented for one-component fluids, capable of describing the two-phase hydrodynamics involving the liquid–gas transition [A. Onuki, Phys. Rev. E 75, 036304 (2007)]. This theory assumes the local equilibrium condition at the solid surface for density and also the no-slip boundary condition for velocity. We use its hydrodynamicequations to describe the continuum hydrodynamics in the bulk region and derive the more general boundary conditions by introducing additional dissipative processes at the fluid–solid interface. The positive definiteness of entropy production rate is the guiding principle of our derivation. Numerical simulations based on a finite-difference algorithm have been carried out to investigate the dynamic effects of the newly derived boundary conditions, showing that the contact line can move through both phase transition and slip, with their relative
Low-Energy Charge and Spin Dynamics in Quantum Confined Systems
Rice, William D.
Condensed matter systems exhibit a variety of dynamical phenomena at low energy scales, from gigahertz (GHz) to terahertz (THz) frequencies in particular, arising from complex interplay between charge, spin, and lattice. A large number of collective and elementary excitations in solids occur in this frequency range, which are further modified and enriched by scattering, interactions, and disorder. Recent advancements in spectroscopic methods for probing low-energy dynamics allow us to investigate novel aspects of charge and spin dynamics in solids. In this dissertation work, we used direct current (DC) conductivity, GHz, THz, and mid-infrared (MIR) techniques to provide significant new insights into interaction and disorder effects in low-dimensional systems. Specifically, we have studied temperature-dependent magnetoresistance (MR) and electron spin resonance (ESR) in single-wall carbon nanotubes (SWCNTs), intra-exciton scattering in InGaAs quantum wells, and high-field MIR-induced band gaps in graphene. Temperature-dependent resistance and MR were measured in an ensemble of SWCNTs from 0.3 to 350 K. The resistance temperature behavior followed a 3D variable range hopping (VRH) behavior from 0.3 to ˜100 K. A positive MR was observed at temperatures above 25 K and could be fit with a spin-dependent VRH model; negative MR was seen at low temperatures. In the GHz regime, the ESR linewidth for SWCNTs was observed to narrow by as much as 50% as the temperature was increased from 3 to 300 K, a phenomenon known as motional narrowing, suggesting that we are detecting the ESR of hopping spins. From the linewidth change versus temperature, we find the hopping frequency to be 285 GHz. For excitons in InGaAs quantum wells, we demonstrate the manipulation of intra-excitonic populations using intense, narrow-band THz pulses. The THz radiation temporarily quenches the 1s emission, which is then followed by an enhancement and subsequent decay of 2s emission. After the quenching
Mapping of diffusion in confined systems (beyond the concept of entropic potential)
Kalinay, Pavol
2010-12-01
Typical biological structures, like pores or fibers, are quasi one-dimensional (1D). We have to solve 3+1 dimensional differential equations to describe correctly transport through them or along them, but only the transport in the longitudinal direction is interesting in general. The question is to get rid of the transverse degrees of freedom in a mathematically correct way and to arrive at a pure 1D description of the system. We study this mathematical problem in the case of diffusion in a channel of varying cross section. We start with the simplest concept of entropic potential, logarithm of the number of states at some longitudinal position x, leading to the Fick-Jacobs equation. We present a rigorous mapping technique generating systematically corrections to the spatial operator of this equation in a small parameter ɛ, representing the ratio of the typical transverse and longitudinal lengths of the channel. Based on the result of this mapping, we discuss a hierarchy of various approximations, which can be applied to describe diffusion in the channel as purely one-dimensional. Finally, we give an outlook of possible extension of this mapping.
Spatial confinement of muonium atoms
Khaw, K. S.; Antognini, A.; Prokscha, T.; Kirch, K.; Liszkay, L.; Salman, Z.; Crivelli, P.
2016-08-01
We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into a vacuum from mesoporous silica reflects between two SiO2 confining surfaces separated by 1 mm. From the data, one can extract that the reflection probability on the confining surfaces kept at 100 K is about 90% and the reflection process is well described by a cosine law. This technique enables new experiments with this exotic atomic system and is a very important step towards a measurement of the 1 S -2 S transition frequency using continuous-wave laser spectroscopy.
Spatial confinement of muonium atoms
Khaw, K S; Prokscha, T; Kirch, K; Liszkay, L; Salman, Z; Crivelli, P
2016-01-01
We report the achievement of spatial confinement of muonium atoms (the bound state of a positive muon and an electron). Muonium emitted into vacuum from mesoporous silica is forced to bounce back and forth between two SiO$_2$ confining surfaces separated by 1 mm. From the data, one can extract that the reflection on the confining surfaces is well described by a cosine law. This technique opens up a way to perform new experiments with this exotic atomic system and is a very important step towards a measurement of the 1S-2S transition frequency using continuous wave laser spectroscopy.
Sweetpotato vine management for confined food production in a space life-support system
Massa, Gioia D.; Mitchell, Cary A.
2012-01-01
Sweetpotato (Ipomea batatas L.) 'Whatley-Loretan' was developed for space life support by researchers at Tuskegee University for its highly productive, nutritious storage roots. This promising candidate space life-support crop has a sprawling habit and aggressive growth rate in favorable environments that demands substantial growing area. Shoot pruning is not a viable option for vine control because removal of the main shoot apex drastically inhibits storage-root initiation and development, and chemical growth retardants typically are not cleared for use with food crops. As part of a large effort by the NASA Specialized Center of Research and Training in Advanced Life Support to reduce equivalent system mass (ESM) for food production in space, the dilemma of vine management for sweetpotato was addressed in effort to conserve growth area without compromising root yield. Root yields from unbranched vines trained spirally around wire frames configured either in the shapes of cones or cylinders were similar to those from vines trained horizontally along the bench, but occupying only a small fraction of the bench area. This finding indicates that sweetpotato is highly adaptable to a variety of vine-training architectures. Planting a second plant in the growth container and training the two vines in opposite directions around frames enhanced root yield and number, but had little effect on average length of each vine or bench area occupied. Once again, root yields were similar for both configurations of wire support frames. The 3-4-month crop-production cycles for sweetpotato in the greenhouse spanned all seasons of multiple years during the course of the study, and although electric lighting was used for photoperiod control and to supplement photosynthetic light during low-light seasons, there still were differences in total light available across seasons. Light variations and other environmental differences among experiments in the greenhouse had more effects on vine
Energy Technology Data Exchange (ETDEWEB)
GREENE,G.A.; GUPPY,J.G.
1998-09-01
This is the final report on the INSP project entitled, ``Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install and make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant.
Manias, M. V.; de Virgiliis, A.; Albano, E. V.; Müller, M.; Binder, K.
2007-05-01
The dynamical behavior of ferromagnetic Ising films confined in a D×L×L geometry (D≪L,1⩽i⩽D) is studied by means of Monte Carlo simulations when either short- or long-range competing magnetic fields H(i) of equal strength but opposite sign are applied at opposite walls, given by the L×L surfaces. It is well known that, for appropriate choices of the control parameters, these systems exhibit wetting phase transitions that occur in the limit of infinite film thickness at the critical curve Tw(hw) , where hw=H(i=1) is the magnitude of the surface field at the wall. Results of the dynamical approach to equilibrium, at criticality and for the complete wetting regime, obtained by starting the systems from different (far-from equilibrium) initial conditions, are presented and discussed. We determine quite accurately a wetting critical point [Tw=0.8982(57),hw=0.555] for the case of short-range fields, by measuring the detachment of the wetting layer from a wall, which for this type of field obeys a logarithmic dependence on time. For retarded van der Waals forces we obtained [Tw=0.8982,hw=0.449(1)] for the critical point. The scaling behavior of the average position of the interface is also studied for the complete wetting regime at T=0.8982 and in the presence of a bulk magnetic field H=1 . The numerical results are in full agreement with the theoretical expectations for the cases of short-range and long-range (both retarded and nonretarded van der Waals forces) fields, where logarithmic and power-law divergences are found, respectively.
Non-Hermiticity-Induced Wave Confinement and Guiding in Loss-Gain-Loss Three-Layer Systems
Savoia, Silvio; Galdi, Vincenzo
2016-01-01
Following up on previous studies on parity-time-symmetric gain-loss bi-layers, and inspired by formal analogies with plasmonic waveguides, we study non-Hermiticity-induced wave confinement and guiding phenomena that can occur in loss-gain-loss three-layers. By revisiting previous well-established "gain-guiding" concepts, we investigate analytically and numerically the dispersion and confinement properties of guided modes that can be supported by this type of structures, by assuming realistic dispersion models and parameters for the material constituents. As key outcomes, we identify certain modes with specific polarization and symmetry that exhibit particularly desirable characteristics, in terms of quasi-real propagation constant and sub-wavelength confinement. Moreover, we elucidate the effects of material dispersion and parameters, and highlight the potential advantages by comparison with the previously studied gain-loss bi-layer configurations. Our results provide additional perspectives on light control ...
Confining Strings with Topological Term
Diamantini, M Cristina; Trugenberger, Carlo Andrea
1997-01-01
We consider several aspects of `confining strings', recently proposed to describe the confining phase of gauge field theories. We perform the exact duality transformation that leads to the confining string action and show that it reduces to the Polyakov action in the semiclassical approximation. In 4D we introduce a `$\\theta$-term' and compute the low-energy effective action for the confining string in a derivative expansion. We find that the coefficient of the extrinsic curvature (stiffness) is negative, confirming previous proposals. In the absence of a $\\theta$-term, the effective string action is only a cut-off theory for finite values of the coupling e, whereas for generic values of $\\theta$, the action can be renormalized and to leading order we obtain the Nambu-Goto action plus a topological `spin' term that could stabilize the system.
Directory of Open Access Journals (Sweden)
Luciene Aparecida Madeira
2011-09-01
Full Text Available O objetivo neste trabalho foi avaliar o peso vivo, o peso de pernas, os aspectos morfológicos das fibras musculares do músculo flexor longo do hálux e o perfil eletroforético das miosinas de cadeia pesada de quatro linhagens de frangos de corte criados nos sistemas de confinamento e semiconfinamento. Foram utilizados 1.440 pintos distribuídos em delineamento inteiramente casualisado em esquema fatorial 4 × 2, composto de quatro linhagens (Ross 305, Máster Gris, Label Rouge e Vermelhão Pesado e dois sistemas de criação (confinamento e semiconfinamento, cada combinação avaliada com quatro repetições. Aos 28 e 84 dias de idade, foram abatidas quatro aves por tratamento, totalizando 64 aves. A eletroforese identificou a presença das três isoformas de miosinas, tipo MyHC-I, MyHC-IIa e MyHC-IIb, no músculo flexor longo do hálux dos frangos de corte. Com aumento da idade, a isoforma de miosina MyHC-II aumenta, enquanto a MyHC-I diminui. Somente aos 84 dias de idade, a expressão das isoformas de miosina do tipo MyHC-II foram influenciadas pela linhagem, confirmando o reflexo da seleção na linhagem Ross no músculo mais glicolítico.A linhagem Ross apresenta maior peso vivo, peso de perna, peso e área do músculo flexor longo do hálux em comparação às linhagens tipo caipira.The objective was to evaluate body weight, leg weight and morphologic aspects of the muscle fibers of the flexor hallucis longus muscle and electrophoretic profile of myosin heavy chain of four strains of broilers, reared in confinement and semi-confinement systems. 1440 chicks were randomly assigned in a 4 × 2 factorial arrangement: four strains (Ross 305, Master Gris, Label Rouge and Vermelhao Pesado, two production systems (confinement and semi-confinement, with four replicates for each treatment. Four birds were sacrificed for each treatment, at 28 and 84 d, totaling 64 animals. Electrophoresis technique identified the presence of three myosin heavy
Institute of Scientific and Technical Information of China (English)
LI Yuan-Yuan; BAI Jin-Wao; LI-Li; ZHANG Wei-Feng; LI Chang-Biao; NIE Zhi-Qiang; GAN Chen-Li; ZHANG Yan-Peng
2008-01-01
Dicke-narrowing effect appears both in doubly dressed electromagnetically induced transparency and singly dressed four-wave-mixing lines due to the contribution of slow atoms resulting from de-excited effects of atom-wall collision and transient behaviour of atoms in a confined system. A robust recipe for high resolution spectroscopy of electromagnetically induced transparency dressed by two fields and four-wave-mixing lines comparable with the cold atoms is achievable in a thin vapour cell in experiments.
O'Brien, D; Shalloo, L; Patton, J; Buckley, F; Grainger, C; Wallace, M
2012-09-01
Life cycle assessment (LCA) and the Intergovernmental Panel on Climate Change (IPCC) guideline methodology, which are the principal greenhouse gas (GHG) quantification methods, were evaluated in this study using a dairy farm GHG model. The model was applied to estimate GHG emissions from two contrasting dairy systems: a seasonal calving pasture-based dairy farm and a total confinement dairy system. Data used to quantify emissions from these systems originated from a research study carried out over a 1-year period in Ireland. The genetic merit of cows modelled was similar for both systems. Total mixed ration was fed in the Confinement system, whereas grazed grass was mainly fed in the grass-based system. GHG emissions from these systems were quantified per unit of product and area. The results of both methods showed that the dairy system that emitted the lowest GHG emissions per unit area did not necessarily emit the lowest GHG emissions possible for a given level of product. Consequently, a recommendation from this study is that GHG emissions be evaluated per unit of product given the growing affluent human population and increasing demand for dairy products. The IPCC and LCA methods ranked dairy systems' GHG emissions differently. For instance, the IPCC method quantified that the Confinement system reduced GHG emissions per unit of product by 8% compared with the grass-based system, but the LCA approach calculated that the Confinement system increased emissions by 16% when off-farm emissions associated with primary dairy production were included. Thus, GHG emissions should be quantified using approaches that quantify the total GHG emissions associated with the production system, so as to determine whether the dairy system was causing emissions displacement. The IPCC and LCA methods were also used in this study to simulate, through a dairy farm GHG model, what effect management changes within both production systems have on GHG emissions. The findings suggest that
Three Dimensional Confinement WKB Revisited
Sinha, A K
2002-01-01
We develop an alternate formalism for radially confined quantum mechanical systems, in the framework of Wentzel-Kramers-Brillouin (WKB) approximation, without considering the Langer correction for the centrifugal term. Rather, following the analysis the Hainz and Grabert, we expand the centrifugal term perturbatively (in powers of $\\hbar$), decomposing it into 2 terms -- the classical centrifugal potential and a quantum correction. To test the validity of our formalism, we apply it explicitly to study the energy spectrum of certain physically relevant, radially confined quantum mechanical systems, viz., the 3-dimensional harmonic oscillator, the hydrogen atom, and the Hulthen potential. As observed by Hainz and Grabert, this approach gives better estimates than the conventional WKB approximation technique (based on Langer modification), even for spatially confined systems.
Kolesnichenko, Ya.
2010-08-01
subsequent meetings (Aspenäs (1991), Trieste (1993), Princeton (1995), and JET/Abingdon (1997)) were entitled `Alpha Particles in Fusion Research'. During the JET/Abingdon meeting in 1997 it was decided to extend the topic by including other suprathermal particles, in particular accelerated electrons, and rename the meetings accordingly. The subsequent meetings with the current name `Energetic Particles in Magnetic Confinement Systems' were held in Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005) and Kloster Seeon (2007). The most recent meeting in this series was held in Kyiv, Ukraine, in September 2009. This was an anniversary meeting, 20 years after the first meeting. Like the first meeting, it was hosted by the Institute for Nuclear Research, National Academy of Sciences of Ukraine. It was attended by about 80 researchers from 18 countries, ITER, and EC. The program of the meeting consisted of 78 presentations, including 12 invited talks, 16 oral contributed talks, and 50 posters, which were selected by the International Advisory Committee (IAC). The IAC consisted of 11 people representing EC (L.-G. Eriksson), Germany (S. Günter), Italy (F. Zonca), Japan (K. Shinohara and K. Toi), Switzerland (A. Fasoli), UK (S. Sharapov), Ukraine (Ya. Kolesnichenko—IAC Chair), USA (H. Berk, W. Heidbrink, and R. Nazikian). The meeting program covered a wide range of physics issues concerning energetic ions in toroidal fusion facilities—tokamaks, stellarators, and spherical tori. Many new interesting and practically important results of both experimental and theoretical studies were reported. The research presented covered topics such as instabilities driven by energetic ions, transport of energetic ions caused by plasma microturbulence and destabilized eigenmodes, non-linear phenomena induced by the instabilities, classical transport processes, effects of runaway electrons, diagnostics of energetic ions and plasmas, and aspects of ITER physics. In addition to these
Directory of Open Access Journals (Sweden)
Luciene Aparecida Madeira
2006-12-01
Full Text Available Avaliou-se o efeito da linhagem, do sistema de criação e do sexo sobre o peso vivo, o rendimento de carcaça e de pernas e os aspectos morfológicos das fibras musculares esqueléticas do músculo flexor longo do hálux de frangos de corte. O delineamento experimental foi inteiramente casualizado, em esquema fatorial 4 x 2 x 2, ou seja, quatro linhagens (Ross-308, Pescoço Pelado Label Rouge, Caipirinha e Paraíso Pedrês, dois sistemas de criação (confinamento e semiconfinamento e dois sexos, com duas repetições por tratamento, sendo que cada ave retirada ao acaso aos 56 dias de idade foi considerada uma unidade experimental, totalizando 64 aves. A linhagem Ross apresentou maior peso vivo e maiores pesos de carcaça, de pernas, de carne de penas e do músculo flexor longo do hálux e maiores rendimentos de carcaça e de carnes de pernas que as outras linhagens. A maior massa muscular das aves selecionadas para alta taxa de crescimento está relacionada ao aumento na área dos três tipos de fibras musculares (SO, FOG e FG. Machos apresentaram maior massa muscular e musculatura mais glicolítica que fêmeas. O sistema de semiconfinamento alterou a composição de fibras musculares esqueléticas dos machos, tornando-a mais oxidativa, porém, esse efeito não foi observado nas fêmeas.The effect of strain, breeding system and sex on body weight, carcass and leg yield, and morphologic aspects of skeletal muscle fibers of flexor hallucis longus muscle of broiler chickens was evaluated in this study. The experiment consisted of a 4x2x2 factorial arrangement of treatments, with four strains (Ross-308, Naked Neck Label Rouge, Caipirinha and Paraiso Pedrês, two breeding systems (confinement and semi-confinement and two sexes, with two replicates per treatment, considering each bird selected randomly at 56 days of age an experimental unit, with a total of 64 birds. Ross strain had the highest values of body weight, weights of legs and meat of legs
Manias, M V; De Virgiliis, A; Albano, E V; Müller, M; Binder, K
2007-05-01
The dynamical behavior of ferromagnetic Ising films confined in a DxLxL geometry (Dinterface is also studied for the complete wetting regime at T=0.8982 and in the presence of a bulk magnetic field H=1 . The numerical results are in full agreement with the theoretical expectations for the cases of short-range and long-range (both retarded and nonretarded van der Waals forces) fields, where logarithmic and power-law divergences are found, respectively.
Quark confinement in a constituent quark model
Energy Technology Data Exchange (ETDEWEB)
Langfeld, K.; Rho, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique
1995-07-01
On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.
Energy Technology Data Exchange (ETDEWEB)
Goto, Seiichi; Yoshimura, Satoru [eds.
1999-04-01
The US-Japan Workshop on Physics of High Beta Plasma Confinement in Innovative Fusion System was held jointly with the Satellite Meeting of ITC-9 at National Institute for Fusion Science (NIFS), Toki-city during December 14-15, 1998. This proceedings book includes the papers of the talks given at the workshop. These include: Theoretical analysis on the stability of field reversed configuration (FRC) plasmas; Theory and Modeling of high {beta} plasmas; Recent progressive experiments in high {beta} systems; Formation of high {beta} plasmas using merging phenomenon; Theory and Modeling of a FRC Fusion Reactor. The 15 papers are indexed individually. (J.P.N.)
Effects of magnetic ripple on 3D equilibrium and alpha particle confinement in the European DEMO
Pfefferlé, D.; Cooper, W. A.; Fasoli, A.; Graves, J. P.
2016-11-01
An assessment of alpha particle confinement is performed in the European DEMO reference design. 3D MHD equilibria with nested flux-surfaces and single magnetic axis are obtained with the VMEC free-boundary code, thereby including the plasma response to the magnetic ripple created by the finite number of TF coils. Populations of fusion alphas that are consistent with the equilibrium profiles are evolved until slowing-down with the VENUS-LEVIS orbit code in the guiding-centre approximation. Fast ion losses through the last-closed flux-surface are numerically evaluated with two ripple models: (1) using the 3D equilibrium and (2) algebraically adding the non-axisymmetric ripple perturbation to the 2D equilibrium. By virtue of the small ripple field and its non-resonant nature, both models quantitatively agree. Differences are however noted in the toroidal location of particles losses on the last-closed flux-surface, which in the first case is 3D and in the second not. Superbanana transport, i.e. ripple-well trapping and separatrix crossing, is expected to be the dominant loss mechanism, the strongest effect on alphas being between 100-200 KeV. Above this, stochastic ripple diffusion is responsible for a rather weak loss rate, as the stochastisation threshold is observed numerically to be higher than analytic estimates. The level of ripple in the current 18 TF coil design of the European DEMO is not found to be detrimental to fusion alpha confinement.
矿井避难硐室正压密闭系统研究%Study on confined positive pressure system in mine refuge station
Institute of Scientific and Technical Information of China (English)
韩海荣; 金龙哲; 高娜; 王岩
2011-01-01
矿井避难硐室在灾变时为矿工提供了隔绝密闭的避难空间,内部正压密闭系统起到了隔绝有毒有害气体的作用.本文对矿井避难硐室正压系统进行研究,确定影响矿井避难硐室正压数值的因素,通过理论计算确定了矿井避难硐室正压值,同时确定了矿井避难硐室的正压维持方式并设计了相应的余压阀.为保证矿井避难硐室正压的实现,对矿井避难硐室密闭系统进行研究,包括建筑密闭和设施密闭.%Mine refuge station can provide the isolated refuge confined space in the disaster, and the internal positive pressure-confined system plays the role of isolating toxic and harmful gases. In this article positive pressure system in mine refuge station was studied, the factors affecting the positive pressure values of mine refuge station were determined. Through theoretical calculations, the positive pressure value of mine refuge station and the way of maintenance positive pressure, were determined and also residual pressure valve was designed. In order to ensure the realization of positive pressure in the refuge station, the confined system of mine refuge station was studied, which include construction airtight and facilities airtight.
Y{sub 2}O{sub 2}S:Eu{sup 3+} nanocrystals, a strong quantum-confined luminescent system
Energy Technology Data Exchange (ETDEWEB)
Thirumalai, J. [Luminescence Group, Central Electro Chemical Research Institute, Karaikudi 630 006, Tamil Nadu (India); Jagannathan, R. [Luminescence Group, Central Electro Chemical Research Institute, Karaikudi 630 006, Tamil Nadu (India)]. E-mail: jags57_99@yahoo.com; Trivedi, D.C. [Luminescence Group, Central Electro Chemical Research Institute, Karaikudi 630 006, Tamil Nadu (India)
2007-10-15
Trivalent europium-doped yttrium oxysulfide nanocrystals synthesized using sol-gel thermolysis show significant blue shifts in the excitation bands corresponding to fundamental absorption, charge-transfer absorption. A significant blue shift observed in the fundamental absorption edge for the nanocrystals having an average crystallite size ({phi}) in the range 9-15 nm indicates a strong quantum confinement with a Bohr exciton radius of 5-13 nm. Also, the diffuse reflectance spectra and the corresponding Kubelka-Munk plot indicate the possibility of profound decrease in the absorption coefficient of Eu{sup 3+}-ligand charge-transfer species necessitating further studies in this wide-gap semiconductor nanocrystalline system.
Howard, I A
2003-01-01
There is ongoing interest in the kinetic energy functional T sub s [rho] in density functional theory. The present study lies in this area and concerns the Pauli potential V sub P [rho]. A differential equation is obtained here for V sub P (x) in one dimension for a general two-level system. Also, as a specific example, such a functional of rho(x), the ground-state Fermion density, is given for the case of N Fermions which are harmonically confined. (letter to the editor)
Catalytic capsids: The art of confinement
Minten, Inge J.; Claessen, Victor I.; Blank, Kerstin; Rowan, Alan E.; Nolte, Roeland J.M.; Cornelissen, Jeroen Johannes Lambertus Maria
2011-01-01
In the cell, enzymes are almost always spatially confined in crowded and tightly controlled cellular compartments. The entrapment of enzymes in artificial nanoreactors as biomimetic systems can be expected to contribute to the understanding of the activity and the interactions of enzymes in confined
Gonthier, Gerard J.
2012-01-01
An 80-foot-deep well (36Q397, U.S. Geological Survey site identification 320146081073701) was constructed at Hunter Army Airfield to assess the potential of using the surficial aquifer system as a water source to irrigate a ballfield complex. A 300-foot-deep test hole was drilled beneath the ballfield complex to characterize the lithology and water-bearing characteristics of sediments above the Upper Floridan aquifer. The test hole was then completed as well 36Q397 open to a 19-foot-thick shallow, confined sand unit contained within the surficial aquifer system. A single-well, 24-hour aquifer test was performed by pumping well 36Q397 at a rate of 50 gallons per minute during July 13-14, 2011, to characterize the hydrologic properties of the shallow, confined sand unit. Two pumping events prior to the aquifer test affected water levels. Drawdown during all three pumping events and residual drawdown during recovery periods were simulated using the Theis formula on multiple changes in discharge rate. Simulated drawdown and residual drawdown match well with measured drawdown and residual drawdown using values of horizontal hydraulic conductivity and specific storage, which are typical for a confined sand aquifer. Based on the hydrologic parameters used to match simulated drawdown and residual drawdown to measured drawdown and residual drawdown, the transmissivity of the sand was determined to be about 400 feet squared per day. The horizontal hydraulic conductivity of the sand was determined to be about 20 feet per day. Analysis of a water-quality sample indicated that the water is suitable for irrigation. Sample analysis indicated a calcium-carbonate type water having a total dissolved solids concentration of 39 milligrams per liter. Specific conductance and concentrations of all analyzed constituents were below those that would be a concern for irrigation, and were below primary and secondary water-quality criteria levels.
Electrofreezing of confined water
Zangi, R; Mark, AE
2004-01-01
We report results from molecular dynamics simulations of the freezing transition of TIP5P water molecules confined between two parallel plates under the influence of a homogeneous external electric field, with magnitude of 5 V/nm, along the lateral direction. For water confined to a thickness of a
Confinement Aquaculture. Final Report.
Delaplaine School District, AR.
The Delaplaine Agriculture Department Confinement Project, begun in June 1988, conducted a confinement aquaculture program by comparing the growth of channel catfish raised in cages in a pond to channel catfish raised in cages in the Black River, Arkansas. The study developed technology that would decrease costs in the domestication of fish, using…
Dynamics in geometrical confinement
Kremer, Friedrich
2014-01-01
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...
Pickering, K.
2008-12-01
The linear, confined geometry, and point-sourced nature, of the deep-marine siliciclastic systems in the Eocene Ainsa-Jaca basin, Spanish Pyrenees, provides a useful ancient spatial-temporal comparison and partial analog for the architecture and controls on the sedimentary infill of large submarine canyons / multiple canyons at continental margins with active tectonics, including salt and shale diapirism. The cumulative ~4 km of stratigraphy contains 8 sandy systems with a total of ~25 discrete channelized sandbodies that accumulated over ~10 Myr in water depths of ~400 to 800 m, that were controlled by the ~400-kyr Milkankovitch frequency with modes, at ~100 kyr and ~41 kyr (possibly stacked ~23-kyr) influencing bottom- water conditions, causing periodic stratification in the water column across a submarine sill within the western part of the more proximal depositional systems. Local tectonics defined and controlled the position and stacking patterns of the 8 sandy systems and their constituent channelized sandbodies, in a process of "seesaw tectonics" by: (i) Westward lateral offset-stacking of channelized sandbodies due to growth of the eastern side of the basin, and (ii) Eastward (orogenwards) "back-stepping" of the depositional axis of each sandy system, due to phases of relative uplift of the opposing lateral margin. Thus, the first-order control on accommodation for deep-marine sedimentation was tectonic, with the pacing of the supply of coarse siliciclastics being driven by global climatic processes, particularly Milankovitch-type frequencies. The dominance of eccentricity and obliquity is similar to results from the continental lacustrine, Eocene Green River Formation. The age model for the Ainsa basin yields an average sediment accumulation rate of ~40 cm kyr-1, that is consistent with that inferred from the spectral analysis on bioturbation intensity for fine-grained sedimentation (~30 cm kyr-1). This paper compares and contrasts depositional patterns
Dynamical conductivity of confined water
Artemov, V. G.
2017-01-01
The electrodynamic response of water confined in nanoporous MCM-41 is measured in the frequency range 1 MHz-3 THz at room temperature. The results are analyzed in the context of a recently proposed ionic model of water. We found an increase in dc-conductivity of confined water by 3 orders of magnitude (3.3 · 10-3 Ω-1 · m-1) compared to bulk water (5.5 · 10-6 Ω-1 · m-1). This is attributed to the increase of H3O+ and OH- ion mobility, due to a decrease of the effective potential amplitude by walls of the confining environment. We found that the absorption in the microwave frequency range is much smaller in the medium with confined water than in the bulk water, and the quadratic dependence of the conductivity (σ) on frequency (ω) becomes less steep and tends to σ ~ ω. The results are of fundamental importance and can be used for understanding of the proton transport in systems with water in the nanoconfined state.
Computer simulation of confined liquid crystal dynamics
Webster, R E
2001-01-01
are performed of the formation of structures in confined smectic systems where layer tilt is induced by an imposed surface pretilt. Results show that bookshelf, chevron and tilled layer structures are observable in a confined Gay-Berne system. The formation and stability of the chevron structure are shown to be influenced by surface slip. Results are presented from a series of simulations undertaken to determine whether dynamic processes observed in device-scale liquid crystal cells confined between aligning substrates can be simulated in a molecular system using parallel molecular dynamics of the Gay-Berne model. In a nematic cell, on removal of an aligning field, initial near-surface director relaxation can induce flow, termed 'backflow' in the liquid. This, in turn, can cause director rotation, termed 'orientational kickback', in the centre of the cell. Simulations are performed of the relaxation in nematic systems confined between substrates with a common alignment on removal of an aligning field. Results...
Energy Technology Data Exchange (ETDEWEB)
Kiritsis, Elias [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France); Theory Group, Physics Department, CERN,CH-1211, Geneva 23 (Switzerland); Crete Center for Theoretical Physics, Department of Physics, University of Crete,71003 Heraklion (Greece); Mazzanti, Liuba [Institute for Theoretical Physics and Spinoza Institute, Utrecht University,3508 TD Utrecht (Netherlands); Nitti, Francesco [APC, Université Paris 7, CNRS/IN2P3, CEA/IRFU, Obs. de Paris, Sorbonne Paris Cité,Bâtiment Condorcet, F-75205, Paris Cedex 13 (UMR du CNRS 7164) (France)
2014-02-19
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
Kiritsis, E; Nitti, F
2014-01-01
We extend the holographic trailing string picture of a heavy quark to the case of a bulk geometry dual to a confining gauge theory. We compute the classical trailing confining string solution for a static as well as a uniformly moving quark. The trailing string is infinitely extended and approaches a confining horizon, situated at a critical value of the radial coordinate, along one of the space-time directions, breaking boundary rotational invariance. We compute the equations for the fluctuations around the classical solutions, which are used to obtain boundary force correlators controlling the Langevin dynamics of the quark. The imaginary part of the correlators has a non-trivial low-frequency limit, which gives rise to a viscous friction coefficient induced by the confining vacuum. The vacuum correlators are used to define finite-temperature dressed Langevin correlators with an appropriate high-frequency behavior.
Miller, David E
2016-01-01
We carry out numerical evaluations of the motion of classical particles in Minkowski Space $\\mathbb{M}^{4}$ which are confined to the inside of a bag. In particular, we analyze the structure of the paths evolving from the breaking of the dilatation symmetry, the conformal symmetry and the combination of both together. The confining forces arise directly from the corresponding nonconserved currents. We demonstrate in our evaluations that these particles under certain initial conditions move toward the interior of the bag.
Theory of rheology in confinement.
Aerov, Artem A; Krüger, Matthias
2015-10-01
The viscosity of fluids is generally understood in terms of kinetic mechanisms, i.e., particle collisions, or thermodynamic ones as imposed through structural distortions upon, e.g., applying shear. Often the latter are more relevant, which allows a simpler theoretical description, and, e.g., (damped) Brownian particles can be considered good fluid model systems. We formulate a general theoretical approach for rheology in confinement, based on microscopic equations of motion and classical density functional theory. Specifically, we discuss the viscosity for the case of two parallel walls in relative motion as a function of the wall-to-wall distance, analyzing its relation to the slip length found for a single wall. The previously observed [A. A. Aerov and M. Krüger, J. Chem. Phys. 140, 094701 (2014).] deficiency of inhomogeneous (unphysical) stresses under naive application of shear in confinement is healed when hydrodynamic interactions are included.
Soft Confinement for Polymer Solutions
Oya, Yutaka
2014-01-01
As a model of soft confinement for polymers, we investigated equilibrium shapes of a flexible vesicle that contains a phase-separating polymer solution. To simulate such a system, we combined the phase field theory (PFT) for the vesicle and the self-consistent field theory (SCFT) for the polymer solution. We observed a transition from a symmetric prolate shape of the vesicle to an asymmetric pear shape induced by the domain structure of the enclosed polymer solution. Moreover, when a non-zero spontaneous curvature of the vesicle is introduced, a re-entrant transition between the prolate and the dumbbell shapes of the vesicle is observed. This re-entrant transition is explained by considering the competition between the loss of conformational entropy and that of translational entropy of polymer chains due to the confinement by the deformable vesicle. This finding is in accordance with the recent experimental result reported by Terasawa, et al.
Simulations of Enhanced Confinement
Dorland, W.; Kotschenreuther, M.; Liu, Q. P.; Jones, C. S.; Beer, M. A.; Hammett, G. W.
1996-11-01
Most existing tokamaks routinely achieve enhanced confinement regimes. Designs for new, larger tokamaks therefore are typically predicated upon reliable enhanced confinement performance. However, most enhanced confinement regimes rely (to some degree) upon sheared E×B flows to stabilize the turbulence that otherwise limits the confinement. For example, the pedestal H-mode transport barrier is typically attributed to shear stabilization [Biglari, Diamond and Terry, Phys. Fl. B, 2 1 (1990)]. Unfortunately, it is easily shown that sheared E×B stabilization of microinstabilities such as the ITG mode does not scale favorably with machine size. Here, using nonlinear gyrofluid simulations in general geometry, we attempt to quantify the confinement enhancement that can be expected from velocity shear stabilization for conventional reactor plasmas. We also consider other microinstability stabilization mechanisms(See related presentations by Beer, Kotschenreuther, Manickam, and Ramos, this conference.) (strong density peaking, Shafranov shift stabilization, dots) and unconventional reactor configurations.^2 Experimental datasets from JET, DIII-D, C-Mod and TFTR are analyzed, and ITER operation is considered.
Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubi, J Miguel
2013-05-21
We analyze the dynamics of Brownian ratchets in a confined environment. The motion of the particles is described by a Fick-Jakobs kinetic equation in which the presence of boundaries is modeled by means of an entropic potential. The cases of a flashing ratchet, a two-state model, and a ratchet under the influence of a temperature gradient are analyzed in detail. We show the emergence of a strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may take place in situations where none of those mechanisms leads to rectification when acting individually. The combined rectification mechanisms may lead to bidirectional transport and to new routes to segregation phenomena. Confined Brownian ratchets could be used to control transport in mesostructures and to engineer new and more efficient devices for transport at the nanoscale.
Biopolymer organization upon confinement
Energy Technology Data Exchange (ETDEWEB)
Marenduzzo, D [SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Micheletti, C [SISSA, International School for Advanced Studies, CNR-INFM Democritos and Italian Institute of Technology, SISSA Unit via Bonomea, 265, Trieste (Italy); Orlandini, E [Dipartimento di Fisica, Universita di Padova and Sezione INFN Padova, Via Marzolo 8, 35131, Padova (Italy)
2010-07-21
Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered. (topical review)
Energy Technology Data Exchange (ETDEWEB)
Donaldson, W. R.; Zhao, C.; Ji, L.; Roides, R. G. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); Miller, K. [National Security Technology, Santa Barbara, California 93111 (United States); Beeman, B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2012-10-15
Electro-optic data-acquisition systems encode the output from voltage-history diagnostics onto optical signals. The optical signals can propagate long distances over fiber-optic links without degrading the bandwidth of the encoded signal while protecting the recording electronics from overvoltage damage. The sinusoidal response and tolerance to high-input voltages of the Mach-Zehnder modulator used for the encoding leads to the additional advantage of a high dynamic range and a reduced need for manually swapping attenuators. We have demonstrated a single-shot, electro-optic data-acquisition system with a 600:1 dynamic range. This system provides optical isolation and a bandwidth of 6 GHz. The prototype system uses multiple optical wavelengths to allow for the multiplexing of up to eight signals onto one photodetector.
Order, Disorder and Confinement
D'Elia, M; Pica, C
2006-01-01
Studying the order of the chiral transition for $N_f=2$ is of fundamental importance to understand the mechanism of color confinement. We present results of a numerical investigation on the order of the transition by use of a novel strategy in finite size scaling analysis. The specific heat and a number of susceptibilities are compared with the possible critical behaviours. A second order transition in the O(4) and O(2) universality classes are excluded. Substantial evidence emerges for a first order transition. Results are in agreement with those found by studying the scaling properties of a disorder parameter related to the dual superconductivity mechanism of color confinement.
Holographic confinement in inhomogeneous backgrounds
Marolf, Donald; Wien, Jason
2016-08-01
As noted by Witten, compactifying a d-dimensional holographic CFT on an S 1 gives a class of ( d - 1)-dimensional confining theories with gravity duals. The proto-typical bulk solution dual to the ground state is a double Wick rotation of the AdS d+1 Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the S 1, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for 3 ≤ d ≤ 8 using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for d ≤ 6 but repelled by gradients for d ≥ 7, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attracted to regions where the eigenvalues of the Hessian are large and positive in directions orthogonal to the tube, and iv) for d > 3, inhomogeneities act to raise the total energy of the confining vacuum above its zeroth order value.
Energy Technology Data Exchange (ETDEWEB)
Souli, M., E-mail: souli@ganil.fr [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DSM, CNRS/IN2P3, Bd. Henri Becquerel, BP 55027, 14076 CAEN CEDEX 5 (France); Dolegieviez, P.; Fadil, M.; Gallardo, P.; Levallois, R.; Munoz, H.; Ozille, M. [Grand Accelerateur National d' Ions Lourds (GANIL), CEA/DSM, CNRS/IN2P3, Bd. Henri Becquerel, BP 55027, 14076 CAEN CEDEX 5 (France); Rouille, G.; Galet, F. [Institut de Physique Nucleaire d' Orsay (IPNO), CNRS/IN2P3, 15 rue Georges CLEMENCEAU 91406 ORSAY (France)
2011-12-11
A cryogenic trap system called Cryotrap has been studied and developed in the framework of nuclear safety studies for SPIRAL2 accelerator. The main objective of Cryotrap is to confine and reduce strongly the migration of radioactive volatile isotopes in beam lines. These radioactive gases are produced after interaction between a deuteron beam and a fissile target. Mainly, Cryotrap is composed by a vacuum vessel and two copper thermal screens maintained separately at two temperatures T{sub 1}=80 K and T{sub 2}=20 K. A Cryocooler with two stages at previous temperatures is used to remove static heat losses of the cryostat and ensure an efficient cooling of the system. Due to strong radiological constraints that surround Cryotrap, the coupling system between Cryocooler and thermal screens is based on aluminum thermo-mechanical contraction. The main objective of this original design is to limit direct human maintenance interventions and provide maximum automated operations. A preliminary prototype of Cryotrap has been developed and tested at GANIL laboratory to validate its design, and determine its thermal performance and trapping efficiency. In this paper, we will first introduce briefly SPIRAL2 project and discuss the main role of Cryotrap in nuclear safety of the accelerator. Then, we will describe the proposed conceptual design of Cryotrap and its main characteristics. After that, we will focus on test experiment and analyze experimental data. Finally, we will present preliminary results of gas trapping efficiency tests.
Energy Technology Data Exchange (ETDEWEB)
Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Fatherley, V. E.; Merrill, F. E.; Volegov, P.; Wilde, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Christensen, K.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Skulina, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)
2015-12-15
The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.
Simpson, R.; Christensen, K.; Danly, C.; Fatherley, V. E.; Fittinghoff, D.; Grim, G. P.; Izumi, N.; Jedlovec, D.; Merrill, F. E.; Skulina, K.; Volegov, P.; Wilde, C.
2015-12-01
The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thick high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.
1997-11-04
and Systems, held May 4-7 in Montreal, Canada, as part of the 191st Meeting of the Electrochemical Society . The symposium was sponsored by the...Dielectric Science and Technology, the Electronics, and the Luminescence and Display Materials divisions of the Electrochemical Society . The symposium was
U.S. Geological Survey, Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22â24, 2012; these wells are part of a network established...
DEFF Research Database (Denmark)
Kipnusu, Wycliffe K.; Elsayed, Mohamed; Kossack, Wilhelm
2015-01-01
Broadband dielectric spectroscopy and positron annihilation lifetime spectroscopy are employed to study the molecular dynamics and effective free volume of 2-ethyl-1-hexanol (2E1H) in the bulk state and when confined in unidirectional nanopores with average diameters of 4, 6, and 8 nm. Enhanced α...
Fractional statistics and confinement
Gaete, P; Gaete, Patricio; Wotzasek, Clovis
2004-01-01
It is shown that a pointlike composite having charge and magnetic moment displays a confining potential for the static interaction while simultaneously obeying fractional statistics in a pure gauge theory in three dimensions, without a Chern-Simons term. This result is distinct from the Maxwell-Chern-Simons theory that shows a screening nature for the potential.
Lenz, F; Thies, M
2003-01-01
It is shown that an effective theory with meron degrees of freedom produces confinement in SU(2) Yang Mills theory. This effective theory is compatible with center symmetry. When the scale is set by the string tension, the action density and topological susceptibility are similar to those arising in lattice QCD.
A model for melting of confined DNA
Werner, E; Ambjörnsson, T; Mehlig, B
2015-01-01
When DNA molecules are heated they denature. This occurs locally so that loops of molten single DNA strands form, connected by intact double-stranded DNA pieces. The properties of this "melting" transition have been intensively investigated. Recently there has been a surge of interest in this question, caused by experiments determining the properties of partially bound DNA confined to nanochannels. But how does such confinement affect the melting transition? To answer this question we introduce, and solve a model predicting how confinement affects the melting transition for a simple model system by first disregarding the effect of self-avoidance. We find that the transition is smoother for narrower channels. By means of Monte-Carlo simulations we then show that a model incorporating self-avoidance shows qualitatively the same behaviour and that the effect of confinement is stronger than in the ideal case.
Institute of Scientific and Technical Information of China (English)
SONG Jianlan
2009-01-01
@@ Anewly made breakthrough in developing the superconducting feeder system for the ITER,the international thermonuclear experimental reactor, has directed new attention to this high-profile teamwork of seven nations in the world. On 19 Dec 2008,the first full-scale prototype experimental component for this mega-science project, a high-critical-temperature superconducting (HTSC) current lead developed by the Institute of Plasma Physics (IPP) under the CAS Hefei Institute of Physical Science successfully operates at 85 kA for 65 minutes and at a maximum steady current of 90 kA for 4 minutes. The maximum current establishes a new benchmark for related research in the world. This success marks "a big step" forward in implementing the ITER program, according to Dr. Pierre Bauer, responsible officer for the feeder system sub-project from the ITER organization.
Javad Aboudi; Majid Vafaeezadeh
2015-01-01
Simple, efficient and practical CO2 capture method is reported using task-specific ionic liquid (IL) supported onto the amine-functionalized silica gel. The results have been shown that both the capacity and rate of the CO2 absorption notably increase in the supported IL/molecular sieve 4 Å system in comparison of homogeneous IL. Additionally, it has shown that the prepared material is capable for reversible carbon dioxide absorption for at least 10 cycles without significant loss of efficien...
Aboudi, Javad; Vafaeezadeh, Majid
2015-07-01
Simple, efficient and practical CO2 capture method is reported using task-specific ionic liquid (IL) supported onto the amine-functionalized silica gel. The results have been shown that both the capacity and rate of the CO2 absorption notably increase in the supported IL/molecular sieve 4 Å system in comparison of homogeneous IL. Additionally, it has shown that the prepared material is capable for reversible carbon dioxide absorption for at least 10 cycles without significant loss of efficiency. The presence of the amine-based IL and the surface bonded amine groups increase the capacity of CO2 absorption even in a CO2/CH4 gas mixture through the formation of ammonium carbamate onto the surface of mesoporous material.
Directory of Open Access Journals (Sweden)
Javad Aboudi
2015-07-01
Full Text Available Simple, efficient and practical CO2 capture method is reported using task-specific ionic liquid (IL supported onto the amine-functionalized silica gel. The results have been shown that both the capacity and rate of the CO2 absorption notably increase in the supported IL/molecular sieve 4 Å system in comparison of homogeneous IL. Additionally, it has shown that the prepared material is capable for reversible carbon dioxide absorption for at least 10 cycles without significant loss of efficiency. The presence of the amine-based IL and the surface bonded amine groups increase the capacity of CO2 absorption even in a CO2/CH4 gas mixture through the formation of ammonium carbamate onto the surface of mesoporous material.
Directory of Open Access Journals (Sweden)
C. Merz
2015-01-01
Full Text Available The paper presents a data base of hydrochemical and hydraulic groundwater measurements of a younger Pleistocene multilayered, unconfined/confined aquifer system in NE Germany. The Institute of Landscape Hydrology of the Leibniz Centre for Agricultural Landscape Research (ZALF e. V. operates seven groundwater monitoring wells in the Quillow catchment located in the Uckermark region (Federal State of Brandenburg, Germany. From July 2000 to March 2014, water samples were collected periodically on different days of the year and at depths between 3 and 5 m (shallow wells and 20 and 25 m (deeper wells below the surface. The parameters pH value, redox potential, electric conductivity, water temperature, oxygen content, spectral absorption coefficient and concentration of hydrogen carbonate, ammonium, phosphate, chloride, bromite, nitrite, sulfate, sodium, potassium, magnesium, calcite, dissolved organic carbon, iron(II and manganese were determined for each sample (doi:10.4228/ZALF.2000.266. The measurements, taken over a period of 14 years, include a high variation of hydraulic situations represented by a corresponding database of detected groundwater heads. The hydraulic head was measured between 2000 and 2014 (doi:10.4228/ZALF.2000.272.
Xu, Zhijie; Meakin, Paul
2009-06-21
Dissipative particle dynamics (DPD) is an effective mesoscopic particle model with a lower computational cost than molecular dynamics because of the soft potentials that it employs. However, the soft potential is not strong enough to prevent the DPD particles that are used to represent the fluid from penetrating solid boundaries represented by stationary DPD particles. A phase-field variable, phi(x,t), is used to indicate the phase at point x and time t, with a smooth transition from -1 (phase 1) to +1 (phase 2) across the interface. We describe an efficient implementation of no-slip boundary conditions in DPD models that combines solid-liquid particle-particle interactions with reflection at a sharp boundary located with subgrid scale accuracy using the phase field. This approach can be used for arbitrarily complex flow geometries and other similar particle models (such as smoothed particle hydrodynamics), and the validity of the model is demonstrated by DPD simulations of flow in confined systems with various geometries.
Huang, Xinjian; Wang, Lishi; Liao, Shijun
2008-07-15
A new form of Fourier transformed square wave voltammetry (FT-SWV) is proposed to simplify and accelerate the electron transfer kinetics evaluation procedures for surface-confined redox systems. Even harmonic frequencies, which are derived from the nonlinear Faradaic response, will arise in the power spectrum after Fourier transformation of the current response of FT-SWV. The profile of the even harmonic power spectra is bell-shaped and shows a maximum at a certain frequency. The electrode kinetics-dependent maximum and the corresponding frequency are equivalent to the so-called "quasi-reversible maximum" and "critical frequency" (fmax) in traditional SWV, respectively. The critical frequency can be regarded as a frequency that is synchronized to the electron transfer rate constant (k(0)). As a result, it can serve as a probe of k(0) by means of a very simple equation, k(0) = kmax fmax. Compared with traditional cyclic voltammetry, square wave voltammetry, alternating current voltammetry, and several other voltammetric techniques, this method exhibits great advantages for its simplicity, rapidity, and sensitivity.
Totally confined explosive welding
Bement, L. J. (Inventor)
1978-01-01
The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.
Lenz, F
2009-01-01
By superposition of regular gauge instantons or merons, ensembles of gauge fields are constructed which describe the confining phase of SU(2) Yang-Mills theory. Various properties of the Wilson loops, the gluon condensate and the topological susceptibility are found to be in qualitative agreement with phenomenology or results of lattice calculations. Limitations in the application to the glueball spectrum and small size Wilson loops are discussed.
Directory of Open Access Journals (Sweden)
Dermeval A. Furtado
2008-09-01
Full Text Available The objective of this work was to determine the effect of environmental variables and supplementation levels on physiological parameters of Moxotó goats in confined and semi-confined rising systems, in the Brazilian semi-arid region. The semi-confined individuals were kept on a grass based diet during the day and arrested in the end of the afternoon. The confined animals were kept in a management center, receiving two diets composed by forage cactus and maniçoba hay into two different levels (0.5 and 1.5% of the body weight. Inside the management center and in the external environment the environmental comfort parameters were set high during the afternoon period characterizing a situation of thermal discomfort for the animals. During the morning the semi-confined animals presented an average respiratory frequency (69.5 mov min-1 and rectal temperature (39.5 ºC higher than the confined ones (62.6 mov min-1 and 39.0 ºC, respectively. The confined and semi-confined animals were able to maintain their rectal temperature within normal limits, with increase in the cardiac beatings rate and respiratory frequency. The greater percentage of the used supplementations (1.5% seemed to increase rectal temperature in the two studied rising systems.Este trabalho teve os objetivos de determinar e de avaliar o efeito das variáveis ambientais e quantidade de suplementação, com concentrados, nas variáveis fisiológicas de caprinos Moxotó, confinados e semiconfinados, no semi-árido nordestino. Os animais semiconfinados foram mantidos em regime de pasto durante o dia e recolhidos ao final da tarde. Os animais confinados foram mantidos em um centro de manejo, recebendo duas dietas compostas por palma forrageira e feno de maniçoba, com duas quantidades de concentrados (0,5 e 1,5% do peso vivo. No interior do aprisco e no ambiente externo, os índices de conforto ambiental ficaram elevados no período da tarde, caracterizando situação de desconforto t
Energy Technology Data Exchange (ETDEWEB)
Murakami, M.; Arunasalam, V.; Bell, J.D.; Bell, M.G.; Bitter, M.; Blanchard, W.R.; Boody, F.; Boyd, D.; Bretz, N.; Bush, C.E.
1985-06-01
The paper describes the present (end of February 1985) status of the plasma confinement studies in the TFTR tokamak with emphasis on those with neutral beam injection (NBI). Recent improvements in the device capabilities have substantially extended operating parameters: B/sub T/ increased to 4.0 T, I/sub p/ to 2.0 MA, injection power (P/sub b/) to 5 MW with H/sup 0/ or D/sup 0/ beams anti n/sub e/ to 5 x 10/sup 19/ m/sup -3/, and Z/sub eff/ reduced to 1.4. With ohmic heating (OH) alone, the previously established scaling for gross energy confinement time (tau/sub E/ = anti n/sub e/q) has been confirmed at higher I/sub p/ and B/sub T/, and the maximum tau/sub E/ of 0.4 sec has been achieved. With NBI at P/sub b/ substantially (by factor >2) higher than P/sub OH/, excellent power and particle accountability have been established. This suggests that the less-than-expected increase in stored energy with NBI is not due to problems of power delivery, but due to problems of confinement deterioration. tau/sub E/ is observed to scale approximately as I/sub p/ P/sub b//sup -0.5/ (independent of anti n/sub e/), consistent with previous L-mode scalings. With NBI we have achieved the maximum tau/sub E/ of 0.2 sec and the maximum T/sub i/(o) of 4.4 keV in the normal operating regime, and even higher T/sub i/(o) in the energetic-ion regime with low-n/sub e/ and low-I/sub p/ operation.
Malgaretti, Paolo; Rubi, J Miguel
2014-01-01
We analyze the performance of a Brownian ratchet in the presence of geometrical constraints. A two-state model that describes the kinetics of molecular motors is used to characterize the energetic cost when the motor proceeds under confinement, in the presence of an external force. We show that the presence of geometrical constraints has a strong effect on the performance of the motor. In particular, we show that it is possible to enhance the ratchet performance by a proper tuning of the parameters characterizing the environment. These results open the possibility of engineering entropically-optimized transport devices.
Hadrosynthesis and Quark Confinement
Directory of Open Access Journals (Sweden)
Satz Helmut
2014-04-01
Full Text Available Multihadron production in high energy collisions, from e+e− annihilation to heavy ion interactions, shows remarkable thermal behaviour, specified by a universal “Hagedorn” temperature. We argue that this hadronic radiation is formed by tunnelling through the event horizon of colour confinement, i.e., that it is the QCD counterpart of Hawking-Unruh radiation from black holes. It is shown to be emitted at a universal temperature TH ≃ (σ/2π1/2, where σ denotes the string tension. Since the event horizon does not allow information transfer, the radiation is thermal “at birth”.
Confinement Vessel Dynamic Analysis
Energy Technology Data Exchange (ETDEWEB)
R. Robert Stevens; Stephen P. Rojas
1999-08-01
A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.
Confinement Contains Condensates
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; Roberts, Craig D.; Shrock, Robert; Tandy, Peter C.
2012-03-12
Dynamical chiral symmetry breaking and its connection to the generation of hadron masses has historically been viewed as a vacuum phenomenon. We argue that confinement makes such a position untenable. If quark-hadron duality is a reality in QCD, then condensates, those quantities that have commonly been viewed as constant empirical mass-scales that fill all spacetime, are instead wholly contained within hadrons; i.e., they are a property of hadrons themselves and expressed, e.g., in their Bethe-Salpeter or light-front wave functions. We explain that this paradigm is consistent with empirical evidence, and incidentally expose misconceptions in a recent Comment.
Configurational statistics of confined polymer chains
Energy Technology Data Exchange (ETDEWEB)
Lohse, David John
1978-01-01
The work on confined chain statistics is reviewed. The work on the general statistics is discussed first, and then some of the theories for the applications of statistics are considered. Two methods for determining the general statistics of a confined chain are discussed. The first is the method of images. The second method involves the use of differential equations. In a specific case the statistics of the unconfined chain are chosen to be defined by the Gaussian real chain distribution. The confinement is provided by two parallel walls. The distribution for the four possible types of chains, bridges (tie chains), loops, cilia (dangling chain ends), and floating (unattached) chains, are derived. These statistics are then applied to two polymer systems in which the confinement is due to internal surfaces, semicrystalline polymers and block copolymers. Both systems are modelled by chains between two walls for a number of morphologies. Mechanical properties are calculated for both systems and for block copolymers swelling is also considered. The main result of this work is that there are two effects which determine the behavior of the chains in these systems. The first is the effect of the confinement which operates on all the chains, since the mode of attachment is not important. The confinement reduces the number of configurations available to the chains. This effect is larger the closer the walls are, relative to the length and stiffness of the chains. The second effect operates only on bridges, since it requires that the ends of the chain be attached to different walls. This is the inherent elastic nature of the bridge, which means that the number of configurations is reduced when it is stretched beyond its equilibrium length. All the behavior calculated here can be explained by these two effects.
Holographic confinement in inhomogenous backgrounds
Marolf, Donald
2016-01-01
As noted by Witten, compactifying a $d$-dimensional holographic CFT on an $S^1$ gives a class of $(d-1)$-dimensional confining theories with gravity duals. The prototypical bulk solution dual to the ground state is a double Wick rotation of the AdS$_{d+1}$ Schwarzschild black hole known as the AdS soliton. We generalize such examples by allowing slow variations in the size of the $S^1$, and thus in the confinement scale. Coefficients governing the second order response of the system are computed for $3 \\le d \\le 8$ using a derivative expansion closely related to the fluid-gravity correspondence. The primary physical results are that i) gauge-theory flux tubes tend to align orthogonal to gradients and along the eigenvector of the Hessian with the lowest eigenvalue, ii) flux tubes aligned orthogonal to gradients are attracted to gradients for $d \\le 6$ but repelled by gradients for $d \\ge 7$, iii) flux tubes are repelled by regions where the second derivative along the tube is large and positive but are attract...
Walking droplets in confined geometries
Filoux, Boris; Mathieu, Olivier; Vandewalle, Nicolas
2014-11-01
When gently placing a droplet onto a vertically vibrated bath, coalescence may be avoided: the drop bounces permanently. Upon increasing forcing acceleration, a drop interacts with the wave it generates, and becomes a ``walker'' with a well defined velocity. In this work, we investigate the confinement of a walker in a mono-dimensional geometry. The system consists of linear submarine channels used as waveguides for a walker. By studying the dynamics of walkers in those channels, we discover some 1D-2D transition. We also propose a model based on an analogy with ``Quantum Wires.'' Finally, we consider the situation of a walker in a circular submarine channel, and examine the behavior of several walking droplets in this system. We show the quantization of the drop distances, and correlate it to their bouncing modes.
Stabilization of the vertical instability by non-axisymmetric coils
Turnbull, A. D.; Reiman, A. H.; Lao, L. L.; Cooper, W. A.; Ferraro, N. M.; Buttery, R. J.
2016-08-01
In a published Physical Review Letter (Reiman 2007 Phys. Rev. Lett. 99 135007), it was shown that axisymmetric (or vertical) stability can be improved by placing a set of parallelogram coils above and below the plasma oriented at an angle to the constant toroidal planes. The physics of this stabilization can be understood as providing an effective additional positive stability index. The original work was based on a simplified model of a straight tokamak and is not straightforwardly applicable to a finite aspect ratio, strongly shaped plasma such as in DIII-D. Numerical calculations were performed in a real DIII-D -like configuration to provide a proof of principal that 3-D fields can, in fact raise the elongation limits as predicted. A four field period trapezioid-shaped coil set was developed in toroidal geometry and 3D equilibria were computed using trapezium coil currents of 10 kA , 100 kA , and 500 kA . The ideal magnetohydrodynamics growth rates were computed as a function of the conformal wall position for the n = 0 symmetry-preserving family. The results show an insignificant relative improvement in the stabilizing wall location for the two lower coil current cases, of the order of 10-3 and less. In contrast, the marginal wall position is increased by 7% as the coil current is increased to 500 kA , confirming the main prediction from the original study in a real geometry case. In DIII-D the shift in marginal wall position of 7% would correspond to being able to move the existing wall outward by 5 to 10 cm. While the predicted effect on the axisymmetric stability is real, it appears to require higher coil currents than could be provided in an upgrade to existing facilities. Additional optimization over the pitch of the coils, the number of field periods and the coil positions, as well as plasma parameters, such as the internal inductivity {{\\ell}\\text{i}} , β , and {{q}95} would mitigate this but seem unlikely to change the conclusion.
Non-axisymmetric vertical velocity dispersion distributions produced by bars
Du, Min; Debattista, Victor P
2016-01-01
In barred galaxies, the contours of stellar velocity dispersions ($\\sigma$) are generally expected to be oval and aligned with the orientation of bars. However, many double-barred (S2B) galaxies exhibit distinct $\\sigma$ peaks on the minor axis of inner bar, which we termed "$\\sigma$-humps," while two local $\\sigma$ minima are present close to the ends of inner bars, i.e., "$\\sigma$-hollows." Analysis of numerical simulations shows that $\\sigma_z$-humps or hollows should play an important role in generating the observed $\\sigma$-humps+hollows in low-inclination galaxies. In order to systematically investigate the properties of $\\sigma_z$ in barred galaxies, we apply the vertical Jeans equation to a group of well-designed three-dimensional bar+disk(+bulge) models. A vertically thin bar can lower $\\sigma_z$ along the bar and enhance it perpendicular to the bar, thus generating $\\sigma_z$-humps+hollows. Such a result suggests that $\\sigma_z$-humps+hollows can be generated by the purely dynamical response of star...
The importance of shallow confining units to submarine groundwater flow
Bratton, J.F.
2007-01-01
In addition to variable density flow, the lateral and vertical heterogeneity of submarine sediments creates important controls on coastal aquifer systems. Submarine confining units produce semi-confined offshore aquifers that are recharged on shore. These low-permeability deposits are usually either late Pleistocene to Holocene in age, or date to the period of the last interglacial highstand. Extensive confining units consisting of peat form in tropical mangrove swamps, and in salt marshes and freshwater marshes and swamps at mid-latitudes. At higher latitudes, fine-grained glaciomarine sediments are widespread. The net effect of these shallow confining units is that groundwater from land often flows farther offshore before discharging than would normally be expected. In many settings, the presence of such confining units is critical to determining how and where pollutants from land will be discharged into coastal waters. Alternatively, these confining units may also protect fresh groundwater supplies from saltwater intrusion into coastal wells.
Transition metal catalysis in confined spaces.
Leenders, Stefan H A M; Gramage-Doria, Rafael; de Bruin, Bas; Reek, Joost N H
2015-01-21
Transition metal catalysis plays an important role in both industry and in academia where selectivity, activity and stability are crucial parameters to control. Next to changing the structure of the ligand, introducing a confined space as a second coordination sphere around a metal catalyst has recently been shown to be a viable method to induce new selectivity and activity in transition metal catalysis. In this review we focus on supramolecular strategies to encapsulate transition metal complexes with the aim of controlling the selectivity via the second coordination sphere. As we will discuss, catalyst confinement can result in selective processes that are impossible or difficult to achieve by traditional methods. We will describe the template-ligand approach as well as the host-guest approach to arrive at such supramolecular systems and discuss how the performance of the catalyst is enhanced by confining it in a molecular container.
Deforming baryons into confining strings
Hartnoll, S A; Hartnoll, Sean A.; Portugues, Ruben
2004-01-01
We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in ${\\mathcal{N}}=1$ gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G_2 holonomy M theory background. The interpretation of these solutions as deformed baryons/confining strings is not as straightforward.
Berk, H. L.
2012-09-01
The topic of the behaviour of energetic alpha particles in magnetic fusion confined plasmas is perhaps the ultimate frontier plasma physics issue that needs to be understood in the quest to achieve controlled power from the fusion reaction in magnetically confined plasmas. The partial pressure of alpha particles in a burning plasma will be ~5-10% of the total pressure and under these conditions the alpha particles may be prone to develop instability through Alfvénic interaction. This may lead, even with moderate alpha particle loss, to a burn quench or severe wall damage. Alternatively, benign Alfvénic signals may allow the vital information to control a fusion burn. The significance of this issue has led to extensive international investigations and a biannual meeting that began in Kyiv in 1989, followed by subsequent meetings in Aspenäs (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007) and Kyiv (2009). The meeting was initially entitled 'Alpha Particles in Fusion Research' and then was changed during the 1997 meeting to 'Energetic Particles in Magnetic Confinement Systems' in appreciation of the need to study the significance of the electron runaway, which can lead to the production of energetic electrons with energies that can even exceed the energy produced by fusion products. This special issue presents some of the mature interesting work that was reported at the 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was held in Austin, Texas, USA (7-11 September 2011). This meeting immediately followed a related meeting, the 5th IAEA Technical Meeting on Theory of Plasma Wave Instabilities (5-7 September 2011). The meetings shared one day (7 September 2011) with presentations relevant to both groups. The presentations from most of the participants, as well as some preliminary versions of papers, are available at the
Polymer Statics and Dynamics Under Box Confinement
Kalb, Joshua; Chakraborty, Bulbul
2007-03-01
Current work on biological systems and glass forming polymers (JCP 106, 6176 (1997)) has led to an interest in the study of single polymer systems. The main questions concern relaxation phenomena and the shape adopted by single polymers under hard and soft boundaries. We are concerned with whether or not there is a critical length scale for a confined polymer system. Both structure and relaxation can be described using scaling arguments and tested with Monte Carlo simulations using the bond-fluctuation algorithm (Macromolecules 21,2819 (1988)), which uses a lattice representation of the polymer chain with excluded volume effects. We look at the effects of confinement on a single polymer chain confined to a box by measuring dynamical quantities such as the end-to-end vector and single monomer positions (JACS 124, 20 (2004)). A primary question is how spatial correlations between monomers, `blob's, influence the dynamics. Understanding how these quantities change with various confining geometries will lead to a deeper understanding of biological structures and glass formation. Work supported by NSF-DMR 0403997.
Energy Technology Data Exchange (ETDEWEB)
Germain, J.L.; Janneteau, E.
1993-12-31
Reactor containment integrity is of prime importance to the safety of PWR units. It is checked by means of tests performed at high pressure during the containment building pressure tests. These periodical tests are supplemented in France by permanent monitoring using the SEXTEN system. First feasibility tests for this system were carried out in 1980. The encouraging results obtained led to the development of a prototype, followed by an industrial system which has since been installed in all French PWR units. This system measures the containment leak rate, with corrections for the compressed air intakes used by the air-operated valves. Leaktightness is expressed in terms of the leak rate for a 60 mbar overpressure. If the leak rate exceeds a fixed limit value, leak detection operations are initiated, using SEXTEN. A new version of the system, known as SEXTEN 2 is being developed. (authors). 2 figs.
Vance, E R; Ferris, C P; Elliott, C T; McGettrick, S A; Kilpatrick, D J
2012-03-01
Although interest in crossbreeding within dairy systems has increased, the role of Jersey crossbred cows within high concentrate input systems has received little attention. This experiment was designed to examine the performance of Holstein-Friesian (HF) and Jersey × Holstein-Friesian (J × HF) cows within a high concentrate input total confinement system (CON) and a medium concentrate input grazing system (GRZ). Eighty spring-calving dairy cows were used in a 2 (cow genotype) × 2 (milk production system) factorial design experiment. The experiment commenced when cows calved and encompassed a full lactation. With GRZ, cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio] until turnout, grazed grass plus 1.0 kg of concentrate/day during a 199-d grazing period, and grass silage and concentrates (75:25 DM ratio) following rehousing and until drying-off. With CON, cows were confined throughout the lactation and offered diets containing grass silage and concentrates (DM ratio; 40:60, 50:50, 40:40, and 75:25 during d 1 to 100, 101 to 200, 201 to 250, and 251 until drying-off, respectively). Full-lactation concentrate DM intakes were 791 and 2,905 kg/cow for systems GRZ and CON, respectively. Although HF cows had a higher lactation milk yield than J × HF cows, the latter produced milk with a higher fat and protein content, so that solids-corrected milk yield (SCM) was unaffected by genotype. Somatic cell score was higher with the J × HF cows. Throughout lactation, HF cows were on average 37 kg heavier than J × HF cows, whereas the J × HF cows had a higher body condition score. Within each system, food intake did not differ between genotypes, whereas full-lactation yields of milk, fat plus protein, and SCM were higher with CON than with GRZ. A significant genotype × environment interaction was observed for milk yield, and a trend was found for an interaction with SCM. Crossbred cows on CON gained more body condition than HF
Energy Technology Data Exchange (ETDEWEB)
Secroun, A
2000-03-01
Inertial confinement fusion simulates in a laboratory the thermodynamic state of the center of stars, thus leading to the determination of stellar parameters. In order to reach that aim, high-speed cinematography brings up instruments specifically adapted to picosecond measurement, for which it is necessary to know the final precision. A model of the noise factor of the instruments under study is introduced and confronted to the experimental results obtained. (authors)
Montenegro, Rivelino V. D.
2003-05-01
The colloidal systems are present everywhere in many varieties such as emulsions (liquid droplets dispersed in liquid), aerosols (liquid dispersed in gas), foam (gas in liquid), etc. Among several new methods for the preparation of colloids, the so-called miniemulsion technique has been shown to be one of the most promising. Miniemulsions are defined as stable emulsions consisting of droplets with a size of 50-500 nm by shearing a system containing oil, water, a surfactant, and a highly water insoluble compound, the so-called hydrophobe 1. In the first part of this work, dynamic crystallization and melting experiments are described which were performed in small, stable and narrowly distributed nanodroplets (confined systems) of miniemulsions. Both regular and inverse systems were examined, characterizing, first, the crystallization of hexadecane, secondly, the crystallization of ice. It was shown for both cases that the temperature of crystallization in such droplets is significantly decreased (or the required undercooling is increased) as compared to the bulk material. This was attributed to a very effective suppression of heterogeneous nucleation. It was also found that the required undercooling depends on the nanodroplet size: with decreasing droplet size the undercooling increases. 2. It is shown that the temperature of crystallization of other n-alkanes in nanodroplets is also significantly decreased as compared to the bulk material due to a very effective suppression of heterogeneous nucleation. A very different behavior was detected between odd and even alkanes. In even alkanes, the confinement in small droplets changes the crystal structure from a triclinic (as seen in bulk) to an orthorhombic structure, which is attributed to finite size effects inside the droplets. An intermediate metastable rotator phase is of less relevance for the miniemulsion droplets than in the bulk. For odd alkanes, only a strong temperature shift compared to the bulk system is
Confinement versus asymptotic freedom
Dubin, A Yu
2002-01-01
I put forward the low-energy confining asymptote of the solution $$ (valid for large macroscopic contours C of the size $>>1/\\Lambda_{QCD}$) to the large N Loop equation in the D=4 U(N) Yang-Mills theory with the asymptotic freedom in the ultraviolet domain. Adapting the multiscale decomposition characteristic of the Wilsonean renormgroup, the proposed Ansatz for the loop-average is composed in order to sew, along the lines of the bootstrap approach, the large N weak-coupling series for high-momentum modes with the $N\\to{\\infty}$ limit of the recently suggested stringy representation of the 1/N strong-coupling expansion Dub4 applied to low-momentum excitations. The resulting low-energy stringy theory can be described through such superrenormalizable deformation of the noncritical Liouville string that, being devoid of ultraviolet divergences, does not possess propagating degrees of freedom at short-distance scales $<<1/{\\sqrt{\\sigma_{ph}}}$, where $\\sigma_{ph}\\sim{(\\Lambda_{QCD})^{2}}$ is the physical s...
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Statistical mechanics of confined quantum particles
Bannur, V M; Bannur, Vishnu M.
2006-01-01
We develop statistical mechanics and thermodynamics of Bose and Fermi systems in relativistic harmonic oscillator (RHO) confining potential, which may be applicable in quark gluon plasma (QGP), astrophysics, Bose-Einstein condensation (BEC), condensed matter physics etc. Detailed study of QGP system is carried out and compared with lattice results. Further, as an application, our equation of state (EoS) of QGP is used to study compact stars like quark star.
Statistical Mechanics of Confined Quantum Particles
Bannur, Vishnu M.; Udayanandan, K. M.
We develop statistical mechanics and thermodynamics of Bose and Fermi systems in relativistic harmonic oscillator (RHO) confining potential, which is applicable in quark gluon plasma (QGP), astrophysics, Bose-Einstein condensation (BEC) etc. Detailed study of QGP system is carried out and compared with lattice results. Furthermore, as an application, our equation of state (EoS) of QGP is used to study compact stars like quark star.
Nonlinear adhesion dynamics of confined lipid membranes
To, Tung; Le Goff, Thomas; Pierre-Louis, Olivier
Lipid membranes, which are ubiquitous objects in biological environments are often confined. For example, they can be sandwiched between a substrate and the cytoskeleton between cell adhesion, or between other membranes in stacks, or in the Golgi apparatus. We present a study of the nonlinear dynamics of membranes in a model system, where the membrane is confined between two flat walls. The dynamics derived from the lubrication approximation is highly nonlinear and nonlocal. The solution of this model in one dimension exhibits frozen states due to oscillatory interactions between membranes caused by the bending rigidity. We develope a kink model for these phenomena based on the historical work of Kawasaki and Otha. In two dimensions, the dynamics is more complex, and depends strongly on the amount of excess area in the system. We discuss the relevance of our findings for experiments on model membranes, and for biological systems. Supported by the grand ANR Biolub.
Glycerol in micellar confinement with tunable rigidity
Lannert, Michael; Müller, Allyn; Gouirand, Emmanuel; Talluto, Vincenzo; Rosenstihl, Markus; Walther, Thomas; Stühn, Bernd; Blochowicz, Thomas; Vogel, Michael
2016-12-01
We investigate the glassy dynamics of glycerol in the confinement of a microemulsion system, which is stable on cooling down to the glass transition of its components. By changing the composition, we vary the viscosity of the matrix, while keeping the confining geometry intact, as is demonstrated by small angle X-ray scattering. By means of 2H NMR, differential scanning calorimetry, and triplet solvation dynamics we, thus, probe the dynamics of glycerol in confinements of varying rigidity. 2H NMR results show that, at higher temperatures, the dynamics of confined glycerol is unchanged compared to bulk behavior, while the reorientation of glycerol molecules becomes significantly faster than in the bulk in the deeply supercooled regime. However, comparison of different 2H NMR findings with data from calorimetry and solvation dynamics reveals that this acceleration is not due to the changed structural relaxation of glycerol, but rather due to the rotational motion of essentially rigid glycerol droplets or of aggregates of such droplets in a more fluid matrix. Thus, independent of the matrix mobility, the glycerol dynamics remains unchanged except for the smallest droplets, where an increase of Tg and, thus, a slowdown of the structural relaxation is observed even in a fluid matrix.
Morphology of diblock copolymers under confinement
Ackerman, David; Ganapathysubramanian, Baskar
The structure adopted by polymer chains is of particular intrest for materials design. In particular, a great deal of effort has been made to study diblock polymers due to the importance they have in industrial applications. The bulk structure of most systems has been the most widely studied. However, when under the effect of confinement, the polymer chains are forced to adopt structures differing from the familiar bulk phases. As many applications utilize polymers in sizes and shapes that lead to these non bulk structures, the confinement effects are important. A commonly used tool for computationally determining structures is the continuum self consistant field theory (SCFT). We discuss our highly scalable parallel framework for SCFT using real space methods (finite element) that is especially well suited to modelling complex geometries. This framework is capable of modeling both Gaussian and worm like chains. We illustate the use of the software framework in determining structures under varying degrees of confinement. We detail the method used and present selected results from a systematic study of confinement using arbitrary structures.
Directory of Open Access Journals (Sweden)
Javad Khazaei
2016-09-01
Full Text Available Helical piles are environmentally friendly and economical deep foundations that, due to environmental considerations, are excellent additions to a variety of deep foundation alternatives available to the practitioner. Helical piles performance depends on soil properties, the pile geometry and soil-pile interaction. Helical piles can be a proper alternative in sensitive environmental sites if their bearing capacity is sufficient to support applied loads. The failure capacity of helical piles in this study was measured via an experimental research program that was carried out by Frustum Confining Vessel (FCV. FCV is a frustum chamber by approximately linear increase in vertical and lateral stresses along depth from top to bottom. Due to special geometry and applied bottom pressure, this apparatus is a proper choice to test small model piles which can simulate field stress conditions. Small scale helical piles are made with either single helix or more helixes and installed in fine grained sand with three various densities. Axial loading tests including compression and tension tests were performed to achieve pile ultimate capacity. The results indicate the helical piles behavior depends essentially on pile geometric characteristics, i.e. helix configuration and soil properties. According to the achievements, axial uplift capacity of helical model piles is about equal to usual steel model piles that have the helixes diameter. Helical pile compression bearing capacity is too sufficient to act as a medium pile, thus it can be substituted other piles in special geoenvironmental conditions. The bearing capacity also depends on spacing ratio, S/D, and helixes diameter.
Fermion Superfluidity And Confining Interactions
Galal, A A
2004-01-01
We study the pairing of Fermi systems with long-range, confining interparticle interactions. We solve the Cooper problem for a pair of fermions interacting via a regularized harmonic oscillator potential and determine the s-wave spectrum of bound states. Using a model of two interacting species of fermions, we calculate the ground state energy of the normal phase in the Hartree-Fock approximation and find that it is infrared (IR) divergent, due to a combination of the sharpness of the Fermi sea and the long-range nature of the interaction. We calculate the correlation energy in the normal phase using the random phase approximation (RPA) and demonstrate the cancellation of infrared divergences between the Hartree-Fock and RPA contributions. Introducing a variational wavefunction to study the superfluid phase, we solve the BCS equations using a Hartree-Fock-Bogoliubov (HFB) analysis to determine the wave-function, excitation gap, and other parameters of the superfluid phase. We show that the system crosses over...
Diffusion of Finite-Size Particles in Confined Geometries
Bruna, Maria
2013-05-10
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle\\'s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined. © 2013 Society for Mathematical Biology.
Circularly-confined microswimmers exhibit multiple global patterns
Tsang, Alan Cheng Hou
2014-01-01
Geometric confinement plays an important role in the dynamics of natural and synthetic microswimmers from bacterial cells to self-propelled particles in high-throughput microfluidic devices. However, little is known about the effects of geometric confinement on the emergent global patterns in such self-propelled systems. Recent experiments on bacterial cells give conflicting reports of cells spontaneously organizing into a spiral vortex in a thin cylindrical droplet and cells aggregating at the inner boundary in a spherical droplet. We investigate here, in an idealized physical model, the interplay between geometric confinement and level of flagellar activity on the emergent collective patterns. We show that decreasing flagellar activity induces a hydrodynamically-triggered transition in confined microswimmers from swirling to global circulation (vortex) to boundary aggregation and clustering. These results highlight that the complex interplay between confinement, flagellar activity and hydrodynamic flows in ...
Gutay, L G; Pajares, C; Scharenberg, R P; Srivastava, B K
2015-01-01
It is shown that de-confinement can be achieved in high multiplicity non jet $\\bar{p}$p collisions at $\\sqrt{s}$= 1.8 TeV Fermi National Accelerator Laboratory(FNAL- E735) experiment. Previously the evidence for de-confinement was the demonstrated by the constant freeze out energy density in high multiplicity events. In this paper we use the same data but analyze the transverse momentum spectrum in the framework of the clustering of color sources. The charged particle pseudorapidities densities in the range 7.0 $\\leq \\langle dN_{c}/d\\eta \\rangle \\leq$26.0 are considered. Results are presented for both thermodynamic and transport properties. The initial temperature and energy density are obtained and compared with the Lattice Quantum Chromo Dynamics(LQCD) simulations. The energy density ($\\varepsilon/T^{4}$) $\\sim$ 11.5 for $ \\langle dN_{c}/d\\eta \\rangle \\sim $ 25.0 is close to the value for 0-10\\% central events in Au+Au collisions at $\\sqrt{s_{NN}}$= 200 GeV. The shear viscosity to entropy density ratio($\\et...
Dynamical density functional theory with hydrodynamic interactions in confined geometries
Goddard, B. D.; Nold, A.; Kalliadasis, S.
2016-12-01
We study the dynamics of colloidal fluids in both unconfined geometries and when confined by a hard wall. Under minimal assumptions, we derive a dynamical density functional theory (DDFT) which includes hydrodynamic interactions (HI; bath-mediated forces). By using an efficient numerical scheme based on pseudospectral methods for integro-differential equations, we demonstrate its excellent agreement with the full underlying Langevin equations for systems of hard disks in partial confinement. We further use the derived DDFT formalism to elucidate the crucial effects of HI in confined systems.
Compaction of granular material inside confined geometries
Marks, Benjy; Sandnes, Bjornar; Dumazer, Guillaume; Eriksen, Jon Alm; Måløy, Knut Jørgen
2015-06-01
In both nature and the laboratory, loosely packed granular materials are often compacted inside confined geometries. Here, we explore such behaviour in a quasi-two dimensional geometry, where parallel rigid walls provide the confinement. We use the discrete element method to investigate the stress distribution developed within the granular packing as a result of compaction due to the displacement of a rigid piston. We observe that the stress within the packing increases exponentially with the length of accumulated grains, and show an extension to current analytic models which fits the measured stress. The micromechanical behaviour is studied for a range of system parameters, and the limitations of existing analytic models are described. In particular, we show the smallest sized systems which can be treated using existing models. Additionally, the effects of increasing piston rate, and variations of the initial packing fraction, are described.
Alternative approaches to plasma confinement
Roth, J. R.
1978-01-01
The paper discusses 20 plasma confinement schemes each representing an alternative to the tokamak fusion reactor. Attention is given to: (1) tokamak-like devices (TORMAC, Topolotron, and the Extrap concept), (2) stellarator-like devices (Torsatron and twisted-coil stellarators), (3) mirror machines (Astron and reversed-field devices, the 2XII B experiment, laser-heated solenoids, the LITE experiment, the Kaktus-Surmac concept), (4) bumpy tori (hot electron bumpy torus, toroidal minimum-B configurations), (5) electrostatically assisted confinement (electrostatically stuffed cusps and mirrors, electrostatically assisted toroidal confinement), (6) the Migma concept, and (7) wall-confined plasmas. The plasma parameters of the devices are presented and the advantages and disadvantages of each are listed.
Magnetic freezing of confined water.
Zhang, Guangyu; Zhang, Weiwei; Dong, Huijuan
2010-10-07
We report results from molecular dynamic simulations of the freezing transition of liquid water in the nanoscale hydrophobic confinement under the influence of a homogeneous external magnetic field of 10 T along the direction perpendicular to the parallel plates. A new phase of bilayer crystalline ice is obtained at an anomalously high freezing temperature of 340 K. The water-to-ice translation is found to be first order. The bilayer ice is built from alternating rows of hexagonal rings and rhombic rings parallel to the confining plates, with a large distortion of the hydrogen bonds. We also investigate the temperature shifts of the freezing transition due to the magnetic field. The freezing temperature, below which the freezing of confined water occurs, shifts to a higher value as the magnetic field enhances. Furthermore, the temperature of the freezing transition of confined water is proportional to the denary logarithm of the external magnetic field.
Thermonuclear reactions with magnetical confined plasmas
Energy Technology Data Exchange (ETDEWEB)
Pinkau, K.; Schumacher, U.
1982-09-01
As the result of intensive research activities in the plasma physics one can expect that in future an independent burning plasma can be produced. The focal point of fusion research then will crescent shift on the answer of the question whether the technological development the design of a commercial working energy systems allows. The authors report on thermonuclear devices, plasma confinement, plasma heating, thermonuclear reactions and safety.
Confined fluidization of fines in fixed bed of coarse particles
Directory of Open Access Journals (Sweden)
Buczek Bronisław
2016-12-01
Full Text Available Experiments on a confined fluidized bed system with various shapes of particles have been presented in the paper. Its influence on hydrodynamic properties in the whole range of gas velocity has been analysed. Relations allowing calculation of the Richardson-Zaki-type equation coefficients, including description of inter-particle void and gas pressure drop in such systems have been determined. Necessary condition for confined fluidization of non-spherical coarse particles has also been determined.
Lampe, David C.; Unthank, Michael D.
2016-12-08
The U.S. Geological Survey (USGS) performed tests to evaluate the hydrologic connection between the open interval of the well and the surrounding Calumet aquifer in response to fouling of extraction well pumps onsite. Two rounds of air slug testing were performed on seven monitoring wells and step drawdown and subsequent recovery tests on three extraction wells on a U.S. Army Corps of Engineers Confined Disposal Facility (CDF) in East Chicago, Indiana. The wells were tested in 2014 and again in 2015. The extraction and monitoring wells are part of the gradient control system that establishes an inward gradient around the perimeter of the facility. The testing established a set of protocols that site personnel can use to evaluate onsite well integrity and develop a maintenance procedure to evaluate future well performance.The results of the slug test analysis data indicate that the hydraulic connection of the well screen to the surrounding aquifer material in monitoring wells on the CDF and the reliability of hydraulic conductivity estimates of the surrounding geologic media could be increased by implementing well development maintenance. Repeated air slug tests showed increasing hydraulic conductivity until, in the case of the monitoring wells located outside of the groundwater cutoff wall (MW–4B, MW–11B, MW–14B), the difference in hydraulic conductivity from test to test decreased, indicating the results were approaching the optimal hydraulic connection between the aquifer and the well screen. Hydraulic conductivity values derived from successive tests in monitoring well D40, approximately 0.25 mile south of the CDF, were substantially higher than those derived from wells on the CDF property. Also, values did not vary from test to test like those measured in monitoring wells located on the CDF property, which indicated that a process may be affecting the connectivity of the wells on the CDF property to the Calumet aquifer. Derived hydraulic conductivity
Radioactivity Confinement Studies Within the SEAL Program
Collén, Jan; Matsugu, Ron; Natalizio, Antonio; Shen, Kecheng
1997-09-01
In the framework of the European SEAL program, investigations have been performed with the aim of optimizing the second confinement function and plant layout with respect to normal operation as well as abnormal operation, including accident conditions. This has been done for two conceptual fusion reactor designs: one using water as the coolant and the other using helium. The starting point of these investigations was the SEAFP project design. For the water-cooled reactor design the studies were focused on design options such as pressure suppression spray system, pressure suppression pool with closed containment or with venting to gravel bed filter and stack, and separate expansion volume optionally operated with a vacuum and equipped with spray system. Similar analyses were performed for the helium-cooled reactor design. The analyses were focused on design options comprising a single, large confinement volume or a vent duct connected to an expansion volume operated at vacuum in comparison with the SEAFP Model 1. The thermal-hydraulic analyses performed with the MELCOR code provide an integrated assessment of the cooling loop and confinement system dynamics.
Confinement Physics in Quantum Chromodynamics
Suganuma, H; Amemiya, K; Tanaka, A; Suganuma, Hideo; Ichie, Hiroko; Amemiya, Kazuhisa; Tanaka, Atsunori
1998-01-01
We study the confinement physics in QCD in the maximally abelian (MA) gauge using the SU(2) lattice QCD, based on the dual-superconductor picture. In the MA gauge, off-diagonal gluon components are forced to be small, and the off-diagonal angle variable $\\chi_\\mu(s)$ tends to be random. Within the random-variable approximation for $\\chi_\\mu(s)$, we analytically prove the perimeter law of the off-diagonal gluon contribution to the Wilson loop in the MA gauge, which leads to abelian dominance on the string tension. To clarify the origin of abelian dominance for the long-range physics, we study the charged-gluon propagator in the MA gauge using the lattice QCD, and find that the effective mass $m_{ch} \\simeq 0.9 {\\rm GeV}$ of the charged gluon is induced by the MA gauge fixing. In the MA gauge, there appears the macroscopic network of the monopole world-line covering the whole system, which would be identified as monopole condensation at a large scale. To prove monopole condensation in the field-theoretical mann...
Fluid viscosity under confined conditions
Rudyak, V. Ya.; Belkin, A. A.
2014-12-01
Closed equations of fluid transfer in confined conditions are constructed in this study using ab initio methods of nonequilibrium statistical mechanics. It is shown that the fluid viscosity is not determined by the fluid properties alone, but becomes a property of the "fluid-nanochannel walls" system as a whole. Relations for the tensor of stresses and the interphase force, which specifies the exchange by momentum of fluid molecules with the channel-wall molecules, are derived. It is shown that the coefficient of viscosity is now determined by the sum of three contributions. The first contribution coincides with the expression for the coefficient of the viscosity of fluid in the bulk being specified by the interaction of fluid molecules with each other. The second contribution has the same structure as the first one but is determined by the interaction of fluid molecules with the channel-wall molecules. Finally, the third contribution has no analog in the usual statistical mechanics of transport processes of a simple fluid. It is associated with the correlation of intermolecular forces of the fluid and the channel walls. Thus, it is established that the coefficient of viscosity of fluid in sufficiently small channels will substantially differ from its bulk value.
Reatividade animal Confinement reactivity
Directory of Open Access Journals (Sweden)
Walsiara Estanislau Maffei
2009-07-01
Full Text Available A reatividade é definida como a reação do animal quando contido num ambiente de contenção móvel. Ela é quantificada por meio do teste de reatividade animal em ambiente de contenção móvel - REATEST®. Este teste consiste num dispositivo eletrônico acoplado à balança e num software específico. O dispositivo capta a movimentação que o animal provoca na balança, durante 20 segundos e a envia para o software que a processa determinando a reatividade do animal numa escala contínua de pontos. Pontuações maiores são de animais mais reativos (mais agressivo. A reatividade foi criada com os objetivos de solucionar os problemas até então existentes na seleção para temperamento e de permitir estimação de parâmetros genéticos mais confiáveis. Ela é uma característica objetiva que tem grande variabilidade fenotípica e é de quantificação rápida, fácil e segura, além de poder ser quantificada em qualquer tipo de balança, o que permite maior aplicabilidade. Ela não interfere nas práticas de manejo das fazendas porque é quantificada no momento da pesagem dos animais. Sua herdabilidade na raça Nelore é de 0,39 ao ano e 0,23 ao sobreano e suas correlações genéticas com ganho de peso diário são de -0,28 do nascimento até desmama e de -0,49 do desmame até ano. Já suas correlações genéticas com desenvolvimento do perímetro escrotal do ano ao sobreano variam de -0,25 e -0,41.The confinement reactivity (CR has been used as a measure of temperament in Brazil and it is defined as the animal reaction when contained in the scale. It is quantified through the animal reactivity test - REATEST®. This test consists of an electronic device coupled to the scale and of specific software. The device captures the movement that the animal provokes in the scale, during 20 seconds and sends it for the software that processes this movement and determines the animal CR in a continuous scale of points. Higher punctuations belong to
Lin, Z.
2014-10-01
In magnetic fusion plasmas, a significant fraction of the kinetic pressure is contributed by superthermal charged particles produced by auxiliary heating (fast ions and electrons) and fusion reactions (a-particles). Since these energetic particles are often far away from thermal equilibrium due to their non-Maxwellian distribution and steep pressure gradients, the free energy can excite electromagnetic instabilities to intensity levels well above the thermal fluctuations. The resultant electromagnetic turbulence could induce large transport of energetic particles, which could reduce heating efficiency, degrade overall plasma confinement, and damage fusion devices. Therefore, understanding and predicting energetic particle confinement properties are critical to the success of burning plasma experiments such as ITER since the ignition relies on plasma self-heating by a-particles. To promote international exchanges and collaborations on energetic particle physics, the biannual conference series under the auspices of the International Atomic Energy Agency (IAEA) were help in Kyiv (1989), Aspenas (1991), Trieste (1993), Princeton (1995), JET/Abingdon (1997), Naka (1999), Gothenburg (2001), San Diego (2003), Takayama (2005), Kloster Seeon (2007), Kyiv (2009), and Austin (2011). The papers in this special section were presented at the most recent meeting, the 13th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems, which was hosted by the Fusion Simulation Center, Peking University, Beijing, China (17-20 September 2013). The program of the meeting consisted of 71 presentations, including 13 invited talks, 26 oral contributed talks, 30 posters, and 2 summary talks, which were selected by the International Advisory Committee (IAC). The IAC members include H. Berk, L.G. Eriksson, A. Fasoli, W. Heidbrink, Ya. Kolesnichenko, Ph. Lauber, Z. Lin, R. Nazikian, S. Pinches, S. Sharapov, K. Shinohara, K. Toi, G. Vlad, and X.T. Ding. The conference program
Metal-organic frameworks as host materials of confined supercooled liquids.
Fischer, J K H; Sippel, P; Denysenko, D; Lunkenheimer, P; Volkmer, D; Loidl, A
2015-10-21
In this work, we examine the use of metal-organic framework (MOF) systems as host materials for the investigation of glassy dynamics in confined geometry. We investigate the confinement of the molecular glass former glycerol in three MFU-type MOFs with different pore sizes (MFU stands for "Metal-Organic Framework Ulm-University") and study the dynamics of the confined liquid via dielectric spectroscopy. In accord with previous reports on confined glass formers, we find different degrees of deviations from bulk behavior depending on pore size, demonstrating that MOFs are well-suited host systems for confinement investigations.
Stretching p -wave molecules by transverse confinements
Zhou, Lihong; Cui, Xiaoling
2017-09-01
We revisit the confinement-induced p -wave resonance in quasi-one-dimensional (quasi-1D) atomic gases and study the induced molecules near resonance. We derive the reduced 1D interaction parameters and show that they can well predict the binding energy of shallow molecules in quasi-1D system. Importantly, these shallow molecules are found to be much more spatially extended compared to those in three dimensions (3D) without transverse confinement. Our results strongly indicate that a p -wave interacting atomic gas can be much more stable in quasi-1D near the induced p -wave resonance, where most weight of the molecule lies outside the short-range regime and thus the atom loss could be suppressed.
Multiphase flows in confinement with complex geometries
Aymard, Benjamin; Pradas, Marc; Vaes, Urbain; Kalliadasis, Serafim
2016-11-01
Understanding the dynamics of immiscible fluids in confinement is crucial in numerous applications such as oil recovery, fuel cells and the rapidly growing field of microfluidics. Complexities such as microstructures, chemical-topographical heterogeneities or porous membranes, can often induce non-trivial effects such as critical phenomena and phase transitions . The dynamics of confined multiphase flows may be efficiently described using diffuse-interface theory, leading to the Cahn-Hilliard-Navier-Stokes(CHNS) equations with Cahn wetting boundary conditions. Here we outline an efficient numerical method to solve the CHNS equations using advanced geometry-capturing mesh techniques both in two and three dimensional scenarios. The methodology is applied to two different systems: a droplet on a spatially chemical-topographical heterogeneous substrateand a microfluidic separator.
Two-dimensionally confined topological edge states in photonic crystals
Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-11-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Two-Dimensionally Confined Topological Edge States in Photonic Crystals
Barik, Sabyasachi; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad
2016-01-01
We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters.
Ion-mediated RNA structural collapse: effect of spatial confinement
Tan, Zhi-Jie
2013-01-01
RNAs are negatively charged molecules residing in macromolecular crowding cellular environments. Macromolecular confinement can influence the ion effects in RNA folding. In this work, using the recently developed tightly bound ion model for ion fluctuation and correlation, we investigate the confinement effect on the ion-mediated RNA structural collapse for a simple model system. We found that, for both Na$^+$ and Mg$^{2+}$, ion efficiencies in mediating structural collapse/folding are significantly enhanced by the structural confinement. Such an enhancement in the ion efficiency is attributed to the decreased electrostatic free energy difference between the compact conformation ensemble and the (restricted) extended conformation ensemble due to the spatial restriction.
Quantum Confinement in Hydrogen Bond
Santos, Carlos da Silva dos; Ricotta, Regina Maria
2015-01-01
In this work, the quantum confinement effect is proposed as the cause of the displacement of the vibrational spectrum of molecular groups that involve hydrogen bonds. In this approach the hydrogen bond imposes a space barrier to hydrogen and constrains its oscillatory motion. We studied the vibrational transitions through the Morse potential, for the NH and OH molecular groups inside macromolecules in situation of confinement (when hydrogen bonding is formed) and non-confinement (when there is no hydrogen bonding). The energies were obtained through the variational method with the trial wave functions obtained from Supersymmetric Quantum Mechanics (SQM) formalism. The results indicate that it is possible to distinguish the emission peaks related to the existence of the hydrogen bonds. These analytical results were satisfactorily compared with experimental results obtained from infrared spectroscopy.
Turbulent jet in confined counterflow
Indian Academy of Sciences (India)
M Sivapragasam; M D Deshpande; S Ramamurthy; P White
2014-06-01
The mean flowfield of a turbulent jet issuing into a confined, uniform counterflow was investigated computationally. Based on dimensional analysis, the jet penetration length was shown to scale with jet-to-counterflow momentum flux ratio. This scaling and the computational results reproduce the well-known correct limit of linear growth of the jet penetration length for the unconfined case when the momentum flux ratio is small. However, for the high momentum flux ratio case corresponding to the confinement, the jet penetration length is shown to reach an asymptotic limit of about 3.57 times the confining duct diameter. This conclusion is contrary to the existing results which predict indefinite growth. A simple modification of an existing similarity solution for the jet in an unconfined counterflow provides a convenient framework for presenting the results of the flowfield and jet penetration length.
CORRELATIONS IN CONFINED QUANTUM PLASMAS
Energy Technology Data Exchange (ETDEWEB)
DUFTY J W
2012-01-11
This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effects of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed
New confining force solution of QCD axion domain wall problem
Barr, S. M.; Kim, Jihn E.
2014-01-01
The serious cosmological problems created by the axion-string/axion-domain-wall system in standard axion models are alleviated by positing the existence of a new confining force. The instantons of this force can generate an axion potential that erases the axion strings long before QCD effects become important, thus preventing QCD-generated axion walls from ever appearing. Axion walls generated by the new confining force would decay so early as not to contribute significantly to the energy in ...
Hydrodynamic Flow Confinement Technology in Microfluidic Perfusion Devices
Directory of Open Access Journals (Sweden)
Aldo Jesorka
2012-05-01
Full Text Available Hydrodynamically confined flow device technology is a young research area with high practical application potential in surface processing, assay development, and in various areas of single cell research. Several variants have been developed, and most recently, theoretical and conceptual studies, as well as fully developed automated systems, were presented. In this article we review concepts, fabrication strategies, and application areas of hydrodynamically confined flow (HCF devices.
Dynamics of water and aqueous solutions in geometrical confinement
Matthias, Sattig
2016-01-01
Water is one of the most vital substances for life, science, and technology. In many situations, water is confined to very narrow geometries, for example, in living cells it is severely confined in between biomolecules. The peculiarities of such systems are not yet understood and have drawn a lot of attention in current research. Additionally, the anomalous behavior of water in the bulk, e.g. the density anomaly, is not yet explained. The most common theories aiming to rationalize the beha...
Quantum Confinement in Hydrogen Bond of DNA and RNA
Santos, da Silva dos; Ricotta, Regina Maria
2015-01-01
The hydrogen bond is a fundamental ingredient to stabilize the DNA and RNA macromolecules. The main contribution of this work is to describe quantitatively this interaction as a consequence of the quantum confinement of the hydrogen. The results for the free and confined system are compared with experimental data. The formalism to compute the energy gap of the vibration motion used to identify the spectrum lines is the Variational Method allied to Supersymmetric Quantum Mechanics.
Cossu, G; Di Giacomo, A; Lucini, B; Pica, C
2007-01-01
The gauge group being centreless, $G_2$ gauge theory is a good laboratory for studying the role of the centre of the group for colour confinement in Yang-Mills gauge theories. In this paper, we investigate $G_2$ pure gauge theory at finite temperature on the lattice. By studying the finite size scaling of the plaquette, the Polyakov loop and their susceptibilities, we show that a deconfinement phase transition takes place. The analysis of the pseudocritical exponents give strong evidence of the deconfinement transition being first order. Implications of our findings for scenarios of colour confinement are discussed.
Quantum Confined Semiconductors for High Efficiency Photovoltaics
Beard, Matthew
2014-03-01
Semiconductor nanostructures, where at least one dimension is small enough to produce quantum confinement effects, provide new pathways for controlling energy flow and therefore have the potential to increase the efficiency of the primary photon-to-free energy conversion step. In this discussion, I will present the current status of research efforts towards utilizing the unique properties of colloidal quantum dots (NCs confined in three dimensions) in prototype solar cells and demonstrate that these unique systems have the potential to bypass the Shockley-Queisser single-junction limit for solar photon conversion. The solar cells are constructed using a low temperature solution based deposition of PbS or PbSe QDs as the absorber layer. Different chemical treatments of the QD layer are employed in order to obtain good electrical communication while maintaining the quantum-confined properties of the QDs. We have characterized the transport and carrier dynamics using a transient absorption, time-resolved THz, and temperature-dependent photoluminescence. I will discuss the interplay between carrier generation, recombination, and mobility within the QD layers. A unique aspect of our devices is that the QDs exhibit multiple exciton generation with an efficiency that is ~ 2 to 3 times greater than the parental bulk semiconductor.
Computer simulation of polypeptides in a confinement.
Sikorski, Andrzej; Romiszowski, Piotr
2007-02-01
A coarse-grained model of polypeptide chains confined in a slit formed by two parallel impenetrable surfaces was studied. The chains were flexible heteropolymers (polypeptides) built of two kinds of united atoms-hydrophobic and hydrophilic. The positions of the united atoms were restricted to the vertices of a [310] lattice. The force field consisted of a rigorous excluded volume, a long-distance potential between a pair of amino-acid residues and a local preference for forming secondary structure (helices). The properties of the chains were studied at a wide range of temperatures from good to bad solvent conditions. Monte-Carlo simulations were carried out using the algorithm based on the chain's local changes of conformation and employing the Replica Exchange technique. The influence of the chain length, the distances between the confining surfaces, the temperature and the force field on the dimension and the structure of chains were studied. It was shown that the presence of the confinement chain complicates the process of the chain collapse to low-temperature structures. For some conditions, one can find a rapid decrease of chain size and a second transition indicated by the rapid decrease of the total energy of the system.
A Theory of Secure Mobile Computation with Confined Movement and Communication
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
An extended πcalculus was introduced to deal with secure movement and intercommunication between agents.The system extends Nomadic-πwith objective migration primitive and confined region which serves as annotation labels of agents and channels.the confined region labels were used to uniquely identify the constraints on the migration and communication of agents,with the labels,the agents could be confined in a secure subsystem the migration and communication of agents,with the labels,the agents could be confined in a secure subsystem and the inter-agent communication could be confined between agents located on trusted sites during computation.The operational semantics for the calculus was given out ,and a type system which enforces security properties called confined migration and confined communication was developed.
Role of the confinement of a root canal on jet impingement during endodontic irrigation
Verhaagen, B.; Boutsioukis, C.; Heijnen, G. L.; van der Sluis, L. W. M.; Versluis, M.
2012-01-01
During a root canal treatment the root canal is irrigated with an antimicrobial fluid, commonly performed with a needle and a syringe. Irrigation of a root canal with two different types of needles can be modeled as an impinging axisymmetric or non-axisymmetric jet. These jets are investigated exper
Directory of Open Access Journals (Sweden)
Aérica C. Nazareno
2012-01-01
Full Text Available O confinamento de matrizes suínas foi criado com o intuito de maximizar a produtividade; entretanto, existem problemas relacionados ao bem-estar animal. Objetivou-se avaliar a criação de matrizes suínas gestantes no sistema de confinamento e ao ar livre, com relação ao ambiente térmico e às respostas fisiológicas. O experimento foi realizado em Monte Mor/SP. A avaliação fisiológica foi realizada por meio do registro das variáveis: frequência respiratória e temperatura de pele. Foram registradas as variáveis meteorológicas: temperatura de bulbo seco, temperatura de bulbo úmido e temperatura de globo negro, caracterizando o ambiente por meio da entalpia e índice de temperatura de globo e umidade. Foram utilizados seis animais por tratamento. O delineamento experimental foi inteiramente casualizado em parcelas subdivididas, e as médias comparadas pelo teste de Tukey. As variáveis fisiológicas e meteorológicas apresentaram valores superiores no confinamento. O sistema de criação ao ar livre potencializou as trocas térmicas entre os animais e o ambiente, o que refletiu em menor estresse por calor observado nos animais.Pregnant sows confinement systems were created in order to maximize the productivity, however there are problems concerning the animal welfare. The aim of this research was to evaluate pregnant sows in outdoors and in confinement systems in relation to the thermal environment and physiological animal responses. The experiment was conducted in a commercial farm in Monte Mor city, São Paulo, Brazil. The physiological evaluation was performed by recording physiological variables, such as respiratory frequency and skin temperature. Furthermore, variables like dry bulb temperature, wet bulb temperature, and black globe temperature were also evaluated to characterize the ambient by means of enthalpy and black globe humidity index. In each treatment six animals were evaluated. The experimental design was completely
Confined Quantum Time of Arrivals
Galapon, E A; Galapon, Eric A.; Bahague, Ricardo T.
2003-01-01
We show that the non-self-adjoint free time of arrival operator in free space defines a class of compact, self-adjoint, and canonical operators for a spatially confined particle. We analytically and numerically study the qualitative behaviors of these operators, and demonstrate that their eigenfunctions and eigenvalues are consistent with the interpretation that they are time of arrival operators.
Effective viscosity of confined hydrocarbons
DEFF Research Database (Denmark)
Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.
2012-01-01
We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...
Color confinement multi quark resonance
Energy Technology Data Exchange (ETDEWEB)
Wang Fan [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China); Ping, J.L. [Department of Physics, Nanjing Normal University, Nanjing, 210097 (China); Pang, H.R. [Department of Physics, Southeast University, Nanjing, 210008 (China); Chen, L.Z. [Department of Physics, Nanjing University, Joint Center for Particle Nuclear Physics and Cosmology, Nanjing University and Pupil Mountain Observatory, Nanjing, 210008 (China)
2007-06-15
A new kind microscopic resonance, the color confinement multi quark resonance is proposed and studied. The quark delocalization color screening model is compared to one of the chiral quark model, the Salamanca model, and a new mechanism of the intermediate range NN interaction, the mutual distortion of interacting nucleons, is checked to be similar to the {sigma} meson exchange.
Two flavor QCD and Confinement
DEFF Research Database (Denmark)
D'Elia, M.; Di Giacomo, A.; Pica, Claudio
2005-01-01
We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is...
Institute of Scientific and Technical Information of China (English)
Xiao-wei ZHANG; Zhi-feng TANG; Fu-zai LV; Xiao-hong PAN
2016-01-01
high inspection efficiency. Compared with other ultrasonic guided wave actuators, magnetostrictive transducers are more cost-effective, involve simpler fabrication process, and have higher possible transduction efficiency. The normal mode expansion (NME) method is adopted to analyze the forced response and perturbation analysis of elastic hollow cylinders with respect to magnetostrictive loadings, including partial loading, axial array loading, and circular array loading. The phase velocity and frequency spectra of axisymmetric/non-axisymmetric guided waves excited by magnetostrictive transducers are analyzed. The theoretically predicted trends are verified by finite element numerical simulations and experiments.
Unconfined versus confined speleogenetic settings: variations of solution porosity.
Directory of Open Access Journals (Sweden)
Klimchouk Alexander
2006-01-01
Full Text Available Speleogenesis in confined settings generates cave morphologies that differ much from those formed in unconfined settings. Cavesdeveloped in unconfined settings are characterised by broadly dendritic patterns of channels due to highly competing development.In contrast, caves originated under confined conditions tend to form two- or three-dimensional mazes with densely packed conduits.This paper illustrates variations of solution (channel porosity resulted from speleogenesis in unconfined and confined settings by theanalysis of morphometric parameters of typical cave patterns. Two samples of typical cave systems formed in the respective settingsare compared. The sample that represents unconfined speleogenesis consists of solely limestone caves, whereas gypsum cavesof this type tend to be less dendritic and more linear. The sample that represents confined speleogenesis consists of both limestoneand gypsum maze caves. The comparison shows considerable differences in average values of some parameters between thesettings. Passage network density (the ratio of the cave length to the area of the cave field, km/km2 is one order of magnitudegreater in confined settings than in unconfined (average 167.3 km/km2 versus 16.6 km/km2. Similarly, an order of magnitudedifference is observed in cave porosity (a fraction of the volume of a cave block, occupied by mapped cavities; 5.0 % versus 0.4 %.This illustrates that storage in maturely karstified confined aquifers is generally much greater than in unconfined. The average areal coverage (a fraction of the area of the cave field occupied by passages in a plan view is about 5 times greater in confined settingsthan in unconfined (29.7 % versus 6.4 %. This indicates that conduit permeability in confined aquifers is appreciably easier to targetwith drilling than the widely spaced conduits in unconfined aquifers.
Confined PBX 9501 gap reinitiation studies
Energy Technology Data Exchange (ETDEWEB)
Salyer, Terry R [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Lam, Kin [Los Alamos National Laboratory
2009-01-01
For explosive systems that exhibit gaps or cracks between their internal components (either by design or mechanical failure), measurable time delays exist for detonation waves crossing them. Reinitiation across such gaps is dependent on the type of explosive, gap width, gap morphology, confinement, and temperature effects. To examine this reinitiation effect, a series of tests has been conducted to measure the time delay across a prescribed gap within an 'infinitely' confined PBX 9501 system. Detonation breakout along the explosive surface is measured with a streak camera, and flow features are examined during reinitiation near the gap. Such tests allow for quantitative determination of the time delay corresponding to the time of initiation across a given gap oriented normal to the direction of the detonation wave. Measured time delays can be compared with numerical calculations, making it possible to validate initiation models as well as estimate detonation run-up distances. Understanding this reinitiation behavior is beneficial for the design and evaluation of explosive systems that require precision timing and performance.
Quark confinement and the renormalization group.
Ogilvie, Michael C
2011-07-13
Recent approaches to quark confinement are reviewed, with an emphasis on their connection to renormalization group (RG) methods. Basic concepts related to confinement are introduced: the string tension, Wilson loops and Polyakov lines, string breaking, string tension scaling laws, centre symmetry breaking and the deconfinement transition at non-zero temperature. Current topics discussed include confinement on R(3)×S(1), the real-space RG, the functional RG and the Schwinger-Dyson equation approach to confinement.
Quark Confinement and the Renormalization Group
Ogilvie, Michael C
2010-01-01
Recent approaches to quark confinement are reviewed, with an emphasis on their connection to renormalization group methods. Basic concepts related to confinement are introduced: the string tension, Wilson loops and Polyakov lines, string breaking, string tension scaling laws, center symmetry breaking, and the deconfinement transition at non-zero temperature. Current topics discussed include confinement on $R^3\\times S^1$, the real-space renormalization group, the functional renormalization group, and the Schwinger-Dyson equation approach to confinement.
Quark confinement mechanism for baryons
Goncharov, Yu P
2013-01-01
The confinement mechanism proposed earlier and then successfully applied to meson spectroscopy by the author is extended over baryons. For this aim the wave functions of baryons are built as tensorial products of those corresponding to the 2-body problem underlying the confinement mechanism of two quarks. This allows one to obtain the Hamiltonian of the quark interactions in a baryon and, accordingly, the possible energy spectrum of the latter. Also one may construct the electric and magnetic form factors of baryon in a natural way which entails the expressions for the root-mean-square radius and anomalous magnetic moment. To ullustrate the formalism in the given Chapter for the sake of simplicity only symmetrical baryons (i.e., composed from three quarks of the same flavours) $\\Delta^{++}$, $\\Delta^{-}$, $\\Omega^-$ are considered. For them the masses, the root-mean-square radii and anomalous magnetic moments are expressed in an explicit analytical form through the parameters of the confining SU(3)-gluonic fi...
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-06-12
The Fusion Research Center (FRC) at the University Texas will operate the tokamak TEXT-U and its associated systems for experimental research in basic plasma physics. While the tokamak is not innovative, the research program, diagnostics and planned experiments are. The fusion community will reap the benefits of the success in completing the upgrades (auxiliary heating, divertor, diagnostics, wall conditioning), developing diverted discharges in both double and single null configurations, exploring improved confinement regimes including a limiter H-mode, and developing unique, critical turbulence diagnostics. With these new regimes, the authors are poised to perform the sort of turbulence and transport studies for which the TEXT group has distinguished itself and for which the upgrade was intended. TEXT-U is also a facility for collaborators to perform innovative experiments and develop diagnostics before transferring them to larger machines. The general philosophy is that the understanding of plasma physics must be part of any intelligent fusion program, and that basic experimental research is the most important part of any such program. The emphasis of the proposed research is to provide well-documented plasmas which will be used to suggest and evaluate theories, to explore control techniques, to develop advanced diagnostics and analysis techniques, and to extend current drive techniques. Up to 1 MW of electron cyclotron heating (ECH) will be used not only for heating but as a localized, perturbative tool. Areas of proposed research are: (1) core turbulence and transport; (2) edge turbulence and transport; (3) turbulence analysis; (4) improved confinement; (5) ECH physics; (6) Alfven wave current drive; and (7) diagnostic development.
Quark Confinement Physics from Quantum Chromodynamics
Suganuma, H; Tanaka, A; Ichie, H
2016-01-01
We show the construction of the dual superconducting theory for the confinement mechanism from QCD in the maximally abelian (MA) gauge using the lattice QCD Monte Carlo simulation. We find that essence of infrared abelian dominance is naturally understood with the off-diagonal gluon mass $m_{\\rm off} \\simeq 1.2 {\\rm GeV}$ induced by the MA gauge fixing. In the MA gauge, the off-diagonal gluon amplitude is forced to be small, and the off-diagonal gluon phase tends to be random. As the mathematical origin of abelian dominance for confinement, we demonstrate that the strong randomness of the off-diagonal gluon phase leads to abelian dominance for the string tension. In the MA gauge, there appears the macroscopic network of the monopole world-line covering the whole system. We investigate the monopole-current system in the MA gauge by analyzing the dual gluon field $B_\\mu$. We evaluate the dual gluon mass as $m_B = 0.4 \\sim$ 0.5GeV in the infrared region, which is the lattice-QCD evidence of the dual Higgs mechan...
Viscosity of confined inhomogeneous nonequilibrium fluids.
Zhang, Junfang; Todd, B D; Travis, Karl P
2004-12-01
We use the nonlocal linear hydrodynamic constitutive model, proposed by Evans and Morriss [Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990)], for computing an effective spatially dependent shear viscosity of inhomogeneous nonequilibrium fluids. The model is applied to a simple atomic fluid undergoing planar Poiseuille flow in a confined channel of several atomic diameters width. We compare the spatially dependent viscosity with a local generalization of Newton's law of viscosity and the Navier-Stokes viscosity, both of which are known to suffer extreme inaccuracies for highly inhomogeneous systems. The nonlocal constitutive model calculates effective position dependent viscosities that are free from the notorious singularities experienced by applying the commonly used local constitutive model. It is simple, general, and has widespread applicability in nanofluidics where experimental measurement of position dependent transport coefficients is currently inaccessible. In principle the method can be used to predict approximate flow profiles of any arbitrary inhomogeneous system. We demonstrate this by predicting the flow profile for a simple fluid undergoing planar Couette flow in a confined channel of several atomic diameters width.
Density of States Simulations of Confined Glasses
Faller, Roland; Ghosh, Jayeeta
2008-03-01
Glassy systems under confinement have been studied with great enthusiasm and effort for the last decades. They are relevant both fundamentally and technically because there is still debate about the nature of glass transition in small geometries which is important for lithographic processes in the semiconductor and other industries. In this work we are using the Wang-Landau approach also known as Density of States Monte Carlo to study glassy systems in bulk and under confinement. We apply the technique to a model binary Lennard Jones glass as well as the small organic glass former Ortho-terphenyl (OTP). For Lennard Jones glasses we use a well tested model. For OTP we start from a united atom model and then derive systematically a coarse grained representation by replacing each phenyl ring with a bead and using the Iterative Boltzmann Inversion. The properties of bulk Lennard Jones model show very good agreement with literature values. The atomistic and coarse grained representations of ortho-terphenyl in the bulk are in good agreement with experiments. Unsupported freestanding films show a lower glass transition than the bulk value.
Neutron confinement and the Aharonov-Casher effect
Energy Technology Data Exchange (ETDEWEB)
Bruce, S [Department of Physics, University of Concepcion, PO Box 160c, Concepcion (Chile)
2005-08-05
We determine the (bound) ground state of a spin-1/2 chargeless particle with anomalous magnetic moment in certain Aharonov-Casher configurations. We recast the description of the system in a supersymmetric form. Then the basic physical requirements for unbroken supersymmetry are established. We comment on the possibility of neutron confinement in these systems.
Detection of Seed Methods for Quantification of Feature Confinement
DEFF Research Database (Denmark)
Olszak, Andrzej; Bouwers, Eric; Jørgensen, Bo Nørregaard
2012-01-01
links between features and source code which hinders the ability to perform cost-efficient and consistent evaluations over time or on a large portfolio of systems. In this paper, we propose an approach to automating measurement of feature confinement by detecting the methods which play a central role......The way features are implemented in source code has a significant influence on multiple quality aspects of a software system. Hence, it is important to regularly evaluate the quality of feature confinement. Unfortunately, existing approaches to such measurement rely on expert judgement for tracing...
Using off-diagonal confinement as a cooling method
Rousseau, Valery; Hettiarachchilage, Kalani; Moreno, Juana; Jarrell, Mark; Sheehy, Dan
2011-03-01
We show that the recently proposed ``off-diagonal confining" (ODC) method (Phys. Rev. Lett. 104, 167201 (2010)) can lead to temperatures that are smaller than with the conventional ``diagonal confining" (DC) method, depending on the control parameters of the system. We determine these parameters using exact diagonalizations for the hard-core case, then we extend our results to the soft-core case by performing quantum Monte Carlo simulations for both DC and ODC systems at fixed temperatures, and analysing the corresponding entropies. This work was supported by NSF OISE-0952300.
U.S. Geological Survey, Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22â24, 2012; these wells are part of a network established...
U.S. Geological Survey, Department of the Interior — Water levels in 93 wells completed in the Wood River Valley aquifer system were measured during October 22â24, 2012; these wells are part of a network established...
Liquid Spreading under Nanoscale Confinement
Checco, Antonio
2009-03-01
Dynamic atomic force microscopy in the noncontact regime is used to study the morphology of a nonvolatile liquid (squalane) as it spreads along wettable nanostripes embedded in a nonwettable surface. Results show that the liquid profile depends on the amount of lateral confinement imposed by the nanostripes, and it is truncated at the microscopic contact line in good qualitative agreement with classical mesoscale hydrodynamics. However, the width of the contact line is found to be significantly larger than expected theoretically. This behavior may originate from small chemical inhomogeneity of the patterned stripes as well as from thermal fluctuations of the contact line.
Wicking a confined micropillar array
Texier, Baptiste Darbois; Stoukatch, Serguei; Dorbolo, Stéphane
2016-01-01
This study considers the spreading of a Newtonian and perfectly wetting liquid in a square array of cylindric micropillars confined between two plates. We show experimentally that the dynamics of the contact line follows a Washburn-like law which depends on the characteristics of the micropillar array (height, diameter and pitch). The presence of pillars can either enhanced or slow down the motion of the contact line. A theoretical model based on capillary and viscous forces has been developed in order to rationalize our observations. Finally, the impact of pillars on the volumic flow rate of liquid which is pumped in the microchannel is inspected.
Electromelting of Confined Monolayer Ice
Qiu, Hu
2013-01-01
In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to field-induced disruption of the water-wall interaction induced well-ordered network of hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.
Thermoelectricity in confined liquid electrolytes
Dietzel, Mathias
2015-01-01
The electric field in an extended phase of a liquid electrolyte exposed to a temperature gradient is attributed to different thermophoretic mobilities of the ion species. As shown herein, such Soret-type ion thermodiffusion is not required to induce thermoelectricity even in the simplest electrolyte if it is confined between charged walls. The space charge of the electric double layer leads to selective ion diffusion driven by a temperature-dependent electrophoretic ion mobility, which -for narrow channels- may cause thermo-voltages larger in magnitude than for the classical Soret equilibrium.
Frictional properties of confined polymers
DEFF Research Database (Denmark)
Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J
2008-01-01
We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force...
Polymer escape from a confining potential
Energy Technology Data Exchange (ETDEWEB)
Mökkönen, Harri, E-mail: harri.mokkonen@aalto.fi [Department of Applied Physics and COMP CoE, Aalto University School of Science, P.O. Box 11100, FIN-00076 Aalto, Espoo (Finland); Faculty of Physical Sciences, University of Iceland, Reykjavík (Iceland); Ikonen, Timo [Department of Applied Physics and COMP CoE, Aalto University School of Science, P.O. Box 11100, FIN-00076 Aalto, Espoo (Finland); VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT (Finland); Jónsson, Hannes [Department of Applied Physics and COMP CoE, Aalto University School of Science, P.O. Box 11100, FIN-00076 Aalto, Espoo (Finland); Faculty of Physical Sciences, University of Iceland, Reykjavík (Iceland); Department of Physics, Brown University, Providence, Rhode Island 02912-1843 (United States); Ala-Nissila, Tapio [Department of Applied Physics and COMP CoE, Aalto University School of Science, P.O. Box 11100, FIN-00076 Aalto, Espoo (Finland); Department of Physics, Brown University, Providence, Rhode Island 02912-1843 (United States)
2014-02-07
The rate of escape of polymers from a two-dimensionally confining potential well has been evaluated using self-avoiding as well as ideal chain representations of varying length, up to 80 beads. Long timescale Langevin trajectories were calculated using the path integral hyperdynamics method to evaluate the escape rate. A minimum is found in the rate for self-avoiding polymers of intermediate length while the escape rate decreases monotonically with polymer length for ideal polymers. The increase in the rate for long, self-avoiding polymers is ascribed to crowding in the potential well which reduces the free energy escape barrier. An effective potential curve obtained using the centroid as an independent variable was evaluated by thermodynamic averaging and Kramers rate theory then applied to estimate the escape rate. While the qualitative features are well reproduced by this approach, it significantly overestimates the rate, especially for the longer polymers. The reason for this is illustrated by constructing a two-dimensional effective energy surface using the radius of gyration as well as the centroid as controlled variables. This shows that the description of a transition state dividing surface using only the centroid fails to confine the system to the region corresponding to the free energy barrier and this problem becomes more pronounced the longer the polymer is. A proper definition of a transition state for polymer escape needs to take into account the shape as well as the location of the polymer.
Spontaneous spherical symmetry breaking in atomic confinement
Sveshnikov, K
2016-01-01
The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The reason is that such boundary conditions could yield a large magnitude of electronic wavefunction in some sector of the box boundary, what in turn promotes atomic displacement from the box center towards this part of the boundary, and so the underlying SO(3) symmetry spontaneously breaks. The emerging Goldstone modes, coinciding with rotations around the box center, restore the symmetry by spreading the atom over a spherical shell localized at some distances from the box center. Atomic confinement inside the cavity proceeds dynamically -- due to the boundary condition the deformation of electronic wavefunction near the boundary works as a spring, that returns the at...
Directory of Open Access Journals (Sweden)
Frédéric Danjon
Full Text Available This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control or 45° (slope in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees.
Danjon, Frédéric; Khuder, Hayfa; Stokes, Alexia
2013-01-01
This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees were grown from seed in containers inclined at 0° (control) or 45° (slope) in a glasshouse. The shoots of half the plants were gently flexed for 5 minutes a day. After 6 months, root systems were excavated and digitized in 3D, and biomass measured. Over 100 root architectural traits were determined. Both slope and flexing increased significantly plant size. Non-flexed trees on 45° slopes developed shallow roots which were largely aligned perpendicular to the slope. Compared to the controls, flexed trees on 0° slopes possessed a shorter and thicker taproot held in place by regularly distributed long and thin lateral roots. Flexed trees on the 45° slope also developed a thick vertically aligned taproot, with more volume allocated to upslope surface lateral roots, due to the greater soil volume uphill. We show that there is an inherent root system architectural model, but that a certain number of traits are highly plastic. This plasticity will permit root architectural design to be modified depending on external mechanical signals perceived by young trees.
Bisogni, Valentina; Wohlfeld, Krzysztof; Nishimoto, Satoshi; Monney, Claude; Trinckauf, Jan; Zhou, Kejin; Kraus, Roberto; Koepernik, Klaus; Sekar, Chinnathambi; Strocov, Vladimir; Büchner, Bernd; Schmitt, Thorsten; van den Brink, Jeroen; Geck, Jochen
2015-03-06
Fractionalization of an electronic quasiparticle into spin, charge, and orbital parts is a fundamental and characteristic property of interacting electrons in one dimension. However, real materials are never strictly one dimensional and the fractionalization phenomena are hard to observe. Here we studied the spin and orbital excitations of the anisotropic ladder material CaCu_{2}O_{3}, whose electronic structure is not one dimensional. Combining high-resolution resonant inelastic x-ray scattering experiments with theoretical model calculations, we show that (i) spin-orbital fractionalization occurs in CaCu_{2}O_{3} along the leg direction x through the xz orbital channel as in a 1D system, and (ii) no fractionalization is observed for the xy orbital, which extends in both leg and rung direction, contrary to a 1D system. We conclude that the directional character of the orbital hopping can select different degrees of dimensionality. Using additional model calculations, we show that spin-orbital separation is generally far more robust than the spin-charge separation. This is not only due to the already mentioned selection realized by the orbital hopping, but also due to the fact that spinons are faster than the orbitons.
Magnetic confinement fusion energy research
Energy Technology Data Exchange (ETDEWEB)
Grad, H
1977-03-01
Controlled Thermonuclear Fusion offers probably the only relatively clean energy solution with completely inexhaustible fuel and unlimited power capacity. The scientific and technological problem consists in magnetically confining a hot, dense plasma (pressure several to hundreds of atmospheres, temperature 10/sup 8/ degrees or more) for an appreciable fraction of a second. The scientific and mathematical problem is to describe the behavior, such as confinement, stability, flow, compression, heating, energy transfer and diffusion of this medium in the presence of electromagnetic fields just as we now can for air or steam. Some of the extant theory consists of applications, routine or ingenious, of known mathematical structures in the theory of differential equations and in traditional analysis. Other applications of known mathematical structures offer surprises and new insights: the coordination between sub-supersonic and elliptic-hyperbolic is fractured; supersonic propagation goes upstream; etc. Other completely nonstandard mathematical structures with significant theory are being rapidly uncovered (and somewhat less rapidly understood) such as non-elliptic variational equations and new types of weak solutions. It is these new mathematical structures which one should expect to supply the foundation for the next generation's pure mathematics, if history is a guide. Despite the substantial effort over a period of some twenty years, there are still basic and important scintific and mathematical discoveries to be made, lying just beneath the surface.
Holographic collisions in confining theories
Cardoso, Vitor; Mateos, David; Pani, Paolo; Rocha, Jorge V
2013-01-01
We study the gravitational dual of a high-energy collision in a confining gauge theory. We consider a linearized approach in which two point particles traveling in an AdS-soliton background suddenly collide to form an object at rest (presumably a black hole for large enough center-of-mass energies). The resulting radiation exhibits the features expected in a theory with a mass gap: late-time power law tails of the form t^(-3/2), the failure of Huygens' principle and distortion of the wave pattern as it propagates. The energy spectrum is exponentially suppressed for frequencies smaller than the gauge theory mass gap. Consequently, we observe no memory effect in the gravitational waveforms. At larger frequencies the spectrum has an upward-stairway structure, which corresponds to the excitation of the tower of massive states in the confining gauge theory. We discuss the importance of phenomenological cutoffs to regularize the divergent spectrum, and the aspects of the full non-linear collision that are expected ...
Thermodynamic analysis of nucleation in confined space: generalized Gibbs approach.
Schmelzer, Jürn W P; Abyzov, Alexander S
2011-02-07
A general thermodynamic analysis of nucleation-growth processes in confined space in initially metastable states of the ambient phase is performed based on the generalized Gibbs approach to the description of heterogeneous systems. In particular, it is shown analytically how the parameters of critical clusters and clusters in stable equilibrium with the ambient phase depend on the volume of the system for initially fixed intensive state parameters of the ambient phase. Qualitatively, the results are shown to be similar independent on the boundary conditions employed. It is demonstrated further that the behavior of systems in confined space is directly related to the kinetics of phase transformation processes in spatially extended systems, when ensembles of clusters are formed. The results of the thermodynamic analysis of cluster formation and growth in a confined space are employed then, in particular, to the derivation of kinetic equations for the description of the process of coarsening or Ostwald ripening. In the analysis of both the nucleation in confined space and the description of Ostwald ripening, no specific assumptions concerning the equations of state of the system under consideration and the number of components both in the ambient and newly evolving phases are made. Consequently, the results are of very general nature and hold always as far as the necessary condition for the possibility of a phase transformation is fulfilled.
Quantum behavior of water nano-confined in beryl
Finkelstein, Y.; Moreh, R.; Shang, S. L.; Wang, Y.; Liu, Z. K.
2017-03-01
The proton mean kinetic energy, Ke(H), of water confined in nanocavities of beryl (Be3Al2Si6O18) at 5 K was obtained by simulating the partial vibrational density of states from density functional theory based first-principles calculations. The result, Ke(H) = 104.4 meV, is in remarkable agreement with the 5 K deep inelastic neutron scattering (DINS) measured value of 105 meV. This is in fact the first successful calculation that reproduces an anomalous DINS value regarding Ke(H) in nano-confined water. The calculation indicates that the vibrational states of the proton of the nano-confined water molecule distribute much differently than in ordinary H2O phases, most probably due to coupling with lattice modes of the hosting beryl nano-cage. These findings may be viewed as a promising step towards the resolution of the DINS controversial measurements on other H2O nano-confining systems, e.g., H2O confined in single and double walled carbon nanotubes.
High-Energy Electron Confinement in a Magnetic Cusp Configuration
Park, Jaeyoung; Krall, Nicholas A.; Sieck, Paul E.; Offermann, Dustin T.; Skillicorn, Michael; Sanchez, Andrew; Davis, Kevin; Alderson, Eric; Lapenta, Giovanni
2015-04-01
We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure) is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad's work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β . This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.
High-Energy Electron Confinement in a Magnetic Cusp Configuration
Directory of Open Access Journals (Sweden)
Jaeyoung Park
2015-06-01
Full Text Available We report experimental results validating the concept that plasma confinement is enhanced in a magnetic cusp configuration when β (plasma pressure/magnetic field pressure is of order unity. This enhancement is required for a fusion power reactor based on cusp confinement to be feasible. The magnetic cusp configuration possesses a critical advantage: the plasma is stable to large scale perturbations. However, early work indicated that plasma loss rates in a reactor based on a cusp configuration were too large for net power production. Grad and others theorized that at high β a sharp boundary would form between the plasma and the magnetic field, leading to substantially smaller loss rates. While not able to confirm the details of Grad’s work, the current experiment does validate, for the first time, the conjecture that confinement is substantially improved at high β. This represents critical progress toward an understanding of the plasma dynamics in a high-β cusp system. We hope that these results will stimulate a renewed interest in the cusp configuration as a fusion confinement candidate. In addition, the enhanced high-energy electron confinement resolves a key impediment to progress of the Polywell fusion concept, which combines a high-β cusp configuration with electrostatic fusion for a compact, power-producing nuclear fusion reactor.
Taboo search by successive confinement: Surveying a potential energy surface
Chekmarev, Sergei F.
2001-09-01
A taboo search for minima on a potential energy surface (PES) is performed by means of confinement molecular dynamics: the molecular dynamics trajectory of the system is successively confined to various basins on the PES that have not been sampled yet. The approach is illustrated for a 13-atom Lennard-Jones cluster. It is shown that the taboo search radically accelerates the process of surveying the PES, with the probability of finding a new minimum defined by a propagating Fermi-like distribution.
Elastic scattering of positronium: Application of the confined variational method
Zhang, Junyi
2012-08-01
We demonstrate for the first time that the phase shift in elastic positronium-atom scattering can be precisely determined by the confined variational method, in spite of the fact that the Hamiltonian includes an unphysical confining potential acting on the center of mass of the positron and one of the atomic electrons. As an example, we study the S-wave elastic scattering for the positronium-hydrogen scattering system, where the existing 4% discrepancy between the Kohn variational calculation and the R-matrix calculation is resolved. © Copyright EPLA, 2012.
The Pressure induced by salt crystallization in confinement
Desarnaud, J.; Bonn, D.; Shahidzadeh, N.
2016-08-01
Salt crystallization is a major cause of weathering of rocks, artworks and monuments. Damage can only occur if crystals continue to grow in confinement, i.e. within the pore space of these materials, thus generating mechanical stress. We report the direct measurement, at the microscale, of the force exerted by growing alkali halide salt crystals while visualizing their spontaneous nucleation and growth. The experiments reveal the crucial role of the wetting films between the growing crystal and the confining walls for the development of the pressure. Our results suggest that the measured force originates from repulsion between the similarly charged confining wall and the salt crystal separated by a ~1.5 nm liquid film. Indeed, if the walls are made hydrophobic, no film is observed and no repulsive forces are detected. We also show that the magnitude of the induced pressure is system specific explaining why different salts lead to different amounts of damage to porous materials.
The role of collisions and scattering in differential confinement
Ochs, Ian; Fisch, Nathaniel; Gueroult, Renaud; Zweben, Stewart
2016-10-01
Much of plasma physics is concerned with the overall confinement of all species present. However, in certain applications, it is desirable to confine some species while allowing others to escape, or to have different species escape to different regions. In this study, we examine one class of differential confinement system, the plasma mass filter, and evaluate the regimes of feasible operation given realistic confounding effects such as collisions with neutrals and ions, turbulence, and radiative losses. In schemes that rely on Larmor motion, we find that the low-temperature requirement imposed by line radiation necessitates a large ( 1 T) magnetic field at the densities required for high throughput, since the Coulomb collision frequency scales as T - 3 / 2. There are, however, a variety of ways that may be contemplated to achieve separation effects.
Apparatus for magnetic and electrostatic confinement of plasma
Energy Technology Data Exchange (ETDEWEB)
Rostoker, Norman; Binderbauer, Michl
2016-07-05
An apparatus and method for containing plasma and forming a Field Reversed Configuration (FRC) magnetic topology are described in which plasma ions are contained magnetically in stable, non-adiabatic orbits in the FRC. Further, the electrons are contained electrostatically in a deep energy well, created by tuning an externally applied magnetic field. The simultaneous electrostatic confinement of electrons and magnetic confinement of ions avoids anomalous transport and facilitates classical containment of both electrons and ions. In this configuration, ions and electrons may have adequate density and temperature so that upon collisions ions are fused together by nuclear force, thus releasing fusion energy. Moreover, the fusion fuel plasmas that can be used with the present confinement system and method are not limited to neutronic fuels only, but also advantageously include advanced fuels.
Collective waves in dense and confined microfluidic droplet arrays
Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard
Excitation mechanisms for collective waves in confined dense one-dimensional microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. Excited longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets. Transversely excited modes obey the dispersion relation of microfluidic phonons and induce a coupling between longitudinal and transverse modes, whose origin is the hydrodynamic interaction of the droplets with the confining walls. Moreover, we investigate the long-time behaviour of the oscillations and discuss possible mechanisms for the onset of instabilities. Our findings demonstrate that the collective dynamics of microfluidic droplet ensembles can be studied particularly well in dense and confined systems. Experimentally, the ability to control microfluidic droplets may allow to modulate the refractive index of optofluidic crystals which is a promising approach for the production of dynamically programmable metamaterials.
CFCC: A Covert Flows Confinement Mechanism for Virtual Machine Coalitions
Cheng, Ge; Jin, Hai; Zou, Deqing; Shi, Lei; Ohoussou, Alex K.
Normally, virtualization technology is adopted to construct the infrastructure of cloud computing environment. Resources are managed and organized dynamically through virtual machine (VM) coalitions in accordance with the requirements of applications. Enforcing mandatory access control (MAC) on the VM coalitions will greatly improve the security of VM-based cloud computing. However, the existing MAC models lack the mechanism to confine the covert flows and are hard to eliminate the convert channels. In this paper, we propose a covert flows confinement mechanism for virtual machine coalitions (CFCC), which introduces dynamic conflicts of interest based on the activity history of VMs, each of which is attached with a label. The proposed mechanism can be used to confine the covert flows between VMs in different coalitions. We implement a prototype system, evaluate its performance, and show that our mechanism is practical.
Spatially confined assembly of nanoparticles.
Jiang, Lin; Chen, Xiaodong; Lu, Nan; Chi, Lifeng
2014-10-21
an increasingly important role in the controllable assembly of NPs. In this Account, we summarize our approaches and progress in fabricating spatially confined assemblies of NPs that allow for the positioning of NPs with high resolution and considerable throughput. The spatially selective assembly of NPs at the desired location can be achieved by various mechanisms, such as, a controlled dewetting process, electrostatically mediated assembly of particles, and confined deposition and growth of NPs. Three nanofabrication techniques used to produce prepatterns on a substrate are summarized: the Langmuir-Blodgett (LB) patterning technique, e-beam lithography (EBL), and nanoimprint lithography (NPL). The particle density, particle size, or interparticle distance in NP assemblies strongly depends on the geometric parameters of the template structure due to spatial confinement. In addition, with smart design template structures, multiplexed NPs can be assembled into a defined structure, thus demonstrating the structural and functional complexity required for highly integrated and multifunction applications.
Many Body Diffusion and Interacting Electrons in a Harmonic Confinement
Luczak, F.; Brosens, F.; Devreese, J. T.; Lemmens, L. F.
2001-06-01
We present numerically exact energy estimates for two-dimensional electrons in a parabolic confinement. By application of an extension of the recently introduced many-body diffusion algorithm, the ground-state energies are simulated very efficiently. The new algorithm relies on partial antisymmetrization under permutation of particle coordinates. A comparison is made with earlier theoretical results for that system.
Quantum statistics of ideal gases in confined space
Dai, Wu-Sheng; Xie, Mi
2002-01-01
In this paper, the effects of boundary and connectivity on ideal gases in two-dimensional confined space and three-dimensional tubes are discussed in detail based on the analytical result. The implication of such effects on the mesoscopic system is also revealed.
Acidities of confined water in interlayer space of clay minerals
Liu, X.; Lu, X.; Wang, R.; Meijer, E.J.; Zhou, H.
2011-01-01
The acid chemistry of confined waters in smectite interlayers have been investigated with first principles molecular dynamics (FPMD) simulations. Aiming at a systematic picture, we establish the model systems to take account of the three possible controlling factors: layer charge densities (0 e, 0.5
Confined two-dimensional fermions at finite density
De Francia, M; Loewe, M; Santangelo, E M; De Francia, M; Falomir, H; Loewe, M; Santangelo, E M
1995-01-01
We introduce the chemical potential in a system of two-dimensional massless fermions, confined to a finite region, by imposing twisted boundary conditions in the Euclidean time direction. We explore in this simple model the application of functional techniques which could be used in more complicated situations.
Methods for two-dimensional cell confinement.
Le Berre, Maël; Zlotek-Zlotkiewicz, Ewa; Bonazzi, Daria; Lautenschlaeger, Franziska; Piel, Matthieu
2014-01-01
Protocols described in this chapter relate to a method to dynamically confine cells in two dimensions with various microenvironments. It can be used to impose on cells a given height, with an accuracy of less than 100 nm on large surfaces (cm(2)). The method is based on the gentle application of a modified glass coverslip onto a standard cell culture. Depending on the preparation, this confinement slide can impose on the cells a given geometry but also an environment of controlled stiffness, controlled adhesion, or a more complex environment. An advantage is that the method is compatible with most optical microscopy technologies and molecular biology protocols allowing advanced analysis of confined cells. In this chapter, we first explain the principle and issues of using these slides to confine cells in a controlled geometry and describe their fabrication. Finally, we discuss how the nature of the confinement slide can vary and provide an alternative method to confine cells with gels of controlled rigidity.
Engineered Models of Confined Cell Migration
Paul, Colin D.; Hung, Wei-Chien; Wirtz, Denis; Konstantopoulos, Konstantinos
2017-01-01
Cells in the body are physically confined by neighboring cells, tissues, and the extracellular matrix. Although physical confinement modulates intracellular signaling and the underlying mechanisms of cell migration, it is difficult to study in vivo. Furthermore, traditional two-dimensional cell migration assays do not recapitulate the complex topographies found in the body. Therefore, a number of experimental in vitro models that confine and impose forces on cells in well-defined microenvironments have been engineered. We describe the design and use of microfluidic microchannel devices, grooved substrates, micropatterned lines, vertical confinement devices, patterned hydrogels, and micropipette aspiration assays for studying cell responses to confinement. Use of these devices has enabled the delineation of changes in cytoskeletal reorganization, cell–substrate adhesions, intracellular signaling, nuclear shape, and gene expression that result from physical confinement. These assays and the physiologically relevant signaling pathways that have been elucidated are beginning to have a translational and clinical impact. PMID:27420571
Phenomenological sizes of confinement regions in baryons
Energy Technology Data Exchange (ETDEWEB)
Brown, G.E.; Klimt, S.; Weise, W.; Rho, M.
1988-10-01
Standard order of magnitude estimates from QCD indicate that the radius of the quark-gluon core in the nucleon is ..lambda../sup -1//sub QCD/ > or approx. 1 fm. However, in work with the chiral bag model, we have found that the effective confinement size for low energy reactions can be as small as approx. = 1/2 fm or smaller. This shrinking of the effective confinement size has been attributed to the pressure of the pion cloud surrounding the quark core. The concept of confinement size is evidently subtle in light-quark systems, due to the chiral vacuum structure. This is indicated by the 'Cheshire Cat' phenomenon, in which physical observables tend to be insensitive to the bag radius R. We suggest that when strange quarks are present, a qualitative change occurs in the Cheshire Cat picture; in particular, we propose that strangeness provides an obstruction to this picture. We present a phenomenological indication that when strange quarks are present, the bag radius R is frozen at a value substantially larger than 0.5 fm by as much as a factor of two. Roughly speaking, the Cheshire Cat picture emerges from a near cancellation between repulsive quark kinetic and attractive pion-cloud energies in the case of the nucleon. In the ..lambda.. and ..sigma.. particles, however, replacement of one up or down quark by a strange quark removes part of the attraction from the coupling of the quarks to the pion cloud. This upsets the balance needed for the Cheshire Cat phenomenon and makes larger strange baryons more favorable energetically than the 0.5 fm ones appropriate for pure u- and d-systems. We find that magnetic moments of strange baryons favor a bag radius R approx. = 1.1 fm. We find that the excited states of the ..lambda..-hyperons favor similarly large bag radii. Somewhat less convincingly, due to perturbative effects - the bag radius appropriate to the ..delta..(1232) lies intermediate between that of the nucleon and of the stran
Spontaneous spherical symmetry breaking in atomic confinement
Sveshnikov, Konstantin; Tolokonnikov, Andrey
2017-07-01
The effect of spontaneous breaking of initial SO(3) symmetry is shown to be possible for an H-like atom in the ground state, when it is confined in a spherical box under general boundary conditions of "not going out" through the box surface (i.e. third kind or Robin's ones), for a wide range of physically reasonable values of system parameters. The most novel and nontrivial result, which has not been reported previously, is that such an effect takes place not only for attractive, but also for repulsive interactions of atomic electrons with the cavity environment. Moreover, in the limit of a large box size R ≫ aB the regime of an atom, soaring over a plane with boundary condition of "not going out", is reproduced, rather than a spherically symmetric configuration, which would be expected on the basis of the initial SO(3) symmetry of the problem.
Quark Confinement and Force Unification
Directory of Open Access Journals (Sweden)
Stone R. A. Jr.
2010-04-01
Full Text Available String theory had to adopt a bi-scale approach in order to produce the weakness of gravity. Taking a bi-scale approach to particle physics along with a spin connection produces 1 the measured proton radius, 2 a resolution of the multiplicity of measured weak angle values 3 a correct theoretical value for the Z 0 4 a reason that h is a constant and 5 a “neutral current” source. The source of the “neutral current” provides 6 an alternate solution to quark confinement, 7 produces an effective r like potential, and 8 gives a reason for the observed but unexplained Regge trajectory like J M 2 behavior seen in quark composite particle spin families.
Nanorheology of confined polymer films
Fowler, Paul; Ilton, Mark; McGraw, Joshua D.; Dalnoki-Veress, Kari
Liquid films with a non-uniform thickness flatten in order minimize surface energy, a process driven by surface tension and mediated by viscosity. For a viscous thin film, the time evolution of the film height profile is accurately described with lubrication theory by the capillary-driven thin film equation. Previous experiments have successfully applied the thin film equation to measure the rheological properties of polymeric liquids. Here we probe confinement effects in thin polymer films. We measure the viscosity by tracking the levelling of surface perturbations with AFM. For films with thicknesses thinner than the end-to-end distance of the molecule we observe deviations from a thin film model with bulk viscosity.
Two flavor QCD and Confinement
D'Elia, M; Pica, C
2005-01-01
We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is performed with staggered fermions on lattices with N_t=4 and N_s=12,16,20,24,32 and quark masses am_q ranging from 0.01335 to 0.307036. The specific heat and a number of susceptibilities are measured and compared with the expectations of an O(4) second order and of a first order phase transition. A second order transition in the O(4) and O(2) universality classes are excluded. Substantial evidence emerges for a first order transition. A detailed comparison with previous works is performed.
Bipolaron in different configuration of quantum confinement
Institute of Scientific and Technical Information of China (English)
阮永红; 陈庆虎; 焦正宽
2004-01-01
The authors used Landau-Pekar variational method to investigate a strong-coupling singlet optical bipolaron in different configuration of quantum confinement.Numerical and analytical results showed that when configuration changes from quantum dot and wire to well,confinement shows different effect on the formation of a bipolaron.In contrast to a bipolaron in a quantum dot or wire,the binding energy of a bipolaron in a quantum well increases with increasing confinement,indicating that confinement favors bipolaron formation in a quantum well.
Bipolaron in different configuration of quantum confinement
Institute of Scientific and Technical Information of China (English)
阮永红; 陈庆虎; 焦正宽
2004-01-01
The authors used Landau-Pekar variational method to investigate a strong-coupling singlet optical bipolaron in different configuration of quantum confinement. Numerical and analytical results showed that when configuration changes from quantum dot and wire to well, confinement shows different effect on the formation of a bipolaron. In contrast to a bipolaron in a quantum dot or wire, the binding energy of a bipolaron in a quantum well increases with increasing con-finement, indicating that confinement favors bipolaron formation in a quantum well.
Proposal of the confinement strategy of radioactive and hazardous materials for the European DEMO
Jin, X. Z.; Carloni, D.; Stieglitz, R.; Ciattaglia, S.; Johnston, J.; Taylor, N.
2017-04-01
Confinement of radioactive and hazardous materials is one of the fundamental safety functions in a nuclear fusion facility, which has to limit the mobilisation and dispersion of sources and hazards during normal, abnormal and accidental situations. In a first step energy sources and radioactive source have been assessed for a conceptual DEMO configuration. The confinement study for the European DEMO has been investigated for the main systems at the plant breakdown structure (PBS) level 1 taking a bottom-up approach. Based on the identification of the systems possessing a confinement function, a confinement strategy has been proposed, in which DEMO confinement systems and barriers have been defined. In addition, confinement for the maintenance has been issued as well. The assignment of confinement barriers to the identified sources under abnormal and accidental conditions has been performed, and the DEMO main safety systems have been proposed as well. Finally, confinement related open issues have been pointed out, which need to be resolved in parallel with DEMO development.
Two- versus three-dimensional quantum confinement in indium phosphide wires and dots.
Yu, Heng; Li, Jingbo; Loomis, Richard A; Wang, Lin-Wang; Buhro, William E
2003-08-01
The size dependence of the bandgap is the most identifiable aspect of quantum confinement in semiconductors; the bandgap increases as the nanostructure size decreases. The bandgaps in one-dimensional (1D)-confined wells, 2D-confined wires, and 3D-confined dots should evolve differently with size as a result of the differing dimensionality of confinement. However, no systematic experimental comparisons of analogous 1D, 2D or 3D confinement systems have been made. Here we report growth of indium phosphide (InP) quantum wires having diameters in the strong-confinement regime, and a comparison of their bandgaps with those previously reported for InP quantum dots. We provide theoretical evidence to establish that the quantum confinement observed in the InP wires is weakened to the expected extent, relative to that in InP dots, by the loss of one confinement dimension. Quantum wires sometimes behave as strings of quantum dots, and we propose an analysis to generally distinguish quantum-wire from quantum-dot behaviour.
Emergent phenomena in manganites under spatial confinement
Institute of Scientific and Technical Information of China (English)
Shen Jian; T.Z.Ward; L.F.Yin
2013-01-01
It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high-Tc superconductivity in cuprates,colossal magnetoresistance (CMR) in manganites,and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom—charge,lattice,orbital,and spin states.The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities,or electronic phase separation (EPS).In many of these hard materials,the functionality is a result of the soft electronic component that leads to self-organization.In this paper,we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites.Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them,it is possible to simultaneously probe EPS domains with different electronic states.This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation,movement,and fluctuation.Pushing this trend to its limit,we propose to control the formation process of the EPS using external local fields,which include magnetic exchange field,strain field,and electric field.We term the ability to pattern EPS “electronic nanofabrication.” This method allows us to control the global physical properties of the system at a very fundamental level,and greatly enhances the potential for realizing true oxide electronics.
Probing the properties of confined liquids
Beer, de Sissi Jacoba Adrianus
2011-01-01
In this thesis we describe Atomic Force Microscopy (AFM) measurements and Molecular Dynamics (MD) simulation of the static and dynamic properties of layered liquids confined between two solid surfaces. Liquid molecules in the proximity of a solid surface assemble into layers. When a fluid is confine
Ground state of a confined Yukawa plasma
Henning, C; Block, D; Bonitz, M; Golubnichiy, V; Ludwig, P; Piel, A
2006-01-01
The ground state of an externally confined one-component Yukawa plasma is derived analytically. In particular, the radial density profile is computed. The results agree very well with computer simulations on three-dimensional spherical Coulomb crystals. We conclude in presenting an exact equation for the density distribution for a confinement potential of arbitrary geometry.
Confinement of charge carriers in bilayer graphene
Goossens, A.M.
2013-01-01
In this thesis we investigate the fundamental properties of electronic transport in bilayer graphene. We do this by confining electrons to narrow constrictions and small islands. Our key result is the fabrication and measurement of nanoscale devices that permit confinement with electric fields in b
Confinement of charge carriers in bilayer graphene
Goossens, A.M.
2013-01-01
In this thesis we investigate the fundamental properties of electronic transport in bilayer graphene. We do this by confining electrons to narrow constrictions and small islands. Our key result is the fabrication and measurement of nanoscale devices that permit confinement with electric fields in b
Colloidal dynamics in flow and confinement
Ghosh, Somnath
2015-01-01
The aim of this thesis is to understand how the diffusive dynamics and flow behaviors of colloidal hard spheres are influenced by the confinement of nearby walls. The Brownian motion of hard spheres in quiescent bulk fluids is well known, but the presence of confining walls generate new physical phe
Inertial Confinement Fusion Materials Science
Energy Technology Data Exchange (ETDEWEB)
Hamza, A V
2004-06-01
Demonstration of thermonuclear ignition and gain on a laboratory scale is one of science's grand challenges. The National Ignition Facility (NIF) is committed to achieving inertial confinement fusion (ICF) by 2010. Success in this endeavor depends on four elements: the laser driver performance, target design, experimental diagnostics performance, and target fabrication and target materials performance. This article discusses the current state of target fabrication and target materials performance. The first three elements will only be discussed insofar as they relate to target fabrication specifications and target materials performance. Excellent reviews of the physics of ICF are given by Lindl [Lindl 1998] and Lindl et al. [Lindl 2004]. To achieve conditions under which inertial confinement is sufficient to achieve thermonuclear burn, an imploded fuel capsule is compressed to conditions of high density and temperature. In the laboratory a driver is required to impart energy to the capsule to effect an implosion. There are three drivers currently being considered for ICF in the laboratory: high-powered lasers, accelerated heavy ions, and x rays resulting from pulsed power machines. Of these, high-powered lasers are the most developed, provide the most symmetric drive, and provide the most energy. Laser drive operates in two configurations. The first is direct drive where the laser energy impinges directly on the ICF capsule and drives the implosion. The second is indirect drive, where the energy from the laser is first absorbed in a high-Z enclosure or hohlraum surrounding the capsule, and the resulting x-rays emitted by the hohlraum material drives the implosion. Using direct drive the laser beam energy is absorbed by the electrons in the outer corona of the target. The electrons transport the energy to the denser shell region to provide the ablation and the resulting implosion. Laser direct drive is generally less efficient and more hydrodynamically unstable
Wall depletion length of a channel-confined polymer
Cheong, Guo Kang; Li, Xiaolan; Dorfman, Kevin D.
2017-02-01
Numerous experiments have taken advantage of DNA as a model system to test theories for a channel-confined polymer. A tacit assumption in analyzing these data is the existence of a well-defined depletion length characterizing DNA-wall interactions such that the experimental system (a polyelectrolyte in a channel with charged walls) can be mapped to the theoretical model (a neutral polymer with hard walls). We test this assumption using pruned-enriched Rosenbluth method (PERM) simulations of a DNA-like semiflexible polymer confined in a tube. The polymer-wall interactions are modeled by augmenting a hard wall interaction with an exponentially decaying, repulsive soft potential. The free energy, mean span, and variance in the mean span obtained in the presence of a soft wall potential are compared to equivalent simulations in the absence of the soft wall potential to determine the depletion length. We find that the mean span and variance about the mean span have the same depletion length for all soft potentials we tested. In contrast, the depletion length for the confinement free energy approaches that for the mean span only when depletion length no longer depends on channel size. The results have implications for the interpretation of DNA confinement experiments under low ionic strengths.
Bimetallic Microswimmers Speed Up in Confining Channels
Liu, Chang; Zhou, Chao; Wang, Wei; Zhang, H. P.
2016-11-01
Synthetic microswimmers are envisioned to be useful in numerous applications, many of which occur in tightly confined spaces. It is therefore important to understand how confinement influences swimmer dynamics. Here we study the motility of bimetallic microswimmers in linear and curved channels. Our experiments show swimmer velocities increase, up to 5 times, with the degree of confinement, and the relative velocity increase depends weakly on the fuel concentration and ionic strength in solution. Experimental results are reproduced in a numerical model which attributes the swimmer velocity increase to electrostatic and electrohydrodynamic boundary effects. Our work not only helps to elucidate the confinement effect of phoretic swimmers, but also suggests that spatial confinement may be used as an effective control method for them.
Confinement optimisation by plasma shaping on TCV
Energy Technology Data Exchange (ETDEWEB)
Moret, J.M.; Behn, R.; Franke, S.; Hofmann, F.; Weisen, H. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)
1997-06-01
Any improvement in the energy confinement time of a tokamak reactor may facilitate its access to ignition. TCV has the unique capability of creating a wide variety of plasma shapes and can therefore investigate to which extent an appropriate choice of the plasma shape can improve the energy confinement time. For simple shapes defined only by their elongation and triangularity, it has already been observed on TCV that the confinement properties of the plasma depend strongly on the shape. This previous work has now been extended to include more complex shapes and higher elongations, in order firstly to test the applicability of the previously proposed explanation for the shape dependence of the confinement time and secondly to propose new shapes which offer a substantial gain on their confinement characteristics. (author) 4 figs., 1 tab., 2 refs.
Confinement and screening in tachyonic matter
Brito, F A; Serafim, W
2014-01-01
In this paper we consider confinement and screening of the electric field. We study the behavior of a static electric field coupled to a dielectric function with the intent of obtaining an electrical confinement similar to what happens with the field of gluons that bind quarks in hadronic matter. For this we use the phenomenon of `anti-screening' in a medium with exotic dielectric. We show that tachyon matter behaves like an exotic way whose associated dielectric function modifies the Maxwell's equations and affects the fields which results in confining and Coulombian-like potentials in three spatial dimensions. We note that the confining regime coincides with the tachyon condensation, which resembles the effect of confinement due to condensation of magnetic monopoles. The Coulombian-like regime is developed at large distance which is associated with {a screening phase
Confinement and screening in tachyonic matter
Energy Technology Data Exchange (ETDEWEB)
Brito, F.A. [Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, Paraiba (Brazil); Freire, M.L.F. [Universidade Estadual da Paraiba, Departamento de Fisica, Campina Grande, Paraiba (Brazil); Serafim, W. [Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, Paraiba (Brazil); Universidade Federal de Alagoas, Instituto de Fisica, Maceio, Alagoas (Brazil)
2014-12-01
In this paper we consider confinement and screening of the electric field. We study the behavior of a static electric field coupled to a dielectric function with the intent of obtaining an electrical confinement similar to what happens with the field of gluons that bind quarks in hadronic matter. For this we use the phenomenon of 'anti-screening' in a medium with exotic dielectric. We show that tachyon matter behaves like in an exotic way whose associated dielectric function modifies the Maxwell equations and affects the fields which results in confining and Coulombian-like potentials in three spatial dimensions. We note that the confining regime coincides with the tachyon condensation, which resembles the effect of confinement due to the condensation of magnetic monopoles. The Coulombian-like regime is developed at large distance, which is associated with a screening phase. (orig.)
Understanding and improving confinement in CNT
Brenner, Paul; Pedersen, Thomas; Sarasola, Xabier; Durand de Gevigney, Benoit; Traverso, Peter
2010-11-01
Confinement studies in the Columbia Non-neutral Torus (CNT) are providing new insights into the physics of pure electron plasmas confined on magnetic surfaces. The confinement of pure electron plasmas has now been measured in the absence of internal objects . These transient plasmas exhibit confinement times that are shorter than expected and have a strong dependence on neutral pressure. Plasmas created by electron emission in one direction have been compared to those created by emission in two directions. The confinement is significantly longer when emitting in only one direction, suggesting that a two-stream instability is present and affects the radial transport rate. Progress on verifying the existence of a two-stream instability will be presented. Experimental results from previously unexplored stellarator configurations, with low shear and large islands will also be shown.
Cell migration in confined environments.
Irimia, Daniel
2014-01-01
We describe a protocol for measuring the speed of human neutrophils migrating through small channels, in conditions of mechanical confinement comparable to those experienced by neutrophils migrating through tissues. In such conditions, we find that neutrophils move persistently, at constant speed for tens of minutes, enabling precise measurements at single cells resolution, for large number of cells. The protocol relies on microfluidic devices with small channels in which a solution of chemoattractant and a suspension of isolated neutrophils are loaded in sequence. The migration of neutrophils can be observed for several hours, starting within minutes after loading the neutrophils in the devices. The protocol is divided into four main steps: the fabrication of the microfluidic devices, the separation of neutrophils from whole blood, the preparation of the assay and cell loading, and the analysis of data. We discuss the practical steps for the implementation of the migration assays in biology labs, the adaptation of the protocols to various cell types, including cancer cells, and the supplementary device features required for precise measurements of directionality and persistence during migration.
Ring polymers in confined geometries
Usatenko, Z; Kuterba, P
2016-01-01
The investigation of a dilute solution of phantom ideal ring polymers and ring polymers with excluded volume interactions (EVI) in a good solvent confined in a slit geometry of two parallel repulsive walls and in a solution of colloidal particles of big size were performed. Taking into account the correspondence between the field theoretical $\\phi^4$ $O(n)$-vector model in the limit $n\\to 0$ and the behavior of long-flexible polymer chains in a good solvent the correspondent depletion interaction potentials, depletion forces and the forces which exert phantom ideal ring and ring polymer chains with EVI on the walls were obtained in the framework of the massive field theory approach at fixed space dimensions d=3 up to one-loop order. Additionally, the investigation of a dilute solution of phantom ideal ring polymers in a slit geometry of two inert walls and mixed walls with one repulsive and other one inert wall were performed and correspondent depletion interaction potentials and the depletion forces were cal...
Transport phenomena in a plasma of confining gluons
Directory of Open Access Journals (Sweden)
Ryblewski Radoslaw
2016-01-01
Full Text Available The plasma of confining gluons resulting from the Gribov quantization is considered. In the fluid dynamical framework the non-equilibrium properties of the system are studied. In the linear response approximation the formulas for the bulk, ζ, and shear, η, viscosities of the plasma are calculated analytically. Surprisingly, the approximate scaling of the ζ/η ratio reveals the strong-coupling properties of the system under consideration.
Rovibrational states of Wigner molecules in spherically symmetric confining potentials
Cioslowski, Jerzy
2016-08-01
The strong-localization limit of three-dimensional Wigner molecules, in which repulsively interacting particles are confined by a weak spherically symmetric potential, is investigated. An explicit prescription for computation of rovibrational wavefunctions and energies that are asymptotically exact at this limit is presented. The prescription is valid for systems with arbitrary angularly-independent interparticle and confining potentials, including those involving Coulombic and screened (i.e., Yukawa/Debye) interactions. The necessary derivations are greatly simplified by explicit constructions of the Eckart frame and the parity-adapted primitive wavefunctions. The performance of the new formalism is illustrated with the three- and four-electron harmonium atoms at their strong-correlation limits. In particular, the involvement of vibrational modes with the E symmetry is readily pinpointed as the origin of the "anomalous" weak-confinement behavior of the 1S+ state of the four-electron species that is absent in its 1D+ companion of the strong-confinement regime.
Theory of self-sustained turbulence in confined plasmas
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi; Yagi, Masatoshi
1996-02-01
This article overviews some aspect of the recent theoretical activities in Japan on the problem of turbulent transport in confined plasmas. The method of self-sustained turbulence is discussed. The process of the renormalization is shown and the turbulent Prandtl number is introduced. Nonlinear destabilization by the electron momentum diffusion is explained. The nonlinear eigenmode equation is derived for the dressed-test-mode for the inhomogeneous plasma in the shear magnetic field. The eigenvalue equation is solved, and the least stable mode determines the anomalous transport coefficient. Formula of thermal conductivity is presented for the system of bad average magnetic curvature (current diffusive interchange mode (CDIM) turbulence) and that for the average good magnetic curvature (current diffusive ballooning mode (CDBM) turbulence). The transport coefficient, scale length of fluctuations and fluctuation level are shown to be the increasing function of the pressure gradient. Verification by use of the nonlinear simulation is shown. The bifurcation of the electric field and improved confinement is addressed, in order to explain the H-mode physics. Improved confinement and the dynamics such as ELMs are explained. Application to the transport analysis of tokamaks is also presented, including the explanations of the L-mode confinement, internal transport barrier as well as the role of current profile control. (author). 102 refs.
Aerofractures in Confined Granular Media
Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.
2015-04-01
We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image
Mobility in geometrically confined membranes.
Domanov, Yegor A; Aimon, Sophie; Toombes, Gilman E S; Renner, Marianne; Quemeneur, François; Triller, Antoine; Turner, Matthew S; Bassereau, Patricia
2011-08-02
Lipid and protein lateral mobility is essential for biological function. Our theoretical understanding of this mobility can be traced to the seminal work of Saffman and Delbrück, who predicted a logarithmic dependence of the protein diffusion coefficient (i) on the inverse of the size of the protein and (ii) on the "membrane size" for membranes of finite size [Saffman P, Delbrück M (1975) Proc Natl Acad Sci USA 72:3111-3113]. Although the experimental proof of the first prediction is a matter of debate, the second has not previously been thought to be experimentally accessible. Here, we construct just such a geometrically confined membrane by forming lipid bilayer nanotubes of controlled radii connected to giant liposomes. We followed the diffusion of individual molecules in the tubular membrane using single particle tracking of quantum dots coupled to lipids or voltage-gated potassium channels KvAP, while changing the membrane tube radius from approximately 250 to 10 nm. We found that both lipid and protein diffusion was slower in tubular membranes with smaller radii. The protein diffusion coefficient decreased as much as 5-fold compared to diffusion on the effectively flat membrane of the giant liposomes. Both lipid and protein diffusion data are consistent with the predictions of a hydrodynamic theory that extends the work of Saffman and Delbrück to cylindrical geometries. This study therefore provides strong experimental support for the ubiquitous Saffman-Delbrück theory and elucidates the role of membrane geometry and size in regulating lateral diffusion.
Toroidal membrane vesicles in spherical confinement
Bouzar, Lila; Müller, Martin Michael
2015-01-01
We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.
Toroidal membrane vesicles in spherical confinement
Bouzar, Lila; Menas, Ferhat; Müller, Martin Michael
2015-09-01
We investigate the morphology of a toroidal fluid membrane vesicle confined inside a spherical container. The equilibrium shapes are assembled in a geometrical phase diagram as a function of scaled area and reduced volume of the membrane. For small area the vesicle can adopt its free form. When increasing the area, the membrane cannot avoid contact and touches the confining sphere along a circular contact line, which extends to a zone of contact for higher area. The elastic energies of the equilibrium shapes are compared to those of their confined counterparts of spherical topology to predict under which conditions a topology change is favored energetically.
New results on structure of low beta confinement Polywell cusps simulated by comsol multiphysics
Mahdavipour, B.; Salar Elahi, A.
The Inertial electrostatic confinement (IEC) is one of the ways for fusion approaches. It is one of the various methods which can be used to confine hot fusion plasma. The advantage of IEC is that the IEC experiments could be done in smaller size facilities than ITER or NIF, costing less money and moving forward faster. In IEC fusion, we need to trap adequate electrons to confine the desired ion density which is needed for a fusion reactor. Polywell is a device which uses the magnetic cusp system and traps the required amount of electrons for fusion reactions. The purpose of this device is to create a virtual cathode in order to achieve nuclear fusion using inertial electrostatic confinement (Miley and Krupakar Murali, 2014). In this paper, we have simulated the low beta Polywell. Then, we examined the effects of coil spacing, coils current, electron injection energy on confinement time.
Local structural ordering in surface-confined liquid crystals
Śliwa, I.; Jeżewski, W.; Zakharov, A. V.
2017-06-01
The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.
Progressive adaptation in physical activity and neuromuscular performance during 520d confinement
National Research Council Canada - National Science Library
Belavý, Daniel L; Gast, Ulf; Daumer, Martin; Fomina, Elena; Rawer, Rainer; Schießl, Hans; Schneider, Stefan; Schubert, Harald; Soaz, Cristina; Felsenberg, Dieter
2013-01-01
To understand whether prolonged confinement results in reductions in physical activity and adaptation in the musculoskeletal system, six subjects were measured during 520 d isolation in the Mars500 study...
Inertial electrostatic confinement I(IEC) neutron sources
Energy Technology Data Exchange (ETDEWEB)
Nebel, R.A.; Barnes, D.C.; Caramana, E.J.; Janssen, R.D.; Nystrom, W.D.; Tiouririne, T.N.; Trent, B.C. [Los Alamos National Lab., NM (United States); Miley, G.H.; Javedani, J. [Illinois Univ., Urbana, IL (United States)
1995-12-01
Inertial Electrostatic Confinement (IEC) is one of the earliest plasma confinement concepts, having first been suggested by P.T. Farnsworth in the 1950s. The concept involves a simple apparatus of concentric spherical electrostatic grids or a combination of grids and magnetic fields. An electrostatic structure is formed from the confluence of electron or ion beams. Gridded IEC systems have demonstrated neutron yields as high as 2*10 [10]. neutrons/sec in steady state. These systems have considerable potential as small, inexpensive, portable neutron sources for assaying applications. Neutron tomography is also a potential application. This paper discusses the IEC concept and how it can be adapted to a steady-state assaying source and an intense pulsed neutron source. Theoretical modeling and experimental results are presented.
Electronic Quantum Confinement in Cylindrical Potential Well
Baltenkov, A S
2016-01-01
The effects of quantum confinement on the momentum distribution of electrons confined within a cylindrical potential well have been analyzed. The motivation is to understand specific features of the momentum distribution of electrons when the electron behavior is completely controlled by the parameters of a non-isotropic potential cavity. It is shown that studying the solutions of the wave equation for an electron confined in a cylindrical potential well offers the possibility to analyze the confinement behavior of an electron executing one- or two-dimensional motion in the three-dimensional space within the framework of the same mathematical model. Some low-lying electronic states with different symmetries have been considered and the corresponding wave functions have been calculated; the behavior of their nodes and their peak positions with respect to the parameters of the cylindrical well has been analyzed. Additionally, the momentum distributions of electrons in these states have been calculated. The limi...
Controlling the Electromagnetic Field Confinement with Metamaterials
Bonache, Jordi; Zamora, Gerard; Paredes, Ferran; Zuffanelli, Simone; Aguilà, Pau; Martín, Ferran
2016-11-01
The definition of a precise illumination region is essential in many applications where the electromagnetic field should be confined in some specific volume. By using conventional structures, it is difficult to achieve an adequate confinement distance (or volume) with negligible levels of radiation leakage beyond it. Although metamaterial structures and metasurfaces are well-known to provide high controllability of their electromagnetic properties, this feature has not yet been applied to solve this problem. We present a method of electromagnetic field confinement based on the generation of evanescent waves by means of metamaterial structures. With this method, the confinement volume can be controlled, namely, it is possible to define a large area with an intense field without radiation leakage. A prototype working in the microwave region has been implemented, and very good agreement between the measurements and the theoretical prediction of field distribution has been obtained.
Theory of Confined Quantum Time of Arrivals
Galapon, E A
2005-01-01
We extend the concept of confined quantum time of arrival operators, first developed for the free particle [E.A. Galapon, R. Caballar, R. Bahague {\\it Phys. Rev. Let.} {\\bf 93} 180406 (2004)], to arbitrary potentials.
Colloidal cholesteric liquid crystal in spherical confinement
Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia
2016-08-01
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.
A Study of Confined Helium Atom
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The helium atom confined by a spherical parabolic potential well is studied employing the adiabatic hyperspherical approach method. Total energies of the ground and three low-excited states are obtained as a function of the confined potential radii. We find that the energies of a spherical parabolic potential well are in good agreement with those of an impenetrable spherical box for the larger confined potential radius. We find also that the confinement may cause accidental degeneracies between levels with different low-excited states and the inversion of the energy values. The results for the three-dimensional spherical potential well and the two-dimensional disc-like potential well are compared with each other. We find that the energy difference between states in a two-dimensional parabolic potential is also obviously larger than the corresponding levels for a spherical parabolic potential.
Consequences of Confinement in Zeolite Acid Catalysis
Gounder, Rajamani Pachayappan
2011-01-01
The catalytic consequences of confinement within zeolite voids were examined for several elimination (alkane cracking and dehydrogenation, alkene cracking, alkanol dehydration) and addition (alkene hydrogenation, alkylation and oligomerization) reactions catalyzed by Brønsted solid acids. These reactions are mediated by cationic transition states that are confined within voids of molecular dimensions (0.4-1.3 nm) and proceed at rates that reflect the Gibbs free energies of late ion-pairs at t...
Comparison between Major Confined and Eruptive Flares
Gopalswamy, N.; Yashiro, S.; Mäkelä, P.; Dennis, B. R.
2012-05-01
Statistical studies have shown that a large fraction of major solar flares (42% M-class and 15% X-class) are not associated with coronal mass ejections (CMEs). The CME-less flares are confined flares as opposed to the eruptive flares associated with CMEs. Confined flares are certainly good particle accelerators as inferred from intense microwave, hard X-ray, and gamma-ray emissions. Note that a single acceleration mechanism operates in confined flares, whereas eruptive flares can have both flare-resident and shock accelerations (the shock acceleration is due to energetic CMEs). In this paper, we report on a statistical study of more than two dozen confined flares with soft X-ray flare size exceeding M5 in comparison with a control sample of eruptive flares with similar soft X-ray flare size. We compare the microwave and X-ray emission characteristics in the two populations; these emissions correspond to sunward energy flow. For a given X-ray flare size, the microwave flux is scattered over a wider range for the eruptive flares when compared to the confined flares. We also compare the metric and longer wavelength radio bursts between the two populations; these emissions correspond to the flow of nonthermal electrons away from the Sun. We find that almost all the confined flares lack metric radio bursts, suggesting that there is very little flow of energy into the interplanetary medium. On the other hand, there is high degree of association between eruptive flares and metric radio bursts. This suggests that in confined flares the accelerated electrons have no access to open magnetic field lines. Finally, we examined the association of EUV waves with the two flare populations. While we find EUV waves in most of the eruptive flares, there was no confined flare with EUV waves. This suggests that CMEs is a necessary condition for the generation of global waves.
Decoupling of Confined Normal 3He
Dimov, S. G.; Bennett, R. G.; Ilic, B.; Verbridge, S. S.; Levitin, L. V.; Fefferman, A. D.; Casey, A.; Saunders, J.; Parpia, J. M.
2010-01-01
Anodic bonding was used to fabricate a 10 mm diameter × 640 nm tall annular geometry suitable for torsion pendulum studies of confined 3He. For pure 3He at saturated vapor pressure the inertia of the confined fluid was seen to be only partially coupled to the pendulum at 160 mK. Below 100 mK the liquid’s inertial contribution was negligible, indicating a complete decoupling of the 3He from the pendulum.
Monopole Condensation and Confinement in SU(2) QCD (1)
Shiba, H; Shiba, Hiroshi; Suzuki, Tsuneo
1993-01-01
An effective monopole action is derived from vacuum configurations after abelian projection in the maximally abelian gauge in $SU(2)$ QCD. Entropy dominance over energy of monopole loops is seen on the renormalized lattice with the spacing $b>b_c\\simeq 5.2\\times10^{-3} \\Lambda_L^{-1}$ when the physical volume of the system is large enough. QCD confinement may be interpreted as the (dual) Meissner effect due to the monopole condensation.
Crowded, Confined, and Frustrated: Dynamics of Molecules Tethered to Nanoparticles
Agarwal, Praveen
2012-12-01
Above a critical chemistry-dependent molecular weight, all polymer molecules entangle and, as a result, exhibit slow dynamics, enhanced viscosity, and elasticity. Herein we report on the dynamics of low molecular weight polymers tethered to nanoparticles and find that even conventionally unentangled chains manifest dynamical features similar to entangled, long-chain molecules. Our findings are shown to imply that crowding and confinement of polymers on particles produce topological constraints analogous to those in entangled systems. © 2012 American Physical Society.
BMP4 density gradient in disk-shaped confinement
Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.
We present a quantitative model that explains the scaling of BMP4 gradients during gastrulation and the recent experimental observation that geometric confinement of human embryonic stem cells is sufficient to recapitulate much of germ layer patterning. Based on a assumption that BMP4 diffusion rate is much smaller than the diffusion rate of it's inhibitor molecules, our results confirm that the length-scale which defines germ layer territories does not depend on system size.
Crowded, confined, and frustrated: dynamics of molecules tethered to nanoparticles.
Agarwal, Praveen; Kim, Sung A; Archer, Lynden A
2012-12-21
Above a critical chemistry-dependent molecular weight, all polymer molecules entangle and, as a result, exhibit slow dynamics, enhanced viscosity, and elasticity. Herein we report on the dynamics of low molecular weight polymers tethered to nanoparticles and find that even conventionally unentangled chains manifest dynamical features similar to entangled, long-chain molecules. Our findings are shown to imply that crowding and confinement of polymers on particles produce topological constraints analogous to those in entangled systems.
Comments on cold neutron confinement by an electromagnetic classical field
Energy Technology Data Exchange (ETDEWEB)
Bruce, S [University of Concepcion, P O Box 160-C, Concepcion (Chile)
2007-02-15
Regarding a recent paper (Bruce S 2006 Phys. Scr. 74 371), we comment on cold neutron confining in a system consisting of an Aharonov-Casher together with a properly set Aharonov-Bohm configuration. We find that, for the supersymmetric ground state, an extra spin-orbit (spin-electromagnetic angular momentum density) term should be present. This effect turns out to modify the phenomenology associated with the anomalous magnetic moment of the neutron.
Structure of polymer chains under confinement
Indian Academy of Sciences (India)
Jyotsana Lal
2008-11-01
We observe by SANS the structure of neutral polystyrene and charged polystyrene sulphonate chains in semi-dilute solutions confined in a model nanoporous glass, Vycor. The size of the free chains in solution is always larger than the pore diameter, 70. The use of a suitable mixture of hydrogenated and deuterated solvents and polymers enables us to measure directly the form factor of one single chain among the others. Single chain form factor was observed both for bulk and confined chains using the condition of zero average contrast. Our measurements on neutral polymer chains are in agreement with the theoretical predictions established by Daoud and de Gennes for chains confined in a cylindrical pore when the chains are entangled and laterally squeezed but remain ideal at large scale along the cylinder axis because of the screening of the excluded volume interactions (so-called regime of ``semi-dilute cigars"). For confined charged polymers, a peak is observed whose intensity increases with molecular weight and the asymptotic 1/ scattering region is extended compared to the bulk. We infer that the chains are sufficiently extended, under the influence of confinement, to highlight the large scale disordered structure of Vycor even under contrast matched conditions. The asymptotic behaviour of the observed interchain structure factor is ≈ 1/2 and ≈ 1/ for free and confined chains respectively.
Confined Space Evaluation Student Manual, #19613
Energy Technology Data Exchange (ETDEWEB)
Wilmot, David Ezekiel [Los Alamos National Laboratory
2016-08-29
Many workplaces contain spaces that are considered to be “confined” because their configuration hinders the activities of employees who must enter into, work in, and exit from them. In general, the permit-required confined spaces (PRCSs) Occupational Safety and Health Administration (OSHA) standard requires that Los Alamos National Laboratory (LANL) evaluate the workplace to determine if any spaces are PRCSs. The standard specifies strict procedures for the evaluation and atmospheric testing of a space before and during an entry by workers. The OSHA PRCS standard provides for alternative (less stringent than full-permit) entry procedures in cases where the only hazard in a space is atmospheric and the hazard can be controlled by forced air. At LANL, all confined spaces or potential confined spaces on LANL-owned or -operated property must be identified and evaluated by a confined space evaluator accompanied by a knowledgeable person. This course provides the information needed by confined space evaluators to make judgements about whether a space is a confined space, and if so, whether the space will require a permit for entry.
Theory of margination in confined multicomponent suspensions
Henriquez Rivera, Rafael; Sinha, Kushal; Graham, Michael
2015-11-01
In blood flow, leukocytes and platelets tend to segregate near the vessel walls; this is known as margination. Margination of leukocytes and platelets is important in physiological processes, medical diagnostics and drug delivery. A mechanistic theory is developed to describe flow-induced segregation in confined multicomponent suspensions of deformable particles such as blood. The theory captures the essential features of margination by describing it in terms of two key competing processes in these systems at low Reynolds number: wall-induced migration and hydrodynamic pair collisions. The theory also includes the effect of physical properties of the deformable particles and molecular diffusion. Several regimes of segregation are identified, depending on the value of a ``margination parameter'' M. Moreover, there is a critical value of M below which a sharp ``drainage transition'' occurs: one component is completely depleted from the bulk flow to the vicinity of the walls. Direct hydrodynamic simulations also display this transition in suspensions where the components differ in size or flexibility. The developed mechanistic theory leads to substantial insight into the origins of margination and will help in guiding development of new technologies involving multicomponent suspensions. This work was supported by NSF grant CBET-1436082.
Density fluctuations and correlations of confined fluids
Varea, C.; Robledo, A.
The density fluctuations about the equilibrium structure of fluids confined by parallel planar walls are analyzed for the cases of identical and symmetrically opposed fields at the walls. We determine the stability matrix (of the second derivatives of the free energy functional with respect to the density) for conditions both above and below the wetting transition temperature Tw of the semi-infinite system and corroborate in all cases that the equilibrium configurations are stable. We identify the fluctuations close to the walls and in the middle of the slab and discuss their effect when the wall separation L diverges. For competing walls above Tw the localized fluctuation with lowest eigenvalue describes the displacements of the incipient wetting films that become unimpeded interfacial translations for L→∞. Below Tw the fluctuations with lowest eigenvalue correspond to stiffer deformations extended across the slab. For identical walls above Tw coexisting states display incipient prewetting films and the lowest eigenvalue describes the nature of their growth as L increases. We also calculate the pair correlation function for the inhomogeneous states and, for symmetrically opposed walls, we obtain standard Ornstein-Zernike (OZ) behavior at the walls, but find significant deviations from this law at the interface-like region in the middle of the slab. To model fluids with short-ranged forces we use a ferromagnetic Ising-type Hamiltonian in mean-field approximation.
Forms of cohesion in confinement institutions
Directory of Open Access Journals (Sweden)
Ekaterina D. Slobodenyuk
2015-12-01
Full Text Available Objective to identify the diversity of cohesion forms in confinement institutions. Methods qualitative analyses based on indepth semistructured interviews. Results the study included adaptation of Western methodologies of the cohesion phenomenon analysis to the Russian reality and operationalization of the moral bases of group cohesion. This served as the bases for designing a guide for indepth semistructured interviews 10 interviews were conducted with people recently released from general and strict regime colonies. Content analysis of the interviews revealed a number of structural sections that demonstrate the diversity of cohesion forms alongside with one that is most meaningful to the prisoners and therefore the most well perceived and articulated by respondents. Analysis of the latter allowed to identify a set of groups showing different degree and nature of cohesion. By the degree of cohesion one can identify the poorly cohesive groups quotloutsquot moderately cohesive quotredsquot quotthievesquot and highly cohesive quotfightersquot. By the nature of cohesion in the prisonersrsquo community there are both groups united on the basis of social morality quotredsquot quotthievesquot and groups demonstrating a high degree of cohesion based on the social justice morality quotfightersquot. A detailed analysis of the latter group also showed that the cohesion can have both traits of morality social justice and features of social order moral. Scientific novelty using the sociopsychological theory of the moral motives in determining the bases of cohesion. Practical significance the research results can be applied for the development of sociopsychological techniques for the penal system reform.
Structure and solvation forces in confined films: Linear and branched alkanes
Energy Technology Data Exchange (ETDEWEB)
Gao, J.; Luedtke, W.D.; Landman, U. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)
1997-03-01
Equilibrium structures, solvation forces, and conformational dynamics of thin confined films of n-hexadecane and squalane are investigated using a new grand canonical ensemble molecular dynamics method for simulations of confined liquids. The method combines constant pressure simulations with a computational cell containing solid surfaces and both bulk and confined liquid regions in equilibrium with each other. Layered density oscillations in the confined films are found for various widths of the confining gap. The solvation force oscillations as a function of the gap width for the straight chain n-hexadecane liquid are more pronounced exhibiting attractive and repulsive regions, while for the branched alkane the solvation forces are mostly repulsive, with the development of shallow local attractive regions for small values of the gap width. Furthermore, the nature of the transitions between well-formed layered configurations is different in the two systems. The n-hexadecane film exhibits solid-like characteristics portrayed by step-like variations in the number of confined segments occurring in response to a small decrease in the gap width, starting from well-layered states of the film; the behavior of the squalane film is liquid-like, exhibiting a monotonic continuous decrease in the number of confined segments as the gap width is decreased. These characteristics are correlated with structural properties of the confined films which, for n-hexadecane, exhibit enhanced layered ordering and in-plane ordered molecular arrangements, as well as with the relatively high tendency for interlayer molecular interdigitation in the squalane films. Reduced conformational (trans-guache) transition rates in the confined films, compared to their bulk values, are found, and their oscillatory dependence on the degree of confinement is analyzed, showing smaller transition rates for the well-formed layered states of the films. {copyright} {ital 1997 American Institute of Physics.}
Phase Transformations in Confined Nanosystems
Energy Technology Data Exchange (ETDEWEB)
Shield, Jeffrey E. [Department of Mechanical & Materials Engineering; Belashchenko, Kirill [Department of Physics & Astronomy
2014-04-29
This project discovered that non-equilibrium structures, including chemically ordered structures not observed in bulk systems, form in isolated nanoscale systems. Further, a generalized model was developed that effectively explained the suppression of equilibrium phase transformations. This thermodynamic model considered the free energy decrease associated with the phase transformation was less than the increase in energy associated with the formation of an interphase interface, therefore inhibiting the phase transformation. A critical diameter exists where the system transitions to bulk behavior, and a generalized equation was formulated that successfully predicted this transition in the Fe-Au system. This provided and explains a new route to novel structures not possible in bulk systems. The structural characterization was accomplished using transmission electron microscopy in collaboration with Matthew Kramer of Ames Laboratory. The PI and graduate student visited Ames Laboratory several times a year to conduct the experiments.
The confined hydrogenoid ion in non-relativistic quantum electrodynamics
Amour, L
2006-01-01
We consider a system of a nucleus with an electron together with the quantized electromagnetic field. Instead of fixing the nucleus, the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke and the M\\"ossbauer effects (see [CTDRG]). When an ultraviolet cut-off is imposed we initiate the spectral analysis of the Hamiltonian describing the system and we derive the existence of a ground state. This is achieved without conditions on the fine structure constant. [CTDRG] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg. Processus d'interaction entre photons et atomes. Edition du CNRS, 2001.
Quark confinement and the fractional quantum Hall effect
Institute of Scientific and Technical Information of China (English)
WANG Hai-Jun; GENG Wen-Tong
2008-01-01
Working in the physics of Wilson factor and Aharonov-Bohm effect,we find in the fluxtubequark system the topology of a baryon consisting of three heavy flavor quarks resembles that of the fractional quantum Hall effect(FQHE)in condensed matter.This similarity yields the result that the constituent quarks of baryon have the"filling factor"1/3.thus the previous conjecture that quark confinement is a correlation effect is confirmed.Moreover,by deriving a Hamiltonian of the system analogous to that of FQHE,we predict an energy gap for the ground state of a heavy three-quark system.
Anomalies in a waterlike model confined between plates
Krott, Leandro Batirolla
2012-01-01
Using molecular dynamic simulations we study a waterlike model confined between two fixed hydrophobic plates. The system is tested for density, diffusion and structural anomalous behavior and compared with the bulk results. Within the range of confining distances we had explored we observe that in the pressure-temperature phase diagram the temperature of maximum density (TMD line), the temperature of maximum and minimum diffusion occur at lower temperatures when compared with the bulk values. For distances between the two layers below a certain threshold ,$d\\le d_c$, only two layers of particles are formed, for $d\\ge d_c$ three or more layers are formed. In the case of three layers the central layer stays liquid while the contact layers crystallize. This result is in agreement with simulations for atomistic models.
Oscillations of a fiber flowing in a confined microchannel
Berthet, Helene; Fermigier, Marc; Daccord, Gerard; Lindner, Anke
2011-11-01
Transport of slender bodies in confined geometries is of interest in various industrial applications. In the oil industry, fibers are widely used for stimulation or to prevent losses into the rock formations. Applications can also be found in biology systems such as targeted drug delivery. We present an experimental and numerical investigation of the flow of an advected fiber in a confined microchannel. The fiber is fabricated in situ using a photo-polymerization method to ensure an excellent control of its geometry and its mechanical properties. When imposing a constant flowrate, we observe that the fiber oscillates continuously between the lateral walls until it exits the channel. We characterize the oscillation period as a function of the flow velocity, the fiber length and channel width. This phenomenon can be used to generate efficient mixing at the microscale.
Defect topologies in chiral liquid crystals confined to mesoscopic channels.
Schlotthauer, Sergej; Skutnik, Robert A; Stieger, Tillmann; Schoen, Martin
2015-05-21
We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system. If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.
Dynamical Flow Arrest in Confined Gravity Driven Flows of Soft Jammed Particles
Chaudhuri, Pinaki; Mansard, Vincent; Colin, Annie; Bocquet, Lyderic
2012-07-01
Using numerical simulations, we study the gravity driven flow of jammed soft disks in confined channels. We demonstrate that confinement results in increasing the yield threshold for the Poiseuille flow, in contrast to the planar Couette flow. By solving a nonlocal flow model for such systems, we show that this effect is due to the correlated dynamics responsible for flow, coupled with the stress heterogeneity imposed for the Poiseuille flow. We also observe that with increasing confinement, the cooperative nature of the flow results in increasing intermittent behavior. Our studies indicate that such features are generic properties of a wide variety of jammed materials.
Charge Transport and Dynamics in Confined Ammonium and Phosphonium-based Ionic Liquids
Harris, Matthew; Cosby, Tyler; Tsunashima, Katsuhiko; Sangoro, Joshua
Charge transport and structural dynamics in a homologous series of ammonium and phosphonium ionic liquids confined in silica nanopores are investigated by broadband dielectric spectroscopy and Fourier transform infrared spectroscopy. The impact of the central atom of the cation on the physicochemical properties as well as the interplay between confinement effects and pore-wall interactions through silica surface silanization are investigated. The results are discussed within the framework of current understanding of confinement effects in ionic liquid systems, especially in comparison to imidazolium-based ionic liquids.
Charge Transport and Dynamics in Confined Phosphonium-based Ionic Liquids
Cosby, Tyler; Tsunashima, Katsuhiko; Sangoro, Joshua
Charge transport and structural dynamics in a homologous series of phosphonium-based ionic liquids confined in silica nanopores are investigated by broadband dielectric spectroscopy and Fourier transform infrared spectroscopy. The impact of alkyl chain length and hydrophobic aggregation on the physicochemical properties as well as the interplay between confinement effects and pore-wall interactions through silica surface silanization are investigated. The results are discussed within the framework of current understanding of confinement effects in ionic liquid systems, especially in comparison to imidazolium-based ionic liquids. NSF DMR Polymers Program.
Canonical pairs, Spatially Confined Motion and the Quantum Time of Arrival Problem
Galapon, E A
2000-01-01
It has always been believed that no self-adjoint and canonical time of arrival operator can be constructed within the confines of standard quantum mechanics. In this Letter we demonstrate the otherwise. We do so by pointing out that there is no a priori reason in demanding that canonical pairs form a system of imprimitivities. We then proceed to show that a class of self-adjoint and canonical time of arrival (TOA) operators can be constructed for a spatially confined free particle. And then discuss the relatiobship between the non-self-adjointess of the TOA operator for the unconfined particle and the self-adjointness of the confined one.
Continuous melting through a hexatic phase in confined bilayer water
Zubeltzu, Jon; Corsetti, Fabiano; Fernández-Serra, M. V.; Artacho, Emilio
2016-06-01
Liquid water is not only of obvious importance but also extremely intriguing, displaying many anomalies that still challenge our understanding of such an a priori simple system. The same is true when looking at nanoconfined water: The liquid between constituents in a cell is confined to such dimensions, and there is already evidence that such water can behave very differently from its bulk counterpart. A striking finding has been reported from computer simulations for two-dimensionally confined water: The liquid displays continuous or discontinuous melting depending on its density. In order to understand this behavior, we have analyzed the melting exhibited by a bilayer of nanoconfined water by means of molecular dynamics simulations. At high density we observe the continuous melting to be related to the phase change of the oxygens only, with the hydrogens remaining liquidlike throughout. Moreover, we find an intermediate hexatic phase for the oxygens between the liquid and a triangular solid ice phase, following the Kosterlitz-Thouless-Halperin-Nelson-Young theory for two-dimensional melting. The liquid itself tends to maintain the local structure of the triangular ice, with its two layers being strongly correlated yet with very slow exchange of matter. The decoupling in the behavior of the oxygens and hydrogens gives rise to a regime in which the complexity of water seems to disappear, resulting in what resembles a simple monoatomic liquid. This intrinsic tendency of our simulated water may be useful for understanding novel behaviors in other confined and interfacial water systems.
Collective oscillations and coupled modes in confined microfluidic droplet arrays
Schiller, Ulf D.; Fleury, Jean-Baptiste; Seemann, Ralf; Gompper, Gerhard
Microfluidic droplets have a wide range of applications ranging from analytic assays in cellular biology to controlled mixing in chemical engineering. Ensembles of microfluidic droplets are interesting model systems for non-equilibrium many-body phenomena. When flowing in a microchannel, trains of droplets can form microfluidic crystals whose dynamics are governed by long-range hydrodynamic interactions and boundary effects. In this contribution, excitation mechanisms for collective waves in dense and confined microfluidic droplet arrays are investigated by experiments and computer simulations. We demonstrate that distinct modes can be excited by creating specific `defect' patterns in flowing droplet trains. While longitudinal modes exhibit a short-lived cascade of pairs of laterally displacing droplets, transversely excited modes form propagating waves that behave like microfluidic phonons. We show that the confinement induces a coupling between longitudinal and transverse modes. We also investigate the life time of the collective oscillations and discuss possible mechanisms for the onset of instabilities. Our results demonstrate that microfluidic phonons can exhibit effects beyond the linear theory, which can be studied particularly well in dense and confined systems. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SE 1118/4.
Axial Vibration Confinement in Nonhomogenous Rods
Directory of Open Access Journals (Sweden)
S. Choura
2005-01-01
Full Text Available A design methodology for the vibration confinement of axial vibrations in nonhomogenous rods is proposed. This is achieved by a proper selection of a set of spatially dependent functions characterizing the rod material and geometric properties. Conditions for selecting such properties are established by constructing positive Lyapunov functions whose derivative with respect to the space variable is negative. It is shown that varying the shape of the rod alone is sufficient to confine the vibratory motion. In such a case, the vibration confinement requires that the eigenfunctions be exponentially decaying functions of space, where the notion of spatial domain stability is introduced as a concept dual to that of the time domain stability. It is also shown that vibration confinement can be produced if the rod density and/or stiffness are varied with respect to the space variable while the cross-section area is kept constant. Several case studies, supporting the developed conditions imposed on the spatially dependent functions for vibration confinement in vibrating rods, are discussed. Because variation in the geometric and material properties might decrease the critical buckling loads, we also discuss the buckling problem.
Exceptional Confinement in G(2) Gauge Theory
Holland, K; Pepé, M; Wiese, U J
2003-01-01
We study theories with the exceptional gauge group G(2). The 14 adjoint "gluons" of a G(2) gauge theory transform as {3}, {3bar} and {8} under the subgroup SU(3), and hence have the color quantum numbers of ordinary quarks, anti-quarks and gluons in QCD. Since G(2) has a trivial center, a "quark" in the {7} representation of G(2) can be screened by "gluons". As a result, in G(2) Yang-Mills theory the string between a pair of static "quarks" can break. In G(2) QCD there is a hybrid consisting of one "quark" and three "gluons". In supersymmetric G(2) Yang-Mills theory with a {14} Majorana "gluino" the chiral symmetry is Z(4)_\\chi. Chiral symmetry breaking gives rise to distinct confined phases separated by confined-confined domain walls. A scalar Higgs field in the {7} representation breaks G(2) to SU(3) and allows us to interpolate between theories with exceptional and ordinary confinement. We also present strong coupling lattice calculations that reveal basic features of G(2) confinement. Just as in QCD, wher...
U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...
U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...
U.S. Geological Survey, Department of the Interior — Digital surfaces and thicknesses of selected hydrogeologic units of the Floridan aquifer system were developed to define an updated hydrogeologic framework as part...
TOPICAL REVIEW: Biopolymer organization upon confinement
Marenduzzo, D.; Micheletti, C.; Orlandini, E.
2010-07-01
Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered.
Density shock waves in confined microswimmers
Tsang, Alan Cheng Hou
2015-01-01
Motile and driven particles confined in microfluidic channels exhibit interesting emergent behavior from propagating density bands to density shock waves. A deeper understanding of the physical mechanisms responsible for these emergent structures is relevant to a number of physical and biomedical applications. Here, we study the formation of density shock waves in the context of an idealized model of microswimmers confined in a narrow channel and subject to a uniform external flow. Interestingly, these density shock waves exhibit a transition from `subsonic' with compression at the back to `supersonic' with compression at the front of the population as the intensity of the external flow increases. This behavior is the result of a non-trivial interplay between hydrodynamic interactions and geometric confinement, and is confirmed by a novel quasilinear wave model that properly captures the dependence of the shock formation on the external flow. These findings can be used to guide the development of novel mechan...
The role of correlation in the ground state energy of confined helium atom
Energy Technology Data Exchange (ETDEWEB)
Aquino, N. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, 09340 México Distrito Federal (Mexico)
2014-01-14
We analyze the ground state energy of helium atom confined by spherical impenetrable walls, and the role of the correlation energy in the total energy. The confinement of an atom in a cavity is one way in which we can model the effect of the external pressure on an atom. The calculations of energy of the system are carried out by the variational method. We find that the correlation energy remains almost constant for a range values of size of the boxes analyzed.
DEFF Research Database (Denmark)
Arneborg, N.; Siegumfeldt, H.; Andersen, G.H.;
2005-01-01
Applying a newly developed user-interactive optical trapping system, we controllably surrounded individual cells of one yeast species, Hanseniaspora uvarum, with viable cells of another yeast species, Saccharomyces cerevisiae, thus creating a confinement of the former. Growth of surrounded and no...... of the latter. This study is the first to demonstrate that confinement is a determinant of growth in a microbial ecosystem. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved....
MOLECULAR AND SUPRAMOLECULAR ORDERING IN CONFINED ENVIRONMENTS
Institute of Scientific and Technical Information of China (English)
Lei Zhu; Stephen Z.D. Cheng; Bret H. Calhoun; Qing Ge; Roderic P. Quirk; Benjamin S. Hsiao; Fengji Yeh
2000-01-01
Crystal and phase morphologies and structures determined by self-organization of crystalline-amorphous diblock copolymers, crystallization of the crystallizable blocks, and vitrification of the amorphous blocks are reviewed through a systematic study on a series of poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymers. On the base of competitions among these three processes, molecular and supramolecular ordering in confined environments can be investigated. In a concentration-fluctuation-induced disordered (DCF) diblock copolymer, the competition between crystallization of the PEO blocks and vitrification of the PS blocks is momtored by time-resolved simultaneous small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD) techniques. In the case of Tc ＜ TgPS-rich, the crystallization of the PEO blocks is observed to be confined within the bicontinuous DCF phase due to the rapid vitrification of the PS-rich phase.Overall crystallization rate, crystal melting behavior, and crystallinity results further confirm the competition between crystallization and vitrification at different temperatures. In an ordered lamellar PEO-b-PS diblock copolymer, the crystallization of the PEO blocks is completely confined within the ordered lamellae due to rapid vitrification of the PS layers as observed by time-resolved SAXS and WAXD experiments. From the combined two-dimensional SAXS and WAXD measurements, the crystal orientation within the confined lamellar geometry is found parallel to the lamellar surface normal when it is isothermally crystallized at 35℃. In an ordered cylindrical PEO-b-PS sample, the crystallization of the PEO blocks is also observed to be confined within the ordered cylinders because of rapid vitrification of the PS matrix. The crystal orientation within the confined cylinders is found perpendicular to the cylinder axis as it is crystallized at 35℃.
BOOK REVIEW: Instabilities in a confined plasma
Glasser, A. H.
1999-05-01
, at least in the USA, to encounter this material first in a course on general relativity, which they might not have taken previously when specializing in plasma physics. While good efforts are made by the author to provide an intuitive understanding of the many analytical results, this is often done with such brevity that a substantial level of maturity is required to comprehend the ideas. Another quote from the preface is, ``The book is based on analytical approaches and should therefore be useful for everybody who is interested in the topic.'' In a field where complex geometry and dynamics and the importance of practical results have required much novel and creative computational work over the past 25 years, there is no mention, no acknowledgment, no hint of its importance. The analytical approach presented here certainly fills an important need, and there is no need for the same work to cover numerical work in depth, but some recognition of the importance of numerical work and its relationship with the analytical side of the theory might have been justified. Despite these shortcomings, this book is a major and welcome addition to the literature on plasma instabilities which I heartily recommend. Contents: 1. Equilibrium of a plasma in toroidal confinement systems; 2. Internal magnetohydrodynamic modes in the cylindrical approximation; 3. Small-scale magnetohydrodynamic instabilities in toroidal confinement systems; 4. Magnetohydrodynamic internal kink modes in toroidal geometry; 5. Magnetohydrodynamic modes in collisionless and neoclassical regimes; 6. Drift-magnetohydrodynamic modes; 7. External kink modes; 8. Alfvén eigenmodes and their interaction with high-energy particles; References; Index.
Cooperative rectification in confined Brownian ratchets.
Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubí, J Miguel
2012-01-01
We analyze the rectified motion of a Brownian particle in a confined environment. We show the emergence of strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic bias of the fluctuations caused by spatial confinement. Net particle transport may develop even in situations where separately the ratchet and the geometric restrictions do not give rise to particle motion. The combined rectification effects can lead to bidirectional transport depending on particle size, resulting in a different route for segregation. The reported mechanism can be used to control transport in mesostructures and nanodevices in which particles move in a reduced space.
Coordinated Water Under Confinement Eases Sliding Friction
Defante, Adrian; Dhopotkar, Nishad; Dhinojwala, Ali
Water is essential to a number of interfacial phenomena such as the lubrication of knee joints, protein folding, mass transport, and adsorption processes. We have used a biaxial friction cell to quantify underwater friction between a hydrophobic elastomeric lens and a hydrophobic self-assembled monolayer in the presence of surfactant solutions. To gain an understanding of the role of water in these processes we have coupled this measurement with surface sensitive sum frequency generation to directly probe the molecular constitution of the confined contact interface. We observe that role of confined coordinated water between two hydrophobic substrates covered with surfactants is the key to obtaining a low coefficient of friction.
Is the spin connection confined or condensed?
Donoghue, John F
2016-01-01
The spin connection enters the theory of gravity as a nonabelian gauge field associated with local Lorentz transformations. Normally it is eliminated from making an extra assumption - that of the metricity of the vierbein field. However, treated by itself with the usual gauge action, it has a negative beta function, implying that it is asymptotically free. I suggest that the spin connection could be confined (or perhaps partially confined) in the same way as other nonabelian gauge fields. This would remove the need to make the extra assumption of metricity, as the spin connection would not be present in the low energy theory, leaving the symmetry to be realized only using metric variables.
Area confined position control of molecular aggregates
Wang, Hong; Wang, Wenchong; Heuer, Andreas; Zhang, Dequin; Fuchs, Harald; Chi, Lifeng
2015-01-01
We report an experimental approach to control the position of molecular aggregates on surfaces by vacuum deposition. The control is accomplished by regulating the molecular density on the surface in a confined area. The diffusing molecules are concentrated at the centre of the confined area, producing a stable cluster when reaching the critical density for nucleation. Mechanistic aspects of that control are obtained from kinetic Monte Carlo simulations. The dimensions of the position can further be controlled by varying the beam flux and the substrate temperature.
Zocco, A.; Plunk, G. G.; Xanthopoulos, P.; Helander, P.
2016-08-01
The effects of a non-axisymmetric (3D) equilibrium magnetic field on the linear ion-temperature-gradient (ITG) driven mode are investigated. We consider the strongly driven, toroidal branch of the instability in a global (on the magnetic surface) setting. Previous studies have focused on particular features of non-axisymmetric systems, such as strong local shear or magnetic ripple, that introduce inhomogeneity in the coordinate along the magnetic field. In contrast, here we include non-axisymmetry explicitly via the dependence of the magnetic drift on the field line label α, i.e., across the magnetic field, but within the magnetic flux surface. We consider the limit where this variation occurs on a scale much larger than that of the ITG mode, and also the case where these scales are similar. Close to axisymmetry, we find that an averaging effect of the magnetic drift on the flux surface causes global (on the surface) stabilization, as compared to the most unstable local mode. In the absence of scale separation, we find destabilization is also possible, but only if a particular resonance occurs between the magnetic drift and the mode, and finite Larmor radius effects are neglected. We discuss the relative importance of surface global effects and known radially global effects.
NSGIC GIS Inventory (aka Ramona) — CONFINED_FEEDING_OPERATIONS_IDEM_IN is a point shapefile that contains confined feeding operation facility locations in Indiana, provided by personnel of Indiana...
Ice-like Behavior of Ultra-Confined Water
Prisk, Timothy; Kolesnikov, Alexander; Mamontov, Eugene; Anovitz, Lawrence
2015-03-01
Water confined within microporous minerals presents an extreme example of fluid confinement, where the water molecule is trapped within cages or pore channels which are not much larger than the water molecule itself. Hemimorphite Zn4Si2O7(OH)2 .H2O is a microporous silicate mineral containing confined molecular water which interacts with the crystal structure by means of hydrogen bonding. The water molecule forms a set of coplanar hydrogen bonds with the hydroxyl groups, forming a system of two-dimensional ice within the pore channel. In this presentation, we report quasi-elastic and inelastic neutron scattering studies of water and hydroxyl proton dynamics within hemimorphite. The scattering data reveal strong anisotropy in the vibrational behavior of the water molecule, with the scissors and stretching normal mode motions occurring only on a single crystallographic plane. The effective density of states of the protons extracted from the scattering data reproduces the water contribution to the mineral's heat capacity. This research conducted at the Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.
Crystallization in Micellar Cores: confinement effects and dynamics
Lund, Reidar; Zinn, Thomas; Willner, Lutz; Department of Chemistry, University of Oslo Team; Forschungszentrum Jülich Collaboration
It is well known that liquids confined to small nanoscopic pores and droplets exhibit thermal behavior very different from bulk samples. Here we demonstrate that n-alkanes forming 2-3 nm small micellar cores are considerably affected by confinement in analogue with hard confined systems. We study micelles form by self-assembly of a series of well-defined n-Alkyl-PEO polymers in aqueous solutions. By using small-angle X-ray scattering (SAXS), densiometry and differential scanning calorimetry (DSC), we show that n-alkane exhibit a first-order phase transition i.e. melting. Correlating the structural and thermodynamic data, we find that a melting depression can be accurately described by the Gibbs-Thomson equation. ∖f1 The effect of core crystallinity on the molecular exchange kinetics is investigated using time-resolved small-angle neutron scattering (TR-SANS). We show that there are considerable entropic and enthalpic contributions from the chain packing that affect the kinetic stability of micelles. ∖pard
Weak confinement in the three-state Potts Field Theory
Rutkevich, Sergei
Kink topological excitations are quite common in one-dimensional quantum ferromagnetic systems with the spontaneously broken discrete symmetry. Application of the external magnetic field h induces the long-range attractive force between kinks leading to their confinement. While in the Ising Field Theory the particle sector in the confinement regime contains only the two-kink bound states (''the mesons''), in the three-state Potts Field Theory (PFT) the three-kink bound states (''the baryons'') can exist as well. In the weak confinement regime, which is realized at small external magnetic fields, the meson masses in the PFT can be determined analytically in the leading order in h by means of the solution of a quantum-mechanical problem for two non-relativistic particles interacting with a linear attractive potential, and my means of the WKB method. The masses of lightest baryons in the three-state PFT were calculated by the numerical solution of a three-particle quantum-mechanical problem. The obtained mass spectra for the PFT mesons and baryons were confirmed recently by Lencés and Takács in numerical calculations based on the truncated conformal space approach.
Understanding nanorheology and surface forces of confined thin films
Huang, Jun; Yan, Bin; Faghihnejad, Ali; Xu, Haolan; Zeng, Hongbo
2014-02-01
Understanding the nanorheology and associated intermolecular/surface forces of fluids in confined geometries or porous media is of both fundamental and practical importance, providing significant insights into various applications such as lubrication and micro/nanoelectromechanical systems. In this work, we briefly reviewed the fundamentals of nanoreheolgy, advances in experimental techniques and theoretical simulation methods, as well as important progress in the nanorheology of confined thin films. The advent of advanced experimental techniques such as surface forces apparatus (SFA), X-ray surface forces apparatus (XSFA) and atomic force microscope (AFM) and computational methods such as molecular dynamics simulations provides powerful tools to study a wide range of rheological phenomena at molecular level and nano scale. One of the most challenging issues unresolved is to elucidate the relationship between the rheological properties and structural evolution of the confined fluid films and particles suspensions. Some of the emerging research areas in the nanorheology field include, but are not limited to, the development of more advanced characterization techniques, design of multifunctional rheological fluids, bio-related nanorheology, and polymer brushes.
Progress toward the creation of magnetically confined pair plasmas
Energy Technology Data Exchange (ETDEWEB)
Saitoh, Haruhiko [Max-Planck-Institut fuer Plasmaphysik (Germany); The University of Tokyo (Japan); Hergenhahn, Uwe; Paschkowski, Norbert; Stanja, Juliane; Stenson, Eve V. [Max-Planck-Institut fuer Plasmaphysik (Germany); Niemann, Holger; Sunn Pedersen, Thomas [Max-Planck-Institut fuer Plasmaphysik (Germany); Ernst-Moritz-Arndt-Universitaet Greifswald (Germany); Stoneking, Matthew R. [Max-Planck-Institut fuer Plasmaphysik (Germany); Lawrence University (United States); Hugenschmidt, Christoph; Piochacz, Christian; Vohburger, Sebastian [Technische Universitaet Muenchen (Germany); Schweikhard, Lutz [Ernst-Moritz-Arndt-Universitaet Greifswald (Germany); Danielson, James R.; Surko, Clifford M. [University of California, San Diego (United States)
2016-07-01
The PAX (Positron Accumulation eXperiment) and APEX (A Positron Electron eXperiment) projects aim to experimentally study the unique wave propagation and stability properties of pair plasmas. We plan to accumulate a large number of positrons in a multicell-type trap system (PAX) and to confine them with electrons in APEX, a levitated dipole or stellarator configuration, operated at the NEPOMUC facility, the world's most intense positron source. In this contribution, we report on recent results from PAX and APEX. We have conducted electron experiments with a 2.3 T Penning-Malmberg trap; confinement for more than 1 hour and observation of a collective mode were demonstrated. At NEPOMUC, we have characterized the positron beam for a wide energy range. In a prototype permanent-magnet dipole trap, efficient (38%) injection of the remoderated 5 eV positron beam was realized using E x B drifts. Based on these results, design studies on the confinement of pair-plasmas in a levitated dipole trap are ongoing.
Multiple patterns of diblock copolymer confined in irregular geometries with soft surface
Li, Ying; Sun, Min-Na; Zhang, Jin-Jun; Pan, Jun-Xing; Guo, Yu-Qi; Wang, Bao-Feng; Wu, Hai-Shun
2015-12-01
The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.
Temporary confinement of loose-housed hyperprolific sows reduces piglet mortality.
Hales, J; Moustsen, V A; Nielsen, M B F; Hansen, C F
2015-08-01
The objective of this study was to investigate piglet mortality in a commercial setting where sows were accommodated in a loose-housed system with an option to confine the sow for a few days around farrowing and during early lactation. The study was conducted in a Danish piggery where records were obtained from 2,139 farrowings. Sows were randomly allocated to 1 of 3 treatments: loose-loose (LL), loose-confined (LC), and confined-confined (CC). In LL, sows were loose housed from the time they entered the farrowing pens to weaning. In LC, sows were loose housed until farrowing was finished and then confined to d 4 after farrowing. In CC, sows were confined at d 114 of gestation to d 4 after farrowing. All sows were loose housed from d 5 to weaning. Total piglet mortality was analyzed at batch level to include piglets fostered by nurse sows and at sow level to analyze the effects of confinement during different time periods. Total piglet mortality was greater in LL (26.0%) and LC (25.4%) compared with CC (22.1%; sows in CC were classified as "low mortality" compared with LL and LC both before ( < 0.001) and after ( = 0.002) litter equalization. The results in this study emphasize that the period of time from the birth of the first piglet to litter equalization is important in relation to piglet mortality. The results also suggest that confinement for 4 d after farrowing can reduce mortality in this specific period, but only confinement from d 114 of gestation to d 4 after farrowing reduced total piglet mortality.
Crystallization features of normal alkanes in confined geometry.
Su, Yunlan; Liu, Guoming; Xie, Baoquan; Fu, Dongsheng; Wang, Dujin
2014-01-21
How polymers crystallize can greatly affect their thermal and mechanical properties, which influence the practical applications of these materials. Polymeric materials, such as block copolymers, graft polymers, and polymer blends, have complex molecular structures. Due to the multiple hierarchical structures and different size domains in polymer systems, confined hard environments for polymer crystallization exist widely in these materials. The confined geometry is closely related to both the phase metastability and lifetime of polymer. This affects the phase miscibility, microphase separation, and crystallization behaviors and determines both the performance of polymer materials and how easily these materials can be processed. Furthermore, the size effect of metastable states needs to be clarified in polymers. However, scientists find it difficult to propose a quantitative formula to describe the transition dynamics of metastable states in these complex systems. Normal alkanes [CnH2n+2, n-alkanes], especially linear saturated hydrocarbons, can provide a well-defined model system for studying the complex crystallization behaviors of polymer materials, surfactants, and lipids. Therefore, a deeper investigation of normal alkane phase behavior in confinement will help scientists to understand the crystalline phase transition and ultimate properties of many polymeric materials, especially polyolefins. In this Account, we provide an in-depth look at the research concerning the confined crystallization behavior of n-alkanes and binary mixtures in microcapsules by our laboratory and others. Since 2006, our group has developed a technique for synthesizing nearly monodispersed n-alkane containing microcapsules with controllable size and surface porous morphology. We applied an in situ polymerization method, using melamine-formaldehyde resin as shell material and nonionic surfactants as emulsifiers. The solid shell of microcapsules can provide a stable three-dimensional (3-D
Confinement and fat-center-vortices model
Deldar, S
2004-01-01
In this paper I review shortly potentials obtained for SU(2), SU(3) and SU(4) static sources from fat-center-vortices model. Results confirm the confinement of quarks in all three gauge groups. Proportionality of string tensions with flux tube counting is better than Casimir scaling especially for SU(4).
Dynamics of Colloids Confined in Microcylinders
Ghosh, Somnath; Wijnperle, Daniël; Mugele, Friedrich Gunther; Duits, Michael H.G.
2016-01-01
We studied both global and local effects of cylindrical confinement on the diffusive behavior of hard sphere (HS) colloids. Using confocal scanning laser microscopy (CSLM) and particle tracking, we measured the mean squared displacement (MSD) of 1 micron sized silica particles in water–glycerol.
Linear and ring polymers in confined geometries
Usatenko, Zoryana; Kuterba, Piotr; Chamati, Hassan; Romeis, Dirk
2017-03-01
A short overview of the theoretical and experimental works on the polymer-colloid mixtures is given. The behaviour of a dilute solution of linear and ring polymers in confined geometries like slit of two parallel walls or in the solution of mesoscopic colloidal particles of big size with different adsorbing or repelling properties in respect to polymers is discussed. Besides, we consider the massive field theory approach in fixed space dimensions d = 3 for the investigation of the interaction between long flexible polymers and mesoscopic colloidal particles of big size and for the calculation of the correspondent depletion interaction potentials and the depletion forces between confining walls. The presented results indicate the interesting and nontrivial behavior of linear and ring polymers in confined geometries and give possibility better to understand the complexity of physical effects arising from confinement and chain topology which plays a significant role in the shaping of individual chromosomes and in the process of their segregation, especially in the case of elongated bacterial cells. The possibility of using linear and ring polymers for production of new types of nano- and micro-electromechanical devices is analyzed.
Confining strings revisited - a short comment
Energy Technology Data Exchange (ETDEWEB)
Botelho, Luiz C.L. [Universidade Federal Rural do Rio de Janeiro, RJ (Brazil). Dept. de Fisica
2000-03-01
We show that Polyakov's confining string Nucl. Phys. B486, (1997) 23, is the author's previously proposed self-avoiding extrinsic strings (Luiz C.L. Botelho), Rev. Bras. Fis. 16, 279, (1986); CALTECH-preprint 68, 1444, (1987); J. Math. Phys. 30 (9), (1989), 2160. (author)
Enhanced heat transfer in confined pool boiling
Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.
2009-01-01
We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found
Computer simulation technology in inertial confinement (ICF)
Energy Technology Data Exchange (ETDEWEB)
Yabe, Takashi (Gunma Univ., Kiryu (Japan). Faculty of Engineering)
1994-12-01
Recent development of computational technologies in inertial confinement fusion (ICF) is reviewed with a special emphasis on hydrodynamic simulations. The CIP method developed for ICF simulations is one of the typical examples that are used in various fields of physics such as variety of computational fluid dynamics, astrophysics, laser applications, geophysics, and so on. (author).
Analysis of thermally-degrading, confined HMX
Energy Technology Data Exchange (ETDEWEB)
Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.
1996-12-01
The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.
Probing the properties of confined liquids
de Beer, Sissi Jacoba Adrianus
2011-01-01
In this thesis we describe Atomic Force Microscopy (AFM) measurements and Molecular Dynamics (MD) simulation of the static and dynamic properties of layered liquids confined between two solid surfaces. Liquid molecules in the proximity of a solid surface assemble into layers. When a fluid is
Enhanced heat transfer in confined pool boiling
Rops, C.M.; Lindken, R.; Velthuis, J.F.M.; Westerweel, J.
2009-01-01
We report the results of an experimental investigation of the heat transfer during nucleate boiling on a spatially confined boiling surface. The heat flux as a function of the boiling surface temperature was measured in pool boiling pots with diameters ranging from 15 mm down to 4.5 mm. It was found
On condensation of topological defects and confinement
Gaete, P; Gaete, Patricio; Wotzasek, Clovis
2004-01-01
We study the static quantum potential for a theory of anti-symmetric tensor fields that results from the condensation of topological defects, within the framework of the gauge-invariant but path-dependent variables formalism. Our calculations show that the interaction energy is the sum of a Yukawa and a linear potentials, leading to the confinement of static probe charges.
Modulus-Pressure Equation for Confined Fluids
Gor, Gennady Y; Shen, Vincent K; Bernstein, Noam
2016-01-01
Ultrasonic experiments allow one to measure the elastic modulus of bulk solid or fluid samples. Recently such experiments have been carried out on fluid-saturated nanoporous glass to probe the modulus of a confined fluid. In our previous work [J. Chem. Phys., (2015) 143, 194506], using Monte Carlo simulations we showed that the elastic modulus $K$ of a fluid confined in a mesopore is a function of the pore size. Here we focus on modulus-pressure dependence $K(P)$, which is linear for bulk materials, a relation known as the Tait-Murnaghan equation. Using transition-matrix Monte Carlo simulations we calculated the elastic modulus of bulk argon as a function of pressure and argon confined in silica mesopores as a function of Laplace pressure. Our calculations show that while the elastic modulus is strongly affected by confinement and temperature, the slope of the modulus versus pressure is not. Moreover, the calculated slope is in a good agreement with the reference data for bulk argon and experimental data for ...
Chiral effects in the confining QCD vacuum
Simonov, Yu A
1994-01-01
Configurations are introduced into the standard instanton vacuum model. This drastically improves theoretical properties of the vacuum: instanton size density $d(\\rho)$ stabilizes at $\\rho\\sim 0.2 fm$, all chiral effects are formulated in a gauge-invariant way and quarks are confined. An interesting interplay of chiral and confining dynamics is observed; for the realistic values of parameters the Georgi-Manohar picture emerges with chiral radius $R_{ch}\\sim \\rho\\sim 0.2 fm$ much less than confining radius $R_c\\sim$ hadron radius $\\sim 1 fm$. In the limit $R_{ch}\\ll R_c$ the chiral mass $M_{ch}(p)$ is unaffected by confinement and can be taken in the local limit $M_{ch}(p=0)$. Different types of effective chiral Lagrangians (ECL) are obtained, containing all or a part of gluon, quark and Nambu--Goldstone--meson fields. The ECL are manifestly gauge--invariant and in the limit of no gluon fields coincide with those found previously. The problem of the double role of the pion -- as a Goldstone meson or as a $q\\ba...
Signatures of confinement in Landau gauge QCD
Pawlowski, J M; Nedelko, S; Von Schmekal, L
2005-01-01
We summarise an analysis of the infrared regime of Landau gauge QCD by means of a flow equation approach. The infrared behaviour of gluon and ghost propagators is evaluated. The results provide further evidence for the Kugo-Ojima confinement scenario. We also discuss their relation to results obtained with other functional methods as well as the lattice.
Subwavelength light confinement with surface plasmon polaritons
Verhagen, E.
2009-01-01
In free space, the diffraction limit sets a lower bound to the size to which light can be confined. Surface plasmon polaritons (SPPs), which are electromagnetic waves bound to the interface between a metal and a dielectric, allow the control of light on subwavelength length scales. This opens up a r
Non-resonant Nanoscale Extreme Light Confinement
Energy Technology Data Exchange (ETDEWEB)
Subramania, Ganapathi Subramanian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Huber, Dale L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2014-09-01
A wide spectrum of photonics activities Sandia is engaged in such as solid state lighting, photovoltaics, infrared imaging and sensing, quantum sources, rely on nanoscale or ultrasubwavelength light-matter interactions (LMI). The fundamental understanding in confining electromagnetic power and enhancing electric fields into ever smaller volumes is key to creating next generation devices for these programs. The prevailing view is that a resonant interaction (e.g. in microcavities or surface-plasmon polaritions) is necessary to achieve the necessary light confinement for absorption or emission enhancement. Here we propose new paradigm that is non-resonant and therefore broadband and can achieve light confinement and field enhancement in extremely small areas [~(λ/500)^2 ]. The proposal is based on a theoretical work[1] performed at Sandia. The paradigm structure consists of a periodic arrangement of connected small and large rectangular slits etched into a metal film named double-groove (DG) structure. The degree of electric field enhancement and power confinement can be controlled by the geometry of the structure. The key operational principle is attributed to quasistatic response of the metal electrons to the incoming electromagnetic field that enables non-resonant broadband behavior. For this exploratory LDRD we have fabricated some test double groove structures to enable verification of quasistatic electronic response in the mid IR through IR optical spectroscopy. We have addressed some processing challenges in DG structure fabrication to enable future design of complex sensor and detector geometries that can utilize its non-resonant field enhancement capabilities.].
Confined Chemical Etching for Electrochemical Machining with Nanoscale Accuracy.
Zhan, Dongping; Han, Lianhuan; Zhang, Jie; Shi, Kang; Zhou, Jian-Zhang; Tian, Zhao-Wu; Tian, Zhong-Qun
2016-11-15
In the past several decades, electrochemical machining (ECM) has enjoyed the reputation of a powerful technique in the manufacturing industry. Conventional ECM methods can be classified as electrolytic machining and electroforming: the former is based on anodic dissolution and the latter is based on cathodic deposition of metallic materials. Strikingly, ECM possesses several advantages over mechanical machining, such as high removal rate, the capability of making complex three-dimensional structures, and the practicability for difficult-to-cut materials. Additionally, ECM avoids tool wear and thermal or mechanical stress on machining surfaces. Thus, ECM is widely used for various industrial applications in the fields of aerospace, automobiles, electronics, etc. Nowadays, miniaturization and integration of functional components are becoming significant in ultralarge scale integration (ULSI) circuits, microelectromechanical systems (MEMS), and miniaturized total analysis systems (μ-TAS). As predicted by Moore's law, the feature size of interconnectors in ULSI circuits are down to several nanometers. In this Account, we present our perseverant research in the last two decades on how to "confine" the ECM processes to occur at micrometer or even nanometer scale, that is, to ensure ECM with nanoscale accuracy. We have been developing the confined etchant layer technique (CELT) to fabricate three-dimensional micro- and nanostructures (3D-MNS) on different metals and semiconductor materials since 1992. In general, there are three procedures in CELT: (1) generating the etchant on the surface of the tool electrode by electrochemical or photoelectrochemical reactions; (2) confining the etchant in a depleted layer with a thickness of micro- or nanometer scale; (3) feeding the tool electrode to etch the workpiece. Scavengers, which can react with the etchant, are usually adopted to form a confined etchant layer. Through the subsequent homogeneous reaction between the scavenger
Vortex sound in confined flows
Hofmans, Gerardus Carolus Johannus
The interaction of vortex structures with the acoustic velocity field is prerequisite for the production or absorption of acoustic energy. When the source region in which this interaction occurs is much smaller than the wavelength of the acoustic wave, it is possible to neglect wave propagation in the source region itself. Such a source region is called 'compact' and it results in a simplified description of the acoustic source. We have restricted ourselves to compact source regions. Three relevant applications have been studied: speech modelling, damping of acoustic waves by means of diaphragms, and the prediction of flow-induced resonances in bifurcated pipe systems with T-shaped junctions. Experimental as well as numerical work has been carried out for rigid in vitro models of the vocal folds. It was found that it is possible to use a simplified quasi- steady model, which describes the boundary-layer flow in the glottis, to reasonably predict the separation point during a part of one cycle of the vocal-fold movement. This results in a reasonable prediction of the source of sound in voiced speech. Furthermore, it was found that the instability of the jet, that is formed downstream of the glottis, can be a significant source of broad-band sound. A diaphragm used as a constriction in a pipe is a common element in mufflers. This configuration is investigated theoretically, numerically, and experimentally. Results of the quasi-steady flow model and of the numerical calculations are in good agreement with results of experiments. Theory also correctly describes the limit of high frequencies. For the intermediate frequencies we found some deviation between theory and experiments, which is not yet fully understood. The flow through T-joints, with sharp edges, has been numerically investigated as a function of the acoustic amplitude, the Strouhal number, and the flow configuration. In the limit of low frequencies the acoustic source in a T-joint can be described by means
Gârlea, Ioana C.; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G. A. L.; Lettinga, M. Pavlik; Koenderink, Gijsje H.; Mulder, Bela M.
2016-06-01
When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.
Vyboishchikov, Sergei F
2016-12-05
We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be(2+) , and Ne atoms. The variation of the correlation energy with the confinement radius Rc is relatively small for the He, Be(2+) , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small Rc . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing Rc . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small Rc . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Structure, thermodynamic properties, and phase diagrams of few colloids confined in a spherical pore
Paganini, Iván E.; Pastorino, Claudio; Urrutia, Ignacio
2015-06-01
We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.
Paganini, Iván E; Pastorino, Claudio; Urrutia, Ignacio
2015-06-28
We study a system of few colloids confined in a small spherical cavity with event driven molecular dynamics simulations in the canonical ensemble. The colloidal particles interact through a short range square-well potential that takes into account the basic elements of attraction and excluded-volume repulsion of the interaction among colloids. We analyze the structural and thermodynamic properties of this few-body confined system in the framework of inhomogeneous fluids theory. Pair correlation function and density profile are used to determine the structure and the spatial characteristics of the system. Pressure on the walls, internal energy, and surface quantities such as surface tension and adsorption are also analyzed for a wide range of densities and temperatures. We have characterized systems from 2 to 6 confined particles, identifying distinctive qualitative behavior over the thermodynamic plane T - ρ, in a few-particle equivalent to phase diagrams of macroscopic systems. Applying the extended law of corresponding states, the square well interaction is mapped to the Asakura-Oosawa model for colloid-polymer mixtures. We link explicitly the temperature of the confined square-well fluid to the equivalent packing fraction of polymers in the Asakura-Oosawa model. Using this approach, we study the confined system of few colloids in a colloid-polymer mixture.
Threshold power and energy confinement for ITER
Energy Technology Data Exchange (ETDEWEB)
Takizuka, T.
1996-12-31
In order to predict the threshold power for L-H transition and the energy confinement performance in ITER, assembling of database and analyses of them have been progressed. The ITER Threshold Database includes data from 10 divertor tokamaks. Investigation of the database gives a scaling of the threshold power of the form P{sub thr} {proportional_to} B{sub t} n{sub e}{sup 0.75} R{sup 2} {times} (n{sub e} R{sup 2}){sup +-0.25}, which predicts P{sub thr} = 100 {times} 2{sup 0{+-}1} MW for ITER at n{sub e} = 5 {times} 10{sup 19} m{sup {minus}3}. The ITER L-mode Confinement Database has also been expanded by data from 14 tokamaks. A scaling of the thermal energy confinement time in L-mode and ohmic phases is obtained; {tau}{sub th} {approximately} I{sub p} R{sup 1.8} n{sub e}{sup 0.4{sub P{sup {minus}0.73}}}. At the ITER parameter, it becomes about 2.2 sec. For the ignition in ITER, more than 2.5 times of improvement will be required from the L-mode. The ITER H-mode Confinement Database is expanded from data of 6 tokamaks to data of 11 tokamaks. A {tau}{sub th} scaling for ELMy H-mode obtained by a standard regression analysis predicts the ITER confinement time of {tau}{sub th} = 6 {times} (1 {+-} 0.3) sec. The degradation of {tau}{sub th} with increasing n{sub e} R{sup 2} (or decreasing {rho}{sub *}) is not found for ELMy H-mode. An offset linear law scaling with a dimensionally correct form also predicts nearly the same {tau}{sub th} value.
Existence of a ground state for the confined hydrogen atom in non-relativistic QED
DEFF Research Database (Denmark)
Amour, Laurent; Faupin, Jeremy
2008-01-01
We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review of the literat......We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review...
Suganuma, H.; Fukushima, M.; Toki, H.
The Table of Contents for the book is as follows: * Preface * Opening Address * Monopole Condensation and Quark Confinement * Dual QCD, Effective String Theory, and Regge Trajectories * Abelian Dominance and Monopole Condensation * Non-Abelian Stokes Theorem and Quark Confinement in QCD * Infrared Region of QCD and Confining Configurations * BRS Quartet Mechanism for Color Confinement * Color Confinement and Quartet Mechanism * Numerical Tests of the Kugo-Ojima Color Confinement Criterion * Monopoles and Confinement in Lattice QCD * SU(2) Lattice Gauge Theory at T > 0 in a Finite Box with Fixed Holonomy * Confining and Dirac Strings in Gluodynamics * Cooling, Monopoles, and Vortices in SU(2) Lattice Gauge Theory * Quark Confinement Physics from Lattice QCD * An (Almost) Perfect Lattice Action for SU(2) and SU(3) Gluodynamics * Vortices and Confinement in Lattice QCD * P-Vortices, Nexuses and Effects of Gribov Copies in the Center Gauges * Laplacian Center Vortices * Center Vortices at Strong Couplings and All Couplings * Simulations in SO(3) × Z(2) Lattice Gauge Theory * Exciting a Vortex - the Cost of Confinement * Instantons in QCD * Deformation of Instanton in External Color Fields * Field Strength Correlators in the Instanton Liquid * Instanton and Meron Physics in Lattice QCD * The Dual Ginzburg-Landau Theory for Confinement and the Role of Instantons * Lattice QCD for Quarks, Gluons and Hadrons * Hadronic Spectral Functions in QCD * Universality and Chaos in Quantum Field Theories * Lattice QCD Study of Three Quark Potential * Probing the QCD Vacuum with Flavour Singlet Objects : η' on the Lattice * Lattice Studies of Quarks and Gluons * Quarks and Hadrons in QCD * Supersymmetric Nonlinear Sigma Models * Chiral Transition and Baryon-number Susceptibility * Light Quark Masses in QCD * Chiral Symmetry of Baryons and Baryon Resonances * Confinement and Bound States in QCD * Parallel Session * Off-diagonal Gluon Mass Generation and Strong Randomness of Off
Numerical study of a confined slot impinging jet with nanofluids.
Manca, Oronzio; Mesolella, Paolo; Nardini, Sergio; Ricci, Daniele
2011-03-01
Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the values calculated in the case of
Numerical study of a confined slot impinging jet with nanofluids
Directory of Open Access Journals (Sweden)
Manca Oronzio
2011-01-01
Full Text Available Abstract Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4
Is there action-at-a-distance linear confinement
Energy Technology Data Exchange (ETDEWEB)
Weiss, J.
1986-04-01
The possilibity of constructing an action-at-a-distance form of linear confinement is demonstrated. Using the Fokker--Wheeler--Feynman action principle, known from classical action-at-a-distance electrodynamics, with an action containing the relativistically invariant two-particle Heaviside step function, equations of motion and appropriate potentials exhibiting the linearity of their behavior are derived. The plausibility of the generators of motion describing dynamics with the linear potentials is verified on the simple circular-orbit model of a two-component system, and the expected energy spectrum in terms of semiclassical quantization is obtained.
Entropy dominated behaviors of confined polymer-nanoparticle composites
Institute of Scientific and Technical Information of China (English)
Cao Xue-Zheng; Merlitz Holger; Sommer Jens-Uwe; Wu Chen-Xu
2012-01-01
Stretched polymers will lose their possible configurations if they are mixed with nanoparticles or touch a hard wall,which leads to a strong depletion attraction responsible for the enrichment of nanoparticles near substrates.Moreover,it is found that there exists a sacrifice mechanism in confined pure polymer samples or polymer-nanoparticle mixtures,that part of the polymers,in order to reach a minimum free energy for the total system,are adsorbed on hard walls even though they lose their conformation.The current study provides a simple yet effective approach for the design of thin polymer composites.
Confined disordered strictly jammed binary sphere packings
Chen, D.; Torquato, S.
2015-12-01
Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these
DNA Confined in Nanochannels and Nanoslits
Tree, Douglas R.
It has become increasingly apparent in recent years that next-generation sequencing (NGS) has a blind spot for large scale genomic variation, which is crucial for understanding the genotype-phenotype relationship. Genomic mapping methods attempt to overcome the weakesses of NGS by providing a coarse-grained map of the distances between restriction sites to aid in sequence assembly. From such methods, one hopes to realize fast and inexpensive de novo sequencing of human and plant genomes. One of the most promising methods for genomic mapping involves placing DNA inside a device only a few dozen nanometers wide called a nanochannel. A nanochannel stretches the DNA so that the distance between fluorescently labeled restriction sites can be measured en route to obtaining an accurate genome map. Unfortunately for those who wish to design devices, the physics of how DNA stretches when confined in a nanochannel is still an active area of research. Indeed, despite decades old theories from polymer physics regarding weakly and strongly stretched polymers, seminal experiments in the mid-2000s have gone unexplained until very recently. With a goal of creating a realistic engineering model of DNA in nanochannels, this dissertation addresses a number of important outstanding research topics in this area. We first discuss the physics of dilute solutions of DNA in free solution, which show distinctive behavior due to the stiff nature of the polymer. We then turn our attention to the equilibrium regimes of confined DNA and explore the effects of stiff chains and weak excluded volume on the confinement free energy and polymer extension. We also examine dynamic properties such as the diffusion coefficient and the characteristic relaxation time. Finally, we discuss a sister problem related to DNA confined in nanoslits, which shares much of the same physics as DNA confined in channels. Having done this, we find ourselves with a well-parameterized wormlike chain model that is
A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory
Barnhart, Paul J.
1996-01-01
A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.
Non-axisymmetric accretion on the classical TTS RW Aur A
Petrov, P P; Gameiro, J F; Duemmler, R; Ilyin, I V; Laakkonen, T; Lago, M T V T; Tuominen, I
2001-01-01
(Abridged) High-resolution spectroscopic monitoring of RW Aur A was carried out in 1996, 1998 and 1999 with simultaneous B, V photometry. A multicomponent spectrum is revealed with a veiled photospheric spectrum, broad emissions, narrow emission lines of helium, and accretion, wind and shell features. Periodic modulations in many spectral features were found. The photospheric absorption lines show sinusoidal variations in radial velocity with an amplitude of +-6 km/s and a period of about 2.77 days. The radial velocities of the narrow emission lines of He vary with the same period but in anti-phase to the photospheric lines. The equivalent widths of the narrow emissions vary with a phase-shift with respect to the velocity curve. The strength of the red-shifted accretion components of Na D and other lines is also modulated with the same period. The broad emission lines of metals vary mostly with the double period of about 5.5 days. One unexpected result is that no correlation was found between the veiling and ...
Non Axisymmetric Relativistic Wind Accretion with Velocity Gradients onto a Rotating Black Hole
Cruz-Osorio, A
2016-01-01
We model, for the first time, the Bondi-Hoyle accretion of a fluid with velocity gradients onto a Kerr black hole, by numerically solving the fully relativistic hydrodynamics equations. Specifically, we consider a supersonic ideal gas, which has velocity gradients perpendicular to the relative motion. We measure the mass and specific angular accretion rates to illustrate whether the fluid presents unstable patterns or not. The initial parameters, we consider in this work, are the velocity gradient $\\epsilon_{v}$, the black hole spin $a$, the asymptotic Mach number ${\\cal M}_{\\infty}$ and adiabatic index $\\Gamma$. We show that the flow accretion reaches a fairly stationary regime, unlike in the Newtonian case, where significant fluctuations of the mass and angular momentum accretion rates are found. On the other hand, we consider a special case where both density and velocity gradients of the fluid are taken into account. The spin of the black hole and the asymptotic Newtonian Mach number, for this case, are $...
The 3-D non-axisymmetrical Lamb's problem in transversely isotropic saturated poroelastic media
Institute of Scientific and Technical Information of China (English)
HUANG; Yi; WANG; Xiaogang
2004-01-01
Based on Biot's theory on fluid-saturated porous media, the displacement functions are adopted to convert the 3-D Biot's wave equations in the cylindrical coordinate for transversely isotropic saturated poroelastic media into two--one 6-order and one 2-order--uncoupling differential governing equations. Then, the differential equations are solved by the Fourier expanding and Hankel integral transform method.Integral solutions of soil skeleton displacements and pore pressure as well as the total stresses for poroelastic media are obtained. Furthermore, the systematic study on Lamb's problems for the transversely isotropic saturated poroelastic media is performed. Integral solutions for surface radial, vertical and circumferential displacements are obtained in both cases of drained surface and undrained surface under the vertical and horizontal harmonic excitation force. In the end of this paper, the numerical examples are presented.The calculation results indicate that the difference between the model of isotropic saturated poroelastic media and that of transversely isotropic saturated poroelastic media is obvious.
Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current
Energy Technology Data Exchange (ETDEWEB)
Mollén, A., E-mail: albertm@chalmers.se [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden); Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Landreman, M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Smith, H. M.; Helander, P. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); Braun, S. [Max-Planck-Institut für Plasmaphysik, 17491 Greifswald (Germany); German Aerospace Center, Institute of Engineering Thermodynamics, Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)
2015-11-15
Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21, 042503 (2014)] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/ν-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We also use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z{sub eff} of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.
Impurities in a non-axisymmetric plasma: transport and effect on bootstrap current
Mollén, Albert; Smith, Håkan M; Braun, Stefanie; Helander, Per
2015-01-01
Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014) 042503] which employs the full linearized Fokker-Planck operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. In intermediate and high collisionality regimes, a momentum conserving collision operator is critical to correctly determine the impurity transport coefficients, and a simple pitch-angle scattering approximation can lead to transport predictions in the wrong direction. In the low collisionality regime pitch-angle scattering is sufficient to accurately describe impuri...
Energy Technology Data Exchange (ETDEWEB)
Spirkl, W.; Timinger, A.; Muschaweck, J. [Ludwig-Maximilians-Universitaet, Munich (Germany). Sektion Physik; Ries, H. [Paul Scherrer Institute, Villigen (Switzerland); Kribus, A. [Weizmann Institute of Science, Rehovot (Israel). Environmental Sciences and Energy Research Dept.
1998-07-01
In solar tower plants, where a rotationally symmetric field of heliostats surrounds the tower, an axisymmetric secondary concentrator such as a compound parabolic concentrator (CPC) or a tailored concentrator or a cone is the obvious choice. For locations at higher latitudes, however, the reflecting area of the heliostats may be used more efficiently if the field of heliostats is located opposite to the sun as seen from the tower. Then the field is asymmetric with regard to the tower. In the case of an asymmetric field, an axisymmetric concentrator necessarily has a concentration significantly lower than the upper limit. Furthermore, the area on the ground from which a tilted axisymmetric concentrator accepts radiation is an ellipse, including also heliostats very distant to the tower producing a large image of the sun. For these reasons we investigate asymmetric secondaries. From the shape of the edge ray reflectors constructed for rays in the central south-north plane we conclude that a skew cone reflector might be appropriate for the field, and optimize its free parameters by means of ray tracing. Asymmetric concentrators may increase the concentration by up to 25% at the same efficiency compared to optimized axisymmetric CPC or cone reflectors. (author)
MECHANISM RESEARCH FOR 3D NON-AXISYMMETRIC THIN-WALL TUBE OFFSET SPINNING
Institute of Scientific and Technical Information of China (English)
KUANG Weihua; XIA Qinxiang; RUAN Feng
2006-01-01
Difference of offset spinning with conventional symmetric spinning is analyzed. A 3D FEM model for offset tube neck-spinning is established and the spinning process is simulated by means of ANSYS software. Dynamic boundary and contact problems in simulation are solved. Transient stress distribution of contact area, transient strain distribution of nodes in typical section and strain distribution of the workpiece at last are attained, the place and the cause of crack are analyzed.Strain variation curves with time of offset spinning and conventional spinning are compared. It shows the mechanism difference between offset spinning and conventional spinning. In addition, simulation results show how strain distribution of typical section, thickness of some typical nodes, axial extension in left section and force of three rollers change with time. According to the study of the variation curve, material flow law along radial, tangential and axial direction is attained and the whole spinning process is studied. The simulation results discover that offset distance is the key to manufacture offset non-symmetric tube, and process parameters change with spinning angle. Experiment data really reflect different process parameters' influence on conventional symmetric and offset spinning force.Experiments accord well with simulation.
Non-Axisymmetric Disruption SOL Current Measurement In DIII-D Plasmas
Cabrera, Joshua; Hanson, J.; Navratil, G.; Bialek, J.
2016-10-01
J. Cabrera, J. Hanson, G. Navratil, J. Bialek, Columbia U-During tokamak disruptions known as vertical displacement events (VDEs) currents which flow between the plasma core and plasma facing components can reach nearly 20% of the total plasma current. These scrape off layer (SOL) currents are thought to affect the dynamics of plasma disruption. We have made use of an array of tile current monitors installed on the DIII-D tokamak to perform low toroidal mode number (n VDEs. In all cases examined (over 30 shots) currents exhibited toroidal asymmetry with toroidal peaking factor 2. Strong initial peaking in n=1 current measurements are correlated with n=1 magnetic fluctuations during VDEs. Following the peak SOL current and after observation of the final last closed flux surface (LCFS), n=1 mode activity 20% of n=0 peak amplitude persists for 10ms. Predictions from the VALEN-IVB simulation code utilizing current profile reconstructions from magnetic sensor array measurements will be compared with SOL current measurements. Possible effects of these SOL currents on plasma dynamics during disruption are considered. Supported by US DOE under DE-FC02-04ER54698 and DE-FG02-04ER54761.
Development of non-axisymmetric structures during MHD disruptions in tokamak plasmas
Paccagnella, Roberto; Strauss, H. R.; Breslau, Joshua
2009-11-01
Recently the problem of 3D simulations of vertical displacement events (VDEs) and disruptions in tokamak plasmas has been addressed [R.Paccagnella, H. Strauss, J. Breslau, Nucl. Fusion 49 (2009) 035003] by using the M3D code, in the relatively ``benign'' cases where the on-axis q is above 1 and vertical plasma movement is mainly driven by a resistive wall mode (RWM) on the time scale of the magnetic field penetration of the conducting wall. In this paper we extend the previous simulations to cases in which the on-axis q is below 1 and the driving mode is an external resistive kink able to drive a reconnection process in the central plasma region. In these cases the disruptions are faster and evolve on the Alfv'en time scale. Amplitudes and asymmetries of the halo currents and forces at the wall are calculated in both cases. Comparisons with tokamak experimental data and predictions for ITER are also given.
Experimental investigation into the unsteady effects on non-axisymmetric turbine endwall contouring
CSIR Research Space (South Africa)
Dunn, Dwain I
2010-01-01
Full Text Available angle from the design rotor exit yaw angle was reduced. Furthermore it was found that the passage vortex of the contoured rotor was not as tightly wrapped around the horse shoe vortices as the annular rotor passage vortex. Due to the passage vortex being...
CSIR Research Space (South Africa)
Dunn, Dwain I
2011-08-01
Full Text Available oscillations. Thus there could be a greater advantage to contouring blade rows downstream to the first rotor; however this remains to be investigated. It was found that the computed efficiencies of the unsteady and the steady state analysis were different...
Influences of Inflow Condition on Non-Axisymmetric Flows in Turbine Exhaust Hoods
Institute of Scientific and Technical Information of China (English)
JingLun FU; JianJun LIU
2008-01-01
The complex 3D flow in a steam turbine exhaust hood model with different inlet swirl and inlet total pressure ra-dial distributions has been simulated by employing CFX-5 and analyzed in this paper. It's found that the inlet tangential flow angle at hub has a negative effect on the exhaust hood performance, while a negative gradient of inlet total pressure radial distribution has a positive impact on the hood performances. It's also numerically con-firmed that a proper distribution of total pressure at hood inlet can successfully eliminate the negative effects caused by the inappropriate inlet swirl distribution and improve the hood aerodynamic performance.
Gaps, rings, and non-axisymmetric structures in protoplanetary disks - Emission from large grains
Ruge, J P; Wolf, S; Dzyurkevich, N; Fromang, S; Henning, Th; Klahr, H; Meheut, H
2016-01-01
Dust grains with sizes around (sub)mm are expected to couple only weakly to the gas motion in regions beyond 10 au of circumstellar disks. In this work, we investigate the influence of the spatial distribution of such grains on the (sub)mm appearance of magnetized protoplanetary disks. We perform non-ideal global 3D magneto-hydrodynamic stratified disk simulations including particles of different sizes (50 micron to 1 cm), using a Lagrangian particle solver. We calculate the spatial dust temperature distribution, including the dynamically coupled submicron-sized dust grains, and derive ideal continuum re-emission maps of the disk through radiative transfer simulations. Finally, we investigate the feasibility to observe specific structures in the thermal re-emission maps with the Atacama Large Millimeter/submillimeter Array (ALMA). The pressure bump close to the outer edge of the dead-zone leads to particle trapping in ring structures. More specifically, vortices in the disk concentrate the dust and create an ...
Demixing and confinement of non-additive hard-sphere mixtures in slit pores.
Almarza, N G; Martín, C; Lomba, E; Bores, C
2015-01-07
Using Monte Carlo simulation, we study the influence of geometric confinement on demixing for a series of symmetric non-additive hard spheres mixtures confined in slit pores. We consider both a wide range of positive non-additivities and a series of pore widths, ranging from the pure two dimensional limit to a large pore width where results are close to the bulk three dimensional case. Critical parameters are extracted by means of finite size analysis. As a general trend, we find that for this particular case in which demixing is induced by volume effects, the critical demixing densities (and pressures) increase due to confinement between neutral walls, following the expected behavior for phase equilibria of systems confined by pure repulsive walls: i.e., confinement generally enhances miscibility. However, a non-monotonous dependence of the critical pressure and density with pore size is found for small non-additivities. In this latter case, it turns out that an otherwise stable bulk mixture can be unexpectedly forced to demix by simple geometric confinement when the pore width decreases down to approximately one and a half molecular diameters.
Manipulating topological-insulator properties using quantum confinement
Kotulla, M.; Zülicke, U.
2017-07-01
Recent discoveries have spurred the theoretical prediction and experimental realization of novel materials that have topological properties arising from band inversion. Such topological insulators are insulating in the bulk but have conductive surface or edge states. Topological materials show various unusual physical properties and are surmised to enable the creation of exotic Majorana-fermion quasiparticles. How the signatures of topological behavior evolve when the system size is reduced is interesting from both a fundamental and an application-oriented point of view, as such understanding may form the basis for tailoring systems to be in specific topological phases. This work considers the specific case of quantum-well confinement defining two-dimensional layers. Based on the effective-Hamiltonian description of bulk topological insulators, and using a harmonic-oscillator potential as an example for a softer-than-hard-wall confinement, we have studied the interplay of band inversion and size quantization. Our model system provides a useful platform for systematic study of the transition between the normal and topological phases, including the development of band inversion and the formation of massless-Dirac-fermion surface states. The effects of bare size quantization, two-dimensional-subband mixing, and electron-hole asymmetry are disentangled and their respective physical consequences elucidated.
Spin probe dynamics of n-hexadecane in confined geometry
Lukešová, Miroslava; Švajdlenková, Helena; Sippel, Pit; Macová, Eva; Berek, Dušan; Loidl, Alois; Bartoš, Josef
2015-02-01
A combined study of the rotational dynamics of the stable free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) and the phase behavior of n-hexadecane (n-HXD) in the bulk and the confined states in a series of silica gels (SG) by means of ESR and DSC is presented. A slow to fast motion transition of the spin probe TEMPO in the bulk n-HXD occurs at T50 G,bulk ≪ Tm,bulk, i.e., well below the melting temperature due to its trapping and localized mobility in the interlamellar gap of the crystallites [J. Bartoš, H. Švajdlenková, M. Zaleski, M. Edelmann, M. Lukešová, Physica B 430, 99 (2013)]. On the other hand, the dynamics of the TEMPO in the confined systems is strongly slowing down with T50 G (Dpore) >Tm(Dpore) and slightly increases with the pore size Dpore = 60, 100 and 300 Å of the SG's. At the same time, both the corresponding melting temperature, Tm (Dpore), and melting enthalpy, ΔHm (Dpore), decrease with Dpore together with the mutual anti-correlation between T50 G and Tm as a function of the inverse of pore diameter, 1/Dpore. Moreover, the dynamic heterogeneity of the TEMPO in the confined state below T50 G (Dpore) is closely related to the phase transformation. The strong slowing down of the spin probe motion likely results from its preferential localization at the interface layer of the matrix pore due to specific interaction of TEMPO molecules with the polar silanol groups of the SG matrix. This is supported by special study on a series of the variously filled n-HXD/SG systems, other similar experimental findings as well as by theoretical spectral argument.
Statistical physics of dyons and confinement
Diakonov, Dmitri
2008-01-01
We present a semiclassical description of the SU(N) Yang--Mills theory whose partition function at nonzero temperatures is approximated by that of an ensemble of N kinds of interacting dyons. The ensemble is mathematically described by an exactly solvable 3d quantum field theory, allowing calculation of correlations functions relevant to confinement. We show that all known criteria of confinement are satisfied in this semiclassical approximation: (i) the average Polyakov line is zero below some critical temperature, and nonzero above it, (ii) static quarks in any nonzero N-ality representation have linear rising potential energy, (iii) the average spatial Wilson loop falls off exponentially with the area, (iv) N^2 gluons are canceled out from the spectrum, (v) the critical temperature is in good agreement with lattice data.
Nonlinear magnetohydrodynamics in the Dag confinement configuration
Strauss, H. R.
2004-03-01
The Dag magnetic fusion confinement configuration is a spheromak-like toroidal device. It consists of central vertical current channel, and an outer toroidal chamber with a toroidal current. It has a special magnetic topology. Whether this has consequences for plasma confinement is a motive for this study. A restricted class of computations, using the Multi-level 3D code [Park et al., Phys. Plasmas 6, 1796 (1999)], indicate stability for β<15%. For higher β, the simulations exhibit turbulent magnetic behavior similar to spheromaks and reverse field pinches. A reverse field pinch-like variant should be capable of a less turbulent start up and higher β than the spheromak-like Dag.
Confinement of antihydrogen for 1000 seconds
Andresen, G B; Baquero-Ruiz, M; Bertsche, W; Butler, E; Cesar, C L; Deller, A; Eriksson, S; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jonsell, S; Kemp, S; Kurchaninov, L; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wurtele, J S; Yamazaki, Y
2011-01-01
Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a confinement time of 172 ms. A critical question for future studies is: how long can anti-atoms be trapped? Here we report the observation of anti-atom confinement for 1000 s, extending our earlier results by nearly four orders of magnitude. Our calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement of the energy distribution of trapped antihydrogen which, coupled with detailed comparisons with simulations, provides a key tool for the systematic investigation of trapping dynamics. These advances open up a range of experimental possibilities, including precision studies of CPT symmetry and ...
Liquefaction of Sand under Low Confining Pressure
Institute of Scientific and Technical Information of China (English)
YANG Shaoli; Rolf Sandven; Lars Grande
2003-01-01
Undrained behaviour of sand under low cell pressure was studied in static and cyclic triaxial tests. It was found that very loose sand liquefies under static loading with the relative density being a key parameter for the undrained behaviour of sand. In cyclic triaxial tests, pore water pressures built up during the cyclic loading and exceeded the confining cell pressure. This process was accompanied by a large sudden increase in axial deformation. The necessary number of cycles to obtain liquefaction was related to the confining cell pressure, the amplitude of cyclic loading and the relative density of sand.In addition, the patterns of pore water pressure response are different from those of sand samples with different relative densities. The test results are very useful for expounding scour mechanism around coastal structures since they relate to the low stress behaviour of the sand.
Inertial-confinement fusion with lasers
Betti, R.; Hurricane, O. A.
2016-05-01
The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.
Multiscale confining dynamics from holographic RG flows
Energy Technology Data Exchange (ETDEWEB)
Elander, Daniel [Department of Physics, Purdue University,525 Northwestern Avenue, West Lafayette, IN 47907-2036 (United States); Department of Theoretical Physics, Tata Institute of Fundamental Research,Homi Bhabha Road, Mumbai 400 005 (India); Faedo, Anton F. [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea, Wales (United Kingdom); Departament de Física Fonamental & Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Hoyos, Carlos [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University,Ramat-Aviv 69978 (Israel); Mateos, David [Departament de Física Fonamental & Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA),Passeig Lluís Companys 23, E-08010, Barcelona (Spain); Piai, Maurizio [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea, Wales (United Kingdom)
2014-05-05
We consider renormalization group flows between conformal field theories in five (six) dimensions with a string (M-theory) dual. By compactifying on a circle (torus) with appropriate boundary conditions, we obtain continuous families of confining four-dimensional theories parametrized by the ratio Λ{sub flow}/Λ{sub QCD}, with Λ{sub flow} the scale at which the flow between fixed points takes place and Λ{sub QCD} the confinement scale. We construct the dual geometries explicitly and compute the spectrum of scalar bound states (glueballs). We find a ‘universal’ subset of states common to all the models. We comment on the modifications of these models, and the corresponding fine-tuning, required for a parametrically light ‘dilaton’ state to be present. We also comment on some aspects of these theories as probed by extended objects such as strings and branes.
Multiscale confining dynamics from holographic RG flows
Elander, Daniel; Hoyos, Carlos; Mateos, David; Piai, Maurizio
2013-01-01
We consider renormalization group flows between conformal field theories in five (six) dimensions with a string (M-theory) dual. By compactifying on a circle (torus) with appropriate boundary conditions, we obtain continuous families of confining four-dimensional theories parametrized by the ratio $\\Lambda_{\\rm {\\tiny flow}}/\\Lambda_{\\rm \\tiny{QCD}}$, with $\\Lambda_{\\rm \\tiny{flow}}$ the scale at which the flow between fixed points takes place and $\\Lambda_{\\rm \\tiny{QCD}}$ the confinement scale. We construct the dual geometries explicitly and compute the spectrum of scalar bound states (glueballs). We find a `universal' subset of states common to all the models. We comment on the modifications of these models, and the corresponding fine-tuning, required for a parametrically light `dilaton' state to be present. We also comment on some aspects of these theories as probed by extended objects such as strings and branes.
Spiral precipitation patterns in confined chemical gardens.
Haudin, Florence; Cartwright, Julyan H E; Brau, Fabian; De Wit, A
2014-12-09
Chemical gardens are mineral aggregates that grow in three dimensions with plant-like forms and share properties with self-assembled structures like nanoscale tubes, brinicles, or chimneys at hydrothermal vents. The analysis of their shapes remains a challenge, as their growth is influenced by osmosis, buoyancy, and reaction-diffusion processes. Here we show that chemical gardens grown by injection of one reactant into the other in confined conditions feature a wealth of new patterns including spirals, flowers, and filaments. The confinement decreases the influence of buoyancy, reduces the spatial degrees of freedom, and allows analysis of the patterns by tools classically used to analyze 2D patterns. Injection moreover allows the study in controlled conditions of the effects of variable concentrations on the selected morphology. We illustrate these innovative aspects by characterizing quantitatively, with a simple geometrical model, a new class of self-similar logarithmic spirals observed in a large zone of the parameter space.
Extra-dimensional confinement of quantum particles
Hedin, Eric R
2016-01-01
A basic theoretical framework is developed in which elementary particles have a component of their wave function extending into higher spatial dimensions. This model postulates an extension of the Schrodinger equation to include a 4th and 5th spatial component. A higher-dimensional simple harmonic oscillator confining potential localizes particles into 3-d space, characterizing the brane tension which confines Standard Model particles to the sub-manifold. Quantum effects allow a non-zero probability for a particle's evanescent existence in the higher dimensions, and suggest an experimental test for the validity of this model via particles being temporarily excited into the first excited state of the extra-dimensional potential well, in which their probability of existing in 3-d space transiently drops to zero. Several consistency checks of the outcomes of this extra-dimensional model are included in this paper. Among the outcomes of this model are: a match with the quantum phenomenon of zitterbewegung; the pr...
Gauge topology and confinement: an update
Shuryak, Edward
2015-01-01
In the instanton ensemble the fermionic zero modes collectivize and break chiral symmetry. Recent studies of resulting zero mode zone confirm its very small width and overall importance for lattice simulations. Confinement however has been related with completely different topological objects, the magnetic monopoles. Instanton constituents -- instanton dyons, discovered at nonzero holonomy by Pierre van Baal and others -- are able to explain both confinement and chiral symmetry breaking. The talk summarizes recent works deriving the instanton-dyon mutual interactions, and statistical studies of their ensemble. At high density the screening is robust enough to do it analytically, in the mean-field-type approach: we call this limit Dense Dyonic Plasma (DDP). Above $T_c$ the classical interaction between the dyons induce strong correlations and should be studied by direct numerical simulations. Those works are now in progress.
Tachocline Confinement by an Oscillatory Magnetic Field
Forgács-Dajka, E
2001-01-01
Helioseismic measurements indicate that the solar tachocline is very thin, its full thickness not exceeding 4% of the solar radius. The mechanism that inhibits differential rotation to propagate from the convective zone to deeper into the radiative zone is not known, though several propositions have been made. In this paper we demonstrate by numerical models and analytic estimates that the tachocline can be confined to its observed thickness by a poloidal magnetic field B_p of about one kilogauss, penetrating below the convective zone and oscillating with a period of 22 years, if the tachocline region is turbulent with a diffusivity of eta~10^10 cm^2/s (for a turbulent magnetic Prandtl number of unity). We also show that a similar confinement may be produced for other pairs of the parameter values (B_p, eta). The assumption of the dynamo field penetrating into the tachocline is consistent whenever eta>10^9 cm^2/s.
Gaussian Confinement in a Jkj Decay Model
da Silva, Mario L. L.; Hadjimichef, Dimiter; Vasconcellos, Cesar A. Z.
In microscopic decay models, one attempts to describe hadron strong decays in terms of quark and gluon degrees of freedom. We begin by assuming that strong decays are driven by the same interquark Hamiltonian which determines the spectrum, and that it incorporates gaussian confinement. An A → BC decay matrix element of the JKJ Hamiltonian involves a pair-production current matrix elements times a scatering matrix element. Diagrammatically this corresponds to an interaction between an initial line and produced pair.
Confining caesium in expanded natural Perlite
Rehspringer, Jean Luc; Balencie, J.; Vilminot, Serge; Burger, Didier; Boos, Anne; Estournès, Claude
2007-01-01
International audience; We present the potential use of expanded perlite, a metastable amorphous hydrated aluminum silicate, as a permanent medium for the long-term confinement of caesium. A simple loading by mixing an aqueous caesium nitrate solution and expanded perlite at 300K followed by thermal annealing leads to 96% sintering. The formation of pollucite, CsAlSi2O6, a naturally occurring mineral phase, appears as the crystalline phase embedded in a glassy phase. Leaching tests on the res...
Waveforms Measured in Confined Thermobaric Explosion
Energy Technology Data Exchange (ETDEWEB)
Reichenbach, H; Neuwald, P; Kuhl, A L
2007-05-04
Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.
Numerical Simulation of Confined Multiple Transverse Jets
2012-06-25
density ratio • Multiple confined transverse jets • Single phase/component ONERA experimental/LES studies of an eight jet mixing chamber 9Distribution A...Approved for public release; distribution unlimited ONERA Experiments Pros: • PIV and PLIF data • Characterized boundary conditions Cons: • ONERA ...Pairs Diluent Flow X = 2d: X = 5d: X = 10d: Fluent STAR-CCM+ CFD++ Axial locations (d = inj. dia.) Experiment LES ( ONERA ) Distribution A: Approved
Beam ion confinement on NSTX-U
Liu, D.; Heidbrink, W. W.; Hao, G. Z.; Podesta, M.; Darrow, D. S.; Fredrickson, E. D.
2016-10-01
A second and more tangential neutral beam line is a major upgrade component of the National Spherical Torus Experiment - Upgrade (NSTX-U) with the purpose of improving neutral beam current drive efficiency and providing more flexibility in current/pressure profile control. Good beam ion confinement is essential to achieve the anticipated improvements in performance. In the planned beam ion confinement experiment, various short and long (relative to fast ion slowing-down time) neutral beam (NB) pulses from six neutral beam sources will be injected into center-stack limited L-mode plasmas to characterize the beam ion confinement and distribution function produced by the new and the existing NBI lines. The neutron rate decay after the turn-off of short NB pulses will be used to estimate the beam ion confinement time and to investigate its dependence on NB source/geometry, injection energy, and plasma current. The tangential and vertical Fast-Ion D-Alpha (FIDA) diagnostics and multi-view Solid State Neutral Particle Analyzer (SSNPA) arrays will be used to measure beam ion slowing-down distribution function and spatial profile during the injection of relatively long NB pulses. Beam ion prompt losses will be monitored with a scintillator Fast Lost Ion Probe (sFLIP) diagnostic. The experimental data and comparisons with classical predictions from NUBEAM modeling will be presented. Work supported by U.S. DOE DE-AC0209CH11466, DE-FG02-06ER54867, and DE-FG03-02ER54681.
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cuneo, M. E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Herrmann, M. C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sinars, D. B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Slutz, S. A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2012-06-20
The recently proposed magnetized liner inertial fusion approach to a Z-pinch driven fusion [Slutz et al., Phys. Plasmas17, 056303 (2010)] is based on the use of an axial magnetic field to provide plasma thermal insulation from the walls of the imploding liner. The characteristic plasma transport regimes in the proposed approach cover parameter domains that have not been studied yet in either magnetic confinement or inertial confinement experiments. In this article, an analysis is presented of the scalability of the key physical processes that determine the plasma confinement. The dimensionless scaling parameters are identified and conclusion is drawn that the plasma behavior in scaled-down experiments can correctly represent the full-scale plasma, provided these parameters are approximately the same in two systems. Furthermore, this observation is important in that smaller-scale experiments typically have better diagnostic access and more experiments per year are possible.