WorldWideScience

Sample records for non-anonymous iaea short

  1. Comparison of the Personality Profiles of Inmate Anonymous and Non-Anonymous Male Addicts

    Directory of Open Access Journals (Sweden)

    Nasrolah Erfani

    2013-05-01

    Full Text Available Aim: This study compared the personality profiles of inmate anonymous and non-anonymous male addicts. Method: The participants of study were anonymous and non-anonymous male addicts of the prisons of the Hamadan province in 1391. The population was 3130 addicts, including 627 anonymous and 2503 non-anonymous addicts. The 310 addicts were selected by stratified random sampling the sample size was determined by Cochran formula.The short-form NEO Five Factor personality questionnaire administered among selected sample. Data analyzed by descriptive statistic as frequency and percentage, also, inferential statistic as multivariate analysis of variance was run. Results: The results showed that personality profiles of anonymous and non-anonymous addicts were significantly different. That is, mean score of neuroticism in anonymous addicts was less than non anonymous. Also, mean score of extraversion was higher in anonymous addicts. Conclusion: It can be concluded that the anonymous male addicts are differ with non-anonymous male addicts in personality traits.

  2. The IAEA/WHO Network of SSDLs. Short history, activity and future trends

    International Nuclear Information System (INIS)

    Svensson, Hans; Zsdanszky, Kalman

    1990-01-01

    In 1968 at an IAEA meeting in Caracas, Venezuela, the dosimetric requirements of radiotherapy centres were discussed. At that time many radiotherapy departments in developing countries did not have a dosimeter. Even those that had a dosimeter were seldom able to send it to a Primary Standard Dosimetry Laboratory (PSDL) for proper calibration. The establishment of regional dosimeter calibration laboratories was recommended by the participating experts including representatives of WHO. There was general consent that it was not necessary to establish in every country a PSDL, which would need a very qualified staff and sophisticated equipment. Instead, the establishment of Secondary Standard Dosimetry Laboratories (SSDLs) was found to be an adequate solution to the problem. The new idea of SSDLs and their role within the international metrology system was thoroughly discussed at a joint IAEA/WHO meeting in Rio de Janeiro (scientific secretaries: H.H. Eisenlohr, IAEA and W. Seelentag, WHO) in December 1974. Considering the fact that an SSDL cannot work in isolation the experts recommended the setting up of an international Network of SSDLs under the auspices of the IAEA and WHO. The statutes of the IAEA/WHO Network of SSDLs were laid down in a Working Arrangement between the IAEA and WHO in April 1976. Later in 1976 the two Directors General of the IAEA and WHO formally announced by circular letters to their respective member states the establishment of the IAEA/WHO Network of SSDL. The Criteria for the Establishment of a Secondary Standard Dosimetry Laboratory were formulated by an Advisory Group and were attached to these letters. At that time there existed already 8 laboratories, which had been designated by WHO during the period 1968-1976 as regional reference centres for dosimetry. Another SSDL had been set up in Rio de Janeiro in collaboration between the Brazilian Government, the Government of the Federal Republic of Germany, and the IAEA. As a consequence of the

  3. IAEA safeguards

    International Nuclear Information System (INIS)

    1985-01-01

    IAEA safeguards are a system of technical measures within the framework of international non-proliferation policy entrusted to the IAEA in its Statute and by other treaties. About 98% of the world's nuclear installations outside the nuclear-weapon countries are now under safeguards. This paper gives a review of IAEA activities in this field: objectives, agreements, work and development of staff of the IAEA's Department of Safeguards, instruments and techniques for direct measurement and verification of nuclear material. (author)

  4. The IAEA/WHO Network of SSDLs. Short history, activity and future trends[Secondary Standard Dosimetry Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Hans; Zsdanszky, Kalman [International Atomic Energy Agency, Dosimtery Section, Vienna (Austria)

    1990-04-01

    In 1968 at an IAEA meeting in Caracas, Venezuela, the dosimetric requirements of radiotherapy centres were discussed. At that time many radiotherapy departments in developing countries did not have a dosimeter. Even those that had a dosimeter were seldom able to send it to a Primary Standard Dosimetry Laboratory (PSDL) for proper calibration. The establishment of regional dosimeter calibration laboratories was recommended by the participating experts including representatives of WHO. There was general consent that it was not necessary to establish in every country a PSDL, which would need a very qualified staff and sophisticated equipment. Instead, the establishment of Secondary Standard Dosimetry Laboratories (SSDLs) was found to be an adequate solution to the problem. The new idea of SSDLs and their role within the international metrology system was thoroughly discussed at a joint IAEA/WHO meeting in Rio de Janeiro (scientific secretaries: H.H. Eisenlohr, IAEA and W. Seelentag, WHO) in December 1974. Considering the fact that an SSDL cannot work in isolation the experts recommended the setting up of an international Network of SSDLs under the auspices of the IAEA and WHO. The statutes of the IAEA/WHO Network of SSDLs were laid down in a Working Arrangement between the IAEA and WHO in April 1976. Later in 1976 the two Directors General of the IAEA and WHO formally announced by circular letters to their respective member states the establishment of the IAEA/WHO Network of SSDL. The Criteria for the Establishment of a Secondary Standard Dosimetry Laboratory were formulated by an Advisory Group and were attached to these letters. At that time there existed already 8 laboratories, which had been designated by WHO during the period 1968-1976 as regional reference centres for dosimetry. Another SSDL had been set up in Rio de Janeiro in collaboration between the Brazilian Government, the Government of the Federal Republic of Germany, and the IAEA. As a consequence of the

  5. Short report of the national programme presented at the IAEA IWGFPT in Vienna, 3-5 February 1981

    International Nuclear Information System (INIS)

    Knudsen, P.

    1981-01-01

    This note was prepared as one of the introductory contributions at the IAEA Specialists' Meeting on ''High Burnup in Power Reactor Fuel'' at Mol, 24-27 March 1981. Consequently, emphasis was placed on investigations where high burnups, here defined as approximately 30,000 MWD/tU or above, have been achieved. It should also be borne in mind that the reporting on national programs at the meetings of the International Working Group on Water Reactor Fuel Performance and Technology (IWG-FPT) of the IAEA is informal; it was not attempted to take detailed notes during the meeting, the present overview is, therefore, mainly based on those contributions where hand-outs were available. The various undertakings are mentioned alphabetically countrywise, according to IAEA practice

  6. Becoming a morther by non-anonymous egg donation: secrecy and the relationship between egg recipient, egg donor and egg donation child

    NARCIS (Netherlands)

    Berkel, D.A.M. van; Candido, A.; Pijffers, W.H.

    The object of the study was to investigate secrecy in non-anonymous egg donation, to explore some characteristics of this kind of egg donation arrangement and the relationship of the recipient with her non-genetic child. Forty-four egg recipients and 62 IVF patients with a child conceived through

  7. New appointment at the IAEA

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives short information on the biography of Professor Dr. Werner Burkart from Germany who was appointed (as of July 2000) as Deputy Director General, Head of the Department of Nuclear Sciences and Applications, IAEA

  8. IAEA introduction

    International Nuclear Information System (INIS)

    Zeman, A.

    2009-01-01

    The Physics Section supports the IAEA Member States regarding utilization of: Accelerators; Research reactors; Cross-cutting material research; Controlled fusion. The activities in the field of material science include studies of present NPP structural materials; investigation of degradation mechanisms and contribution to research programs of new materials, as well as education and training activities. The Section is participating in the coordinated research projects 'Accelerator Simulation and Theoretical Modeling of Radiation Effects' (Jointly NA-NE) and 'Benchmarking of advanced materials pre-selected for innovative nuclear reactors' (Jointly NA and NE)

  9. Directory of IAEA databases

    International Nuclear Information System (INIS)

    1991-11-01

    The first edition of the Directory of IAEA Databases is intended to describe the computerized information sources available to IAEA staff members. It contains a listing of all databases produced at the IAEA, together with information on their availability

  10. IAEA Newsbriefs. V. 14, no. 1(82). Jan-Feb 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This issue gives brief information on the following topics: 2000 Budget Goes Before IAEA Board of Governors, IAEA, Inspectors Relocated from Iraq, Review Meeting of Nuclear Safety Convention Set in April, Statements of IAEA Director General, The IAEA and Y2K Issues: Clearinghouse and Contact Point, Strengthened Safeguards System: Status of Additional Protocols, More States Join International Conventions in Nuclear Fields, IAEA International Scientific Symposia and Seminars in 1999, New IAEA Books, and othe short information

  11. IAEA yearbook 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The IAEA Yearbook 1991 contains the following 6 chapters: Transfer of Nuclear Technology; Applications of Nuclear Techniques and Research (Also published separately as Part B of the IAEA Yearbook 1991); Nuclear Power, Nuclear Fuel Cycle and Waste Management (Also published separately as Part C of the IAEA Yearbook 1991); Nuclear Safety Review (Also published separately as Part D of the IAEA Yearbook 1991); IAEA Safeguards; The IAEA (operating framework and functions). A separate abstract and indexing was provided for each chapter. Refs, figs and tabs

  12. IAEA TECDOC 055 Outline

    Energy Technology Data Exchange (ETDEWEB)

    Shull, Doug [Gregg Protection Services, Palm Beach Gardens, FL (United States)

    2015-07-13

    An outline of suggestions for updating a version of IAEA-TECDOC-1276 is provided. This update will become IAEA-TECDOC-055, titled ''IAEA handbook for designing and implementing physical protection systems for nuclear material and nuclear facilities.''

  13. Optimizing IAEA Safeguards

    International Nuclear Information System (INIS)

    Varjoranta, Tero

    2016-01-01

    IAEA safeguards make a vital contribution to international security. Through safeguards, the IAEA deters the spread of nuclear weapons and provides credible assurance that States are honouring their international obligations to use nuclear material only for peaceful purposes. Its independent verification work allows the IAEA to facilitate building international confidence and strengthening collective security for all.

  14. IAEA safeguard system

    International Nuclear Information System (INIS)

    Pontes, B.C.

    1987-01-01

    The intents of IAEA safeguards, analysing into the IAEA statutes, are presented. The different types of safeguard agreements; the measurements of accounting, containment and caution used by the operator and; the information to be provided and the verification to be developed by IAEA are described. (M.C.K.) [pt

  15. IAEA fellows report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-04-15

    More than 500 scientists and technicians had completed their studies abroad under IAEA's fellowship programme at the end of 1961. At the same time, some 300 fellows were studying at universities, research institutions and atomic energy establishments in Member States. It is the policy of the Agency to keep in touch with fellows also after their training has been completed and they have returned home to put into practice what they have learnt during their time of study. The short reports which most of the former fellowship holders send to the Agency's secretariat give a good indication of the usefulness of the training and the extent to which the newly acquired knowledge is being constructively absorbed in the fellow's native country

  16. A Single Transcriptome of a Green Toad (Bufo viridis Yields Candidate Genes for Sex Determination and -Differentiation and Non-Anonymous Population Genetic Markers.

    Directory of Open Access Journals (Sweden)

    Jörn F Gerchen

    Full Text Available Large genome size, including immense repetitive and non-coding fractions, still present challenges for capacity, bioinformatics and thus affordability of whole genome sequencing in most amphibians. Here, we test the performance of a single transcriptome to understand whether it can provide a cost-efficient resource for species with large unknown genomes. Using RNA from six different tissues from a single Palearctic green toad (Bufo viridis specimen and Hiseq2000, we obtained 22,5 Mio reads and publish >100,000 unigene sequences. To evaluate efficacy and quality, we first use this data to identify green toad specific candidate genes, known from other vertebrates for their role in sex determination and differentiation. Of a list of 37 genes, the transcriptome yielded 32 (87%, many of which providing the first such data for this non-model anuran species. However, for many of these genes, only fragments could be retrieved. In order to allow also applications to population genetics, we further used the transcriptome for the targeted development of 21 non-anonymous microsatellites and tested them in genetic families and backcrosses. Eleven markers were specifically developed to be located on the B. viridis sex chromosomes; for eight markers we can indeed demonstrate sex-specific transmission in genetic families. Depending on phylogenetic distance, several markers, which are sex-linked in green toads, show high cross-amplification success across the anuran phylogeny, involving nine systematic anuran families. Our data support the view that single transcriptome sequencing (based on multiple tissues provides a reliable genomic resource and cost-efficient method for non-model amphibian species with large genome size and, despite limitations, should be considered as long as genome sequencing remains unaffordable for most species.

  17. IAEA Clarification on Syria

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: Director General Amano has been quoted in a news story as saying today that a site in Syria allegedly destroyed by Israel was a nuclear reactor under construction. The Director General did not say that the IAEA has reached the conclusion that the site was definitely a nuclear reactor. The IAEA continues to seek further information on the nature of the Dair Alzour site. (IAEA)

  18. IAEA activities on nuclear fuel

    International Nuclear Information System (INIS)

    Basak, U.

    2011-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) FUel performance at high burn-up and in ageing plant by management and optimisation of WAter Chemistry Technologies (FUWAC ); 2) Near Term and Promising Long Term Options for Deployment of Thorium Based Nuclear Energy; 3) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel failure cause for PWR (1994-2006) and failure mechanisms for BWR fuel (1994-2006) are shown. The just published Fuel Failure Handbook as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications are presented. The current projects in Sub-programme B2 - Power Reactor Fuel Engineering are also listed

  19. IAEA Newsbriefs. V. 14, no. 4(85). Oct-Nov 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This issue gives brief information on the following topics: the new IAEA Board of Governors, conclusions of the 1999 IAEA General Conference, the return of the IAEA fact-finding team from Japan, future energy and nuclear power, talks on future IAEA verification of ex-weapon material, the IAEA and Y2K (steps against the bug intensify), African partnership for technology transfer extended, strengthened safeguards system (status of additional protocols), and other short information

  20. IAEA Newsbriefs. V. 15, no. 4(89). Oct-Nov 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This issue gives information about the following topics: IAEA 2000 General Conference; IAEA Board for 2000-2001; Scientific forum on radioactive waste management: turning options into solutions; the Director General's statement to the General Conference; National case studies on nuclear power and sustainable development; Progress toward IAEA verification under Trilateral Initiative with Russia and the USA; Uranium production and the environment; IAEA publications; States joining international conventions in nuclear fields; Upcoming IAEA international symposia and seminars, and other short information

  1. IAEA Newsbriefs. V. 15, no. 4(89). Oct-Nov 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This issue gives information about the following topics: IAEA 2000 General Conference; IAEA Board for 2000-2001; Scientific forum on radioactive waste management: turning options into solutions; the Director General's statement to the General Conference; National case studies on nuclear power and sustainable development; Progress toward IAEA verification under Trilateral Initiative with Russia and the USA; Uranium production and the environment; IAEA publications; States joining international conventions in nuclear fields; Upcoming IAEA international symposia and seminars, and other short information.

  2. IAEA Newsbriefs. V. 10, no. 3(69). Nov-Dec 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This issue gives brief information on the following topics: IAEA Director General Addresses United Nations, IAEA Board of Governors' December Meetings, UN General Assembly Commends Work of IAEA, Oceanographic Investigations of Radioactive Pollution, Cancer Radiotherapy Using Heavy Charged Particles, Highlights of the 1995 IAEA General Conference, Director General's Statement to 1995 IAEA General Conference, General Conference Scientific Programme, Countries Invited to More Widely Apply INES Scale, Safety Meeting on Kozloduy in Bulgaria, Selection of Dry Storage Technologies for Spent Fuel, India Presents Sculpture to the IAEA, IAEA Seminars and Symposia, and other short information

  3. IAEA Newsbriefs. V. 9, no. 4(66). Oct 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This issue gives brief information on the following topics: IAEA Analyzing effect of US-DPRK Agreed Framework, Statement to General Assembly in New-York, Council on Foreign Relations, 19 October 1994, Congress of the European Nuclear Society, 4 October 1994, IAEA General Conference, 19 September 1994, Illicit Trafficking in Nuclear Materials, IAEA Director General Blix honoured, Ukraine and IAEA sign Safeguards Agreement, International Convention on Nuclear Safety, Highlights of the 1994 General Conference, IAEA safeguards in the DPRK, Monitoring and verification in Iraq, IAEA safeguards system, Measures against illicit trafficking in nuclear materials, African nuclear-weapon-free zone, South Africa's participation in IAEA activities, Application of IAEA safeguards in the Middle East, IAEA technical co-operation activities, Technical assistance in the Middle East, Radioactive waste management, Water resources and production, IAEA budget and extrabudgetary resources for 1995, Staffing of the IAEA Secretariat, Nuclear safety and radiological protection, Scientific Programme at the General Conference, Environmental monitoring, High-energy accelerators and radioactive waste management, Global food security and sustainability, Other meetings, Air Transport of Radioactive materials, Accelerators for Research, Water Resources, Radiation Technologies in Health Care, Spent Fuel Storage, Nuclear Techniques in Agriculture, Comprehending Radiation Risks, Environmental Impact of Radioactive Releases, Strengthening Radiation Protection Infrastructures, and other short information

  4. IAEA Newsbriefs. V. 9, no. 4(66). Oct 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This issue gives brief information on the following topics: IAEA Analyzing effect of US-DPRK Agreed Framework, Statement to General Assembly in New-York, Council on Foreign Relations, 19 October 1994, Congress of the European Nuclear Society, 4 October 1994, IAEA General Conference, 19 September 1994, Illicit Trafficking in Nuclear Materials, IAEA Director General Blix honoured, Ukraine and IAEA sign Safeguards Agreement, International Convention on Nuclear Safety, Highlights of the 1994 General Conference, IAEA safeguards in the DPRK, Monitoring and verification in Iraq, IAEA safeguards system, Measures against illicit trafficking in nuclear materials, African nuclear-weapon-free zone, South Africa`s participation in IAEA activities, Application of IAEA safeguards in the Middle East, IAEA technical co-operation activities, Technical assistance in the Middle East, Radioactive waste management, Water resources and production, IAEA budget and extrabudgetary resources for 1995, Staffing of the IAEA Secretariat, Nuclear safety and radiological protection, Scientific Programme at the General Conference, Environmental monitoring, High-energy accelerators and radioactive waste management, Global food security and sustainability, Other meetings, Air Transport of Radioactive materials, Accelerators for Research, Water Resources, Radiation Technologies in Health Care, Spent Fuel Storage, Nuclear Techniques in Agriculture, Comprehending Radiation Risks, Environmental Impact of Radioactive Releases, Strengthening Radiation Protection Infrastructures, and other short information

  5. Training the IAEA Inspectors

    International Nuclear Information System (INIS)

    Potterton, L.

    2010-01-01

    Newly recruited safeguards inspectors take to the field. There are currently 250 inspectors and every year the IAEA runs an introductory course on the safeguards systems for the organisation's newly appointed inspectors.

  6. IAEA Monitors Marine Radioactivity

    International Nuclear Information System (INIS)

    Dixit, Aabha; Kaiser, Peter

    2013-01-01

    The IAEA assists Member States in using scientific tools to precisely identify and track nuclear and nonnuclear contaminants, as well as to investigate their biological effects on the marine ecosystem

  7. IAEA safeguards glossary

    International Nuclear Information System (INIS)

    1980-01-01

    An unambiguous definition and rationalization of many of the terms for the purpose of IAEA safeguards are given, with a view to improving the common understanding of such terms within the international community. The glossary focuses only on safeguards meanings in general, and IAEA meanings in particular, of the terms discussed. Terms belong to the following problems: nuclear and non-nuclear material, nuclear equipment, design of the safeguards approach, nuclear material accountancy, physical standards, sampling, measurements, statistical concepts and others

  8. IAEA Newsbriefs. V. 12, no. 3(76). Jul-Aug 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This issue gives brief information on the following topics: IAEA General Conference opens in Vienna 29 September, UN special session on environment and development, Safe storage of radiation sources, Implementation of IAEA Safeguards in 1996, IAEA/NEA review of 1996 performance assessment of US waste isolation pilot plant, and other short information

  9. IAEA yearbook 1996

    International Nuclear Information System (INIS)

    1996-09-01

    Part A of the Yearbook describes the role played by the IAEA in helping to advance sustainable development by the transfer of nuclear and radiation technology. The introduction to this section this year discusses the application of quality assurance practices to this important work. The main article describes new planning procedures that are being adopted to ensure that these technical co-operation activities are of significant and practical benefit to the States concerned. The work routinely carried out by the IAEA on the development and dissemination of nuclear and radiation techniques covers a wide range of subjects - the practical aspects of physics and chemistry, hydrology, industrial applications, human health, and food and agriculture. Part B of the Yearbook concentrates on food irradiation and the use of nuclear monitoring techniques in programmes for improving human nutrition. Part C of the Yearbook deals with nuclear power and its fuel cycle and waste management technology. The section on nuclear power describes developments during 1995 in a wide range of countries. It also details the IAEA's work on the comparative health and environmental impacts of different types of energy systems. Of particular interest this year in the fuel cycle area is the report of the downturn in world uranium activities that has lasted for more than 15 years may be coming to an end. In the waste management section, emphasis is given to the technology of environmental restoration of sites after contamination resulting from past nuclear activities. A discussion of different aspects of the safety of nuclear power and of the uses of radiation is to be found in Part D, The Nuclear Safety Review. As in previous years, Part E of the IAEA Yearbook 1996 deals with the IAEA's major contribution to the non-proliferation regime - international safeguards. Part E also contains a description of IAEA activities designed to assist Member States in preventing trafficking in nuclear materials

  10. IAEA coaches new entrants

    International Nuclear Information System (INIS)

    Jouette, I.

    2016-01-01

    IAEA provides new entrants in nuclear electricity production with a broad and integrated range of services. The aim is to make the new entrant full aware of the commitments and obligations linked to the development of a civil nuclear program. IAEA offers a 3-step approach. The first step assesses the elements the new entrants has to take into account to launch a nuclear program. The second step deals with the preliminary works before the construction starts but after the political decision to launch a nuclear program has been taken. At the end of the second step the national authorities are able to launch tenders and negotiate contracts for the construction of a nuclear power plant. The third step is dedicated to the necessary activities to implement the first nuclear power plant. The end of the third step means that national authorities are able to issue exploitation licenses for operating nuclear power stations. All along the IAEA accompaniment numerous meetings are scheduled in which IAEA experts meet the 3 organisations that represent the new entrant: the government, the plant operator and the national safety authority. An important element of the first step is to help the country to assess the necessary human resource in terms of qualified staff. (A.C.)

  11. The IAEA laboratories

    International Nuclear Information System (INIS)

    1973-01-01

    While nuclear technology continues to expand in all scientific fields, both research and analysis become increasingly important aspects of the work carried out at the IAEA's two principal laboratories at Seibersdorf and Monaco. They also provide training facilities for students and graduates from many Member States. The following outlines give a brief history of their development, and their present work. (author)

  12. IAEA Safety Standards

    International Nuclear Information System (INIS)

    2016-09-01

    The IAEA Safety Standards Series comprises publications of a regulatory nature covering nuclear safety, radiation protection, radioactive waste management, the transport of radioactive material, the safety of nuclear fuel cycle facilities and management systems. These publications are issued under the terms of Article III of the IAEA’s Statute, which authorizes the IAEA to establish “standards of safety for protection of health and minimization of danger to life and property”. Safety standards are categorized into: • Safety Fundamentals, stating the basic objective, concepts and principles of safety; • Safety Requirements, establishing the requirements that must be fulfilled to ensure safety; and • Safety Guides, recommending measures for complying with these requirements for safety. For numbering purposes, the IAEA Safety Standards Series is subdivided into General Safety Requirements and General Safety Guides (GSR and GSG), which are applicable to all types of facilities and activities, and Specific Safety Requirements and Specific Safety Guides (SSR and SSG), which are for application in particular thematic areas. This booklet lists all current IAEA Safety Standards, including those forthcoming

  13. The IAEA laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-07-01

    While nuclear technology continues to expand in all scientific fields, both research and analysis become increasingly important aspects of the work carried out at the IAEA's two principal laboratories at Seibersdorf and Monaco. They also provide training facilities for students and graduates from many Member States. The following outlines give a brief history of their development, and their present work. (author)

  14. IAEA Sampling Plan

    Energy Technology Data Exchange (ETDEWEB)

    Geist, William H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives for this presentation are to describe the method that the IAEA uses to determine a sampling plan for nuclear material measurements; describe the terms detection probability and significant quantity; list the three nuclear materials measurement types; describe the sampling method applied to an item facility; and describe multiple method sampling.

  15. The IAEA at work

    International Nuclear Information System (INIS)

    2004-03-01

    Fifty years ago, Dwight Eisenhower stood before the United Nations to offer both a warning and a vision. The knowledge to build an atomic bomb was in the hands of rival powers and would soon be shared by many countries, the President said. It was time to create a U.N. body that could ensure that the new technology served no military purpose. It was time, moreover, to 'devise methods whereby this fissionable material would be allocated to serve the peaceful pursuits of mankind' in agriculture, medicine and other peaceful activities. Eisenhower foresaw a world safe from the destructive power of atomic fission but gaining from its technological advances. Half a century later, the world continues to witness his foresight through the work of the International Atomic Energy Agency (IAEA). The IAEA aims at four formidable goals: safeguarding nuclear nonproliferation; enhancing the security of nuclear facilities and radioactive materials; ensuring the safety of nuclear technologies; and promoting nuclear science to meet human needs. As the world's 'nuclear watchdog,' the IAEA's impartial inspectorate verifies the peaceful uses of nuclear energy in scores of countries. By joining the Agency's strengthened safeguards system and concluding an Additional Protocol, countries can assure the world-and the IAEA can verify-that their nuclear activities are not used for weapons purposes. True to Eisenhower's vision, the power of the atom is being tapped for many human benefits, especially in the world's less developed nations. Extreme poverty remains a profound problem today: some 1.2 billion people in the developing world survive marginally on less that US$1 per day. Another 2.8 billion struggle on less than US$2 per day. The IAEA is mobilizing nuclear science to help address these pressing needs. From managing water better, to controlling pests and diseases, to protecting the environment, the IAEA is helping poor countries make sizeable advances. At the same time, the IAEA works

  16. Short (

    NARCIS (Netherlands)

    Telleman, Gerdien; den Hartog, Laurens

    2013-01-01

    Aim: This systematic review assessed the implant survival rate of short (<10 mm) dental implants installed in partially edentulous patients. A case report of a short implant in the posterior region have been added. Materials and methods: A search was conducted in the electronic databases of MEDLINE

  17. IAEA film library

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-01-15

    Most of the scientific and technical films shown during the Second Geneva Conference for the Peaceful Uses of Atomic Energy were donated to IAEA by the producing countries at the end of the Conference. They will form the basic stock for the Agency's loan service intended to provide atomic energy institutions in Member States with film material. A detailed catalogue of the films, classified according to subject and giving conditions of loan or purchase, is now being prepared. In addition to this, information on all films produced in Member Countries dealing with the peaceful uses cf atomic energy is being assembled. The documentary information contained in the films in IAEA's possession relates to the following subjects: national programmes; nuclear physics; accelerators; plasma and fusion; reactors (power, research, material testing and experimental); prospecting and mining; ore dressing; metallurgy; production of fuel elements; treatment of irradiated fuel elements; protection against radiation; detection and counting; uses of radiation in medicine, biochemistry, agriculture and industry; industrial application of nuclear explosions. Most of the commentaries are in the language of the producing country. A few films are available in a choice of two languages. The films donated to the Agency total 82, two of which have been produced in Canada, 13 in France, one in India, one in Romania, one in Spain, 14 in the United Kingdom, one in the Union of South Africa, 47 in the United States of America and two in the USSR: they are mostly illustrations of papers presented at the Second Geneva Conference. In arranging for the circulation of scientific and technical films IAEA wishes to help meet some of the training and information needs of Member States. It is hoped that all organizations producing films on the peaceful uses of atomic energy will entrust copies to the IAEA with a view to their widest possible circulation. In the meantime, the Agency's films have been given

  18. IAEA film library

    International Nuclear Information System (INIS)

    1959-01-01

    Most of the scientific and technical films shown during the Second Geneva Conference for the Peaceful Uses of Atomic Energy were donated to IAEA by the producing countries at the end of the Conference. They will form the basic stock for the Agency's loan service intended to provide atomic energy institutions in Member States with film material. A detailed catalogue of the films, classified according to subject and giving conditions of loan or purchase, is now being prepared. In addition to this, information on all films produced in Member Countries dealing with the peaceful uses cf atomic energy is being assembled. The documentary information contained in the films in IAEA's possession relates to the following subjects: national programmes; nuclear physics; accelerators; plasma and fusion; reactors (power, research, material testing and experimental); prospecting and mining; ore dressing; metallurgy; production of fuel elements; treatment of irradiated fuel elements; protection against radiation; detection and counting; uses of radiation in medicine, biochemistry, agriculture and industry; industrial application of nuclear explosions. Most of the commentaries are in the language of the producing country. A few films are available in a choice of two languages. The films donated to the Agency total 82, two of which have been produced in Canada, 13 in France, one in India, one in Romania, one in Spain, 14 in the United Kingdom, one in the Union of South Africa, 47 in the United States of America and two in the USSR: they are mostly illustrations of papers presented at the Second Geneva Conference. In arranging for the circulation of scientific and technical films IAEA wishes to help meet some of the training and information needs of Member States. It is hoped that all organizations producing films on the peaceful uses of atomic energy will entrust copies to the IAEA with a view to their widest possible circulation. In the meantime, the Agency's films have been given

  19. IAEA Newsbriefs. V. 10, no. 1(67). Mar-Apr 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This issue gives brief information on the following topics: IAEA Board to Consider Proposal on Safeguards, IAEA Director General to Address NPT Conference in mid-April, IAEA Hosts UN System-Wide Meeting, Joint IAEA/EC/WHO Conference on Chernobyl Announced, IAEA Concludes Post-Chernobyl Research Project, Uranium Data in Environmental Monitoring, Director General Address in Chile, South Africa, the Philippines Host Nuclear Information Seminars, Upcoming IAEA Conferences, Symposia and Seminars, Isotopes in Water Resources Management, Environmental Impacts of Radioactive Releases, Joint FAO/IAEA Symposium on Crop Improvement, Other Conferences, Symposia and Seminars in 1995, Safeguards and Non-Proliferation Developments (IAEA Safeguards Agreements, New NPT Members), Handbook on Nuclear Communications, SIT Campaign in Zanzibar, and other short information

  20. IAEA biological reference materials

    International Nuclear Information System (INIS)

    Parr, R.M.; Schelenz, R.; Ballestra, S.

    1988-01-01

    The Analytical Quality Control Services programme of the IAEA encompasses a wide variety of intercomparisons and reference materials. This paper reviews only those aspects of the subject having to do with biological reference materials. The 1988 programme foresees 13 new intercomparison exercises, one for major, minor and trace elements, five for radionuclides, and seven for stable isotopes. Twenty-two natural matrix biological reference materials are available: twelve for major, minor and trace elements, six for radionuclides, and four for chlorinated hydrocarbons. Seven new intercomparisons and reference materials are in preparation or under active consideration. Guidelines on the correct use of reference materials are being prepared for publication in 1989 in consultation with other major international producers and users of biological reference materials. The IAEA database on available reference materials is being updated and expanded in scope, and a new publication is planned for 1989. (orig.)

  1. IAEA at a glance

    International Nuclear Information System (INIS)

    Kinley, D. III

    1997-12-01

    The publication briefly describes the 'peaceful universe' and the work carries out by the International Atomic Energy Agency (IAEA), UN organisation responsible for accelerating and enlarging the contribution of atomic energy to peace, health and prosperity throughout the world. The following subjects are presented: Ensuring safe nuclear energy; Protecting against radiation risks; Safeguarding nuclear materials; Assisting developing countries; Nuclear Technologies solving problems; Providing information and technical services

  2. IAEA safeguards assessments

    International Nuclear Information System (INIS)

    Gruemm, H.; Parisick, R.; Pushkarjov, V.; Shea, T.; Brach, E.

    1981-01-01

    This paper describes the safeguards program administered by the IAEA, which must provide assurance to the international community that agency safeguards have the capacity to deter diversion, if contemplated, to detect diversion, if undertaken, and to provide assurance that no diversions have occurred when none are detected. This assurance to the international community is based upon the capability of the Agency's safeguards program to detect diversion and its complementary effect of deterrance

  3. IAEA at a glance

    Energy Technology Data Exchange (ETDEWEB)

    Kinley, D III

    1997-12-01

    The publication briefly describes the `peaceful universe` and the work carries out by the International Atomic Energy Agency (IAEA), UN organisation responsible for accelerating and enlarging the contribution of atomic energy to peace, health and prosperity throughout the world. The following subjects are presented: Ensuring safe nuclear energy; Protecting against radiation risks; Safeguarding nuclear materials; Assisting developing countries; Nuclear Technologies solving problems; Providing information and technical services

  4. Directory of IAEA databases

    International Nuclear Information System (INIS)

    1992-12-01

    This second edition of the Directory of IAEA Databases has been prepared within the Division of Scientific and Technical Information (NESI). Its main objective is to describe the computerized information sources available to staff members. This directory contains all databases produced at the IAEA, including databases stored on the mainframe, LAN's and PC's. All IAEA Division Directors have been requested to register the existence of their databases with NESI. For the second edition database owners were requested to review the existing entries for their databases and answer four additional questions. The four additional questions concerned the type of database (e.g. Bibliographic, Text, Statistical etc.), the category of database (e.g. Administrative, Nuclear Data etc.), the available documentation and the type of media used for distribution. In the individual entries on the following pages the answers to the first two questions (type and category) is always listed, but the answers to the second two questions (documentation and media) is only listed when information has been made available

  5. The IAEA's WorldAtom Internet site: International news and information services

    International Nuclear Information System (INIS)

    Kyd, D.R.

    2000-01-01

    technical cooperation, safeguards and verification, nuclear safety, radioactive waste management, and other subjects. IAEA General Conference: On the occasion of the IAEA General Conference every year since 1995, a special section is opened within WorldAtom that provides day-to-day coverage of the meetings and the general debate as they occur. Multimedia: WorldAtom also has a modest multimedia component featuring some 50 or more images from IAEA's archives and short Quicktime previews of IAEA-produced films and videos

  6. IAEA Newsbriefs. V. 10, no. 2(68). Jun-Jul 1995

    International Nuclear Information System (INIS)

    1995-01-01

    This issue gives brief information on the following topics: IAEA General Conference opens in September in Vienna, IAEA Board of Governors' June meetings (Safeguards proposals, Technical cooperation, Radiation safety, Radioactive waste management, Liability for nuclear damage, IAEA regular budget for 1996), NPT Conference reaffirms support for IAEA roles, Director General addresses NPT Conference, Seminar on nuclear waste management in Russian Federation, Safety Reviews of Medzamor in Armenia, Update on Nuclear Safety Convention, Cuba and Brazil: Public information seminars, India: Donation to the IAEA Laboratories, Simulated emergency tests global procedures, INIS: Happy Anniversary, China hosts international isotope conference, Nuclear power: Status and outlook, and other short information

  7. IAEA Newsbriefs. V. 15, no. 3(88). Jul-Aug 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This issue gives information about the following topics: the IAEA General Conference (opening on 18 September 2000 in Vienna), IAEA's Director General welcoming of the consensus at NPT review conference, reviews of the IAEA Safeguards' implementation at the June 2000 Board of Governors, upcoming IAEA international symposia and seminars, radiation monitoring of the Irish Sea, the status of states joining international conventions in nuclear fields, survey of radiation sources in Georgia, review of the 'Nuclear World' in the IAEA Annual Report, African partnerships, the evaluation of the radiological impact of Chernobyl accident by the UNSCEAR report, and other short information

  8. IAEA Newsbriefs. V. 13, no. 3(80). Jul-Aug 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This issue gives brief information on the following topics: IAEA General Conference Opens 21 September in Vienna, IAEA Board Concludes Mid-Year Review: Approves Six More Protocols to Safeguards Agreements, Safeguards Implementation in 1997 Reported, Study of Radiological Situation at Mururoa and Fangataufa Atolls, Nuclear Inspections in Iraq Seeking Further Clarification, Pioneering Waste Repository Gets 'Green Light' in the USA, Status of International Conventions, Nuclear Techniques Targeted for Studying Water Pollution, Zimbabwe Farmers Realize Benefits from Nuclear Techniques, Waging a War Against Insect Pests, IAEA and WCO Formally Join Forces Against Illicit Trafficking, Annual Report for 1997, Range of Topics on IAEA Meeting Agenda, New IAEA Books, and other short information

  9. IAEA Newsbriefs. V. 13, no. 2(79). Apr-May 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This issue gives brief information on the following topics: IAEA Board Meetings Set in May and June, Database of the IAEA's International Nuclear Information Systems (INIS) is being made available over the Internet free of charge, Senior Expert Group Starts Review of IAEA Programmes, IAEA Reports to Security Council on Nuclear Inspections in Iraq, Parties Consider Extending Fusion Research through the ITER Project, Status of Joint Safety and Nuclear Liability Conventions, Proposed Global Convention Against Nuclear Terrorism, Upcoming Symposia and Conferences, New IAEA Books, Nuclear Data File, and other short information

  10. IAEA nuclear security program

    Energy Technology Data Exchange (ETDEWEB)

    Ek, D. [International Atomic Energy Agency, Vienna (Austria)

    2006-07-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  11. IAEA nuclear security program

    International Nuclear Information System (INIS)

    Ek, D.

    2006-01-01

    Although nuclear security is a State responsibility, it is nevertheless an international concern, as the consequences of a nuclear security incident would have worldwide impact. These concerns have resulted in the development of numerous international instruments on nuclear security since the terrorist events in the USA on September 11, 2001. The IAEA Office of Nuclear Security has been charged to assist Member States to improvement their nuclear security and to meet the intent of these international obligations in order to ensure a cohesive thread of nuclear security protects the global community. The programs underway and planned by the Office of Nuclear Security will be discussed in this paper. (author)

  12. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  13. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  14. IAEA safeguards glossary. 2001 ed

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-06-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  15. IAEA safeguards glossary. 2001 ed

    International Nuclear Information System (INIS)

    2002-01-01

    IAEA safeguards have evolved since their inception in the late 1960s. In 1980 the IAEA published the first IAEA Safeguards Glossary (IAEA/SG/INF/l) with the aim of facilitating understanding of the specialized safeguards terminology within the international community. In 1987 the IAEA published a revised edition of the Glossary (IAEA/SG/INF/l (Rev.l)) which took into account developments in the safeguards area as well as comments received since the first edition appeared. Since 1987, IAEA safeguards have become more effective and efficient, mainly through the series of strengthening measures approved by the IAEA Board of Governors during 1992-1997, the Board's approval, in 1997, of the Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)), and the work, begun in 1999, directed towards the development and implementation of integrated safeguards. The IAEA Safeguards Glossary 2001 Edition reflects these developments. Each of the 13 sections of the Glossary addresses a specific subject related to IAEA safeguards. To facilitate understanding. definitions and, where applicable, explanations have been given for each of the terms listed. The terms defined and explained intentionally have not been arranged in alphabetical order, but their sequence within each section corresponds to the internal relationships of the subject treated. The terms are numbered consecutively within each section and an index referring to these numbers has been provided for ease of reference. The terms used have been translated into the official languages of the IAEA, as well as into German and Japanese. The IAEA Safeguards Glossary 2001 Edition has no legal status and is not intended to serve as a basis for adjudicating on problems of definition such as might arise during the negotiation or in the interpretation of safeguards agreements or additional protocols. The IAEA

  16. IAEA and food irradiation

    International Nuclear Information System (INIS)

    Machi, Sueo

    1995-01-01

    IAEA was founded in 1957. 122 countries take part in it. It is operated with the yearly ordinary budget of about 20 billion yen and the technical cooperation budget of about 6 billion yen and by 2200 personnel. Its two important roles are the promotion of the peaceful utilization of atomic energy and the prevention of nuclear proliferation. The activities of IAEA are shown. The cooperation with developing countries and the international research cooperation program are the important activities. The securing of foods is an urgent subject, and the utilization of radiation and isotopes has been promoted, aiming at sustaining agriculture. The necessity of food irradiation is explained, and at present, commercial food irradiation is carried out in 28 countries including Japan. The irradiation less than 10 kGy does not cause poisonous effect in any food, according to JECFI. The new international agreement is expected to be useful for promoting the international trade of irradiated foods. The international cooperation for the spread of food irradiation and the public acceptance of food irradiation are reported. (K.I.)

  17. News from IAEA Headquarters

    International Nuclear Information System (INIS)

    1966-01-01

    Full text: Two more countries have joined the Agency - Panama and Jordan - bringing IAEA membership up to 96. Mr. Ginige Richard Walter de Silva (Ceylon) has been appointed Director of the Division of Conference and General Services of the Agency. Born in 1911 at Nugegeda, Ceylon, Mr. de Silva obtained his B.Sc. in Physics at London University and his M.A. in Physics and Mathematics at Cambridge University. He has had a long career in the Civil Service, mainly in the administrative, commercial and finance branches of government. Mr.de Silva took over from Mr. Arthur E. Barrett, Chief of the Conference and Engineering Services, who had been Acting Director of the Division for a long period of time, and who will be leaving the Agency later this year to take up work elsewhere. From the early days of IAEA in 1957, Mr. Barrett has been closely associated with the establishment of the Agency's temporary headquarters in Vienna. He has been in charge of the planning and design of the technical facilities for the various conference installations and responsible for the servicing of all the General Conference sessions since 1958. In fact, Mr. Barrett has played an essential part in the creation of the Vienna Congress Centre in the former Hofburg Imperial Palace. Educated at Cambridge and London Universities, Mr. Barrett has had some 35 years of public service, first in the BBC in London and subsequently with the United Nations in New York. (author)

  18. News from IAEA Headquarters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-15

    Full text: Two more countries have joined the Agency - Panama and Jordan - bringing IAEA membership up to 96. Mr. Ginige Richard Walter de Silva (Ceylon) has been appointed Director of the Division of Conference and General Services of the Agency. Born in 1911 at Nugegeda, Ceylon, Mr. de Silva obtained his B.Sc. in Physics at London University and his M.A. in Physics and Mathematics at Cambridge University. He has had a long career in the Civil Service, mainly in the administrative, commercial and finance branches of government. Mr.de Silva took over from Mr. Arthur E. Barrett, Chief of the Conference and Engineering Services, who had been Acting Director of the Division for a long period of time, and who will be leaving the Agency later this year to take up work elsewhere. From the early days of IAEA in 1957, Mr. Barrett has been closely associated with the establishment of the Agency's temporary headquarters in Vienna. He has been in charge of the planning and design of the technical facilities for the various conference installations and responsible for the servicing of all the General Conference sessions since 1958. In fact, Mr. Barrett has played an essential part in the creation of the Vienna Congress Centre in the former Hofburg Imperial Palace. Educated at Cambridge and London Universities, Mr. Barrett has had some 35 years of public service, first in the BBC in London and subsequently with the United Nations in New York. (author)

  19. Improvements to the IAEA`s electric generation expansion model

    Energy Technology Data Exchange (ETDEWEB)

    Stoytchev, D; Georgiev, S [Committee of Energy, Sofia (Bulgaria)

    1997-09-01

    This paper deals with the implementation of the IAEA`s planning approach and software in Bulgaria. The problems encountered in the process are summarized, with emphasis on two of the limitations of the electric generation expansion model (WASP). The solutions found by Bulgarian experts to overcome these problems are also described, together with some comparative results of the tests performed. (author).

  20. IAEA Newsbriefs. V. 15, no. 1(86). Jan-Feb 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This issue gives brief information on the following topics: the review of the 2001 draft budget, the return of the IAEA safeguards inspectors from Iraq, the strengthened safeguards system including the signature status of additional protocols as of February 2000, the nomination of the former IAEA Director General H. Blix as head of the new monitoring commission for Iraq, recent statements of the IAEA Director General, the sixth NPT review conference which will open in April 2000, IAEA symposia and seminars in the year 2000, states joining international conventions in nuclear fields, the industry forum convened by the IAEA on nuclear energy issues, cooperation of states against the Y2K problem, IAEA strategy to 2005, sharing lessons from Tokaimura accident, in memoriam of the former IAEA Director General Sigvard Eklund, and other short information

  1. The IAEA moves forward

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-15

    At the opening of the Ninth Regular Session of the Agency's General Conference in Tokyo on 21 September, the Director General, Dr. Sigvard Eklund, made a brief survey of some of the current developments in the Agency's activities. The implementation of the Special Fund project for the eradication in Central America of the Mediterranean Fruit Fly by using the sterile male technique has commenced. This project is technically directed by the Joint IAEA/FAO Division of Atomic Energy in Agriculture. This division will also implement the latest project entrusted to the Agency by the Special Fund concerning the establishment in Turkey of a pilot plant for grain disinfestation by radiation. It is anticipated that this pilot plant will demonstrate successfully the feasibility and economic practicability of using radiation on a commercial scale to eliminate considerable losses of stored grain by damage inflicted by insect pests

  2. The evolution of IAEA safeguards

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make `quantum jump` into new phase characterized by the IAEA as the `Strengthened Safeguards System`. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  3. The evolution of IAEA safeguards

    International Nuclear Information System (INIS)

    1998-01-01

    This, second in a new series of booklets dealing with IAEA safeguards is intended for persons professionally interested in the subject as government officials responsible for non-proliferation or management of nuclear facilities, and practitioners of safeguards - the international and national officials charged with implementing IAEA safeguards. It is also aimed at the broader public concerned with the spread of nuclear weapons and interested in nuclear arms control and disarmament. It presents the situation as IAEA safeguards make 'quantum jump' into new phase characterized by the IAEA as the 'Strengthened Safeguards System'. It includes the historical overview of the International safeguards from 1945-1998; the aims and limitations of IAEA Safeguards; a chapter on how safeguards work in practice; as well as new challenges and opportunities

  4. IAEA monitoring field trials workshop

    International Nuclear Information System (INIS)

    Ross, H.H.; Cooley, J.N.; Belew, W.L.

    1995-01-01

    Recent safeguards inspections in Iraq and elsewhere by the International Atomic Energy Agency (IAEA) have led to the supposition that environmental monitoring can aid in verifying declared and in detecting undeclared nuclear activities or operations. This assumption was most recently examined by the IAEA's Standing Advisory Group on Safeguards Implementation (SAGSI), in their reports to the IAEA Board of Governors. In their reports, SAGSI suggested that further assessment and development of environmental monitoring would be needed to fully evaluate its potential application to enhanced IAEA safeguards. Such an inquiry became part of the IAEA ''Programme 93+2'' assessment of measures to enhance IAEA safeguards. In March, 1994, the International Safeguards Group at Oak Ridge hosted an environmental monitoring field trial workshop for IAEA inspectors to train them in the techniques needed for effective environmental sampling. The workshop included both classroom lectures and actual field sampling exercises. The workshop was designed to emphasize the analytical infrastructure needed for an environmental program, practical sampling methods, and suggested procedures for properly planning a sampling campaign. Detailed techniques for swipe, vegetation, soil, biota, and water associated sampling were covered. The overall approach to the workshop, and observed results, are described

  5. IAEA activities related to ITER

    International Nuclear Information System (INIS)

    Dolan, T.J.; Schneider, U.

    2001-01-01

    As agreed between the IAEA and the ITER Parties, special sessions are dedicated to ITER at the IAEA Fusion Energy Conferences. At the 18th IAEA Fusion Energy Conference, held on 4-10 October 2000 in Sorrento, Italy, in the Artsimovich-Kadomtsev Memorial opening session there were special lectures by Carlo Rubbia (President, ENEA, Italy), A. Arima (Japan), and E.P. Velikhov (Russia); an overview talk on ITER by R. Aymar (ITER Director); and a talk on the FTU experiment by F. Romanelli. In total, 573 participants from 34 countries presented 389 papers (including 11 post-deadline papers and the 4 summaries)

  6. IAEA Newsbriefs. V. 11, no. 3(72). Jul-Aug 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This issue gives brief information on the following topics: Board moves toward finalizing Safeguards Measures, IAEA General Conference opens in Vienna, 16 September, Uranium Resources, Production and Demand, Atoms in Agriculture, Controlling Insect Pests, IAEA Meetings, Nuclear Power as an Energy Source, Nuclear Electricity Generation in OECD Countries, Radioactive Waste Safety, Summit Meeting, Mururoa Radiological Study, and other short information

  7. The IAEA Laboratories at Seibersdorf

    International Nuclear Information System (INIS)

    1987-01-01

    The film shows the history, development and activities at the IAEA's Laboratory in Seibersdorf. Recent developments in plant breeding and insect pest control (sterile insect technique) and training facilities for fellows from member states are presented

  8. IAEA Newsbriefs. V. 12, no. 2(75). Apr-May 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This issue gives brief information on the following topics: IAEA safeguards inspectorate granted broader rights, Conferences on nuclear liability, waste safety in early September, States set nuclear safety review meeting, Statements of IAEA Director General, Namibia joins anti-trafficking programme, Symposium on desalination in Republic of Korea, Energy issues on agenda of nuclear fuel cycle symposium in June, IAEA seminars and symposia this autumn, Recent IAEA publications, Atoms for animal health and productivity, Studying the past to learn about the future, Nuclear power status around the world, and other short information

  9. IAEA Newsbriefs. V. 13, no. 1(78). Jan-Feb 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This issue gives brief information on the following topics: IAEA Board Meets in March, Director General ElBaradei Initiates Reviews, Nuclear Energy and Climate Change, States Honour Dr. Hans Blix, Radiological Conditions on Bikini Atoll Reassessed, Radiological Study of Mururoa and Fangataufa Atolls Nears Completion, Nuclear Inspections in Iraq, New Laboratory Set for Seibersdorf, Vienna Library Receives IAEA Collection, Developing Africa's Agricultural Economies, Marine Scientific Expedition to Northwest Pacific, Experts Target Radioactive Waste Management Needs in Russia, States Move to Accept Safeguards Protocol, In Memoriam, More States Sign Safety Convention, 1998 IAEA Scientific Meetings, New IAEA books, and other short information

  10. IAEA Newsbriefs. V. 14, no. 3(84). Jul-Aug 1999

    International Nuclear Information System (INIS)

    1999-01-01

    Tis issue gives brief information on the following topics: Global Nuclear Issues on IAEA General Conference Agenda (27 September 1999, Vienna), Scientific Forum Looks At Nuclear Energy and Sustainable Development, IAEA Board Approves Year 2000 Budget, More Safeguards Protocols, Nuclear's Future: Director General Looks At Global Developments, Nuclear Plant Safety In Eastern Europe, Nuclear Law, International Symposium: The Mox Fuel Cycle, IAEA Teams With Partners On World Water Issues, The Y2K Computer Bug, Strengthened Safeguards System: Status of Additional Protocols, States Join International Conventions in Nuclear Fields, Upcoming IAEA International Seminars and Symposia, and other short information

  11. IAEA Newsbriefs. V. 12, no.1(74). Jan-Feb 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This issue gives brief information on the following topics: IAEA Board of Governors meeting in March, 40th anniversary activities include publication of book on IAEA's history, First preparatory meeting of Parties to Nuclear Safety Convention, African countries seek end of 'cattle plague', Isotope in marine environmental studies, Safe management of spent fuel from research reactors, Upcoming IAEA seminars and symposia, Exemption, exclusion, and clearance of radiation sources, Recent IAEA publications, Cuba to host international symposium, Tlatelolco Treaty marks 30th anniversary signing, and other short information

  12. IAEA Newsbriefs. V. 11, no. 4(73). Nov-Dec 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This issue gives brief information on the following topics: Director General Reviews Changing Global Nuclear Agenda, IAEA Board of Governors, Nuclear Safety Convention Enters into Force, Safeguarding Fissile Materials Released from Defense Programmes, Technical Support to Newly Independent States in Non-Proliferation Field, Analysis and Screening of Safety Events Team (ASSET), Nuclear Power and Sustainable Energy Development, General Conference Adopts Safeguards, Safety Resolutions, UN General Assembly Commends the IAEA, IAEA Publications, IAEA Meetings, India Donates Analytical Instruments, World Food Summit, Bangladesh Studies Pollution Levels, and other short information

  13. IAEA safeguards for geological repositories

    International Nuclear Information System (INIS)

    Moran, B.W.

    2005-01-01

    In September. 1988, the IAEA held its first formal meeting on the safeguards requirements for the final disposal of spent fuel and nuclear material-bearing waste. The consensus recommendation of the 43 participants from 18 countries at this Advisory Group Meeting was that safeguards should not terminate of spent fuel even after emplacement in, and closure of, a geologic repository.' As a result of this recommendation, the IAEA initiated a series of consultants' meetings and the SAGOR Programme (Programme for the Development of Safeguards for the Final Disposal of Spent Fuel in Geologic Repositories) to develop an approach that would permit IAEA safeguards to verify the non-diversion of spent fuel from a geologic repository. At the end of this process, in December 1997, a second Advisory Group Meeting, endorsed the generic safeguards approach developed by the SAGOR Programme. Using the SAGOR Programme results and consultants' meeting recommendations, the IAEA Department of Safeguards issued a safeguards policy paper stating the requirements for IAEA safeguards at geologic repositories. Following approval of the safeguards policy and the generic safeguards approach, the Geologic Repository Safeguards Experts Group was established to make recommendations on implementing the safeguards approach. This experts' group is currently making recommendations to the IAEA regarding the safeguards activities to be conducted with respect to Finland's repository programme. (author)

  14. Mass media and nuclear energy - IAEA's role

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1993-11-01

    The presentation covers the following areas: the wide spectrum of media outlets that the IAEA seeks to serve and their differing needs; the resources available to the IAEA for that purpose; the way in which IAEA endeavours to disseminate authoritative, reliable nuclear-related information to media; the exceptional role the IAEA may be called on to play in emergency situations

  15. Short notice inspections

    International Nuclear Information System (INIS)

    Pouchkarev, V.

    1998-01-01

    For 30 years the IAEA safeguards system have evolved and have been strengthened by the regular introduction of new methods and techniques, improving both its effectiveness and efficiency. The member States of the IAEA have indicated their willingness to accept new obligations and associated technical measure that greatly strengthen the nuclear safeguards system. One element of this is the extent to which the IAEA inspectors have physical access to relevant locations for the purpose of providing independent verification of the exclusively peaceful intent of a State nuclear program. The Protocol to Safeguards granted new legal authority with respect to information on, and short notice inspector access to, all buildings on a nuclear site and administrative agreements that improve the process of designating inspectors and IAEA access to modern means of communication. This report is a short description of unannounced or short notice inspections as measures on which the new strengthened and cost efficient system will be based

  16. IAEA Newsbriefs. V. 16, no. 1(90)

    International Nuclear Information System (INIS)

    2001-01-01

    This issue gives brief information on the following topics: depleted uranium information, nonproliferation progress towards disarmament, IAEA meetings, Chernobyl assistance, environmental studies conference, climate talks resuming, radiological protection of patients, safety and security of radiation sources, Earth Summit 2002 announcement, and other short information

  17. IAEA Newsbriefs. V. 13, no. 4(81). Oct-Nov 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This issue gives brief information on the following topics: IAEA General Conference Concludes in Vienna, Newly Elected IAEA Board of Governors, Director General Highlights Major Work Ahead, Statement to UN General Assembly, More States Accept Strengthened Safeguards Measures, Status of Additional Protocols, Signings at IAEA General Conference, USA Backs International Nuclear Fusion Project, September Meeting on Trilateral Initiative, Results From IAEA-Supported Projects, Database of Nuclear Medicine Best Practices, 1999 Seminar on Radiopharmaceuticals in Medical Treatment, International Symposium on Marine Pollution in Monaco, Safeguards Support From France and United Kingdom, Nuclear Inspections in Iraq, States Move to Join International Safety Conventions, Safety of Radiation Sources and Security of Radioactive Materials, Technical Team Trained in IAEA-Supported Project, Scientific Forum on Water Issues, International Scientific and Technical Meetings, New IAEA Books, and other short information

  18. Programmatic activities of IAEA in nuclear medicine

    International Nuclear Information System (INIS)

    Padhy, A.K.

    2004-01-01

    Nuclear medicine is high-tech medicine. Nevertheless, it is essential for addressing important health problems of people living in developing countries also. Not only is it sometimes expensive to start with, it also involves a lot of technical know-how, requiring transfer of technology from developed to the developing countries. The rapid development of nuclear medicine, of sophisticated instrumentation and radiopharmaceuticals has resulted in an enormous increase in costs and in the need for maintaining quality. These constitute a challenge and a venture when promoting nuclear medicine globally and particularly in developing countries. No other international organization except IAEA has any specific mandate for application of nuclear energy in the area of human health. WHO has no specific programin nuclear medicine, hence the importance of IAEA's involvement. The IAEA has, ever since its inception, given high priority to enhancing the awareness and capabilities of developing member states to employ nuclear technology for health care and medical research. Much of the Agency promoted research in nuclear medicine is delivered through the so called co-ordinated research projects (CRPs). The CRPs are normally organised as multi-center, prospective studies so that large volume of scientific data could be generated in a short period of 18-24 months. The research is normally done within an operational frame work, established and co-ordinated by the IAEA. The reason for this is that the results can be compared despite site or country specific differences. The methods and materials used for such studies usually conform to a predetermined standard. The protocols for various investigations, criteria for patient selection, mode of arriving at a final diagnosis and analysis of data from these multi-center studies are normally agreed upon by the Chief Scientific Investigators from each participating institution and the IAEA prior to the start of the actual work programme. The

  19. IAEA nuclear databases for applications

    International Nuclear Information System (INIS)

    Schwerer, Otto

    2003-01-01

    The Nuclear Data Section (NDS) of the International Atomic Energy Agency (IAEA) provides nuclear data services to scientists on a worldwide scale with particular emphasis on developing countries. More than 100 data libraries are made available cost-free by Internet, CD-ROM and other media. These databases are used for practically all areas of nuclear applications as well as basic research. An overview is given of the most important nuclear reaction and nuclear structure databases, such as EXFOR, CINDA, ENDF, NSR, ENSDF, NUDAT, and of selected special purpose libraries such as FENDL, RIPL, RNAL, the IAEA Photonuclear Data Library, and the IAEA charged-particle cross section database for medical radioisotope production. The NDS also coordinates two international nuclear data centre networks and is involved in data development activities (to create new or improve existing data libraries when the available data are inadequate) and in technology transfer to developing countries, e.g. through the installation and support of the mirror web site of the IAEA Nuclear Data Services at IPEN (operational since March 2000) and by organizing nuclear-data related workshops. By encouraging their participation in IAEA Co-ordinated Research Projects and also by compiling their experimental results in databases such as EXFOR, the NDS helps to make developing countries' contributions to nuclear science visible and conveniently available. The web address of the IAEA Nuclear Data Services is http://www.nds.iaea.org and the NDS mirror service at IPEN (Brasil) can be accessed at http://www.nds.ipen.br/ (author)

  20. IAEA's role in nuclear desalination

    International Nuclear Information System (INIS)

    Khamis, I.; )

    2010-01-01

    Currently, several Member States have shown interest in the utilization of the nuclear energy for seawater desalination not only because recent studies have demonstrated that nuclear desalination is feasible, but also economical and has been already demonstrated in several countries. Therefore, the article will provide a highlight on sea water desalination using nuclear energy as a potential for a sustainable development around the world and the IAEA role in this regards. Special emphasis is placed on past, present, and future nuclear desalination experience in various IAEA Member States. The International Atomic Energy Agency (IAEA) role could be summarized in facilitating cutting-edge developments in the area of seawater desalination using nuclear energy, and establishing a framework for facilitating activities in Member States through information exchange and provision of technical assistance. (author)

  1. IFSS: The IAEA's inspection field support system

    International Nuclear Information System (INIS)

    Muller, R.; Heinonen, O.J.; Schriefer, D.

    1990-01-01

    Recently, highly automated nuclear facilities with enormous volumes of nuclear material accounting data have come into operation. A few others will become operational shortly. Analysis and verification of the data for safeguards purposes is manageable only with improved computer support in the field. To assist its safeguards inspectors, the IAEA has developed the Inspection Field Support System (IFSS). It allows safeguards inspectors to collect, maintain, analyse, and evaluate inspection data on site at nuclear facilities. Previously, field computer support to safeguards inspectors concentrated on providing measurement instrumentation with data storage, but data analysis capabilities were elementary. Also, generic statistical tools were available to handle data that inspectors could (usually manually) input into a computer. Electronic links between these two directions were rudimentary. IFSS integrates the data required for verification and accounting so that inspectors will be able to devote more time to measurements and to derive conclusions at the site in a more timely manner. The system operates on stationary personal computers as well as on portable ones. Its introduction reflects the IAEA Department of Safeguards determination to further improve operational efficiency. It should be emphasized that IFSS implementation is still under development. Several field installations have been made to obtain practical experience and to determine the system's effectiveness

  2. IAEA safeguards in new nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Catton, A. [International Atomic Energy Agency, Vienna (Austria); Durbin, K. [United States Department of Energy, Washington, D.C. (United States); Hamilton, A. [International Atomic Energy Agency, Vienna (Austria); Martikka, E. [STUK, Helsinki (Finland); Poirier, S.; Sprinkle, J. K.; Stevens, R. [International Atomic Energy Agency, Vienna (Austria); Whitlock, J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The inclusion of international safeguards early in the design of nuclear facilities offers an opportunity to reduce project risk. It also has the potential to minimize the impact of safeguards activities on facility operations. Safeguards by design (SBD) encourages stakeholders to become familiar with the requirements of their safeguards agreements and to decide when and how they will fulfil those requirements. As one example, modular reactors are at a design stage where SBD can have a useful impact. Modular reactors might be turnkey projects where the operator takes ownership after commissioning. This comes with a legal obligation to comply with International Atomic Energy Agency (IAEA) safeguards requirements. Some of the newcomer countries entering the reactor market have little experience with IAEA safeguards and the associated non-proliferation obligations. To reduce delays or cost increments, one can embed safeguards considerations in the bid and design phases of the project, along with the safety and security considerations. SBD does not introduce any new requirements - it is a process whereby facility designers facilitate the implementation of the existing safeguards requirements. In short, safeguards experts share their expertise with the designers and vice versa. Once all parties understand the fundamentals of all of the operational constraints, they are better able to decide how best to address them. This presentation will provide an overview of SBD activities. (author)

  3. IAEA paper on institutional arrangements

    International Nuclear Information System (INIS)

    1979-01-01

    At its fifth series of meetings, Working Group 3 received a background paper prepared by the IAEA which had a threefold purpose: firstly, to provide an overview on institutional arrangements under consideration by the INFCE Working Groups; secondly, to explore potential relationships between the various institutional arrangements under consideration; and thirdly, to identify areas where further analysis might be desirable

  4. IAEA Safeguards: Status and prospects

    International Nuclear Information System (INIS)

    Gruemm, H.

    1983-01-01

    The IAEA has just celebrated its 25th anniversary, and the first safeguards inspections were performed twenty years ago. Counting only since 1978, some 5100 inspections had been performed up to mid-1982, using a staff which now includes about 130 inspectors. Despite these impressive figures, and the fact that the IAEA has never detected any apparent diversion of nuclear materials, there are increasing public allegations that safeguards lack effectiveness. After briefly reviewing the nature of IAEA safeguards agreements, the paper examines the political and technical objectives of safeguards together with some of the criticisms which have been voiced. Allocation of limited safeguards resources is examined in terms of the sometimes conflicting allocation criteria which are contained in various safeguards documents. The paper argues that the credibility and deterrent effect of IAEA safeguards should not be underestimated. It should be of greater concern that a few States are known to be operating or constructing non-safeguarded nuclear facilities capable of producing weapons-grade nuclear materials. Thus the risk of safeguards would appear to be greatest at exactly the point where safeguards end. (author)

  5. Training of an IAEA fellow

    International Nuclear Information System (INIS)

    Mackerle, V.

    1960-01-01

    A scientific worker at the Czechoslovak Academy of Sciences, was awarded an IAEA fellowship for training at the Saclay Centre for Nuclear Studies, France. At the end of his training he wrote this article describing some aspects of his experience that are likely to be of wider interest

  6. Training of an IAEA fellow

    Energy Technology Data Exchange (ETDEWEB)

    Mackerle, V [Saclay Centre for Nuclear Studies (France)

    1960-07-15

    A scientific worker at the Czechoslovak Academy of Sciences, was awarded an IAEA fellowship for training at the Saclay Centre for Nuclear Studies, France. At the end of his training he wrote this article describing some aspects of his experience that are likely to be of wider interest

  7. The nuclear techniques and IAEA

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    The International atomic energy agency (IAEA) and its member states help hundred of development projects using nuclear science and technology. Specialists are sent in centers and research laboratories as counselors or speaker, activities of collective and personal training are organised with national institutes, material is supplied for research works or technical projects executed locally. (N.C.)

  8. IAEA safeguards: some pros and cons

    International Nuclear Information System (INIS)

    Kelly, P.

    1986-01-01

    The author gives a personal view of the International Atomic Energy Agency's (IAEA) safeguards. The IAEA safeguards system is described (including containment, surveillance and inspection), and the limitations and strengths of the system are examined. (U.K.)

  9. IAEA Orientation for Diplomats 2013. The IAEA in Overview

    International Nuclear Information System (INIS)

    2013-02-01

    The IAEA's mission is to prevent the spread of nuclear weapons and to help all countries - especially in the developing world - benefit from the peaceful, safe and secure use of nuclear science and technology. Since the Agency was founded in 1957, our work has constantly evolved to meet the changing needs of our member states. We work to improve human and animal health. We help farmers to grow more abundant and robust crops. We help to make clean water more available and to combat environmental pollution. We help countries which wish to use nuclear power to do so safely and securely. Through all of these activities, the IAEA helps member states to use nuclear technology to meet the basic needs of their people. Nuclear power is the best-known peaceful application of nuclear energy. The fukushima Daiichi accident in Japan in 2011 caused considerable public anxiety throughout the world and damaged confidence in nuclear power. Nevertheless, use of nuclear power looks set to grow steadily in the next 20 years, although at a slower rate than was expected before the accident. The fukushima Daiichi accident led to a renewed focus on safety. In 2011, IAEA member states agreed an Action Plan on nuclear safety which they, and the Agency, are now implementing. The Agency also serves as the global platform for strengthening nuclear security. Our work focuses on helping to minimize the risk of nuclear and other radioactive material falling into the hands of terrorists, or of nuclear facilities being subjected to malicious acts. The IAEA is the only organization within the UN system with expertise in nuclear technologies. Our unique specialist laboratories help transfer knowledge and expertise to our member states in areas such as human health, food, water and the environment. cancer control in developing countries is a major priority for the Agency and for me personally. Hundreds of thousands of patients in developing countries do not have access to treatment that could save

  10. IAEA Orientation for Diplomats 2013. The IAEA in Overview

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    The IAEA's mission is to prevent the spread of nuclear weapons and to help all countries - especially in the developing world - benefit from the peaceful, safe and secure use of nuclear science and technology. Since the Agency was founded in 1957, our work has constantly evolved to meet the changing needs of our member states. We work to improve human and animal health. We help farmers to grow more abundant and robust crops. We help to make clean water more available and to combat environmental pollution. We help countries which wish to use nuclear power to do so safely and securely. Through all of these activities, the IAEA helps member states to use nuclear technology to meet the basic needs of their people. Nuclear power is the best-known peaceful application of nuclear energy. The fukushima Daiichi accident in Japan in 2011 caused considerable public anxiety throughout the world and damaged confidence in nuclear power. Nevertheless, use of nuclear power looks set to grow steadily in the next 20 years, although at a slower rate than was expected before the accident. The fukushima Daiichi accident led to a renewed focus on safety. In 2011, IAEA member states agreed an Action Plan on nuclear safety which they, and the Agency, are now implementing. The Agency also serves as the global platform for strengthening nuclear security. Our work focuses on helping to minimize the risk of nuclear and other radioactive material falling into the hands of terrorists, or of nuclear facilities being subjected to malicious acts. The IAEA is the only organization within the UN system with expertise in nuclear technologies. Our unique specialist laboratories help transfer knowledge and expertise to our member states in areas such as human health, food, water and the environment. cancer control in developing countries is a major priority for the Agency and for me personally. Hundreds of thousands of patients in developing countries do not have access to treatment that could save

  11. IAEA Director General to Visit Iran

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: IAEA Director General Yukiya Amano will travel to Tehran on 10 November 2013 to meet senior Iranian leaders on Monday, 11 November 2013, with the aim of strengthening dialogue and cooperation. Separately, as previously announced, IAEA and Iranian experts will meet in Tehran on Monday to discuss technical issues. IAEA)

  12. Nuclear information: An overview of IAEA's activities

    International Nuclear Information System (INIS)

    Marchesi, I.H.; Konstantinov, L.V.

    1986-01-01

    As stated in this overview of IAEA nuclear information activities the Agency's role in information services is rapidly evolving and multifaceted. The Agency maintains more than 200 computerized files of information. Some 60 of these are part of systems directly related to nuclear activities. Some of these are briefly profiled in this overview such as INIS, the IAEA Nuclear Data Programme, the IAEA Incident Reporting System, the IAEA Energy and Economic Databank, the IAEA Power Reactor Information System, the Nuclear Fuel Cycle Information System, and the International Uranium Geology Information System. Future directions are pointed out. Different ways to upgrade information systems are listed

  13. Now and future of IAEA

    International Nuclear Information System (INIS)

    Taniguchi, Tomihiro; Omoto, Akira; Ichimura, Tomoya

    2005-01-01

    IAEA was established in 1957. Main activities consist of safeguards, cooperation of technologies and safety security. It has six sections such as the cooperation of technologies, nuclear energy, safety standards and security, nuclear science and its application, selfguards and management. Eleven Japanese are working in it and they .reported the present activities, problems and the future. Their subjects contain the problems of IAEA and expectation to Japanese, the utilization of nuclear energy, increasing nuclear safety and security in the world, application of radiation and isotope technologies, change and prospect of cooperation of technologies, and non-proliferation and safeguards. It was concluded as a first country holding many nuclear facilities that Japan had not nuclear materials and development activity in hiding and did not transform nuclear fuels reported to weapons. Accordingly, Japan is expected to make effort leading nuclear use for peace and non-proliferation in the world. (S.Y.)

  14. IAEA Statement After Iran Meeting

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: Senior International Atomic Energy Agency officials met an Iranian delegation in Vienna today to seek agreement on a structured approach document to resolve outstanding issues relating to Iran's nuclear programme. The following is a statement by IAEA Deputy Director General Herman Nackaerts after the meeting: ''As announced by the Director General earlier this week, we met today to discuss the structured approach paper. The Agency team came to the meeting in a constructive spirit with the desire and intention of finalising the paper. We presented a revised draft which addressed Iran's earlier stated concerns. However, there has been no progress and, indeed, Iran raised issues that we have already discussed and added new ones. This is disappointing. A date for a follow-on meeting has yet to be fixed.'' (IAEA)

  15. IAEA safeguards approaches and goals

    International Nuclear Information System (INIS)

    Khlebnikov, Nikolai

    2001-01-01

    IAEA safeguards provide a technical means of verifying that political obligations undertaken by States party to international agreements relating to the peaceful uses of nuclear energy are being honored. The Agency assures the international community that States party to Safeguards Agreements are complying with their undertaking not to use facilities and divert nuclear materials from peaceful uses to the manufacture of nuclear explosive devices. The task of IAEA safeguards can be summed up as to detect diversion of nuclear materials committed to peaceful uses of nuclear energy, or the misuse of equipment or facilities subject to certain safeguards agreements, and to deter such diversion or misuse through the risk of early detection. This lecture concentrates on the factors the Agency takes into account in designing and implementing safeguards approaches at facilities. (author)

  16. Nuclear data: IAEA activity overview

    International Nuclear Information System (INIS)

    Marchezi, A.Kh.; Konstantinov, L.V.

    1986-01-01

    The IAEA data banks, aimed at expanding information exchange and maintaining science and technology development in the whole world are briefly described. The following items are are considered: INIS; power reactor information system (PRIS); NPP incident information system (IRS); research reactor data base (RRDB); nuclear fuel cycle information system (NFCIS); nuclear data system (NDS); International uranium geology information system (INTURGEO); power engineering and economy data bank (PEEDB); radioactive material shipment data base; isotopic hydrology data base

  17. TECHNOLOGY ROADMAPPING FOR IAEA SEALS.

    Energy Technology Data Exchange (ETDEWEB)

    HOFFHEINS,B.; ANNESE,C.; GOODMAN,M.; OCONNOR,W.; GUSHUE,S.; PEPPER,S.

    2003-07-13

    In the fall of 2002, the U.S. Support Program (USSP) initiated an effort to define a strategy or ''roadmap'' for future seals technologies and to develop a generalized process for planning safeguards equipment development, which includes seals and other safeguards equipment. The underlying objectives of the USSP include becoming more proactive than reactive in addressing safeguards equipment needs, helping the IAEA to maintain an inventory of cost-effective, reliable, and effective safeguards equipment, establishing a long-term planning horizon, and securing IAEA ownership in the process of effective requirements definition and timely transitioning of new or improved systems for IAEA use. At an initial workshop, seals, their functions, performance issues, and future embodiments were discussed in the following order: adhesive seals, metal seals, passive and active loop seals, ultrasonic seals, tamper indicating enclosures (including sample containers, equipment enclosures, and conduits). Suggested improvements to these technologies focused largely on a few themes: (1) The seals must be applied quickly, easily, and correctly; (2) Seals and their associated equipment should not unduly add bulk or weight to the inspectors load; (3) Rapid, in-situ verifiability of seals is desirable; and (4) Seal systems for high risk or high value applications should have two-way, remote communications. Based upon these observations and other insights, the participants constructed a skeletal approach for seals technology planning. The process begins with a top-level review of the fundamental safeguards requirements and extraction of required system features, which is followed by analysis of suitable technologies and identification of technology gaps, and finally by development of a planning schedule for system improvements and new technology integration. Development of a comprehensive procedure will require the partnership and participation of the IAEA. The

  18. IAEA Safeguards Information System (ISIS)

    International Nuclear Information System (INIS)

    1984-10-01

    Publication of this technical document should serve for better understanding of the technical and functional features of the IAEA Safeguards Information System (ISIS) within the Agency, as well as in the National Systems of accounting for and control of nuclear material. It will also serve as a foundation for further development and improvement of the design and modifications of the Safeguards Information System and its services as a function of Safeguards implementation

  19. IAEA symposium on international safeguards

    International Nuclear Information System (INIS)

    1999-01-01

    The eighth IAEA Symposium on International Safeguards was organized by the IAEA in cooperation with the Institute of Nuclear Materials Management and the European Safeguards Research and Development Association. It was attended by over 350 specialists and policy makers in the field of nuclear safeguards and verification from more than 50 countries and organizations. The purpose of the Symposium was to foster a broad exchange of information on concepts and technologies related to important developments in the areas of international safeguards and security. For the first time in the history of the symposia, the IAEA is issuing proceedings free of charge to participants on CD-ROM. The twenty-two plenary, technical, and poster sessions featured topics related to technological and policy aspects from national, regional and global perspectives. The theme of the Symposium: Four Decades of Development - Safeguarding into the New Millennium set the stage for the commemoration of a number of significant events in the annals of safeguards. 1997 marked the Fortieth Anniversary of the IAEA, the Thirtieth Anniversary of the Tlatelolco Treaty, and the Twentieth Anniversary of the Department of Safeguards Member State Support Programmes. There were special events and noted presentations featuring these anniversaries and giving the participants an informative retrospective view of safeguards development over the past four decades. The proceedings of this symposium provide the international community with a comprehensive view of where nuclear safeguards and verification stood in 1997 in terms of the growing demands and expectations. The Symposium offered thoughtful perspectives on where safeguards are headed within the broader context of verification issues. As the world of international nuclear verification looks towards the next millennium, the implementation of the expanding and strengthened safeguards system presents formidable challenges

  20. IAEA safeguards - a 1988 perspective

    International Nuclear Information System (INIS)

    Jennekens, J.

    1988-01-01

    The problem of IAEA safeguards as regards its perspectives for 1988 is discussed. The necessity of balancing between safeguards measures required for the timely detection of nuclear material diversion to military purposes and measures to prove the absence of diversion is stated. Accurately working safeguards system aimed at the provision of nondiversion can include, as an accompanying component, any deterrence element required. Such a system will be more expensive than any other altrenatives but it will undoubtly be more suitable and accepatble

  1. IAEA Supports World Cancer Day

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2008-01-01

    Full text: Cancer can strike anyone at anytime, young or old, rich or poor. It knows no borders. World Cancer Day, on 4 February, was initiated to raise global awareness of cancer issues and stimulate new strategies and thinking to combat the killer disease. Nowhere is the need greater than in the developing world, where millions of people are suffering and dying due to lack of cancer prevention and treatment. According to the World Health Organisation (WHO), 84 million people will die of cancer in the next 10 years, more than 70% of them in low-income countries, unless action is taken now. The IAEA's Programme of Action for Cancer Therapy (PACT) was created to help poorer countries confront the growing cancer crisis by integrating radiotherapy into comprehensive cancer control programmes. As it celebrates its third birthday on World Cancer Day, PACT can claim significant progress in building effective relationships with a broad array of stakeholders, initiating six pilot projects and gaining increasing support from Member States. The IAEA commends all organizations, agencies and individuals engaged in the battle to defeat this dreadful disease. We look forward to continued collaboration with international partners to help bring hope to cancer patients, to relieve their suffering and to save lives. (IAEA)

  2. IAEA safeguards and classified materials

    International Nuclear Information System (INIS)

    Pilat, J.F.; Eccleston, G.W.; Fearey, B.L.; Nicholas, N.J.; Tape, J.W.; Kratzer, M.

    1997-01-01

    The international community in the post-Cold War period has suggested that the International Atomic Energy Agency (IAEA) utilize its expertise in support of the arms control and disarmament process in unprecedented ways. The pledges of the US and Russian presidents to place excess defense materials, some of which are classified, under some type of international inspections raises the prospect of using IAEA safeguards approaches for monitoring classified materials. A traditional safeguards approach, based on nuclear material accountancy, would seem unavoidably to reveal classified information. However, further analysis of the IAEA's safeguards approaches is warranted in order to understand fully the scope and nature of any problems. The issues are complex and difficult, and it is expected that common technical understandings will be essential for their resolution. Accordingly, this paper examines and compares traditional safeguards item accounting of fuel at a nuclear power station (especially spent fuel) with the challenges presented by inspections of classified materials. This analysis is intended to delineate more clearly the problems as well as reveal possible approaches, techniques, and technologies that could allow the adaptation of safeguards to the unprecedented task of inspecting classified materials. It is also hoped that a discussion of these issues can advance ongoing political-technical debates on international inspections of excess classified materials

  3. Strengthening IAEA Safeguards for Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Bruce D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Anzelon, George A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Budlong-Sylvester, Kory [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    broaden the IAEA safeguards toolbox, the study recommends that the Agency consider closing potential gaps in safeguards coverage by, among other things: 1) adapting its safeguards measures based on a case-by-case assessment; 2) using more frequent and expanded/enhanced mailbox declarations (ideally with remote transmission of the data to IAEA Headquarters in Vienna) coupled with short-notice or unannounced inspections; 3) putting more emphasis on the collection and analysis of environmental samples at hot cells and waste storage tanks; 4) taking Safeguards by Design into account for the construction of new research reactors and best practices for existing research reactors; 5) utilizing fully all legal authorities to enhance inspection access (including a strengthened and continuing DIV process); and 6) utilizing new approaches to improve auditing activities, verify reactor operating data history, and track/monitor the movement and storage of spent fuel.

  4. IAEA Newsbriefs. V. 14, no. 2(83). Apr-May 1999

    International Nuclear Information System (INIS)

    1999-01-01

    This issue gives brief information on the following topics: Nuclear Safety: States Taking 'Steps in Right Direction', Contracting Parties to Convention on Nuclear Safety, Nuclear Power Worldwide, Nuclear's Future: Director General Address in Japan, Year 2000 Programme and Budget Goes Before IAEA Board, The IAEA and Y2K Issues: Reports, Workshops, Internet Links, Strengthened Safeguards System: Status of Additional Protocols, States Join International Conventions in Nuclear Fields, IAEA International Scientific Symposia and Seminars in 1999, In Memoriam: Munir Ahmad Khan, and other short information

  5. IAEA Newsbriefs. V. 15, no. 2(87). Apr-May 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This issue gives information about the following topics: meeting of states for review of global nuclear non-proliferation treaty, status of signatures of Additional Protocols for strengthened safeguards system as of April 2000, IAEA participation in projects on water resources in relation to the world water day 2000, IAEA's programmes and activities for technology transfer, IAEA international symposia and seminars, safety of radioactive waste management, joining international conventions in nuclear field by more states, status of nuclear power around the world as of April 2000, and other short information

  6. IAEA verification experiment at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Gordon, D.M.; Subudhi, M.; Calvert, O.L.; Bonner, T.N.; Cherry, R.C.; Whiting, N.E.

    1998-01-01

    In April 1996, the United States (US) added the Portsmouth Gaseous Diffusion Plant to the list of facilities eligible for the application of International Atomic Energy Agency (IAEA) safeguards. At that time, the US proposed that the IAEA carry out a Verification Experiment at the plant with respect to the downblending of about 13 metric tons of highly enriched uranium (HEU) in the form of UF 6 . This material is part of the 226 metric tons of fissile material that President Clinton has declared to be excess to US national-security needs and which will be permanently withdrawn from the US nuclear stockpile. In September 1997, the IAEA agreed to carry out this experiment, and during the first three weeks of December 1997, the IAEA verified the design information concerning the downblending process. The plant has been subject to short-notice random inspections since December 17, 1997. This paper provides an overview of the Verification Experiment, the monitoring technologies used in the verification approach, and some of the experience gained to date

  7. The next twenty years - IAEA's role

    International Nuclear Information System (INIS)

    Tape, G.F.

    1977-01-01

    The twentieth anniversary of an institution is an appropriate time to look back and to ask what has been achieved. It is also an appropriate time to look ahead and to ask what should be the mission for the future. How can the strengths of the International Atomic Energy Agency (IAEA) be best utilized, what new opportunities should be seized upon, and what challenges should the IAEA be prepared to meet in the next twenty years? Forward planning is a very necessary activity in today's world. There are so many demands on national or institutional resources that careful analysis of options is necessary to establish priorities and ultimately to provide for implementation. But such planning must be done carefully with full appreciation for the validity and sensitivity of the input assumptions and data. Furthermore, today's plan, while setting goals and directions, cannot be so inflexible that it cannot be responsive to ever-changing political, economic and technical constraints or opportunities. Thus in looking ahead, the plan must contain provisions for flexibility to provide for further modifications in the light of ever-changing knowledge, attitudes, and world conditions. The experience of the past five years in the energy field, and especially in nuclear energy, underscores this need. In looking ahead for the next twenty years, we are attempting to describe the International Atomic Energy Agency and its role through the twentieth century. In doing so, we are automatically laying the base for the Agency's work going into the twenty-first century. In short, we are trying to visualize a programme that can serve the coming generation and, in doing so, creating a base from which the needs of the succeeding generation can be met. This is a large order and the crystal ball is less than clear. (author)

  8. The IAEA power reactor information system - PRIS

    International Nuclear Information System (INIS)

    Laue, H.J.; Qureshi, A.; Skjoeldebrand, R.; White, D.

    1983-01-01

    The IAEA Power Reactor Information System, PRIS, is based on a collection of basic design data and operating experience data which the IAEA started in 1970. PRIS is used for annual publications on 'Power Reactors in Member States', 'Operating Experience with Nuclear Power Stations in Member States', which gives annual operating information for individual plants, and a 'Performance Analysis Report' summarizing each year's and earlier experience. Since 1973 information has been collected in a systematic manner on significant plant outages (= more than 10 full power hours). There is now information on more than 10,000 outages in the system which permits some conclusions to be drawn both in regard to individual plants and to categories of plants on the significance of different outage reasons and different types of equipment failures. PRIS has not been intended to be a component reliability information system as an international data collection must stop short of the level of detail which would be needed for that purpose. The objectives of PRIS have been to provide a factual background for assumptions on parameters which are essential for economic evaluations and for systems operation planning (load factor and availability). The outage information does, however, lend itself to conclusions about generic problems in different categories of plants and it can be used by an individual operator to find other plants where information about particular problems can be obtained. It would also now be possible to use PRIS for setting availability goals based on experience and not only on theoretical design considerations. The paper demonstrates the conclusions which can be drawn from 662 reactor years of operation of light and heavy water pressurized reactors and 390 reactor years of boiling water reactors and, in particular, the role that the main heat removal system and its components have played in the equipment failure category

  9. The IAEA inspectorate, including new requirements

    International Nuclear Information System (INIS)

    Alston, W.

    1998-01-01

    The basic purpose of the IAEA safeguards system is 'timely detection of diversion of significant quantities of nuclear material'. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  10. The IAEA inspectorate, including new requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alston, W [International Atomic Energy Agency, Department of Safeguards, Division of Operations A, Vienna (Austria)

    1999-12-31

    The basic purpose of the IAEA safeguards system is `timely detection of diversion of significant quantities of nuclear material`. Safeguards implementation is regulated by the IAEA Statute and individual safeguards agreements. The IAEA Inspectorate and its scope are described together with the technical objectives and the concept of verification. Effective implementation of safeguards requires cooperation between the IAEA and the state concerned. To this end, agreements require that the State should establish and maintain a system of accounting for and control of nuclear material subject to safeguards. The IAEA safeguards system has demonstrated a flexibility capable of responding to the verification demands of Member States. Is is capable of safeguarding nuclear materials, facilities, equipment and non-nuclear material. The IAEA is in the process of strengthening safeguards in its verification of declared activities

  11. IAEA Radiation Events Database (RADEV)

    International Nuclear Information System (INIS)

    Wheatley, J.; Ortiz-Lopez, P.

    2001-01-01

    Whilst the use of ionizing radiation continues to bring benefits to many people throughout the world there is increasing concern at the number of reported accidents involving radiation. Such accidents have had an impact on the lives of patients, workers and members of the public, the consequences of which have ranged from trivial health effects to fatalities. In order to reduce the number of accidents and to mitigate their consequences it is, therefore, necessary to raise awareness of the causes of accidents and to note the lessons that can be learned. The IAEA's database on unusual radiation events (RADEV) is intended to provide a world-wide focal point for such information. (author)

  12. IAEA safeguards: Challenges and opportunities

    International Nuclear Information System (INIS)

    1993-01-01

    The history of the IAEA safeguards regime is described. New challenges and opportunities are discussed in connection with the discovery in Iraq of a clandestine nuclear weapons development programme, the difficulties experienced in the implementation of the safeguards agreement with the Democratic People's Republic of Korea, the conclusion of a comprehensive safeguards agreement with Argentina, Brazil and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials, recent developments in South Africa, the emergence of newly independent States that made up the former USSR. 2 figs

  13. Nuclear data services provided by the IAEA

    International Nuclear Information System (INIS)

    Schwerer, O.; Oblozinsky, P.

    2001-01-01

    This paper summarizes the various nuclear data types, libraries and services available free of charge from the IAEA Nuclear Data Section. The databases are collected, maintained and made available within the framework of an international nuclear data center's network. Particular emphasis is given to online services via the Internet. The URL address of the IAEA Nuclear Services is http://www-nds.iaea.or.at. (author)

  14. IAEA symposium on international safeguards. Extended synopses

    International Nuclear Information System (INIS)

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials

  15. IAEA symposium on international safeguards. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials Refs, figs, tabs

  16. The IAEA Accident Management Programme

    International Nuclear Information System (INIS)

    Kabanov, L.; Jankowski, M.; Mauersberger, H.

    1993-01-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.)

  17. The IAEA Accident Management Programme

    Energy Technology Data Exchange (ETDEWEB)

    Kabanov, L.; Jankowski, M.; Mauersberger, H. (International Atomic Energy Agency, Vienna (Austria))

    1993-02-01

    Accident prevention and mitigation programmes and the Emergency Response System (ERS) are important elements of the Agency's activities in the area of nuclear power plant (NPP) safety. Safety Codes and Guides on siting, design, quality assurance and the operation of NPPs have been produced and are used by NPP operating organizations. Nuclear safety evaluation services are provided by the IAEA. The Emergency Response System and the International Nuclear Event Scale (INES) have been developed. The framework for the development of an accident management programme has been set up. The main goal is to develop an Accident Management Manual to provide a systematic, structured approach to the development and implementation of an accident management programme at NPPs. An outline of the Manual has been distributed and the first draft is available. The component parts are: Co-ordinated research programmes (CRPs) on severe accident management and containment behaviour; the use of vulnerability analysis; mitigation of the effects of hydrogen, and generic symptom oriented emergency operating procedures. The IAEA provides guidance by the dissemination of information on methods for accident management; collates information on approaches in this field in different organizations and countries; and arranges exchange of experience and the promulgation of knowledge through the training of NPP managers and senior technical staff. (orig.).

  18. FORATOM - IAEA Workshop, Mamaia 2006

    International Nuclear Information System (INIS)

    Florescu, Nicolai

    2006-01-01

    The FORATOM Workshop was organized on May 16-19, 2006 by IAEA and FORATOM in the frame of common actions of experience exchange planned to take place every 18 months. At the same time at Mamaia, Romania, a meeting of the Business Excellence FORATOM group took place in which the Romanian organization ROMATOM is represented by the author of the paper from behalf of the Quality Management Group. Romanian Atomic Forum, ROMATOM as a member of European Atomic Forum, FORATOM, plays an active role in nuclear field in Romania. The Business Excellence Working Group, as the most active group in FORATOM, has the following objectives: - to promote and support the safe and effective performance of nuclear facilities to encourage the common of high level business standards; - to support FORATOM to enable decision makers and the public at large to get informed; - to facilities the exchange of best practices for management systems in order to raise the level of awareness and understanding so that members can better support the improvement within the member organizations, the other nuclear facilities in the BEx -WG member countries, the regular organization in the member countries, and international organizations active in the same fields of interest; - to provide a focus for influencing the development and harmonization of nuclear industry standards and practices to achieve improved business effectiveness and quality and safety management of nuclear facilities; - to advise FORATOM on management system issues. The FORATOM Workshop organized at Mamaia was held under the topics 'Successful Management of Organizational Change'. Three key issues for debate were established as follows: - key issue 1, effective handling of organizational change: drivers for change; managing change: the IAEA perspective; managing change within a utility; managing outsourcing; - key issue 2, organizational culture and safety culture: management systems and safety culture; proactive management; developing

  19. IAEA general conference confident but. Special report from the annual meeting of the IAEA in Vienna, 22-26 September

    Energy Technology Data Exchange (ETDEWEB)

    1975-11-01

    A brief review is given of the 19th Session of the General Conference of the IAEA, held in September in Vienna. A major theme was investment finance, highlighting the conflict between short and long term economics in relation to nuclear power plants. The problem of finance for developing countries was referred to by several delegates and particular reference is made to the presentation of the problems by Dr. Friedmann of the World Bank. Other topics singled out for reference were various aspects of nuclear power expansion in developing countries including the idea of centralised fuel cycle services and also the non-availability, in spite of potential market, for the small nuclear power stations of around 200 MW(e). The joint project of the IAEA and the International Institute for Applied Systems Analaysis on risk assessment and public acceptance of risk is discussed.

  20. IAEA general conference confident but... Special report from the annual meeting of the IAEA in Vienna, 22-26 September

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A brief review is given of the 19th Session of the General Conference of the IAEA, held in September in Vienna. A major theme was investment finance, highlighting the conflict between short and long term economics in relation to nuclear power plants. The problem of finance for developing countries was referred to by several delegates and particular reference is made to the presentation of the problems by Dr. Friedmann of the World Bank. Other topics singled out for reference were various aspects of nuclear power expansion in developing countries including the idea of centralised fuel cycle services and also the non-availability, in spite of potential market, for the small nuclear power stations of around 200 MW(e). The joint project of the IAEA and the International Institute for Applied Systems Analaysis on risk assessment and public acceptance of risk is discussed. (U.K.)

  1. IAEA General Conference begins annual session

    International Nuclear Information System (INIS)

    2001-01-01

    The document gives general information about the opening and the programme of the 45th regular session of the IAEA General Conference (17-21 September 2001, Austria Center Vienna). The conference is attended by ministers and high-level governmental representatives from 132 Member States of the IAEA

  2. IAEA General Conference begins annual session

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives general information about the opening and the programme of the 44th regular session of the IAEA General Conference (18 -22 September 2000, Austria Center Vienna). The conference is attended by ministers and high-level governmental representatives from 130 Member States of the IAEA

  3. IAEA inspections and Iraq's nuclear capabilities

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1992-04-01

    It is reported that IAEA teams have been investigating Iraq's nuclear capabilities since May 1991 and following the Gulf War under terms of United Nations Security Council Resolution 687 directed at eliminating Iraq's weapons of mass destruction and means to produce and use them. A chronology of the events as well as the IAEA plan of further actions are described

  4. 10 CFR 75.8 - IAEA inspections.

    Science.gov (United States)

    2010-01-01

    ... NRC Operations Center (commercial telephone number 301-816-5100). (d) Each applicant, licensee, or... surveillance; and (6) Perform other measures requested by the IAEA and approved by the NRC. (f) Each applicant... measurement and surveillance; (ii) Enabling the IAEA to apply its seals and other identifying and tamper...

  5. IAEA activities on nuclear fuel cycle 1997

    International Nuclear Information System (INIS)

    Oi, N.

    1997-01-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme

  6. IAEA activities on nuclear fuel cycle 1997

    Energy Technology Data Exchange (ETDEWEB)

    Oi, N [International Atomic Energy Agency, Vienna (Austria). Nuclear Fuel Cycle and Materials Section

    1997-12-01

    The presentation discussing the IAEA activities on nuclear fuel cycle reviews the following issues: organizational charts of IAEA, division of nuclear power and the fuel cycle, nuclear fuel cycle and materials section; 1997 budget estimates; budget trends; the nuclear fuel cycle programme.

  7. Guidelines for preparing IAEA design information questionnaires

    International Nuclear Information System (INIS)

    Swartz, J.M.; Bieber, A.M.

    1980-01-01

    The format of the IAEA Design Information Questionnaires and the SAI prepared guidelines for completing them, is described. The guidelines should assist facility operators in meeting the time constraints set forth in the Subsidiary Arrangements by effectively supplying the information needed by the IAEA and in minimizing resource allocations to the preparation effort. 8 refs

  8. IAEA Illicit Trafficking Database (ITDB)

    International Nuclear Information System (INIS)

    2010-01-01

    The IAEA Illicit Trafficking Database (ITDB) was established in 1995 as a unique network of points of contact connecting 100 states and several international organizations. Information collected from official sources supplemented by open-source reports. The 1994 - GC 38, resolution intensifies the activities through which the Agency is currently supporting Member States in this field. Member states were notified of completed database in 1995 and invited to participate. The purpose of the I TDB is to facilitate exchange of authoritative information among States on incidents of illicit trafficking and other related unauthorized activities involving nuclear and other radioactive materials; to collect, maintain and analyse information on such incidents with a view to identifying common threats, trends, and patterns; use this information for internal planning and prioritisation and provide this information to member states and to provide a reliable source of basic information on such incidents to the media, when appropriate

  9. The k0-IAEA program

    International Nuclear Information System (INIS)

    Rossbach, M.; Blaauw, M.; Bacchi, M.A.; Xilei Lin

    2007-01-01

    New software was developed to assist users of the k 0 -approach in NAA to harmonize their results. The k 0 -IAEA software uses the holistic approach developed at the Delft Interfaculty Reactor Institute and incorporates the latest k 0 data catalogue together with additional information on coincidence and sum peaks, which together are used in the joint evaluation of samples. Multiple irradiations as well as multiple measurements of samples are treated simultaneously. Flux parameter determination as well as efficiency calibrations of detectors are accommodated using a singlemeasurement approach as developed at the Interfaculty Reactor Institute, Delft. The standard Windows software will stimulate the application of the k 0 approach through the free distribution and updates of the program. (author)

  10. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1985-01-01

    In this session, physical protection, nuclear material accounting and control, and containment and surveillance have been discussed, with emphasis on the interactions of these measures within the context of IAEA safeguards. In addition, the current physical protection equipment and techniques have been reviewed. The interactions can be summarized as follows. Although physical protection is a fundamental element of IAEA safeguards, it is solely a state/facility operator responsibility. While the IAEA has an interest in promoting the implementation of effective physical protection systems, it serves only in an advisory capacity. Nuclear material accounting directly involves the state, facility operator, and the IAEA. Facility records and reports provided by the state are independently verified by the IAEA. The SSAC is of fundamental importance in this process. Containment and surveillance measures are used by the UAEA. Installation and routine use of C/S equipment must be approved by the state and facility operator, and must not affect facility operations or safety

  11. Directory of IAEA databases. 4. ed.

    International Nuclear Information System (INIS)

    1997-06-01

    This fourth edition of the Directory of IAEA Databases has been prepared within the Division of NESI. ITs main objective is to describe the computerized information sources available to the public. This directory contains all publicly available databases which are produced at the IAEA. This includes databases stored on the mainframe, LAN servers and user PCs. All IAEA Division Directors have been requested to register the existence of their databases with NESI. At the data of printing, some of the information in the directory will be already obsolete. For the most up-to-date information please see the IAEA's World Wide Web site at URL: http:/www.iaea.or.at/databases/dbdir/. Refs, figs, tabs

  12. The IAEA as a publisher

    International Nuclear Information System (INIS)

    1965-01-01

    One of the largest publishing enterprises in Vienna has developed in then Agency, incidental to its function of disseminating scientific information. The Agency recently completed its sixth year of scientific publication of literature dealing with the peaceful uses of atomic energy. Quite early in the history of IAEA, this work grew to considerable dimensions. In 1959 the programme consisted of two volumes in the Proceedings series, one in the Safety series, and four Technical Directories, making a total in that year of 18 000 books, in addition to those prepared for free distribution. In the following year, as Agency meetings and other activities developed, the list was much longer consisting of six volumes in the Proceedings series, two in the Safety series, two in the Technical Directory series, eight in the Review series, two in the Bibliographical series, three panel reports, one volume in the legal series and the first issue of 'Nuclear Fusion'. The total number of volumes sold was 24 000, in addition to the large number for free distribution. Thereafter, there was some difficulty in keeping up with the expanding demands, and some arrears of contract printing began to accumulate. It was therefore decided to introduce internal printing of Agency publications. The adoption of the 'cold type' method in 1962 led to considerable savings and faster production. During 1963, printing and binding equipment was installed which rendered the Agency independent of contractual services. Current policy is to print and bind internally all IAEA publications except the journal, 'Nuclear Fusion', Average annual production now consists of about twenty volumes of the proceedings of scientific meetings, six technical directories (the Directory of Nuclear Reactors has been published in its fifth edition), several bibliographies and numerous technical reports

  13. Radiation safety - an IAEA perspective

    International Nuclear Information System (INIS)

    Persson, L.

    1993-01-01

    The activities of the IAEA relating to radiation safety cover: The preparation of International Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources - it is expected that the new Basic Safety Standards will be adopted by the sponsoring organizations in 1994. The radiological consequences of the Chernobyl accident: the thyroid cancer controversy - the hypothesis that must be tested is whether the reported increased incidence of thyroid cancer due to exposure to radioactive iodine released in the Chernobyl accident, and there are several questions that must be answered before a firm conclusion can be reached. Emergency Response Services (ERS): In March 1993, at the request of Viet Nam, which invoked the Energency Assistance Convention, a medical team organized by the IAEA went to Hanoi and assisted in arranging for an overexposed person to be transferred from Viet Nam to Paris for specialized medical treatment. In April 1993, the ERS was used to inform Member States of the consequences of an explosion at the Tomsk 7 fuel reprocessing plant in Siberia, Russia, which caused a radiation leak. Reassessing the long range transport of radioactive material through the environment: Data from the Chernobyl accident have been used for model validation in the Atmospheric Transport Model Evaluation Study (ATMES). A follow-up programme, the European Tracer Experiment (ETEX) with experimental studies of long range atmospheric movements over Europe has been established in order to increase knowledge and prediction capability. As part of the programme, a non-toxic atmospheric tracer will be released under suitable conditions in 1994. The Radiation Protection Advisory Teams Service (RAPAT): In many of the developing countries visited, the lack of an adequate infrastructure for radiation protection is the main obstacle to improved radiation protection. Strengthening radiation and nuclear safety infrastructures in successor states of the USSR: The

  14. Clarifying the role of the IAEA

    International Nuclear Information System (INIS)

    Smith, R.

    1983-01-01

    The IAEA has many roles in promoting the role of nuclear energy for peaceful purposes. The most significant role that the IAEA undertakes is the development and application of safeguards to nuclear material, other material, equipment and facilities; this work consumes about 35% of the IAEA budget. The authority, procedures and limitations for the application of safeguards were described together with the relationship between the IAEA and the States where safeguards are in effect. Claims that the IAEA is not adequately fulfilling its safeguard role are usually based on misunderstandings of its role and authority. The IAEA's relationship to inspected States is not adversarial, regulatory, or guarding. It provides assurance to all States that peaceful nuclear activities are not diverted to a military program and in so doing enhances the reputation of States to whom safeguards are applied. Safeguards would be only one of many factors that would be involved in a States embarking on a military nuclear program. If proliferation of nuclear weapons occurs, this may be due in entirety or in part to these other factors. Many States could now undertake a military program but do not do so, because of their enlightened viewpoint that such activities are not in their own, or the world's best interests. However, any trend to further proliferation of nuclear weapons could be diminished by: -a lessening of political and economic tension between States, -restrictions on the supply of required technology, equipment, and material, and -an effective IAEA safeguard regime. There has been a regrettable trend to politicization in the direction and operation of the IAEA. It is hoped that this trend will be reversed and that IAEA will return to its earlier more technical role. There is a pressing need for the general public and governments to more fully understand the IAEA's role and its limitations

  15. Role of Slovakia within the IAEA Decommissioning Related Activities

    International Nuclear Information System (INIS)

    Michal, V.; Stubna, M.

    2009-01-01

    Slovakia has a long-term experience with the IAEA decommissioning related activities as a recipient of Agency assistance and then as a country offering assistance to others. Background, short 'history' and current status of Slovakian national technical cooperation (TC) projects SLR/4/008 'Robotic Technologies for Decontamination and Decommissioning of the Bohunice A1 NPP' and SLR/3/002 'Management of Radioactive Waste from the A1 Nuclear Power Plant Decommissioning' will be described in paper. The first TC project SLR/4/008 was solved by the main Slovakian counterpart, company VUJE, Inc., from 2001 to 2006. Second TC project SLR/3/002 is ongoing with extension to 2011. Thanks to the implementation of a long-term large-scale 'Project of the A1 NPP Decommissioning - Stage I' (1996-2007), financed by Slovak National Nuclear Account (decommissioning fund), as well as implementation of the IAEA TC national projects a comprehensive know-how in the field of D and D and RAW management was obtained. Moreover, technologies and facilities necessary for implementation of decommissioning and RAW management projects were developed. Thanks to this development Slovakia offers donor assistance to other countries in subjected fields through IAEA TC program. The type and scope of assistance for Armenia, Bulgaria, Egypt, Latvia, Lithuania and The Ukraine is described in the paper. The above-mentioned national projects are not only activities of Slovakia within the IAEA TC program. Regional TC project RER/3/005 'Support in Planning the Decommissioning of Nuclear Power Plants and Research Reactors' has been ongoing from 2007 with accepted extension to 2011. About nine countries from Eastern and Central Europe participate in the project (for the NPPs part) and Slovakia plays the role of LCC (Leading Country Coordinator). On the basis of suggestion of Nuclear Regulatory Authority of the Slovak Republic, VUJE is the coordinator of the regional project. Moreover, Slovakia would be the

  16. Optimizing the IAEA safeguards system

    International Nuclear Information System (INIS)

    Drobysz, Sonia; Sitt, Bernard

    2011-09-01

    During the 2010 Non-Proliferation Treaty Review Conference, States parties recognized that the Additional Protocol (AP) provides increased confidence about the absence of undeclared nuclear material and activities in a State as a whole. They agreed in action 28 of the final document to encourage 'all States parties that have not yet done so to conclude and bring into force an AP as soon as possible and to implement them provisionally pending their entry into force'. Today, 109 out of 189 States parties to the NPT have brought an AP in force. The remaining outliers have not yet done so for three types of reasons: they do not clearly understand what the AP entails; when they do, they refuse to accept new non-proliferation obligations either on the ground of lack of progress in the realm of disarmament, or simply because they are not ready to bear the burden of additional safeguards measures. Strong incentives are thus needed in order to facilitate universalization of the AP. While external incentives would help make the AP a de facto norm and encourage its conclusion by reducing the deplored imbalanced implementation of non-proliferation and disarmament obligations, internal incentives developed by the Agency and its member States can also play an important role. In this respect, NPT States parties recommended in action 32 of the Review Conference final document 'that IAEA safeguards should be assessed and evaluated regularly. Decisions adopted by the IAEA policy bodies aimed at further strengthening the effectiveness and improving the efficiency of IAEA safeguards should be supported and implemented'. The safeguards system should therefore be optimized: the most effective use of safeguards measures as well as safeguards human, financial and technical resources would indeed help enhance the acceptability and even attractiveness of the AP. Optimization can be attractive for States committed to a stronger verification regime independently from other claims, but still

  17. Public information activities of the IAEA

    International Nuclear Information System (INIS)

    Meyer, Hand-Friedrich

    1998-01-01

    Since the accident at Three Mile Island in 1979 and increasingly since the Chernobyl accident 1986, the Division of Public Information (DPI) of the IAEA has become a contact point for journalists on all questions related to the nuclear energy and nuclear applications. The IAEA receives a continuously growing number of hits on its Internet Homepage. This is followed by an increasing number of E-mail letters from all over the world. The three main fields of general information activities of the IAEA's DPI are: 1 - the verification system of IAEA in the framework of international treaties concerning non-proliferation of nuclear weapons; 2 - the IAEA's work for safe operation of nuclear installations and its many services to improve the safe application of radiation and isotopes as well as safe operation of nuclear power plants. Questions on illicit trafficking and dangers of wrongly applied radiation sources play an important factor in our public information work in the field of nuclear safety; 3 - the IAEA's activities in the transfer of technology and the application of radiation and isotopes in agriculture, health, industry, hydrology and research. In addition to the new ways of providing information on the IAEA there is still the long established means of contact through periodicals like 'IAEA Bulletin' and 'IAEA Newsbriefs' or general information films like, for instance, 'The International Atom', 'The Nuclear Age', 'How a nuclear power plant works', 'Nuclear Energy and the Environment', 'The Safe Transport of Radioactive Material', 'The International Chernobyl Project', 'Mission Iraq' and others. Besides, there are aspects on longer lasting perspectives which should be considered: - physics teaching at schools; - information on nuclear fission, nuclear power, radiation and isotopes in a science museum in the capital; an information center at nuclear research facilities in the country. Nuclear has many advantages but it is difficult these days to convince normal

  18. IAEA Perspectives on Radiological Characterisation

    International Nuclear Information System (INIS)

    O'Sullivan, Patrick; Ljubenov, Vladan

    2012-01-01

    Requirements for characterization of radiological and other hazards in nuclear facilities are reflected in the IAEA Safety Standards. WS-R-5, Safety Requirements for Decommissioning of Facilities using Radioactive Material, includes a requirement that 'During the preparation of the final decommissioning plan, the extent and type of radioactive material (irradiated and contaminated structures and components) at the facility shall be determined by means of a detailed characterization survey and on the basis of records collected during the operational period'. The subsidiary Safety Guide WS-G-2.1, Decommissioning of Nuclear Power Plants and Research Reactors, further elaborates that 'A survey of radiological and non-radiological hazards provides an important input for the safety assessment and for implementing a safe approach during the work'. Although the characterisation requirements addressed in the Safety Standards relate primarily to the detailed survey activities undertaken following the shutdown of the facility, it is evident that radiological characterization is of relevance to all major phases of the lifetime of a nuclear facility, including: - the siting phase - baseline surveys are undertaken to determine background radiation levels; - the construction phase - construction materials are retained to support future calculations of radioactivity distributions; - the operational phase - surveys are done regularly, with additional surveys being required following incidents involving plant contamination; - the transition phase - detailed radiological surveys are required to support the development of the final decommissioning plan; and - the closure phase - a final survey of the site and any remaining structures will be needed to support an application for release of the site from regulatory control. In the case of facilities that are already shut down, the main purpose of radiological characterisation is to provide a reliable database of information on the

  19. The IAEA '97 Pacific Ocean expedition

    International Nuclear Information System (INIS)

    Povinec, P.P.; Huynh-Ngoc, L.; Liong Wee Kwong, L.

    1999-01-01

    The International Atomic Energy Agency's Marine Environment Laboratory (IAEA-MEL) started in 1995 a five-year project 'Research on World-wide Marine Radioactivity', generously supported by the Government of Japan. In the framework of the project, IAEA-MEL conducted the 'IAEA '97 Pacific Ocean Expedition' to the NW Pacific Ocean from 21 October to 20 November, 1997. The objectives of the expedition were to provide new data on the current marine radioactivity in order to compare them with data sets obtained during national and international surveys at sites used for radioactive waste dumping or nuclear bomb testing in the NW Pacific Ocean and its marginal seas

  20. IAEA '77: between politics and factual constraints

    International Nuclear Information System (INIS)

    Freytag, A.

    1976-01-01

    The IAEA's organization of its 20th General Conference at Rio de Janeiro clearly underlined the importance of a comprehensive international transfer of nuclear technology. Despite all efforts to keep the Agency out of general political confrontations, the Conference was tinged politically by the PLO and South Africa problems. Besides the next five year program, which was agreed upon in the light of existing factual constraints, the support and control functions of the IAEA and next year's Salzburg Fuel Cycle Conference were other main topics of discussion. The 1977 IAEA budget was approved at a level of 43.5 million, the General Fund at 6.5 million. (orig.) [de

  1. Lessons learned from IAEA fire safety missions

    International Nuclear Information System (INIS)

    Lee, S.P.

    1998-01-01

    The IAEA has conducted expert missions to evaluate fire safety at the following nuclear power plants: the Zaporozhe plant in the Ukraine, the Borselle plant in the Netherlands, the Medzamor plant in Armenia, the Karachi plant in Pakistan, the Temelin plant in the Czech Republic, and the Laguna Verde plant in Mexico. The scope of these missions varied in subject and depth. The teams sent from the IAEA consisted of external fire experts and IAEA staff. All the missions were of great use to the host countries. The participating experts also benefited significantly. A summary of the missions and their findings is given. (author)

  2. IAEA Technical Co-operation activities: Asia and the Pacific

    International Nuclear Information System (INIS)

    Nuguid, C.P.

    1975-01-01

    During the period 1970-1974 the IAEA provided country programme assistance (expert services, equipment and supplies, and fellowship training) to 17 countries in the geographic region designated as 'Asia and the Pacific' by the United Nations Development Programme (UNDP), namely, to Afghanistan; Bangladesh; Burma; Cambodia; China, Republic of; Hong Kong; India; Indonesia; Iran; Korea, Republic of; Malaysia; Pakistan; the Philippines; Republic of South Viet-Nam; Singapore and Thailand. In addition, representatives of Laos and Nepal have attended Agency-organized short-term training projects, such as seminars and training courses. (author)

  3. Novel Radioisotope Applications in Industry Promoted by the IAEA

    International Nuclear Information System (INIS)

    Thereska, J.

    2001-01-01

    Presently, there is a lively activity in further development and use of radioisotope technology. Novel radioisotope applications in industry are promoted by the IAEA. Radioisotope technology is contributing significantly to improving and optimising process performance bringing an annual economic benefit to world-wide industry of several billion US$. Probably, an average benefit to cost ratio of 40:1 is reasonably representative of radioisotope applications in industry. There are few short-term investments, which will give a return of this magnitude. The cost effectiveness of radioisotope applications should be widely promulgated to encourage industrialists to take full advantage of the technology. (author)

  4. The IAEA safeguards information system

    International Nuclear Information System (INIS)

    Gmelin, W.R.; Parsick, R.

    1976-01-01

    The IAEA safeguards under the Non-Proliferation Treaty is meant to follow the model agreement developed by the Safeguards Committee in 1970 and formulated in document INFCIRC/153, which contains provisions that Member States, having concluded Safeguards Agreements with the Agency, should provide design information and reports on initial inventories, changes in the inventories and material balances in respect of each nuclear facility and material balance area for all nuclear materials subject to safeguards. The Agency, on the other hand, should establish and maintain an accountancy system which would provide the data on the location and the movements of all nuclear material subject to safeguards on the basis of the reported information and information obtained during inspections in order to support the Agency's verification activities in the field, to enable the preparation of safeguards statements and to adjust the inspection intensity. Following these requirements, a computer-based information system has been developed and is being implemented and used routinely for input manipulations and queries on a limited scale. This information system comprises two main parts: Part 1 for processing the information as provided by the States, and Part 2 (still under development) for processing the inspection data obtained during verification. This paper describes the characteristics of the Agency information system for processing data under the Non-Proliferation Treaty as well as recent operational experience. (author)

  5. Work of the IAEA laboratory

    International Nuclear Information System (INIS)

    1962-01-01

    Most of the IAEA laboratory facilities a r e now in full operation, and work has begun on a number of problems that can best be dealt with by an international centre. The laboratory at Seibersdorf, about 30 km from the Agency's headquarters in Vienna, started functioning in October last year, and a certain amount of work is also being done with a few facilities installed in the headquarters building. During the past year laboratory work has steadily increased and several programmes are now fully established. The Agency's laboratory is not intended to be a centre of independent research; in the main, its scope is governed by the scientific requirements of the Agency's programmes of assistance to its Member States and its role in connection with safety and security in atomic energy work. The functions of the laboratory are thus limited to (a) measurement of radionuclides and preparation of radioactive standards, (b) calibration and adaptation of measuring equipment, (c) quality control of special materials for nuclear technology, (d) measurement and analyses in connection with the Agency's safeguards and health and safety programme, and (e) services to Member States that can be provided with the facilities established for these tasks

  6. IAEA statement on Iranian enrichment announcement

    International Nuclear Information System (INIS)

    2010-01-01

    Full text: The following is a statement attributable to IAEA Spokesperson Gill Tudor: 'The IAEA can confirm that it has received a letter from the Atomic Energy Organization of Iran (AEOI) on 8 February 2010, in which the AEOI informed the Agency that production of less than 20% enriched uranium is being foreseen at the Pilot Fuel Enrichment Plant at Natanz for fuel for the Tehran Research Reactor'. 'IAEA Director General Yukiya Amano noted with concern this decision, as it may affect, in particular, ongoing international efforts to ensure the availability of nuclear fuel for the Tehran Research Reactor.' 'The Director General reiterated the Agency's readiness to play an intermediary role on the issue of the Tehran Research Reactor.' (IAEA)

  7. IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Alcala, F.; Di Meglio, A.F.

    1995-01-01

    This paper describes the IAEA programme on research reactor safety and includes the safety related areas of conversions to the use of low enriched uranium (LEU) fuel. The program is based on the IAEA statutory responsibilities as they apply to the requirements of over 320 research reactors operating around the world. The programme covers four major areas: (a) the development of safety documents; (b) safety missions to research reactor facilities; (c) support of research programmes on research reactor safety; (d) support of Technical Cooperation projects on research reactor safety issues. The demand for these activities by the IAEA member states has increased substantially in recent years especially in developing countries with increasing emphasis being placed on LEU conversion matters. In response to this demand, the IAEA has undertaken an extensive programme for each of the four areas above. (author)

  8. IAEA activities on research reactor safety

    International Nuclear Information System (INIS)

    Alcala-Ruiz, F.

    1995-01-01

    Since its inception in 1957, the International Atomic Energy Agency (IAEA) has included activities in its programme to address aspects of research reactors such as safety, utilization and fuel cycle considerations. These activities were based on statutory functions and responsibilities, and on the current situation of research reactors in operation around the world; they responded to IAEA Member States' general or specific demands. At present, the IAEA activities on research reactors cover the above aspects and respond to specific and current issues, amongst which safety-related are of major concern to Member States. The present IAEA Research Reactor Safety Programme (RRSP) is a response to the current situation of about 300 research reactors in operation in 59 countries around the world. (orig.)

  9. Tracking Nutritional Progress: IAEA Capacity Building Programmes

    International Nuclear Information System (INIS)

    Slater, Christine

    2014-01-01

    Kuwait: The IAEA has helped to establish a body composition assessment suite at the Kuwait Institute for Scientific Research. Facilities include an isotope ratio mass spectrometer for analysis of deuterium and oxygen-18 enrichment, and dual energy X ray absorptiometry for assessment of bone mineral content. Botswana: The IAEA has helped to establish facilities for analysis of deuterium enrichment by Fourier transform infrared (FTIR) spectrometry at the National Food Technology Research Centre (NFTRC). Ecuador: Through national and regional technical cooperation projects, the IAEA has helped to establish facilities for analysis of deuterium enrichment by FTIR spectrometry in 17 Latin American countries, including Ecuador. Costa Rica: With the help of the IAEA, the University of Costa Rica has established a laboratory for the assessment of body composition using deuterium dilution techniques

  10. Physical protection in relation to IAEA safeguards

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1984-01-01

    The general structure of the safeguards system, the SSAC interfaces, and physical protection principles, equipment, and techniques are reviewed. In addition, the interactions between the State, the facility operator, and the IAEA are described

  11. IAEA Director General welcomes NPT consensus

    International Nuclear Information System (INIS)

    2000-01-01

    The document informs that the Director General of the IAEA welcomed the adoption with consensus by the Review Conference of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons of the final document on the review and operation of the Treaty, and that he was pleased by the vote of confidence shown in the IAEA and its role in the implementation of the Treaty

  12. The public information programme of the IAEA

    International Nuclear Information System (INIS)

    Meyer, Hans-Friedrich

    1989-01-01

    The public information programme of the IAEA is deter-mined by two basic criteria: First by the Statute of the IAEA which defines its objectives as 'to seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world' as well as 'to ensure as far as it is able, that assistance provided by it or at its request or under its supervision or control is not used in such a way as to further any military purpose'; second by the fact that the IAEA is an intergovernmental organization, which means that it has to fulfill request of independent, sovereign governments. In a discussion of the public infomation program of the IAEA, three main fields of activities always have to be kept in mind: Nuclear applications in agriculture, medicine, industry, hydrology, research, etc.; The use of nuclear energy for electricity generation, here mainly the aspects of safety and economics; and safeguards. From this it can be understood that the public information activities of the IAEA must have different perspectives: There are non-controversial fields for public information work, such as ost all aspects of nuclear application employing radiation and Isotopes. -- There are activities of the IAEA where the work in general is not questioned but considered absolutely necessary. -- There are finally controversial fields, where the IAEA is blamed for being too promotional. Examples are the IAEA's activities in nuclear power program planning as well as in food irradiation. In these controversial fields, it is very important to look for long-term, issue-oriented strategies to communicate good factual information in perspective

  13. Typical IAEA inspection procedures for model plant

    International Nuclear Information System (INIS)

    Theis, W.

    1984-01-01

    This session briefly refers to the legal basis for IAEA inspections and to their objectives. It describes in detail the planning and performance of IAEA inspections, including the examination of records, the comparison of facility records with State reports, flow and inventory verifications, the design of statistical sampling plans, and Agency's independent verification measurements. In addition, the session addresses the principles of Material Balance and MUF evaluation, as well as the content and format of summary statements and related problems

  14. Newly elected IAEA Board of Governors

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives information about the election of 11 Member States to the IAEA Board of Governors, the 35-member policy-making body, during the 44th regular session of the IAEA's General Conference (18 - 22 September 2000, Austria Center, Vienna). The newly elected Member States are: Argentina, Egypt, Ghana, Ireland, Libyan Arab Jamahiriya, Mexico, Pakistan, Peru, Switzerland, Thailand, Ukraine. The other 24 Member States of the Board are also given

  15. Newsbriefs www.iaea.org. January 2002

    International Nuclear Information System (INIS)

    2002-01-01

    In this newsbrief the topics covered include: categories of risk, nuclear materials, nuclear facilities, and radioactive sources; a special session of IAEA experts meeting on the subject; financing the prevention of terrorism; nuclear security discussed by the IAEA Board of Governors; technical cooperation for security; use of electron beam scanning for mail safety; sustainable development; radioactive waste management; health programs in Latin America; landmine cleanup; clean water programmes

  16. The Y2K in the IAEA

    International Nuclear Information System (INIS)

    Winkels, J.

    1999-01-01

    Presentation includes description of the IAEA information Technology environment, its organisation, Year 2000 task force and its infrastructure status in the IAEA. The following challenges are cited: to solve the Year 2000 problem; to keep track on what is going on while introducing new technology; to realize that technology has an extreme influence on everyday life; to remove all technology that that is not really needed

  17. IAEA, Fukushima Prefecture Sign Cooperation Memorandum

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: IAEA Director General Yukiya Amano and the Governor of Fukushima Prefecture, Yuhei Sato, today signed a Memorandum of Cooperation confirming their willingness to implement concrete projects to help alleviate the consequences of the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. The Memorandum, signed on the sidelines of the three-day Fukushima Ministerial Conference on Nuclear Safety, includes arrangements to promote cooperation in two key areas: one on radiation monitoring and remediation between the IAEA and Fukushima Prefecture, and the other on human health between the IAEA and Fukushima Medical University. The Memorandum also highlights plans for a training centre in Fukushima Prefecture to help reinforce emergency preparedness and response activities, supported by the Government of Japan and Fukushima Prefecture. An IAEA Response and Assistance Network (RANET) Capacity Building Centre will be designated, with IAEA radiation monitoring equipment to be deployed in case of need, and to provide training in emergency preparedness and response in Japan and the Asia Pacific region. 'With this framework, the wisdom of the international community as well as the IAEA will be utilised in the process of reconstruction in Fukushima', said Japan's Minister of Foreign Affairs, Koichiro Gemba, who attended the signing ceremony. 'I'm very much encouraged by the conclusion of this Memorandum and I believe this will serve to promote reconstruction in Fukushima', said Governor Sato. 'We will also be able to disseminate to the rest of the world the knowledge and experience to be gained from the activities that we are conducting, and we hope this will be a symbol of Fukushima'. 'The IAEA has expertise in the areas of remediation and decontamination, as well as environmental monitoring and human health'. said Director General Amano. 'It is our hope that we will support Fukushima and at the same time serve as a bridge connecting the Prefecture and the world

  18. Newly elected IAEA Board of Governors

    International Nuclear Information System (INIS)

    2001-01-01

    The document gives information about the election of 11 Member States to the IAEA Board of Governors, the 35-member policy-making body, during the 45th regular session of the IAEA's General Conference (17-21 September 2001, Austria Center, Vienna). The newly elected Member States are: Bulgaria, Burkina Faso, Chile, Colombia, Islamic Republic of Iran, Kuwait, Morocco, Philippines, Romania, Spain, and Turkey. The other 24 Member States of the Board are also given

  19. INAA of RM IAEA-155 whey powder

    International Nuclear Information System (INIS)

    Peng Lixin; Tian Weizhi

    1993-01-01

    An IAEA biological RM IAEA-155 whey powder was analysed for phosphorus, as well as other 24 elements by INAA. The Bremsstrahlung photons produced by 32 P is measured by a HpGe spectrometer. The interferences involved in P determination were comprehensively studied and this method was also applied to the determinations of P in several established biological NBS SRMs and proved to be reliable for a wide range of P contents in biological samples

  20. The dosimetry programme of the IAEA

    International Nuclear Information System (INIS)

    1987-01-01

    Describes the activities of the IAEA's Dosimetry Laboratory which provides calibration and comparison services for secondary standard dosimetry laboratories (SSDLs) of Member States. In addition, a joint IAEA/WHO postal dosimetry service has been established for radiotherapy centers. The International Measurement System and the calibration ''chain'' from measurement standard instruments of the International Bureau of Weights and Measurements (BIPM) through the primary and secondary standards to the dosimeters of the users are presented as well

  1. The International Atomic Energy Agency - IAEA

    International Nuclear Information System (INIS)

    Pezzutti, A.A.C.

    1980-01-01

    The origens, functions and objectives of the IAEA are analysed. The application of safeguards to avoid military uses of nuclear energy is discussed. In the final section the agrement between Brazil and Germany regarding IAEA safeguards, as well as the competence for executing the brazilian program are explained. It is, then, an informative study dealing with nuclear energy and its peaceful path, the creation of International Fuel Cycle Evaluation and nonproliferation [pt

  2. The public information programme of the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Hans-Friedrich [Division of Public Information, International Atomic Energy Agency, Vienna (Austria)

    1989-07-01

    The public information programme of the IAEA is deter-mined by two basic criteria: First by the Statute of the IAEA which defines its objectives as 'to seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world' as well as 'to ensure as far as it is able, that assistance provided by it or at its request or under its supervision or control is not used in such a way as to further any military purpose'; second by the fact that the IAEA is an intergovernmental organization, which means that it has to fulfill request of independent, sovereign governments. In a discussion of the public infomation program of the IAEA, three main fields of activities always have to be kept in mind: Nuclear applications in agriculture, medicine, industry, hydrology, research, etc.; The use of nuclear energy for electricity generation, here mainly the aspects of safety and economics; and safeguards. From this it can be understood that the public information activities of the IAEA must have different perspectives: There are non-controversial fields for public information work, such as ost all aspects of nuclear application employing radiation and Isotopes. -- There are activities of the IAEA where the work in general is not questioned but considered absolutely necessary. -- There are finally controversial fields, where the IAEA is blamed for being too promotional. Examples are the IAEA's activities in nuclear power program planning as well as in food irradiation. In these controversial fields, it is very important to look for long-term, issue-oriented strategies to communicate good factual information in perspective.

  3. Improving the Transparency of IAEA Safeguards Reporting

    International Nuclear Information System (INIS)

    Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.; Odlaug, Christopher S.

    2011-01-01

    In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.

  4. IAEA Newsbriefs. V. 11, no. 1(70). Jan-Feb 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This issue gives brief information on the following topics: Board Examining Second Part of Safeguards proposals, International Conference on Chernobyl, New Laboratory in Seibersdorf, Global Network of Isotopes in Precipitation, Radiation Safety, Seminars on Nuclear Information, Food Irradiation Workshop in France, IAEA Meetings, and other short information

  5. The IAEA's safeguards systems. Ready for the 21st century

    International Nuclear Information System (INIS)

    1998-01-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? what assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification? (author)

  6. The IAEA's safeguards system. Ready for the 21st century

    International Nuclear Information System (INIS)

    1997-09-01

    The publication reviews the IAEA's safeguards system, answering the following questions: What is being done to halt the further spread of nuclear weapons? Why are IAEA Safeguards important? What assurances do safeguards seek to provide? How are safeguards agreements implemented? What specific challenges have there been for IAEA verification? Can the IAEA prevent the diversion of declared Material? How has the safeguards system been strengthened? How much do safeguards cost? What is the future of IAEA verification?

  7. New appointments at the IAEA

    International Nuclear Information System (INIS)

    1999-01-01

    The document shortly presents the following new appointments: the Deputy Director General, Head of the Department of Safeguards (effective as of 1 May 1999), the Director of the Division of Nuclear Fuel Cycle and Waste Technology in the Department of Nuclear Energy, and the Director of the Division of Conference and Document Services in the Department of Administration (effective as of 1 April 1999)

  8. IAEA Newsbriefs. V. 12, no. 4(77). Sep-Oct 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This issue gives brief information on the following topics: IAEA General Conference concludes: States strengthen nuclear cooperation, States approve Dr. ElBaradei as next Director General, honour Dr. Blix, New Board Chairman: Ambassador Ikeda, Dr. ElBaradei outlines challenges ahead, Scientific programme at GC, Productive year, Dr. Blix reports, States sign to accept new safeguards measures, Fortieth anniversary presentations, Meetings calendar, Marine scientists plan expedition to Northwest Pacific, States sign new joint convention, Trilateral initiative: Verifying ex-weapons material, Nuclear liability regime strengthened, New IAEA books, and other short information

  9. IAEA Newsbriefs. V. 12, no. 4(77). Sep-Oct 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This issue gives brief information on the following topics: IAEA General Conference concludes: States strengthen nuclear cooperation, States approve Dr. ElBaradei as next Director General, honour Dr. Blix, New Board Chairman: Ambassador Ikeda, Dr. ElBaradei outlines challenges ahead, Scientific programme at GC, Productive year, Dr. Blix reports, States sign to accept new safeguards measures, Fortieth anniversary presentations, Meetings calendar, Marine scientists plan expedition to Northwest Pacific, States sign new joint convention, Trilateral initiative: Verifying ex-weapons material, Nuclear liability regime strengthened, New IAEA books, and other short information

  10. IAEA establishes International Seismic Safety Centre

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA today officially inaugurated an international centre to coordinate efforts for protecting nuclear installations against the effects of earthquakes. The International Seismic Safety Centre (ISSC), which has been established within the IAEA's Department of Nuclear Safety and Security, will serve as a focal point on seismic safety for nuclear installations worldwide. ISSC will assist countries on the assessment of seismic hazards of nuclear facilities to mitigate the consequences of strong earthquakes. 'With safety as our first priority, it is vital that we pool all expert knowledge available worldwide to assist nuclear operators and regulators to be well prepared for coping with major seismic events,' said Antonio Godoy, Acting Head of the IAEA's Engineering Safety Section and leader of the ISSC. 'The creation of the ISSC represents the culmination of three decades of the IAEA's active and recognized involvement in this matter through the development of an updated set of safety standards and the assistance to Member States for their application.' To further seismic safety at nuclear installations worldwide, the ISSC will: - Promote knowledge sharing among the international community in order to avoid or mitigate the consequences of extreme seismic events on nuclear installations; - Support countries through advisory services and training courses; and - Enhance seismic safety by utilizing experience gained from previous seismic events in member states. The centre is supported by a scientific committee of high-level experts from academic, industrial and nuclear safety authorities that will advise the ISSC on implementation of its programme. Experts have been nominated from seven specialized areas, including geology and tectonics, seismology, seismic hazard, geotechnical engineering, structural engineering, equipment, and seismic risk. Japan and the United States have both contributed initial funds for creation of the centre, which will be based at

  11. Statement on Iran by the IAEA Spokesperson

    International Nuclear Information System (INIS)

    2018-01-01

    Full text: In December 2015, IAEA Director General Yukiya Amano presented the Final Assessment on past and present outstanding issues regarding Iran’s nuclear programme to the IAEA Board of Governors. In the report, the Agency assessed that, before the end of 2003, an organizational structure was in place in Iran suitable for the coordination of a range of activities relevant to the development of a nuclear explosive device. Although some activities took place after 2003, they were not part of a coordinated effort. The Agency’s overall assessment was that a range of activities relevant to the development of a nuclear explosive device were conducted in Iran prior to the end of 2003 as a coordinated effort, and some activities took place after 2003. The Agency also assessed that these activities did not advance beyond feasibility and scientific studies, and the acquisition of certain relevant technical competences and capabilities. The same report stated that the Agency had no credible indications of activities in Iran relevant to the development of a nuclear explosive device after 2009. Based on the Director General’s report, the Board of Governors declared that its consideration of this issue was closed. In line with standard IAEA practice, the IAEA evaluates all safeguards-relevant information available to it. However, it is not the practice of the IAEA to publicly discuss issues related to any such information. (author)

  12. IAEA Nuclear Security Human Resource Development Program

    International Nuclear Information System (INIS)

    Braunegger-Guelich, A.

    2009-01-01

    The IAEA is at the forefront of international efforts to strengthen the world's nuclear security framework. The current Nuclear Security Plan for 2006-2009 was approved by the IAEA Board of Governors in September 2005. This Plan has three main points of focus: needs assessment, prevention, detection and response. Its overall objective is to achieve improved worldwide security of nuclear and other radioactive material in use, storage and transport, and of their associated facilities. This will be achieved, in particular, through the provision of guidelines and recommendations, human resource development, nuclear security advisory services and assistance for the implementation of the framework in States, upon request. The presentation provides an overview of the IAEA nuclear security human resource development program that is divided into two parts: training and education. Whereas the training program focuses on filling gaps between the actual performance of personnel working in the area of nuclear security and the required competencies and skills needed to meet the international requirements and recommendations described in UN and IAEA documents relating to nuclear security, the Educational Program in Nuclear Security aims at developing nuclear security experts and specialists, at fostering a nuclear security culture and at establishing in this way sustainable knowledge in this field within a State. The presentation also elaborates on the nuclear security computer based learning component and provides insights into the use of human resource development as a tool in achieving the IAEA's long term goal of improving sustainable nuclear security in States. (author)

  13. The Efficacy of Non-Anonymous Measures of Bullying

    Science.gov (United States)

    Chan, John H. F.; Myron, Rowan; Crawshaw, Martin

    2005-01-01

    The Olweus checklist, along with most of the questionnaires commonly used in bullying research, is anonymous. The respondent is not required to put down his/her name. This has been accepted as the "best suited" method of assessing bullying. However, this assumption has not been adequately tested, and there is contrary evidence that this…

  14. Partitioning and Transmutation: IAEA Activities

    International Nuclear Information System (INIS)

    Basak, U.; Monti, S.; )

    2015-01-01

    Studies of Advanced Reactor Technology Options for Effective Incineration of Radioactive Waste between 2002 and 2007 which was followed in the years 2005-2010 by a more specific CRP on Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems. In parallel the status of the ADS technology for high level waste transmutation has been the focus of a study carried out by all the national and international organizations with an active programme on ADS, under the guidance of the IAEA Technical Working Group on Fast Reactors and ADS (TWG-FR). Finally, the benchmark analysis of two BN-600 reactor cores loaded with MOX fuel containing weapons-grade Pu and MOX fuel containing Pu and minor actinides from spent LWR fuel have been recently published. This paper will present the main results of these P and T activities as well as some new initiatives which have been discussed in recent meetings of the Technical Working Group on Nuclear Fuel Cycle Options (TWGNFCO) and TWG-FR. (authors)

  15. IAEA fundamental standards for protection against radiation

    International Nuclear Information System (INIS)

    1981-01-01

    The Governor's Counsel of the IAEA has just approved the revision of existing norms, previously prepared in cooperation with the ILO, WHO and OECD. The revised norms represent a great advance in the efforts to reduce risks for which there is no threshold value. A further initiative of the IAEA is the program of radiation protection standards for nuclear power stations. They form the first international instructions for a normalised basis of safety in nuclear power stations. The need for exchange of information was emphasised at the International Conference in Stockholm in 1980. The existing safety norms were considered adequate at the time. The IAEA activities in the field of standards, advice and technical help, exchange of information and training and emergency planning are also mentioned. (Auth.)

  16. IAEA Expert Team Returns from Iran

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: A senior IAEA expert team is returning from Iran after two days of discussions with Iranian officials held on 20 and 21 February 2012. The meeting followed previous discussions held on 29 to 31 January 2012. During both the first and second round of discussions, the Agency team requested access to the military site at Parchin. Iran did not grant permission for this visit to take place. Intensive efforts were made to reach agreement on a document facilitating the clarification of unresolved issues in connection with Iran's nuclear programme, particularly those relating to possible military dimensions. Unfortunately, agreement was not reached on this document. 'It is disappointing that Iran did not accept our request to visit Parchin during the first or second meetings', IAEA Director General Yukiya Amano said. 'We engaged in a constructive spirit, but no agreement was reached'. (IAEA)

  17. Safety standards of IAEA for management systems

    International Nuclear Information System (INIS)

    Vincze, P.

    2005-01-01

    IAEA has developed a new series of safety standards which are assigned for constitution of the conditions and which give the instruction for setting up the management systems that integrate the aims of safety, health, life environment and quality. The new standard shall replace IAEA 50-C-Q - Requirements for security of the quality for safety in nuclear power plants and other nuclear facilities as well as 14 related safety instructions mentioned in the Safety series No. 50-C/SG-Q (1996). When developing of this complex, integrated set of requirements for management systems, the IAEA requirements 50-C-Q (1996) were taken into consideration as well as the publications developed within the International organisation for standardization (ISO) ISO 9001:2000 and ISO14001: 1996. The experience of European Union member states during the development, implementation and improvement of the management systems were also taken into consideration

  18. The IAEA Focuses on Global Nutritional Needs

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2014-01-01

    For over fifty years, the IAEA has been helping its Member States to harness peaceful nuclear science and technology to bring demonstrable benefits to their people. Nutrition is one area in which the IAEA’s partnership with Member States has steadily deepened. This issue of the IAEA Bulletin focuses on the IAEA’s work in nutrition. Topics include our initiatives to measure human milk intake in breastfed infants, lean body mass (muscle mass) in lactating mothers, and the bioavailability of iron in infants and young children. We also look at the paradox of the simultaneous occurrence of both undernutrition and overnutrition that is often found within communities, and even households, across the globe. The IAEA is committed to doing everything it can to make peaceful nuclear technology available to help give all the children of the world a brighter future

  19. The IAEA Focuses On Global Nutritional Needs

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2014-01-01

    For over fifty years, the IAEA has been helping its Member States to harness peaceful nuclear science and technology to bring demonstrable benefits to their people. Nutrition is one area in which the IAEA’s partnership with Member States has steadily deepened. This issue of the IAEA Bulletin focuses on the IAEA’s work in nutrition. Topics include our initiatives to measure human milk intake in breastfed infants, lean body mass (muscle mass) in lactating mothers, and the bioavailability of iron in infants and young children. We also look at the paradox of the simultaneous occurrence of both undernutrition and overnutrition that is often found within communities, and even households, across the globe. The IAEA is committed to doing everything it can to make peaceful nuclear technology available to help give all the children of the world a brighter future

  20. IAEA receives Iraq's nuclear-related declaration

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The Director General of the International Atomic Energy Agency, Mohamed ElBaradei, announced that the IAEA received this evening, Sunday, 8 December 2002, at its Headquarters in Vienna, an approximately 2400 page declaration on Iraq's nuclear programme. The declaration consists of about 2100 pages in English and 300 pages in Arabic. The declaration was submitted by the Government of Iraq in response to paragraph 3 of Security Council resolution 1441 (8 November 2002), which requires Iraq to provide to UNMOVIC, the IAEA and to the Security Council, not later than 30 days of the date of that resolution, with 'currently accurate, full, and complete declaration of all aspects of its programmes to develop chemical, biological, and nuclear weapons, ballistic missiles, and other delivery systems... as well as all other chemical, biological, and nuclear programmes, including any which it claims are for purposes not related to weapon production or material'. 'The IAEA will immediately begin to assess this important new document,' said Mr. ElBaradei, 'including the painstaking and systematic cross-checking of the information provided by Iraq against information which the IAEA already has, information that it expects to receive from other Member States, as contemplated in resolution 1441, and results of past and present Agency verification activities.' Complete assessment of the declaration will be time consuming, particularly in light of the need to translate the 300 pages of Arabic text into English. However, the IAEA expects to be able to provide a preliminary analysis of the document to the Security Council within the next ten days, with a fuller assessment to be provided when it reports to the Council at the end of January. (IAEA)

  1. IAEA Expert Remediation Mission to Japan Issues Preliminary Report

    International Nuclear Information System (INIS)

    2013-01-01

    food safety measures has protected consumers and improved consumer confidence in farm produce. A comprehensive programme to monitor fresh water sources such as rivers, lakes and ponds is ongoing, including extensive food monitoring of both wild and cultivated freshwater fish. The Mission encouraged the Japanese government to strengthen its efforts to explain to the public that an additional individual radiation dose of 1 millisievert per year (mSv/y), which it has announced as a long-term goal, cannot be achieved in a short time by decontamination work alone. In remediation situations, with appropriate consideration of the prevailing circumstances, any level of individual radiation dose in the range of 1 to 20 mSv/y is acceptable and in line with international standards and the recommendations of the relevant international organisations such as the IAEA, International Commission on Radiological Protection (ICRP), United Nations Scientific Committee on the Effect of Atomic Radiation (UNSCEAR) and World Health Organisation (WHO). The Mission encouraged the relevant institutions in Japan to assess the role that the Nuclear Regulation Authority (NRA) could play in the independent review of the remediation activities, particularly those required for the long term. The Mission also encouraged the relevant organisations to conduct safety assessments of the facilities and activities for the long-term management of contaminated materials, and to allow for their independent review. The Mission Team acknowledged that the Japanese authorities have implemented a practical option for remediating the region's extensive forest areas, taking a limited approach by removing material under the trees in a 20-meter buffer strip adjacent to residences, farmland and public spaces. It recommended concentrating efforts on areas that bring the greatest benefit in reducing doses to the public, while avoiding damage to the ecological functioning of the forest where possible. The 16-person team

  2. IAEA Mission Concludes Peer Review of Slovenia's Nuclear Regulatory Framework

    International Nuclear Information System (INIS)

    2014-01-01

    Senior international nuclear safety and radiation protection experts today concluded an eight-day International Atomic Energy Agency (IAEA) mission to review the regulatory framework for nuclear and radiation safety at the Slovenian Nuclear Safety Administration (SNSA). The team reviewed measures taken to address the recommendations and suggestions made during an earlier Integrated Regulatory Review Service (IRRS) mission conducted in 2011. The IRRS team said in its preliminary findings that Slovenia had made significant progress since the review in 2011. The team identified a good practice in the country's nuclear regulatory system additional to those identified in 2011 and made new recommendations and suggestions to SNSA and the Government to strengthen the effectiveness of the country's regulatory framework in line with IAEA Safety Standards. ''By hosting a follow-up mission, Slovenia demonstrated its commitment to enhance its regulatory programmes, including by implementing the recommendations of the 2011 mission,'' said Petr Krs, mission leader and Vice Chairman of the Czech Republic's State Office for Nuclear Safety. SNSA's Director, Andrej Stritar, welcomed the progress noted by the team, while also emphasizing that the mission highlighted important future nuclear safety challenges for Slovenia. The five-member review team, comprising experts from Belgium, the Czech Republic, France and Romania, as well as four IAEA staff members, conducted the mission at the request of the Slovenian Government from 9 to 16 September 2014. The main observations of the IRRS Review team included the following: SNSA has made significant progress in addressing the findings of the 2011 IRRS mission and has demonstrated commitment to effective implementation of the IRRS programme; The economic situation in Slovenia might in the short and long term affect SNSA's ability to maintain its capacity and competence; and A radioactive waste disposal project is stalled and the licensing

  3. Relations between SSAC and the IAEA

    International Nuclear Information System (INIS)

    Buechler, C.

    1985-01-01

    Nuclear and non nuclear material, services, facilities, equipment and information which are to be used for legally defined purposes may be deliberately diverted from these purposes. Actions aimed at the detection and deterrence of this diversion are known as safeguards. The development of safeguard regulations within the IAEA is described from a historical perspective in part 1 of this report. In part 2 potential divertors and diversion methods are described. Part 3 contains a description of current IAEA safeguards implementation, including discussions of accountancy, surveillance, containment and verification

  4. IAEA Director General to Visit Iran

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The Director General of the IAEA, Yukiya Amano, will travel to Tehran this Sunday, 20 May 2012, to discuss issues of mutual interest with high Iranian officials. In the course of his one-day working visit, on Monday 21 May 2012 the Director General will meet the Secretary of Iran's Supreme National Security Council, His Excellency Saeed Jalili, and other senior representatives of the Iranian government. Herman Nackaerts, Deputy Director General for Safeguards, and Rafael Mariano Grossi, Assistant Director General for Policy, will accompany the Director General. (IAEA)

  5. IAEA support for operating nuclear reactors

    International Nuclear Information System (INIS)

    Akira, O.

    2010-01-01

    The IAEA programme, under the pillar of science and technology, provides support to the existing fleet of nuclear power plants (NPPs) for excellence in operation, support to new countries for infrastructure development, stimulating technology innovation for sustainable development and building national capability. Practical activities include methodology development, information sharing and providing guidance documents and state-of-the-art reports, networking of research activities, and review services using guidance documents as a basis of evaluation. This paper elaborates more on the IAEA's activities in support of the existing fleet of nuclear power plants

  6. Have IAEA safety precautions failed in Iraq

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    Israel's air raid on the Tamuz-1 research reactor (Osirak) in Iraq has given new impetus to the discussion of the potential and limits of international control as carried out by the IAEA in the framework of the non-proliferation treaty. A lack of faith in the effectiveness of IAEA control must be assuemd to be one of the main reasons for this attack. Prof. Grimm, vice chairman of the nuclear safeguards department of the International Atomic Energy Agency, comments on the possibility of producing nuclear weapons with the aid of this reactor and on the efficiency of present and projected nuclear safeguards measures. (orig.) [de

  7. IAEA Remediation Mission Issues Final Report

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed their assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site TEPCO's Fukushima Daiichi Nuclear Power Plant (NPP). Their Final Report, delivered to the Japanese authorities, is available here. ''A lot of good work, done at all levels, is on-going in Japan in the area of environmental remediation,'' said Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. In the report, Japan is encouraged to continue its remediation efforts, taking into account the advice provided by the Mission. ''In the early phases of the Fukushima Daiichi accident, a very cautious approach was adopted by the Japanese authorities in terms of dealing with the handling of residue materials. It is considered right to do so,'' Lentijo said. ''However, at this point in time, we see that there is room to take a more balanced approach, focussing on the real priority areas, classifying residue materials and adopting appropriate remediation measures on the basis of the results of safety assessments for each specific situation.'' The IAEA stands ready to support Japan as it continues its efforts to remediate the environment in the area off-site the Fukushima Daiichi NPP. The IAEA sent the mission to Japan from 7 to 15 October 2011 following a request from the country's government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several ministries and institutions. A Preliminary Summary Report was issued on 14 October. Background The accident at the Fukushima Daiichi NPP has led to elevated levels of radiation over large areas. The Government of Japan has been formulating a strategy and plans to implement countermeasures to remediate these areas. The IAEA

  8. IAEA Safeguards: Present status and experience gained

    International Nuclear Information System (INIS)

    Thorne, L.; Buechler, C.; Haegglund, E.

    1983-01-01

    IAEA safeguards are at the present under critical review with regard to their purpose and effectiveness. This paper describes the development of the IAEA Safeguards System from the early days, when procedures were developed on an ad hoc basis, to the present day. The development of State Systems of Accounting for and Control of Nuclear Material (SSAC), and of sophisticated instrumentation, has been necessary to deal with the rapid growth in the quantities of nuclear material and in the number of facilities under safeguards. The paper also discusses some of the managerial and organizational issues that are inherent in such a large international inspectorate. (author)

  9. Status of the IAEA safety standards programme

    International Nuclear Information System (INIS)

    2002-01-01

    This presentation describes the status of the IAEA safety standards program to May 2002. The safety standards program overcome whole main nuclear implementations as General safety, Nuclear safety, Radiation safety, Radioactive waste safety, and Transport safety. Throughout this report the first column provides the list of published IAEA Safety Standards. The second gives the working identification number (DS) of standards being developed or revised. The bold type indicates standard issued under the authority the Board of Governors, others are issued under authority of the Director General. The last column provides the list of Committees, the first Committee listed has the lead in the preparation and review of the particular standard

  10. IAEA Safeguards: Past, Present, and Future

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A. [Los Alamos National Laboratory; Hypes, Philip A. [Los Alamos National Laboratory

    2012-06-14

    This talk will present an overview of the International Atomic Energy Agency with a specific focus on its international safeguards mission and activities. The talk will first present a brief history of the IAEA and discuss its current governing structure. It will then focus on the Safeguards Department and its role in providing assurance that nuclear materials are being used for peaceful purposes. It will then look at how the IAEA is currently evolving the way in which it executes its safeguards mission with a focus on the idea of a state-level approach.

  11. IAEA programme on nuclear fuel cycle and materials technologies - 2009

    International Nuclear Information System (INIS)

    Killeen, J.

    2009-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The following Coordinated Research Projects: 1) Delayed Hydride Cracking (DHC); 2) Structural Materials Radiation Effects (SMoRE); 3) Water Chemistry (FUWAC) and 4) Fuel Modelling (FUMEX-III) are shortly described. The data collected by the IAEA Expert Group of Fuel Failures in Water Cooled Reactors including information about fuel assembly damage that did not result in breach of the fuel rod cladding, such as assembly bow or crud deposition an the experience with these unexpected fuel issues shows that they can seriously affect plant operations, and it is clear that concerns about reliability in this area are of similar importance today as fuel rod failures, at least for LWR fuel are discussed. Detection, examination and analysis of fuel failures and description of failures and mitigation measures as well as preparation of a Monograph on Zirconium including an overview of Zirconium for nuclear applications, including extraction, forming, properties and irradiation experience are presented

  12. Return of IAEA assistance team from Thailand

    International Nuclear Information System (INIS)

    2000-01-01

    The document informs about the return from Thailand of the IAEA team sent (upon the request of the Thai Government under the Convention on Assistance in Case of a Nuclear Accident or Radiological Emergency) to Bangkok to help Thai counterparts in the wake of an accident involving a discarded radioactive cobalt 60 source used in hospitals

  13. The IAEA programme on research reactor safety

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    According to the research reactor database of IAEA (RRDB), 250 reactors are operating worldwide, 248 have been shut down and 170 have been decommissioned. Among the 248 reactors that do not run, some will resume their activities, others will be dismantled and the rest do not face a clear future. The analysis of reported incidents shows that the ageing process is a major cause of failures, more than two thirds of operating reactors are over 30 years old. It also appears that the lack of adequate regulations or safety standards for research reactors is an important issue concerning reactor safety particularly when reactors are facing re-starting or upgrading or modifications. The IAEA has launched a 4-axis program: 1) to set basic safety regulations and standards for research reactors, 2) to provide IAEA members with an efficient help for the application of these safety regulations to their reactors, 3) to foster international exchange of information on research reactor safety, and 4) to provide IAEA members with a help concerning safety issues linked to malicious acts or sabotage on research reactors

  14. IAEA Nuclear Security Programme Combating Nuclear Terrorism

    International Nuclear Information System (INIS)

    2010-01-01

    IAEA Plans of activities include, General Conference in September 2001 which reviewed activities relevant to preventing nuclear terrorism and proposed master plan. The Board of Governors approved new Nuclear Security Plan for the next four years. Three activity areas are; - needs assessment, analysis and coordination, prevention and detection and response.

  15. The IAEA isotope and radiation programme

    International Nuclear Information System (INIS)

    1987-11-01

    The main activities of the IAEA program in Isotope and Radiation are grouped into three fields: Food and Agriculture, Human Health and Life Sciences, Industry and Physical Sciences. In addition to a brief description of the main features of each program some of the activities performed at the Agency's Laboratories at Seibersdorf, Vienna and Monaco are presented

  16. IAEA inspection activities in the model country

    International Nuclear Information System (INIS)

    Madueme, G.

    1989-01-01

    An overview of the activities undertaken by IAEA inspectors at the model research reactor and research laboratories is given. The basic philosophy behind nuclear material stratification and the concepts of Material Balance Areas and Key Measurement Points are explained. Diversion routes and plausible diversion scenarios are analysed. 8 refs., 6 figs., 3 tabs., poster presentations included

  17. 17. IAEA fusion energy conference. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    Book of extended synopses of the papers, accepted by a international programme committee for presentation at the 17th IAEA Fusion Energy Conference in Yokohama, Japan. The subjects covered are magnetic confinement experiments, plasma heating and current drive, ITER EDA, inertial fusion energy, innovative concepts, fusion technology and theory

  18. IAEA INTOR workshop report, group 8

    International Nuclear Information System (INIS)

    Tamura, Sanae; Shimada, Ryuichi; Miya, Naoyuki; Shinya, Kichiro; Kishimoto, Hiroshi

    1979-10-01

    This report provides material for discussion in Group 8, Power Supply and Transfer, of the IAEA Workshop on INTOR. A new system for the poloidal field power supply for INTOR is proposed and its overall system design is described. The results of simulation calculation of the system are also given. (author)

  19. New IAEA guidance on safety culture

    International Nuclear Information System (INIS)

    Haage, Monica; )

    2012-01-01

    Monica Haage described a project for Kozloduy Nuclear Power Plant in Bulgaria which was also funded by the Norwegian government. This project included the development of guidance documents and training on self-assessment and continuous improvement of safety culture. A draft IAEA safety culture survey was also developed as part of this project in collaboration with St Mary's University, Canada. This project was conducted in parallel with an IAEA project to develop new safety reports on safety culture self-assessment and continuous improvement. A safety report on safety culture during the pre-operational phases of NPPs has also been drafted. The IAEA approach to safety culture assessment was outlined and core principles of the approach were discussed. These include the use of several assessment methods (survey, interview, observation, focus groups, document review), and two distinct levels of analysis. The first is a descriptive analysis of the observed cultural characteristics from each assessment method and overarching themes. This is followed by a 'normative' analysis comparing what has been observed with the desirable characteristics of a strong, positive, safety culture, as defined by the IAEA safety culture framework. The application of this approach during recent Operational Safety Assessment Review Team (OSART) missions was described along with key learning points

  20. Inspections talks with IAEA again broken off

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    North Korea again appears likely to resist more detailed safeguards inspections of its disputed nuclear facilities by the International Atomic Energy Agency. The country's loner status was reinforced during the IAEA General Conference in September, when no other nation joined North Korea in voting against the placement of the inspection issue on the conference's agenda

  1. Concepts of IAEA nuclear materials accounting

    International Nuclear Information System (INIS)

    Oakberg, John A.

    2001-01-01

    The paper describes nuclear material accounting from the standpoint of IAEA Safeguards and how this accounting is applied by the Agency. The basic concepts of nuclear material accounting are defined and the way these apply to States with INFCIRC/153-type safeguards agreements is presented. (author)

  2. 17. IAEA fusion energy conference. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    Book of extended synopses of the papers, accepted by a international programme committee for presentation at the 17th IAEA Fusion Energy Conference in Yokohama, Japan. The subjects covered are magnetic confinement experiments, plasma heating and current drive, ITER EDA, inertial fusion energy, innovative concepts, fusion technology and theory Refs, figs, tabs

  3. Holy See participation in the IAEA

    International Nuclear Information System (INIS)

    1969-01-01

    The Holy See has participated in every General Conference of the IAEA and has made a special contribution in Vienna to international co-operation and the development of the peaceful atom. On August 20, 1957 the Holy See became a full member of the Agency. (author)

  4. IAEA Director General to visit Libya

    International Nuclear Information System (INIS)

    2003-01-01

    Full text: Dr. Mohamed ElBaradei announced today that he will visit the Libyan Arab Jamahiriya (Libya) in the immediate future with a team of senior IAEA technical experts. 'The purpose of my visit will be to initiate an in-depth process of verification of all of Libya's past and present nuclear activities', Dr. ElBaradei said in a news conference. 'We shall define the corrective actions that need to be taken and consult on the necessary steps to eliminate any weapons related activities.' The announcement follows a meeting held in Vienna on 20 December 2003 between Dr. ElBaradei and H.E. Engineer Matooq Mohamed Matooq, Assistant Secretary for Services Affairs of the General People's Committee of Libya. In that meeting, Mr. Matooq informed Dr. ElBaradei of Libya's decision to eliminate 'materials, equipments and programmes which lead to the production of internationally proscribed weapons'. The Agency was also informed that Libya had been engaged for more than a decade in the development of a uranium enrichment capability. This included importing natural uranium and centrifuge and conversion equipment and the construction of now dismantled pilot scale centrifuge facilities. Some of these activities should have been, but were not, reported to the IAEA under Libya's Safeguards Agreement with the IAEA. Mr. Matooq stated, however, that Libya's nuclear enrichment programme was at an early stage of development and that no industrial scale facility had been built, nor any enriched uranium produced. Libya has asked the IAEA to ensure through verification that all of Libya's nuclear activities will henceforth be under safeguards and exclusively for peaceful purposes. In that regard, Libya has agreed to take the necessary steps to conclude an Additional Protocol to its NPT Safeguards Agreement, which will provide the IAEA with broader inspection rights, and to pursue with the IAEA a policy of full transparency and active co-operation. Dr. ElBaradei said, 'Libya's decision to

  5. Proposed letter to Hans Blix, Director General of the IAEA

    International Nuclear Information System (INIS)

    1994-01-01

    A draft report prepared by the IAEA Secretariat outlining a possible model for sharing responsibilities between various parties on behalf of a postulated advanced reactor project -- that would include an opportunity for IAEA participation is discussed

  6. The IAEA and Control of Radioactive Sources

    International Nuclear Information System (INIS)

    Dodd, B.

    2004-01-01

    The presentation discusses the authoritative functions and the departments of the IAEA, especially the Department of Nuclear Safety and Security and its Safety and Security of Radiation Sources Unit. IAEA safety series and IAEA safety standards series inform about international standards, provide underlying principles, specify obligations and responsibilities and give recommendations to support requirements. Other IAEA relevant publications comprise safety reports, technical documents (TECDOCs), conferences and symposium papers series and accident reports. Impacts of loss of source control is discussed, definitions of orphan sources and vulnerable sources is given. Accidents with orphan sources, radiological accidents statistic (1944-2000) and its consequences are discussed. These incidents lead to development of the IAEA guidance. The IAEA's action plan for the safety of radiation sources and the security of radioactive material was approved by the IAEA Board of Governors and the General Conference in September 1999. This led to the 'Categorization of Radiation Sources' and the 'Code of Conduct on the Safety and Security of Radioactive Sources'. After 0911 the IAEA developed a nuclear security plan of activities including physical protection of nuclear material and nuclear facilities, detection of malicious activities involving nuclear and other radioactive materials, state systems for nuclear material accountancy and control, security of radioactive material other than nuclear material, assessment of safety and security related vulnerability of nuclear facilities, response to malicious acts, or threats thereof, adherence to and implementation of international agreements, guidelines and recommendations and nuclear security co-ordination and information management. The remediation of past problems comprised collection and disposal of known disused sources, securing vulnerable sources and especially high-risk sources (Tripartite initiative), searching for

  7. IAEA safeguards and non-proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R J.S.

    1995-02-01

    An overview is given of efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this `Full Scope Safeguards` on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear weapon applications.

  8. IAEA safeguards and non-proliferation

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1995-02-01

    An overview is given of the efforts to contain the nuclear weapons proliferation during half a century of man-controlled nuclear fission. An initial policy of denial did not work, a following period of cooperation needed a gradual strengthening of international assurances on the exclusively peaceful character of the flourishing use of nuclear techniques for power generation and of other applications. The focus of the nuclear weapon proliferation concern changed from the highly developed states to developing states. The Non-Proliferation Treaty laid the basis for a unique system of voluntarily accepted international inspections to verify the peaceful use of nuclear energy. The IAEA got the task to implement this 'Full Scope Safeguards' on all nuclear material and all nuclear activities in the non-nuclear weapon states. Thanks to the structure of the IAEA, in which both proponent and states with a critical attitude take part in the decision making process on the IAEA execution of its tasks, a balanced, and widely acceptable system emerged. International developments necessitated additional improvements of the non-proliferation system. The increase of strength of sub-national groups triggered international cooperation on physical protection, about a quarter of a century ago. More recently, it appeared that NPT states with assumed nuclear weapon ambitions operated in the margins between the interpretation of IAEA safeguards and the spirit and purpose of NPT. Improvements of the IAEA safeguards and a stronger cooperation between states, including the constraints which exporting states have imposed on nuclear supplies, strengthen the safeguards system. The important reductions in the two largest nuclear weapon arsenals lead, together with the delay in the fast breeder implementation, to large stockpiles of nuclear weapon usable materials. Also in this areas new internationally credible assurances have to be obtained, that these materials will never return to nuclear

  9. Nuclear power information at the IAEA

    International Nuclear Information System (INIS)

    Spiegelberg-Planer, R.

    1999-01-01

    The reliable and adequate supply of energy, and especially electricity, is necessary not only for economic development but, for economic and political stability. Since its establishment in the second half of the 20th century, nuclear power has evolved from the research and development stage to a mature industry that supplies more than 17% of the world's total electricity. Well designed, constructed and operated nuclear power plants have proved to be reliable, safe and economic. Although many countries are heavily reliant on nuclear power, in the last decade, expansion of nuclear power has been almost stagnating in the Western industrialized world, experiencing a low growth in Eastern Europe and expanding only in East Asia. On one side, one of the most important aims of the IAEA is to support the national effort to improve the nuclear power generation and to assist in promoting improvements in their safe, reliable and economic performance. On the other side, the IAEA also provides the only truly international forum for exchange, collection and dissemination of information in many areas related to nuclear energy. The Power Reactor Information System, PRIS, is one fundamental tool for these activities. The PRIS database is managed by the staff of the Nuclear Power Division in the IAEA. In the scope of PRIS various publications and reports have been published, as well as the IAEA has been satisfying request from Member States ranging from simple query to complex analysis. This paper presents an overview of the status of nuclear power world-wide and the related IAEA activities on collecting and disseminating nuclear power information. (author)

  10. Nuclear power information at the IAEA

    International Nuclear Information System (INIS)

    Spiegelberg-Planer, R.

    2001-01-01

    The reliable and adequate supply of energy, and especially electricity, is necessary not only for economic development but, for economic and political stability. Since its establishment in the in the second half of the 20th century, nuclear power has evolved from the research and development stage to a mature industry that supplies more than 17% of the world's total electricity. Well designed, constructed and operated nuclear power plants have proved to be reliable, safe and economic. Although many countries are heavily reliant on nuclear power, in the last decade, expansion of nuclear power has been almost stagnating in the Western industrialized world, experiencing a low growth in Eastern Europe and expanding only in East Asia. On one side, one of the most important aims of the IAEA is to support the national effort to improve the nuclear power generation and to assist in promoting improvements in their safe, reliable and economic performance. On the other side, the IAEA also provides the only truly international forum for exchange, collection and dissemination of information in many areas related to nuclear energy. The Power Reactor Information System, PRIS, is one fundamental tool for these activities. The PRIS database is managed by the staff of the Nuclear Power Division in the IAEA. In the scope of PRIS various publications and reports have been published, as well as the IAEA has been satisfying request from Member States ranging from simple query to complex analysis. This paper presents an overview of the status of nuclear power world-wide and the related IAEA activities on collecting and disseminating nuclear power information. (author)

  11. Overview of IAEA Action Plan on Nuclear Safety

    International Nuclear Information System (INIS)

    Monti, Stefano

    2012-01-01

    The IAEA Action Plan represents a work programme to strengthen and improve nuclear safety world wide. The plan identifies actions for Member States and the IAEA. Success depends upon: • Cooperation between IAEA, Member States, and other stakeholders; • Availability of appropriate financial resources (MS voluntary contributions)

  12. Making a real difference: Working for the IAEA

    International Nuclear Information System (INIS)

    2009-01-01

    The International Atomic Energy Agency (IAEA) offers challenging assignments and provides a stimulating multicultural environment for people who are interested in international work experience in a specific area of expertise. This brochure provides general information on the possibilities for employment as a Professional staff member of the IAEA and other information which may be useful to persons interested in joining the IAEA's Professional staff.

  13. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-06-01

    commonly used, for instance, in shielding on radioactive sources used in hospitals. Other radioactive material, such as most radioactive sources and isotopes used in medicine, industry, agriculture, and water resource management, are not the subject of safeguards and need not be reported to the IAEA under safeguards agreements. Reporting depends on the level of nuclear activity in the country. Declarations pursuant to safeguards agreements and additional protocols for States that do not have nuclear facilities are expected to be short and simple. The IAEA has prepared a document, available upon request, which provides guidance on the reporting requirements for such States. More elaborate guidelines have been prepared for States that do have nuclear facilities subject to routine safeguards inspections. Through its activities in the field, the IAEA seeks to verify the correctness and completeness of States' reports and declarations regarding nuclear material. Each State with a comprehensive safeguards agreement is required to establish and maintain a State system of accounting for and control of nuclear material (SSAC), which is the national authority formally designated to keep track of nuclear material and activities in the country. For all States with safeguards agreements in force, the IAEA draws an annual conclusion on the non-diversion of nuclear material and other items placed under safeguard. The IAEA's focal point for the negotiation of safeguards agreements and additional protocols, and the amendment of SQPs, is the Office of External Relations and Policy Coordination. Once a State has decided to conclude such an agreement and/or protocol, or amend its SQP, the IAEA can help the country with the implementation of related legal and technical requirements. The appendix of this publication informs how to conclude a comprehensive Safeguards Agreement and/or an Additional Protocol and provides 3 model notification letters for (a) conclusion of a safeguards agreement, a

  14. Verifying compliance with nuclear non-proliferation undertakings: IAEA safeguards agreements and additional protocols

    International Nuclear Information System (INIS)

    2008-04-01

    commonly used, for instance, in shielding on radioactive sources used in hospitals. Other radioactive material, such as most radioactive sources and isotopes used in medicine, industry, agriculture, and water resource management, are not the subject of safeguards and need not be reported to the IAEA under safeguards agreements. Reporting depends on the level of nuclear activity in the country. Declarations pursuant to safeguards agreements and additional protocols for States that do not have nuclear facilities are expected to be short and simple. The IAEA has prepared a document, available upon request, which provides guidance on the reporting requirements for such States. More elaborate guidelines have been prepared for States that do have nuclear facilities subject to routine safeguards inspections. Through its activities in the field, the IAEA seeks to verify the correctness and completeness of States' reports and declarations regarding nuclear material. Each State with a comprehensive safeguards agreement is required to establish and maintain a State system of accounting for and control of nuclear material (SSAC), which is the national authority formally designated to keep track of nuclear material and activities in the country. For all States with safeguards agreements in force, the IAEA draws an annual conclusion on the non-diversion of nuclear material and other items placed under safeguard. The IAEA's focal point for the negotiation of safeguards agreements and additional protocols, and the amendment of SQPs, is the Office of External Relations and Policy Coordination. Once a State has decided to conclude such an agreement and/or protocol, or amend its SQP, the IAEA can help the country with the implementation of related legal and technical requirements. The appendix of this publication informs how to conclude a comprehensive Safeguards Agreement and/or an Additional Protocol and provides 3 model notification letters for (a) conclusion of a safeguards agreement, a

  15. Global nuclear developments and the IAEA Director General Mohamed ElBaradei reviews achievements, challenges at IAEA General Conference

    International Nuclear Information System (INIS)

    2000-01-01

    In a statement to the 44th regular session of the Agency's General Conference (18 - 22 September 2000, Austria Center Vienna), the IAEA Director General reviewed nuclear developments from the IAEA perspectives. In this connection, the Director General signalled the IAEA's achievements and its readiness to provide its services as may be requested in response to global developments. He also underlined present and future challenges shaping the IAEA agenda, including financial challenges

  16. New IAEA guidelines on environmental remediation

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, Sergey [International Atomic Energy Agency, A2444, Seibersdorf (Austria); Howard, Brenda [Centre for Ecology and Hydrology, Lancaster Environment Centre, LA1 4AP, Lancaster (United Kingdom); Kashparov, Valery [Ukrainian Institute of Agricultural Radiology, 08162, 7, Mashinobudivnykiv str., Chabany, Kyivo-Svyatoshin region, Kyiv (Ukraine); Sanzharova, Natalie [Russian Institute of Agricultural Radiology and Agroecology, Russian Federation, 249032, Obninsk (Russian Federation); Vidal, Miquel [Analytical Chemistry Department-Universitat de Barcelona, Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    In response to the needs of its Member States, the International Atomic Energy Agency (IAEA) has published many documents covering different aspects of remediation of contaminated environments. These documents range from safety fundamentals and safety requirements to technical documents describing remedial technologies. Almost all the documents on environmental remediation are related to uranium mining areas and decommissioning of nuclear facilities. IAEA radiation safety standards on remediation of contaminated environments are largely based on these two types of remediation. The exception is a document related to accidents, namely the IAEA TRS No. 363 'Guidelines for Agricultural Countermeasures Following an Accidental Release of Radionuclides'. Since the publication of TRS 363, there has been a considerable increase in relevant information. In response, the IAEA initiated the development of a new document, which incorporated new knowledge obtained during last 20 years, lessons learned and subsequent changes in the regulatory framework. The new document covers all aspects related to the environmental remediation from site characterisation to a description of individual remedial actions and decision making frameworks, covering urban, agricultural, forest and freshwater environments. Decisions taken to commence remediation need to be based on an accurate assessment of the amount and extent of contamination in relevant environmental compartments and how they vary with time. Major aspects of site characterisation intended for remediation are described together with recommendations on effective sampling programmes and data compilation for decision making. Approaches for evaluation of remedial actions are given in the document alongside the factors and processes which affect their implementation for different environments. Lessons learned following severe radiation accidents indicate that remediation should be considered with respect to many different

  17. IAEA Post Irradiation Examination Facilities Database

    International Nuclear Information System (INIS)

    Jenssen, Haakon; Blanc, J.Y.; Dobuisson, P.; Manzel, R.; Egorov, A.A.; Golovanov, V.; Souslov, D.

    2005-01-01

    The number of hot cells in the world in which post irradiation examination (PIE) can be performed has diminished during the last few decades. This creates problems for countries that have nuclear power plants and require PIE for surveillance, safety and fuel development. With this in mind, the IAEA initiated the issue of a catalogue within the framework of a coordinated research program (CRP), started in 1992 and completed in 1995, under the title of ''Examination and Documentation Methodology for Water Reactor Fuel (ED-WARF-II)''. Within this program, a group of technical consultants prepared a questionnaire to be completed by relevant laboratories. From these questionnaires a catalogue was assembled. The catalogue lists the laboratories and PIE possibilities worldwide in order to make it more convenient to arrange and perform contractual PIE within hot cells on water reactor fuels and core components, e.g. structural and absorber materials. This catalogue was published as working material in the Agency in 1996. During 2002 and 2003, the catalogue was converted to a database and updated through questionnaires to the laboratories in the Member States of the Agency. This activity was recommended by the IAEA Technical Working Group on Water Reactor Fuel Performance and Technology (TWGFPT) at its plenary meeting in April 2001. The database consists of five main areas about PIE facilities: acceptance criteria for irradiated components; cell characteristics; PIE techniques; refabrication/instrumentation capabilities; and storage and conditioning capabilities. The content of the database represents the status of the listed laboratories as of 2003. With the database utilizing a uniform format for all laboratories and details of technique, it is hoped that the IAEA Member States will be able to use this catalogue to select laboratories most relevant to their particular needs. The database can also be used to compare the PIE capabilities worldwide with current and future

  18. IAEA and International Science and Technology Center sign cooperative agreement

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA and the International Science and Technology Center (ISTC) today signed an agreement that calls for an increase in cooperation between the two organizations. The memorandum of understanding seeks to amplify their collaboration in the research and development of applications and technology that could contribute to the IAEA's activities in the fields of verification and nuclear security, including training and capacity building. IAEA Safeguards Director of Technical Support Nikolay Khlebnikov and ISTC Executive Director Adriaan van der Meer signed the Agreement at IAEA headquarters in Vienna on 22 October 2008. (IAEA)

  19. IAEA safeguards for the 21st century

    International Nuclear Information System (INIS)

    1999-01-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement of regional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards

  20. The trends of NDT technologies - IAEA experience

    International Nuclear Information System (INIS)

    Khan, A. A.; Einav, I.

    2003-01-01

    Non destructive testing (NDT) is an essential technology for quality control leading to more reliable and safer industrial as well as nuclear plants. This was the main reason for the IAEA to undertake the promotion of this technology in the world. Through its regional and technical assistance programmes the NDT technology programmes encompass approximately more than 80 developing countries. The main focus of the NDT programme has been the creation of core groups of personnel able to undertake education, training and certification of NDT personnel and provision of NDT services to industries, creation of national certifying bodies, issuance of national standards compatible with ISO 9712 and the establishment of Professional NDT Societies. The programme has met a great success in most of the Member States. The paper will review the programmes of the IAEA in the field of NDT and provide an assessment of the present status of NDT technology development both in the developing as well as developed countries. (Author)

  1. IAEA Status Report, 2011-2012

    Energy Technology Data Exchange (ETDEWEB)

    Abriola, D. [IAEA Nuclear Data Section, Vienna (Austria)

    2013-08-15

    Three staff members are engaged in activities related to NSDD. The software tool LiveChart parses and transforms the ENSDF adopted levels and gamma datasets into a relational database. During the 2011-2012 period the decay datasets were also included. Plotting capabilities were expanded. For the next period the XUNDL files will be processed as well. ENSDF mass chain evaluations: update of most neutron deficient nuclides of A=148. Mass chain A=211 as an exercise of the IAEA-ICTP ENSDF workshop. Mass chain A=215 as an exercise of the VECC (Kolkata) ENSDD-2012 workshop. Mass chain A=144 to be submitted for review. Training: Joint IAEA-ICTP Workshop 'Nuclear Structure and Decay Data: Theory and Evaluation', ICTP, Trieste, 6-17 August 2012; ENSDD-2012 Workshop, VECC, Kolkata, 26-29 November 2012.

  2. The IAEA radioactive waste safety standards programme

    International Nuclear Information System (INIS)

    Tourtellotte, James R.

    1995-01-01

    The IAEA is currently reviewing more than thirty publications in its Safety Series with a view toward consolidating and organizing information pertaining to radioactive waste. the effort is entitled Radioactive Waste Safety Standards programme (RADWASS). RADWASS is a significant undertaking and may have far reaching effects on radioactive waste management both in the international nuclear community and in individual nuclear States. This is because IAEA envisions the development of a consensus on the final document. In this circumstance, the product of RADWASS may ultimately be regarded as an international norm against which future actions of Member States may be measured. This program is organized in five subjects: planning, pre-disposal, disposal, uranium and thorium waste management and decommissioning, which has four levels: safety fundamentals, safety standards, safety guides and safety practices. (author)

  3. The standards of Radiation Protection of IAEA

    International Nuclear Information System (INIS)

    Butragueno, J. L.

    2000-01-01

    Nuclear Safety and Radiation Protection are technological disciplines whose international character have been recognised since the very beginning. Safety culture and the defense in depth criterium address in the same way this international collaboration. The International Atomic Energy Agency, with headquater in Vienna, is specially sensitive to this aspect and a significant amount of resources has been dedicated to the promotion of a closer international collaboration through the promotion of two complementary programs: the Convention on Nuclear Safety and the Convention on Rad waste Management, and the reconstruction of a great piramide of standards, that staring with Fundamental Principles, is followed with a set of Basic Safety Standards and completed with Safety Requirements and additional technical information, that provide practical ways to implement the Fundamental Principles. This article describe briefly the RASS Program of the IAEA (Radiation Safety Standards) and the work of the Technical Committees established to assess the Director General of the IAEA in this task. (Author)

  4. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  5. IAEA safeguards for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The publication includes the lectures held during the seminar on IAEA safeguards for the 21st century. The topics covered are as follows: the nuclear non-proliferation regime; Legal instruments related to the application of safeguards; multilateral nuclear export controls; physical protection and its role in nuclear non-proliferation; the evolution of safeguards; basis for the strengthening of safeguards; information required from states, including 'small quantities protocol'; processing and evaluation of new information for strengthened safeguards; additional physical access and new technologies for strengthened safeguards; equipping the IAEA Inspectorate with new skills; achievements to date the strengthened safeguards; complement ofregional non-proliferation arrangements in international nuclear verification; promotion of transparency through Korean experience; and the future prospects of safeguards.

  6. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2001-01-01

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  7. Status and trends in IAEA safety standards

    International Nuclear Information System (INIS)

    Lipar, M.

    2004-01-01

    While safety is a national responsibility, international standards and approaches to safety promote consistency and facilitate international technical co-operation and trade, and help to provide assurance that nuclear and radiation related technologies are used safely. The standards also provide support for States in meeting their international obligations. One general international obligation is that a State must not pursue activities that cause damage in another State. More specific obligations on Contracting States are set out in international safety related conventions. The internationally agreed IAEA safety standards provide the basis for States to demonstrate that they are meeting these obligations. These standards are founded in the IAEA's Statute, which authorizes the Agency to establish standards of safety for nuclear and radiation related facilities and activities and to provide for their application. The safety standards reflect an international consensus on what constitutes a high level of safety for protecting people and the environment. (orig.) [de

  8. International cooperative analysis of standard substance, IAEA-0390

    International Nuclear Information System (INIS)

    Kawamoto, Keizo; Takada, Jitsuya; Moriyama, Hirotake; Akaboshi, Mitsuhiko

    1999-01-01

    Three kinds of algae (IAEA-0391, IAEA-0392 and IAEA-0393) were defined as the biological standard substance to monitor environmental pollution by Analytical Quality Control Service of IAEA (IAEA-AQCS). In this study, analysis of these standard substances were made using ICP-MS to compare with the results of simultaneously conducted radioactivation analysis (INAA). The respective cultures of the three algae were cooperatively prepared by IAEA-AQCS and microbial Institute of Czechoslovakia. After drying and sterilizing by Co-60 exposure, these samples were sent to KURRI. When the results from the experiment in KURRI were compared with the values recommended through statistical treatment of the data obtained by IAEA, these values of 5 elements, Fe, Cr, Mg, Mn and Na were well coincident for either of IAEA-0391, IAEA-0392 and IAEA-0393 and the values of As, Ca, Cd, Co, Cu, K and Zn were nearly coincident between them. Regarding Hg and La, the data from INAA and ICP-MS were very different from the recommended values of IAEA for either of samples. (M.N.)

  9. IAEA safeguards instrumentation: Development, implementation and control

    International Nuclear Information System (INIS)

    Rundquist, D.E.

    1983-01-01

    Extensive development efforts over the last 5 years have produced a number of new instruments to help the IAEA meet its safeguards obligations. Implementation of these new instruments is proceeding at a necessarily slower pace. To optimize the performance and reliability of the instrumentation systems when used in safeguards applications, increasing attention is needed to be spent on performance monitoring and control of the instruments. (author)

  10. The IAEA energy and economic data bank

    International Nuclear Information System (INIS)

    Charpentier, J.P.; Russell, J.E.

    1978-01-01

    In 1976, the IAEA established a computerized energy and economic data bank not only on nuclear energy but on other forms of energy as well. The purpose of the data bank is to provide in a unified and systematic way energy and related economic data needed for long-term energy planning. A computer program permits the production of a variety of up-to-date tables and graphs

  11. IAEA Nuclear Security - Achievements 2002-2011

    International Nuclear Information System (INIS)

    2012-03-01

    The possibility that nuclear or other radioactive material could be used for malicious purposes is real. This calls for a collective commitment to the control of, and accountancy for, material, as well as to adequate levels of protection in order to prevent criminal or unauthorized access to the material or associated facilities. Sharing of knowledge and experience, coordination among States and collaboration with other international organizations, initiatives and industries supports an effective international nuclear security framework. In 2001, the Board of Governors tasked the IAEA with improving nuclear security worldwide. The report that follows provides an overview of accomplishments over the last decade and reflects the importance that States assign to keeping material in the right hands. The IAEA has established a comprehensive nuclear security programme, described first in the Nuclear Security Plan of 2002-2005 and subsequently in the second plan of 2006- 2009. Activities included developing internationally accepted nuclear security guidance, supporting international legal instruments, protecting material and facilities, securing transport and borders, detecting and interdicting illicit nuclear trafficking, strengthening human resource capacity and preparing response plans should a nuclear security event occur. The IAEA has begun the implementation of its third Nuclear Security Plan, to be completed at the end of 2013. This approach to nuclear security recognizes that an effective national nuclear security regime builds on a number of factors: the implementation of relevant international legal instruments; IAEA guidance and standards; information protection; physical protection; material accounting and control; detection of, and response to, trafficking in such material; national response plans and contingency measures. Implemented in a systematic manner, these building blocks make up a sustainable national nuclear security regime and contribute to global

  12. IAEA INTOR Workshop report, group 12

    International Nuclear Information System (INIS)

    1980-01-01

    This report gives the material for the IAEA INTOR Workshop for data base discussion in Group 12, Start-up, Burn and Shutdown. Number of problem areas from the generation of a plasma to the termination of the discharge are covered, which should be assessed to develop a scenario for sustaining a plasma for the whole duration of a pulse. The reactor relevant burn pulse is also assessed. (author)

  13. IAEA ASSET service - A KANUPP perspective

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Ghafoor, M [Karachi Nuclear Power Plant (Pakistan)

    1997-12-31

    IAEA has been providing ASSET Service since 1986. It is a mechanism for drawing and disseminating specific and generic lesson from a significant event. Like many other operating organizations, KANUPP has also benefited from its in-depth technical exchange experience which has resulted in significant improvement in the level of operation safety. The ASSET mission, which visited KANUPP in connection with fuelling machine locking problem in 1989, triggered many actions which were responsible for improvement of overall safety of the plant.

  14. IAEA ASSET service - A KANUPP perspective

    International Nuclear Information System (INIS)

    Abdul Ghafoor, M.

    1996-01-01

    IAEA has been providing ASSET Service since 1986. It is a mechanism for drawing and disseminating specific and generic lesson from a significant event. Like many other operating organizations, KANUPP has also benefited from its in-depth technical exchange experience which has resulted in significant improvement in the level of operation safety. The ASSET mission, which visited KANUPP in connection with fuelling machine locking problem in 1989, triggered many actions which were responsible for improvement of overall safety of the plant

  15. IAEA and the international nuclear law development

    International Nuclear Information System (INIS)

    Jankowitsh, O.

    1996-01-01

    This paper summarizes the different objectives of the IAEA (International Atomic Energy Agency) as far as nuclear energy use is concerned. It presents the status of the organization, its action int the non-proliferation treaty, and its work on the safeguard regulations. These measures have been taken during the Convention on nuclear safety in 1994. This convention concerns nuclear power plants as well as storage of radioactive wastes. (TEC)

  16. IAEA INTOR workshop report, group 16

    International Nuclear Information System (INIS)

    Hiraoka, Toru; Suzuki, Yasuo; Ogata, Atsushi

    1979-10-01

    This is the contribution of JAERI team to Group 16 of IAEA INTOR Workshop, which discusses diagnostics, data acquisition and control. Data assessment is made to consider diagnostics of INTOR. Also considered is how the diagnostics, data acquisition and control should be for a tokamak of the coming generation. The pending problems set at the Session 2 as hometasks are studied, which are given in Appendix. (author)

  17. The radioactive waste management at IAEA laboratories

    International Nuclear Information System (INIS)

    Deron, S.; Ouvrard, R.; Hartmann, R.; Klose, H.

    1992-10-01

    The report gives a brief description of the nature of the radioactive wastes generated at the IAEA Laboratories in Seibersdorf, their origin and composition, their management and monitoring. The management of the radioactive waste produced at IAEA Laboratories in Seibersdorf is governed by the Technical Agreements of 1985 between the IAEA and the Austrian Health Ministry. In the period of 1982 to 1991 waste containers of low activity and radiotoxicity generated at laboratories other than the Safeguards Analytical Laboratory (SAL) were transferred to the FZS waste treatment and storage plant: The total activity contained in these drums amounted to < 65 MBq alpha activity; < 1030 MBq beta activity; < 2900 MBq gamma activity. The radioactive waste generated at SAL and transferred to the FZs during the same period included. Uranium contaminated solid burnable waste in 200 1 drums, uranium contaminated solid unburnable waste in 200 1 drums, uranium contaminated liquid unburnable waste in 30 1 bottles, plutonium contaminated solid unburnable waste in 200 1 drums. In the same period SAL received a total of 146 Kg uranium and 812 g plutonium and exported out of Austria, unused residues of samples. The balance, i.e.: uranium 39 kg, plutonium 133 g constitutes the increase of the inventory of reference materials, and unused residues awaiting export, accumulated at SAL and SIL fissile store as a result of SAL operation during this 10 year period. The IAEA reexports all unused residues of samples of radioactive and fissile materials analyzed at his laboratories, so that the amount of radioactive materials ending in the wastes treated and stored at FZS is kept to a minimum. 5 refs, 7 figs, 3 tabs

  18. Quality of Standard Reference Materials for Short Time Activation Analysis

    International Nuclear Information System (INIS)

    Ismail, S.S.; Oberleitner, W.

    2003-01-01

    Some environmental reference materials (CFA-1633 b, IAEA-SL-1, SARM-1,BCR-176, Coal-1635, IAEA-SL-3, BCR-146, and SRAM-5) were analysed by short-time activation analysis. The results show that these materials can be classified in three groups, according to their activities after irradiation. The obtained results were compared in order to create a quality index for determination of short-lived nuclides at high count rates. It was found that Cfta is not a suitable standard for determining very short-lived nuclides (half-lives<1 min) because the activity it produces is 15-fold higher than that SL-3. Biological reference materials, such as SRM-1571, SRM-1573, SRM-1575, SRM-1577, IAEA-392, and IAEA-393, were also investigated by a higher counting efficiency system. The quality of this system and its well-type detector for investigating short-lived nuclides was discussed

  19. IAEA Nutrition Programmes Feed Global Development

    International Nuclear Information System (INIS)

    Henriques, Sasha

    2014-01-01

    As an organization, the IAEA has a statutory requirement to “accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.” Good nutrition is the cornerstone of good health and the development of nations. That’s why the IAEA is involved in nutrition. The IAEA’s Member States use nuclear methods to move their nutrition programmes forward. These nuclear techniques include the use of stable isotopes (which have no radioactivity) to better understand how nutrients are absorbed, utilized, or stored in the body. These very precise and powerful techniques can be safely and non-invasively used on everyone, from babies to the elderly, in order to determine nutritional status, and measure the effectiveness of nutrition programmes. Nuclear techniques often provide answers that are not available by any other means. By training Member States in the use of nuclear techniques for nutrition, the IAEA complements the work that these countries are doing with other international organizations and not-for-profit groups around the world to combat malnutrition in all its forms and to promote health

  20. Directory of IAEA databases. 3. ed.

    International Nuclear Information System (INIS)

    1993-12-01

    This second edition of the Directory of IAEA Databases has been prepared within the Division of Scientific and Technical Information. Its main objective is to describe the computerized information sources available to staff members. This directory contains all databases produced at the IAEA, including databases stored on the mainframe, LAN's and PC's. All IAEA Division Directors have been requested to register the existence of their databases with NESI. For the second edition database owners were requested to review the existing entries for their databases and answer four additional questions. The four additional questions concerned the type of database (e.g. Bibliographic, Text, Statistical etc.), the category of database (e.g. Administrative, Nuclear Data etc.), the available documentation and the type of media used for distribution. In the individual entries on the following pages the answers to the first two questions (type and category) is always listed, but the answer to the second two questions (documentation and media) is only listed when information has been made available

  1. The joint FAO and IAEA programme

    International Nuclear Information System (INIS)

    Fried, M.; Lamm, C.G.

    1981-01-01

    In 1964 the FAO and IAEA decided to establish a joint programme for the specific purpose of assisting Member States in applying nuclear techniques to develop their food and agriculture. As a result, the Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy and Agriculture Development was established. The objectives of this joint FAO/IAEA programme are to exploit the potential of isotopes and radiation applications in research and development to increase and stabilize agriculture production, to reduce production costs, to improve the quality of food, to protect agricultural products from spoilage and losses, and to minimize pollution of food and agricultural environment. The activities of the joint programme, which are briefly described, can be grouped under three main headings: co-ordination and support of research; technical assistance including training; and dissemination of information. Tables are shown giving a breakdown of 311 research contracts and agreements held with institutes in Member States and 86 technical assistance projects in 46 developing countries, providing training, expertise and specialized equipment

  2. Quality assurance for IAEA inspection planning

    International Nuclear Information System (INIS)

    Markin, J.T.

    1986-01-01

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with states, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, we summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are: (1) administrative functions, such as arrangements for visas and travel, and communications with the state to confirm facility operating schedules and the state's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions, such as pre- and post-inspection briefings, where the planned and implemented inspection activities are reviewed

  3. IAEA Newsbriefs. V. 11, no. 2(71). Apr-May 1996

    International Nuclear Information System (INIS)

    1996-01-01

    This issue gives brief information on the following topics: Chernobyl Conference sums up Scientific Understanding, International Forum on the Safety of RBMK Reactors, IAEA Board of Governors, Radiological Study of the Mururoa and Fangataufa Atolls, Safeguards Support, Workshop on Modelling Methods for Water Systems, Uranium Market Trends, Security Council Resolution on Iraq, South East Asian NWFZ, Radioactive Waste Management, Nuclear Seminar in Poland, and other short information

  4. IAEA Newsbriefs. V. 9, no. 1(63). Feb-Mar 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This issue gives brief information on the following topics: IAEA Safeguards Inspections Resume in the DPRK, Nuclear Safety Convention, Nuclear Inspections in Iraq, Strengthening the Safeguards System, Nuclear Non-proliferation and Verification, Ban on Sea Dumping of Radioactive Waste, The Decades Project, Food Irradiation's Practical Utilization, International Nuclear Event Scale, Asset and Osart Missions with the subtopics 'Assessment of Safety Significant Events Team (ASSET)', and 'Operational Safety Review Teams(OSARTs)', Transport of Radioactive Waste, and other short information

  5. IAEA Technical Meeting on Status of IAEA Fast Reactor Knowledge Preservation Initiative. Working Material

    International Nuclear Information System (INIS)

    2013-01-01

    In response to needs expressed by Member States and within a broader IAEA-wide effort in nuclear knowledge preservation, the IAEA has been carrying out a dedicated initiative on Fast Reactor Data Knowledge Preservation (FRKP). The main objectives of the FRKP initiative are to: • Halt the on-going loss of information related to Fast Reactors (FR); • Collect, retrieve, preserve and make accessible already existing data and information on FR. These objectives require the implementation of activities supporting digital document archival, exchange, search and retrieval and facilitating, by developing and using suitable standards and IT tools, the knowledge preservation over the next decades. To this purpose the IAEA has developed the Fast Reactor Knowledge Organization System (FRKOS), a web-based application employing IAEA methodology and approach for categorization of FR knowledge domain, which allows creating a comprehensive and well-structured international inventory of fast reactor data and information provided by different Member States. The resulting Web Portal is established and maintained by the IAEA. The IAEA knowledge preservation initiatives and tools in the field of fast neutron systems - which were presented and very well received during the recent IAEA Fast Reactor and Related Fuel Cycles Conference (FR13) - are supposed to be of interest for national nuclear authorities, regulators, scientific and research organizations, commercial companies and all other stakeholders involved in fast reactor activities at national or international level. The objectives of the technical meeting were to: • Exchange information between the member states/international organizations on national and international initiatives addressing knowledge preservation and data retrieval/collection in the field of fast neutron systems; • Present and discuss the member states’/international organizations’ policies and conditions for releasing to the IAEA both publicly

  6. IAEA completes third mission to Kashiwazaki-Kariwa nuclear power plant

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: An IAEA-led team of international experts has completed its third mission, at the invitation of the Government of Japan. This follow-up mission continued to share the lessons learned from the effects of the July 2007 earthquake of the Kashiwazaki- Kariwa nuclear power plant. The mission received further evidence confirming the findings of previous missions regarding the safe performance of the plant during and after the earthquake. The mission found that there is consensus in the scientific community about the causes of the unexpectedly large ground motions experienced at the plant site during the July 2007 earthquake and, consequently, it has been possible to identify the precautions needed to be taken in relation to possible future events. These precautions were based on extensive studies and assessments conducted by a number of specialized institutions and experts in different fields. The necessary upgrades and actions were consequently defined and are being implemented by the Japanese utility for both safety and non-safety related components at the nuclear power plant. The lessons learned from the Kashiwazaki-Kariwa experience has also contributed to the development of IAEA Safety Standards related to seismic safety. These standards are expected to be released shortly. The mission's report will be provided to the Japanese Nuclear and Industrial Safety Agency (NISA) and will be made publicly available in January 2009. The IAEA conducted two previous missions to the Kashiwazaki-Kariwa NPP in August 2007 and January/February 2008. The experience from recent strong seismic events and the lessons learned through the missions to Kashiwazaki-Kariwa NPP have led to the establishment of an International Seismic Safety Centre (ISSC) at the IAEA that is working as a focal point for seismic safety- related information about nuclear installations. Related Resources: (1) January 2008 IAEA Report: Follow-up IAEA Mission in Relation to the Findings and Lessons

  7. The IAEA Safety Regime for Decommissioning

    International Nuclear Information System (INIS)

    Bell, M.J.

    2002-01-01

    Full text of publication follows: The International Atomic Energy Agency is developing an international framework for decommissioning of nuclear facilities that consists of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, and a hierarchy of Safety Standards applicable to decommissioning. The Joint Convention entered into force on 18 June 2001 and as of December 2001 had been ratified by 27 IAEA Member States. The Joint Convention contains a number of articles dealing with planning for, financing, staffing and record keeping for decommissioning. The Joint Convention requires Contracting Parties to apply the same operational radiation protection criteria, discharge limits and criteria for controlling unplanned releases during decommissioning that are applied during operations. The IAEA has issued Safety Requirements document and three Safety Guides applicable to decommissioning of facilities. The Safety Requirements document, WS-R-2, Pre-disposal Management of Radioactive Waste, including Decommissioning, contains requirements applicable to regulatory control, planning and funding, management of radioactive waste, quality assurance, and environmental and safety assessment of the decommissioning process. The three Safety Guides are WS-G-2.1, Decommissioning of Nuclear Power Plants and Research Reactors, WS-G-2.2, Decommissioning of Medical, Industrial and Research Facilities, an WS-G-2.4, Decommissioning of Nuclear Fuel Cycle Facilities. They contain guidance on how to meet the requirements of WS-R-2 applicable to decommissioning of specific types of facilities. These Standards contain only general requirements and guidance relative to safety assessment and do not contain details regarding the content of the safety case. More detailed guidance will be published in future Safety Reports currently in preparation within the Waste Safety Section of the IAEA. Because much material arising during the decommissioning

  8. IAEA Technical Cooperation and the NPT

    International Nuclear Information System (INIS)

    Barretto, Paulo M.C.; Cetto, Ana Maria

    2005-01-01

    The NPT rests on three interlinked pillars: cooperation in peaceful uses of nuclear energy, verified nuclear non-proliferation, and nuclear disarmament. This article looks specifically at the first pillar and its linkage with the second one. Non-nuclear weapon States are the vast majority of NPT Parties. The right of NPT Parties to have access to information, exchange of equipment and materials is explicitly recognized in Article IV of the Treaty. This Article stipulates that all Parties of the Treaty undertake to facilitate and have the right to participate in the fullest possible exchange of equipment, materials and scientific and technological information for the peaceful uses of nuclear energy. A successful campaign after the 1995 NPT Review Conference increased the NPT membership from 178 to near universality, and today 189 States are Parties to the Treaty. In the same period the IAEA's membership increased from 127 to 138. Today all IAEA Member States are participating in the Agency's Technical Cooperation Programme (TCP) in varying mixed capacities of donors or recipients. The IAEA, although not referred to in Article IV of the NPT, plays a major role in planning and implementing multilateral cooperation stipulated in the Treaty. It encourages and assists research, development and application of atomic energy; it provides technical advice, training, materials, services and equipment; fosters exchange of scientific and technical information; develops standards and guidelines for the appropriate utilization of nuclear technology and materials, and builds strategic partnerships to increase the leverage of the limited resources available. At all times, the Agency seeks to support the use of nuclear technology in a way that is safe for humans and the environment. All these activities are related to key statutory functions of the IAEA. Efforts to assist Member States are impressive. Since its inception in 1957, the Agency has provided direct assistance valued at

  9. IAEA activities in technology development for advanced water-cooled nuclear power plants

    International Nuclear Information System (INIS)

    Juhn, Poong Eil; Kupitz, Juergen; Cleveland, John; Lyon, Robert; Park, Je Won

    2003-01-01

    As part of its Nuclear Power Programme, the IAEA conducts activities that support international information exchange, co-operative research and technology assessments and advancements with the goal of improving the reliability, safety and economics of advanced water-cooled nuclear power plants. These activities are conducted based on the advice, and with the support, of the IAEA Department of Nuclear Energy's Technical Working Groups on Advanced Technologies for Light Water Reactors (LWRs) and Heavy Water Reactors (HWRs). Assessments of projected electricity generation costs for new nuclear plants have shown that design organizations are challenged to develop advanced designs with lower capital costs and short construction times, and sizes, including not only large evolutionary plants but also small and medium size plants, appropriate to grid capacity and owner financial investment capability. To achieve competitive costs, both proven means and new approaches should be implemented. The IAEA conducts activities in technology development that support achievement of improved economics of water-cooled nuclear power plants (NPPs). These include fostering information sharing and cooperative research in thermo-hydraulics code validation; examination of natural circulation phenomena, modelling and the reliability of passive systems that utilize natural circulation; establishment of a thermo-physical properties data base; improved inspection and diagnostic techniques for pressure tubes of HWRs; and collection and balanced reporting from recent construction and commissioning experiences with evolutionary water-cooled NPPs. The IAEA also periodically publishes Status Reports on global development of advanced designs. (author)

  10. Analysis on IAEA 2006-2007 Programme and Cooperation Directions between Korea and IAEA

    International Nuclear Information System (INIS)

    Oh, Keun Bae; Lee, H. M.; Yang, M. H.; Lee, B. W.; Ko, H. S.; Ryu, J. S.; Kim, H. J.; Kim, K. P.

    2004-12-01

    In this study, the structure of the IAEA programme and the major changes in 2004/2005 programme cycle are analyzed. Also renewed programming process and major issues in 2006/2007 programme and budget are analyzed. Based on the analyses, the detailed proposal to strengthen cooperation with IAEA is prepared in the fields of nuclear power, nuclear application, nuclear safety and nuclear cooperation. As a result, the following 9 themes are identified to strengthen the relation between Korea and the IAEA. - Nuclear Production of Hydrogen - Sea Water Desalination - Nuclear Knowledge Management - Application of Food Irradiation - Cancer Treatment using Cyclotron - Global Nuclear Safety Network; - Management of Radiation Source by Global Positioning System (GPS) - Global Network for Radiological Emergency Response - Enhanced relationship between Regional Cooperation Frameworks

  11. IAEA Board of Governors approves IAEA action plan to combat nuclear terrorism

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA Board of Governors today approved in principal an action plan designed to upgrade worldwide protection against acts of terrorism involving nuclear and other radioactive materials. In approving the plan, the Board has recognized that the first line of defense against nuclear terrorism is the strong physical protection of nuclear facilities and materials. 'National measures for protecting nuclear material and facilities are uneven in their substance and application,' the IAEA says. 'There is wide recognition that the international physical protection regime needs to be strengthened.'

  12. IAEA Technical Meeting on Status of IAEA Fast Reactor Knowledge Preservation Initiative. Presentations

    International Nuclear Information System (INIS)

    2013-01-01

    The objectives of the technical meeting were to: • exchange information between the Member States/International Organizations on national and international initiatives addressing knowledge preservation and data retrieval/collection in the field of fast neutron systems; • present and discuss the Member States’/International Organizations’ policies and conditions for releasing to the IAEA both publicly available and confidential information on fast neutron systems; • collect data on fast neutron systems provided by participating Member States/International Organizations and encourage participants to contribute in data collection; • provide recommendations for further IAEA initiatives in the field of fast reactor knowledge preservation

  13. IAEA Patient Protection Effort Reaches Key Milestone

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An International Atomic Energy Agency (IAEA) effort to help people track their radiation exposure from medical procedures achieved a significant milestone this week. The Agency received the final approval from a group of medical oversight organizations for the 'Joint Position Statement on the IAEA Patient Radiation Exposure Tracking', a set of principles to guide patient protection efforts at the sub-national, national, and international level. The joint statement endorses the IAEA's three-year-old Smart Card/SmartRadTrack project, which aims to help nations develop systems to track medical radiation procedures and radiation doses. The statement has been agreed by the World Health Organization (WHO), the U.S. Food and Drug Administration (FDA), the European Society of Radiology (ESR), the International Organization for Medical Physics (IOMP), the International Society of Radiographers and Radiological Technologists (ISRRT), and the Conference of Radiation Control Program Directors, USA (CRCPD). 'This system is critical if the medical community is going to keep patients safe when they are being referred for more and more diagnostic scans. These scans, over the years, are made using more and more powerful machines', said Madan Rehani, Radiation Safety Specialist in the IAEA's Radiation Protection of Patients Unit. 'The tracking system will draw doctors' attention to previous radiological examinations, both in terms of clinical information and radiation dose and thus help them assess whether the 11th or 20th CT scan is really appropriate, whether it will do more good than harm.' Advances in radiation-based diagnostic technologies, such as the CT scan, have led to patients receiving such procedures more frequently. The convenience of CT with the added advantage of increased information has resulted in increased usage to the point that there are instances of patients getting tens of CT scans in a few years, not all of which may be justified, or getting CT

  14. IAEA Director General reviews state of the world's nuclear security, safety and technology at annual IAEA General Conference

    International Nuclear Information System (INIS)

    2002-01-01

    The IAEA has been unable to draw any conclusion or provide any assurance regarding Iraq's compliance with its obligations under the Security Council resolutions, it will therefore be important for the Agency to resolve, upon re-commencement of inspections, the key issue of whether the situation regarding Iraq's nuclear activities and capabilities has changed in any material way since December 1998. Regarding the status of IAEA's Safeguards Agreement with the Democratic People's Republic of Korea (DPRK) the Agency continues to be unable to verify that the DPRK has declared all the nuclear material that is subject to Agency safeguards measures under its NPT safeguards agreement. The work required to verify the correctness and completeness of the DPRK's initial declaration could take three or four years. On the issue of nuclear non-proliferation, the universalization, consolidation and strengthening of the non-proliferation regime, including concrete steps to reduce the number of and dependence on nuclear weapons, are more important than ever for the continuing sustainability and credibility of the regime. Only 27 countries had brought into force Additional Protocols agreements with the Agency, which gives the Agency increased authority to provide assurances that countries were using their nuclear actives for peaceful civilian purposes only. All countries are urged to do so. An expanded effort was needed including threat assessments to protect nuclear facilities against attack, sabotage or theft. The focus of these efforts must be expanded to cover other nuclear facilities, including research installations that also have nuclear and other radioactive material. A significant short-term priority is to bring radioactive sources under appropriate control, whether in use, storage, orphaned or in transport. Concerning global nuclear safety, it is satisfying to note that nuclear safety continues to improve at power plants worldwide. The future of nuclear power, depends on

  15. Contribution of the Member State Support Programmes to IAEA safeguards

    International Nuclear Information System (INIS)

    Fortakov, V.; Gardiner, D.; Rautjaervi, J.

    1999-01-01

    Over the last twenty years, Member States of the International Atomic Energy Agency (IAEA) have provided invaluable technical support to IAEA Safeguards. This support has covered practically all aspects of traditional safeguards activities and also those activities recently proposed and introduced for strengthening the safeguards system. As of August 1997, there were fourteen Member States, plus EURATOM, with active programmes in support of IAEA safeguards and the activities conducted under these Member State Support Programmes (MSSPs) are currently valued at an annual twenty million dollars of extra-budgetary contribution to the IAEA. The overall administration in the IAEA of the support programmes is the responsibility of Support Programmes Administration (SPA) in the Safeguards Division of Technical Services. This paper describes the roles and the contributions of the MSSPs, the functions of the MSSP administration activities, and the vital importance the IAEA attaches to the MSSPs. (author)

  16. IAEA safeguards for the Fissile Materials Disposition Project

    International Nuclear Information System (INIS)

    Close, D.A.

    1995-06-01

    This document is an overview of International Atomic Energy Agency (IAEA) safeguards and the basic requirements or elements of an IAEA safeguards regime. The primary objective of IAEA safeguards is the timely detection of the diversion of a significant quantity of material and the timely detection of undeclared activities. The two important components of IAEA safeguards to accomplish their primary objective are nuclear material accountancy and containment and surveillance. This overview provides guidance to the Fissile Materials Disposition Project for IAEA inspection requirements. IAEA requirements, DOE Orders, and Nuclear Regulatory Commission regulations will be used as the basis for designing a safeguards and security system for the facilities recommended by the Fissile Materials Disposition Project

  17. Nuclear knowledge management at the IAEA

    International Nuclear Information System (INIS)

    Yanev, Y.

    2004-01-01

    Nuclear Knowledge Management as a part of the IAEA mission and its aim to help organizations to achieve competitive advantage; costs reduction; accelerated time to market in companies and large private sector organisations; innovation, supports error free decision making are discussed. The most important outputs such as nuclear knowledge management methodology; identifying endangered areas of nuclear science and technology; developing knowledge repositories; knowledge preservation technology; dedicated projects with Member States, (Atucha, Angra, KNK2, ) are presented. A brief review of the currently implemented with Agency's assistance project ANENT (Asian Network for Education in Nuclear Technology) is also given

  18. IAEA interlaboratory exercise for water chemistry

    International Nuclear Information System (INIS)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Jeon, Young Shin; Choi, Ke Chun; Kim, Yong Bok; Kim, Jong Gu; Kim, Won Ho

    2003-09-01

    KAERI Analytical laboratory participated in the IAEA Interlaboratory exercise for water chemistry of groundwater(RAS/8/084). 13 items such as pH, electroconductivity, HCO 3 , Cl, SO 4 , SiO 2 , B, Li, Na, K, Ca, Mg and NH 3 were analyzed. The result of this exercise showed that KAERI laboratory was ranked on the top level of the participants. Major analytical methods applied for this activity were ICP-AES, AAS, IC, pH meter, conductometer and acid titration

  19. IAEA technical committee meeting on pellet injection

    International Nuclear Information System (INIS)

    1993-01-01

    The IAEA Technical Committee Meeting on Pellet Injection, May 10-12, 1993, at the Japan Atomic Energy Research Institute, Naka, Ibaraki-ken, Japan, was held to review the latest results on pellet injection and its effects on plasma confinement. In particular, topics included in the meeting include (i) pellet ablation and particle fueling results, (ii) pellet injection effects on confinement, including improved confinement modes, edge effects, magnetohydrodynamic activity and impurity transport, and (iii) injector technology and diagnostics using pellets. About 30 experts attended and 23 papers were presented. Refs, figs and tabs

  20. IAEA sodium void reactivity benchmark calculations

    International Nuclear Information System (INIS)

    Hill, R.N.; Finck, P.J.

    1992-01-01

    In this paper, the IAEA-1 992 ''Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated

  1. Protection against nuclear terrorism: the IAEA response

    International Nuclear Information System (INIS)

    Dodd, B.

    2002-01-01

    Full text: As a result of the events of 11 September 2001, the International Atomic Energy Agency (IAEA) identified possible threats from acts of nuclear terrorism. A report to the Board of Governors in November 2001 summarized the IAEA's ongoing work in areas relevant to the prevention and mitigation of the consequences of such acts and outlined proposals for a number of new and/or enhanced activities. Four main threats were addressed: theft of a nuclear weapon; acquisition of nuclear material; acquisition of other radioactive material; and violent acts against nuclear facilities. These proposals have been further refined and the new plan was approved in principle at the March 2002 board meeting. In the beginning, implementation will be dependent on member state contributions to a voluntary fund. Proposed new or enhanced activities are grouped into eight areas: I. Physical protection of nuclear material and nuclear facilities; II. Detection of malicious activities involving nuclear and other radioactive materials; III. State systems for nuclear material accountancy and control; IV. Security of radioactive material other than nuclear material; V. Assessment of safety/security related vulnerability of nuclear facilities; VI. Response to malicious acts, or threats thereof; VII. Adherence to and implementation of international agreements, guidelines and recommendations; VIII. Nuclear security co-ordination and information management. After an overview, this paper focuses on activity area IV, which deals with the radiological terrorism issues involving radioactive sources. A strategy for evaluation of the IAEA's role is presented, covering an analysis of the likely threats and possible scenarios. This leads to an assessment of the most desirable sources from a terrorist's viewpoint. The strategy then examines how terrorists might acquire such sources and attempts to determine the best ways to prevent their acquisition. Further activities are proposed to prevent the use

  2. IAEA releases nuclear power statistics for 2000

    International Nuclear Information System (INIS)

    2001-01-01

    According to data reported to the IAEA Power Reactor Information System, a total of 438 NPPs were operating around the world at the end of 2000. The total installed power from NPPs was 351 GWe. During 2000, six plants were connected to the grid, construction of three new nuclear reactors started, bringing the total number of reactors under construction to 31. Worldwide in 2000, total nuclear generated electricity increased to 2447.53 terawatt-hours. Cumulative worldwide operating experience from civil nuclear power reactors at the end of 2000 exceeded 9800 reactor years

  3. IAEA To Launch Centre On Ocean Acidification

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The International Atomic Energy Agency (IAEA) is to launch a new centre this summer to address the growing problem of ocean acidification. Operated by the Agency's Monaco Environmental Laboratories, the Ocean Acidification International Coordination Centre will serve the scientific community - as well as policymakers, universities, media and the general public - by facilitating, promoting and communicating global actions on ocean acidification. Growing amounts of carbon dioxide in the Earth's atmosphere are being absorbed in the planet's oceans which increases their acidity. According to the experts, ocean acidification may render most regions of the ocean inhospitable to coral reefs by 2050 if atmospheric carbon dioxide levels continue to increase. This could lead to substantial changes in commercial fish stocks, threatening food security for millions of people as well as the multi-billion dollar fishing industry. International scientists have been studying the effect and possible responses, and the new centre will help coordinate their efforts. ''During the past five years, numerous multinational and national research projects on ocean acidification have emerged and significant research advances have been made,'' said Daud bin Mohamad, IAEA Deputy Director General for Nuclear Sciences and Applications. ''The time is now ripe to provide international coordination to gain the greatest value from national efforts and research investments.'' The centre will be supported by several IAEA Member States and through the Peaceful Uses Initiative, and it will be overseen by an Advisory Board consisting of leading institutions, including the U.N. Intergovernmental Oceanographic Commission, the U.S. National Oceanic and Atmospheric Administration, the U.N. Food and Agriculture Organization, the Fondation Prince Albert II de Monaco, the OA-Reference User Group, as well as leading scientists and economists in the field. The new centre will focus on international

  4. IAEA work with guides for PSA quality

    International Nuclear Information System (INIS)

    Hellstroem, Per

    2004-09-01

    IAEA has a project on development of a TECDOC 'PSA Quality for Various Applications'. The project develops the guidance document in stages with intermediate meetings with exchange of ideas, thoughts and experience. Draft versions are being produced successively. The objective with the project is to use attributes to describe the quality of different elements of a PSA (Analysis of initiating events, accident progression, system, data, human reliability, etc) making the PSA suitable for application in various risk informed activities. Two of the meetings in this project took place in February 2004 and in July 2004. The February meeting discussed different aspects of PSA quality in relation to applications and a draft of the TECDOC was reviewed. The meeting made recommendations for preparation of a final document and set priorities for further work in the area. The July meeting elaborated the document further in a small working group and a new draft version was prepared. A final version is expected to be published during 2005. The project has come to the conclusion that it is a limited number of PSA element attributes that are specific for a certain application. Most of the attributes concern plant specificity, realism and level of detail in a general manner, how plant specific is the model, how realistic and how detailed? Many attributes have the characteristic that they are good to have, but not necessarily needed to do the job. This last statement is valid both for a baseline PSA and a PSA application. The IAEA project has identified a limited number of attributes that are necessary to describe characteristics needed for specific applications. The PSA scope needed for a specific application is not covered by the project/document, even though it is obvious that different applications will need different scope or approaches to handle scope limitations. The guidance on performing a PSA available today is old. It is a need to review these guides and update with regard

  5. IAEA Remediation Mission to Japan Concludes

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: A team of international experts today completed a preliminary assessment of the strategy and plans being considered by the Japanese authorities to remediate the areas off-site the Fukushima Dai-ichi Nuclear Power Plant reported to have elevated levels of radiation. The IAEA dispatched the mission to Japan on 7 October following a request from the country's Government. The mission, comprising 12 international and IAEA experts from several countries, visited numerous locations in the Fukushima Prefecture and conducted meetings in Tokyo and Fukushima with Japanese officials from several Ministries and institutions. ''The meetings held and visits made by the team over the last eight days gave us a first-hand appreciation of the extraordinary efforts and dedication on the part of Japanese people in their effort to remediate the areas affected by elevated levels of radiation in the Fukushima Prefecture,'' says Mr. Juan Carlos Lentijo, Team Leader and General Director for Radiation Protection at Spain's nuclear regulatory authority. ''As Japan continues its current remediation efforts, it is our belief that this work will bring relief to the populations who are affected by the consequences of the nuclear accident at the Fukushima Dai-ichi nuclear power plant.'' In a Preliminary Summary Report delivered to Japanese authorities today, the team prepared a set of conclusions including, though not limited to, the following: - Japan developed an efficient program for remediation - allocating the necessary legal, financial and technological resources to bring relief to the people affected by the accident, with priority being given to children. The Team was impressed with the strong commitment to the remediation effort from all institutions and parties involved, including the public; - Japan has also taken practical measures to inform the public and involve residents and local institutions in the process of defining its remediation strategy; - Japan is advised to avoid

  6. IAEA safeguards: Staying ahead of the game

    International Nuclear Information System (INIS)

    2007-07-01

    What are nuclear safeguards and why are they important? Answers are provided in the booklet, describing and explaining the fundamentals of the IAEA safeguards system and its role as a key element of international security, and addressing the system's implementation, costs, requirements, resources and historical development, with an emphasis on trends and strengthening measures over the past 10-15 years. Topics discussed include the safeguards State evaluation process and and the key requirements of the safeguards system including information sources (open source information, commercial satellite imagery and nuclear trade related information) and the state of the art equipment, techniques and technology (unattended and remote monitoring equipment, environmental sampling, etc.)

  7. 14th meeting of the IFRC Subcommittee on Atomic and Molecular Data for Fusion. Summary report of IAEA technical meeting

    International Nuclear Information System (INIS)

    Clark, R.E.H.; Peacock, N.J.

    2006-01-01

    The 14th Meeting of the Subcommittee on Atomic and Molecular Data for Fusion of the International Fusion Research Council was held on 24-25 June 2004, at the IAEA Headquarters in Vienna, Austria. Subcommittee members reviewed the work of the Atomic and Molecular Data Unit over the two-year period from June 2002 to June 2004, and made recommendations that covered the 2005-2006 budget cycle. The proceedings, conclusions and recommendations of the meeting are briefly described in this report, along with a short summary of the activities of the IAEA Atomic and Molecular Data Unit of the Nuclear Data Section from June 2002 to June 2004. (author)

  8. IAEA's Safeguards Implementation Practices Guides

    International Nuclear Information System (INIS)

    Mathews, C.; Sahar, S.; Cisar, V.

    2015-01-01

    Implementation of IAEA safeguards benefits greatly from effective cooperation among the IAEA, State or regional authorities (SRAs), and operators of facilities and other locations. To improve such cooperation, the IAEA has produced numerous safeguards guidance documents in its Services Series publications. The IAEA also provides assistance, training and advisory services that are based on the published guidance. The foundation of the IAEA's safeguards guidance is the Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols (IAEA Services Series 21) published in March of 2012. The large majority of States have concluded CSAs and therefore will benefit from this guidance. Many States with CSAs also have concluded small quantities protocols (SQPs) to their CSAs. In April of 2013, the IAEA published the Safeguards Implementation Guide for States with SQPs (IAEA Services Series 22). Other guidance focuses on specific topics such as preparing additional protocol declarations and nuclear material accounting. This paper will describe a recent effort to produce a ''Safeguards Implementation Practices'' (SIP) series of guides that will provide additional explanatory information about safeguards implementation, and share the practical experiences and lessons learned of States and the IAEA over the many decades of implementing safeguards. The topics to be addressed in four SIP guides include: 1) Facilitating IAEA Verification Activities; 2) Establishing and Maintaining State Safeguards Infrastructure; 3) Provision of Information to the IAEA; and 4) Collaborative Approaches to Safeguards Implementation. The SIP Guides build upon the content of IAEA Services Series 21. Because the SIP Guides are intended to share implementation practices and lessons learned of States, a number of experienced State experts have participated in the development of the documents, through a joint Member State Support Programme task

  9. Euratom's accounting procedures to comply with IAEA requirements

    International Nuclear Information System (INIS)

    Kschwendt, H.

    1980-01-01

    The accounting concept used by the operators for nuclear materials accountancy is different from the evaluation concept used by IAEA. Euratom integrated these two concepts thus allowing for an automatic transformation from the one to the other concept (establishment of reports to IAEA by computer). Particular procedures have been developed to ensure the corrections of the accountancy in both concepts and to perform the retrospective corrections as required by IAEA. 4 refs

  10. NIRS inaugurated as IAEA Collaborating Centre. Its presence and function

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Watanabe, Naoyuki; Sakai, Kazuo; Kamada, Tadashi; Imai, Reiko; Fujibayashi, Yasuhisa; Nakane, Takeshi; Burkart, W.; Chhem, R.; Matsuura, Shojiro

    2010-01-01

    The feature article is the collection of documents commemorating the 2010 designation of National Institute of Radiological Sciences (NIRS) as one of International Atomic Energy Agency (IAEA) Collaborating Centres (CC) again, involving 4 introductory chapters containing 9 sections in total. The IAEA-CC concept, essentially for the 4-year project, started to globally give shape by designating 3 organizations in some countries in 2004, NIRS as a CC worked from 2006 and the present designation is the renewed one. There are 17 IAEA-CCs at present. The title of Chapter 1 of the article is the same as above title by NIRS President and of Chapter 2, ''IAEA-CC scheme'' by NIRS Senior Specialist/ professor of Gunma Pref. College of Health Sciences/ former IAEA staff. Chapter 3 entitled ''Research Development of Next Four Years in Three Collaboration Areas'', contains 3 topics of the very areas mainly responsible to the project, of biological effect and mechanism of low dose radiation by NIRS Director of Res. Center for Radiation Protection, IAEA-CC plan (radiotherapy) by the Director for Charged Particle Therapy, and IAEA-CC activity and research at Molecular Imaging Center by its Director. Chapter 4 entitled ''Expectation to NIRS'' contains four topics; Expectations for the reinforcement of collaboration with IAEA whose new priority is cancer control by the Japanese Ambassador Extraordinary and Plenipotentiary in Vienna; Welcoming NIRS to join IAEA-CC network (an interview with IAEA Deputy Director General and Head of Nuclear Sciences and Applications); Honoured to invite NIRS to establish a new partnership with IAEA (an interview with IAEA Director of Division of Human Health, Dept. of Nuclear Sciences and Applications); Expectation to NIRS in peaceful use of nuclear and radiation by President of the Nuclear Safety Research Association. (T.T.)

  11. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  12. IAEA/CRP for decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H.

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities

  13. The IAEA programme of action for cancer therapy

    International Nuclear Information System (INIS)

    Oliver, L. D.

    2007-01-01

    Full text: The International Atomic Energy Agency (IAEA) was awarded the Nobel Peace Prize on 10 December 2005. To acknowledge receiving this prestigious award, the IAEA arranged three special workshops in the regions of Asia, Africa and South America. These special events brought together high-ranking delegates from IAEA member countries within their regions. The theme of the workshop was on human resources development in radiation oncology in the context mmcer control programs. This paper presents information on the world cancer incidence provided the International Agency for Research on Cancer (IARC). Details of the IAEA Programme of Action for Cancer Therapy (PACT) 2 are also presented.

  14. Japanese authorities inform IAEA about accident at nuclear plant

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: The IAEA today received information from Japanese nuclear regulatory authorities about an accident in the steam generator turbine circuit of the Mihama Nuclear Power Plant (unit 3). According to the Japanese nuclear authorities this is a non-radioactive part of the plant. The regulatory body has reported that four contract employees died and 7 were injured, and stated that there was no release of radioactivity. The IAEA continues to be in contact with Japanese authorities and expects to receive updates on a continuous basis. No request for IAEA assistance has been received at this time. (IAEA)

  15. Artificial radioactivity in the environmental samples as IAEA reference materials

    International Nuclear Information System (INIS)

    Salagean, M.; Pantelica, A.

    1998-01-01

    Radioactivity levels of 110m Ag, 241 Am, 60 Co, 134 Cs, 137 Cs, 106 Ru, 125 Sb in some biological and environmental materials have been determined by gamma-ray spectrometry in the frame of 15 intercomparison runs organized by IAEA during 1986-1995. The investigated materials were polluted by various nuclear activities, as follows: 1. Nuclear experiments: IAEA-367, sediment collected in 1982 at the Enewetak Atoll (Marshall Islands in the Pacific Ocean). This atoll was used by the USA during 1948-1958 to test nuclear devices; IAEA-368, sediment collected in June 1989 from the Pacific Ocean at the Mururoa Atoll. Since 1966 this atoll has been used by France to test different nuclear devices. 2. Nuclear installations: IAEA-134, cockle flesh of Cardium edule collected in March 1991 from the Irish Sea (Morecambe Bay), England, about 45 km S-E of Sellafield radioactive discharge; IAEA-135, sediment collected in July 1991 in Lune Estuary-England. This area is influenced by the radioactive discharges of the nuclear installations of Sellafield; IAEA-326, soil collected in 1990 in the region of Kursk Atomic Power Plant (Russia). 3. Nuclear accidents (Chernobyl): IAEA-306, sediment collected in the Baltic Sea during October-November 1986; IAEA-307, seaplant Posidonia oceanica, collected in October 1986 in Mediterranean Sea along the shore, in the vicinity of the Principality of Monaco; IAEA-308, mixed seaweeds collected in October 1986 in Mediterranean Sea along the shore, in the vicinity of the Principality of Monaco; IAEA-156, clover collected during the summer harvest 1986 in Austria; IAEA-321, milk powder collected in autumn 1987 from a processing plant in Europe; IAEA-352, tuna fish flesh collected in April 1988 in the Western Mediterranean Sea; IAEA-373, grass collected from Kiev region during the summer harvest 1990; IAEA-375, soil collected in July 1990 from Brjansk region, Russia; IAEA-300, sediment collected in July 1992 in Bothnian Sea (Baltic Sea). 4

  16. IAEA responds to cancer crisis in Tanzania

    International Nuclear Information System (INIS)

    2006-01-01

    Full text: On the occasion of World Cancer Day (4 February), the IAEA announced that its Programme of Action for Cancer Therapy (PACT) will establish its first Centre of Excellence in Dar Es Salaam, Tanzania. This low-income East African country has one of the continent's highest cancer rates and only one cancer treatment centre. 'Cancer is a growing crisis all across the developing world,' explains IAEA Director General and Nobel Laureate Mohammed ElBaradei. 'We can save thousands of lives if we put together the tools, the knowledge and the political will to fight cancer effectively,' he said. Cancer is the second most common cause of death worldwide after cardiovascular disease. Over 7 million people died of cancer in 2005, and close to 11 million new cancer cases were diagnosed, according to the World Health Organization (WHO). More than 70 percent of cancer deaths now occur in low and middle income countries - the very countries least able to address this growing burden. Cancer-related deaths are projected to increase to more than 9 million people annually by 2015. Already cancer claims twice the number of lives worldwide as AIDS. Low income nations now face a dual burden of communicable and chronic diseases such as cancer. The IAEA spends about 12 million dollars each year for improving cancer treatment in the developing world. Last year, it established the Programme of Action for Cancer Therapy (PACT), to build partnerships with the WHO and other organizations dedicated to controlling cancer. Much of the IAEA's share of the 2005 Nobel Peace Prize Award has been dedicated to helping the developing world deal with the dramatic rise in cancer that is overwhelming limited health resources and equipment. The harsh reality of developing nations is one of overburdened health systems with little cancer screening and unnecessarily late cancer diagnosis and non-curative treatment. The IAEA estimates that approximately 5,000 cancer care centres and systems - plus the

  17. Statement by IAEA Director General Yukiya Amano

    International Nuclear Information System (INIS)

    Amano, Y.

    2011-01-01

    Full text: The IAEA's 151 Member States have today endorsed the Agency's Action Plan on Nuclear Safety. This Action Plan - the product of intensive consultations with Member States - is both a rallying point and a blueprint for strengthening nuclear safety worldwide. It contains concrete and achievable actions to make nuclear safety post-Fukushima more robust and effective than before. At its core is greater transparency. If there is more transparency, there is more incentive to implement all the actions in the Plan, and to be seen to do so. We count on Member States to implement the Action Plan fully and vigorously. It will need their sustained commitment and full involvement. I am confident that the UN High-Level Meeting on Nuclear Safety and Security, which is taking place in New York today, will continue to build on the foundations laid here in Vienna. We must not lose our sense of urgency. Public expectations are very high. This is an Action Plan. It is time for action. (IAEA)

  18. Review of the IAEA fire symposium

    International Nuclear Information System (INIS)

    Fischer, J.

    1991-01-01

    The IAEA Symposium on Fire Protection and Fire Fighting in Nuclear Installations covered a large scope in the field in order to provide the opportunity for screening all aspects of present technology, research and development, standardization, licensing and fire fighting practices. Although application to any nuclear facility was within its scope, the majority of presentations concerned nuclear power plants. The approach to fire protection is the classical one in all plant designs: reduction of fire loads, appropriate zoning, manual and automatic extinguishment. However, methods of analysis and consequence prediction are changing. Computerized fire modelling is becoming a powerful tool in this area; probabilistic analytical methods are being improved, though they are not yet used widely for fire hazards. Differences in opinion were revealed in the definition of barrier resistance, the prediction of cable insulation behaviour and the optimal design of extinguishing systems. Greater international co-operation, especially in these areas, may be a good way of optimizing results with limited resources. Discussion contributions showed interest in exchange of experience in more specialized topics and encouraged the IAEA to increase its activity in the area of fire protection. (orig.)

  19. The IAEA intercomparison for individual monitoring

    International Nuclear Information System (INIS)

    Griffith, R.V.; Boehm, J.; Herrman, D.; Strachotinsky, C.; Thompson, I.M.G.

    1990-01-01

    In 1985 the International Commission on Radiation Units and Measurements introduced a new set of operational quantities for radiation protection purposes through Report 39. The International Atomic Energy Agency has been concerned with the impact of possible adoption of these quantities by its 113 Member States. Thus the Agency implemented a Coordinated Research Programme on Intercomparison for Individual Monitoring in 1987. The first phase completed with a Research Coordination meeting of the participants in April, 1989. Photon exposures were provided at 11 energies over a range from 18 keV to 1.25 MeV at three standards laboratories in Austria, the GDR and the UK. Technical coordination was provided by the PTB, Braunschweig. Twenty one laboratories from 19 countries participated with film, TLD of various types, and combination dosemeters. Irradiations were performed on the IAEA 30 cm cubic, water-filled phantom that is in use throughout its network of 61 Secondary Standard Dosimetry Laboratories. Conversion coefficients for the IAEA phantom were calculated by the PTB and confirmed through measurements at ASMW in the GDR. Preliminary results indicated that the type of dosemeter (film or TLD) had little effect on the quality of results. The most important factor appears to be the specific techniques used for data interpretation. (author)

  20. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 9 December 1999

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1999-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 9 December 1999. The following aspects from the Agency's activity are briefly presented: IAEA's safeguards, physical protection of nuclear material, the status of Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), and Agency's actions in connection with Y2K possible problems

  1. Future direction for implementing the multilateral cooperation with the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung Pyo; Hong, Young Don

    1999-03-01

    Korea has achieved remarkable results in the development of nuclear technology over the past years. Nuclear R and D programs have been actively pursued with the aim of enhancing nuclear technological capability to the level of nuclear advanced countries by early 2000. Worth noting is the fact that the IAEA has played an important role in facilitating Korea's acquisition of advanced nuclear technologies by participating in IAEA technical cooperation programmes, and technical cooperation with the IAEA has laid a firm groundwork for Korea to achieve self-reliance in nuclear technology. Technical cooperation with the IAEA should be steadily pursued so that Korea can play a leading role in the international nuclear arena in the years to come. Up to now, the study of major programmes and of the current status of overall technical cooperation projects, which have been implemented by the IAEA, has been insufficient. It should be noted that analysis of the assistance provided by the IAEA leaves something to be desired. In this regard, analyzing the current status of technical cooperation projects as well as recommending policy direction is required in a bid to implement IAEA technical cooperation projects systematically. Korea's status within the IAEA, including activities in the Advisory Committee and the current status of its participation in Coordinated Research Programmes (CRP) and other major programmes underway, is presented in this report. The policy direction for and implementation status of IAEA technical cooperation programmes are explained at length. The current status of technical cooperation programmes carried out in the 1997-1998 cycle and those to be implemented in the 1992-2000 cycle are also described in this report. Strategies for upgrading Korea's status within the IAEA as well as directions for nuclear cooperation through the IAEA were presented in this study to positively deal with rapid changes in the international nuclear arena and to

  2. Future direction for implementing the multilateral cooperation with the IAEA

    International Nuclear Information System (INIS)

    Kim, Kyoung Pyo; Hong, Young Don

    1999-03-01

    Korea has achieved remarkable results in the development of nuclear technology over the past years. Nuclear R and D programs have been actively pursued with the aim of enhancing nuclear technological capability to the level of nuclear advanced countries by early 2000. Worth noting is the fact that the IAEA has played an important role in facilitating Korea's acquisition of advanced nuclear technologies by participating in IAEA technical cooperation programmes, and technical cooperation with the IAEA has laid a firm groundwork for Korea to achieve self-reliance in nuclear technology. Technical cooperation with the IAEA should be steadily pursued so that Korea can play a leading role in the international nuclear arena in the years to come. Up to now, the study of major programmes and of the current status of overall technical cooperation projects, which have been implemented by the IAEA, has been insufficient. It should be noted that analysis of the assistance provided by the IAEA leaves something to be desired. In this regard, analyzing the current status of technical cooperation projects as well as recommending policy direction is required in a bid to implement IAEA technical cooperation projects systematically. Korea's status within the IAEA, including activities in the Advisory Committee and the current status of its participation in Coordinated Research Programmes (CRP) and other major programmes underway, is presented in this report. The policy direction for and implementation status of IAEA technical cooperation programmes are explained at length. The current status of technical cooperation programmes carried out in the 1997-1998 cycle and those to be implemented in the 1992-2000 cycle are also described in this report. Strategies for upgrading Korea's status within the IAEA as well as directions for nuclear cooperation through the IAEA were presented in this study to positively deal with rapid changes in the international nuclear arena and to efficiently

  3. IAEA activities on steam generator life management

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Lyssakov, V.; Trampus, P.

    2002-01-01

    The International Atomic Energy Agency (IAEA) carries out a set of activities in the field of Nuclear Power Plant (NPP) life management. Main activities within this area are implemented through the Technical Working Group on Life Management of NPPs, and mostly concentrated on studies of understanding mechanisms of degradation and their monitoring, optimisation of maintenance management, economic aspects, proven practices of and approaches to plant life management including decommissioning. The paper covers two ongoing activities related to steam generator life management: the International Database on NPP Steam Generators and the Co-ordinated Research Project on Verification of WWER Steam Generator Tube Integrity (WWER is the Russian designed PWR). The lifetime assessment of main components relies on an ability to assess their condition and predict future degradation trends, which to a large extent is dependent on the availability of relevant data. Effective management of ageing and degradation processes requires a large amount of data. Several years ago the IAEA started to work on the International Database on NPP Life Management. This is a multi-module database consisting of modules such as reactor pressure vessels materials, piping, steam generators, and concrete structures. At present the work on pressure vessel materials, on piping as well as on steam generator is completed. The paper will present the concept and structure of the steam generator module of the database. In countries operating WWER NPPs, there are big differences in the eddy current inspection strategy and practice as well as in the approach to steam generator heat exchanger tube structural integrity assessment. Responding to the need for a co-ordinated research to compare eddy current testing results with destructive testing using pulled out tubes from WWER steam generators, the IAEA launched this project. The main objectives of the project are to summarise the operating experiences of WWER

  4. IAEA supports regional seas conventions and action plans

    International Nuclear Information System (INIS)

    2000-01-01

    The document informs about the 3rd Global Meeting of Regional Seas Conventions and Action Plans held in Monaco in November 2000 at the IAEA's Marine Environmental Laboratory (IAEA-MEL). The meeting assembled a number of marine environmental experts from several UN bodies to reinforce activities to protect the marine environment

  5. 10 CFR 75.12 - Communication of information to IAEA.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Communication of information to IAEA. 75.12 Section 75.12... AGREEMENT Facility and Location Information § 75.12 Communication of information to IAEA. (a) Except as... request that information of particular sensitivity, that it customarily holds in confidence, not be...

  6. Finnish support programme to IAEA safeguards. Annual report 1994

    International Nuclear Information System (INIS)

    Tarvainen, M.

    1995-05-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out trough separate tasks concentrating on verification of nuclear material, training and expert services to the IAEA. In addition to the Finnish summary, the report includes detailed description of each task in English

  7. Water chemistry-related activities at the IAEA

    International Nuclear Information System (INIS)

    Cheng, H.; Onufriev, V.

    2005-01-01

    Water chemistry activities and publications in the past are listed. IAEA Coordinated Research Programmes, WWER-1000 SG water chemistry database, materials issues TM in Vienna, TC workshops and attendance of international meetings, publications. There is a list of IAEA publications related to water chemistry and corrosion. Finally water chemistry activities planned for 2006-2008 are detailed. (N.T.)

  8. Third IAEA nuclear accident intercomparison experiment

    Energy Technology Data Exchange (ETDEWEB)

    Miric, I; Ubovic, Z

    1974-05-15

    The purpose of this report is to present the results of the International Atomic Energy Agency intercomparison experiments held at the 'Boris Kidric' Institute, Vinca, in May 1973. The experiments are parts of a multilaboratory intercomparison programme sponsored by the IAEA for the evaluation of nuclear accident dosimetry systems and eventually recommendation of dosimetry systems that will provide adequate informations in the event of a criticality accident. The previous two studies were held at the Valduc Centre near Dijon (France) in June 1970 and at the ORNL in Oak Ridge (USA), in May 1971. Parts of the intercomparison studies were coordination meetings. The topics and conclusions of the Third coordination meeting are given in the Chairman's Report of F.F. Haywood. This paper will deal, therefore, only with data concerning the Third intercomparison experiments in which the RB reactor at Vinca was used as a source of mixed radiation. (author)

  9. Reference dosimeter system of the IAEA

    International Nuclear Information System (INIS)

    Mehta, Kishor; Girzikowsky, Reinhard

    1995-01-01

    Quality assurance programmes must be in operation at radiation facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit. (Author)

  10. IAEA research contracts. Seventh annual report

    International Nuclear Information System (INIS)

    1967-01-01

    This volume is the seventh annual report and presents full summaries of 52 final reports from contracts, sponsored under the Agency's Research Contract Programme, which were completed during 1966. Including these, a total of 188 summaries have been published in the various fields in which support is provided under the IAEA Research contract program. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology, food preservation by irradiation

  11. IAEA research contracts. Ninth annual report

    International Nuclear Information System (INIS)

    1969-01-01

    This volume is the seventh annual publication of the summaries of final reports received during 1968 in connection with contracts and agreements awarded by the IAEA Research Contract Programme. Ninety nine such summaries are included, thus bringing to 323 the total number published so far. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology, food preservation by irradiation

  12. Reference dosimeter system of the iaea

    Science.gov (United States)

    Mehta, Kishor; Girzikowsky, Reinhard

    1995-09-01

    Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit.

  13. Improving technical support to IAEA safeguards

    International Nuclear Information System (INIS)

    Rundquist, D.

    1986-01-01

    Changes present new safeguards challenges and require that the entire safeguards process become more efficient. A development process has evolved at the Agency that aids in matching appropriate technology to the needs, primarily through the mechanism of voluntary Member States Support Programme, which gives IAEA access to many of the worlds finest nuclear laboratories. The function of these programs is discussed in this article with particular emphasis on the Agency's co-ordination role. Besides a description of the Member States Support Programme the problems involved (coordination and communication aspects) as well as the results achieved are indicated. The support is categorized under the following headlines: 1) Information and expertise; 2) Instrumentation, methods and techniques; 3) Training; 4) Test and calibration facilities. As mentioned in the article Member States also benefit from the Support Programme. Other means of technical support such as multi-national co-operation programmes and bilateral research agreements are mentioned

  14. IAEA research contracts. Ninth annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-06-01

    This volume is the seventh annual publication of the summaries of final reports received during 1968 in connection with contracts and agreements awarded by the IAEA Research Contract Programme. Ninety nine such summaries are included, thus bringing to 323 the total number published so far. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology, food preservation by irradiation.

  15. IAEA research contracts. Sixth annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-04-01

    This volume is the sixth annual report and presents full summaries of 37 final reports from contracts, sponsored under the Agency's Research Contract Programme, which were completed during 1965. Including these, a total of 136 summaries have been published in the various fields in which support is provided under the IAEA Research contract program. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology.

  16. IAEA research contracts. Seventh annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-05-01

    This volume is the seventh annual report and presents full summaries of 52 final reports from contracts, sponsored under the Agency's Research Contract Programme, which were completed during 1966. Including these, a total of 188 summaries have been published in the various fields in which support is provided under the IAEA Research contract program. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology, food preservation by irradiation.

  17. Reference dosimeter system of the IAEA

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1995-01-01

    Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit. (author)

  18. IAEA research contracts. Sixth annual report

    International Nuclear Information System (INIS)

    1966-01-01

    This volume is the sixth annual report and presents full summaries of 37 final reports from contracts, sponsored under the Agency's Research Contract Programme, which were completed during 1965. Including these, a total of 136 summaries have been published in the various fields in which support is provided under the IAEA Research contract program. In every case the summary of the contractor's final report has been prepared by that member of the Agency's scientific staff who has been most closely connected with the particular branch of research concerned. The scientific data are the responsibility of the contractor, though the Agency is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; safeguards methods; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture, medicine and hydrology

  19. Nuclear Fuel Supply Arrangements through the IAEA

    International Nuclear Information System (INIS)

    Phuong, Ha-Vinh

    1981-10-01

    By virtue of its statutory functions, the International Atomic Energy Agency may be the depositary and also the supplier of nuclear materials made available to it by Member States, and these may then be stored in facilities it has acquired or which it has established under its control. However, this possibility did not materialize, mainly because the supplying states -few in number- do not want an international organization to become directly involved in bilateral transactions in that field. This paper analyses in particular the provisions of supply agreements concluded with the United Kingdom, the USA and the USSR. The Annex contains a Table of Agreements on supply of nuclear fuel and equipment concluded between supplying and consumer states through the IAEA. (NEA) [fr

  20. IAEA Convenes Board Meeting on Iran

    International Nuclear Information System (INIS)

    2014-01-01

    Full text: ''I welcome the recent announcement by the EU High Representative Catherine Ashton regarding the implementation of the Joint Plan of Action on the Iranian nuclear programme, which is to take effect as of 20 January. ''I have received a request from Iran and the E3/EU+3 that the Agency conducts monitoring and verification of nuclear-related measures in relation to the Joint Plan of Action. ''I have requested that a meeting of the Board of Governors be convened on 24 January, to consult with the Board regarding the request by Iran and the E3/EU+3 for the Agency to undertake monitoring and verification of nuclear-related measures in relation to the Joint Plan of Action.'' (IAEA)

  1. Third IAEA nuclear accident intercomparison experiment

    International Nuclear Information System (INIS)

    Miric, I.; Ubovic, Z.

    1974-05-01

    The purpose of this report is to present the results of the International Atomic Energy Agency intercomparison experiments held at the 'Boris Kidric' Institute, Vinca, in May 1973. The experiments are parts of a multilaboratory intercomparison programme sponsored by the IAEA for the evaluation of nuclear accident dosimetry systems and eventually recommendation of dosimetry systems that will provide adequate informations in the event of a criticality accident. The previous two studies were held at the Valduc Centre near Dijon (France) in June 1970 and at the ORNL in Oak Ridge (USA), in May 1971. Parts of the intercomparison studies were coordination meetings. The topics and conclusions of the Third coordination meeting are given in the Chairman's Report of F.F. Haywood. This paper will deal, therefore, only with data concerning the Third intercomparison experiments in which the RB reactor at Vinca was used as a source of mixed radiation. (author)

  2. The international ISOE programme. ISOE IAEA technical centre activities

    International Nuclear Information System (INIS)

    Gustafsson, M.

    1996-01-01

    The objective of the sub-programme on Occupational Radiation Protection in the International Atomic Energy Agency, IAEA, is to promote a harmonized approach to optimizing occupational radiation protection by developing guidelines for controlling radiation doses in the workplace and on current occupational radiation protection techniques. A significant part of this programme is the provision of assistance to developing member states to bring their radiation safety infrastructure to an appropriate level for the usage of radiation in the state. In consistence with these objectives the IAEA has been involved with the ISOE programme from its inception and has contributed actively to its growth. In 1993 an arrangement was agreed between the IAEA and the Nuclear Energy Agency, NEA, by which the IAEA co-sponsors ISOE inviting those IAEA member states which are not members of the NEA to participate cost-free in the programme. (author)

  3. Opening Statement from the IAEA Director General

    International Nuclear Information System (INIS)

    Amano, Y.

    2015-01-01

    The safeguards resolution adopted at the IAEA General Conference last month recognised that 'effective and efficient safeguards implementation requires a cooperative effort between the Agency and States.' This cooperative effort takes place every day through the work of our inspectors in the field and our headquarters staff in Vienna, together with their counterparts in the 181 countries in which we implement safeguards. But this Symposium also has a very important part to play. Every four years, it brings together key interested parties from the Agency and Member States for an in-depth, week-long examination of key issues in nuclear verification. And, as all of us know, the field of nuclear verification never stands still. The number of nuclear facilities coming under IAEA safeguards continues to grow steadily - by 12 percent in the past five years alone. So does the amount of nuclear material to be safeguarded. It has risen by around 14 percent in that period. With 72 nuclear power plants under construction, and many additional countries considering the introduction of nuclear power in the coming years, that trend looks very likely to continue. And that is just nuclear power. The use of nuclear science and technology in other peaceful applications - in industry, medicine and agriculture, for example - also continues to grow. Funding for the Agency has not kept pace with growing demand for our services and is unlikely to do so in the coming years. That means we must constantly find ways of working more effectively and more efficiently in all areas of our work, including safeguards. I will briefly highlight some key developments in the Agency's safeguards activities since the last Symposium in 2010

  4. Nuclear Knowledge Management: the IAEA Approach

    International Nuclear Information System (INIS)

    Sbaffoni, M.; De Grosbois, J.

    2015-01-01

    Knowledge in an organization is residing in people, processes and technology. Adequate awareness of their knowledge assets and of the risk of losing them is vital for safe and secure operations of nuclear installations. Senior managers understand this important linkage, and in the last years there is an increasing tendency in nuclear organizations to implement knowledge management strategies to ensure that the adequate and necessary knowledge is available at the right time, in the right place. Specific and advanced levels of knowledge are clearly required to achieve and maintain technical expertise, and experience must be developed and be available throughout the nuclear technology lifecycle. If a nuclear organization does not possess or have access to the required technical knowledge, a full understanding of the potential consequences of decisions and actions may not be possible, and safety, security and safeguards might be compromised. Effective decision making during design, licencing, procurement, construction, commissioning, operation, maintenance, refurbishment, and decommissioning of nuclear facilities needs to be risk-informed and knowledge-driven. Nuclear technology is complex and brings with it inherent and unique risks that must be managed to acceptably low levels. Nuclear managers have a responsibility not only to establish adequate technical knowledge and experience in their nuclear organizations but also to maintain it. The consequences of failing to manage the organizations key knowledge assets can result in serious degradations or accidents. The IAEA Nuclear Knowledge Management (NKM) sub-programme was established more than 10 years ago to support Nuclear Organizations, at Member States request, in the implementation and dissemination of the NKM methodology, through the development of guidance and tools, and by providing knowledge management services and assistance. The paper will briefly present IAEA understanding of and approach to knowledge

  5. IAEA reference dosimeter: Alanine-ESR

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.

    1999-01-01

    Since 1985, the IAEA has been using alanine-ESR as a transfer dosimeter for its dose quality audit service, namely the International Dose Assurance Service. The alanine dosimeters are rod-type containing 70 wt% DL--α-alanine and 30 wt% polystyrene. We have two self-shielded gamma facilities for the calibration of the dosimetry system, where the temperature within the irradiation chamber can be controlled by a specially designed unit. A 4th order polynomial is fitted to the 16 data points in the dose range of 100 Gy to 50 kGy. The measured value of the irradiation temperature coefficient at two dose values (15 and 45 kGy) is 0.23 %/deg. C. Also, the ESR-response was followed for several dosimeters for about 8 months to study the post-irradiation effect. A value of 0.008 %/day was observed for the fading of the response for two dose values (15 and 45 kGy) and three irradiation temperatures (15, 27 and 40 deg. C). The effect of the analysis temperature on the ESR response was also studied. The combined relative uncertainty for the IAEA alanine-ESR dosimetry system is 1.5% (k=1). This includes that transferred from the primary laboratory for the dose rate measurements of the gamma facilities, dosimetry system calibration uncertainties, batch variability and uncertainty in the curve fitting procedure. This value however does not include the contribution due to the irradiation temperature correction which is applied when it differs from that during calibration; this component being specific for each dose measurement. (author)

  6. FAO/IAEA research and training in soil fertility at the IAEA's Seibersdorf Laboratories

    International Nuclear Information System (INIS)

    Zapata, F.; Hardarson, G.

    1989-01-01

    The Soil Science Unit of the Agency's Seibersdorf Laboratories provides invaluable research and development support for the co-ordinated research programmes and field technical co-operation projects co-ordinated by the soil fertility, irrigation, and crop production section of the Joint Division of the IAEA and FAO. This article describes how nuclear technology in soil and plant sciences is being developed and transferred through various mechanisms to help countries establish better conditions for crop and livestock production

  7. Uncertainty evaluation in 2008 IAEA proficiency test using phosphogypsum

    International Nuclear Information System (INIS)

    Dias, Fabiana F.; Taddei, Maria Helena T.; Geraldo, Bianca; Jacomino, Vanusa M.F.; Pontedeiro, Elizabeth M.B.

    2009-01-01

    LAPOC participated in the 2008 IAEA ALMERA (Analytical Laboratories for the Measurement of Environmental Radioactivity) Proficiency Test (PT) for phosphogypsum, which is a NORM (Naturally Occurring Radioactive Material) derived from phosphate industry, an abundant solid waste of low cost. Its reutilization would avoid environmental impact in large areas where the product is stored. Research involving possible uses for phosphogypsum is ever more important, from economic, technological, and environmental points of view. This paper describes results from this Proficiency Test (measured radionuclides: 234 U, 238 U, 226 Ra, 230 Th, and 210 Pb), as well as a short description of the nuclear analytical techniques emphasizing sources of uncertainty, such as Alpha Spectrometry (Alpha Analyst, Canberra, surface barrier detectors) and Gamma Spectrometry (Canberra, Hyper Pure Germanium Detector with 45 % efficiency). Corrections for decay, reference date, and recovery were applied. As an example, results obtained for 210 Pb through the use of a specific uncertainty calculation software are presented below. Each parameter whose uncertainty is quantified was carefully described, with appropriate numerical value and unit, to determine its partial contribution to the combined total uncertainty. Results from PTs provide independent information on performance of a Laboratory and have an important role in method validation; especially because it allows the assessment of the method performance over an entire range of concentrations and matrices. PTs are an important tool to demonstrate equivalence of measurements, if not their metrological comparability, and to promote education and improvement of Laboratory practice. (author)

  8. IAEA advisory group meeting on nuclear structure and decay data. IAEA, Vienna 21-25 April 1980

    International Nuclear Information System (INIS)

    Lorenz, A.

    1980-10-01

    The IAEA Nuclear Data Section convened the fourth meeting of the international nuclear structure and decay data network at IAEA Headquarters in Vienna, Austria, from 21-25 April 1980. The meeting was attended by 23 Scientists from 11 Member States and 2 international organizations, concerned with the compilation, evaluation, and dissemination of nuclear structure and decay data. (author)

  9. Finnish support programme to IAEA safeguards. Annual report 1994; Suomen tukiohjelma IAEA:n safeguards-valvonnalle. Vuoden 1994 toimintakertomus

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, M [ed.

    1995-05-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out trough separate tasks concentrating on verification of nuclear material, training and expert services to the IAEA. In addition to the Finnish summary, the report includes detailed description of each task in English.

  10. Operating trends and performance of nuclear power plants in IAEA member states

    International Nuclear Information System (INIS)

    Galori, F.

    1984-01-01

    The present status and short-term development of nuclear power programmes in IAEA member states is reviewed. A description of the IAEA Power Reactor Information System (PRIS) is given and the objectives for data collection and treatment are discussed. As indicated by the reports at the IAEA International Conference on Nuclear Power experience in 1982, there are considerable differences in the performances of nuclear power plants even within classes of plants which technically should be very similar and thus perform equally well. PRIS permist at least some preliminary conclusions about the reasons for differences to be drawn. It is becoming clear that reasons for good or bad performance must be sought in a number of factors including: type of plant (on-load/off-load refuelling, GCR, PHWR, LWR); age and vintage of plant; manufacturer of the main plant system; degree of standardization in plant and construction; competence of operating organization; regulatory climate. Analysis of the reported outages shows that major problems are: stress corrosion cracking in primary piping, also denting and wall thinning in tubes of steam generators; thermal fatigue cracking in the feedwater system and excessive errosion/corrosion problems in turbines. It is emphasized that international cooperation is important for creating an effective system for learning from operating experience

  11. The IAEA/WHO TLD postal programme for radiotherapy hospitals

    International Nuclear Information System (INIS)

    Izewska, J.; Andreo, P.

    2000-01-01

    Since 1969 the International Atomic Energy Agency (IAEA), together with the World Health Organization (WHO), has performed postal TLD audits to verify the calibration of radiotherapy beams in developing countries. A number of changes have recently been implemented to improve the efficiency of the IAEA/WHO TLD programme. The IAEA has increased the number of participants and reduced significantly the total turn-around time to provide results to the hospitals within the shortest possible time following the TLD irradiations. The IAEA has established a regular follow-up programme for hospitals with results outside acceptance limits of ±5%. The IAEA has, over 30 years, verified the calibration of more than 3300 clinical photon beams at approximately 1000 radiotherapy hospitals. Only 65% of those hospitals who receive TLDs for the first time have results within the acceptance limits, while more than 80% of the users that have benefited from a previous TLD audit are successful. The experience of the IAEA in TLD audits has been transferred to the national level. The IAEA offers a standardized TLD methodology, provides Guidelines and gives technical back-up to the national TLD networks. The unsatisfactory status of the dosimetry for radiotherapy, as noted in the past, is gradually improving however, the dosimetry practices in many hospitals in developing countries need to be revised in order to reach adequate conformity to hospitals that perform modern radiotherapy in Europe, USA and Australia. (author)

  12. The IAEA's Illicit Trafficking Database Programme

    International Nuclear Information System (INIS)

    Anzelon, G.; Hammond, W.; Nicholas, M.

    2001-01-01

    Full text: As part of its overall programme on nuclear material security, the IAEA has since 1995 maintained a database of incidents of trafficking in nuclear materials and other radioactive sources. The Illicit Trafficking Database Programme (ITDP) is intended to assist Member States by alerting them to current incidents, by facilitating exchange of reliable, detailed information about incidents, and by identifying any common threads or trends that might assist States in combating illicit trafficking. The ITDP also seeks to better inform the public by providing basic information to the media concerning illicit trafficking events. Approximately 70 States have joined this programme for collecting and sharing information on trafficking incidents. Reporting States have the opportunity to designate what information may be shared with other States and what may be shared with the public. In cases where the IAEA's first information about a possible incident comes from news media or other open sources rather than from a State notification, the information first is evaluated, and then, if warranted, the relevant State or States are contacted to request confirmation or clarification of an alleged incident. During 2000, as a result of experience gained working with information on illicit nuclear trafficking, the IAEA developed of a flexible and comprehensive new database system. The new system has an open architecture that accommodates structured information from States, in-house information, open-source articles, and other information sources, such as pictures, maps and web links. The graphical user interface allows data entry, maintenance and standard and ad-hoc reporting. The system also is linked to a Web-based query engine, which enables searching of both structured and open-source information. For the period 1 January 1993 through 31 March 2001, the database recorded more than 550 incidents, of which about two-thirds have been confirmed by States. (Some of these

  13. IAEA Nobel Peace Prize cancer and nutrition fund

    International Nuclear Information System (INIS)

    Kinley, D. III

    2006-05-01

    The Norwegian Nobel Committee awarded the 2005 Nobel Peace Prize to the IAEA and Director General ElBaradei in equal shares. The IAEA and its Director General won the 2005 Peace Prize for their efforts to prevent nuclear energy from being used for military purposes and to ensure that nuclear energy for peaceful purposes is used in the safest possible way. The IAEA Board of Governors subsequently decided that the IAEA's share of the prestigious prize would be used to create a special fund for fellowships and training to improve cancer control and childhood nutrition in the developing world. This fund is known as the 'IAEA Nobel Peace Prize Cancer and Nutrition Fund'. The money will be dedicated to enhancing human resources in developing regions of the world for improved cancer control and childhood nutrition. In the area of cancer control, the money will be spent on establishing regional cancer training institutes for the training of new doctors, medical physicists and technologists in radiation oncology to improve cancer treatment and care, as part of the IAEA's Programme of Action for Cancer Therapy (PACT). In the realm of nutrition, the focus of the Fund will be on capacity building in the use of nuclear techniques to develop interventions to contribute to improved nutrition and health for children in the developing world. Fund-supported fellowship awards will target young professionals, especially women, from Member States, through the IAEA's Technical Cooperation (TC) Programme. Alongside such awards, regional events will be organized in Africa, Asia and Latin America in cancer control and nutrition during 2006. The IAEA Secretariat is encouraging Member States and donors to contribute to the IAEA Nobel Peace Prize Cancer and Nutrition Fund by providing additional resources, in cash and in-kind

  14. The IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO): Status, Ongoing Activities and Outlook

    International Nuclear Information System (INIS)

    Kupitz, Juergen; Depisch, Frank; Azpitarte, Osvaldo

    2004-01-01

    The IAEA General Conference (2000) invited 'all interested Member States to combine their efforts under the aegis of the IAEA in considering the issues of the nuclear fuel cycle, in particular by examining innovative and proliferation-resistant nuclear technology'. In response to this invitation, the IAEA initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). The overall objectives of INPRO are to help to ensure that nuclear energy is available to contribute in fulfilling energy needs in the 21. century in a sustainable manner, and to bring together both technology holders and technology users to consider jointly the international and national actions required to achieve desired innovations in nuclear reactors and fuel cycles. In order to fulfil these objectives, the first phase of INPRO dealt with the development of a methodology to assess and compare the performance of innovative nuclear energy systems. This methodology includes the definition of a set of Basic principles, User requirements and Criteria to be met in different areas (Economics, Sustainability and environment, Safety of nuclear installations, Waste management and Proliferation resistance). The result of this phase was presented in a IAEA document (IAEA-TECDOC-1362, Guidance for the evaluation of innovative nuclear reactors and fuel cycles) issued in June 2003. In the present phase of the project, case studies are being carried out in order to validate and improve the developed methodology and the defined set of Basic principles, User requirements and Criteria. This paper shortly summarizes the results published in IAEA-TECDOC-1362 and the ongoing actions related to case studies. Finally, an outlook of INPRO activities is presented. (authors)

  15. Development through science: The IAEA research contract programme

    International Nuclear Information System (INIS)

    Benson Wiltschegg, T.; Gillen, V.

    1991-01-01

    The IAEA strives to stimulate the growth of science in developing countries by assuring that the IAEA and the scientific communities of developed and developing countries share their knowledge and experience. If the assistance provided is well organized and in keeping with the needs of developing countries it can make the crucial difference in sustainable development. This booklet provides a survey of the historical development of the IAEA's Research Contract Programme and outlines the aims and achievements of selected Co-ordinated Research Programmes. A complete listing of Co-ordinated Research Programmes is provided

  16. United States Program for Technical assistance to IAEA Standards

    International Nuclear Information System (INIS)

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ''Knowledge Acquisition Skills'' in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively

  17. IAEA activities in nuclear reactor simulation for educational purposes

    International Nuclear Information System (INIS)

    Badulescu, A.; Lyon, R.

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. Currently, the IAEA has simulation programs available for distribution that simulate the behaviour of BWR, PWR and HWR reactor types. (authors)

  18. IAEA wants data, access for two Yongbyon facilities

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    At a meeting of the Board of Governors of the International Atomic Energy Agency held February 22-25, a resolution was passed calling upon the government of the Democratic People's Republic of Korea (DPRK; more commonly known as North Korea) to respond positively and without delay to IAEA Director General Hans Blix's February 9 request for access to additional information and two additional sites related to North Korea's nuclear energy program. IAEA inspectors had been given access to some of the nuclear facilities in 1992, but early this year the North Korean government refused to let the IAEA see these other facilities

  19. Establishing a Nuclear Power Programme: IAEA Recommended approach

    International Nuclear Information System (INIS)

    Van Sickle, Matthew

    2013-01-01

    IAEA Recommended approach: All newcomers are working closely with the IAEA, using IAEA guidance and hosting international peer review missions. Newcomers’ Top Issues: • How do I start? • Is there public support? • Do I have the people? • Can I find the money? • What am I going to do with the waste? • Is it safe? Can I manage if there is an accident? A pre-feasibility study should provide high level answers to all these questions and allow a knowledgeable decision

  20. The IAEA and non-proliferation: is quiescence progress

    International Nuclear Information System (INIS)

    Herron, L.W.

    1983-01-01

    The purpose of this paper is to evaluate the current status of more important non-proliferation aspects affecting or involving the IAEA. The questions dealt with cover in particular the Non-Proliferation Treaty, the Tlatelolco Treaty, the Committee on Assurances of Supply established by the IAEA in 1980 and the International Plutonium Storage Study prepared by an IAEA expert group. The author concludes that in a number of areas involving this Agency, recent considerable activity at both political and technical levels has produced few tangible results althrough the situation is not static. (NEA) [fr

  1. IAEA Nobel Peace fund schools for nutrition. Combating child malnutrition

    International Nuclear Information System (INIS)

    2007-01-01

    Full text: Dhaka, Bangladesh - Malnutrition remains the world's most serious health problem and the single biggest contributor to child deaths in the developing world, according to the World Bank. Now, the International Atomic Energy Agency (IAEA) is using its Nobel Peace Prize earnings to promote the use of nuclear techniques to combat malnutrition during the earliest years of life. 'One out of every ten children born in developing countries will die before his or her fifth birthday,' explains IAEA nutrition expert Lena Davidsson. 'That's more than 10 million dead children each year. And the vast majority of these child deaths in developing countries are preventable with a combination of good care, adequate nutrition and appropriate medical treatment,' explains Dr. Davidsson. 'This brings us hope that unacceptably high childhood mortality can be substantially reduced with effective and well-targeted nutritional interventions.' Undernutrition is an important factor in more than half of all child deaths worldwide. The high prevalence of infants born with low birth weight and undernutrition among Asian children, especially in South Asia, emphasizes the urgent need to develop effective nutrition interventions within 'the window of opportunity', i.e., to target young women before pregnancy as well as infants and young children during the first 2 years of life. The IAEA Nobel Peace Prize Fund School for Nutrition for Asia will be held in Dhaka, Bangladesh, April 22-26, 2007. It will focus on Interventions to combat undernutrition during early life and seeks to disseminate information about the usefulness of stable isotope techniques in intervention programs that reduce malnutrition, in particular in infants and children. The event is hosted by the Government of Bangladesh through the International Centre for Health and Population Research (ICDDR, B) and the Bangladesh Atomic Energy Commission (BAEC). The IAEA is assisting some of the world's poorest countries in their

  2. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    International Nuclear Information System (INIS)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in open-quotes Observational Skillsclose quotes. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector's job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector's job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA's consideration in further developing its Safeguards training program

  3. The IAEA quality audits in radiotherapy

    International Nuclear Information System (INIS)

    Izewska, J.; Vatnitsky, S.T.; Salminen, E.

    2009-01-01

    The quality audits are considered as an essential component of management systems of quality in radiotherapy. this method consists in checking that the quality of activities of a radiotherapy center is consistent with the rules of correct practices. The principal objective of the quality audit is to contribute to an improvement of the quality. IAEA developed a method of complete audit in the framework of the quality assurance team in radio-oncology (Q.U.A.T.R.O.). The Q.U.A.T.R.O. missions consist in an evaluation of the radiotherapy infrastructure, including the aspects related to the patient and equipment and where appropriate, an assessment of the safety of using ionizing radiation and radiation protection of the patients. The assessment also covers the staffing and training programs for radiation oncologists and medical radiation physicists. These missions allow to identify the insufficiencies in term of infrastructures, material, human resources and procedures and to enlighten the points to improve. Their results proved useful to improve the dosimetry practices at the worldwide level. (N.C.)

  4. Recent advances in IAEA safeguards systems analysis

    International Nuclear Information System (INIS)

    Bahm, W.; Ermakov, S.; Kaniewski, J.; Lovett, J.; Pushkarjov, V.; Rosenthal, M.D.

    1983-01-01

    Efficient implementation of effective safeguards, the objective of the IAEA's Department of Safeguards, would be unthinkable without carrying out systematic studies on many different problems related to technical and other aspects of safeguards. The System Studies Section of the Department concentrates its efforts on such studies with the purpose of elaborating concepts, criteria, approaches and rules for the implementation of safeguards. In particular, the Section elaborates concepts and approaches for applying safeguards at the complex facilities that are expected to enter under safeguards in the future, develops approaches and rules in the areas where the Agency is still gaining experience, and assists in the implementation of safeguards whenever problems requiring non-routine solutions arise. This paper presents examples of the present activities of the System Studies Section: development of guidelines for use by facility designers in order to make safeguards easier and more effective, studies on near-real-time material accountancy, preparation of safeguards approaches for specific facility types, preparation of model inspection activity lists for different facility types and alternative safeguards approaches and preparation of safeguards policy papers containing the rules and regulations to be followed in the design and implementation of safeguards. (author)

  5. The IAEA's role in international information exchange

    International Nuclear Information System (INIS)

    Brittinger, M.T.M.; Selling, H.A.

    1993-01-01

    The International Atomic Energy Agency strives to foster the exchange of scientific and technical information in the transport safety area through a dual work programme covering the development and maintenance of the Regulations for the Safe Transport of Radioactive Material, on the one hand, and their implementation, on the other. Under the implementation aspect of its transport safety programme the IAEA takes advantage of the increased availability of mass storage media and the equipment to access them to use databases for information exchange. Information is collected on the identification of national competent authorities, package approval certificates, events in radioactive material transport, research and development, shipments, and exposure data. Data on national competent authorities and the package approval certificates that they issue is updated and disseminated annually to all Member States. Research in progress is described in a document that is published every two years. Databases on events, shipments and radiation exposure are in the development phase. Member States experience difficulty in obtaining the appropriate information and thus, the reporting periods for these subject areas are extended. Information gathered through these activities serve as regulatory aids to the national competent authorities responsible in the Member States for the transport of radioactive material, both internationally and nationally. In addition, it is useful in support of the continuous review and revision process of the transport Regulations and their supporting documents. (J.P.N.)

  6. Highlights on the IAEA project QUATRO

    International Nuclear Information System (INIS)

    Milano, F.

    2012-01-01

    The success of radiotherapy in term of prob- ability of local control of the tumor and the limiting factor in treatments in term of probability of complications are strictly depending on the accuracy and precision of the pa- tient treatment. An overall Quality Assurance programme (QAP) has been recognized as an essential tool to assure that the goals of radiotherapy are achieved. As part of a comprehensive approach to QAP an independent external audit is considered a very effective method of checking that the quality of activities in an Institution permits to achieve the required objectives. Since many years the International Atomic Energy Agency (IAEA) has audited Member States for radiotherapy dosimetry, for educating and training radio- therapy professionals and for reviewing the radiotherapy process. Recently a new approach has been developed and named ''Quality Assurance Team for Radiation Oncology (QUATRO)''. The principal aim of QUATRO is to review all the radiotherapy process, including organization, infra- structure, clinical and medical physics aspects of the radio- therapy services. It also includes a review of the hospital's professional competence with a view to quality improve- ment. The aim of this paper is to introduce and to highlight the QUATRO methodology describing its effectiveness on improving either the quality of the radiotherapy treatments and in general the management of the patient.

  7. The IAEA isotope and radiation programme

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1988-01-01

    The IAEA isotope and radiation programme is characterized by the very large number of topics dealt with and the broad range of activities where nuclear methods and techniques are utilized. The main activities of the programme can be grouped into: food and agriculture, human health and life science, industry and physical science, and laboratory services. Radioisotope and radiation based techniques are applied to such areas as plant breeding, insect and pest control, soil fertility studies, animal health and production, studies on the fate of pesticide residues and radionuclides in the food chain, and food preservation. General objectives of the second group of activities are to assist hospitals and research institutes in developing member states in the introduction and development of radionuclide tracers in medical diagnosis and research, to promote use of radiation therapy for cancer treatment, etc. The major objective of the third group is to foster research and application of nuclear methodologies for industrial applications in developing countries. The Agency's Laboratories at Seibersdorf and in Vienna and the Monaco Laboratory play a relevant role in providing laboratory services as a back-up for various programmes, and in the training of scientists from developing countries. (Nogami, K.)

  8. Romanian perspective on IAEA-INPRO initiative

    International Nuclear Information System (INIS)

    Banches, E.; Constantin, M.; Nicolae, R.

    2009-01-01

    INPRO objectives and status of the IAEA project started in 2001 and concerns the deployment of Innovative Nuclear Systems (INS) in 21st century, as solution to sustainable power development. The last achievements and the new INPRO Steering Committee directions established for 2010-2011 period, are presented. A balanced analysis of needs, resources and expectations, justifies the Romanian Statement at the 14th Steering Committee Meeting (SCM), and participant as an observer in three Collaborative Projects, in Common User Considerations (CUC) by Developing Countries for Future NPP and in SCM. The feedback of the last participatory actions in the project, justifies the Nuclear Agency recommendations for Nuclear National Program (PNN) adjustments: first, the need to apply INPRO methodology in a new national study regarding INS perspective and opportunity in Romania to use CANDU NPPs for LWRs fuel closing cycle at international level; secondly, the need to improve commitment of policy makers in forecasting financial INS support; and thirdly, to sustain the European legislation and international and national arrangements in order to facilitate nuclear regional services. (authors)

  9. IAEA occupational radiation protection programme: current status

    International Nuclear Information System (INIS)

    Deboodt, P.; Mrabit, K.

    2006-01-01

    As stated in Art.III.A.6 of its Statute, the International Atomic Energy Agency (commonly referred to as the Agency) is authorized to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property (including such standards for labour conditions), and to provide for the application of these standards to its own operation as well as to the operations making use of materials, services, equipment, facilities, and information made available by the Agency or at its request or under its control or supervision. The Agency s Occupational Radiation Protection Programme aims at harmonizing infrastructures for the control of radiation exposure of workers and for optimizing radiation protection in situation s of exposures due to external radiation and intakes of radionuclides from both artificial and natural sources of radiation. Under its regular and technical cooperation programmes, the Agency has been assigning high priority to both the establishment of safety standards for labour conditions and for the application of these standards through, Interalia, direct assistance under its technical cooperation (TC) programme, the rendering of services, the promotion of education and training, the fostering of information exchange and the coordination of research and development. The purpose of this paper is to present the current status and future IAEA activities in support of occupational radiation protection. (authors)

  10. Report on the intercomparison run IAEA-373: Determination of radionuclides in grass sample IAEA-373

    Energy Technology Data Exchange (ETDEWEB)

    Strachnov, V; Larosa, J; Dekner, R; Fajgelj, A; Zeisler, R

    1996-02-01

    Activities in environmental monitoring of radioactive substances require natural matrix reference materials for laboratory quality assessment and support of international compatibility. A grass sample collected in the Ukraine by the International Atomic Energy Agency's (IAEA's) programme on Analytical Quality Assurance Services (AQCS) has been prepared and distributed for a world-wide intercomparison on the determination of natural and man-made radionuclides and selected trace elements. The data from 110 laboratories representing 42 countries have been evaluated and allowed the establishment of recommended activity values for K-40, Sr-90, Cs-134 and Cs-137. Information values are given for the concentrations of Mn, Rb, Th and Zn. (author)

  11. United States Program for Technical assistance to IAEA Standards. Concept Paper: Knowledge Acquisition, Skills training for enhanced IAEA safeguards inspections

    Energy Technology Data Exchange (ETDEWEB)

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ``Knowledge Acquisition Skills`` in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively.

  12. Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44.

    Science.gov (United States)

    Merk, Rainer

    2012-02-01

    This study depicts a theoretical experiment in which the radionuclide transport through the porous material of a landfill consisting of concrete rubble (e.g., from the decommissioning of nuclear power plants) and the subsequent migration through the vadose zone and aquifer to a model well is calculated by means of the software HYDRUS-1D (Simunek et al., 2008). The radionuclides originally contained within the rubble become dissolved due to leaching caused by infiltrated rainwater. The resulting well-water contamination (in Bq/L) is calculated numerically as a function of time and location and compared with the outcome of a simplified analytic model for the groundwater pathway published by the IAEA (2005). Identical model parameters are considered. The main objective of the present work is to evaluate the predictive capacity of the more simple IAEA model using HYDRUS-1D as a reference. For most of the radionuclides considered (e.g., ¹²⁹I, and ²³⁹Pu), results from applying the IAEA model were found to be comparable to results from the more elaborate HYDRUS modeling, provided the underlying parameter values are comparable. However, the IAEA model appears to underestimate the effects resulting from, for example, high nuclide mobility, short half-life, or short-term variations in the water infiltration. The present results indicate that the IAEA model is suited for screening calculations and general recommendation purposes. However, the analysis of a specific site should be accompanied by detailed HYDRUS computer simulations. In all models considered, the calculation outcome largely depends on the choice of the sorption parameter K(d). Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Stress Tests Worldwide - IAEA Nuclear Safety Action Plan

    International Nuclear Information System (INIS)

    Lyons, J.E.

    2012-01-01

    The IAEA nuclear safety action plan relies on 11 important issues. 1) Safety assessments in light of the Fukushima accident: the IAEA secretariat will develop a methodology for stress tests against specific extreme natural hazards and will provide assistance for their implementation; 2) Strengthen existing IAEA peer reviews; 3) Emergency preparedness and response; 4) National Regulatory bodies in terms of independence and adequacy of human and financial resources; 5) The development of safety culture and scientific and technical capacity in Operating Organizations; 6) The upgrading of IAEA safety standards in a more efficient way; 7) A better implementation of relevant conventions concerning nuclear safety and nuclear accidents; 8) To provide a broad assistance on safety standard for countries embarking on a nuclear power program; 9) To facilitate the use of available information, expertise and techniques concerning radiation protection; 10) To enhance the transparency of nuclear industry; and 11) To promote the cooperation between member states in nuclear safety. (A.C.)

  14. Summary of IAEA technical committee meeting on impurity control

    International Nuclear Information System (INIS)

    Itoh, Kimitaka.

    1989-03-01

    Presentations given in the IAEA technical committee meeting on impurity control (held in JAERI from 13 to 15 February, 1989) are summarized, putting the emphasis on the physics modelling of the plasma related to the impurity production and confinement. (author)

  15. IAEA programme on nuclear fuel cycle and materials technologies

    International Nuclear Information System (INIS)

    Killeen, J.

    2006-01-01

    In this paper a brief description and the main objectives of IAEA Programme B on Nuclear fuel cycle are given. The coordinated research project on Improvement of Models Used For Fuel Behaviour Simulation (FUMEX II) is also presented

  16. INF and IAEA: A comparative analysis of verification strategy

    International Nuclear Information System (INIS)

    Scheinman, L.; Kratzer, M.

    1992-07-01

    This is the final report of a study on the relevance and possible lessons of Intermediate Range Nuclear Force (INF) verification to the International Atomic Energy Agency (IAEA) international safeguards activities

  17. IAEA technical co-operation activities in the 1990s

    International Nuclear Information System (INIS)

    1995-01-01

    The desire to extend the many benefits of the peaceful uses of nuclear technology to all countries led as long ago as 1957 to the establishment of the IAEA and to immediate introduction of a technical co-operation programme. In the more than thirty years that have passed since that time, the potential applications of nuclear techniques have greatly expanded. Over the period, many of the applications have moved from research laboratories into hospitals, farms and industrial enterprises. The direct resources made available to the IAEA by its Member States to support technology transfer processes have grown rapidly since the late 1950s. The current trends in the technical co-operation activities of the IAEA and some examples of projects supported by the IAEA are briefly presented in this document

  18. Current status of IAEA activities in spent fuel management

    International Nuclear Information System (INIS)

    Danker, W.J.

    2003-01-01

    Spent fuel storage is a common issue in all IAEA Member States with nuclear reactors. Whatever strategy is selected for the back-end of the nuclear fuel cycle, the storage of spent fuel will be an increasingly significant consideration. Notwithstanding considerable efforts to increase the efficient use of nuclear fuel and to optimize storage capacity, delays in plans for geological repositories or in implementing reprocessing result in increased spent fuel storage capacity needs in combination with longer storage durations over the foreseeable future. As storage inventories and durations increase, issues associated with long term storage compel more attention...monitoring for potential degradation mechanisms, records retention, maintenance, efficiencies through burnup credit. Since the IAEA contribution to ICNC'99 focused exclusively on IAEA burnup credit activities including requirements and methods, this paper provides a broader perspective on IAEA activities in response to the above trends in spent fuel management, while also describing efforts to disseminate information regarding burnup credit applications. (author)

  19. Statement by IAEA and Iran Following Technical Talks in Tehran

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Following technical talks between IAEA and Iranian experts in Tehran today, here is the text of a joint statement read by Tero Varjoranta, IAEA Deputy Director General and Head of the Department of Safeguards, and H.E. Ambassador Reza Najafi of the Islamic Republic of Iran: ''Iran and the IAEA held constructive technical discussions to follow up the Joint Statement that was signed earlier today. ''At this meeting, preliminary arrangements to begin implementation of the six measures listed in the Annex to the Joint Statement were discussed. This will include a technical visit in the near future to the Heavy Water Production Plant at Arak. Future meetings at the working level will finalise the details of implementation. ''Further discussion will be held at the next technical meeting, scheduled for 11 December in Vienna.'' (IAEA)

  20. NIFS contributions to 19th IAEA fusion energy conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    NIFS has presented 21 papers at the 19th IAEA Fusion Energy Conference (Lyon, France, 14-19 October 2002). The contributed papers are collected in this report. The 21 papers are indexed individually. (J.P.N.)

  1. The safety activities of the ICAO and the IAEA

    International Nuclear Information System (INIS)

    Franzen, L.F.; Iansiti, E.

    1983-01-01

    The article presents a comparative analysis of the safety activities of the IAEA and the International Civil Aviation Organization (ICAO), from which possible solutions for the problems faced by the nuclear community are suggested

  2. Safeguards Implementation Practices Guide on Facilitating IAEA Verification Activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-12-15

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This SIP

  3. IAEA calls for urgent action on nuclear situation in Iraq

    International Nuclear Information System (INIS)

    2003-01-01

    Full text: The Director General of the International Atomic Energy Agency (IAEA), Dr. Mohamed ElBaradei, called on the United States and other Coalition authorities to allow IAEA experts to return to Iraq to address a possible radiological emergency there. 'I am deeply concerned by the almost daily reports of looting and destruction at nuclear sites and about the potential radiological safety and security implications of nuclear and radiological materials that may no longer be under control.' Such reports have described among other things yellow cake emptied on the ground from containers then taken for domestic use, and radioactive sources being stolen and removed from their shielding. 'We have a moral responsibility to establish the facts without delay and take urgent remedial action,' said Dr. ElBaradei. As hostilities in Iraq were coming to an end, Dr. ElBaradei wrote on 10 April to the US government bringing its attention to the need to secure the nuclear material stored at Tuwaitha - Iraq's nuclear research centre - and under IAEA seal since 1991. The IAEA also provided the United States with information about the nuclear material, radioactive sources, and nuclear waste in Iraq. The IAEA received oral assurances that physical protection of the site was in place; but following reports of looting there and at other sites, Dr. ElBaradei wrote again on 29 April, emphasizing the responsibility of the Coalition forces to maintain appropriate protection over the materials in question. This includes natural and low-enriched uranium, radioactive sources such as Cobalt 60 and Caesium 137, and nuclear waste. Dr. ElBaradei regrets that the IAEA has to date not received a response. He again urged that the Agency be allowed to send a safety and security team to Iraq so that a potentially serious humanitarian situation can be addressed without further delay. The IAEA has experienced international teams of radiation safety, nuclear security and emergency response specialists

  4. Information system for IAEA inspectors at a centrifuge enrichment plant

    International Nuclear Information System (INIS)

    Baker, A.L.; Tape, J.W.; Picard, R.R.; Strittmatter, R.B.

    1985-01-01

    An information system has been developed to aid International Atomic Energy Agency (IAEA) inspectors at the Portsmouth Gas Centrifuge Plant in the US. This system is designed to provide the inspectors with data storage, data analysis, and data evaluation and decision capabilities with minimal impact on the plant operations. The techniques and methodologies developed for this specific case are described with discussion of their general applicability to IAEA inspections at all types of facilities. 7 refs

  5. Introductory statement. IAEA Board of Governors. Vienna, 10 September 2001

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2001-01-01

    In his speech to open the IAEA General Conference, the Director General spoke on a broad range of IAEA interests including: Safety of Research Reactors, Radiological protection of Patients, Safety of Radiation Sources, Environmental Restoration of of Areas Affected by Radioactive Residues, Transport Safety, Plan for Protecting Public Water Economically, Servicing Immediate Human Needs, Security of Nuclear Material, Status of the Safeguards Agreement with the Democratic People's Republic of Korea, and Implementation of United Nations Security Council Resolutions Relating to Iraq

  6. Safeguards Implementation Practices Guide on Facilitating IAEA Verification Activities

    International Nuclear Information System (INIS)

    2014-01-01

    The IAEA implements safeguards pursuant to agreements concluded with States. It is in the interests of both States and the IAEA to cooperate to facilitate the practical implementation of safeguards. Such cooperation is explicitly required under all types of safeguards agreement. Effective cooperation depends upon States and the IAEA sharing a common understanding of their respective rights and obligations. To address this, in 2012 the IAEA published Services Series 21, Guidance for States Implementing Comprehensive Safeguards Agreements and Additional Protocols, which aimed at enhancing understanding of the safeguards obligations of both States and the IAEA and at improving their cooperation in safeguards implementation. States may establish different processes and procedures at the national level, and set up different systems as required to meet their safeguards obligations. Indeed, a variety of approaches are to be expected, owing to such differences as the size and complexity of States’ nuclear programmes and their regulatory framework. The purpose of this Safeguards Implementation Practices (SIP) Guide is to share the experiences and good practices as well as the lessons learned by both States and the IAEA, acquired over the many decades of safeguards implementation. The information contained in the SIP Guides is provided for explanatory purposes and use of the Guides is not mandatory. The descriptions in the SIP Guides have no legal status and are not intended to add to, subtract from, amend or derogate from, in any way, the rights and obligations of the IAEA and the States set forth in The Structure and Content of Agreements between the Agency and States Required in Connection with the Treaty on the Non-Proliferation of Nuclear Weapons (issued as INFCIRC/153 (Corrected)) and Model Protocol Additional to the Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (issued as INFCIRC/540 (Corrected)). This SIP

  7. A technical analysis of the IAEA nuclear safeguards

    International Nuclear Information System (INIS)

    Yoon, J. W.

    1998-01-01

    In the post-Cold War era, the threats of horizontal nuclear proliferation emerge as the forefront security issue while the nuclear arms races among existing nuclear weapon states reduce to a remarkable extent. In this context, there arises lots of research attention to the IAEA nuclear safeguards which have been viewed as the core of international monitoring on the clandestine nuclear activities of potential proliferators. However, previous attention tended to highlight the political aspects of the IAEA nuclear safeguards, centering on the possibilities and limitations of the IAEA's inspection authority. In contrast, this paper purports to focus on the technical aspects of the IAEA nuclear safeguards, so it can show the intrinsic problems of those safeguards in stemming the proliferation of nuclear weapons. This paper mainly deals with the technical objectives and options of the IAEA nuclear safeguards, the technical indices of clandestine nuclear activities, and some measures to improve the efficacy of the IAEA nuclear safeguards. Hopefully, this paper is expected to lead us to approach the issue of the North Korean nuclear transparency from the technical perspective as well as the political one

  8. IAEA inspection team conducting investigation in South Korea

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: On 23 August 2004, during discussions about the initial declarations of the Republic of Korea (ROK) under the Additional Protocol to its Safeguards Agreement, the ROK informed the IAEA that it had enriched nuclear material in the course of atomic vapour laser isotope separation (AVLIS) experiments that had not been declared to the IAEA. The ROK informed the IAEA that these experiments had been on a laboratory scale and involved the production of only milligram quantities of enriched uranium. According to the ROK, these activities were carried out without the Government's knowledge at a nuclear site in Korea in 2000, and that the activities had been terminated. Following receipt of this information, the IAEA dispatched a team of inspectors, headed by the Director of the Safeguards Operations Division responsible for the ROK, to investigate further all relevant aspects of this matter. The inspectors will report to the Director General upon their return to Vienna early next week. The Director General will be informing the Board of Governors of the IAEA's initial findings at the next meeting of the Board of Governors beginning on 13 September 2004. (IAEA)

  9. IAEA team to visit North Korean nuclear facilities

    International Nuclear Information System (INIS)

    2002-01-01

    A technical team from the IAEA will visit nuclear facilities in the Nyongbyon area of the Democratic People's Republic of Korea (DPRK) from 15-19 January. The visit will include the Isotope Production Laboratory, an installation that the DPRK has stated was involved in the early stages of development of their nuclear programme. Since 1993, the IAEA has been unable to fully implement its comprehensive safeguards agreement with the DPRK, and has been therefore unable to verify the completeness and correctness of the DPRK's initial 1992 declaration of its nuclear inventory. In May 2001, the IAEA proposed to the DPRK concrete steps that need to be carried out in that verification process, and indicated its readiness to start implementing these measures immediately. At a technical meeting between the DPRK and the IAEA in November 2001, the DPRK did not agree to promptly start to implement those proposals, citing the delay in implementation of the USA/DPRK Agreed Framework as the principal reason for declining. However, the DPRK did agree to a visit, not an inspection, by IAEA inspectors to the Isotope Production Laboratory. The DPRK withdrew its membership from the Agency in June 1994. The Director General encourages the DPRK to normalize its relations with the IAEA including resumption of full safeguards inspections

  10. IAEA Sends International Fact-finding Expert Mission to Japan

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: The International Atomic Energy Agency will dispatch an international expert fact-finding mission to Japan. Based upon the agreement between the IAEA and the Government of Japan, the mission, comprising nearly 20 international and IAEA experts from a dozen countries, will visit Japan between 24 May and 2 June 2011. Under the leadership of Mr. Mike Weightman, HM Chief Inspector of Nuclear Installations of the United Kingdom, the mission will conduct fact-finding activities at Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Station (NPS) site and in other locations. The expert mission will make a preliminary assessment of the safety issues linked with TEPCO's Fukushima Dai-ichi NPS accident following the Great East Japan Earthquake and Tsunami. During the mission, areas that need further exploration or assessment based on the IAEA safety standards will also be identified. In the course of the IAEA mission, the international experts will become acquainted with the Japanese lessons learned from the accident and will share their experience and expertise in their fields of competence with the Japanese authorities. Mr. Weightman will present the mission's report at the Ministerial Conference on Nuclear Safety organised by the IAEA in Vienna from 20 to 24 June 2011, as an important input in the process of reviewing and strengthening the global nuclear safety framework that will be launched by the Conference. (IAEA)

  11. IAEA support for the establishment of nuclear security education

    International Nuclear Information System (INIS)

    Braunegger-Guelich, Andrea; Rukhlo, Vladimir

    2010-01-01

    The threat of nuclear terrorism has not diminished. In response to the concerns of States, an international nuclear security framework has emerged through the establishment of a number of legally binding and non-binding international instruments which obligates or commits States to carry out a number of actions to protect against nuclear terrorism. In this context, the need for human resource development programmes in nuclear security was underscored at several International Atomic Energy Agency (IAEA) General Conferences and Board of Governors' Meetings. In the pursuit of this need, the IAEA has developed - together with academics and nuclear security experts from Member States - a technical guidance entitled IAEA Nuclear Security Series No. 12 - Educational Programme in Nuclear Security that consists of a model Master of Science (M.Sc.) and a certificate programme in nuclear security. The paper sets out IAEA efforts to support the establishment of nuclear security at educational institutions, underlines particularly the objective and content of the IAEA Nuclear Security Series No. 12 and discusses the efforts made by the IAEA to establish a network among educational and research institutions, and other stakeholders to enhance global nuclear security by developing, sharing and promoting excellence in nuclear security education. (orig.)

  12. Future strategies on IAEA activities and technical cooperation programmes

    International Nuclear Information System (INIS)

    Kim, Kyoung Pyo; Hong, Young Don

    1998-10-01

    This study provides basic background information about the establishment of the IAEA, its mission, major activities, General Conference , and Board of Governors, structure and functions of the Secretariat. The IAEA Mid-term plan, to be implemented in the years 1998 - 2003, includes the enhancement of its functional effectiveness, analysis of the changing developments, adjustment of its priorities, and evaluation of its programmes, are describes in full detail. This plan is divided into 6 major areas ; nuclear power and the fuel cycle, nuclear applications, nuclear, radiation and radwaste safety, verification and security of nuclear material, management of technical cooperation for development, policy making, coordination and support. It is also expected that the IAEA plan provides an opportunity to understand the future directions of IAEA programmes and its operational philosophy, thus greatly contributing to Koreas establishment of its own future directions for expanded cooperation with the IAEA, and urges to device effective domestic strategies. This plan will also contribute to the evaluation of Koreas responsibility as a member of the Board of Governors as well as enhance Koreas role as an Advisory Group Member. It is expected that this study is useful for nuclear-related organizations wishing to establish basic directions for the efficient implementation of IAEA technical cooperation programs in the future. (author). 16 refs., 6 tabs., 16 figs

  13. IAEA safety standards for research reactors

    International Nuclear Information System (INIS)

    Abou Yehia, H.

    2007-01-01

    The general structure of the IAEA Safety Standards and the process for their development and revision are briefly presented and discussed together with the progress achieved in the development of Safety Standards for research reactor. These documents provide the safety requirements and the key technical recommendations to achieve enhanced safety. They are intended for use by all organizations involved in safety of research reactors and developed in a way that allows them to be incorporated into national laws and regulations. The author reviews the safety standards for research reactors and details their specificities. There are 4 published safety standards: 1) Safety assessment of research reactors and preparation of the safety analysis report (35-G1), 2) Safety in the utilization and modification of research reactors (35-G2), 3) Commissioning of research reactors (NS-G-4.1), and 4) Maintenance, periodic testing and inspection of research reactors (NS-G-4.2). There 5 draft safety standards: 1) Operational limits and conditions and operating procedures for research reactors (DS261), 2) The operating organization and the recruitment, training and qualification of personnel for research reactors (DS325), 3) Radiation protection and radioactive waste management in the design and operation of research reactors (DS340), 4) Core management and fuel handling at research reactors (DS350), and 5) Grading the application of safety requirements for research reactors (DS351). There are 2 planned safety standards, one concerning the ageing management for research reactor and the second deals with the control and instrumentation of research reactors

  14. Analytical quality control [An IAEA service

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-07-01

    In analytical chemistry the determination of small or trace amounts of elements or compounds in different types of materials is increasingly important. The results of these findings have a great influence on different fields of science, and on human life. Their reliability, precision and accuracy must, therefore, be checked by analytical quality control measures. The International Atomic Energy Agency (IAEA) set up an Analytical Quality Control Service (AQCS) in 1962 to assist laboratories in Member States in the assessment of their reliability in radionuclide analysis, and in other branches of applied analysis in which radionuclides may be used as analytical implements. For practical reasons, most analytical laboratories are not in a position to check accuracy internally, as frequently resources are available for only one method; standardized sample material, particularly in the case of trace analysis, is not available and can be prepared by the institutes themselves only in exceptional cases; intercomparisons are organized rather seldom and many important types of analysis are so far not covered. AQCS assistance is provided by the shipment to laboratories of standard reference materials containing known quantities of different trace elements or radionuclides, as well as by the organization of analytical intercomparisons in which the participating laboratories are provided with aliquots of homogenized material of unknown composition for analysis. In the latter case the laboratories report their data to the Agency's laboratory, which calculates averages and distributions of results and advises each laboratory of its performance relative to all the others. Throughout the years several dozens of intercomparisons have been organized and many thousands of samples provided. The service offered, as a consequence, has grown enormously. The programme for 1973 and 1974, which is currently being distributed to Member States, will contain 31 different types of materials.

  15. Past Arguments in IMO/IAEA etc

    International Nuclear Information System (INIS)

    Komatsu, Takashi

    2016-01-01

    In International Maritime Organization, subject to the decisions in the 18th General Assembly (1993) and in the 19th General Assembly (1995), ''the Special Consultative Meeting of Entities Involved in the Maritime Transport of Nuclear Materials covered by the INF Code'' (SCM) was held in IMO Headquarters in London during the 4th to 6th of March, 1996. From 32 countries and international organizations over 100 persons attended SCM. Based on the results of SCM, the following issues were discussed and solved by 2001. INF Code became madatory since the 1st of January 2001 as Part D ''Special requirements for the carriage of packaged irradiated nuclear fuel, plutonium and high-level radioactive wastes on board ships'' of Chapter VII (Carriage of dangerous goods) of ANNEX of the International Convention for the Safety of Life at Seas (SOLAS). Concerning the response to an incident with radioative contamination ''Protocol on preparedness, response and co-operation to pollution incidents by harzardous and noxious substances, 2000'' were established for inter-governmental co-operation, in addition to the pollution manual in the International Convention for the Prevention of Pollution from Ships (MARPOL). In IMO, 'hazardous and noxious substances' are identified in the International Maritime Dangerous Goods Code (IMDG Code). Radioactive substance is one of the eight categories of IMDG Code. (Oil pollution is treated separately under OPRC.) Just after the completion of a decade of study and review in IMO some countries requested a similar process in the IAEA

  16. Certified reference materials for radionuclides in Bikini Atoll sediment (IAEA-410) and Pacific Ocean sediment (IAEA-412)

    DEFF Research Database (Denmark)

    Pham, M. K.; van Beek, P.; Carvalho, F. P.

    2016-01-01

    The preparation and characterization of certified reference materials (CRMs) for radionuclide content in sediments collected offshore of Bikini Atoll (IAEA-410) and in the open northwest Pacific Ocean (IAEA-412) are described and the results of the certification process are presented. The certified...... radionuclides include: 40K, 210Pb (210Po), 226Ra, 228Ra, 228Th, 232Th, 234U, 238U, 239Pu, 239+240Pu and 241Am for IAEA-410 and 40K, 137Cs, 210Pb (210Po), 226Ra, 228Ra, 228Th, 232Th, 235U, 238U, 239Pu, 240Pu and 239+240Pu for IAEA-412. The CRMs can be used for quality assurance and quality control purposes...

  17. Special symposium for the IAEA 50th anniversary: Global challenges for the future of nuclear energy and the IAEA

    International Nuclear Information System (INIS)

    2007-01-01

    The objective of the symposium was to review the 50 years history of the activities of the IAEA and the current status of nuclear power and fuel cycle in the world and discuss the future vision regarding development and safety of nuclear power and fuel cycle and international cooperation. Topics covered were nuclear power and fuel cycle, nuclear safety and security, non proliferation, and national, regional, and IAEA's challenges for the future

  18. Finnish support programme to IAEA safeguards. Annual report 1993; Suomen tukiohjelma IAEA:n safeguards-valvonnalle. Vuoden 1993 toimintakertomus

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, M [ed.

    1994-03-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out through separate tasks related to development of non-destructive measurement methods (NDA methods) for verification of nuclear material, training and expert services to the IAEA. In addition to a Finnish summary, the report includes detailed description of each task in English. (editor).

  19. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    Energy Technology Data Exchange (ETDEWEB)

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.

  20. Finnish support programme to IAEA safeguards. Annual report 1992; Suomen tukiohjelma IAEA:n safeguards-valvonnalle. Vuoden 1992 toimintakertomus

    Energy Technology Data Exchange (ETDEWEB)

    Tarvainen, M [ed.

    1993-04-01

    Implementation of the Finnish Support Programme to IAEA Safeguards (FINSP) during the calender year in question is summarized. FINSP is carried out through separate tasks related to development of non-destructive measurement methods (NDA methods) for verification of nuclear material, training and expert services to the IAEA. In addition to a Finnish summary, the report includes detailed description of each task in English. (editor).

  1. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 8 December 1997

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1997-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 8 December 1997. The following aspects from the Agency's activity are presented: nuclear energy, Agency's inspections in Iraq in relation to its clandestine nuclear programme, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), and conclusion of safeguards agreements and additional protocols

  2. ISSAS guidelines. Reference report for IAEA SSAC advisory service

    International Nuclear Information System (INIS)

    2005-01-01

    All comprehensive safeguards agreements between the IAEA and Member States concluded on the basis of INFCIRC/153 (Corrected) require the Member State to establish and maintain a system of accounting for and control of nuclear material subject to safeguards. In the years following the negotiation of INFCIRC/153, the IAEA's Secretariat and a large group of experts from Member States collaborated in the production of a set of guidelines to assist Member States in establishing their State system of accounting for and control of nuclear materials (SSAC). These guidelines, termed 'Guidelines for States' Systems of Accounting for and Control of Nuclear Materials', were published in 1980 as part of the IAEA's information series on the then developing safeguards system (IAEA/SG/INF/2). However, events over the past decade have changed the circumstances and requirements of the safeguards system. The IAEA, with support and assistance from Member States, embarked on an extensive multiyear effort to strengthen the safeguards system by increasing the IAEA's capability to detect undeclared nuclear material and activities. The centre-piece of this effort is the Model Protocol Additional to Safeguards Agreements (referred to as the 'additional protocol' and contained in INFCIRC/540 (Corrected)) approved by the Board of Governors in May 1997. The central components of strengthened safeguards and the additional protocol are increased access to information and increased physical access. The effective and efficient implementation of the strengthened safeguards system requires the SSACs to be effective and to cooperate closely with the IAEA. To achieve this aim the IAEA is, inter alia, revising IAEA/SG/INF/2, providing training and equipment to SSAC Authorities and providing an advisory service to Member States known as the IAEA SSAC Advisory Service (ISSAS). Accounting for and control of nuclear material is also key for nuclear security. General Conference resolutions (e.g. GC(48)/RES

  3. IAEA inspectors complete verification of nuclear material in Iraq

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: At the request of the Government of Iraq and pursuant to the NPT Safeguards Agreement with Iraq, a team of IAEA safeguards inspectors has completed the annual Physical Inventory Verification of declared nuclear material in Iraq, and is returning to Vienna. The material - natural or low-enriched uranium - is not sensitive from a proliferation perspective and is consolidated at a storage facility near the Tuwaitha complex, south of Baghdad. This inspection was conducted with the logistical and security assistance of the Multinational Force and the Office of the UN Security Coordinator. Inspections such as this are required by safeguards agreements with every non-nuclear-weapon state party to the NPT that has declared holdings of nuclear material, to verify the correctness of the declaration, and that material has not been diverted to any undeclared activity. Such inspections have been performed in Iraq on a continuing basis. The most recent took place in June 2003, following reports of looting of nuclear material at the Tuwaitha complex; IAEA inspectors recovered, repackaged and resealed all but a minute amount of material. NPT safeguards inspections are limited in scope and coverage as compared to the verification activities carried out in 1991-98 and 2002-03 by the IAEA under Security Council resolution 687 and related resolutions. 'This week's mission was a good first step,' IAEA Director General Mohamed ElBaradei said. 'Now we hope to be in a position to complete the mandate entrusted to us by the Security Council, to enable the Council over time to remove all sanctions and restrictions imposed on Iraq - so that Iraq's rights as a full-fledged member of the international community can be restored.' The removal of remaining sanctions is dependent on completion of the verification process by the IAEA and the UN Monitoring, Verification and Inspection Commission (UNMOVIC). It should be noted that IAEA technical assistance to Iraq has been resumed over

  4. Energy and nuclear power planning using the IAEA`s ENPEP computer package. Proceedings of a workshop

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The Regional (Europe) Technical Co-operation Project on the Study of Energy Options Using the IAEA Planning Methodologies was first implemented by the IAEA in 1995. The project aims at improving national capabilities for energy, electricity and nuclear power planning and promoting regional co-operation among participating countries in the European region. The project includes the organization of workshops, training activities at the regional and national levels, scientific visits, etc. The proceedings of a workshop held in Warsaw, Poland, from 4 to 8 September 1995 are contained herein. The workshop had as a basic objective the analysis of the specific problems encountered by the represented countries during application of the IAEA`s ENPEP package in the conduct of national studies and to provide a forum for further co-operation among participating countries. A second objective of the workshop was to make proposals for future activities to be organized within the project. This publication is intended to serve as reference for the users of the IAEA`s ENPEP package, as well as for energy and electricity planners in general. Refs, figs, tabs.

  5. IAEA safety glossary. Terminology used in nuclear safety and radiation protection, multilingual 2007 edition, including the IAEA safety fundamentals [no. SF-1

    International Nuclear Information System (INIS)

    2008-10-01

    The IAEA Safety Glossary defines and explains technical terms used in the IAEA Safety Standards and other safety related IAEA publications, and provides information on their usage.The publication is multilingual and covers the six official IAEA languages,, Arabic, Chinese, English, French, Russian and Spanish. It has been in use since April 2000. The 2007 Edition is a revised and updated version. The primary purpose of the publication is to harmonize terminology and usage in the IAEA Safety Standards. It is a source of information for users of the IAEA Safety Standards and other safety related IAEA publications and provides guidance for the drafters and reviewers of publications, including IAEA technical officers and consultants, and members of technical committees, advisory groups, working groups and bodies for the endorsement of safety standards

  6. Overview of IAEA guidelines for state systems of accounting for and control of nuclear materials: objectives, diversion of nuclear material, and the IAEA safeguards system

    International Nuclear Information System (INIS)

    Buechler, C.

    1984-01-01

    Topics discussed include IAEA safeguards statutes, project and transfer agreements, agreements pursuant to the Non-Proliferation Treaty, implementation of IAEA safeguards, diversion strategies, accountancy and surveillance systems, and verification

  7. IAEA outlines measures to enhance protection against nuclear terrorism

    International Nuclear Information System (INIS)

    2001-01-01

    Mr. ElBaradei, head of the IAEA presented a report today to the Agency's Board of Governors, outlining plans for substantially expanding and strengthening IAEA programmes relevant to improving nuclear security. The report addresses the IAEA's response to the following threats from acts of nuclear terrorism by a subnational group: acquisition of a nuclear weapon; acquisition of nuclear material to construct a nuclear weapon or to cause a radiological hazard; acquisition of other radioactive materials to cause a radiological hazard; and violent acts against nuclear facilities to cause a radiological hazard. The report puts a price tag on its proposed programme upgrades at $30-50 million per year, representing an initial 10-15% increase in the IAEA's overall resources. Additionally, Mr. ElBaradei said the IAEA's budget is currently underfeed by about $40 million due to a budgetary policy over many years of 'zero real growth', and called on Member States to provide the resources required to cope with the newly emerging threat. 'In addition to the resources required for urgent international assistance,' Mr. ElBaradei said, 'the necessary global upgrades to meet the full range of possible threats would be in the range of hundreds of millions of dollars and would have to be carried out by individual States and through bilateral and multilateral assistance'. The IAEA would play a coordinating role in delivering this assistance.If States provide adequate funding, Mr. ElBaradei predicts that the enhanced and additional activities proposed in his report should lead over time to a powerful national and international security framework for nuclear facilities and material. The Summary of Report on 'Protection Against Nuclear Terrorism' presented to the IAEA Board of Governors on 30.11.2001 is attached

  8. Implementation Practices of Finland in Facilitating IAEA Verification Activities

    International Nuclear Information System (INIS)

    Martikka, E.; Ansaranta, T.; Honkamaa, T.; Hamalainen, M.

    2015-01-01

    The Member States provide the information to the IAEA according to the Safeguards Agreements and Additional Protocols. For example, the requirements to provide the reports and declarations are very general and there are no explanation what the IAEA is looking for from that information. It is important for the States to understand how their efforts to collect and provide information, and to facilitate IAEA verification activities, contribute to the achievement of objectives and finally to draw conclusions on the exclusively peaceful use of nuclear materials in a State. The IAEA is producing a new series of guidance called Safeguards Implementation Practices, SIP, guides, which are shedding light on the requirements and sharing the good practices of States. It is hoped that the SIP Guides will create a better understanding of the needs of the IAEA and the important role of States and facility operators in achieving safeguards objectives. The guides are also important for the States to share their lessons learned and good practices for the benefit of other States that might be developing their capabilities or enhancing their processes and procedures. The way is very wide and long, when a State decides to start up a new nuclear programme. At first there is a need for legislation, regulatory body, contact point, international agreements and then finally practical implementation of the safeguards in the nuclear facilities. There are a lot of issues to be prepared in advance to facilitate the IAEA's implementation of verification activities successfully, effectively and with the good quality. Using the structure of the IAEA's draft SIP Guide on Facilitating Verification Activities as a framework, this paper will describe the most relevant implementation practices and experiences in Finland. (author)

  9. Advanced nuclear fuel cycles activities in IAEA

    International Nuclear Information System (INIS)

    Nawada, H.P.; Ganguly, C.

    2007-01-01

    Full text of publication follows. Of late several developments in reprocessing areas along with advances in fuel design and robotics have led to immense interest in partitioning and transmutation (P and T). The R and D efforts in the P and T area are being paid increased attention as potential answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. Any fuel cycle studies that integrate partitioning and transmutation are also known as ''advanced fuel cycles'' (AFC), that could incinerate plutonium and minor actinide (MA) elements (namely Am, Np, Cm, etc.) which are the main contributors to long-term radiotoxicity. The R and D efforts in developing these innovative fuel cycles as well as reactors are being co-ordinated by international initiatives such as Innovative Nuclear Power Reactors and Fuel Cycles (INPRO), the Generation IV International Forum (GIF) and the Global Nuclear Energy Partnership (GENP). For these advanced nuclear fuel cycle schemes to take shape, the development of liquid-metal-cooled reactor fuel cycles would be the most essential step for implementation of P and T. Some member states are also evaluating other concepts involving the use of thorium fuel cycle or inert-matrix fuel or coated particle fuel. Advanced fuel cycle involving novel partitioning methods such as pyrochemical separation methods to recover the transuranic elements are being developed by some member states which would form a critical stage of P and T. However, methods that can achieve a very high reduction (>99.5%) of MA and long-lived fission products in the waste streams after partitioning must be achieved to realize the goal of an improved protection of the environment. In addition, the development of MA-based fuel is also an essential and crucial step for transmutation of these transuranic elements. The presentation intends to describe progress of the IAEA activities encompassing the following subject-areas: minimization of

  10. IAEA A+M Unit Activities

    International Nuclear Information System (INIS)

    Braams, B. J.; Chung, H.-K.; Sheikh, K.

    2011-01-01

    Research on fusion energy devices requires a large amount of data for atomic, molecular and plasma-surface interactions. As current machines are updated and future machines are designed, data for a variety of different materials for a wide range of plasma parameters arise. The Atomic and Molecular (A+M) Data Unit of the International Atomic Energy Agency works to coordinate efforts to establish databases for this fusion research effort. Current activities for database development include a number of Coordinated Research Projects (CRP), Technical Meetings, Consultant Meetings and a number of collaborations. These activities generate significant new data in support of fusion research. These data are published in journals as well as IAEA publications and are included in numerical databases ALADDIN accessible by all fusion researchers. Historically a number of institutions have contributed to development of such databases and continue to participate in a Data Centre Network, supported by the A+M Unit. Members of this network maintain individual databases, many of which can be searched using the GENIE search engine. The A+M Unit host the OPEN-ADAS system that allows access to most of the numerical data stored within the ADAS system. An effort on development of an XML schema for data exchange among the databases is underway. Many numerical data for specific processes in fusion relevant materials are not available. In many cases computer codes exist with the capability of generating such data as needed. An informal network of institutions with such capabilities is in the process of formation to provide a means quickly generating such data. The A+M Unit maintains on-line code capabilities to generate atomic and molecular data and serves as an access point to LANL atomic physics codes and FLYCHK, Non-LTE kinetics codes at NIST. Currently, a wiki-style knowledge base is under the development. It will host a wealth of information on atomic, molecular, plasma-surface data for

  11. IAEA Guidance for Safeguards Implementation in Facility Design and Construction

    International Nuclear Information System (INIS)

    Sprinkle, J.; Hamilton, A.; Poirier, S.; Catton, A.; Ciuculescu, C.; Ingegneri, M.; Plenteda, R.

    2015-01-01

    One of the IAEA's statutory objectives is to seek to accelerate and enlarge the contribution of nuclear energy to peace, health and prosperity throughout the world. One way the IAEA works to achieve this objective is through the publication of technical series that can provide guidance to Member States. These series include the IAEA Services Series, the IAEA Safety Standard Series, the IAEA Nuclear Security Series and the IAEA Nuclear Energy Series. The Nuclear Energy Series is comprised of publications designed to encourage and assist research and development on, and practical application of, nuclear energy for peaceful purposes. This includes guidance to be used by owners and operators of utilities, academia, vendors and government officials. The IAEA has chosen the Nuclear Energy Series to publish guidance for States regarding the consideration of safeguards in nuclear facility design and construction. Historically, safeguards were often applied after a facility was designed or maybe even after it was built. However, many in the design and construction community would prefer to include consideration of these requirements from the conceptual design phase in order to reduce the need for retro-fits and modifications. One can then also take advantage of possible synergies between safeguards, security, safety and environmental protection and reduce the project risk against cost increments and schedule slippage. The IAEA is responding to this interest with a suite of publications in the IAEA Nuclear Energy Series, developed with the assistance of a number of Member State Support Programmes through a joint support programme task: · International Safeguards in Nuclear Facility Design and Construction (NP-T-2.8, 2013), · International Safeguards in the Design of Nuclear Reactors (NP-T-2.9, 2014), · International Safeguards in the Design of Spent Fuel Management (NF-T-3.1, tbd), · International Safeguards in the Design of Fuel Fabrication Plants (NF-T-4.7, tbd

  12. Role of the IAEA in the radiological protection of patients

    International Nuclear Information System (INIS)

    Ortiz Lopez, P.; Wrixon, A.D.; Meghzifene, A.; Izewska, J.

    2001-01-01

    The paper discusses the role of the IAEA in relation to the radiological protection of patients. Within the IAEA there are two major programmes which have an impact on the protection of the patient. Firstly, patient protection is part of the programme on radiation safety; secondly, the human health programme contains a number of activities related to quality assurance (QA), and these also contribute to the protection of patients. A function of the IAEA, as stipulated in its Statute, is 'to establish or adopt, in consultation and, where appropriate, in collaboration with the competent organs of the United Nations and with the specialized agencies concerned, standards of safety for protection of health and minimization of danger to life and property' and to provide for the application of these standards...'. There are three different levels of the IAEA Safety Standards: Safety Fundamentals, Safety Requirements and Safety Guides. The Standards are supported by other documents such as Safety Reports. There are five means used by the IAEA in providing for the application of the Standards: co-ordinating research, promoting education and training, providing assistance, fostering information exchange and rendering services to its Member States. All these means are used in the programme on radiological protection of patients as described in the paper. The IAEA is assisting its Member Sates in the development and implementation of QA programmes. These activities help disseminate not only the technical knowledge but also the basic ingredients of the QA culture. The IAEA assistance is directed at: (1) national regulatory bodies for the establishment of a regulatory framework which complies with the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources; (2) standards laboratories for metrological traceability; and (3) end users at medical institutions for the development and implementation of QA programmes

  13. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS

    International Nuclear Information System (INIS)

    PEPPER, S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

    2007-01-01

    The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R and D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contacts with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose

  14. ALMERA Proficiency Test: Determination of Natural and Artificial Radionuclides in Soil and Water. IAEA-TEL-2011-04

    International Nuclear Information System (INIS)

    2013-01-01

    The Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA) network is a cooperative effort of analytical laboratories worldwide. Members of the network are nominated by their respective Member States on the expectation of providing reliable and timely analysis of environmental samples in the event of an accidental or intentional release of radioactivity. The ALMERA network consists of 131 laboratories representing 81 Member States at December 2012. The IAEA's Environment Laboratories in Seibersdorf and Monaco are the central coordinators of the ALMERA network activities. The IAEA helps the ALMERA network to maintain their readiness by coordinating activities, including the organization of meetings, development of standardized methods of sample collection and analysis, and organization of interlaboratory comparison exercises and proficiency tests as tools for external quality control. IAEA proficiency tests and interlaboratory comparison exercises are organized on a regular basis specifically for the members of the ALMERA network. At least one exercise is organized per year by the IAEA for the ALMERA network. These exercises are designed to monitor and to demonstrate the performance and analytical capabilities of the network members, and to identify gaps and problem areas where further development is needed. The ALMERA proficiency tests enable ALMERA members to report their results on gamma emitting radionuclides in a very short time frame, i.e. three days, which is what would be required for emergency response. This publication presents the results of the ALMERA proficiency test IAEA-TEL-2011-04 on the determination of natural and artificial radionuclides in water and soil. The methodologies, data evaluation approach, summary evaluation of each radionuclide and individual evaluation reports for each laboratory are also described

  15. An overview analysis of IAEA standard problem exercises

    International Nuclear Information System (INIS)

    Parzer, I.; Mavko, B.; Petelin, S.

    1992-01-01

    The modelling of some loss-of-coolant accident tests (IAEA-SPE), performed on the PMK-NVH integral test facility, have been studied in the present paper. A universal RELAP5 model of the facility has been developed at IJS, first for RELAP5/MOD2 and later upgraded for RELAP5/MOD3 use. To verify the modelling and determine the important details in the model, a nodalization study has been performed on the case of IAEA-SPE-2 experiment. In parallel MOD2 and MOD3 capabilities of modelling highly non-equilibrium processes, as took place in IAEA-SPE-2 experiment, have been compared. Using the most detailed of the developed models, the capabilities of both code versions have been compared on the case of IAEA-SPE-1 and 2 (Small Break Loss-of-Coolant Accidents - SB LOCAs) and IAEA-SPE-3 (Steam Generator Tube Rupture - SGTR), adapted only accordingly to the three SPE experiment arrangements. The calculations nave been performed with RELAP5/MOD2/36.05 and MOD3 5m5 code versions on a VAX 4000-200 computer. (author)

  16. IAEA safeguards and detection of undeclared nuclear activities

    International Nuclear Information System (INIS)

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.)

  17. IAEA safeguards and detection of undeclared nuclear activities

    Energy Technology Data Exchange (ETDEWEB)

    Harry, R.J.S.

    1996-03-01

    Verfication of State declarations is an essential feature of IAEA safeguards. The issue of completeness of the declaration of all nuclear material, nuclear activities and nuclear facilities arises only in full scope safeguards, like those pursuant to NPT. Concentrating on the accountability aspect of nuclear material, the NPT safeguards system has achieved a high level of objective and quantified performance. Some of the basic ideas of the drafters of INFCIRC/153 (corrected) have been stalled. Non-proliferation concerns demand also for a detection probability for undeclared nuclear activities. Following the example of the Chemical Weapon Convention (CWC), advanced detection techniques are proposed, which go beyond the classical nuclear material accountability approach. Recent proposals for additional measures to strengthen IAEA safeguards conform to rules of NPT and related safeguards. Some proposals have been agreed generally, others can only be implemented on a voluntary basis between the State and the IAEA. The implementation will require additional resources and support for the IAEA. Great care is required to maintain the existing capability of the IAEA for a technically sound, independent, objective, and internationally acceptable judgement with available resources, and at the same time to change emphasis on certain elements of the existing safeguards system. (orig.).

  18. An IAEA Survey of Dosimetry Audit Networks for Radiotherapy

    International Nuclear Information System (INIS)

    Grochowska, Paulina; Izewska, Joanna

    2013-01-01

    A Survey: In 2010, the IAEA undertook a task to investigate and review the coverage and operations of national and international dosimetry audit programmes for radiotherapy. The aim was to organize the global database describing the activities of dosimetry audit networks in radiotherapy. A dosimetry audit questionnaire has been designed at an IAEA consultants' meeting held in 2010 for organizations conducting various levels of dosimetry audits for radiotherapy. Using this questionnaire, a survey was conducted for the first time in 2010 and repeated in 2011. Request for information on different aspects of the dosimetry audit was included, such as the audit framework and resources, its coverage and scope, the dosimetry system used and the modes of audit operation, i.e. remotely and through on-site visits. The IAEA questionnaire was sent to over 80 organizations, members of the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories (SSDLs) and other organizations known for having operated dosimetry audits for radiotherapy in their countries or internationally. Survey results and discussion: In response to the IAEA survey, 53 organizations in 45 countries confirmed that they operate dosimetry audit services for radiotherapy. Mostly, audits are conducted nationally, however there are five organizations offering audits abroad, with two of them operating in various parts of the world and three of them at the regional level, auditing radiotherapy centres in neighbouring countries. The distribution of dosimetry audit services in the world is given. (author)

  19. International Scavenging for First Responder Guidance and Tools: IAEA Products

    Energy Technology Data Exchange (ETDEWEB)

    Stern, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berthelot, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Bachner, K. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-05-05

    In fiscal years (FY) 2016 and 2017, with support from the U.S. Department of Homeland Security (DHS), Brookhaven National Laboratory (BNL) examined the International Atomic Energy Agency (IAEA) radiological emergency response and preparedness products (guidance and tools) to determine which of these products could be useful to U.S. first responders. The IAEA Incident and Emergency Centre (IEC), which is responsible for emergency preparedness and response, offers a range of tools and guidance documents for responders in recognizing, responding to, and recovering from radiation emergencies and incidents. In order to implement this project, BNL obtained all potentially relevant tools and products produced by the IAEA IEC and analyzed these materials to determine their relevance to first responders in the U.S. Subsequently, BNL organized and hosted a workshop at DHS National Urban Security Technology Laboratory (NUSTL) for U.S. first responders to examine and evaluate IAEA products to consider their applicability to the United States. This report documents and describes the First Responder Product Evaluation Workshop, and provides recommendations on potential steps the U.S. federal government could take to make IAEA guidance and tools useful to U.S. responders.

  20. The IAEA's role in safe radioactive waste management

    International Nuclear Information System (INIS)

    Flory, D.; Bruno, G.

    2011-01-01

    In accordance with its statute, IAEA is authorized to develop and maintain safety standards. This mission is reflected in the main programme of the IAEA on nuclear safety and security. In the field of the safety of radioactive waste management the IAEA is responsible for the delineation of a global safety regime to protect the public and the environment from harmful effects of ionizing radiation. This delineation is established on the basis of the Joint Convention on the Safety of Spent Fuel Management and the Safety of Radioactive Waste Management, as well as on the development of safety standards for the management of all radioactive waste. The safety standards are the fruit of an international consensus on a high level of safety for the protection of people and environment. Safety guides are edited by IAEA, 7 volumes concern general safety requirements and 6 volumes deal with specific safety requirements (for instance for research reactors or for radioactive waste disposal facilities). Furthermore the IAEA assists Member States in the implementation of the safety standards and provides related services

  1. Radiological accident in Panama - IAEA to send assistance team

    International Nuclear Information System (INIS)

    2001-01-01

    Full text: The International Atomic Energy Agency (IAEA) is sending a team of six international experts to assist the authorities of Panama to deal with the aftermath of a radiological accident that occurred at Panama's National Oncology Institute. The Government of Panama informed the IAEA on 22 May about the accident, reported that 28 patients have been affected, and requested IAEA's assistance under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, to which Panama is a party. The assistance to be provided by the expert mission will include: ensuring that the radiation source(s) involved in the accident is (are) in a safe and secure condition; evaluating the doses incurred by the affected patients, inter alia, by analysing the treatment records and physical measurements; undertaking a medical evaluation of the affected patients' prognosis and treatment, taking into account, inter alia, the autopsy findings for those who died; and identifying issues on which the IAEA could offer to provide and/or co-ordinate assistance to minimize the consequences of the accident. The team, which includes senior experts in radiology, radiotherapy, radiopathology, radiation dosimetry and radiation protection from France, USA and Japan, and the IAEA itself, will leave for Panama tomorrow, 26 May

  2. IAEA Assistance in the development of new research reactor projects

    Energy Technology Data Exchange (ETDEWEB)

    Borio di Tigliole, Andrea; Bradley, Ed; Zhukova, Anastasia; Adelfang, Pablo [International Atomic Energy Agency, Research Reactor Section, Vienna (Austria); Shokr, Amgad [International Atomic Energy Agency, Research Reactor Safety Section, Vienna (Austria); Ridikas, Danas [International Atomic Energy Agency, Physics Section, Vienna (Austria)

    2015-08-15

    A research reactor (RR) project is a major undertaking that requires careful preparation, planning, implementation and investment in time, money, and human resources. In recent years, the interest of IAEA Member States in developing RR programmes has grown significantly, and currently, several Member States are in different stages of new RR projects. The majority of these countries are building their first RR as a key national facility for the development of their nuclear science and technology programmes, including nuclear power. In order to support Member States in such efforts, the IAEA in 2012 published the Nuclear Energy Series Report No. NP-T-5.1 on Specific Considerations and Milestones for a Research Reactor Project. To provide further support, the IAEA also published a document to assist Member States in the preparation of the bid invitation specification for the purchase of a RR. The IAEA will also continue to provide assistance for human resources development of the Member States establishing their first RR, and to facilitate sharing experience and knowledge among Member States through its programmatic activities including expert mission services, technical meetings, training courses and workshops addressing relevant technical and safety topics. This paper presents the IAEA assistance and services provided to the Member States considering new RRs, with particular emphasis on those establishing their first RR, including elaboration on the services mentioned above.

  3. Challenges in Implementing IAEA National Nuclear Safety Knowledge Platforms

    International Nuclear Information System (INIS)

    Samba, R.N.; Simo, A.

    2016-01-01

    Full text: Integrated Management Systems and human resource development of nuclear knowledge have always been a challenge for developing countries. NRPA staff when trained by IAEA return and restitute with all colleagues the themes acquired in nuclear knowledge. NRPA became a member of Forum for Nuclear Regulatory Bodies in Africa (FNRBA) in 2009. FNRBA organized with IAEA a workshop from 14th to 18th October 2013 in Nairobi, Kenya on Knowledge Safety Network. NRPA of Cameroon created the first National Nuclear Portail under FNRBA. This was linked to other national websites. During the IAEA review missions, most counterparts took opportunity from the thermatic site to share information and develop advance reference materials. The IAEA Integrated Regulatory Review Service (IRRS) team also shared materials that could not be transferred through email with national counterparts using the Global Nuclear Safety and Security Network (GNSSN) sharepoint website due to large file sizes.The regulatory documents have been uploaded on the platform and can be accessed through FNRBA and NRPA website (www.anrp.cm). UN organizations implementing projects in Cameroon are also linked to the platform. The action plans and progress reports for IAEA/AFRA projects are also available. Moreover, NRPA regulatory activities and licensing sources are available on this platform. (author

  4. IAEA Sets Up Team to Drive Nuclear Safety Action Plan

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: The International Atomic Energy Agency is setting up a Nuclear Safety Action Team to oversee prompt implementation of the IAEA Action Plan on Nuclear Safety and ensure proper coordination among all stakeholders. The 12-point Action Plan, drawn up in the wake of the Fukushima Daiichi accident, was approved by the Agency's Board of Governors on 13 September and endorsed by all 151 Member States at its General Conference last week. The team will work within the Agency's Department of Nuclear Safety and Security, headed by Deputy Director General Denis Flory, and will coordinate closely with the Director General's Office for Policy. ''The Action Plan requires immediate follow-up,'' Director General Yukiya Amano said. ''This compact, dedicated team will assist Deputy Director General Flory in implementing the measures agreed in the Action Plan.'' Gustavo Caruso, Head of the Regulatory Activities Section in the IAEA's Division of Installation Safety, has been designated as the team's Special Coordinator for the implementation of the Action Plan. The IAEA has already started implementing its responsibilities under the Action Plan, including development of an IAEA methodology for stress tests for nuclear power plants. The methodology will be ready in October. (IAEA)

  5. Review of IAEA documentation on Nuclear and radiological emergency

    International Nuclear Information System (INIS)

    Mukhono, P. M.

    2014-10-01

    The project focuses on the review of IAEA documentation on nuclear or radiological emergencies with main focus on methodology for developing and arrangement for nuclear and radiological emergencies. The main objective of this work is to identify limitations in IAEA documentation on emergency preparedness and response (EPR) and provide recommendation on the main actions needed to fill the gaps identified thus aiding in improvement of emergency preparedness and response to nuclear and radiological accidents. The review of IAEA documentation on nuclear and radiological emergency has been carried out by evaluating various emergency response elements. Several elements for EPR were highlighted covering the safety fundamentals, general safety requirements and EPR methods for development of an effective emergence response capability for nuclear or radiological emergencies. From these issues, the limitations of IAEA documentation on EPR were drawn and recommendations suggested as a means of improving EPR methods. Among them was the need for IAEA consider establishment of follow up and inspection programmes to facilitate implementation of EPR requirements in most developing countries, establishment of programmes that provide platforms for the countries to be motivated to update their system in line with the current status of emergency preparedness, review of the international information exchange aspects of nuclear emergencies in order to improve capabilities to communicate reliable data, information and decisions quickly and effectively among national authorities and their emergency and emergency response centres. (au)

  6. The IAEA Activities on Supporting Development of Therapeutic Radiopharmaceuticals and Capacity Building in Member States

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Haji-Saeid, M.; Zaknun, J.; Ramamoorthy, N.

    2009-01-01

    technologies for therapeutic radionulclides' is the development of a novel technology generator for 90 Sr/ 90 Y, an electrochemical generator system (named by the developers as 'Kamadhenu', a mythological Indian cow that provides perennial milk supply) for the preparation of 90 Y of high purity for therapy. The further development of the system into an automated module has been done by a collaborating commercial entity, Isotope Technologies Dresden (ITD), Germany, and the prototype module will be installed shortly in Cuba under an IAEA technical cooperation project. The development of 'extraction paper chromatography (EPC)' for estimation of ppm levels of 90 Sr in 90 Y is another significant achievement under the same CRP. EPC is a novel analytical technique with potential for application in other fields. All such research outputs of the CRP are published as IAEA documents and can be freely downloaded. Currently there are two other ongoing CRPs: (i) Development of 177 Lu radiopharmaceuticals for radionuclide therapy (2006-2009) and (ii) Development of therapeutic radiopharmaceuticals using 90 Y and 188 Re (2008-2011). Thirty one research groups from across the world are participating in these CRPs, which are investigating the development of therapeutic radiopharmaceuticals for bone pain palliation, solid tumours including hepatocarcinoma as well as agents for radiosynoviorthesis. Major outcomes of the CRP on 177 Lu are the commencement of the production of 177 Lu in over a dozen reactors in the participating countries and translation of 177 Lu-EDTMP into a cost effective therapeutic radiopharmaceutical, following extensive pre-clinical evaluation studies, and through a joint CRP with the IAEA Nuclear Medicine Section that is focussing on the multicentric Phase I/II clinical trial of 177 Lu-EDTMP in metastatic prostate and breast cancer. The IAEA supports currently 14 technical cooperation projects in MS dealing with implementation of therapeutic radiopharmaceuticals including

  7. The IAEA international project on innovative nuclear reactors and fuel cycles (INPRO): Status, ongoing activities and outlook

    International Nuclear Information System (INIS)

    Kupitz, J.; Depisch, F.; Khorochev, M.

    2004-01-01

    this phase was presented in a IAEA document (IAEA-TECDOC-1362, Guidance for the evaluation of innovative nuclear reactors and fuel cycles) issued in June 2003. In the present phase of the project, case studies are being carried out in order to validate and refine the developed methodology including the set of Basic principles, User requirements, Criteria and the judgement procedure. This paper shortly summarizes the results published in IAEA-TECDOC-1362 and the ongoing actions related to validation of INPRO Methodology via case studies. Finally, an outlook of INPRO activities is presented. (authors)

  8. IAEA sends out samples of uranium ore

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-15

    Full text: Governments and organizations interested in developing uranium resources will be assisted by a new service, now being inaugurated by the Agency's laboratories, for the distribution of reference samples of uranium ores. This is an addition to the service which began at Seibersdorf in January 1962 for the distribution of calibrated radionuclides, and which has met with a steadily increasing demand. * Uranium deposits consisting of ores with a uranium content in the range 0.5 - 0.05 per cent occur in a number of countries, including developing countries and can present considerable analytical difficulties. In 1962 the Agency asked Member States whether they would be interested in receiving reference samples of uranium ores to assist them in checking their methods of chemical analysis. The response encouraged the Agency to proceed. There is a multiplicity of types of uranium ores and, initially, three of the most commonly occurring have been selected - torbernite, uraninite and carnotite. Member States have provided the laboratory with supplies of these three types of ore. In order to determine the uranium content, samples are sent to leading laboratories throughout the world, so as to arrive at the most accurate values possible. This work has proved to be useful to the laboratories themselves ; in searching for reasons for discrepancies between the different collaborating laboratories, they enlarge their own knowledge and improve their methods. The reference samples are sent out in the form of fine powder, and are available to atomic energy commissions, research laboratories or mining companies. The requesting laboratory, having worked out the analytical process best suited to its needs, is then able to check its results by analysing an IAEA reference sample of known uranium content. By the end of 1966, reference samples will be available of the three ores mentioned, and later also of pure uranium oxide and of uranium oxide containing trace impurities, the

  9. Containment and surveillance -- A principle IAEA safeguards measure

    International Nuclear Information System (INIS)

    Sonnier, C.S.

    1997-01-01

    In October 1954, the Statue of the IAEA (International Atomic Energy Agency) had been signed by 70 nations. The Agency was established in 1957, and at the end of its first year of operation 130 professionals were employed in all departments. By the end of 1990, the number of professionals in the Safeguards Department had increased to over 270, over 200 of whom are designated inspectors. One of the unique features of the IAEA which directly interfaces with Member States is that of on-site inspections by international officials of the IAEA. This growth cycle, spanning some 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. This paper addresses the specific subject of technical means to maintain continuity of knowledge between inspection intervals--classically referred to as Containment and Surveillance

  10. IAEA perspective on remote monitoring development and implementation

    International Nuclear Information System (INIS)

    Aparo, Massimo

    2006-01-01

    The IAEA has made rapid progress in exploiting remote monitoring in 84 systems and 302 cameras, which are spread over 15 states and Taiwan. The increased use, since 2003, of remote monitoring of VACOSS electronic seals is a new feature. Successful use of remote monitoring to spot potential breakdowns through state-of-health diagnostics on 14 occasions is also an important motivation for further implementation. This paper gave detailed descriptions of installed systems for data acquisition and transmission, particularly the SDIS (up to six cameras) and DMOS (up to 16 cameras). IAEA policy for data security and data sharing raise important issues that are relevant to cooperation in transparency that might be based on sharing of data from safeguards systems. Implementation of new remote monitoring systems may utilize satellite links, as under testing now in cooperation between the IAEA and the European Space Agency (ESA). (author)

  11. Iran and the IAEA: Verification and monitoring under the JCPOA

    International Nuclear Information System (INIS)

    2016-01-01

    On 16 January 2016, IAEA Director General Yukiya Amano announced that Iran had completed the necessary preparatory steps to start implementation of the Joint Comprehensive Plan of Action (JCPOA). This ushers in a new phase in the relations between the IAEA and Iran, and represents the start of an increased effort of the IAEA’s verification and monitoring activities in Iran. The JCPOA was agreed last July between Iran and China, France, Germany, Russia, the United Kingdom, the United States and the European Union, the so called E3/EU+3. The IAEA, which is not party to the JCPOA, is undertaking a wide range of verification and monitoring of nuclear-related commitments set out in the document.

  12. IAEA activities in nuclear reactors simulation for educational purposes

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1998-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. Currently, the IAEA has two simulation programs: the Classroom-based Advanced Reactor Demonstrators package, and the Advanced Reactor Simulator. Both packages simulate the behaviour of BWR, PWR and HWR reactor types. For each package, the modeling approach and assumptions are broadly described, together with a general description of the operation of the computer programs. (author)

  13. IAEA data base system for nuclear research reactors (RRDB)

    International Nuclear Information System (INIS)

    Lipscher, P.

    1986-01-01

    The IAEA Data Base System for Nuclear Research Reactors (RRDB) User's Guide is intended for the user who wishes to understand the concepts and operation of the RRDB system. The RRDB is a computerized system recording administrative, operational and technical data on all the nuclear research reactors currently operating, under construction, planned or shut down in IAEA Member States. The data is received by the IAEA from reactor centres on magnetic tapes or as responses to questionnaires. All the data on research, training, test and radioactive isotope production reactors and critical assemblies is stored on the RRDB system. A full set of RRDB programs (in NATURAL) are contained at the back of this Guide

  14. IAEA Completes Nuclear Security Review Mission in United States

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: A team of nuclear security experts led by the International Atomic Energy Agency (IAEA) today completed a mission to review nuclear security practices of civil nuclear facilities licensed by the United States Nuclear Regulatory Commission (NRC). Conducted at the U.S. Government's request, the two-week International Physical Protection Advisory Service (IPPAS) mission reviewed the United States' nuclear security-related legislative and regulatory framework. As part of this work, the IPPAS team, led by John O'Dacre of Canada and comprising nine experts from eight IAEA Member States, met with NRC officials and reviewed the physical protection systems at the Center for Neutron Research (NCNR) at the National Institute of Standards and Technology. The IPPAS team concluded that nuclear security within the U.S. civil nuclear sector is robust and sustainable and has been significantly enhanced in recent years. The team identified a number of good practices in the nation's nuclear security regime and at the NCNR. The IPPAS team also made a recommendation and some suggestions for the continuing improvement of nuclear security overall. The mission in the United States was the 60th IPPAS mission organized by the IAEA. 'Independent international peer reviews such as IAEA IPPAS missions are increasingly being recognized for their value as a key component for exchanges of views and advice on nuclear security measures', said Khammar Mrabit, Director of the IAEA Office of Nuclear Security. 'The good practices identified during this mission will contribute to the continuous improvements of nuclear security in other Member States'. The IPPAS team provided a draft report to the NRC and will submit a final report soon. Because it contains security-related information about a specific nuclear site, IPPAS reports are not made public. 'The IPPAS programme gives us a chance to learn from the experience and perspective of our international partners', said NRC Chairman Allison M

  15. Taking another look at the IAEA's OSART programme

    International Nuclear Information System (INIS)

    Franzen, F.L.

    1990-01-01

    The Operational Safety Review Team (OSART) programme of the International Atomic Energy Agency continues a high level of activity. In 1989 there were eleven OSART missions to nuclear power plants operating or approaching operation. The programme, now in its seventh year, has matured with its implementation. It reflects the principal change in operational safety that has occurred worldwide during these years: utilities operating nuclear power plants and industry organisations supporting the plants have become the spearhead in the international drive for excellence in operational safety. While this may reach beyond and supplement compliance with regulatory requirements, it also affects the IAEA's relation with regulatory authorities and utilities. Utilities have become the most important counterparts of the IAEA in implementing the OSART programme; in fact, the programme is now a special form of utility co-operation under the auspices of the IAEA. (author)

  16. The role of IAEA in fulfilling nuclear data needs

    International Nuclear Information System (INIS)

    Devan, K.; Gopalakrishnan, V.; Lee, S.M.

    1996-01-01

    The role of the Nuclear Data Section of IAEA has been unique and significant in India's nuclear data related work. Experience at Indira Gandhi Centre for Atomic Research Centre (IGCAR) has shown that the services of NDS-IAEA have been vital in building a capability at our centre, towards preparation of multigroup constants for application in fast reactor physics calculations, starting from the basic evaluated nuclear data libraries. However, bottlenecks exist in realizing completeness in the benefits due to non-availability of certain data or codes to our country. Problems also exist due to lack of manpower and computer resources. In this presentation, our experiences with nuclear data processing, the problems faced etc. are outlined. Some suggestions to NDS-IAEA are also given towards removing some of the problems. (author). 11 refs, 1 fig

  17. Certified Reference Materials for Radioactivity Measurements in Environmental Samples of Soil and Water: IAEA-444 and IAEA-445

    International Nuclear Information System (INIS)

    2011-01-01

    Reference Materials are an important requirement for any sort of quantitative chemical and radiochemical analysis. Laboratories need them for calibration and quality control throughout their analytical work. The IAEA started to produce reference materials in the early 1960's to meet the needs of the analytical laboratories in its Member States that required reference materials for quality control of their measurements. The initial efforts were focused on the preparation of environmental reference materials containing anthropogenic radionuclides for use by those laboratories employing nuclear analytical techniques. These reference materials were characterized for their radionuclide content through interlaboratory comparison involving a core group of some 10 to 20 specialist laboratories. The success of these early exercises led the IAEA to extend its activities to encompass both terrestrial and marine reference materials containing primordial radionuclides and trace elements. Within the frame of IAEA activities in production and certification of reference materials, this report describes the certification of the IAEA-444 and IAEA-445: soil and water spiked with gamma emitting radionuclides respectively. Details are given on methodologies and data evaluation

  18. IAEA activities on NPP personnel training and qualification

    International Nuclear Information System (INIS)

    Kossilov, A.

    1998-01-01

    Activities of IAEA concerning training and qualification of NPP personnel consider the availability of sufficient number of competent personnel which is one of the most critical requirements for safe and reliable NPP operation and maintenance. Competence of personnel is essential for reducing the frequency of events connected to human errors and equipment failures. The IAEA Guidebook on Nuclear Power Plant Personnel Training and its Evaluation incorporates the experience gained worldwide and provides recommendations on the use of SAT being the best practice for attaining and maintaining the qualification and competence of NPP personnel and for quality assurance of training

  19. Chemistry and technology of radioactive waste management - the IAEA perspective

    International Nuclear Information System (INIS)

    Efremenkov, V.M.; )

    2003-01-01

    The paper refers the consideration of chemical composition of radioactive waste in selection of particular method and technology for waste treatment and conditioning, importance of physico-chemical parameters of waste processing techniques for optimisation of waste processing to produce waste form of appropriate quality. Consideration of waste chemistry is illustrated by several IAEA activities on radioactive waste management and by outlining the scope of some selected technical reports on different waste management subjects. Different components of the IAEA activities on radioactive waste management and on technology transfer are presented and discussed. (author)

  20. Radiation protection glossary. Selected basic terms used in IAEA publications

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The glossary is intended to be used as a terminology standard for IAEA documentation on radiation protection. An effort has been made to use definitions contained in internationally accepted publications such as recommendations of the International Commission on Radiological Protection (ICRP), standards of the International Organization for Standardization (ISO) and of the International Electrotechnical Commission (IEC), reports of the International Commission on Radiation Units and Measurements (ICRU), with only slight modifications in order to tailor them more closely to IAEA needs. The glossary is restricted to ionizing radiation.

  1. Turkish experience with the use of IAEA planning models

    International Nuclear Information System (INIS)

    Fikret, H.

    1997-01-01

    Most of the IAEA planning methodologies for energy and electricity planning have been transferred to Turkey as part of Technical Co-operation projects on the subject matter. The transfer has been supplemented by adequate training to national experts through their participation in the above projects and in the training courses on these models organized by the IAEA. The experience gathered in the use of these models in Turkey is described in this paper, highlighting how the models are imbedded in the country's planning procedure for energy and electricity matters. (author). 7 figs, 6 tabs

  2. Activities of the IAEA on the use of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Shalnov, A V [International Atomic Energy Agency, Vienna (Austria). Div. of Research and Lab.

    1976-06-01

    The program of the IAEA related to the use of radioisotopes and radiation is concentrated in the Department of Research and Isotopes, which includes the Joint FAO/IAEA of Atomic Energy in Food and Agriculture, the Life Sciences Division, and the Division of Research and Laboratories. The following matters are described: hydrology of water systems using stable isotopes, research on CPXE (charged-particle X-ray emission), Regional Cooperative Agreements, Nuclear Methods in Environmental Research, and guidance to developing countries in the medical applications of radioisotopes.

  3. Alanine-ESR dosimetry for radiotherapy IAEA experience

    International Nuclear Information System (INIS)

    Mehta, K.; Girzikowsky, R.; )

    1997-01-01

    At present, the most commonly used transfer dosimeters for radiotherapy applications are TL dosemeters. They are being used for intercomparison between SSDLs (about 70) and the IAEA dosimetry laboratory. However, there are some undesirable characteristics of this dosimetry system. We have a study in progress at the IAEA to evaluate the alanine-ESR systems as an alternative to TLDs. There are several desirable qualities which make alanine an attractive dosemeter. Preliminary data suggest that the alanine-ESR dosimetry system has the potential to replace TLDs for intercomparison amongst SSDLs in the therapy-level dose regions. (Author)

  4. IAEA activities in the field of NPP life management

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Lyssakov, V.; Davies, L.M.

    1997-01-01

    The IAEA has established programmes in the field of Nuclear Plant Lifetime in the Division of Nuclear Power and the Fuel Cycle (NEPF) and also in the Division of Nuclear Safety. In the Division of NEPF the International Working Group on Life Management of Nuclear Power Plants carries out its activities within the IAEA Project A2.03 ''Nuclear Power Plant Life Management''. Activities under this project have produced a wealth of information by organizing specialists meeting, preparing technical publications on related topics and arranging co-ordinated research programmes with good results. The most recent development is a database which has been developed and is being maintained. 4 figs

  5. International IAEA Emergency Response Workshop in Fukushima Concludes

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: An IAEA workshop aimed at further strengthening nuclear and radiological emergency preparedness and response capabilities concluded today in Fukushima, Japan. More than 40 participants from 18 countries took part in the four-day Response and Assistance Network (RANET) workshop, which included a field exercise in areas affected following the March 2011 accident at TEPCO's Fukushima Daiichi Nuclear Power Station. During the exercise, participants conducted radiation monitoring and environmental sampling and analysis. They measured the contamination level of the ground surface and conducted gamma spectrum analysis and vehicle-based monitoring - activities that are conducted following any nuclear or radiological incident or emergency. Results were then compared amongst participants. RANET is a network currently comprising 22 countries through which the IAEA can facilitate the provision of expert support and equipment on request under the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency. Pat Kenny, IAEA RANET Officer, said the workshop provided an opportunity to practice cooperation between international teams that would be deployed through RANET following an emergency. 'By bringing together so many experts from different countries in one place, the workshop helped us learn how international teams can work together to provide assistance in a nuclear or radiological emergency situation,' he said. 'It also enabled us to improve the coordination of such assistance, and it gave participants the opportunity to learn from each other.' The workshop was the first activity conducted from the IAEA RANET Capacity Building Centre, a new training centre based in the city of Fukushima that was designated earlier this week with the support of the Japanese Foreign Ministry and Fukushima Prefecture. The Centre will host RANET and other training courses, workshops and exercises aimed at enhancing nuclear emergency preparedness and response

  6. Turkish experience with the use of IAEA planning models

    Energy Technology Data Exchange (ETDEWEB)

    Fikret, H [Ministry of Energy and Natural Resouces, Ankara (Turkey)

    1997-09-01

    Most of the IAEA planning methodologies for energy and electricity planning have been transferred to Turkey as part of Technical Co-operation projects on the subject matter. The transfer has been supplemented by adequate training to national experts through their participation in the above projects and in the training courses on these models organized by the IAEA. The experience gathered in the use of these models in Turkey is described in this paper, highlighting how the models are imbedded in the country`s planning procedure for energy and electricity matters. (author). 7 figs, 6 tabs.

  7. Neutron activation analysis of trace elements in IAEA reference materials

    International Nuclear Information System (INIS)

    Cheema, M.N.; Hasany, S.M.; Hanif, I.; Chaudhry, M.S.; Qureshi, I.H.

    1978-09-01

    Analytical Chemistry Group of Nuclear Chemistry Division at PINSTECH has been participating in IAEA Intercomparison programme of analytical quality control since 1972. So far fifteen samples of a variety of materials received from the Agency have been analyzed for different minor and trace elements. Mostly destructive and non-destructive neutron activation analysis techniques have been used for elemental analysis. In this report the description of the samples and the experimental procedures employed have been mentioned. The results of elemental analysis have been reported and compared with IAEA values which are based on the average computed from the results of different participating laboratories. (authors)

  8. IAEA and EC to Strengthen Cooperation in Nuclear Safety

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: The International Atomic Energy Agency and the European Commission today signed a Memorandum of Understanding on Nuclear Safety, establishing a framework for cooperation to help improve nuclear safety in Europe. The Memorandum, signed by IAEA Director General Yukiya Amano and the European Commissioner for Energy, Guenther Oettinger, is the first concrete result of an enhanced dialogue between the IAEA and the EU, launched in January 2013 at their first Senior Officials Meeting in Brussels. Cooperation has been rapidly growing in recent years between the IAEA and the EU, which, together with its Member States, is one of the biggest donors to the IAEA, both in financial terms and in provision of technical expertise. Cooperation in the field of nuclear safeguards is already well-established and formalised, but in other areas it is less structured. ''The EU is one of our most important partners, providing practical and financial assistance, as well as expertise, in many areas of our work,'' Mr. Amano said. ''This Memorandum of Understanding is further evidence that EU countries take very seriously the need to strengthen nuclear safety in the aftermath of the Fukushima Daiichi accident.'' Mr. Oettinger highlighted that such intensified cooperation is important to ensure that nuclear energy is produced safely all over the world. He added that the EU nuclear stress tests set a global benchmark and contribute to the IAEA's Action Plan on Nuclear Safety , which was endorsed unanimously by the IAEA's Member States in September 2011. ''Under the new Memorandum, all this experience will be made available to the international community. I hope that the European safety approach leads to a global initiative,'' said the Commissioner. The Memorandum creates an enhanced framework for planning and reviewing various forms of cooperation in nuclear safety, such as expert peer reviews and strengthening emergency preparedness and response capabilities. It will allow both

  9. IAEA activities in the field of NPP life management

    Energy Technology Data Exchange (ETDEWEB)

    Gueorguiev, B; Lyssakov, V; Davies, L M

    1997-09-01

    The IAEA has established programmes in the field of Nuclear Plant Lifetime in the Division of Nuclear Power and the Fuel Cycle (NEPF) and also in the Division of Nuclear Safety. In the Division of NEPF the International Working Group on Life Management of Nuclear Power Plants carries out its activities within the IAEA Project A2.03 ``Nuclear Power Plant Life Management``. Activities under this project have produced a wealth of information by organizing specialists meeting, preparing technical publications on related topics and arranging co-ordinated research programmes with good results. The most recent development is a database which has been developed and is being maintained. 4 figs.

  10. Determination of total and methylmercury compounds in the IAEA human hair intercomparison samples - Experience of the IAEA-MEL

    International Nuclear Information System (INIS)

    Horvat, M.; Liang, L.; Mandic, V.

    1995-01-01

    The programme of this CRP is focused on the analyses of human hair samples. There are only two human hair samples certified for total mercury, and no RMs for methylmercury compounds is available. One of the main objectives of this CRP is to produce, through the IAEA AQCS Programme, a human hair intercomparison material for quality assurance requirements in population monitoring programmes for total and methylmercury exposure. Through the reporting period, MESL has introduced a new method for simultaneous determination of total and methylmercury in biological samples. As the laboratory has close collaboration with the CRP's Reference Laboratory in Ljubljana, Slovenia, it has also been actively involved in the quality assurance component of this CRP. This report represents a summary on the results for total and methylmercury in two intercomparison samples, IAEA-085 and IAEA-086 using newly developed method

  11. IAEA to Help West African Countries Diagnose Ebola

    International Nuclear Information System (INIS)

    2014-01-01

    Full text: The International Atomic Energy Agency (IAEA) will provide specialized diagnostic equipment to help Sierra Leone in its efforts to combat an ongoing Ebola Virus Disease (EVD) outbreak, IAEA Director General Yukiya Amano announced today. Later, the support is planned to be extended to Liberia and Guinea. The support is in line with a UN Security Council appeal and responds to a request from Sierra Leone. The IAEA assistance will supplement the country's ability to diagnose EVD quickly using a diagnostic technology known as Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). The assistance, expected to be delivered in the coming weeks, initiates broader IAEA support to African Member States to strengthen their technological abilities to detect diseases transmitted from animals to humans - zoonotic diseases. The IAEA and the Food and Agriculture Organization of the United Nations have been at the forefront of developing RT-PCR, a nuclear-derived technology which allows EVD to be detected within a few hours, while other methods require growing on a cell culture for several days before a diagnosis is determined. Early diagnosis of EVD, if combined with appropriate medical care, increases the victims' chance of survival and helps curtail the spread of the disease by making it possible to isolate and treat the patients earlier. Health authorities in Sierra Leone and other affected countries are already applying RT-PCR, but their diagnostic capability is limited; there is a shortage of the diagnostic kits and other materials needed for the process and backup equipment is needed to avoid diagnostic downtime in case of equipment failure. The IAEA will support the most affected countries' sustained ability to detect the disease in cooperation with the World Health Organization (WHO) and the United Nations Mission for Ebola Emergency Response. The IAEA, as part of its ongoing work, has helped 32 African countries and several other Member States develop skills

  12. IAEA Completes Nuclear Security Review Mission in Hungary

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: A team of International Atomic Energy Agency (IAEA) experts today completed a mission to review nuclear security practices in Hungary. At the request of the Government of Hungary, the IAEA conducted the two-week International Physical Protection Advisory Service (IPPAS) mission that reviewed the nation's nuclear security-related legislative and regulatory framework, physical protection systems at Hungarian nuclear facilities, and security arrangements applied to the transport of nuclear and radioactive materials. The IAEA team was led by Stephen Ortiz of the United States and included nine experts from six nations and the IAEA. The team met in Budapest with officials from the Hungarian Atomic Energy Authority, Hungarian Police Headquarters, National Security Authority and other relevant agencies. They also conducted site visits to the Paks Nuclear Power Plant, the Interim Spent Fuel Storage Facility, the Budapest Research Reactor, the Budapest Training Reactor, the Radioactive Waste Treatment and Disposal Facility and several other locations where high activity radioactive sources are used for different applications. ''At a time where development of a nuclear power programme is more than ever recognised as necessitating a strong commitment to safety, security and sustainability, the example given today by Hungary strengthens the message about the value of applying the IAEA Security Guidance,'' said IAEA Deputy Director General for Nuclear Safety and Security, Denis Flory, who opened the mission. ''Indeed, IPPAS missions, carried out at the appropriate time in the development of a nuclear power programme, provide valuable insights into how best to reach that goal.'' The IPPAS team concluded that nuclear security within Hungary has been significantly enhanced in recent years. The team also identified a number of good practices at the nation's nuclear facilities, and provided some recommendations and suggestions to assist Hungary in the continuing

  13. A brief history of NDA at the IAEA

    International Nuclear Information System (INIS)

    Sprinkle, J.K.; Sinkule, B.J.; Hsue, S.-T.; Abhold, M.E.

    2001-01-01

    Nearly 30 years ago, the first portable nondestructive assay instrument, a SAM-II, was brought to Vienna for IAEA consideration. This initial foray into the usage of nondestructive assay (NDA) as an independent assessment tool has materialized into one of the important tools for IAEA inspections. NDA instruments have several inherent advantages for inspectors; their measurements generate no radioactive waste, provide immediate answers, do not require specialized operators, and can be either taken to the items to be measured (portable instruments), or the items for measurement can be brought to the instruments, such as can be applied in on-site IAEA laboratories or off-site IAEA lab at Siebersdorf. The SAM-II was a small, lightweight, battery-powered, gamma-ray instrument used for uranium enrichment measurements. It was also found to be usehl for locating nuclear material, distinguishing between uranium and plutonium, and determining the active length of items like fuel pins. However it was not well suited for determining the amount of bulk material present, except for small containers of low-density materials. A 6-sided neutron coincidence counter, easily disassembled so it could be shipped and carried by airplane, was developed for bulk measurements of plutonium. The HLNCC (High Level Neutron Coincidence Counter) was immediately useful for quantitative measurements of pure plutonium oxide. However, the IAEA had to make a trade-off between the ease of use of NDA instruments on-site, and the problems of obtaining small samples for shipment to an independent lab for more accurate analysis. NDA does not create radioactive waste, so as waste handling has become more cautious and more regulated, NDA looks better and better. After acceptance of NDA by the IAEA for routine use, the follow-up question was naturally, 'How much better can this measurement be made?' The Program for Technical Assistance to IAEA Safeguards (POTAS) supported multiple and varied efforts in this

  14. IAEA Expert Team Concludes Mission to Onagawa NPP

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An IAEA team of international experts today delivered its initial report at the end of a two-week mission to gather information about the effects of the Great East Japan Earthquake on the Onagawa Nuclear Power Station (NPS), saying the plant was 'remarkably undamaged'. Findings from the visual investigation will be added to an IAEA data base being compiled by its International Seismic Safety Centre (ISSC) to provide knowledge for Member States about the impact of external hazards on nuclear power plants. The ISSC data bank makes an important contribution to the IAEA's Action Plan on Nuclear Safety, which was unanimously endorsed by the Agency's Member States following last year's nuclear accident at Fukushima Daiichi NPS. Onagawa, facing the Pacific Ocean on Japan's north-east coast, was the nuclear power plant closest to the epicentre of the 11 March 2011 magnitude 9.0 earthquake that struck Japan and resulted in a devastating tsunami. The plant experienced very high levels of ground shaking - among the strongest of any plant affected by the earthquake - and some flooding from the tsunami that followed, but was able to shut down safely. In its draft report the team said that 'the structural elements of the NPS were remarkably undamaged given the magnitude of ground motion experienced and the duration and size of this great earthquake'. The mission's objective was to observe how structures, systems and components with significance to the safety of the plant responded to the earthquake and heavy shaking. At the damaged Fukushima Daiichi NPS, nearly 120 km south of Onagawa NPS, the effects of the earthquake, tsunami and hydrogen explosions make it impossible to single out the impact of external hazards on safety-related parts of the power station. The Government of Japan and the IAEA therefore agreed to deploy a mission to the three-unit Onagawa NPS. The team's 19 members from six countries, including IAEA staff, held discussions with the operators of the

  15. IAEA Leads Operational Safety Mission to Muehleberg Nuclear Power Plant

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts led by the International Atomic Energy Agency today concluded a review of the safety practices at the Muehleberg Nuclear Power Plant (NPP) near Bern in Switzerland. The team noted a series of good practices and made recommendations and suggestions to reinforce them. The IAEA assembled the Operational Safety Review Team at the request of the Swiss government. The team, led by the IAEA's Division of Nuclear Installation Safety, performed an in-depth operational safety review from 8 to 25 October 2012. The team comprised experts from Belgium, the Czech Republic, Finland, Germany, Hungary, Slovakia, Sweden, the United Kingdom and the United States as well as experts from the IAEA. The team conducted an in-depth review of the aspects essential to the safe operation of the Muehleberg NPP. The conclusions of the review are based on the IAEA's Safety Standards and proven good international practices. The review covered the areas of Management, Organization and Administration; Training; Operations; Maintenance; Technical Support; Operating Experience; Radiation Protection; Chemistry, Emergency Planning and Preparedness, Severe Accident Management and Long-Term Operation. The OSART team made 10 recommendations and 11 suggestions related to areas where operations of Muehleberg NPP could be further improved, for example: - Plant management could improve the operating experience program and methods throughout the plant to ensure corrective actions are taken in a timely manner; - In the area of Long-Term Operation, the ageing management review for some systems and components is not complete and the environmental qualification of originally installed safety cables has not yet been revalidated for long-term operation; and - The plant provisions for the protection of persons on the site during an emergency with radioactive release can be improved to minimize health risks to plant personnel. The team also identified 10 good

  16. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 25 November 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 25 November 1998. The following aspects from the Agency's activity are presented: inspections in Iraq in relation to its clandestine nuclear programme, conclusion of Additional Protocols to safeguards agreements, the strengthened safeguards system, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), safety review at the Mochovce nuclear power plant in Slovakia, and the year 2000 (Y2K) computer system problems in the Agency's Member States

  17. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 8 June 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 8 June 1998. The following aspects from the Agency's activity are presented: nuclear testing, technical co-operation, programme and budget, safeguards, safeguards implementation report, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), Agency's inspections in Iraq in relation to its clandestine nuclear programme, security of material, measures to strengthen international co-operation in nuclear, radiation and waste safety, study of the radiological situation at the atolls of Mururoa and Fangataufa, and Agency's role in safety assessment of the Mochovce nuclear power plant

  18. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 14 September 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 14 September 1998. The following aspects from the Agency's activity are presented: nuclear safety, technical co-operation programme, safeguards and verification, fissile material treaty, nuclear material released from the military sector, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), Agency's inspections in Iraq in relation to its clandestine nuclear programme, and Agency's safeguards in the Middle East region

  19. Excerpts from the introductory statement by IAEA Director General. IAEA Board of Governors, Vienna, 16 March 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document contains excerpts from the Introductory Statement made by the Director General of the IAEA at the IAEA Board of Governors on 16 March 1998. The following aspects from the Agency's activity are presented: nuclear terrorism convention, Agency safety services, study of the radiological conditions at the atolls of Mururoa and Fangataufa, model additional protocols, Agency's involvement in safeguards verification in the Democratic People's Republic of Korea (DPRK), treaty of Bangkok, and Agency's inspections in Iraq in relation to its clandestine nuclear programme

  20. IAEA concludes follow-up mission to Kashiwazaki-Kariwa nuclear power plant

    International Nuclear Information System (INIS)

    2008-01-01

    correspond to deeper faults. The team observed one fault during its site visit and was able to conclude that it was stable. Confirmation of the stability of others is underway. The team also indicated that there had been significant improvement in the level of fire safety at the plant, since last year. The seven-unit plant, the world's biggest, shut down safely during the earthquake and remains shut down. A very small radioactive release at the time of the earthquake was below public health and environmental limits. The second mission returned to Japan after it was invited back by the Japanese Nuclear and Industrial Safety Agency (NISA). The team's report will be published shortly after completion of the mission. (IAEA)

  1. Radiological impact assessment within the IAEA Arctic Assessment Project (IASAP)

    DEFF Research Database (Denmark)

    Scott, E.M.; Gurbutt, P.; Harmes, I.

    1998-01-01

    As part of the International Arctic Seas Assessment Project (IASAP) of IAEA, a working group was created to model the dispersal and transfer of radionuclides released from radioactive waste disposed of in the Kara Sea and bays of Novaya Zemlya and to assess the radiological impact. Existing models...

  2. IAEA: 17 countries are candidates for nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In january 2011 IAEA announced that 17 countries had officially expressed their willingness to home nuclear power plants, they have filed applications for the construction of nuclear power plants. Among the countries concerned we find: Poland, Kuwait, Jordan, Morocco, Tunisia, Nigeria, Bangladesh, Thailand, Vietnam, Chile and Uruguay

  3. Improvements to the IAEA's electric generation expansion model

    International Nuclear Information System (INIS)

    Stoytchev, D.; Georgiev, S.

    1997-01-01

    This paper deals with the implementation of the IAEA's planning approach and software in Bulgaria. The problems encountered in the process are summarized, with emphasis on two of the limitations of the electric generation expansion model (WASP). The solutions found by Bulgarian experts to overcome these problems are also described, together with some comparative results of the tests performed. (author)

  4. IAEA Nuclear Data Section: Progress Report, 2010/11

    International Nuclear Information System (INIS)

    Simakov, S.P.; Otsuka, N.; Zerkin, V.; Semkova, V.

    2011-01-01

    Summary of Nuclear Data Activity by Staff of the IAEA Nuclear Data Section from April 2010 - May 2011 including Staff Changes, Data Compilations (EXFOR transmission, EXFOR quality control, EXFOR coverage control, Workshops and Meetings in 2010/2011 relevant to EXFOR, CINDA, Evaluated data libraries, files and programs), Services, software and Nuclear Data Developments

  5. IAEA activities in the field of research reactors safety

    International Nuclear Information System (INIS)

    Ciuculescu, C.; Boado Magan, H.J.

    2004-01-01

    IAEA activities in the field of research reactor safety are included in the programme of the Division of Nuclear Installations Safety. Following the objectives of the Division, the results of the IAEA missions and the recommendations from International Advisory Groups, the IAEA has conducted in recent years a certain number of activities aiming to enhance the safety of research reactors. The following activities will be presented: (a) the new Requirements for the Safety of Research Reactors, main features and differences with previous standards (SS-35-S1 and SS-35-S2) and the grading approach for implementation; (b) new documents being developed (safety guides, safety reports and TECDOC's); (c) activities related to the Incident Reporting System for Research Reactor (IRSRR); (d) the new features implemented for the INSARR missions; (e) the Code of Conduct on the Safety of Research Reactors adopted by the Board of Governors on 8 March 2004, following the General Conference Resolution GC(45)/RES/10; and (f) the survey on the safety of research reactors published on the IAEA website on February 2003 and the results obtained. (author)

  6. The IAEA Integrated Regulatory Review Service (IRRS) - Information Meeting Dublin

    International Nuclear Information System (INIS)

    Al Khatibeh, Ahmad

    2014-05-01

    IRRS is developed to help States evaluate the current status of compliance of their regulatory infrastructures for safety with IAEA Standards. This report discusses the function of IRRS missions as a tool for evaluating the regulatory structure for Member States. It was presented to RPII staff in a Powerpoint document in preparation for the IRRS Mission to Ireland in August 2015

  7. Application of nuclear technology for sustainable development, and IAEA activities

    International Nuclear Information System (INIS)

    Machi, Sueo

    1998-01-01

    The role of radiation and isotopes for sustainable development in improving agriculture, industry and environmental conservation is presented. The radiation and isotope technology can increase productivity in a sustainable way. The IAEA programmes encompass mutation breeding, soil fertility and crop production, animal production, food irradiation, agrochemicals and insect pest control using nuclear technology

  8. How to use MAED with other IAEA models in ENPEP

    International Nuclear Information System (INIS)

    Maksijan, B.

    1997-01-01

    This paper provides an outlook of the energy situation in Croatia and describes the experience with the IAEA planning methodologies with focus on the MAED model. Furthermore, it suggests an approach to integrate the results of the MAED module of ENPEP with other modules (e.g. BALANCE) by means of commercial software (EXCEL Microsoft). (author). 2 figs, 3 tabs

  9. IAEA and the UN partnerships for development and peace

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    IAEA collaborates with almost every major UN agency on a vast array of scientific challenges: improving human health; promoting food security; controlling pollution; managing freshwater resources; understanding climate change; protecting the oceans; boosting energy production; and a variety of other pressing concerns affecting economic development and the environment. This booklet illustrates such inter-agency co-operation through concrete examples.

  10. Japanese contributions to IAEA INTOR workshop, phase IIA

    International Nuclear Information System (INIS)

    Fujisawa, Noboru; Sugihara, Masayoshi; Shimada, Michiya; Saito, Seiji.

    1982-11-01

    This report corresponds to Chapter VI of Japanese contribution report to IAEA INTOR workshop, Phase IIA. Special emphasis is placed on pumped limiter analysis for comparative studies between limiter and divertor concepts. Pumping characteristics of divertor/limiter and radiation cooling of diverted plasmas by impurities are also intensively studied. (author)

  11. The activities of the IAEA Laboratories, Vienna. Annual report 1982

    International Nuclear Information System (INIS)

    Taylor, C.B.G.

    1983-10-01

    A brief account is given on the main activities of the IAEA Laboratory in Seibersdorf during 1982. The following areas are specified: Plant breeding; Soil science; Entomology; Agrochemicals; Human nutrition; Radiation dosimetry; Electronics; Chemistry; Isotope hydrology; Safeguards Analytical Laboratory (SAL); Health physics

  12. IAEA workshop on the year 2000 issue (Y2K)

    International Nuclear Information System (INIS)

    1999-01-01

    The document gives the highlights of the workshop conducted by the IAEA from 12 to 16 July 1999 to assist its Member States on the challenge that the Year 2000 issue (Y2K) presents to operators and regulators of nuclear power plants. The workshop was attended by 52 participants and lecturers from 21 countries and from the World Association of Nuclear Operators (WANO)

  13. The IAEA safety standards for radiation, waste and nuclear safety

    International Nuclear Information System (INIS)

    Gonzalez, Abel J.

    1997-01-01

    This paper presents a brief description of the standards for radiation, waste and nuclear safety established by the International Atomic Energy Agency (IAEA). It provides a historical overview of their development and also summarizes the standards' current preparation and review process. The final paragraphs offer an outlook on future developments. (author)

  14. Study on Formulating Policy and Strategies for IAEA TC Program

    International Nuclear Information System (INIS)

    Min, B. J.; Lee, M. K.; Shin, J. Y.

    2010-10-01

    The objectives of this study is to provide recommendations for formulating adequate policy and strategies for IAEA-TC programme as being of a donor Member State and to guide directions to facing the challenges of changing the status from IAEA-TC recipient to donor country. In addition, this study gives recommendations and feedbacks to the IAEA-TC programmer: how it has contributed to nation's nuclear technology development in the past on one hand and how the country has contributed to it on the other. Besides, this study also conducted to identify the following impacts expected: termination of on-going National TC projects, discontinuation of TC-based technical advices, sponsored fellowship and scientific visits for capacity building opportunities, and limitation in participations of various regional projects due to termination of IAEA financial support. In terms of financial aspect, this study has also performed to assess the nation's annual financial contribution (Technical Cooperation (TC) Fund: 1,67 million dollars in 2008) by comparing the experiences of other OECD countries cases. In conclusion, it is expected that the results of this study will contribute to develop appropriate measures in order to maximize the benefits for future national nuclear technology development and in addition, to explore the possibilities to extend the nuclear technology export market potentials

  15. Canadian safeguards research and development in support of the IAEA

    International Nuclear Information System (INIS)

    1980-03-01

    Canada has established a safeguards research and development program whose purpose is to supplement the resources of the IAEA. The program of support is a coordinated effort for the development and application of safeguards techniques and instruments to reactors of Canadian design. This document sets forth those tasks that make up the program

  16. E-learning for Newcomers on the IAEA Milestones Approach

    International Nuclear Information System (INIS)

    Halt, Lotta

    2014-01-01

    Background to E-learning modules: • Member States requesting assistance in introducing nuclear power programs; • Implement training for a broad audience at an overview level; • Foundation to better understand the IAEA Milestones approach; • MS may have problems providing satisfactory (nuclear) Education and Training; • Funded by Republic of Korea

  17. The NEA and the IAEA: partnering for progress

    International Nuclear Information System (INIS)

    Marcus, G.H.

    2005-01-01

    This presentation aims to answer the following question: What is the difference between the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA)? Or, to put it bluntly, why are two international intergovernmental agencies needed in the nuclear field? This careful analysis shows that each agency has different areas of emphasis and different strengths. (A.L.B.)

  18. IAEA-MEL's AQCS programme for marine radioactivity measurements

    International Nuclear Information System (INIS)

    Povinec, P.P.; Gastaud, J.; Pham, M.K.

    1999-01-01

    The main objectives of the IAEA-MEL's Analytical Quality Control Services (AQCS) for marine radioactivity measurements are discussed and future plans for the organization of intercomparison exercises and the production of certified reference materials are presented. The new developments should also include implementation of quality assurance programmes in Member States' laboratories, training in quality management and accreditation programmes. (author)

  19. Supervision of nuclear safety - IAEA requirements, accepted solutions, trends

    International Nuclear Information System (INIS)

    Jurkowski, M.

    2007-01-01

    Ten principles of the nuclear safety, based on the IAEA's standards are presented. Convention on Nuclear Safety recommends for nuclear safety landscape, the control transparency, culture safety, legal framework and knowledge preservation. Examples of solutions accepted in France, Finland, and Czech Republic are discussed. New trends in safety fundamentals and Integration Regulatory Review are presented

  20. IAEA education and training programme in nuclear safety

    International Nuclear Information System (INIS)

    Bastos, J.L.F.; Lederman, L.

    2003-01-01

    This paper presents the IAEA education and training (E and T) programme in nuclear safety. A strategic planning for the programme implementation is described in terms of objectives, outputs and activities. A framework based on areas of competency and the level of depth of the training is presented as well as the main achievements to date. (author)

  1. Capacity building in the IAEA Action Plan on Nuclear Safety

    International Nuclear Information System (INIS)

    Caruso, Gustavo

    2014-01-01

    Conclusion and Future Challenges: • Momentum on Nuclear Safety; • To continue strengthening, developing, maintaining and implementing capacity building programmes, including education, training and exercises at the national, regional and international levels; • To ensure sufficient and competent human resources necessary to assume responsibility for safety; • To incorporate lessons learned from the accident based on the IEMs and IAEA Fukushima Report

  2. Statement by IAEA Director General Mohamed ElBaradei

    International Nuclear Information System (INIS)

    2008-01-01

    Full text: The IAEA Secretariat was provided with information by the United States on 24 April claiming that the installation destroyed by Israel in Syria last September was a nuclear reactor. According to this information, the reactor was not yet operational and no nuclear material had been introduced into it. The Agency will treat this information with the seriousness it deserves and will investigate the veracity of the information. Syria has an obligation under its Safeguards Agreement with the IAEA to report the planning and construction of any nuclear facility to the Agency. The Director General deplores the fact that this information was not provided to the Agency in a timely manner, in accordance with the Agency's responsibilities under the Nuclear Non-Proliferation Treaty (NPT), to enable it to verify its veracity and establish the facts. Under the NPT, the Agency has a responsibility to verify any proliferation allegations in a non-nuclear weapon State party to the NPT and to report its findings to the IAEA Board of Governors and the Security Council, as required. In light of the above, the Director General views the unilateral use of force by Israel as undermining the due process of verification that is at the heart of the non-proliferation regime. (IAEA)

  3. IAEA Director General Comments on Cooperation Framework with Iran

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: The following are remarks by the Director General of the International Atomic Energy Agency, Yukiya Amano, at a News Conference after he signed a Joint Statement on a Framework for Cooperation with the Islamic Republic of Iran: ''The International Atomic Energy Agency and the Islamic Republic of Iran have just issued the Joint Statement on a Framework for Cooperation. ''Under the Framework, Iran and the IAEA will cooperate further with respect to verification activities to be undertaken by the IAEA to resolve all present and past issues. The practical measures contained in the Annex are substantive measures and will be implemented in three months starting from today. ''This is an important step forward to start with, but much more needs to be done. ''The outstanding issues that are not contained in the Annex to the Framework for Cooperation, including those in my previous reports to the Board of Governors, will be addressed in the subsequent steps under the Framework for Cooperation. ''The IAEA is firmly committed to resolving all outstanding issues through dialogue and cooperation . (IAEA)

  4. Review of WHO/PAHO/IAEA recommendations concerning radiotherapy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, G P [Worl Health Organization, Geneva (Switzerland). Radiation Medicine

    1996-08-01

    Since the mid 1960s the World Health Organization, the Pan American Health Organization, and the International Atomic Energy Agency have provided recommendations concerning radiotherapy services, including organization, staff requirements and facilities. These are contained in various reports of WHO, PAHO and IAEA, which are reviewed and summarized. (author). 9 refs.

  5. China boosts support for IAEA development and security initiatives

    International Nuclear Information System (INIS)

    2004-01-01

    Full text: Marking 20 years of cooperation with the International Atomic Energy Agency (IAEA), China announced today that it would donate US$1 million to IAEA's special funds for technical cooperation and enhanced nuclear security. Welcoming the contribution, IAEA Director General Mohamed ElBaradei said, 'The IAEA is grateful for China's continuing generosity in supporting our technical cooperation and security programmes in the nuclear field. The IAEA has forged an excellent partnership with China over the past two decades - one of the most far-reaching partnerships we have with any Member State, extending across the spectrum of IAEA work from safety and security, to safeguards and verification, to technical cooperation in food, energy, water and health. China has been both a major recipient and contributor to IAEA special funds since it joined the IAEA in 1984. China has been an active participant in the IAEA Technical Cooperation (TC) programme, receiving more than US$22 million in assistance through 103 TC projects, in particular in the fields of nuclear safety, engineering and technology. China has also been a major contributor to the TC Fund, with some $11 million in cash and $400,000 of in-kind support. The IAEA's TC Programme disburses more than US$75 million worth of expert services, fellowships, equipment and training workshops per year in approximately 110 countries and territories. The Agency works in partnership with project counterparts in the recipient Member States, typically in the government's atomic energy authority as well as with health, food and agriculture, environment and water authorities. In addition, The Agency collaborates with the World Bank and other UN organizations to plan and execute projects in harmony with Member States' needs. In March 2002, the IAEA launched a 'Plan of Activities to Protect Against Nuclear Terrorism,' which enhanced and integrated the Agency's existing nuclear security-related activities. These activities

  6. Japanese contributions to IAEA INTOR workshop, phase IIA

    International Nuclear Information System (INIS)

    Miyamoto, Kenro; Sugihara, Masayoshi; Kimura, Haruyuki

    1982-11-01

    This report corresponds to Chapter V of Japanese contribution report to IAEA INTOR workshop, Phase IIA. Physics studies for radio frequency heating are concentrated on heating to ignition by means of ion cyclotron and lower hybrid ranges of frequencies, and discharge start-up assist and current drive by lower hybrid range. Their system design studies are also performed. (author)

  7. How to use MAED with other IAEA models in ENPEP

    Energy Technology Data Exchange (ETDEWEB)

    Maksijan, B [Energy Sector, Ministry of Economic Affairs, Zagreb (Croatia)

    1997-09-01

    This paper provides an outlook of the energy situation in Croatia and describes the experience with the IAEA planning methodologies with focus on the MAED model. Furthermore, it suggests an approach to integrate the results of the MAED module of ENPEP with other modules (e.g. BALANCE) by means of commercial software (EXCEL Microsoft). (author). 2 figs, 3 tabs.

  8. IAEA and the UN partnerships for development and peace

    International Nuclear Information System (INIS)

    1995-10-01

    IAEA collaborates with almost every major UN agency on a vast array of scientific challenges: improving human health; promoting food security; controlling pollution; managing freshwater resources; understanding climate change; protecting the oceans; boosting energy production; and a variety of other pressing concerns affecting economic development and the environment. This booklet illustrates such inter-agency co-operation through concrete examples

  9. IAEA program of regional technical cooperation in Asia

    International Nuclear Information System (INIS)

    Airey, P.L.

    1986-01-01

    A list of project activities of the IAEA's Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology (RCA) for Asia and the Pacific regions is presented. They cover the fields of food and agriculture, industry, medicine and nuclear science. Activities under the United Nations Development Program (UNDP) Industrial Project are summarised

  10. IAEA activities in gas-cooled reactor technology development

    International Nuclear Information System (INIS)

    Cleveland, J.; Kupitz, J.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has the charter to ''foster the exchange of scientific and technical information'', and ''encourage and assist research on, and development and practical application of, atomic energy for peaceful uses throughout the world''. This paper describes the Agency's activities in Gas-cooled Reactor (GCR) technology development

  11. Non-proliferation and international safeguards. [Booklet by IAEA

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This booklet consists of 13 separate, brief analyses related to the subject title, namely: The International Scope of IAEA Safeguards; Application of Safeguards Procedures; Computer-Based Safeguards Information and Accounting System; IAEA Training Activities Related to State Systems of Nuclear Materials Accountancy and Control; Surveillance and Containment Measures to Support IAEA Safeguards; International Plutonium Management; Safeguards for Reprocessing and Enrichment Plants; Non-Destructive Assay: Instruments and Techniques for Agency Safeguards; The Safeguards Analytical Laboratory: Its Functions and Analytical Facilities; Resolution of the UN General Assembly on the Treaty on the Non-Proliferation of Nuclear Weapons of 12 June 1968; The Treaty on the Non-Proliferation of Nuclear Weapons; Final Declaration of the Review Conference of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons, May 1975; Resolutions on the IAEA's Work in the Field of the Peaceful Uses of Atomic Energy, adopted by the UN General Assembly on 8 and 12 December, 1977; and a Map on the NPT situation in the world (with explanations).

  12. Design features to facilitate IAEA safeguards at light water reactors

    International Nuclear Information System (INIS)

    Pasternak, T.; Glancy, J.; Goldman, L.; Swartz, J.

    1981-01-01

    Several studies have been performed recently to identify and analyze light water reactor (LWR) features that, if incorporated into the facility design, would facilitate the implementation of International Atomic Energy Agency (IAEA) safeguards. This paper presents results and conclusions of these studies. 2 refs

  13. Review of WHO/PAHO/IAEA recommendations concerning radiotherapy facilities

    International Nuclear Information System (INIS)

    Hanson, G.P.

    1996-01-01

    Since the mid 1960s the World Health Organization, the Pan American Health Organization, and the International Atomic Energy Agency have provided recommendations concerning radiotherapy services, including organization, staff requirements and facilities. These are contained in various reports of WHO, PAHO and IAEA, which are reviewed and summarized. (author). 9 refs

  14. 19. IAEA fusion energy conference. Book of abstracts

    International Nuclear Information System (INIS)

    2002-01-01

    Book of abstracts of the papers, accepted by an international programme committee for presentation at the 19th IAEA Fusion Energy Conference in Lyon, France. The subjects covered are magnetic confinement experiments, plasma heating and current drive, ITER EDA, inertial fusion energy, innovative concepts, fusion technology and theory

  15. Verification ghosts. The changing political environment of the IAEA

    International Nuclear Information System (INIS)

    Redden, K.J.

    2003-01-01

    Six years ago, Dr. Hans Blix wrote in the IAEA Bulletin of a 'general optimism about further arms control and verification.' At the time, world events warranted such a prognosis; the IAEA was riding a wave of momentum after its instrumental role in the roll-back of the South African nuclear weapons program and bringing Ukraine, Belarus, and Kazakhstan into the Nuclear Non Proliferation Treaty (NPT) as non-nuclear-weapon States. The NPT's indefinite extension was only two years old, and the most pressing challenges, while recognizable, were somewhat stagnant. Today, some tidings elicit similar optimism. The IAEA's increasing efforts to combat terrorism and the decision by Member States to depart from nearly 20 years of zero real growth budgetary policy are remarkable testaments to the Agency's adaptability and credibility in the face of new threats. And with the worldwide frenzy over terrorism and redoubled phobia of weapons of mass destruction (WMD), the Agency garners public attention now as never before. Emblematic of this recent upsurge in political attention, US President George W. Bush's annual State of the Union address in 2003 mentioned supporting the IAEA as a specific priority of his administration, the first mention of the Agency in that speech since President Eisenhower in 1961 lauded its creation under 'Atoms for Peace'. Such visibility portends a future with prospects for overcoming bureaucratic inertia and effecting significant changes to the Agency's benefit. But with that visibility has come an uncertainty about the IAEA's role in world affairs. Despite being able to resolve most benign problems more easily, the Agency must operate in an environment haunted by the non-proliferation analogue of Charles Dickens' triumvirate specters: the ghosts of verification challenges past, present and future -namely, the cessation of UN-mandated inspections in Iraq, the difficulties ensuring compliance in North Korea and Iran, and the need to maintain the IAEA

  16. Staying one step ahead: An IAEA inspector fits the picture

    International Nuclear Information System (INIS)

    Bohannon, J.

    2006-01-01

    At 29, Nangonya, an engineer, is the nuclear inspector at the International Atomic Energy Agency (IAEA). Like any scientific research discipline, nuclear inspection requires a blend of science and technical knowledge and a sceptical mindset. But a career in nuclear inspection also demands detective and diplomatic skills sharp enough to handle sensitive political issues. Nangonya joined the IAEA in 2002 by taking the Agency's Safeguards Traineeship Programme, a foundation course on nuclear technology open only to nationals from developing countries. After finishing the year-long programme, Nangonya applied for an IAEA nuclear inspector position-he got it-and then undertook the three-month training course that all newly hired inspectors complete. Most of Nangonya's training covered the subjects that might be expected: the ins and outs of the nuclear fuel cycle, how to verify that each and every reported gram of plutonium and uranium are where they are supposed to be, and how to spot signs of illicit activity. Every year, IAEA hires 15 to 30 nuclear inspectors, typically in their 30s, many with backgrounds far removed from nuclear physics. An inspection team needs a combination of backgrounds. Inspectors come with a range of expertise, from physics, engineering, and chemistry to computer science and even biology; samples from plants and animals often play a role in detecting unreported nuclear materials. But apart from technical expertise, there are also crucial social and psychological skills to be learned, and this is where nuclear inspection diverges most from academic science. Nuclear inspectors must learn to trust their colleagues, but during their training they must learn not to trust others. Careful diplomacy, not covert intrigue, is the modus operandi. Even when nuclear inspectors turn up bad news, such as the recent discovery of what may be a secret nuclear programme in Iran, inspectors are not enforcers. When findings have been confirmed, the IAEA Director

  17. Interaction of the IAEA and the United States in controlling nuclear weapons proliferation

    International Nuclear Information System (INIS)

    Tape, G.F.

    1977-01-01

    The emphasis of this paper is on those aspects of the U. S.-IAEA interactions that pertain to the control and assurance of non-diversion of special nuclear materials. Some background information on the IAEA is given

  18. The role of the IAEA in advanced technologies for water-cooled reactors

    International Nuclear Information System (INIS)

    Cleveland, J.

    1996-01-01

    The role of the IAEA in advanced technologies for water-cooled reactors is described, including the following issues: international collaboration ways through international working group activities; IAEA coordinated research programmes; cooperative research in advanced water-cooled reactor technology

  19. INDL/A IAEA Nuclear Data Library for evaluated neutron reaction data of actinides

    International Nuclear Information System (INIS)

    Lemmel, H.D.

    1982-05-01

    This Library contains evaluations performed by participants of the IAEA Coordinated Research Project on the Intercomparison of Evaluations of Actinide Neutron Nuclear Data. The data are available on magnetic tape, free of charge, from the IAEA Nuclear Data Section. (author)

  20. A strategy study on the effective participation in the IAEA technical cooperation programmes

    International Nuclear Information System (INIS)

    Chung, Joon Keuk; Choi, P. H.; Kim, K. P.; Hong, Y. D.; Lee, J. K.; Kim, Y. M.; Chung, H. S.; Han, B. O.; Seo, M. W.; Chung, J. M.

    1997-12-01

    The objectives of this research are to seek the most effective means of participation in implementing IAEA technical cooperation programs, to seek and establish a desirable role for Korea in these program, to predict future opportunities among IAEA programs, to enhance the status of Korea within the international society and to keep up with rapidly changing international nuclear developments in effective and positive ways. Participation in IAEA programs are to coincide with our efforts to upgrade and achieve self-reliance in nuclear technology. Seven activities should be considered in Korea's future directions regarding the IAEA. These include strengthening our diplomatic activities, expanding coordinated research programs (CRP's), domestic personnel becoming IAEA staff members, encouraging domestic experts to participate as members of IAEA advisory groups, increasing participation in international meetings, implementing footnote a/ projects, strengthening cooperation with the IAEA-operational research laboratories and actively implementing technology transfer to developing countries and encouraging IAEA fellowships. (author). 57 refs., 74 tabs., 17 figs

  1. The use of IAEA-IRS information in Russia's nuclear power industry

    International Nuclear Information System (INIS)

    1996-01-01

    The use of IAEA-IRS information in Russia's nuclear power industry is described, including the following issues: organizational aspects; organization of the information process; assessment of information uses; examples of using IAEA-IRS information. Figs

  2. IAEA Completes Safety Review at Czech Nuclear Power Plant

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: An international team of nuclear safety experts, led by the International Atomic Energy Agency (IAEA), today completed a review of safety practices at Temelin Nuclear Power Station in the Czech Republic. The team highlighted the Power Plant's good practices and also recommended improvements to some safety measures. At the request of the Government of the Czech Republic, the IAEA assembled a team of nuclear installation safety experts to send an Operational Safety Review Team (OSART) to the Power Plant, and the mission was conducted from 5 to 22 November 2012. The team was comprised of experts from Brazil, Hungary, Slovakia, South Africa, Sweden, Ukraine and the United Kingdom. An OSART mission is designed as a review of programmes and activities essential to operational safety. It is not a regulatory inspection, nor is it a design review or a substitute for an exhaustive assessment of the Plant's overall safety status. The team at Temelin conducted an in-depth review of the functions essential to the safe operation of the Power Plant, which are under the responsibility of the site's management. The review covered the areas of management, organization and administration; operations; maintenance; technical support; operating experience; radiation protection; chemistry; and severe accident management. The conclusions of the review are based on the IAEA's Safety Standards and proven good international practices. The OSART team has identified good plant practices, which will be shared with the rest of the nuclear industry for consideration of potential application elsewhere. Examples include the following: - The Power Plant has adopted effective computer software to improve the efficiency of the plant to prepare and isolate equipment for maintenance; - The Power Plant undertakes measures to control precisely the chemical parameters that limit corrosion in the reactor's coolant system, which in turn reduce radiation exposure to the workforce; and - The Temelin

  3. IAEA and WANO Sign New Memorandum of Understanding

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: The International Atomic Energy Agency (IAEA) and the World Association of Nuclear Operators (WANO) have signed a new Memorandum of Understanding (MoU) to reflect increased cooperation between the two organisations following the Fukushima Daiichi accident of March 2011. The new agreement enables the two organisations to work more closely together to support the safe and reliable operation of nuclear power plants worldwide, and to enhance information exchange on operating experience and other relevant areas. Through the IAEA's Nuclear Safety Action Plan, IAEA Member States urged the IAEA and WANO to strengthen their MoU to enhance information exchange. WANO member operators also recommended stronger collaboration. Through the new agreement, the two organisations are adopting a more coordinated approach to their respective activities, in order to help prevent further accidents and mitigate the consequences should an accident occur. Plans are now in place to coordinate the timing of IAEA Operational Safety Review Team (OSART) missions and WANO peer reviews, and to arrange periodic meetings of WANO and Agency staff to discuss major safety-related activities. The two organisations will also cooperate and coordinate work on their respective performance indicator programmes and will work towards exchanging information and support in the event of a serious event at a nuclear power plant or fuel cycle facility. In addition to this, the IAEA and WANO will supply staff to each other's review teams when appropriate, and will regularly exchange documents relating to operating experience. Yukiya Amano, Director General of the IAEA, said: ''The IAEA's Action Plan on Nuclear Safety emphasises the importance of working more closely with WANO and other international organisations, so that we can all better address the demands of the future. This agreement is an important step in strengthening that cooperation and enhancing the flow of information on nuclear safety issues

  4. Japan - IAEA joint Nuclear Energy Management School 2016

    International Nuclear Information System (INIS)

    Yamaguchi, Mika; Hidaka, Akihide; Ikuta, Yuko; Yamashita, Kiyonobu; Sawai, Tomotsugu; Murakami, Kenta; Uesaka, Mitsuru; Tomita, Akira; Toba, Akio; Hirose, Hiroya; Watanabe, Masanori; Kitabata, Takuya; Ueda, Kinichi; Kita, Tomohiko; Namaizawa, Ken; Onose, Takatoshi

    2017-03-01

    Since 2010, International Atomic Energy Agency (IAEA) has held the 'Nuclear Energy Management School' so-called 'IAEA-NEM' to develop future leaders who plan and manage nuclear energy utilization in their county. Since 2012, Japan Atomic Energy Agency (JAEA) together with the Japan Nuclear Human Resource Development Network (JN-HRD Net), the University of Tokyo (UT), the Japan Atomic Industrial Forum (JAIF) and JAIF International Cooperation Center (JICC) have cohosted the NEM school in Japan in cooperation with IAEA. Since then, the school has been held every year, with the school in 2016 marking the fifth. In the 2016 NEM school, Japanese nuclear energy technology and experience, such as lessons learned from the Fukushima Daiichi Nuclear Power Station accident, were provided by not only lectures by IAEA experts, but also lectures by Japanese experts and leaders in order to offer a unique opportunity for the participants from other countries to learn about particular cases in Japan. Opportunities to visit a variety of nuclear facilities were offered for the participants in the form of technical tours in Fukui and Kobe. Through the school, we contributed to the internationalization of Japanese young nuclear professionals, development of nuclear human resource of other countries including nuclear newcomers, and enhanced cooperative relationship between IAEA and Japan. Additionally, collaborative relationship with JN-HRD Net was strengthened solidly through the integrated cooperation among ministries, universities, manufacturers and research organizations across the county by holding the school in Japan. In this report, findings obtained during the preparatory work and the school period were reported in order to make a valuable contribution towards effectively and efficiently conducting future international nuclear human resource development activities in Japan. (author)

  5. EURATOM safeguards implementation in France and cooperation with the IAEA

    International Nuclear Information System (INIS)

    Oddou, J.

    2013-01-01

    International safeguards in France are applied both by: -) the European Commission (EC), through the Chapter 7 of the EURATOM Treaty; -) the International Atomic Energy Agency (IAEA) as France is a party to the NPT and has concluded a safeguards agreement with IAEA. With the exception of mining, France has a complete nuclear fuel cycle from ore concentrates to waste. Based on the legal framework of the EURATOM Treaty, all civil nuclear facilities and all civil nuclear materials are safeguarded by EURATOM wherever they are in France. Therefore the two conversion plants, the two enrichment plants, the three fuel fabrication plants, the 59 nuclear power plants including the EPR of Flamanville under construction, the 2 reprocessing plants in La Hague, the five facilities for waste treatment and numerous research centers and reactors of CEA are declared and controlled by the European Commission. The activities of the EURATOM inspectors are of various kind depending of the facility and the type of inspection. The most common checks are: identification and counting of the nuclear material, verification of accountancy declaration vs. physical follow-up of the nuclear material, non-destructive analysis and destructive analysis after sampling in large bulk handling facilities. There is a strong cooperation between IAEA and EC: the majority of IAEA inspections in France are joint team inspections with the EC. This pooling of equipment and teams can save money and human resources. Equipment for containment and surveillance are paid whether by the EC or by the IAEA and can be used by both bodies of inspectors. With the principle of 'One Job One Person', verification activities are done only once and it saves time for the inspectors and the operators. The paper is followed by the slides of the presentation. (A.C.)

  6. The IAEA Transport Safety Appraisal Service (TranSAS)

    International Nuclear Information System (INIS)

    Dicke, G.J.

    2004-01-01

    Representatives of all Member States of the IAEA meet once a year in September at the General Conference in Vienna, Austria, to consider and approve the Agency's programme and budget and to address matters brought before it by the Board of Governors, the Director General, or Member States. In September 1998 the General Conference adopted resolution GC(42)/RES/13 on the Safety of Transport of Radioactive Materials. In adopting that resolution the General Conference recognized that compliance with regulations that take account of the IAEA Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations) is providing a high level of safety during the transport of radioactive material. Good compliance requires that the regulations are implemented effectively. The General Conference therefore requested the IAEA Secretariat to provide a service for carrying out, at the request of any State, an appraisal of the implementation of the Transport Regulations by that State. In response to this request the Director General of the IAEA offered such an appraisal service to all States in letter J1.01.Circ, dated 10 December 1998. The first Transport Safety Appraisal Service (TranSAS) was undertaken and completed at the request of Slovenia in 1999. A report on the results of that appraisal was published and released for general distribution in the early fall of 1999. In each of the General Conferences since 1998, resolutions focused on transport safety have commended the Secretariat for establishing the TranSAS, commended those States that have requested the appraisal service and encouraged other States to avail themselves of this service see GC(43)/RES/11, GC(44)/RES/17, GC(45)/RES/10, GC(46)/RES/9 and GC(47)/RES/7. Six appraisals have been carried out to date as follows: Slovenia, Brazil, United Kingdom, Turkey, Panama and France. This presentation provides an overview of the Transport Safety Appraisal Service and summarizes the major findings from the

  7. The IAEA's Universal Instrument Token

    International Nuclear Information System (INIS)

    Naumann, I.; Wishard, B.; Morgan, K.; Christoph, B.; Schwier, A.; Frank, T.

    2015-01-01

    The IAEA currently seeks to improve the harmonization of security approaches across safeguards equipment. The protection of digital safeguards data is based on several principles: a) the signing of data in measurement devices using standard public/private-key-based signature generation, b) the storage of secret keys on certified, tamper-protected cryptographic devices, and c) well-established cryptographic algorithms and protocols based on global standards and internationally recognized cryptographic libraries. This paper discusses a cryptographic token, the Universal Instrument Token, which constitutes the core element of the architecture for signing safeguards data. This architecture supports the above principles and is compliant with the IAEA's information security policies and guidelines. An important side-condition is that the UIT must be implemented across a wide range of operating systems and hardware architectures, which mandates the use of open-source software for all software-related parts involved. The UIT is permanently connected to the measuring device (usually via the USB port) and requires complex hardware drivers and middleware components. Identifying open-source based, mature and ready-for-use smart card drivers and tools that are compatible with a range of operating systems was a major challenge. Reliable and well-established cryptographic libraries reside at the core of every information-security application. Different types of review software, typically software products used at IAEA headquarters in Vienna but occasionally also in the facilities, need to contain some specific software modules in order to verify the digital signatures attached to the data. Finally, also required are enrollment tools which generate private keys and certify their corresponding public counterparts using the IAEA's internal Certification Authority. In 2014, the roll-out of the UIT has raised the security of IAEA instrument data signing to a level which is

  8. The IAEA Transport Safety Appraisal Service (TranSAS)

    Energy Technology Data Exchange (ETDEWEB)

    Dicke, G.J. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Representatives of all Member States of the IAEA meet once a year in September at the General Conference in Vienna, Austria, to consider and approve the Agency's programme and budget and to address matters brought before it by the Board of Governors, the Director General, or Member States. In September 1998 the General Conference adopted resolution GC(42)/RES/13 on the Safety of Transport of Radioactive Materials. In adopting that resolution the General Conference recognized that compliance with regulations that take account of the IAEA Regulations for the Safe Transport of Radioactive Material (the IAEA Transport Regulations) is providing a high level of safety during the transport of radioactive material. Good compliance requires that the regulations are implemented effectively. The General Conference therefore requested the IAEA Secretariat to provide a service for carrying out, at the request of any State, an appraisal of the implementation of the Transport Regulations by that State. In response to this request the Director General of the IAEA offered such an appraisal service to all States in letter J1.01.Circ, dated 10 December 1998. The first Transport Safety Appraisal Service (TranSAS) was undertaken and completed at the request of Slovenia in 1999. A report on the results of that appraisal was published and released for general distribution in the early fall of 1999. In each of the General Conferences since 1998, resolutions focused on transport safety have commended the Secretariat for establishing the TranSAS, commended those States that have requested the appraisal service and encouraged other States to avail themselves of this service see GC(43)/RES/11, GC(44)/RES/17, GC(45)/RES/10, GC(46)/RES/9 and GC(47)/RES/7. Six appraisals have been carried out to date as follows: Slovenia, Brazil, United Kingdom, Turkey, Panama and France. This presentation provides an overview of the Transport Safety Appraisal Service and summarizes the major findings from

  9. Progress report of the IAEA Nuclear Data Section. P2

    International Nuclear Information System (INIS)

    Pronyaev, V.; Schwerer, O.; Lammer, M.; Zerkin, V.

    2001-01-01

    The report summarises the work done in the field of nuclear data at the Nuclear Data Section of the IAEA (Web: http://www-nds.iaea.org/, e-mail: services at iaeand.iaea.org) for the period 1 May 2000 - 30 April 2001. Data compilation activities are related to CINDA data collection. CINDA 2000 was published as a cumulative issue including literature published and data files compiled/updated between 1988 and 2000. After a working version of the EXFOR database updating program CSIMER was obtained and the dictionary maintenance programs DAN2X4 and MAKE B ACK were modified at NDS (to take care of last year's format change of the DANIEL dictionaries), a backlog in processing incoming TRANS files could be worked up and dictionary transmission 9077 was implemented and distributed in spring 2001 (following dictionary transmission 9076 of Summer 2000). New evaluated data libraries, files and data processing codes are advertised for distribution to the NDS customers. Some of these products were obtained through the network of co-operating centres, others comprise the results of the IAEA/NDS CRP projects. They include: IAEA Photonuclear Library; Charged-Particle Cross Section Database for Medical Radioisotope Production; FENDL/A in Pictures Presentation; PREPRO2000: 2000 ENDF/B Pre-processing Codes; Reference Neutron Activation Library (RNAL); POINT2000: A temperature Dependent ENDF/B-VI, Release 7 Cross Section Library. The EXFOR CD-ROM relational database under ACCESS-97 was finalized with a further improvement of the functionality, an acceleration of the data search, gathering statistics, simplification of the installation procedure of the plotting utility, CD-ROM Start up utility. An enhanced search facility on reaction products, including fission products specified only in data table, was developed (April 2001 EXFOR/Access version). The collaboration with other centres in the development of new approaches to the nuclear database management and data dissemination was

  10. The IAEA Regional Training Course on Regulatory Control of Radiation Sources

    International Nuclear Information System (INIS)

    2000-01-01

    Materials of the IAEA Regional Training Course contains 8 presented lectures. Authors deals with regulatory control of radiation sources. The next materials of the IAEA were presented: Organization and implementation of a national regulatory infrastructure governing protection against ionizing radiation and the safety of radiation sources. (IAEA-TECDOC-1067); Safety assessment plants for authorization and inspection of radiation sources (IAEA-TECDOC-1113); Regulatory authority information system RAIS, Version 2.0, Instruction manual

  11. Excerpts from the introductory statement. IAEA Board of Governors. Vienna, 20 March 2000

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2000-01-01

    In his Introductory Statement at the IAEA Board of Governors, Vienna, 20 March 2000, the Director General of the IAEA focused on the following topics: the first Review Meeting of Parties to the Convention on Nuclear Safety, response to General Conference Resolutions, Safeguards Agreements and Additional Protocols, relations with DPRK and Iraq, Trilateral Initiative (IAEA, USA, Russian Federation) concerning the fissile material removed from nuclear weapon programmes, and IAEA's Programme and Budget for 2001

  12. Managing nuclear knowledge: IAEA activities and international coordination. Asian Network for Education in Nuclear Technology (ANENT)

    International Nuclear Information System (INIS)

    2007-07-01

    This CD-ROM is attached to the booklet 'Managing nuclear knowledge: IAEA activities and international coordination. Asian Network for Education in Nuclear Technology (ANENT)'. It contains the background material with regard to ANENT in full text, including policy level papers, reports, presentation material made by Member States, and meeting summaries during the period 2002-2005. Further information on the current ANENT activities and related IAEA activities is available at 'http://anent-iaea.org' and 'http://iaea.org/inisnkm'

  13. Legal Analysis of the Korea Radioactive Waste Management Act in the aspect of IAEA Principles

    International Nuclear Information System (INIS)

    Lee, D. S.; Chung, W. S.; Yang, M. H.; Yun, S. W.; Lee, J. H.

    2009-01-01

    According to the Principles of Radioactive Waste Management, the IAEA SAFETY SERIES NO-111-F, IAEA declared 9 doctrines. The IAEA advised a country that operates nuclear power plant to adopt the principles. As a member of the IAEA, Korea has also discussed about a unified policy and enacting law for radioactive waste management to follow the doctrines. This study analyzed the recently enacted Korea Radioactive Waste Management Act and verified whether the Act successfully follows the doctrine or not

  14. IAEA publishes first health and safety manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-01-15

    A 'Manual on the Safe Handling of Radioisotopes' was published in English on 15 Dec ember 1958 by the International Atomic Energy Agency. This is a comprehensive handbook of internationally compiled recommendations for users of radioisotopes. It covers organizational, medical and technical aspects of radiation safety practices. It is also the Agency's first technical publication. French, Russian and Spanish editions will appear shortly. The Manual should prove useful to all users of radioisotopes in industry, medicine, research, etc., but is directed mainly to small scale users who may not have access to other sources of information. The recommendations apply only to radioactivity surpassing the limit of 0,002 microcurie concentration per gram of material; or a total activity of more than 0,1 microcuries in the working areas; this limit is based on the most dangerous radioisotopes. The experts state that the limiting level might be higher for less dangerous isotopes, but recommend that all be treated as potentially dangerous. This would have educational value and avoid accidents caused by misidentification. The Manual also stressed that good radiation safety practices depend on effective organization and warns that even very competent workers sometimes ignore or forget important health and safety requirements.

  15. IAEA research contracts. Fourth annual report

    International Nuclear Information System (INIS)

    1964-01-01

    This volume represents the fourth annual report on the results obtained under the Agency's research contract programme. During the short life of this programme, which is not quite six years old, a total investment of more than three million dollars has been made to support research in selected fields at institutes in 50 Member States. Extensive summaries are presented herein for all final reports relating to contracts which were completed during 1963. As it is the policy of the Agency to encourage publication in the open scientific literature of the results of work done under research contracts, a number of papers have also appeared in the appropriate journals - the Agency having been notified of 75 such publications in 1963. A complete list of references to these is given at the end of this report. The scientific data presented in the summaries of course remain the responsibility of the contractor. The Agency, however, is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture and medicine

  16. IAEA research contracts. Fourth annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-04-01

    This volume represents the fourth annual report on the results obtained under the Agency's research contract programme. During the short life of this programme, which is not quite six years old, a total investment of more than three million dollars has been made to support research in selected fields at institutes in 50 Member States. Extensive summaries are presented herein for all final reports relating to contracts which were completed during 1963. As it is the policy of the Agency to encourage publication in the open scientific literature of the results of work done under research contracts, a number of papers have also appeared in the appropriate journals - the Agency having been notified of 75 such publications in 1963. A complete list of references to these is given at the end of this report. The scientific data presented in the summaries of course remain the responsibility of the contractor. The Agency, however, is responsible for any additional observations. The reports presented are related to research in the field of radioactive waste management and environmental sciences; health physics and radiation protection; radiobiology; nuclear reactors physics and nuclear fuels; radioisotope applications in agriculture and medicine.

  17. IAEA publishes first health and safety manual

    International Nuclear Information System (INIS)

    1959-01-01

    A 'Manual on the Safe Handling of Radioisotopes' was published in English on 15 Dec ember 1958 by the International Atomic Energy Agency. This is a comprehensive handbook of internationally compiled recommendations for users of radioisotopes. It covers organizational, medical and technical aspects of radiation safety practices. It is also the Agency's first technical publication. French, Russian and Spanish editions will appear shortly. The Manual should prove useful to all users of radioisotopes in industry, medicine, research, etc., but is directed mainly to small scale users who may not have access to other sources of information. The recommendations apply only to radioactivity surpassing the limit of 0,002 microcurie concentration per gram of material; or a total activity of more than 0,1 microcuries in the working areas; this limit is based on the most dangerous radioisotopes. The experts state that the limiting level might be higher for less dangerous isotopes, but recommend that all be treated as potentially dangerous. This would have educational value and avoid accidents caused by misidentification. The Manual also stressed that good radiation safety practices depend on effective organization and warns that even very competent workers sometimes ignore or forget important health and safety requirements

  18. Short philtrum

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003302.htm Short philtrum To use the sharing features on this page, please enable JavaScript. A short philtrum is a shorter than normal distance between ...

  19. IAEA Activities in the Area of Fast Reactors and Related Fuels and Fuel Cycles

    International Nuclear Information System (INIS)

    Monti, S.; Basak, U.; Dyck, G.; Inozemtsev, V.; Toti, A.; Zeman, A.

    2013-01-01

    Summary: • The IAEA role to support fast reactors and associated fuel cycle development programmes; • Main IAEA activities on fast reactors and related fuel and fuel cycle technology; • Main IAEA deliverables on fast reactors and related fuel and fuel cycle technology

  20. The IAEA technical Co-operation a partner in development in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    El-Saiedi, A [International Atomic Energy Agency, Vienna (Austria). Div. of Public Information

    1995-10-01

    Each country was to find means of achieving sustainable development, and for this, technology within a framework of regional and international co-operation are of utmost importance. The IAEA plays a major role in promoting nuclear technologies for development. Highlights of the IAEA`s technical cooperation programme are given in this paper.

  1. The activities of the IAEA in nuclear power station site studies

    International Nuclear Information System (INIS)

    Farges, L.

    1980-01-01

    This short review of IAEA activities in nuclear power station site studies gives the impression of a multiform action of unequal importance according to the projects and geographically very dispersed. It should be realised that the Agency does not possess the initiative in the development of this action and is dependent upon its member states for the preparation and finalizing of programmes, and it cannot undertake studies on the spot without the formal request of the state concerned. Furthermore, it does not have limitless means and a selection is made among the requests from the various member states which sometimes takes into account criteria other than those of a scientific or technical nature [fr

  2. IAEA Newsbriefs. V. 9, no. 2(64). Apr-May 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This issue gives brief information on the following topics: IAEA Board of Governor's Meetings in Early June, Nuclear Safety Convention, Monitoring and Verification in Iraq, Nuclear Power Regulation in China, Scientific Award for Marine Environment Programme, Assessing Radioactivity Levels at Sea, Safety at Chernobyl, An 'Energy-Ecology Dilemma', Safeguards at Nuclear Fuel Plant, Uranium Resources, Production, and Demand, Radioactive Waste Management, Global Climate Change Studies, Isotopes in Hydrology, Conference on Nuclear Power Option, Nuclear Fusion Research, Nuclear Techniques in Soil/Plant Studies, International Conference on Radiation and Society: Comprehending Radiation Risk, Experimental Fusion Reactor, Middle East NWFZ Concept Discussed, Symbolic Sculpture from South Africa, Update on Nuclear Electricity, and other short information

  3. IAEA Completes Nuclear Security Review Mission in Republic of Korea

    International Nuclear Information System (INIS)

    2014-01-01

    Full text: A team of International Atomic Energy Agency (IAEA) experts today completed a mission to review national nuclear security practices in the Republic of Korea. At the request of the Government of the ROK, the IAEA conducted a two-week International Physical Protection Advisory Service (IPPAS) mission that reviewed the nation's nuclear security-related legislative and regulatory framework for nuclear and other radioactive material and associated facilities, as well as security arrangements applied to the transport of nuclear material and radioactive sources, and to computer systems. In addition, the team reviewed physical protection systems at the Hanbit Nuclear Power Plant (NPP), operated by Korea Hydro and Nuclear Power Company (KHNP), and at the High-Flux Advanced Neutron Application Reactor (HANARO), operated by the Korea Atomic Energy Research Institute (KAERI). The IPPAS team concluded that Korea is working well to conduct strong and sustainable nuclear security activities. Moreover, the team identified a number of good practices in the national nuclear security regime, and at the visited facilities. The team also made recommendations and suggestions for continuous improvement in nuclear security. The IAEA team was led by Joseph Sandoval, a staff member at the Sandia National Laboratories in the United States, and it included eight experts from six nations and the IAEA. The team met in Daejeon with officials from the Nuclear Safety and Security Commission (NSSC), representatives of the Korea Institute of Nuclear Non-Proliferation and Control (KINAC), the Korea Institute of Nuclear Safety (KINS), KAERI, and the Korea Electric Power Corporation Nuclear Fuel (KEPCO NF). They conducted site visits to the Hanbit NPP, the HANARO research reactor, the irradiation facility at KAERI's Advanced Radiation Technology Institute (ARTI), and the KHNP Cyber Security Center. ''Successful development of a nuclear power programme necessitates a strong commitment to

  4. Ministers at IAEA Conference Call for Stronger Nuclear Security

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: Despite substantial progress in strengthening nuclear security in recent years, more needs to be done worldwide to defend against the threat of nuclear terrorism and other malicious acts involving nuclear or radiological material, a Ministerial Declaration at the IAEA's International Conference on Nuclear Security: Enhancing Global Efforts stated today. More than 1 300 participants at the Conference, which is open to all 159 IAEA Member States, will analyse past and current efforts and consider how future challenges can best be met to ensure effective and sustainable nuclear security worldwide. The Conference, which started in Vienna today and ends on Friday, includes representatives from 123 countries and 21 governmental and non-governmental organizations. The Ministerial Declaration, adopted at a plenary session attended by 34 government ministers and other Heads of Delegation including the Conference President, Hungarian Foreign Affairs Minister Janos Martonyi, says they ''remain concerned about the threat of nuclear and radiological terrorism and of other malicious acts or sabotage related to facilities and activities involving nuclear and other radioactive material.'' The Declaration - the first of its kind for nuclear security - notes that all States are responsible for their own nuclear security, but that international cooperation is important in supporting States' efforts to fulfil their responsibilities. It affirms the central role of the IAEA in strengthening nuclear security globally, and leading coordination of international activities in this field. ''We encourage all States to maintain highly effective nuclear security, including physical protection, for all nuclear and other radioactive material, their transport, use and storage and their associated facilities, as well as protecting sensitive information and maintaining the necessary nuclear security systems and measures to assess and manage their nuclear security effectively,'' the

  5. IAEA Response and Assistance Network. Date Effective: 1 September 2013

    International Nuclear Information System (INIS)

    2013-01-01

    The Parties to the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency (the 'Assistance Convention') have undertaken to cooperate between themselves and with the IAEA to facilitate the timely provision of assistance in the case of a nuclear accident or radiological emergency, in order to mitigate its consequences. In September 2000, the General Conference of the IAEA, in resolution GC(44)/RES/16, encouraged Member States ''to implement instruments for improving their response, in particular their contribution to international response, to nuclear and radiological emergencies'' as well as ''to participate actively in the process of strengthening international, national and regional capabilities for responding to nuclear and radiological emergencies and to make those capabilities more consistent and coherent''. As part of the IAEA's strategy for supporting the practical implementation of the Assistance Convention, in 2000 the IAEA Secretariat established a global Emergency Response Network (ERNET) of teams suitably qualified to respond to nuclear or radiological emergencies rapidly and, in principle, on a regional basis. The IAEA Secretariat published IAEA Emergency Response Network - ERNET (EPR-ERNET) in 2000, which set out the criteria and requirements to be met by members of the network. An updated edition was published in 2002. The Second Meeting of the Representatives of Competent Authorities Identified under the Convention on Early Notification of a Nuclear Accident and the Convention on Assistance in the Case of a Nuclear Accident or Radiological Emergency, held in Vienna in June 2003, recommended that the IAEA Secretariat convene a Technical Meeting to formulate recommendations aimed at improving participation in the network. Participants in a Technical Meeting held in March 2004 developed a new concept for the network and a completely new draft of the publication. In July 2005, the Third Meeting of Competent Authorities

  6. IAEA laboratory activities. The IAEA laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries. 2nd report

    International Nuclear Information System (INIS)

    1965-01-01

    This Second Report 'IAEA Laboratory Activities' describes developments and scientific work during the year 1964. It reports on the activities of the Agency's Laboratory Vienna - Seibersdorf, the Marine Biological Project at Monaco, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries. In addition, it contains a first, short review on the International Centre for Theoretical Physics at Trieste. This Centre was established in October 1963 and started its operations in 1964. The Report is similar to the first one published at the beginning of 1964, and is intended as a source of current information

  7. IAEA Nobel Prize money fights cancer crisis in Africa

    International Nuclear Information System (INIS)

    2006-01-01

    To fight the looming cancer crisis in Africa, the International Atomic Energy Agency (IAEA) is assembling many of the world's leading cancer experts in Cape Town on 11-16 December. Cancer is a disease that is spreading very fast in the developing world and the IAEA has come to realize that we need to do much more to combat cancer in this part of the world, says IAEA Director General Mohamed ElBaradei in a video address to the conference. I hope this event will be the first of many events that would enable us to work together - national governments, international organisations, civil society - to help combat this dreadful disease and provide quality of life to our fellow human beings. With the support of African Nobel Laureates Nelson Mandela, Archbishop Desmond Tutu and F.W. de Klerk, this unprecedented gathering will bring together senior representatives from major national and international cancer organisations. Together with leading public figures and specialists they will assess the growing cancer burden in Africa and focus on building effective cancer control programmes at the national and regional levels. The IAEA is sponsoring the intensive workshops using funds awarded for the 2005 Nobel Peace Prize. The IAEA's Programme of Action for Cancer Therapy, or 'PACT', was established in 2004 to help achieve these goals. Building on the IAEA's 30 years of expertise in promoting radiotherapy, PACT aims to help get more cancer treatment facilities up and running in the world's developing regions, along with the trained personnel to operate them. 'PACT' is building partnerships with the WHO and other international cancer-control organisations so that the battle against cancer can be waged at country level. This includes cancer prevention, early detection, diagnosis and palliation, and more importantly education and training of professionals, says PACT Head Massoud Samiei. Current estimates suggest that several billion US$ are needed in the next 10 to 15 years if the

  8. DOE, IAEA collaborate to put decades of nuclear research online

    International Nuclear Information System (INIS)

    2009-01-01

    Full text: Decades of nuclear research supported by the United States Department of Energy (DOE) and its predecessor agencies are being made searchable on the World Wide Web, as part of a collaborative effort between the DOE and the International Atomic Energy Agency (IAEA). The project aims to give researchers, academics, and the general public access to vast volumes of valuable nuclear-related research over the internet. As part of its knowledge preservation mandate, the IAEA' s International Nuclear Information System(INIS) works to preserve nuclear knowledge by digitizing historic nuclear energy research documents dating from 1970 through the early 1990s. Collections from over 29 countries are now digitally available and several additional digital preservation projects are ongoing or are being established, particularly in the Latin America and Caribbean regions. ''Thanks to the collaborative work of the IAEA and its Member States, scientists and students in the nuclear field now have instant access to important research and technical information over the internet,'' said IAEA Deputy Director General for Nuclear Energy Yury Sokolov. ''Our INIS programme continues to work to preserve and provide access to publications and documents on the peaceful applications of nuclear technology.'' The DOE project is one of the larger programmes in the INIS project, and includes more than 180,000 documents from the DOE Office of Scientific and Technical Information (OSTI). OSTI is the U.S. representative to INIS and has had its own digitization focus in recent years. The novel partnership highlights the longstanding mutual benefits of DOE participation in INIS. In essence, it opens up previous research on the safe and peaceful uses of nuclear energy by making it freely and quickly available to scientists and engineers. By making scientific data electronically available, the INIS database helps scientists and students to attain volumes of data that are otherwise inaccessible

  9. International nuclear safety experts conclude IAEA peer review of Canada's regulatory system

    International Nuclear Information System (INIS)

    2009-01-01

    that indicate areas in which improvements are necessary or desirable to continue improving effectiveness of regulatory controls,' he said. 'These are made to an organization that seeks to improve its performance. Many of them are related to areas in which CNSC has already or is in the process of implementing a programme for change.' Mr. Tomihiro Taniguchi, IAEA Deputy Director General and Head of the Department for Nuclear Safety and Security, added: 'Through the IRRS missions, both a host country and the reviewers share their experiences and lessons learned for regulatory improvements. Canada, as a mature nuclear country has also significantly contributed to this goal.' Among the particular strengths of CNSC, its policy, its regulatory framework and its regulatory activities identified by the IRRS team were: - The Canadian legislative and regulatory framework is very comprehensive, and the legal regime is effectively applied through an appropriate range of instruments; - CNSC has done commendable work over the last years in establishing and implementing a strong management system that seeks continuous improvement within the organization; - The consistent harmonized plan that considers the results of all recent audits and assessments brings together all improvement initiatives under one plan and optimizes the use of resources to deliver further improvements in key areas; - The recommendations made by the Talisman International LLC report on the NRU and reviewed by the IRRS team have been adequately addressed by the CNSC. The IRRS team also made recommendations and suggestions that may significantly enhance the overall performance of the regulatory system. Examples include: - CNSC should initiate a periodic strategic planning programme to define both short- and long-term research activities needed to support pending and potential regulatory decisions. Sufficient resources should be allocated to support the results of the programme; - CNSC should continue developing a

  10. International Expert Team Concludes IAEA Peer Review of Finland's Regulatory Framework for Nuclear and Radiation Safety

    International Nuclear Information System (INIS)

    2012-01-01

    contributing to enhanced safety worldwide through international cooperation. In line with the IAEA Action Plan on Nuclear Safety, the mission reviewed the regulatory implications for Finland of the March 2011 accident at the Fukushima Daiichi Nuclear Power Station in Japan. The mission found that STUK's immediate- and longer-term response was timely and effective. Although short-term safety issues were not identified, a number of safety improvements have been initiated and STUK performed extremely well in informing the public. The IRRS team identified a number of areas where the overall performance of the regulatory system could be improved, including: - Although STUK operates in practice as an independent regulatory body, the government should strengthen the legislative framework by embedding in law the regulatory body, separate from entities having responsibilities or interests that could unduly influence its decisions; - The Finnish legislative framework should be further developed to cover authorization for facility decommissioning and the waste repository shutdowns; and - STUK can improve the effectiveness of its inspection activities by enhancing the focus of inspection on the most safety-significant areas and developing a formal qualification programme for inspectors. In its preliminary report, the IAEA team's main conclusions have been conveyed to STUK. A final report will be submitted to the Government of Finland in about three months. STUK has informed the team that the final report will be made publicly available. The IAEA encourages nations to invite a follow-up IRRS mission about two years after the mission has been completed. Background The team reviewed the legal and regulatory framework for nuclear safety and addressed all facilities regulated by STUK with the exception of the research reactor FiR 1, which STUK decided to exclude because the operator is shutting it down. This was the 44th IRRS mission conducted by the IAEA. Quick Facts - Finland has four

  11. Fusion Plasma Modelling Using Atomic and Molecular Data. Summary report of a Joint ICTP-IAEA Workshop

    International Nuclear Information System (INIS)

    Braams, B.J.

    2012-03-01

    The Joint ICTP-IAEA Workshop on Fusion Plasma Modelling using Atomic and Molecular Data was held from 23-27 January 2012 at Abdus Salam International Centre for Theoretical Physics in Trieste, Italy. Ten lecturers presented tutorials and reviews on topics in fusion plasma modelling and atomic, molecular and plasma-material interaction processes. There were 20 participants, generally early-career researchers in the area of A+M+PMI processes and also plasma modellers. The participants presented their work in short talks and a poster session. The proceedings of the workshop are summarized here. (author)

  12. IAEA Leads Operational Safety Mission to Armenian Nuclear Power Plant

    International Nuclear Information System (INIS)

    2011-01-01

    Full text: An international team of nuclear installation safety experts, led by the International Atomic Energy Agency (IAEA), has reviewed the Armenian Nuclear Power Plant (ANPP) near Metsamor for its safety practices and has noted a series of good practices, as well as recommendations to reinforce them. The IAEA assembled an international team of experts at the request of the Government of the Republic of Armenia to conduct an Operational Safety Review (OSART) of the NPP. Under the leadership of the IAEA's Division of Nuclear Installation Safety, the OSART team performed an in-depth operational safety review from 16 May to 2 June 2011. The team was made up of experts from Finland, France, Lithuania, Hungary, Netherlands, Slovakia, UK, USA, EC and the IAEA. An OSART mission is designed as a review of programmes and activities essential to operational safety. It is not a regulatory inspection, nor is it a design review or a substitute for an exhaustive assessment of the plant's overall safety status. Experts participating in the IAEA's June 2010 International Conference on Operational Safety of Nuclear Power Plants (NPP) reviewed the experience of the OSART programme and concluded: In OSART missions NPPs are assessed against IAEA safety standards which reflect the current international consensus on what constitutes a high level of safety; and OSART recommendations and suggestions are of utmost importance for operational safety improvement of NPPs. Armenia is commended for openness to the international nuclear community and for actively inviting IAEA safety review missions to submit their activities to international scrutiny. Examples of IAEA safety reviews include: Design Safety Review in 2003; Review of Probabilistic Safety Assessment in 2007; and Assessment of Seismic Safety Re-Evaluation in 2009. The team at ANPP conducted an in-depth review of the aspects essential to the safe operation of the plant, which is largely under the control of the site management

  13. The IAEA and Y2K. The Agency's action plan on the year 2000 problem

    International Nuclear Information System (INIS)

    Cherif, H.S.; Winkels, J.

    1999-01-01

    The article describes the aims of it IAEA action plan concerned with Year 2000 (Y2K) problem and the results achieved during four years of work, including the technical documents dealing with the Y2K computer problem, published by IAEA. This include IAEA systems and operations, contingency plans, coordination in the United Nations system. Through the IAEA Internet site, a series of Web pages were developed by the Division of Public Information to co-ordinate the global exchange of information on the IAEA Y2K activities and related topics. The site is open to Member States and international organisations within and outside United Nations system

  14. The present status of IAEA safeguards on nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    1978-11-01

    The present IAEA approach to safeguarding various types of nuclear facilities is examined. The IAEA safeguards objectives, criteria and specific techniques are addressed, with reference e.g. to concepts like timely detection, quantities of safeguards significance, and conversion times. Material accountancy and containment and surveillance as basic features of IAEA safeguards verification are discussed. Safeguards measures for specific facility types are considered and corresponding levels of IAEA safeguards experience are assessed. Outlines of expected IAEA safeguard approaches to large bulk handling facilities are discussed. The evolutionary nature of safeguards based on experience and research and development is mentioned

  15. Senior IAEA Team to Visit Iran from 29 to 31 January 2012

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: IAEA Director General Yukiya Amano issued the following statement: A senior IAEA team will visit Iran from 29 to 31 January 2012. The overall objective of the IAEA is to resolve all outstanding substantive issues. The team of experts will be led by the Deputy Director General for Safeguards, Herman Nackaerts, and will include the Assistant Director General for Policy, Rafael Grossi. ''The Agency team is going to Iran in a constructive spirit, and we trust that Iran will work with us in that same spirit,'' IAEA Director General Yukiya Amano said. (IAEA)

  16. Characteristics of the IAEA correlation monitor material for surveillance programmes

    International Nuclear Information System (INIS)

    Wallin, K.; Valo, M.; Rintamaa, R.; Toerroenen, K.

    1989-08-01

    Within the IAEA Coordinated Research Programme on optimizing of reactor pressure vessel surveillance programmes and their analysis, phase 3, a specially tailored 'radiation sensitive' correlation monitor material has been fabricated. This material will serve as a reference to the IAEA programme for future vessel surveillance programmes throughout the world. An extensive evaluation of the correlation monitor material in the as-received condition has been carried out in Finland and the results are presented here. The mechanical properties measured at different temperatures include Charpy V notch and instrumented precracked Charpy data, and elastic-plastic fracture toughness (J). The specimen size and geometry have been varied in the tests. Correlation between different fracture properties are evaluated and discussed

  17. IAEA high temperature gas-cooled reactor activities

    International Nuclear Information System (INIS)

    Kendall, J.M.

    2000-01-01

    The IAEA activities on high temperature gas-cooled reactors are conducted with the review and support of the Member states, primarily through the International Working Group on Gas-Cooled Reactors (IWG-GCR). This paper summarises the results of the IAEA gas-cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (authors)

  18. IAEA activities in nuclear reactor simulation for educational purposes

    International Nuclear Information System (INIS)

    Lyon, R.B.

    2001-01-01

    The International Atomic Energy Agency (IAEA) has established a programme in nuclear reactor simulation computer programs to assist its Member States in education and training. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the supply or development of simulation programs and training material, sponsors training courses and workshops, and distributes documentation and computer programs. Two simulation programs are presented at this workshop: the Classroom-based Advanced Reactor Demonstrators package, and the Advanced Reactor Simulator. Both packages simulate the behaviour of BWR, PWR and HWR reactor types. For each package, the modeling approach and assumptions are broadly described, together with a general description of the operation of the computer programs. (author)

  19. An overview of the IAEA action team activities in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, G.; Baute, J. [International Atomic Energy Agency IAEA, Vienna (Austria)

    2001-07-01

    Following Iraq withdrawal from Kuwait, the United Nations Security Council adopted its resolution 687 (1991), setting out the terms of the cease fire agreement. Those terms, inter alia, requested the Director General of the International Atomic Energy Agency (IAEA) to carry out immediate on-site inspection of Iraq nuclear capabilities, to prepare and carry out a plan for the destruction, removal and rendering harmless of all assets relevant to the design and production of nuclear weapons, and to design and eventually implement a plan for the ongoing monitoring and verification of Iraq compliance with its related obligations under Security Council resolutions. This paper summarises the work of the IAEA Iraq Action Team, established by the Director General to carry out the practical tasks necessary to implement the requests of the Security Council. It also highlights the lessons learned from a unique regime of disarmament and verification. (author)

  20. CNEN, IAEA and ISO normative requirements for measurement management

    International Nuclear Information System (INIS)

    Kibrit, Eduardo

    2009-01-01

    International standard ISO 10012:2003 establishes requirements for measurement management systems, including requirements for measurement processes and measuring equipment. ISO 9001:2008 presents requirements for quality management systems, including requirements for the control of monitoring and measuring equipment. ISO 17025:2005 presents general requirements for the competence of testing and calibration laboratories. In the nuclear field the requirements for measurement management are established by standards published by the International Atomic Energy Agency (IAEA), and in Brazil, by the National Nuclear Energy Commission (CNEN). The present paper presents and discusses the normative requirements for measurement management, considering requirements established by National Nuclear Energy Commission (CNEN), International Atomic Energy Agency (IAEA), and International Organisation for Standardisation (ISO). (author)