WorldWideScience

Sample records for non-affine rubber elasticity

  1. Thermodynamics of Rubber Elasticity

    Science.gov (United States)

    Pellicer, J.; Manzanares, J. A.; Zúñiga, J.; Utrillas, P.; Fernández, J.

    2001-02-01

    A thermodynamic study of an isotropic rubber band under uniaxial stress is presented on the basis of its equation of state. The behavior of the rubber band is compared with both that of an ideal elastomer and that of an ideal gas, considering the generalized Joule's law as the ideality criterion. First, the thermal expansion of rubber at constant stress and the change in the stress with temperature at constant length are described. Thermoelastic inversion is then considered, and the experimental observations are easily rationalized. Finally, the temperature changes observed in the adiabatic stretching of a rubber band are evaluated from the decrease of entropy with length.

  2. The role of pressure in rubber elasticity

    Science.gov (United States)

    Bower, A. F.; Weiner, J. H.

    2004-06-01

    We describe a series of molecular dynamics computations that reveal an intimate connection at the atomic scale between difference stress (which resists stretches) and pressure (which resists volume changes) in an idealized elastomer, in contrast to the classical theory of rubber elasticity. Our simulations idealize the elastomer as a "pearl necklace," in which the covalent bonds are stiff linear springs, while nonbonded atoms interact through a Lennard-Jones potential with energy εLJ and radius σLJ. We calculate the difference stress t11-(t22+t33)/2 and mean stress (t11+t22+t33)/3 induced by a constant volume extension in the x1 direction, as a function of temperature T and reduced density ρ*=NσIJ3/ν. Here, N is the number of atoms in the simulation cell and ν is the cell volume. Results show that for ρ*rubber elasticity, which neglects nonbonded interactions. However, data presented by van Krevelen [Properties of Polymers, 3rd ed. (Elsevier, Amsterdam, 1990), p. 79] indicate that rubber at standard conditions corresponds to ρ*=1.2. For ρ*>1, the system is entropic for kT/εLJ>2, but at lower temperatures the difference stress contains an additional energy component, which increases as ρ* increases and temperature decreases. Finally, the model exhibits a glass transition for ρ*=1.2 and kT/εLJ≈2. The atomic-scale processes responsible for generating stress are explored in detail. Simulations demonstrate that the repulsive portion of the Lennard-Jones potential provides a contribution σnbr>0 to the difference stress, the attractive portion provides σnba≈0, while the covalent bonds provide σb0, and Πb, σb=BΠb, where is a measure of the anisotropy of the orientation of the covalent bonds, and A and B are coefficients that depend weakly on ρ* and temperature. For high values of ρ*, we find that |σnbr|≫|σb|, and in this regime our model predicts behavior that is in good agreement with experimental data of D.L. Quested et al. [J. Appl. Phys. 52

  3. A new paradigm for the molecular basis of rubber elasticity

    Science.gov (United States)

    Hanson, David E.; Barber, John L.

    2015-07-01

    The molecular basis for rubber elasticity is arguably the oldest and one of the most important questions in the field of polymer physics. The theoretical investigation of rubber elasticity began in earnest almost a century ago with the development of analytic thermodynamic models, based on simple, highly-symmetric configurations of so-called Gaussian chains, i.e. polymer chains that obey Markov statistics. Numerous theories have been proposed over the past 90 years based on the ansatz that the elastic force for individual network chains arises from the entropy change associated with the distribution of end-to-end distances of a free polymer chain. There are serious conceptual objections to this assumption and others, such as the assumption that all network nodes undergo a simple volume-preserving linear motion and that all of the network chains have the same length. Recently, a new paradigm for elasticity in rubber networks has been proposed that is based on mechanisms that originate at the molecular level. Using conventional statistical mechanics analyses, Quantum Chemistry, and Molecular Dynamics simulations, the fundamental entropic and enthalpic chain extension forces for polyisoprene (natural rubber) have been determined, along with estimates for the basic force constants. Concurrently, the complex morphology of natural rubber networks (the joint probability density distributions that relate the chain end-to-end distance to its contour length) has also been captured in a numerical model (EPnet). When molecular chain forces are merged with the network structure in this model, it is possible to study the mechanical response to tensile and compressive strains of a representative volume element of a polymer network. As strain is imposed on a network, pathways of connected taut chains, that completely span the network along strain axis, emerge. Although these chains represent only a few percent of the total, they account for nearly all of the elastic stress at high

  4. Random parking, Euclidean functionals, and rubber elasticity

    CERN Document Server

    Gloria, Antoine

    2012-01-01

    We study subadditive functions of the random parking model previously analyzed by the second author. In particular, we consider local functions $S$ of subsets of $\\mathbb{R}^d$ and of point sets that are (almost) subadditive in their first variable. Denoting by $\\xi$ the random parking measure in $\\mathbb{R}^d$, and by $\\xi^R$ the random parking measure in the cube $Q_R=(-R,R)^d$, we show, under some natural assumptions on $S$, that there exists a constant $\\bar{S}\\in \\mathbb{R}$ such that % $$ \\lim_{R\\to +\\infty} \\frac{S(Q_R,\\xi)}{|Q_R|}\\,=\\,\\lim_{R\\to +\\infty}\\frac{S(Q_R,\\xi^R)}{|Q_R|}\\,=\\,\\bar{S} $$ % almost surely. If $\\zeta \\mapsto S(Q_R,\\zeta)$ is the counting measure of $\\zeta$ in $Q_R$, then we retrieve the result by the second author on the existence of the jamming limit. The present work generalizes this result to a wide class of (almost) subadditive functions. In particular, classical Euclidean optimization problems as well as the discrete model for rubber previously studied by Alicandro, Cicalese,...

  5. Analytical network-averaging of the tube model:. Rubber elasticity

    Science.gov (United States)

    Khiêm, Vu Ngoc; Itskov, Mikhail

    2016-10-01

    In this paper, a micromechanical model for rubber elasticity is proposed on the basis of analytical network-averaging of the tube model and by applying a closed-form of the Rayleigh exact distribution function for non-Gaussian chains. This closed-form is derived by considering the polymer chain as a coarse-grained model on the basis of the quantum mechanical solution for finitely extensible dumbbells (Ilg et al., 2000). The proposed model includes very few physically motivated material constants and demonstrates good agreement with experimental data on biaxial tension as well as simple shear tests.

  6. Thermodynamic parameters of elasticity and electrical conductivity of reinforced natural rubber (nr vulca nizates

    Directory of Open Access Journals (Sweden)

    B.F. Adeosun

    2004-12-01

    Full Text Available The thermodynamic parameters (change in free energy of elasticity, ΔGe; change in enthalpy of elasticity, ΔHe; and change in entropy of elasticity, ΔSe and the electrical conductivity of natural rubber composites reinforced separately with some agricultural wastes have been determined. Results show that the reinforced composites are relatively more ordered and more spontaneous to elasticity than the unreinforced composite. These more ordered composites were observed to conduct electricity better than the unreinforced. The inclusion of the agricultural wastes examined in the formulation of natural rubber composite enhances the elasticity and the electrical conductivity of natural rubber.

  7. Mechanistic Constitutive Models for Rubber Elasticity and Viscoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Puso, M

    2003-01-21

    Physically based models which describe the finite strain behavior of vulcanized rubber are developed. Constitutive laws for elasticity and viscoelasticity are derived by integrating over orientation space the forces due to each individual polymer chain. A novel scheme is presented which effectively approximates these integrals in terms of strain and strain invariants. In addition, the details involving the implementation of such models into a quasi-static large strain finite element formulation are provided. In order to account for the finite extensibility of a molecular chain, Langevin statistics is used to model the chain response. The classical statistical model of rubber assumes that polymer chains interact only at the chemical crosslinks. It is shown that such model when fitted for uniaxial tension data cannot fit compression or equibiaxial data. A model which incorporates the entanglement interactions of surrounding chains, in addition to the finite extensibility of the chains, is shown to give better predictions than the classical model. The technique used for approximating the orientation space integral was applied to both the classical and entanglement models. A viscoelasticity model based on the force equilibration process as described by Doi and Edwards is developed. An assumed form for the transient force in the chain is postulated. The resulting stress tensor is composed of an elastic and a viscoelastic portion with the elastic stress given by the proposed entanglement model. In order to improve the simulation of experimental data, it was found necessary to include the effect of unattached or dangling polymer chains in the viscoelasticity model. The viscoelastic effect of such chains is the manifestation of a disengagement process. This disengagement model for unattached polymer chains motivated an empirical model which was very successful in simulating the experimental results considered.

  8. The molecular kink paradigm for rubber elasticity: numerical simulations of explicit polyisoprene networks at low to moderate tensile strains.

    Science.gov (United States)

    Hanson, David E

    2011-08-07

    Based on recent molecular dynamics and ab initio simulations of small isoprene molecules, we propose a new ansatz for rubber elasticity. We envision a network chain as a series of independent molecular kinks, each comprised of a small number of backbone units, and the strain as being imposed along the contour of the chain. We treat chain extension in three distinct force regimes: (Ia) near zero strain, where we assume that the chain is extended within a well defined tube, with all of the kinks participating simultaneously as entropic elastic springs, (II) when the chain becomes sensibly straight, giving rise to a purely enthalpic stretching force (until bond rupture occurs) and, (Ib) a linear entropic regime, between regimes Ia and II, in which a force limit is imposed by tube deformation. In this intermediate regime, the molecular kinks are assumed to be gradually straightened until the chain becomes a series of straight segments between entanglements. We assume that there exists a tube deformation tension limit that is inversely proportional to the chain path tortuosity. Here we report the results of numerical simulations of explicit three-dimensional, periodic, polyisoprene networks, using these extension-only force models. At low strain, crosslink nodes are moved affinely, up to an arbitrary node force limit. Above this limit, non-affine motion of the nodes is allowed to relax unbalanced chain forces. Our simulation results are in good agreement with tensile stress vs. strain experiments.

  9. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications

    NARCIS (Netherlands)

    Lotters, J.C.; Olthuis, W.; Veltink, P.H.; Bergveld, P.

    1997-01-01

    Polydimethylsiloxane (PDMS) is a commercially available physically and chemically stable silicone rubber. It has a unique flexibility with a shear elastic modulus due to one of the lowest glass transition temperatures of any polymer . Further properties of PDMS are a low change in the shear elastic

  10. Elastic waves in particulate glass-rubber mixture: experimental and numerical investigations/studies

    Science.gov (United States)

    Taghizadeh, Kianoosh; Steeb, Holger; Magnanimo, Vanessa; Luding, Stefan

    2017-06-01

    In this paper we study by wave propagation the elastic response of granular mixtures made of soft and stiff particles subjected under hydrostatic pressure/stress. This allows inferring fundamental properties of granular materials such as elastic moduli and dissipation mechanisms. We compare physical experiments in a triaxial cell equipped with piezoelectric wave transducers and Discrete Element Method simulations (DEM). In the experimental part, dense, static packings made of monodisperse glass and rubber beads are prepared at various levels of hydrostatic stress and species fractions. Small perturbations are generated on one side and the time of flight through the glass-rubber mixtures are measured to quantify the effect of the mixture composition on the elastic moduli. Interestingly, the experiments show that the behavior is non-linear and nonmonotonic with increasing percentage of rubber particles. Wave velocity and modulus remain fairly constant when increasing the fraction of rubber to 30%, while they experience a sudden drop between 30% and 60%, to become again constant between 60% to 100%. DEM simulations offer deeper insights into the micromechanics in and at the transition between the glass- and rubber-dominated regimes. The simplest analysis with Hertzian spherical particles of different stiffness is performed as a preliminary step. The behavior of mixtures with high glass content is very well captured by the simulations, without need of any additional calibration, whereas the complex interaction between rubber and glass leave open questions for further study.

  11. The "coin-through-the-rubber" trick: an elastically stabilized invagination

    CERN Document Server

    Meng, Fanlong; Ouyang, Zhongcan; Zheng, Xiaoyu; Palffy-Muhoray, Peter

    2015-01-01

    A spectacular trick of close-up magicians involves the apparent passing of a coin through a rubber sheet. The magic is based on the unusual elastic response of a thin rubber sheet: the formation of an invagination, stabilized by friction and elasticity, which holds the coin. By pressing on the coin, the invagination becomes unstable, and the coin is released. We describe the deformation analytically using a simple Hookean description, and examine the stability of the invagination. We finally compare the prediction of the Hookean analysis with numerical solutions of the neo-Hookean model, and provide a brief commentary on the origins of the trick.

  12. The effect of elastic modulus and friction coefficient on rubber tube sealing performance

    Science.gov (United States)

    Li, Zhimiao; Xu, Siyuan; Ren, Fushen; Liu, Jubao

    2015-03-01

    The packer is the key element in separating geosphere layers of water injection, water plugging and fracturing operations in the oilfield. The sealing ability of the packer is depending on the contact pressure between rubber tube and the casing. The circumferential strain of casing wall was tested by the strain gauge to get the contact pressure distribution along axial direction of the tube. The friction force between the casing and the rubber tube was taken by the pressure sensor in compression process. Under the 20,60 and 100 degrees Celsius conditions, the friction forces and the contact pressure distribution were taken in work condition of single rubber tube, double rubber tubes and combination rubber tubes after oil immersion .The result shows that elastic modulus of rubber tube has little effect on the friction force and contact pressure. With elastic modulus decreasing, the friction forces has gradually decreasing trend; The friction coefficient has much impact on friction force: the friction forces under the condition of dry friction and wet friction are respectively equivalent to 48.27% and 5.38% axial compression forces. At wet friction condition, the contact pressure distribution is more uniform and the sealing effect is better.

  13. Rubber elasticity for percolation network consisting of Gaussian chains

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Kengo, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp; Noguchi, Hiroshi; Shibayama, Mitsuhiro, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Sakai, Takamasa, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp [Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G{sub 0}, must be equal to G/G{sub 0} = (p − 2/f)/(1 − 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  14. Rubber elasticity for percolation network consisting of Gaussian chains.

    Science.gov (United States)

    Nishi, Kengo; Noguchi, Hiroshi; Sakai, Takamasa; Shibayama, Mitsuhiro

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G0, must be equal to G/G0 = (p - 2/f)/(1 - 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  15. Rubber Elasticity for percolation network consisting of Gaussian Chains

    Science.gov (United States)

    Nishi, Kengo; Shibayama, Mitsuhiro; Sakai, Takamasa

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation for Hookian spring network (EMA) to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1 ,G0, must be equal to G /G0 = (p - 2 / f) / (1 - 2 / f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA, and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  16. Tools for multiaxial validation of behavior laws chosen for modeling hyper-elasticity of rubber-like materials

    CERN Document Server

    Chevalier, Luc; 10.1002/pen.10948

    2010-01-01

    We present an experimental approach to discriminate hyper-elastic models describing the mechanical behavior of rubber-like materials. An evaluation of the displacement field obtained by digital image correlation allows us to evaluate the heterogeneous strain field observed during these tests. We focus on the particular case of hyper-elastic models to simulate the behavior of some rubber-like materials. Assuming incompressibility of the material, the hyper-elastic potential is determined from tension and compression tests. A biaxial loading condition is obtained in a multiaxial testing machine and model predictions are compared with experimental results.

  17. Control of the low-frequency vibrations of elastic metamaterial shafts with discretized arc-rubber layers

    Science.gov (United States)

    Lixia, Li; Anjiang, Cai

    2016-06-01

    We propose a new kind of elastic metamaterial (EM) shaft with discretized arc-shaped rubber layers, which shows excellent low-frequency vibration properties. The band gaps of the shaft structure were analyzed by employing the finite element method. The proposed EM shaft exhibits much lower band gaps than the corresponding structures with the whole rubber ring. Furthermore, the band gaps can be modulated by tuning the arc angle and the number of the arc-shaped rubbers. Additionally, we observed that the first complete band gap tends to disappear when the arc angle of each arc-shaped rubber section is decreased but the arc number remains fixed because the arc angle more strongly affects the rotational stiffness than the transverse stiffness of the rubber layers. This new type of EM shafts could find potential application as a means to control the low-frequency vibrations of rotor shafts in mechanical engineering.

  18. Studies of Elastic Waves in Ethylene Propylene Rubber Using Acoustic Emission Sensor

    Science.gov (United States)

    Takaoka, Masanori; Sakoda, Tatsuya; Otsubo, Masahisa; Akaiwa, Shigeru; Iki, Masatoshi; Nakano, Shigeharu

    The aim of our study is to investigate the relationship between lowering of the insulation performance of cross-linked polyethylene (CV) cable and partial discharges (PDs) followed by the dielectric breakdown and to establish a diagnostic technique using an acoustic emission (AE) sensor. In this study, we focused on characterization of AE signals detected from ethylene propylene rubbers (EPRs) used as insulating materials of CV cables. Elastic waves with various frequencies were added to the surface of the EPR, and then characteristics of the detected AE signals due to the elastic waves propagated in the EPR were evaluated. We showed characteristics of Lamb waves whose low frequency components around 100 kHz were large and their small attenuation characteristics.

  19. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  20. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part I: Equations of State.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…

  1. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  2. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part I: Equations of State.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…

  3. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications

    Science.gov (United States)

    Lötters, J. C.; Olthuis, W.; Veltink, P. H.; Bergveld, P.

    1997-09-01

    Polydimethylsiloxane (PDMS) is a commercially available physically and chemically stable silicone rubber. It has a unique flexibility with a shear elastic modulus 0960-1317/7/3/017/img1 due to one of the lowest glass transition temperatures of any polymer 0960-1317/7/3/017/img2. Further properties of PDMS are a low change in the shear elastic modulus versus temperature 0960-1317/7/3/017/img3, virtually no change in G versus frequency and a high compressibility. Because of its clean room processability, its low curing temperature, its high flexibility, the possibility to change its functional groups and the very low drift of its properties with time and temperature, PDMS is very well suited for micromachined mechanical and chemical sensors, such as accelerometers (as the spring material) and ISFETs (as the ion selective membrane). It can also be used as an adhesive in wafer bonding, as a cover material in tactile sensors and as the mechanical decoupling zone in sensor packagings.

  4. Resilin-based rubber-like elastic elements in the insect wing: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Gorb, S.N. [Max-Planck-Institut fuer Entwicklungsbiologie, Tuebingen (Germany)

    2000-07-01

    This report summarises data on the presence of resilin, a rubber-like protein in the flexibly-joined junctions of wing veins. This protein is a substance which is responsible for elastic energy storage. Previously this protein has been described in jumping systems of beetles, fleas and leafhoppers abdominal cuticle of workers of the honey-ants and queen termites; eye lens cuticle of dragonflies and the food-pump of reduviid bugs. It is also known in tendons of the dragonfly flight muscles. This protein has not been previously described in the distal regions of damselfly wings. The pattern of resilin distribution in the insect wings is one of several mechanisms which are responsible for automatic performance of passive wing movements. Any folding of the distal wing parts can not be achieved by local muscles, but must be done by remote (thoracic) muscles or local elasticity. Many insects, such as earwigs and beetles, have developed complex mechanisms of wing folding, which are advantagenous for insects living in soil or other narrow substrata. The folding pattern depends on the wing geometry, venation pattern, and material properties of structures involved. Thus design of wings with folding function has an additional complexity: their design is a kind of compromise between flight and folding. (orig.)

  5. CALCULATION OF ELASTIC DAMPING CHARACTERISTICS OF ROTOR SUPPORT MADE OF METAL RUBBER MATERIAL UNDER VARIABLE LOADS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A metal rubber(MR) dry friction damper was designed based on the load supported by the rotor. An experimental apparatus for obtaining hysteresis loops of support under the precession load was designed. The elastic-damping characteristics of the ring-shaped MR damper used as a rotor support under variable loads were presented by studying the hysteresis loops of the damper. The vibration rigidity and the energy dissipation coefficient were calculated from the hysteresis loops, based on the description of the deformation process of the MR element with simple structure in a dimensionless coordinating system. The calculation results showed that the energy dissipation coefficient in the inner of MR element and on the boundary between the damper and the frame of the rotor support were approximately equal. The comparison of the hysteresis loops for a precession load and a one-axial load indicated a large difference when the coefficient of the energy dissipation and the stiffness of the MR damper were concerned.

  6. Rejuvenation of metallic glasses by non-affine thermal strain.

    Science.gov (United States)

    Ketov, S V; Sun, Y H; Nachum, S; Lu, Z; Checchi, A; Beraldin, A R; Bai, H Y; Wang, W H; Louzguine-Luzgin, D V; Carpenter, M A; Greer, A L

    2015-08-13

    When a spatially uniform temperature change is imposed on a solid with more than one phase, or on a polycrystal of a single, non-cubic phase (showing anisotropic expansion-contraction), the resulting thermal strain is inhomogeneous (non-affine). Thermal cycling induces internal stresses, leading to structural and property changes that are usually deleterious. Glasses are the solids that form on cooling a liquid if crystallization is avoided--they might be considered the ultimate, uniform solids, without the microstructural features and defects associated with polycrystals. Here we explore the effects of cryogenic thermal cycling on glasses, specifically metallic glasses. We show that, contrary to the null effect expected from uniformity, thermal cycling induces rejuvenation, reaching less relaxed states of higher energy. We interpret these findings in the context that the dynamics in liquids become heterogeneous on cooling towards the glass transition, and that there may be consequent heterogeneities in the resulting glasses. For example, the vibrational dynamics of glassy silica at long wavelengths are those of an elastic continuum, but at wavelengths less than approximately three nanometres the vibrational dynamics are similar to those of a polycrystal with anisotropic grains. Thermal cycling of metallic glasses is easily applied, and gives improvements in compressive plasticity. The fact that such effects can be achieved is attributed to intrinsic non-uniformity of the glass structure, giving a non-uniform coefficient of thermal expansion. While metallic glasses may be particularly suitable for thermal cycling, the non-affine nature of strains in glasses in general deserves further study, whether they are induced by applied stresses or by temperature change.

  7. Thermodynamic description of performance characteristics pneumatic elastic elements with rubber-cord envelopes

    Science.gov (United States)

    Korneev, S. A.; Korneev, V. S.; Adonin, V. A.

    2017-08-01

    The thermodynamic computational method of pneumatic elements with rubber-cord envelopes geometrical and power characteristics of the different designs used in a buffer systems and the industrial facilities vibro protection, including, petrochemical and oil and gas production is explained. The record of rubber-cord envelope resilient deformation allowed to obtain the valid data having important applied meaning. Temperature effect is reflected in the received defining ratios.

  8. Non-affine fields in solid-solid transformations: the structure and stability of a product droplet.

    Science.gov (United States)

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2014-01-01

    We describe the microstructure, morphology, and dynamics of growth of a droplet of martensite nucleating in a parent austenite during a solid-solid transformation, using a Landau theory written in terms of both conventional affine elastic deformations and non-affine deformations. Non-affineness, φ, serves as a source of strain incompatibility and screens long-ranged elastic interactions. It is produced wherever the local stress exceeds a threshold and anneals diffusively thereafter. Using a variational calculation, we find three types of stable solution (labeled I, II, and III) for the structure of the product droplet, depending on the stress threshold and the scaled mobilities of φ parallel and perpendicular to the parent-product interface. The profile of the non-affine field φ is different in these three solutions: I is characterized by a vanishingly small φ, II admits large values of φ localized in regions of high stress within the parent-product interface, and III is a structure in which φ completely wets the parent-product interface. The width l and size W of the twins follow the relation l is proportional to √W in solution I; this relation does not hold for II or III. We obtain a dynamical phase diagram featuring these solutions, and argue that they represent specific solid-state microstructures.

  9. The entropy of the rotational conformations of (poly)isoprene molecules and its relationship to rubber elasticity and temperature increase for moderate tensile or compressive strains

    Science.gov (United States)

    Hanson, David E.; Barber, John L.; Subramanian, Gopinath

    2013-12-01

    Molecular networks comprised of crosslinked cis-1,4 polyisoprene, often referred to as "natural rubber," are one of the most common systems for the study of rubber elasticity. Under moderate tensile or compressive strain, network chains begin to assume straighter paths, as local molecular kinks are removed. Isoprene units along the chain backbone are mechanically forced from their equilibrium distributions of 18 possible rotational states into a smaller subset of states, restricted to more linear conformations with the greatest end-to-end distances. There are two consequences to this change: both the configurational entropy and average internal energy decrease. We find that the change in entropy, and resulting change in free energy, gives rise to an elastic force. We derive an expression for a chain extension force constant that we have incorporated in an explicit, three-dimensional meso-scale network simulation code. Using this force model, our simulations predict a macroscopic stress-strain relationship that closely matches published experimental values. We also predict a slight increase in temperature resulting from the change in average internal energy in the affected isoprene units that is consistent with experiments.

  10. 基于复合材料的橡胶颗粒沥青混合料弹性模量预测%Elastic modulus prediction of crumb rubber asphalt mixture based on composite material

    Institute of Scientific and Technical Information of China (English)

    陈渊召; 李振霞

    2013-01-01

    为对橡胶颗粒沥青混合料弹性模量进行预估,分别建立单夹杂复合材料两层嵌入式模型和多步骤多相细观力学模型,得到橡胶颗粒沥青混合料弹性模量预测方法,对橡胶颗粒沥青混合料弹性模量进行预测;将弹性模量预测结果与实测结果进行对比分析,研究橡胶颗粒沥青混合料弹性模量影响因素,并对低温条件下弹性衰减进行分析.研究结果表明:该细观力学模型方法是有效的和可靠的,可用于预先评估橡胶颗粒沥青路面在低温下的力学性能和除冰能力;沥青胶浆的弹性模量对橡胶颗粒沥青混合料弹性模量的影响较大,且随沥青胶浆弹性模量的增大而增大;橡胶颗粒用量变化对混合料弹性模量的影响比较大,随着橡胶颗粒用量的增加,混合料弹性模量逐渐减小;在低温下,混合料的弹性模量显著增大,橡胶颗粒沥青路面的除冰效果将大大减弱.%In order to predict elastic modulus of crumb rubber asphalt mixture,two-layer embedded model of single inclusion composite and multi-step multiphase micro-mechanical model were established.Prediction method of elastic modulus for crumb rubber asphalt mixture was gotten.Elastic modulus of crumb rubber asphalt mixture was predicted,and elastic modulus comparative analysis of prediction results and measured results was carried out.Influencing factors of elastic modulus for crumb rubber asphalt mixture were researched,and deep analysis on elasticity attenuation under low temperature was carried out.The results show that the micro-mechanical model method is effective and reliable,and can be used to predict mechanical properties and deicing ability of crumb rubber asphalt mixture under low temperature.The effect of elastic modulus for asphalt mortar on elastic modulus for asphalt mixture is big,and elastic modulus of crumb rubber asphalt mixture increases with the increase of the asphalt mortar.The effect of crumb rubber

  11. Investigation on the Elastic Modulus of Rubber-like Materials by Straight Blade Indentation Using Numerical Analysis

    NARCIS (Netherlands)

    Setiyana, B.; Wicahyo, F.D.; Ismail, Rifky; Jamari, Jamari; Schipper, Dirk J.

    2015-01-01

    The indentation technique has been proven to be useful in determining mechanical properties of materials, but it is rarely applied to rubber-like materials (elastomers). It is difficult to describe accurately the mechanical properties of an elastomer by theoretical formulation due to its complex

  12. Isoprene Rubber Has Broad Market Potential

    Institute of Scientific and Technical Information of China (English)

    Xu Qingsbeng

    2007-01-01

    @@ Isoprene Rubber (IR) is a macro molecular substance polymerized from isoprene monomer, with a structure and properties that are basically similar to those of natural rubber (NR). It features excellent elasticity, wear resistance,heat resistance, low temperature flexibility, etc.

  13. Elasticity

    CERN Document Server

    Soutas-Little, Robert William

    2010-01-01

    According to the author, elasticity may be viewed in many ways. For some, it is a dusty, classical subject . . . to others it is the paradise of mathematics."" But, he concludes, the subject of elasticity is really ""an entity itself,"" a unified subject deserving comprehensive treatment. He gives elasticity that full treatment in this valuable and instructive text. In his preface, Soutas-Little offers a brief survey of the development of the theory of elasticity, the major mathematical formulation of which was developed in the 19th century after the first concept was proposed by Robert Hooke

  14. Classification of Non-Affine Non-Hecke Dynamical R-Matrices

    Directory of Open Access Journals (Sweden)

    Baptiste Billaud

    2012-09-01

    Full Text Available A complete classification of non-affine dynamical quantum $R$-matrices obeying the $Gl_n(C$-Gervais-Neveu-Felder equation is obtained without assuming either Hecke or weak Hecke conditions. More general dynamical dependences are observed. It is shown that any solution is built upon elementary blocks, which individually satisfy the weak Hecke condition.

  15. Influence of temperature changes on torsional rigidity and damping coefficient of rubber torsional vibration damper

    OpenAIRE

    Wojciech HOMIK

    2011-01-01

    The short explanation of usefulness of rubber torsional dampers in crankshaft in multi-cylinder engines is presented. The description of the construction and operation of rubber torsional damper is also included. In the rubber torsional damper, the damping is achieved as the effect of internal friction resulting from the deformation of the rubber material. This deformation appears while the internal rubber elasticity is overloaded. Both the physical and mechanical rubber properties depend on ...

  16. Rubber Reclamation

    Science.gov (United States)

    Williams, Kathryn R.

    2007-01-01

    The safety and health hazards related to recycling of used rubber, due to the scarcity and high price of virgin rubber are reported. Various threats like stagnant water pools trapped in tires leading to diseases and ignited tires, which become very difficult to extinguish and generating smoke that is extremely detrimental to the environment, have…

  17. Robust control of a class of non-affine nonlinear systems by state and output feedback

    Institute of Scientific and Technical Information of China (English)

    陈贞丰; 章云

    2014-01-01

    Robust control design is presented for a general class of uncertain non-affine nonlinear systems. The design employs feedback linearization, coupled with two high-gain observers:the first to estimate the feedback linearization error based on the full state information and the second to estimate the unmeasured states of the system when only the system output is available for feedback. All the signals in the closed loop are guaranteed to be uniformly ultimately bounded (UUB) and the output of the system is proven to converge to a small neighborhood of the origin. The proposed approach not only handles the difficulty in controlling non-affine nonlinear systems but also simplifies the stability analysis of the closed loop due to its linear control structure. Simulation results show the effectiveness of the approach.

  18. Rubberized Concrete Durability Against Abrasion

    Directory of Open Access Journals (Sweden)

    Md Noor Nurazuwa

    2016-01-01

    Full Text Available Durability performance of rubberized concrete against abrasion is presented in this paper. Surface depth loss was measured when abrasion load was constantly applied on concrete surface at each 500 interval rotation. Specimen with water-to cement ratio of 0.50 and 0.35 was prepared and tested at 28 days of curing age. In addition, 10% silica fume, SF was added to provide denser concrete and to understand its effectiveness against wear when added with crumb rubber. Results showed that crumb rubber shows good potential in providing abrasion resistance to concrete mix. However, in the case of rubberized concrete with silica fume, abrasion resistance was found to be slightly decreased with compressive strength more than 50N/mm2 due to the lack of low elastic modulus of CR particles to accommodate with denser cement matrix.

  19. An Analysis of a Transport System Using Non-Affine Transformations

    Directory of Open Access Journals (Sweden)

    Péter Ficzer

    2011-09-01

    Full Text Available The authors investigated the transformation possibilities and particularly the usage of non-affine transformations of maps in order to analyse the current status and development possibilities of the Hungarian railway system. In the introduction, the authors overview the theoretical background of map transformations and then present the detailed description of the non-parameter affine transformations and their applicability to the evaluation of railway networks.

  20. Prehistoric polymers: rubber processing in ancient mesoamerica

    Science.gov (United States)

    Hosler; Burkett; Tarkanian

    1999-06-18

    Ancient Mesoamerican peoples harvested latex from Castilla elastica, processed it using liquid extracted from Ipomoea alba (a species of morning glory vine), and fashioned rubber balls, hollow rubber figurines, and other rubber artifacts from the resulting material. Chemical and mechanical analyses of the latex and of the processed rubber indicate that the enhanced elastic behavior of the rubber relative to the unprocessed latex is due to purification of the polymer component and to an increase in the strength and number of interchain interactions that are induced by organic compounds present in I. alba. These ancient peoples' control over the properties of latex and processed rubber gave rise to the Mesoamerican ball game, a central ritual element in all ancient Mesoamerican societies.

  1. Thermodynamic parameters of elasticity and electrical conductivity ...

    African Journals Online (AJOL)

    Thermodynamic parameters of elasticity and electrical conductivity of reinforced natural rubber (nr) vulca nizates. ... Bulletin of the Chemical Society of Ethiopia ... The thermodynamic parameters (change in free energy of elasticity, DGe; ...

  2. Experimental Investigation into Mechanical Properties of Nanomaterial-reinforced Table Tennis Rubber

    Directory of Open Access Journals (Sweden)

    Yu-Fen Chen

    2016-10-01

    Full Text Available A new table tennis rubber is prepared consisting of carbon nanotubes, zinc oxide and titanium oxide added to a mixture of natural and synthesized rubber. The Nano-reinforced rubber is attached to wooden table tennis blades and patterned with four different surface structures, namely flat, long pimples, short pimples and medium pimples. The results show that of the five rubbers, the Nano-reinforced rubber with a flat surface offers a significantly improved elastic and mechanical performance

  3. Investigations on cementitious composites based on rubber particle waste additions

    Directory of Open Access Journals (Sweden)

    Glaucio Laun Nacif

    2013-04-01

    Full Text Available The amount of waste rubber has gradually increased over recent years because of over-growing use of rubber products. The disposal of waste rubber has caused serious environmental problems. The incorporation of recycled materials into cementitious composites is a feasible alternative that has gained ground in civil construction. The performance of such materials is much affected not only by the rubber addition, but also the particle size which has been controversially reported in the literature. In order to investigate the single effect of rubber particles into cement based materials, rubber cementitious composites were prepared with no silica particle additions. A full factorial design has been conducted to assess the influence of the rubber particle size (0.84/0.58 mm and 0.28/0.18 mm; mass fraction used (5, 15 and 30%; and water/cement ratio (0.35 and 0.50 on the physic-mechanical properties of the composites. The materials were characterized through apparent density, porosity, compressive strength, flexural strength, modulus of elasticity and microstructural analysis. The interactions of rubber particle size, rubber fraction and water/cement ratio affected significantly the density and compressive strength of the composites. The apparent porosity was influenced mainly by the rubber particle size. The flexural strength was affected by the main factors and the modulus of elasticity was affected by the interaction factors rubber particle size and fraction, and rubber fraction and w/c ratio.

  4. Influence of temperature changes on torsional rigidity and damping coefficient of rubber torsional vibration damper

    Directory of Open Access Journals (Sweden)

    Wojciech HOMIK

    2011-01-01

    Full Text Available The short explanation of usefulness of rubber torsional dampers in crankshaft in multi-cylinder engines is presented. The description of the construction and operation of rubber torsional damper is also included. In the rubber torsional damper, the damping is achieved as the effect of internal friction resulting from the deformation of the rubber material. This deformation appears while the internal rubber elasticity is overloaded. Both the physical and mechanical rubber properties depend on temperature change. In cooperation with rubber dampers manufacturer the experimental investigations are made in order to establish the influence of temperature change on torsional stiffness and damping.

  5. Properties of Nanokaolin and Its Rubber Composites

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-de; LIU Qin-fu; JI Lei-bo; LU Yin-ping

    2005-01-01

    A kind of nanokaolin powder with a thickness of 20-50nm and an average diameter of 300nm is produced through combined procedure of purification, delamination, surface modification and pulverization. The application experiments in butadiene rubber (BR), ethylene-propylene diene methylene (EPDM), and natural rubber (NR) indicates that this nano-kaolin powder material is much better than precipitated silica in reinforcement, while in styrene-butadiene rubber (SBR) it is close to precipitated silica. Nanokaolin is of superiority in elasticity, elongation at break, anti-flexure property.

  6. Excess vibrational modes of a crystal in an external non-affine field

    Indian Academy of Sciences (India)

    SASWATI GANGULY; SURAJIT SENGUPTA

    2017-07-01

    Thermal displacement fluctuations in a crystal may be classified as either “affine” or “non-affine”. While the former couples to external stress with familiar consequences, the response of a crystal when nonaffine displacements are enhanced using the thermodynamically conjugate field, is relatively less studied. We examine this using a simple model of a crystal in two dimensions for which analytical calculations are possible. Enhancing non-affine fluctuations destabilises the crystal. The population of small frequency phonon modesincreases, with the phonon density of states shifting, as a whole, towards zero frequency. Even though the crystal is free of disorder, we observe growing length and time scales. Our results, which may have implications for the glass transition and structural phase transitions in solids, are compared to molecular dynamics simulations. Possibility of experimental verification of these results is also discussed.

  7. How far can a rubber molecule stretch before breaking? Ab initio study of tensile elasticity and failure in single-molecule polyisoprene

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, David E [Los Alamos National Laboratory

    2008-01-01

    We present ab initio calculations of the internal C-C bond dissociation curve for single molecules of (cis 1,4) polyisoprene, polybutadiene, and polyethylene, all of comparable length. We define 'bond rupture' as that point on the reaction coordinate where the unrestricted Kohn-Sham, or diradical, solution falls below the restricted, or closed-shell, solution. Using this well-defined though crude approximation, we find that rupture occurs at a tensile force of 6.8 nN for poly isoprene and 7.2 nN for polybutadiene. Their respective rupture strains are 45% and 42%. Our calculations show that the energy density vs. extension is not sensitive to the length of the molecule, i.e., it is essentially independent of the number of isoprene units contained. These relatively large rupture strains have important implications for understanding the failure mechanism in rubber, and imply that purely enthalpic chain stretching must commence well before tensile failure occurs.

  8. Tensile Strength of PHBV/Natural Rubber Latex Mixtures

    OpenAIRE

    Promkotra Sarunya; Kangsadan Tawiwan

    2015-01-01

    A polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is mingled with natural rubber latex (R) to develop its mechanical property of the blend. Normally, substantial effects of the PHBV are hard, fragile, and inelastic, whereas the natural rubber is represented itself as very high elastic matter. The mixtures between the PHBV and natural rubber latex (R) are considered in different proportions. The PHBV solutions (w/v) are defined suitability at 1% (P1), 2% (P2), and 3% (P3). Their liquid mixtures ...

  9. Viscoelastic properties of short aramid fibres-reinforced rubbers

    NARCIS (Netherlands)

    Sadatshirazi, S.; Talma, Auke; Noordermeer, Jacobus W.M.

    2013-01-01

    Among short fiber-reinforced composites, those with rubber matrices have gained great importance due to the advantages they have in processing and low cost, coupled with high strength. These composites combine the elastic behavior of rubbers with strength and stiffness of fibers. Reinforcement with

  10. Viscoelastic properties of short aramid fibres-reinforced rubbers

    NARCIS (Netherlands)

    Shirazi, S.; Talma, A.G.; Noordermeer, J.W.M.

    2013-01-01

    Among short fiber-reinforced composites, those with rubber matrices have gained great importance due to the advantages they have in processing and low cost, coupled with high strength. These composites combine the elastic behavior of rubbers with strength and stiffness of fibers. Reinforcement with

  11. Classification of Non-Affine Non-Hecke Dynamical R-Matrices

    CERN Document Server

    Avan, Jean; Rollet, Geneviève

    2012-01-01

    A complete classification of non-affine dynamical quantum R-matrices obeying the Gl_n(C)-Gervais-Neveu-Felder equation is given without assuming either Hecke or weak Hecke conditions. More general dynamical dependences are observed. These generic solutions are built upon elementary blocks, which satisfy the weak Hecke condition, and which are fully characterized by an arbitrary set of classes partioning the set of indices {1,...,n}. The weak Hecke-type R-matrices are shown to exhibit the analytical behaviour R_ij,ji=f(e_I(i)L_I(i)-e_I(j)L_I(j)), where f is a particular trigonometric or rational function of the dynamical coordinate L=(L_i)_i\\in{1,...,n} and the set {e_I(i)}}_i\\in{1,...,n} is an arbitrary choice of signs, I(i) being the unique class of the partition of the set of indices {1,...,n} to which belongs the index i and L_I(i)=\\sum_j\\in I(i)L_j.

  12. On the response of rubbers at high strain rates.

    Energy Technology Data Exchange (ETDEWEB)

    Niemczura, Johnathan Greenberg (University of Texas-Austin)

    2010-02-01

    In this report, we examine the propagation of tensile waves of finite deformation in rubbers through experiments and analysis. Attention is focused on the propagation of one-dimensional dispersive and shock waves in strips of latex and nitrile rubber. Tensile wave propagation experiments were conducted at high strain-rates by holding one end fixed and displacing the other end at a constant velocity. A high-speed video camera was used to monitor the motion and to determine the evolution of strain and particle velocity in the rubber strips. Analysis of the response through the theory of finite waves and quantitative matching between the experimental observations and analytical predictions was used to determine an appropriate instantaneous elastic response for the rubbers. This analysis also yields the tensile shock adiabat for rubber. Dispersive waves as well as shock waves are also observed in free-retraction experiments; these are used to quantify hysteretic effects in rubber.

  13. Stimuli-responsive cement-reinforced rubber.

    Science.gov (United States)

    Musso, Simone; Robisson, Agathe; Maheshwar, Sudeep; Ulm, Franz-Josef

    2014-05-14

    In this work, we report the successful development of a cement-rubber reactive composite with reversible mechanical properties. Initially, the composite behaves like rubber containing inert filler, but when exposed to water, it increases in volume and reaches a stiffness that is intermediate between that of hydrogenated nitrile butadiene rubber (HNBR) and hydrated cement, while maintaining a relatively large ductility characteristic of rubber. After drying, the modulus increases even further up to 400 MPa. Wet/drying cycles prove that the elastic modulus can reversibly change between 150 and 400 MPa. Utilizing attenuated total reflection Fourier transform infrared spectroscopy), we demonstrate that the high pH produced by the hydration of cement triggers the hydrolysis of the rubber nitrile groups into carboxylate anions. Thus, the salt bridges, generated between the carboxylate anions of the elastomer and the cations of the filler, are responsible for the reversible variations in volume and elastic modulus of the composite as a consequence of environmental moisture exposure. These results reveal that cement nanoparticles can successfully be used to accomplish a twofold task: (a) achieve an original postpolymerization modification that allows one to work with carboxylate HNBR (HXNBR) not obtained by direct copolymerization of carboxylate monomers with butadiene, and (b) synthesize a stimuli-responsive polymeric composite. This new type of material, having an ideal behavior for sealing application, could be used as an alternative to cement for oil field zonal isolation applications.

  14. Analyses toward factors influencing sealing clearance of a metal rubber seal and derivation of a calculation formula

    National Research Council Canada - National Science Library

    Yan Hui Zhao Yalei Liu Jianguo Jiang Hongyuan

    2016-01-01

    .... By combining the temperature and elasticity factors of metal rubber with the elastic mechanics theory, the calculation formula of the sealing clearance has been derived, and the values of the sealing...

  15. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    Science.gov (United States)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  16. Natural rubber: leather composites

    OpenAIRE

    K. Ravichandran; N. Natchimuthu

    2005-01-01

    Leather is a fibrous protein consisting of collagen in a three dimensionally crosslinked network. Chrome tanning of leather improves the appearance of leather but at the same time emits both solid and liquid chrome leather wastes. Scrap rubber recycling using untreated and neutralized leather fibrous particles in natural rubber has been studied. Vulcanization, mechanical, morphological and swelling properties of the natural rubber - scrap rubber composites containing neutralized leather have ...

  17. Analyses toward factors influencing sealing clearance of a metal rubber seal and derivation of a calculation formula

    Institute of Scientific and Technical Information of China (English)

    Yan Hui; Zhao Yalei; Liu Jianguo; Jiang Hongyuan

    2016-01-01

    Sealing clearance is a key factor for a metal rubber seal’s sealability. The expansion coef-ficient and expansion deformation in the radial direction of metal rubber have been obtained through a thermal expansion experiment of metal rubber. The influence of the elastic modulus to the sealing clearance has been analyzed theoretically. By combining the temperature and elasticity factors of metal rubber with the elastic mechanics theory, the calculation formula of the sealing clearance has been derived, and the values of the sealing clearance and the leakage rate in certain working conditions have been calculated. Experimental results are consistent with calculation results in a high degree. The calculation formula of the sealing clearance can explain the influences of the temperature and elastic modulus factors of metal rubber on the sealing clearance. It can pro-vide guidance for the study of sealing mechanism of metal rubber seals.

  18. Developments in rubber technology 2 synthetic rubbers

    CERN Document Server

    Lee, K

    1981-01-01

    This book is intended for those people who have a knowledge or understanding of rubber materials and processes but who wish to update their knowledge. It should be read in conjunction with Developments in Rubber Technology-l as that volume discussed developments in natural rubber and selected special purpose synthetic rubbers as well as additives. The authors have been selected for their expertise in each particular field and we, as editors, would like to express our appreciation to the individual authors and also to their companies. Such a book would be impossible to produce without such active cooperation as we have received. Volumes 1 and 2 of Developments in Rubber Technology cover rubbers which are processed and vulcanised in the traditional manner. It is appreciated that the omission of non-vulcanised rubber materials (the so­ called thermoplastic elastomers) will be unwelcome to many readers but it is intended, because of the size of the subject, to cover these materials in a subsequent volume. A.W. K...

  19. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    OpenAIRE

    Chrysochoos A.; Wattrisse B.; Muracciole J.M.; Caborgan R.

    2010-01-01

    Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard th...

  20. Mechanochemical modification of natural rubber

    Science.gov (United States)

    Mikhaylov, I. A.; Sukhareva, K. V.; Andriasyan, Yu. O.; Popov, A. A.; Vorontsov, N. V.

    2016-11-01

    Thermomechanochemical changes of SVR 3L natural rubber after the treatment in the internal rubber mixer in the self-heating mode were studied. The effect of the molecular mass and content of the gel fraction of natural rubber is shown. Properties of rubber compounds and vulcanized rubber are presented. Taking into account modern requirements, a new alternative technology of obtaining halogenated elastomers based on the solid-phase (mechanochemical) halide modification is created. New halogen-containing natural rubber produced by this technology proves themselves in the conditions of rubber production. New fluorinated natural rubber produced by this technology proves themselves in the conditions of rubber production.

  1. Properties of Concrete Containing Scrap-Tire Rubber

    Directory of Open Access Journals (Sweden)

    Mazyad Al-Fadhli

    2017-03-01

    Full Text Available Solid waste management is one of the major environmental concerns all over the world and in Kuwait. Over 5 billion tons of non-hazardous solid waste materials are generated in Kuwait each year. Of these, more than 2 million scrap-tires (approximately 2 million tons are generated each year. In addition to this, about seven million scrap-tires have been stockpiled. Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire–rubber particles as aggregate in concrete is investigated in this study. Tire–rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 10%, 15%, 20%, and 25% of the total mineral aggregate’s volume in concrete. Cylindrical shape concrete specimens 15 cm in diameter and 30 cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete. The results of a uniaxial compressive strain control test conducted on hardened concrete specimens indicate large reductions in the strength and tangential modulus of elasticity. A significant decrease in the brittle behavior of concrete with increasing rubber content is also demonstrated using nonlinearity indices. The maximum toughness index, indicating the post failure strength of concrete, occurs in concretes with 25% rubber content. Unlike plain concrete, the failure state in rubberized concrete occurs gently and uniformly, and does not cause any separation in the specimen. Crack width and its propagation velocity in rubberized concrete are lower than those of plain concrete. Ultrasonic analysis reveals large reductions in the ultrasonic modulus and high sound absorption for tire–rubber concrete.

  2. Effect of Rubber Nanoparticle Agglomeration on Properties of Thermoplastic Vulcanizates during Dynamic Vulcanization

    Directory of Open Access Journals (Sweden)

    Hanguang Wu

    2016-04-01

    Full Text Available We previously reported that the dispersed rubber microparticles in ethylene-propylene-diene monomer (EPDM/polypropylene (PP thermoplastic vulcanizates (TPVs are actually agglomerates of rubber nanoparticles. In this study, based on this new understanding of the microstructure of TPV, we further revealed the microstructure-properties relationship of EPDM/PP TPV during dynamic vulcanization, especially the effect of the size of rubber nanoparticle agglomerates (dn, the thicknesses of PP ligaments (IDpoly and the rubber network on the properties of EPDM/PP TPV. We were able to simultaneously obtain a high tensile strength, elongation at break, elastic modulus, and elasticity for the EPDM/PP TPV by the achievement of a smaller dn, a thinner IDpoly and a denser rubber network. Interestingly, the effect of dn and IDpoly on the elastic modulus of EPDM/PP TPV composed of rubber nanoparticle agglomerates is different from that of EPDM/PP TPVs composed of rubber microparticles reported previously. The deformation behavior of the TPVs during stretching was studied to understand the mechanism for the achievement of good mechanical properties. Interestingly, the rubber nanoparticle agglomerates are oriented along the tensile direction during stretching. The TPV samples with smaller and more numerous rubber nanoparticle agglomerates can slow down the development of voids and cracks more effectively, thus leading to increase in tensile strength and elongation at break of the EPDM/PP TPV.

  3. MATERIAL PARAMETER OF RUBBER GLOVE VULCANIZED USING COMBINED INFRARED AND HOT-AIR HEATING

    Directory of Open Access Journals (Sweden)

    Tipapon Khamdaeng

    2014-01-01

    Full Text Available Vulcanization is an important chemical-thermal process in production of rubber products resulting in change of material properties, increased elasticity and strength. In general, Young’s modulus is used as an indicator of elastic deformation at loading configuration. However, rubber is not truly elastic and a single parameter is insufficient to describe the whole deformation contributed by microstructure of rubber network. Therefore, we present the material parameters concerning the mechanical interaction of rubber constituents. In this study, tensile force and elongation were measured to analyze the rubber deformation. In order to describe the deformation behavior of the combined infrared and hot-air vulcanized rubber glove, the material properties, stress and stretch, were therefore presented. The stress-stretch relationships of the vulcanized rubber gloves were established based on previously well-known hyperelastic material model and their material parameters were determined using a parameter estimation technique. In conclusion, the stress-stretch relationships of the combined infrared and hot-air vulcanized rubber glove can be successfully established with our optimized material parameters; the magnitudes of rubber modulus (CR and locking stretch (λL were in a range of 0.041-0.079 MPa and 10.27-70.12, respectively. Furthermore, the resulting material parameters can be properly used to indicate the micro structural deformation.

  4. Influence of Rubber Size on Properties of Crumb Rubber Mortars

    Directory of Open Access Journals (Sweden)

    Yong Yu

    2016-06-01

    Full Text Available Studies on the properties and applications of rubber cement-based materials are well documented. The sizes of rubbers used in these materials varied. However, information about the effects of rubber size on the properties of rubber cement-based materials, especially pore structure, mechanical strengths, and drying shrinkage properties, remains limited. Three groups of rubber with major particle sizes of 2–4 mm, 1–3 mm, and 0–2 mm were selected in this study. This paper presents experimental studies on the effects of rubber size on the consistency, fresh density, pore structure, mechanical properties, and drying shrinkage properties of crumb rubber mortars (CRMs. Results demonstrated that the consistency and fresh density of CRMs decreased with the rubber size. As to the pore structure, the total pore volume increased with the decrease of the rubber size. By contrast, the influence of the rubber size on the mesopore (<50 nm volume is not as significant as that of the rubber content. The mechanical properties of CRMs decreased with the rubber size. Low rubber stiffness and large pore volumes, especially those of small sized rubbers, contribute to the reduction of CRMs strength. The drying shrinkage of CRM increases as the rubber size decreases. The influences of rubber size on capillary tension are not significant. Thus, the shrinkage increases with the decrease of rubber size mainly because of its function in the deformation modulus reduction of CRMs.

  5. Mechanical properties of concrete containing a high volume of tire-rubber particles.

    Science.gov (United States)

    Khaloo, Ali R; Dehestani, M; Rahmatabadi, P

    2008-12-01

    Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire-rubber particles as aggregate in concrete is investigated in this study. Tire-rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 12.5%, 25%, 37.5%, and 50% of the total mineral aggregate's volume in concrete. Cylindrical shape concrete specimens 15 cm in diameter and 30 cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete. The results of a uniaxial compressive strain control test conducted on hardened concrete specimens indicate large reductions in the strength and tangential modulus of elasticity. A significant decrease in the brittle behavior of concrete with increasing rubber content is also demonstrated using nonlinearity indices. The maximum toughness index, indicating the post failure strength of concrete, occurs in concretes with 25% rubber content. Unlike plain concrete, the failure state in rubberized concrete occurs gently and uniformly, and does not cause any separation in the specimen. Crack width and its propagation velocity in rubberized concrete are lower than those of plain concrete. Ultrasonic analysis reveals large reductions in the ultrasonic modulus and high sound absorption for tire-rubber concrete.

  6. ℒ1 adaptive controller for a class of non-affine multi-input multi-output nonlinear systems

    Science.gov (United States)

    Luo, Jie; Cao, Chengyu; Yang, Qinmin

    2013-02-01

    In this article, an extension of the ℒ1 adaptive control design is introduced for a class of non-affine Multi-Input Multi-Output nonlinear systems with unknown dynamics and unmeasured states. The system dynamics is represented in the normal form with the bounded-input-bounded-output internal dynamics. At first, a stable virtual reference counterpart is constructed. Thereafter, a piece-wise continuous adaptive law is introduced to the actual system along with a low-pass filtered control signal that allows for achieving arbitrarily close tracking of the input and the output signals of the reference system. Rigorous mathematical proof is provided, and the theoretical results are verified with the simulation.

  7. Decentralized Adaptive Control of Large-Scale Non-Affine Nonlinear Time-Delay Systems Using Wavelet Neural Networks

    Directory of Open Access Journals (Sweden)

    Elaheh Saeedi

    2014-07-01

    Full Text Available In this paper, a decentralized adaptive controller with using wavelet neural network is used for a class of large-scale nonlinear systems with time- delay unknown nonlinear non- affine subsystems. The entered interruptions in subsystems are considered nonlinear with time delay, this is closer the reality, compared with the case in which the delay is not considered for interruptions. In this paper, the output weights of wavelet neural network and the other parameters of wavelet are adjusted online. The stability of close loop system is guaranteed with using the Lyapanov- Krasovskii method. Moreover the stability of close loop systems, guaranteed tracking error is converging to neighborhood zero and also all of the signals in the close loop system are bounded. Finally, the proposed method, simulated and applied for the control of two inverted pendulums that connected by a spring and the computer results, show that the efficiency of suggested method in this paper.

  8. Adaptive neural control of non-affine pure-feedback non-linear systems with input nonlinearity and perturbed uncertainties

    Science.gov (United States)

    Zhang, Tian-Ping; Zhu, Qing; Yang, Yue-Quan

    2012-04-01

    In this article, two robust adaptive control schemes are investigated for a class of completely non-affine pure-feedback non-linear systems with input non-linearity and perturbed uncertainties using radial basis function neural networks (RBFNNs). Based on the dynamic surface control (DSC) technique and using the quadratic Lyapunov function, the explosion of complexity in the traditional backstepping design is avoided when the gain signs are known. In addition, the unknown virtual gain signs are dealt with using the Nussbaum functions. Using the mean value theorem and Young's inequality, only one learning parameter needs to be tuned online at each step of recursion. It is proved that the proposed design method is able to guarantee semi-global uniform ultimate boundedness (SGUUB) of all signals in the closed-loop system. Simulation results verify the effectiveness of the proposed approach.

  9. Blue rubber bleb naevus

    Directory of Open Access Journals (Sweden)

    Mittal R

    1995-01-01

    Full Text Available A 35 year old female had multiple progressive painful, tender, soft, bluish compressible nodules with the feel of rubber nipples. There was no evidence of gastrointestinal haemangiomas or other systemic abnormalities. Histopathologically, cavernous haemangioma with prominent smooth muscle outline proved the clinical diagnosis of blue rubber bleb naevus. Only cutaneous lesions were seen in the patient.

  10. Biodiversity in rubber agroforests

    NARCIS (Netherlands)

    Beukema, Hendrien

    2013-01-01

    Jungle rubber tuinen zijn extensieve rubber agroforests die qua structuur op secundaire bossen lijken, en waarin wilde soorten door de boer worden getolereerd. Met het verdwijnen van het laaglandregenwoud rijst de vraag of de begroeiing die ervoor in de plaats komt een aantal kenmerken en functies v

  11. Natural rubber biosynthesis in plants: rubber transferase.

    Science.gov (United States)

    Cornish, Katrina; Xie, Wenshuang

    2012-01-01

    Rubber biosynthesis in plants is a fascinating biochemical system, which evolved at the dawn of the dicotyledoneae and is present in at least four of the dictolydonous superorders. Rubber biosynthesis is catalyzed by a membrane complex in a monolayer membrane envelope, requires two distinct substrates and a divalent cation cofactor, and produces a high-molecular-weight isoprenoid polymer. A solid understanding of this system underpins valuable papers in the literature. However, the published literature is rife with unreliable reports in which the investigators have fallen into traps created by the current incomplete understanding of the biochemistry of rubber synthesis. In this chapter, we attempt to guide both new and more established researchers around these pitfalls.

  12. Tensile Strength of PHBV/Natural Rubber Latex Mixtures

    Directory of Open Access Journals (Sweden)

    Promkotra Sarunya

    2015-01-01

    Full Text Available A polyhydroxybutyrate-co-hydroxyvalerate (PHBV is mingled with natural rubber latex (R to develop its mechanical property of the blend. Normally, substantial effects of the PHBV are hard, fragile, and inelastic, whereas the natural rubber is represented itself as very high elastic matter. The mixtures between the PHBV and natural rubber latex (R are considered in different proportions. The PHBV solutions (w/v are defined suitability at 1% (P1, 2% (P2, and 3% (P3. Their liquid mixtures of the PHBV to natural rubber latex (P:R are fabricated the blended films in three different ratios of 2:3, 1:1 and 3:2, respectively. The PHBV blended films are characterized the crystallinity form by x-ray diffractometry (XRD, which are appeared their identity crystals at 13.30 and 16.68 degree (2θ. Mechanical characterizations of the blends are examined by a universal testing machine (UTM. The average elastic moduli of P1, P2, and P3 mixtures are indicated as 773, 955, and 1,007 kPa, respectively. Their tensile strengths, similarly to elastic moduli, enhance with the PHBV concentrations. The effects of mechanical behaviors and crystallinity reveal that the PHBV blends can be improved their properties by more flexible with natural rubber latex.

  13. The Isolation of Rubber from Milkweed Leaves. An Introductory Organic Chemistry Lab

    Science.gov (United States)

    Volaric, Lisa; Hagen, John P.

    2002-01-01

    We present an introductory organic chemistry lab in which students isolate rubber from the leaves of milkweed plants (Asclepias syriaca). Students isolated rubber with a recovery of 2.4 ± 1.8% and 1.8 ± 0.7% for the microscale and macroscale procedures, respectively. Infrared spectra of their products were compared with the spectrum of synthetic rubber, cis-polyisoprene. Students tested for elasticity of their product by twisting it on a spatula and pulling; all students found some degree of elasticity.

  14. Mechanical Response of Steel Wire Wound Reinforced Rubber Flexible Pipe under Internal Pressure

    Institute of Scientific and Technical Information of China (English)

    GU Fan; HUANG Cheng-kui; ZHOU Jing; LI Lin-pu

    2009-01-01

    Steel wire wound reinforced flexible pipe in this study mainly consists of multiple anisotropic steel wire wound reinforcement layers and multiple isotropic rubber layers. Based on 3D anisotropic elastic theory, the analytic solutions of stresses and elastic deformations of steel wire wound reinforced rubber flexible pipe under internal pressure are presented. As the adjacent reinforcement layers with wound angle have different radii, the single reinforcement layer shows the effect of tensile-shear coupling. Moreover, the static loading test results of steel wire wound reinforced rubber flexible pipe under internal pressure are basically coincided with the calculated values by present method.

  15. Rubber Impact on 3D Textile Composites

    Science.gov (United States)

    Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit

    2012-06-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

  16. Microcellular foaming of silicone rubber with supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Hong, In-Kwon; Lee, Sangmook [Dankook University, Youngin (Korea, Republic of)

    2014-01-15

    In spite of great concern on the industrial application of microcellular silicone rubber foams, such as in electric and medical devices, only a few works can be found about the foaming of silicone rubber. In this study, microcellular silicone rubber foams with a cell size of 12 µm were successfully prepared with curing by heat and foaming by supercritical CO{sub 2} as a green blowing agent. The microcellular silicone rubber foams exhibited a well-defined cell structure and a uniform cell size distribution. The crosslinking and foaming of silicone rubber was carried out separately. After foaming, the silicone rubber foam was cross-linked again to stabilize the foam structure and further improve its mechanical properties. Foaming process of cross-linked silicone rubber should be designed carefully based on the viscoelastic properties because of its elastic volume recovery in the atmosphere. The basic crosslinking condition for small cell size and high cell density was obtained after investigating the rheological behavior during crosslinking.

  17. Multilayer graphene rubber nanocomposites

    Science.gov (United States)

    Schartel, Bernhard; Frasca, Daniele; Schulze, Dietmar; Wachtendorf, Volker; Krafft, Bernd; Morys, Michael; Böhning, Martin; Rybak, Thomas

    2016-05-01

    Multilayer Graphene (MLG), a nanoparticle with a specific surface of BET = 250 m2/g and thus made of only approximately 10 graphene sheets, is proposed as a nanofiller for rubbers. When homogenously dispersed, it works at low loadings enabling the replacement of carbon black (CB), increase in efficiency, or reduction in filler concentration. Actually the appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing and mechanical properties of different rubbers, as shown for Chlorine-Isobutylene-Isoprene Rubber (CIIR), Nitrile-Butadiene Rubber (NBR), Natural Rubber (NR), and Styrene-Butadiene Rubber (SBR). A mere 3 phr of MLG tripled the Young's modulus of CIIR, an effect equivalent to 20 phr of carbon black. Similar equivalents are observed for MLG/CB mixtures. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards fire behavior. The later shown by the reduction in heat release rate in the cone calorimeter. The higher the nanofiller concentration is (3 phr, 5 phr, and 10 phr was investigated), the greater the improvement in the properties of the nanocomposites. Moreover, the MLG nanocomposites improve stability of mechanical properties against weathering. An increase in UV-absorption as well as a pronounced radical scavenging are proposed and were proved experimentally. To sum up, MLG is interesting as a multifunctional nanofiller and seems to be quite ready for rubber development.

  18. Radiation vulcanization of rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Makuuchi, Keizo [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-02-01

    An abstract of the radiation process of polymer materials and the polymer reaction by radiation is explained. Main radiation is 250 keV to 10 MeV of electron rays in the industry. Radiation cross-linked rubber has less the tensile strength than that by sulfur and organic peroxide crosslinking. The main origins of low tensile strength are caused by cut of backbone chain and ozone depend on radiation. Acceleration of crosslinking and short time of radiation are necessary to improve these defects. To accelerate crosslinking, we used crosslinking accelerators, for example, three poly-functional monomers (PFM). The maximum tensile strength of styrene-butadiene rubber (SBR) not added crosslinking accelerators showed 3 MPa at 110 kGy, but SBR added A-TMMT (tetramethylolmethane tetraacrylate) showed 5.5 MPa at 110 kGy. Radiation crosslinking of many kinds of rubber: isoprene (IR), SBR, CR, nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), butyl rubber (IIR), chlorinated butyl rubber (CIIR), EPM and TPE are explained. (S.Y.)

  19. A Review of Constitutive Models for Rubber-Like Materials

    Directory of Open Access Journals (Sweden)

    Aidy Ali

    2010-01-01

    Full Text Available Problem statement: This study reviewed the needs of different constitutive models for rubber like material undergone large elastic deformation. The constitutive models are widely used in Finite Element Analysis (FEA packages for rubber components. Most of the starting point for modeling of various kinds of elastomer is a strain energy function. In order to define the hyperelastic material behavior, stress-strain response is required to determine material parameters in the strain energy potential and also proper selection of rubber elastic material model is the first attention. Conclusion: This review provided a sound basis decision to engineers and manufactures to choose the right model from several constitutive models based on strain energy potential for incompressible and isotropic materials.

  20. New application of crystalline cellulose in rubber composites

    Science.gov (United States)

    Bai, Wen

    Rubber without reinforcement has limited applications. The strength of reinforced rubber composites can be ten times stronger than that of unreinforced rubbers. Therefore, rubber composites are widely used in various applications ranging from automobile tires to seals, valves, and gaskets because of their excellent mechanical elastic properties. Silica and carbon black are the two most commonly used reinforcing materials in rubber tires. They are derived from non-renewable materials and are expensive. Silica also contributes to a large amount of ash when used tires are disposed of by incineration. There is a need for a new reinforcing filler that is inexpensive, renewable and easily disposable. Cellulose is the most abundant natural polymer. Native cellulose includes crystalline regions and amorphous regions. Crystalline cellulose can be obtained by removing the amorphous regions with the acid hydrolysis of cellulose because the amorphous cellulose can be hydrolyzed faster than crystalline cellulose. We recently discovered that the partial replacement of silica with microcrystalline cellulose (MCC) provided numerous benefits: (1) low energy consumption for compounding, (2) good processability, (3) strong tensile properties, (4) good heat resistance, and (5) potential for good fuel efficiency in the application of rubber tires. Strong bonding between fillers and a rubber matrix is essential for imparting rubber composites with the desired properties for many specific applications. The bonding between hydrophilic MCC and the hydrophobic rubber matrix is weak and can be improved by addition of a coupling agent or surface modifications of MCC. In this study, MCC was surface-modified with acryloyl chloride or alkenyl ketene dimer (AnKD) to form acrylated MCC (A-MCC) and AnKD-modified MCC (AnKD-MCC). The surface modifications of MCC did not change the integrity and mechanical properties of MCC, but provided functional groups that were able to form covalent linkages with

  1. Global Synethetic Rubber Industrial Outlook

    Institute of Scientific and Technical Information of China (English)

    Dr.Leon Loh

    2011-01-01

    @@ This paper is to compile and analyze the statistical data of synthetic rubber capacity and consumption to understand its impact of supply/demand on the global synthetic rubber market.Some forecasted consumption data were generated and published by the joint efforts of both IISRP(International Institute of Synthetic Rubber Producers)and IRSG(International Rubber Study group).The report also covers the observed industrial trends as well as some emerging issues in the synthetic rubber industry.

  2. Ericameria Nauseosa (rubber rabbitbrush): a complementary rubber feedstock to augment the guayule rubber production stream

    Science.gov (United States)

    Ericameria nauseosa (rubber rabbitbrush) is a highly prolific desert shrub that produces high quality natural rubber. Over the past several years we have investigated rabbitbrush’s potential as a commercial rubber feedstock. Like guayule, rabbitbrush produces natural rubber within its bark tissues a...

  3. Rubber and rubber-like materials, finite-element analyses and simulations, an addendum: a bibliography (1997 2003)

    Science.gov (United States)

    Mackerle, Jaroslav

    2004-09-01

    This paper gives a bibliographical review of the finite-element methods (FEMs) applied to the analysis and simulation of rubber and rubber-like materials. It is a continuation of the author's paper 'Rubber and Rubber-Like Materials, Finite-Element Analyses and Simulations: a Bibliography (1976-1997)' published in 1998 Modelling Simul. Mater. Sci. Eng. 6 171-98. The added bibliography at the end of this article contains 510 references to papers and conference proceedings on the subject that were published in 1997-2003. The following topics are included: incompressible elasticity problems in general, mechanical and material properties, a finite-element library for incompressible materials, contact problems, fracture mechanics, machine elements/structures, material processing and other topics.

  4. Another Demo of the Unusual Thermal Properties of Rubber

    Science.gov (United States)

    Liff, Mark I.

    2010-01-01

    The unusual thermal behavior of rubbers, though discovered a long time ago, can still be mind-boggling for students and teachers who encounter this class of polymeric systems. Unlike other solids, stretched elastic polymers shrink upon heating. This is a manifestation of the Gough-Joule (G-J) effect. Joule in the 1850s studied the thermal behavior…

  5. 丙纶乳胶丝交织自黏运动绷带基布弹性回复率计算模型%Elastic recovery rate calculation model of interwoven sport bandage fabric by PP and rubber latex thread

    Institute of Scientific and Technical Information of China (English)

    李玉鹏; 王其; 刘昌杰; 郭超群

    2016-01-01

    PP and rubber latex thread interwoven sport bandage fabrics were taken as the research object,the effect of weft yarn and pillar stitch were ignored,and an elastic recovery rate model was established and the calculation formula was gotten based on revision of the model. The amended calculation model can be used to calculate and predict the elastic recovery rate of this kind of sport bandage fabrics, with the deviation of less than 0.3% .%以丙纶乳胶丝交织自黏运动绷带基布为研究对象,忽略丙纶纬纱及编链线圈对绷带基布回弹性的影响,建立运动绷带基布弹性回复率计算模型,通过修正得到其弹性回复率计算式。修正后计算模型的偏差百分率小于0.3%,可用于此类运动绷带基布弹性回复率的实际计算和预测。

  6. Runaway Rubber Removal

    Science.gov (United States)

    1989-01-01

    High hysteresis Good tract;on characteristic Poor affinity for blending Polyisoprene PI Strong wear resistance Very similar to natural rubber Low...with a "base of cresylic acid and a blend of benzene, with a synthetic detergent for a wetting agent" are recommended [8]. For AC runways, alkaline...you expect the runway to change after rubber is removed? Response Maintenance Operations Pilots Improved Skid Resistance! Brak inq Act ion/Fr ictior 7

  7. Effect of processing methods on the mechanical properties of natural rubber filled with stearic acid modified soy protein particles

    Science.gov (United States)

    Natural rubber was reinforced with stearic acid modified soy protein particles prepared with a microfluidizing and ball milling process. Longer ball milling time tends to increase tensile strength of the rubber composites. Elastic modulus of the composites increased with the increasing filler concen...

  8. Biodesulfurization of rubber materials

    Energy Technology Data Exchange (ETDEWEB)

    Torma, A.E. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Raghavan, D. (Illinois Univ., Urbana, IL (USA). Dept. of Materials Science and Engineering)

    1990-01-01

    One of the most challenging problems in municipal waste treatment is the recycling of polymeric waste materials. The present study has demonstrated the applicability of biotechnological principles in the desulfurization of rubber using shake flask and Warburg respirometric techniques. In terms of oxygen uptake and specific rate of oxygen uptake, it was found that the mixed culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans was more efficient in this process than the individual pure cultures of these bacteria. Furthermore, the mixed cultures resulted in ten times higher sulfur removals from rubber relative to those of sterile controls. Additional studies are needed to elucidate the mechanisms of biodesulfurization of rubber. It is expected that the development of this process may provide a solution to recycling of car tire materials. 32 refs., 4 figs., 3 tabs.

  9. INFLUENCE OF MIXING PARAMETERS ON THE RHEOLOGICAL AND SURFACE APPEARANCE CHARACTERISTICS OF RUBBER COMPOUNDS UNSHAPED PROFILES

    Directory of Open Access Journals (Sweden)

    O. V. Karmanova

    2014-01-01

    Full Text Available Influence the degree of dispersion of the carbon black on the rheological characteristics of the surface appearance and rubber mixtures based on ethylene-propylene rubber EPDM-50 was investigated. Effect of mixing time on the degree of dispersion of the carbon black elastic-viscous and extrusion characteristics of rubber compounds were found. Component tangent of the angle of mechanical losses tgδ to evaluate the rheological and technological properties of the rubber compounds used. Relationship changes tgδ valuesand properties of rubber compounds in the preparation of the compositions of rubber with carbon black was shown. On the curves of the length of the mixing tgδ rubber filler identified three main areas of change in the rheological and techno-logical properties of rubber compounds. This allows you to monitor and make adjustments to the mode of preparation of the compositions in the real world of production. evaluation of the quality of mixing in surface appearance characteristics unshaped profiles was conducted. The resulting patterns formed the basis for the development of recommendations for the selection of optimal blending modes in the production and quality control of production of rubber compounds.

  10. Draft genome sequence of the rubber tree Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Rahman Ahmad Yamin Abdul

    2013-02-01

    Full Text Available Abstract Background Hevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR. NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876. Results Here, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified. Conclusions The knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.

  11. ASSESSMENT OF THE DYNAMIC PROPERTIES OF PLAIN AND RUBBERIZED CONCRETE

    Directory of Open Access Journals (Sweden)

    Ionuţ Ovidiu TOMA

    2015-11-01

    Full Text Available The use of rubber from discarded car tires as an alternative to natural aggregates in concrete may help preventing the complete depletion of natural resources and work towards a sustainable future. Moreover it can significantly reduce the environmental footprint of the construction industry. The assessment of the dynamic properties of a material are very important from the point of view of the energy dissipation capability of the investigated material. This can be determined from the dynamic modulus of elasticity, damping and the loss coefficients of the material. The paper presents the results obtained during an experimental program aimed at assessing the dynamic characteristics of plain and rubberized concrete containing rubber crumbs from discarded car tires. The theoretical background and the investigation methodology are presented with particular application to cylindrical concrete specimens.

  12. On the Fresh/Hardened Properties of Cement Composites Incorporating Rubber Particles from Recycled Tires

    Directory of Open Access Journals (Sweden)

    Alessandra Fiore

    2014-01-01

    Full Text Available This study investigates the ameliorative effects on some properties of cement-based materials which can be obtained by incorporating rubber particles as part of the fine aggregates. The aim is to find out optimal cement composite/mortar mixtures, containing recycled-tyre rubber particles, suitable for specific engineering applications. Different percentages of rubber particles, from 0% to 75%, were used and, for each percentage, the suitable amount of sand was investigated in order to achieve the best fresh/hardened performances. In particular the following characteristics were examined: density, compressive strength, modulus of elasticity, shrinkage, weight loss, flexural behaviour, thermal conductivity, rapid freezing and thawing durability, and chloride permeability. The experimental results were compared with the ones of cement composite specimens without rubber aggregates. Test results show that the proposed rubberized mortar mixes are particularly suitable for some industrial and architectural applications, such as under-rail bearings, road constructions, paving slabs, false facades, and stone backing.

  13. On cavitation and macroscopic behaviour of amorphous polymer-rubber blends

    Directory of Open Access Journals (Sweden)

    Naima Belayachi et al

    2008-01-01

    Full Text Available The macroscopic behaviour of rubber-modified polymethyl methacrylate (PMMA was investigated by taking into account the microdeformation mechanisms of rubber cavitation. The dependence of the macroscopic stress–strain behaviour of matrix deformation on the cavitation of rubber particles was discussed. A phenomenological elastic-viscoplastic model was used to model the behaviour of the matrix material, while the rubber particles were modelled with the hyperelasticity theory. A two-phase composite material with a periodic arrangement of reinforcing particles of a circular unit cell section was considered. Finite-element analysis was used to determine the local stresses and strains in the two-phase composite. In order to describe the cavitation of the rubber particles, a criterion of void nucleation is implemented in the finite-element (FE code. A comparison of the numerically predicted response with experimental result indicates that the numerical homogenisation analysis gives satisfactory prediction results.

  14. Influence of the surface treatment of tire rubber residues added in mortars

    Directory of Open Access Journals (Sweden)

    A. C. Marques

    Full Text Available In this work it was evaluated the influence tire rubber addition in mortars in order to replace part of the sand (12% by volume. It was also intended to verify if the tire rubber treatment with NaOH saturated aqueous solution causes interference on the mechanical properties of the mixture. Compressive strength, splitting tensile strength, water absorption, modulus of elasticity, and flow test were made in specimens of 5cmx10cm and the tests were carried out to 7, 28, 56, 90, and 180 days. The results show reduction on mechanical properties values after addition of tire rubber and decrease of the workability. It was also observed that the tire rubber treatment does not cause any alteration on the results compared to the rubber without treatment.

  15. Effect of Rubber Particle Modification on Properties of Rubberized Concrete

    Institute of Scientific and Technical Information of China (English)

    ZHANG Haibo; GOU Mifeng; LIU Xiaoxing; GUAN Xuemao

    2014-01-01

    To improve the combination of cement matrix and waste tire rubber particles in concrete, the rubber particles were treated with acrylic acid (ACA) and polyethylene glycol (PEG) for grafting hydrophilic groups on their surfaces. The X-Ray photoelectron spectroscopy (XPS) and surface contact angle were used to characterize the hydrophilicity and surface functional group of rubber particles. The effect of rubber particle modification on fresh/hardened properties of rubberized concrete was studied. The experimental results show that the contact angle between rubber particle surface and water decreases when rubber particle is modified. Compared with the unmodified rubberized concrete(RC), the unit weight of modified rubberized concrete(MRC) changes slightly. However, the slump, air-entrainment, compressive strength, flexural strength, and impact performance of MRC are obviously improved. Under good condition of slump, the water-cement ratio of the MRC can be reduced from 0.4 to 0.38. And the compressive strength and flexural strength of the MRC(10%rubber particle content) can be increased by 25.9%and 26.4%, respectively.

  16. Study on the behaviour of rubber aggregates concrete beams using analytical approach

    OpenAIRE

    Asutkar, Priyanka; Shinde, S.B.; Patel, Rakesh

    2017-01-01

    Concrete is one the most extensively used construction material all over the world. Many scientists and researchers are in quest for developing alternate construction material that are environment friendly and contribute towards sustainable development. Huge amount of rubber tyres waste is being generated day by day which creates the disposal problem and has many environmental issues. As this scrap rubber waste is an elastic material having less specific gravity, energy absorbent material can...

  17. Polietileno de Alta Densidade Tenacificado com Elastômero Metalocênico: 1. Propriedades Mecânicas e Características Morfológicas Rubber Toughened High Density Polyethylene: 1. Mechanical Properties and Morphological Characteristics

    Directory of Open Access Journals (Sweden)

    Maria José O. C. Guimarães

    2002-01-01

    Full Text Available Neste trabalho foram estudadas as propriedades mecânicas e morfológicas de polietileno de alta densidade (HDPE tenacificado com dois tipos de elastômeros metalocênicos à base de etileno/1- octeno (EOC. Esses elastômeros são polímeros comerciais com diferenças quanto ao peso molecular, índice de fluidez e índice Dow de reologia (DRI. Misturas físicas de HDPE e EOC foram processadas em extrusora monorosca Wortex (L/D=32, à 230°C e 50 rpm, utilizando percentagem mássica do EOC de 5% a 80%. Foi observado um efeito sinergístico nas propriedades tênseis e características de supertenacificação para materiais contendo proporções do EOC maiores do que 5%. Cavitação, deformação plástica e cavitação fibrilada foram observados nos processos de deformação. Materiais contendo até 50% do EOC apresentaram morfologias dispersas com domínios elastoméricos esféricos, distribuídos uniformemente e com tamanho médio de partícula na faixa de 0,30 a 0,45 µm. A tenacificação de HDPE com os elastômeros etilênicos produziu materiais com boas propriedades e compatibilização tecnológica devido à existência de baixa tensão interfacial entre esses polímeros.The mechanical and morphological properties of high density polyethylene (HDPE toughened with two different grades of metallocene elastomers based on ethylene/1- octene (EOC were studied. These elastomers were commercial polymers differing in molecular weight, melt flow index and Dow rheology index (DRI. Blends were processed in a Wortex single screw extruder (L/D=32, at 230°C and 50 rpm, using mass fraction weight percent of EOC in the range from 5% to 80%. A synergistic effect on the tensile properties and supertough behavior for blends with EOC concentrations higher than 5% was observed. Cavitation, plastic deformation and fibrillized cavitation were observed in the deformation processes. Materials containing up to 50% of EOC exhibited dispersed morphologies with EOC

  18. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    Science.gov (United States)

    Caborgan, R.; Muracciole, J. M.; Wattrisse, B.; Chrysochoos, A.

    2010-06-01

    Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard thermo-elastic effect noticed at small elongations and the thermoelastic inversion effects [4]. This paper aims at : observing and quantifying dissipative and coupling effects associated with deformation energy, generated when Natural Rubber is stretched. re-examine the thermomechanical behaviour model of rubberlike materials, under the generalised standard material concept. From an experimental viewpoint, energy balance is created using infrared and quantitative imaging techniques. Digital Image Correlation (DIC) provides in-the-plane displacement fields and, after derivation, strain and strain-rate fields. We have used those techniques to evidence the thermoelastic inversion effect as shown on Figure 1 where different weights have been fixed to warmed specimen and we monitored the sample deformation while it recovers room temperature. But we have also used those techniques to perform energy balance : analysis of the mechanical equilibrium allows estimates of the stress pattern and computation of deformation energy rates under a plane stress hypothesis [5]. Infrared Thermography (IRT) gives the surface temperature of the sample. To estimate the distribution of heat sources, image processing with a local heat equation and a minimal set of approximation functions (image filtering) was used. The time courses of deformation energy and heat associated with cyclic process are plotted in Figure 2. The time derivatives of both forms of energy are approximately similar. This is consistent with

  19. Thermomechanical analysis of Natural Rubber behaviour stressed at room temperature.

    Directory of Open Access Journals (Sweden)

    Chrysochoos A.

    2010-06-01

    Full Text Available Owing to their high molecular mobility, stressed rubber chains can easily change their conformations and get orientated. This phenomena leads to so high reversible draw ratio that this behaviour is called rubber elasticity [1-3]. The analogy with ideal gases leads to an internal energy independent of elongation, the stress being attributed to a so-called configuration entropy. However, this analysis cannot take thermal expansion into account and moreover prohibits predicting standard thermo-elastic effect noticed at small elongations and the thermoelastic inversion effects [4]. This paper aims at : observing and quantifying dissipative and coupling effects associated with deformation energy, generated when Natural Rubber is stretched. re-examine the thermomechanical behaviour model of rubberlike materials, under the generalised standard material concept. From an experimental viewpoint, energy balance is created using infrared and quantitative imaging techniques. Digital Image Correlation (DIC provides in-the-plane displacement fields and, after derivation, strain and strain-rate fields. We have used those techniques to evidence the thermoelastic inversion effect as shown on Figure 1 where different weights have been fixed to warmed specimen and we monitored the sample deformation while it recovers room temperature. But we have also used those techniques to perform energy balance : analysis of the mechanical equilibrium allows estimates of the stress pattern and computation of deformation energy rates under a plane stress hypothesis [5]. Infrared Thermography (IRT gives the surface temperature of the sample. To estimate the distribution of heat sources, image processing with a local heat equation and a minimal set of approximation functions (image filtering was used. The time courses of deformation energy and heat associated with cyclic process are plotted in Figure 2. The time derivatives of both forms of energy are approximately similar. This

  20. On split Hopkinson pressure bar testing of rubbers

    Science.gov (United States)

    Harrigan, John

    2011-06-01

    Split Hopkinson pressure bar (SHPB) studies of rubber materials are difficult due to their ability to undergo large deformations at low levels of stress. Analytical, numerical and experimental investigations are reported. The tests were performed using polymer bars. A key stage in this is the experimental determination of the propagation coefficient. An analytical investigation of the experimental arrangements used to ascertain the propagation coefficient is reported. A finite element (FE) simulation of longitudinal stress waves in solid, circular, polymer bars is presented also. The viscoelastic material definition employed in the FE simulations is obtained by curve fitting Prony series expansions to the experimentally derived elastic modulus. In order to assess the accuracy of the experimental arrangement, an FE model of the full viscoelastic SHPB set-up is then used to simulate tests on hyper-elastic materials with specified properties. Finally, experimental data for rubber materials at strain rates of the order of 1000 s-1 are presented.

  1. EVALUATION OF TIRE RUBBER DISPOSAL IN CONCRETE FOR PAVEMENTS

    Directory of Open Access Journals (Sweden)

    Rosa Cristina Cecche Lintz

    2009-12-01

    Full Text Available The production of waste by the tire industry has been a growing problem, indicating the need for its reuse. More than thirty million tires are discharged per year in Brazil, where regulation for the environment states that for each four new tires, five unusable ones must be adequately disposed by manufacturers and importers. Paving consumes an extremely large quantity of materials, which can be the source of rational application of waste and rejected materials. Research shows that tire rubber can be added to asphalt, which increases its durability and improves pavement quality and safety conditions by absorbing the rubber elastic properties, and also be used for architectural applications, among others. This study deals with the addition of rubber fibers from tire crushing in concrete for roadway pavements in order to provide proper indication about the alternative material disposal through an evaluation of the mechanical behavior of the modified concrete. Different concrete mixes were produced, within which, part of fine aggregates were substituted by tire rubber and mechanical experiment tests were performed, which show that, due to great resistance losses, the disposal of this alternative material in concrete should be considered for light traffic pavements, with the addition of rubber ranging up to 10% in mass.

  2. EVALUATION OF TIRE RUBBER DISPOSAL IN CONCRETE FOR PAVEMENTS

    Directory of Open Access Journals (Sweden)

    Rosa Cristina Cecche Lintz

    2009-01-01

    Full Text Available The production of waste by the tire industry has been a growing problem, indicating the need for its reuse. More than thirty million tires are discharged per year in Brazil, where regulation for the environment states that for each four new tires, five unusable ones must be adequately disposed by manufacturers and importers. Paving consumes an extremely large quantity of materials, which can be the source of rational application of waste and rejected materials. Research shows that tire rubber can be added to asphalt, which increases its durability and improves pavement quality and safety conditions by absorbing the rubber elastic properties, and also be used for architectural applications, among others. This study deals with the addition of rubber fibers from tire crushing in concrete for roadway pavements in order to provide proper indication about the alternative material disposal through an evaluation of the mechanical behavior of the modified concrete. Different concrete mixes were produced, within which, part of fine aggregates were substituted by tire rubber and mechanical experiment tests were performed, which show that, due to great resistance losses, the disposal of this alternative material in concrete should be considered for light traffic pavements, with the addition of rubber ranging up to 10% in mass.

  3. A rubber mount model. Application to automotive equipment suspension

    OpenAIRE

    Manin, Lionel; Dufour, Régis; Thomas, Benjamin; Goge, Philippe

    2010-01-01

    International audience; In order to predict the nonlinear dynamic response of automotive equipment supported by rubber mounts, it is proposed to extend the generalized Dahl model for taking into account the visco-elastic behaviour of elastomer mount and to combine it, in a next step, with the reduced dynamic equations of the equipment supposed to exhibit a linear behaviour. To this end, the parameters of the restoring force model of the mounts are identified through a series of tests accounti...

  4. THE STUDY OF HYPER ELASTIC MATERIAL CHARACTERISTICS IN CASE OF THIN ROD STRUCTURE CALCULATION

    Directory of Open Access Journals (Sweden)

    Mr. Mikhail R. Petrov

    2016-12-01

    Full Text Available The article investigates the deformation hyper elastic material characteristics, i.e. rubber, and determines a mathematical model to calculate the characteristics of test material structure.

  5. Residual stresses in rubber formed thermoplastic composites

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Lamers, E.A.D.; Akkerman, Remko; Brucato, V.

    2003-01-01

    The rubber pressing process is applied for the rapid production of thermoplastic composite products. However, rubber pressed products show geometrical distortions, such as warpage, due to processinduced residual stresses. An experimental study is performed to measure the curvature after rubber

  6. Shape memory rubber bands & supramolecular ionic copolymers

    Science.gov (United States)

    Brostowitz, Nicole

    The primary focus of this dissertation is to understand the thermo-mechanical properties that govern shape memory in rubber blends. An ideal shape memory polymer (SMP) has a large entropic component that drives shape recovery with a distinct transition mechanism to control the recovery conditions. Polyisoprene rubber is highly elastic and shows shape memory behavior through strain induced crystallization above its glass transition temperature. However, this transition temperature is below 0°C and not suitable for most applications. Shape memory blends can tailor the transition temperature through selection of the switching phase. Most SMP blends require complicated synthesis routes or intensive compounding which would be inhibitive for production. A facile method was developed for fabrication of a robust shape memory polymer by swelling cross-linked natural rubber with stearic acid. Thermal, microscopic studies showed that stearic acid formed a percolated network of crystalline platelets within the natural rubber. Further investigation of the material interactions was carried out with a low molecular weight polyisoprene analog, squalene, and stearic acid gel. Tensile tests on the rubber band demonstrated the thermo-mechanical effect of swelling with stearic acid. Low hysteresis was observed under cyclic loading which indicated viability for the stearic acid swollen rubber band as an SMP. The microscopic crystals and the cross-linked rubber produce a temporary network and a permanent network, respectively. These two networks allow thermal shape memory cycling with deformation and recovery above the melting point of stearic acidand fixation below that point. Under manual, strain-controlled tensile deformation, the shape memory rubber bands exhibited fixity and recovery of 100% +/- 10%. The recovery properties of the SMP were studied under various loading conditions and a model was fit to describe the potential recovery with relation to the fixation. An additional

  7. A review on fatigue life prediction methods for anti-vibration rubber materials

    Directory of Open Access Journals (Sweden)

    Xiaoli WANG

    2016-08-01

    Full Text Available Anti-vibration rubber, because of its superior elasticity, plasticity, waterproof and trapping characteristics, is widely used in the automotive industry, national defense, construction and other fields. The theory and technology of predicting fatigue life is of great significance to improve the durability design and manufacturing of anti-vibration rubber products. According to the characteristics of the anti-vibration rubber products in service, the technical difficulties for analyzing fatigue properties of anti-vibration rubber materials are pointed out. The research progress of the fatigue properties of rubber materials is reviewed from three angles including methods of fatigue crack initiation, fatigue crack propagation and fatigue damage accumulation. It is put forward that some nonlinear characteristics of rubber under fatigue loading, including the Mullins effect, permanent deformation and cyclic stress softening, should be considered in the further study of rubber materials. Meanwhile, it is indicated that the fatigue damage accumulation method based on continuum damage mechanics might be more appropriate to solve fatigue damage and life prediction problems for complex rubber materials and structures under fatigue loading.

  8. Preparation of Hydrogenated Nitrile Rubber

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Hydrogenated nitrile rubber is an oil and solvent resistant rubber and particularly give more resistant to heat, ozone, light. It is generally prepared from nitrile rubber by selective hydrogenation using a suitable catalyst system. In the present work a prepared method was adapted for the hydrogenation reaction of nitrile rubber using homogeneous tris(tri-phenlphosphine)chlorhodium(I) catalyst (RhCl(PPh3)) system. The hydrogenation reaction was carriedout at different temperature, pressure, time and catalyst concentration, the concentration, the conditions of hydrogenation are stated in table 1.

  9. QENS investigation of filled rubbers

    Energy Technology Data Exchange (ETDEWEB)

    Triolo, A.; Lechner, R.E.; Desmedt, A.; Pieper, J. [CNR - Istituto per i Processi Chimico-Fisici, sez. Messina, Via La Farina 237, 98123 Messina (Italy); Lo Celso, F.; Triolo, R. [Dip. Chimica Fisica, V. le delle Scienze, Parco d' Orleans, Padiglione 17, Universita di Palermo, 90128 Palermo (Italy); Negroni, F. [Pirelli Pneumatici S.p.A, V. le Sarca 222, 20126 Milano (Italy); Arrighi, V.; Qian, H. [Chemistry School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom); Frick, B. [Institut Laue-Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble, Cedex 9 (France)

    2002-07-01

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface. (orig.)

  10. QENS investigation of filled rubbers

    CERN Document Server

    Triolo, A; Desmedt, A; Pieper, J K; Lo Celso, F; Triolo, R; Negroni, F; Arrighi, V; Qian, H; Frick, B

    2002-01-01

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface. (orig.)

  11. QENS investigation of filled rubbers

    Science.gov (United States)

    Triolo, A.; Lo Celso, F.; Negroni, F.; Arrighi, V.; Qian, H.; Lechner, R. E.; Desmedt, A.; Pieper, J.; Frick, B.; Triolo, R.

    The polymer segmental dynamics is investigated in a series of silica-filled rubbers. The presence of inert fillers in polymers greatly affects the mechanical and physical performance of the final materials. For example, silica has been proposed as a reinforcing agent of elastomers in tire production. Results from quasielastic neutron scattering and Dynamic Mechanical Thermal Analysis (DMTA) measurements are presented on styrene-ran-butadiene rubber filled with silica. A clear indication is obtained of the existence of a bimodal dynamics, which can be rationalized in terms of the relaxation of bulk rubber and the much slower relaxation of the rubber adsorbed on the filler surface.

  12. Preparation of Hydrogenated Nitrile Rubber

    Institute of Scientific and Technical Information of China (English)

    LIU; ZhiCai

    2001-01-01

    Hydrogenated nitrile rubber is an oil and solvent resistant rubber and particularly give more resistant to heat, ozone, light. It is generally prepared from nitrile rubber by selective hydrogenation using a suitable catalyst system. In the present work a prepared method was adapted for the hydrogenation reaction of nitrile rubber using homogeneous tris(tri-phenlphosphine)chlorhodium(I) catalyst (RhCl(PPh3)) system.  The hydrogenation reaction was carriedout at different temperature, pressure, time and catalyst concentration, the concentration, the conditions of hydrogenation are stated in table 1.  ……

  13. Foundation, analysis, and numerical investigation of a variational network-based model for rubber

    Science.gov (United States)

    Gloria, Antoine; Le Tallec, Patrick; Vidrascu, Marina

    2014-01-01

    Since the pioneering work by Treloar, many models based on polymer chain statistics have been proposed to describe rubber elasticity. Recently, Alicandro, Cicalese, and the first author rigorously derived a continuum theory of rubber elasticity from a discrete model by variational convergence. The aim of this paper is twofold. First, we further physically motivate this model and complete the analysis by numerical simulations. Second, in order to compare this model to the literature, we present in a common language two other representative types of models, specify their underlying assumptions, check their mathematical properties, and compare them to Treloar's experiments.

  14. Laboratory performance of asphalt rubber mixtures

    OpenAIRE

    Fontes, Liseane; Trichês, Glicério; Pais, Jorge; Pereira, Paulo; Minhoto, Manuel

    2009-01-01

    Asphalt rubber mixtures are one of the most promising techniques to extend the service life of asphalt pavement overlays. Asphalt rubber binder is composed of crumb rubber from reclaimed tires and conventional asphalt. The asphalt rubber binder can be obtained through wet process in two different systems: tire rubber modified asphalt binder (produced at industrial plants) and continuous blending (produced in asphalt plants). This study presents a laboratory evaluation of asphalt rubber mixtur...

  15. CRIA Sians A areement with Rubber Valley

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The signing ceremony of establishing strategic partnership between China Rubber Industry Association and Rubber Valley Co., Ltd. was held in Rubber Valley on September 13. Leaders such as Xu Wenying, Deputy Secretary-General of CRIA, repre-senting CRIA, and Zhang Yan, Deputy Director of Rubber Valley Management Committee and General Manager of Rubber Valley Co., Ltd., representing Rubber Valley, signed on the cooperation agreement. Fan Rende, President of CRIA, Cai Quanji,

  16. Alternative sources of natural rubber

    NARCIS (Netherlands)

    Mooibroek, H.; Cornish, K.

    2000-01-01

    Rubber (cis-1,4-polyisoprene) is one of the most important polymers naturally produced by plants because it is a strategic raw material used in more than 40,000 products, including more than 400 medical devices. The sole commercial source, at present, is natural rubber harvested from the Brazilian r

  17. Warpage of rubber pressed composites

    NARCIS (Netherlands)

    Wijskamp, Sebastiaan; Lamers, E.A.D.; Akkerman, Remko; van de Ven, Erik

    2002-01-01

    The rubber pressing process is applied for the rapid production of thermoplastic composite products. However, rubber pressed products show geometrical distortions, such as warpage, due to process-induced residual stresses. It is believed that these stresses build up as a result of the large thermal

  18. Engineered Plastics Containing Recycled Rubber

    Institute of Scientific and Technical Information of China (English)

    Dong Yang Wu

    2000-01-01

    @@ 1. Introduction In Australia 10.5 million rubber tyres are discarded annually, representing 120,000 tonnes of wasted rubber resource. Growing local and global concern about the impact of this waste on the environment requires action for the management and recycling of this highly valuable resource through the development of recycling technologies and innovative recycled/recyclable products.

  19. Adaptive robust control of a class of non-affine variable-speed variable-pitch wind turbines with unmodeled dynamics.

    Science.gov (United States)

    Bagheri, Pedram; Sun, Qiao

    2016-07-01

    In this paper, a novel synthesis of Nussbaum-type functions, and an adaptive radial-basis function neural network is proposed to design controllers for variable-speed, variable-pitch wind turbines. Dynamic equations of the wind turbine are highly nonlinear, uncertain, and affected by unknown disturbance sources. Furthermore, the dynamic equations are non-affine with respect to the pitch angle, which is a control input. To address these problems, a Nussbaum-type function, along with a dynamic control law are adopted to resolve the non-affine nature of the equations. Moreover, an adaptive radial-basis function neural network is designed to approximate non-parametric uncertainties. Further, the closed-loop system is made robust to unknown disturbance sources, where no prior knowledge of disturbance bound is assumed in advance. Finally, the Lyapunov stability analysis is conducted to show the stability of the entire closed-loop system. In order to verify analytical results, a simulation is presented and the results are compared to both a PI and an existing adaptive controllers.

  20. NN-adaptive output feedback tracking control for a class of discrete-time non-affine systems with a dynamic compensator

    Science.gov (United States)

    Zhang, Lijun; Zhao, Jiemei; Qi, Xue; Jia, Heming

    2013-06-01

    The problem of tracking control for a class of uncertain non-affine discrete-time nonlinear systems with internal dynamics is addressed. The fixed point theorem is first employed to ensure the control problem in question is solvable and well-defined. Based on it, an adaptive output feedback control scheme based on neural network (NN) is presented. The proposed control algorithm consists of two parts: a dynamic compensator is introduced to stabilise the linear portion of the tracking error system; a single-hidden-layer neural network (SHL NN) approximation mechanism is introduced to cancel the uncertainties resulting from the non-affine function, where the recursive weight update rules of NN estimation are derived from the discrete-time version of Lyapunov control theory. Ultimate boundedness of the error signals is shown through Lyapunov's direct method and the discrete-time version of input-to-state stability (ISS) theory. Finally, a model of automatical underwater vehicle (AUV) is considered to show the effectiveness of the proposed control scheme.

  1. Rubber compounding and processing

    CSIR Research Space (South Africa)

    John

    2014-06-01

    Full Text Available stream_source_info John_2014_ABSTRACT ONLY.pdf.txt stream_content_type text/plain stream_size 886 Content-Encoding ISO-8859-1 stream_name John_2014_ABSTRACT ONLY.pdf.txt Content-Type text/plain; charset=ISO-8859...-1 Handbook of Green Materials Processing Technologies, Properties and Applications Chapter 15 RUBBER COMPOUNDING AND PROCESSING MAYA JACOB JOHN1,2 1CSIR Materials Science and Manufacturing, Polymers and Composites Competence Area, P.O. Box 1124...

  2. Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum.

    Directory of Open Access Journals (Sweden)

    Andrea Hillebrand

    Full Text Available The biosynthesis of rubber is thought to take place on the surface of rubber particles in laticifers, highly specialized cells that are present in more than 40 plant families. The small rubber particle protein (SRPP has been supposed to be involved in rubber biosynthesis, and recently five SRPPs (TbSRPP1-5 were identified in the rubber-producing dandelion species Taraxacum brevicorniculatum. Here, we demonstrate by immunogold labeling that TbSRPPs are localized to rubber particles, and that rubber particles mainly consist of TbSRPP3, 4 and 5 as shown by high-resolution two-dimensional gel electrophoresis and mass spectrometric analysis. We also carried out an RNA-interference approach in transgenic plants to address the function of TbSRPPs in rubber biosynthesis as well as rubber particle morphology and stability. TbSRPP-RNAi transgenic T. brevicorniculatum plants showed a 40-50% reduction in the dry rubber content, but neither the rubber weight average molecular mass nor the polydispersity of the rubber were affected. Although no phenotypical differences to wild-type particles could be observed in vivo, rubber particles from the TbSRPP-RNAi transgenic lines were less stable and tend to rapidly aggregate in expelling latex after wounding of laticifers. Our results prove that TbSRPPs are very crucial for rubber production in T. brevicorniculatum, probably by contributing to a most favourable and stable rubber particle architecture for efficient rubber biosynthesis and eventually storage.

  3. Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum.

    Science.gov (United States)

    Hillebrand, Andrea; Post, Janina J; Wurbs, David; Wahler, Daniela; Lenders, Malte; Krzyzanek, Vladislav; Prüfer, Dirk; Gronover, Christian Schulze

    2012-01-01

    The biosynthesis of rubber is thought to take place on the surface of rubber particles in laticifers, highly specialized cells that are present in more than 40 plant families. The small rubber particle protein (SRPP) has been supposed to be involved in rubber biosynthesis, and recently five SRPPs (TbSRPP1-5) were identified in the rubber-producing dandelion species Taraxacum brevicorniculatum. Here, we demonstrate by immunogold labeling that TbSRPPs are localized to rubber particles, and that rubber particles mainly consist of TbSRPP3, 4 and 5 as shown by high-resolution two-dimensional gel electrophoresis and mass spectrometric analysis. We also carried out an RNA-interference approach in transgenic plants to address the function of TbSRPPs in rubber biosynthesis as well as rubber particle morphology and stability. TbSRPP-RNAi transgenic T. brevicorniculatum plants showed a 40-50% reduction in the dry rubber content, but neither the rubber weight average molecular mass nor the polydispersity of the rubber were affected. Although no phenotypical differences to wild-type particles could be observed in vivo, rubber particles from the TbSRPP-RNAi transgenic lines were less stable and tend to rapidly aggregate in expelling latex after wounding of laticifers. Our results prove that TbSRPPs are very crucial for rubber production in T. brevicorniculatum, probably by contributing to a most favourable and stable rubber particle architecture for efficient rubber biosynthesis and eventually storage.

  4. Robotically enhanced rubber hand illusion.

    Science.gov (United States)

    Arata, Jumpei; Hattori, Masashi; Ichikawa, Shohei; Sakaguchi, Masamichi

    2014-01-01

    The rubber hand illusion is a well-known multisensory illusion. In brief, watching a rubber hand being stroked by a paintbrush while one's own unseen hand is synchronously stroked causes the rubber hand to be attributed to one's own body and to "feel like it's my hand." The rubber hand illusion is thought to be triggered by the synchronized tactile stimulation of both the subject's hand and the fake hand. To extend the conventional rubber hand illusion, we introduce robotic technology in the form of a master-slave telemanipulator. The developed one degree-of-freedom master-slave system consists of an exoskeleton master equipped with an optical encoder that is worn on the subject's index finger and a motor-actuated index finger on the rubber hand, which allows the subject to perform unilateral telemanipulation. The moving rubber hand illusion has been studied by several researchers in the past with mechanically connected rigs between the subject's body and the fake limb. The robotic instruments let us investigate the moving rubber hand illusion with less constraints, thus behaving closer to the classic rubber hand illusion. In addition, the temporal delay between the body and the fake limb can be precisely manipulated. The experimental results revealed that the robotic instruments significantly enhance the rubber hand illusion. The time delay is significantly correlated with the effect of the multisensory illusion, and the effect significantly decreased at time delays over 100 ms. These findings can potentially contribute to the investigations of neural mechanisms in the field of neuroscience and of master-slave systems in the field of robotics.

  5. Nano-reinforcement of tire rubbers: silica-technology for natural rubber : exploring the infuence of non-rubber constituents on the natural rubber-silica system

    NARCIS (Netherlands)

    Sarkawi, S.S.

    2013-01-01

    Natural rubber is a renewable resource material with outstanding properties which offers significant advantages over its counterparts, the fossil-resource synthetic rubbers. In fact, a natural rubber tree is an efficient carbon dioxide sequester. Since natural rubber is a natural product, it is subj

  6. Investigating Low Temperature Properties of Rubber Seals - 13020

    Energy Technology Data Exchange (ETDEWEB)

    Jaunich, M.; Wolff, D.; Stark, W. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12203 Berlin (Germany)

    2013-07-01

    To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of

  7. Hydrogenated nitrile rubber for improved durability of automotive rubber parts

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, J.; Leibbrandt, F.; Thoermer, J.

    1987-01-01

    Rubber articles with improved heat resistance and better performance characteristics are becoming of increasing importance for the automotive industry. A new type of elastomer has therefore been developed based on saturated hydrocarbon backbone - for improved heat resistance - with nitrile side groups providing good resistance to swelling. Some of the typical characteristics of hydrogenated nitrile rubber (HNBR) vulcanizates such as good physical properties pattern at elevated low temperatures dynamic properties, ozone resistance and swelling in automotive fluids are discussed. Potential applications are suggested to improve the performance of various rubber parts used in automotive applications such as high performance seals.

  8. Linear motion feed through with thin wall rubber sealing element

    Science.gov (United States)

    Mikhailov, V. P.; Deulin, E. A.

    2017-07-01

    The patented linear motion feedthrough is based on elastic thin rubber walls usage being reinforced with analeptic string fixed in the middle part of the walls. The pneumatic or hydro actuators create linear movement of stock. The length of this movement is two times more the rubber wall length. This flexible wall is a sealing element of feedthrough. The main advantage of device is negligible resistance force that is less then mentioned one in sealing bellows that leads to positioning error decreasing. Nevertheless, the thin wall rubber sealing element (TRE) of the feedthrough is the main unreliable element that was the reason of this element longevity research. The theory and experimental results help to create equation for TRE longevity calculation under vacuum or extra high pressure difference action. The equation was used for TRE longevity determination for hydraulic or vacuum equipment realization also as it helps for gas flow being leaking through the cracks in thin walls of rubber sealing element of linear motion feedthrough calculation.

  9. Impact Resistance of Rubberized Self-Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Eehab Khalil

    2015-04-01

    Full Text Available Impact loads due to ship collision on irrigation structures is significantly decreasing their durability. Loss of material and degradation are quite common problems facing lock walls and piers. In the current research, rubberized self-compacting concrete (SCC was used to investigate problems associated with impact. SCC with cement kiln dust cement replacement was used for that purpose. Concrete specimens were prepared with different crumb rubber ratios of 10% (RSCC-10, 20% (RSCC-20, 30% (RSCC-30, and 40% (RSCC-40 sand replacement by volume. Standard compressive, flexure, and splitting strength tests were conducted to monitor the effect of the added rubber on concrete behavior. Moreover, impact testing program was applied to specific specimens, cylinder of diameter 200 mm and thickness 50 mm, according to ACI committee 544 procedures. The number of blows to first and ultimate cracks was determined. The relationship between the mechanical properties and impact resilience is also presented. With the increase in rubber percentage the resistance to impact increased, but there was a decrease in specimen strength and modulus of elasticity. The variation in results was discussed and mix RSCC-30 exhibited the best impact resistance, 3 times over control mix with 40% reduction of compressive strength.

  10. Characterization of Hexsyn, a polyolefin rubber.

    Science.gov (United States)

    McMillin, C R

    1987-07-01

    Hexsyn is the Goodyear Tire and Rubber Company tradename for a polyolefin rubber synthesized from 1-hexene with 3-5% methylhexadiene as the source of residual double bonds for vulcanization. Under license from Goodyear, this same polymer has been manufactured by Lord Corporation for the hinge portion of finger joint prostheses using the tradename Bion. This rubber is currently licensed to the University of Akron and to the Cleveland Clinic Foundation for use in biomedical applications, and is being used primarily for biocompatible and highly fatigue resistant rubber components in ventricular assist and artificial heart systems. Results are presented from the physical, mechanical, and biological characterization of Hexsyn. Procedures are described for the synthesis, compounding, and post-molding extraction for Hexsyn. The physical testing of Hexsyn reported includes determinations of its density at 23 and 37 degrees C, initial hardness and hardness after aging in oxygen, blood, pseudoextracellular fluid and polyethylene glycol 600, typical molecular weights determined by gel permeation chromatography/low angle laser light scattering and intrinsic viscosity, thermal analyses by differential scanning calorimetry of Hexsyn gum, and vulcanized Hexsyn after exposure to blood and blood/fatigue conditions. Also reported are results of differential thermal analyses, thermomechanical analyses of virgin and annealed samples, and thermogravimetric analyses conducted in helium and in air. Dynamic mechanical analyses of Hexsyn include Clash-Berg and Rheovibron tests. Swelling was conducted to determine lot-to-lot and sheet-to-sheet variation for quality control and also a number of solvents were used so that the polymer-solvent interaction parameters could be determined. The permeability of Hexsyn to water, water vapor, and a variety of gases is reported. The permeability by contact angle measurements, refractive index, residual solvent analyses, migration of blood components

  11. Thermal and mechanical behavior of rubber systems

    Science.gov (United States)

    Macon, David James

    The study of the physical behavior of rubbery materials is motivated by the desire to use these materials in a variety of environments, different mechanical conditions, and at different temperatures. For this to be possible, accurate testing conditions and modeling schemes need to be devised. These tests can be difficult to perform and existing mathematical models often neglect several basic physical requirements. One model is the statistical thermodynamic approach for calculating the thermoelastic behavior of an ideal rubber network, which assumes affine deformation of crosslinked junctions and no internal energy change with isothermal deformation. Yet, when the same relations have been manipulated according to the laws of thermodynamics, an internal energy contribution is revealed. This result is an artifact of improperly referencing strain measures and elasticity coefficients with regard to temperature. When a proper strain reference state is selected, thermoelastic stress-strain-temperature relations result that are totally entropic yet reduce to the usual isothermal conditions. This work proposes a phenomenological model that accurately models existing thermoelastic data. Experimental methods to determine the entropic and energetic contributions to rubber elasticity usually focus on the force-temperature behavior of a uniaxial sample held at constant length. Ideally, these thermoelastic measurements would be made at constant volume. Measurements are made at constant pressure and require complex corrections. It is demonstrated that two dimensionally constrained membrane samples can overcome these difficulties. By using time-average vibrational holographic interferometry, the two principal stresses of a membrane in anisotropic biaxial extension can be directly determined as a function of temperature. This two dimensionally constrained stress-temperature response greatly simplifies the resulting mathematical relations and yields no difference between constant

  12. Rubber friction on (apparently) smooth lubricated surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mofidi, M; Prakash, B [Division of Machine Elements, Luleaa University of Technology, Luleaa SE-97187 (Sweden); Persson, B N J [IFF, FZ-Juelich, 52425 Juelich (Germany); Albohr, O [Pirelli Deutschland AG, 64733 Hoechst/Odenwald, Postfach 1120 (Germany)

    2008-02-27

    We study rubber sliding friction on hard lubricated surfaces. We show that even if the hard surface appears smooth to the naked eye, it may exhibit short-wavelength roughness, which may make the dominant contribution to rubber friction. That is, the observed sliding friction is mainly due to the viscoelastic deformations of the rubber by the counterface surface asperities. The results presented are of great importance for rubber sealing and other rubber applications involving (apparently) smooth surfaces.

  13. Rubber friction on (apparently) smooth lubricated surfaces

    Science.gov (United States)

    Mofidi, M.; Prakash, B.; Persson, B. N. J.; Albohr, O.

    2008-02-01

    We study rubber sliding friction on hard lubricated surfaces. We show that even if the hard surface appears smooth to the naked eye, it may exhibit short-wavelength roughness, which may make the dominant contribution to rubber friction. That is, the observed sliding friction is mainly due to the viscoelastic deformations of the rubber by the counterface surface asperities. The results presented are of great importance for rubber sealing and other rubber applications involving (apparently) smooth surfaces.

  14. Compatibilization efficiency of carboxylated nitrile rubber and epoxy pre-polymer in nitrile/acrylic rubber blends

    Directory of Open Access Journals (Sweden)

    Micheli L. Celestin

    2013-01-01

    Full Text Available An investigation has been made of the effects from a compatibilizer, viz. carboxylated nitrile rubber (XNBR, on several properties of nitrile rubber (NBR and acrylic rubber (ACM blends, including curing characteristics, mechanical, dynamic mechanical and dielectric properties. The presence of XNBR until 10 phr resulted in an improvement of the ultimate tensile properties, especially elongation at break. The mechanical properties associated to the volume fraction of rubber in the network (Vr and torque values suggest the co-vulcanization phenomenon imparted by the compatibilization. The oil resistance of NBR/ACM (50:50 wt. (% blends (compatibilized and non compatibilized was similar to that observed for pure ACM and significantly higher than NBR. The addition of small amounts of epoxy pre-polymer in combination with XNBR resulted in an additional improvement of the tensile properties. The dynamic mechanical and dielectric properties of the blends were also investigated. The loss modulus values of the compatibilized blends were significantly lower indicating an increase of the elastic characteristics. All blends presented two dielectric relaxation peaks confirming the heterogeneity of the compatibilized blends

  15. Biopolymer Elasticity

    CERN Document Server

    Sinha, S

    2003-01-01

    In recent years molecular elasticity has emerged as an active area of research: there are experiments that probe mechanical properties of single biomolecules such as DNA and Actin, with a view to understanding the role of elasticity of these polymers in biological processes such as transcription and protein-induced DNA bending. Single molecule elasticity has thus emerged as an area where there is a rich cross-fertilization of ideas between biologists, chemists and theoretical physicists. In this article we present a perspective on this field of research.

  16. Silicone-Rubber Stitching Seal

    Science.gov (United States)

    Wang, D. S.

    1985-01-01

    Fabric products protected from raveling by coating threads and filling stitching holes with silicone rubber. Uncored silicone rubber applied to stitching lines with air-pressurized sealant gun. Next, plastic release film placed on coated side, and blanket flipped over so release film lies underneath. Blanket then bagged and adhesive cured under partial vacuum of about 3.5 psi or under pressure. Applications include balloons, parachutes, ultralight aircraft, sails, rescue harnesses, tents, or other fabric products highly stressed in use.

  17. Superheated rubber for cold storage

    Energy Technology Data Exchange (ETDEWEB)

    Katzenberg, Frank; Heuwers, Benjamin; Tiller, Joerg Christian [Biomaterials and Polymer Science, Department of Biochemical and Chemical Engineering, TU Dortmund, D-44221 Dortmund (Germany)

    2011-04-26

    Highly stretched rubber cools down upon relaxation. A natural rubber material that stores high elongations up to 1000% strain upon strain-induced crystallization at room temperature is reported. The strain recovered and, with this, the stored ''cold'' is released only by a thermal or athermal trigger. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Lotters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1996-01-01

    Polydimethylsiloxane is a silicone rubber. It has a unique flexibility, resulting in one of the lowest glass-transition temperatures of any polymer. Furthermore, it shows a low elasticity change versus temperature, a high thermal stability, chemical inertness, dielectric stability, shear stability

  19. Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer

    NARCIS (Netherlands)

    Lotters, Joost C.; Olthuis, Wouter; Veltink, Peter H.; Bergveld, Piet

    1996-01-01

    Polydimethylsiloxane is a silicone rubber. It has a unique flexibility, resulting in one of the lowest glass-transition temperatures of any polymer. Furthermore, it shows a low elasticity change versus temperature, a high thermal stability, chemical inertness, dielectric stability, shear stability a

  20. Rubber mixing process and its relationship with bound rubber and crosslink density

    Science.gov (United States)

    Hasan, A.; Rochmadi; Sulistyo, H.; Honggokusumo, S.

    2017-06-01

    This research studied the relationship between bound rubber and crosslink density based on rubber mixing process. Bound rubber was obtained after natural rubber was masticated and mixed with rubber chemicals and filler while crosslink density was collected after rubber compound was vulcanized. Four methods are used and each method refers to four ways of incorporating carbon black during mixing. The first method, after rubber was masticated for 5 minutes, the addition of rubber chemicals and filler was done simultaneously. Rubber was masticated for 1 minute and continued mixing of rubber chemicals and filler where mixing was different from first method. This was the second method. The third method was the same as the second method but the filler used N 660 while in the second method N 330. The last method is not the same as the first and second, the rubber is only masticated for 3 minutes and then mixed with filler and followed by rubber chemicals sequentially. The results showed that bound rubber and crosslink density were influenced by mixing and mastication process. Bound rubber dropped and crosslink density was relatively stable in the first three mixing methods for increasing carbon black at the beginning of the mixing process. Bound rubber and crosslink density stated opposite results in the fourth mixing method. The higher the bound rubber the lower the crosslink density. Without regard to mixing methods, there is a non-linear relationship between bound rubber formation and crosslink density determination

  1. THERMAL CONDUCTIVITY OF RUBBERIZED GYPSUM BOARD

    Directory of Open Access Journals (Sweden)

    Taher Abu-Lebdeh

    2014-01-01

    Full Text Available The disposal of scrap tires is a challenging task and hence an innovative solution to meet these challenges is needed. Extensive work has been done on the utilization of waste tires in a variety of applications in asphalt pavements and concrete. However, previous investigations focus only on the mechanical properties of the rubberized materials, but few on the thermal performance. This is especially true for rubberized gypsum. Limited or no experimental data on the thermal performance of rubberized gypsum board are available. In this study, an experimental program is established to investigate the effect of amount and size of crumb rubber on the thermal properties of gypsum materials. Gypsum is replaced by four different percentage of crumb rubber: 10, 20, 30 and 40% by weight of gypsum and two sizes of crumb rubber (#30, #10_20 to make eight rubberized gypsum specimens. The prepared specimens were tested for thermal conductivity using an apparatus specially designed and constructed for this purpose. The experimental program was concluded by proposing an empirical equation to predict the thermal conductivity of rubberized gypsum board. Results indicated better thermal performance of the gypsum board due to the addition of crumb rubber. Thermal conductivity of the rubberized gypsum was 18-38% lower than the ordinary gypsum. It is concluded that thermal conductivity of rubberized gypsum decreases with the increase of crumb rubber regardless the size of the rubber and that thermal conductivity of mixtures contained 40% of rubber was about 38% lower than conventional mixture when crumb rubber #10_20 was added, while the thermal conductivity reduced by 22% when crumb rubber #30 was added. The study suggested for future work to investigate the effect of air voids size and ratio on the thermal conductivity of rubberized gypsum.

  2. Silicone-Rubber Microvalves Actuated by Paraffin

    Science.gov (United States)

    Svelha, Danielle; Feldman, Sabrina; Barsic, David

    2004-01-01

    Microvalves containing silicone-rubber seals actuated by heating and cooling of paraffin have been proposed for development as integral components of microfluidic systems. In comparison with other microvalves actuated by various means (electrostatic, electromagnetic, piezoelectric, pneumatic, and others), the proposed valves (1) would contain simpler structures that could be fabricated at lower cost and (2) could be actuated by simpler (and thus less expensive) control systems. Each valve according to the proposal would include a flow channel bounded on one side by a flat surface and on the other side by a curved surface defined by an arched-cross-section, elastic seal made of silicone rubber [polydimethylsilane (PDMS)]. The seal would be sized and shaped so that the elasticity of the PDMS would hold the channel open except when the seal was pressed down onto the flat surface to close the channel. The principle of actuation would exploit the fact that upon melting or freezing, the volume of a typical paraffin increases or decreases, respectively, by about 15 percent. In a valve according to the proposal, the seal face opposite that of the channel would be in contact with a piston-like plug of paraffin. In the case of a valve designed to be normally open at ambient temperature, one would use a paraffin having a melting temperature above ambient. The seal would be pushed against the flat surface to close the channel by heating the paraffin above its melting temperature. In the case of a valve designed to be normally closed at ambient temperature, one would use a paraffin having a melting temperature below ambient. The seal would be allowed to spring away from the flat surface to open the channel by cooling the paraffin below its melting temperature. The availability of paraffins that have melting temperatures from 70 to +80 C should make it possible to develop a variety of normally closed and normally open valves. The figure depicts examples of prototype normally

  3. Natural rubber latex allergy

    Directory of Open Access Journals (Sweden)

    Deval Ravi

    2008-01-01

    Full Text Available Natural rubber latex (NRL is a ubiquitous allergen as it is a component of > 40,000 products in everyday life. Latex allergy might be attributed to skin contact or inhalation of latex particles. Latex allergy is an IgE-mediated hypersensitivity to NRL, presenting a wide range of clinical symptoms such as angioedema, swelling, cough, asthma, and anaphylactic reactions. Until 1979, latex allergy appeared only as type IV delayed hypersensitivity; subsequently, the proportion of different allergy types drifted towards type IV contact allergy reactions. Several risk factors for sensitization to NRL are already known and well documented. Some authors have established a positive correlation between a history of multiple surgical interventions, atopy, spina bifida malformation, and latex allergy incidence. We suspect an increase in latex allergy incidence in association with increased atopy and sensitivity to environmental allergens in the industrial population. It is often postulated in literature that the groups of workers at risk for this allergy are essentially workers in the latex industry and healthcare professionals. In this population, direct internal and mucosal contact with NRL medical devices may be the route of sensitization as factors such as the number of procedures and use of NRL materials (catheters and tubes were associated with increased risk of latex sensitization and allergy.

  4. Study on the behaviour of rubber aggregates concrete beams using analytical approach

    Directory of Open Access Journals (Sweden)

    Priyanka Asutkar

    2017-02-01

    Full Text Available Concrete is one the most extensively used construction material all over the world. Many scientists and researchers are in quest for developing alternate construction material that are environment friendly and contribute towards sustainable development. Huge amount of rubber tyres waste is being generated day by day which creates the disposal problem and has many environmental issues. As this scrap rubber waste is an elastic material having less specific gravity, energy absorbent material can be used as a replacement material for obtaining lightweight concrete. In present study an attempt is made to partially replace the rubber aggregates by coarse aggregates in concrete and to study its impact on properties of concrete. A modified concrete is prepared by replacing coarse aggregates in concrete with rubber aggregates by varying the replacement proportion from 0% to 20% with increment of 5%. 3 cubes for each percentage of replacement are casted and tested after 28th days of curing. The physiomechanical properties like density, compressive strength and elastic properties of modified concrete are determined from concrete cubes experimentally and further stresses and displacement at every 50 mm depth of beams are determined analytically by method of initial functions (MIF. MIF is an analytical method in which elastic properties and theoretical loads are used to analyse the beams without conducting any experimental programme. The analytical results by MIF are compared with bending theory.

  5. Elastic Beanstalk

    CERN Document Server

    Vliet, Jurg; Wel, Steven; Dowd, Dara

    2011-01-01

    While it's always been possible to run Java applications on Amazon EC2, Amazon's Elastic Beanstalk makes the process easier-especially if you understand how it works beneath the surface. This concise, hands-on book not only walks you through Beanstalk for deploying and managing web applications in the cloud, you'll also learn how to use this AWS tool in other phases of development. Ideal if you're a developer familiar with Java applications or AWS, Elastic Beanstalk provides step-by-step instructions and numerous code samples for building cloud applications on Beanstalk that can handle lots

  6. Mesoscopic Numerical Computation of Compressive Strength and Damage Mechanism of Rubber Concrete

    Directory of Open Access Journals (Sweden)

    Z. H. Xie

    2015-01-01

    Full Text Available Evaluations of both macroscopic and mesoscopic strengths of materials have been the topic of a great deal of recent research. This paper presents the results of a study, based on the Walraven equation of the production of a mesoscopic random aggregate structure containing various rubber contents and aggregate sizes. On a mesoscopic scale, the damage mechanism in the rubber concrete and the effects of the rubber content and aggregate-mortar interface on the rubber concrete’s compressive resistance property were studied. The results indicate that the random aggregate structural model very closely approximates the experimental results in terms of the fracture distribution and damage characteristics under uniaxial compression. The aggregate-mortar interface mechanical properties have a substantial impact on the test sample’s strength and fracture distribution. As the rubber content increases, the compressive strength and elastic modulus of the test sample decrease proportionally. This paper presents graphics of the entire process from fracture propagation to structural failure of the test piece by means of the mesoscopic finite-element method, which provides a theoretical reference for studying the damage mechanism in rubber concrete and performing parametric calculations.

  7. Elasticity reconstructive imaging by means of stimulated echo MRI.

    Science.gov (United States)

    Chenevert, T L; Skovoroda, A R; O'Donnell, M; Emelianov, S Y

    1998-03-01

    A method is introduced to measure internal mechanical displacement and strain by means of MRI. Such measurements are needed to reconstruct an image of the elastic Young's modulus. A stimulated echo acquisition sequence with additional gradient pulses encodes internal displacements in response to an externally applied differential deformation. The sequence provides an accurate measure of static displacement by limiting the mechanical transitions to the mixing period of the simulated echo. Elasticity reconstruction involves definition of a region of interest having uniform Young's modulus along its boundary and subsequent solution of the discretized elasticity equilibrium equations. Data acquisition and reconstruction were performed on a urethane rubber phantom of known elastic properties and an ex vivo canine kidney phantom using elastic properties are well represented on Young's modulus images. The long-term objective of this work is to provide a means for remote palpation and elasticity quantitation in deep tissues otherwise inaccessible to manual palpation.

  8. 75 FR 57980 - Polychloroprene Rubber From Japan

    Science.gov (United States)

    2010-09-23

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Polychloroprene Rubber From Japan AGENCY: United States International Trade Commission. ACTION... whether revocation of the antidumping duty finding on polychloroprene rubber from Japan would be likely to...

  9. Advances in rubber/halloysite nanotubes nanocomposites.

    Science.gov (United States)

    Jia, Zhixin; Guo, Baochun; Jia, Demin

    2014-02-01

    The research advances in rubber/halloysite nanotubes (rubber/HNTs) nanocomposites are reviewed. HNTs are environmentally-friendly natural nanomaterials, which could be used to prepare the rubber-based nanocomposites with high performance and low cost. Unmodified HNTs could be adopted to prepare the rubber/HNTs composites with improved mechanical properties, however, the rubber/HNTs nanocomposites with fine morphology and excellent properties were chiefly prepared with various modifiers by in situ mixing method. A series of rubber/HNTs nanocomposites containing several rubbers (SBR, NR, xSBR, NBR, PU) and different modifiers (ENR, RH, Si69, SA, MAA, ILs) have been investigated. The results showed that all the rubber/HNTs nanocomposites achieved strong interfacial interaction via interfacial covalent bonds, hydrogen bonds or multiple interactions, realized significantly improved dispersion of HNTs at nanoscale and exhibited excellent mechanical performances and other properties.

  10. Hugoniot-based equations of state for two filled EPDM rubbers

    Science.gov (United States)

    Pacheco, A. H.; Dattelbaum, D. M.; Orler, E. B.; Bartram, B. D.; Gustavsen, R. L.

    2014-05-01

    Particle-filled elastomers are commonly used as engineering components due to their ability to provide structural support via their elastic mechanical response. Even small amounts of particle fillers are known to increase the mechanical strength of elastomers due to polymer-filler interactions. In this work, the shock response of two filled (SiO2 or silica and KevlarTMfillers) ethylene-propylene-diene (EPDM) rubbers were studied using single and two-stage gas gun-driven plate impact experiments. Hugoniot states were determined using standard plate impact methods. Both filled-EPDM elastomers exhibit high compressibility under shock loading and have a response similar to adiprene rubber.

  11. Material matters: Controllable rubber trailing edge flap regulates load on wind turbine blades

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge

    2010-01-01

    In wind farms, nearby wind turbines exert considerable influence and generate turbulence on turbine blades. Because the blades are so long, there can be considerable differences in localized loading from the gusts along the blade. The Risø DTU researchers has developed a controllable rubber...... trailing edge flap, known as CRTEF. The trailing edge blade design is expected to help mitigate localized loading, and its molded rubber design, the sharp trailing edge, produces less noise and greater output. With CRTEF, the blade automatically has a completely sharp edge. The elastic flap tested...

  12. Pure Azimuthal Shear of an Elastic Dielectric Material

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumar

    2010-03-01

    Full Text Available The purpose of this research is to examine the effect of polarization for the problem of pure azimuthal shear of an elastic dielectric material. The present problem is investigated in context of finite deformation theory. In this paper, the author studied the effect of polarization on the stresses for Neoprene rubber and compare the results with elastic material (Mooney-Rivlin material graphically. Twisting of a rigid cylinder in an infinite elastic medium is considered as a special case in this research.

  13. Fundamental studies on dynamic wear behavior of SBR rubber compounds modified by SBR rubber powder

    OpenAIRE

    Euchler, Eric; Heinrich, Gert; Michael, Hannes; Gehde, Michael; Stocek, Radek; Kratina, Ondrej; Kipscholl, Reinhold; Bunzel, Jörg-Michael; Saal, Wolfgang

    2016-01-01

    The aim of this study is focused on the experimental investigation of dynamic wear behavior of carbon black filled rubber compounds comprising pristine styrene butadiene rubber (SBR) together with incorporated SBR ground rubber (rubber powder). We also analyzed and described quantitatively the service conditions of some dynamically loaded rubber products, which are liable to wear (e.g. conveyor belts, tires). Beside the well-known standard test method to characterize wear resistance at steady...

  14. 75 FR 38119 - Polychloroprene Rubber From Japan

    Science.gov (United States)

    2010-07-01

    ... COMMISSION Polychloroprene Rubber From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty finding on polychloroprene rubber from Japan... antidumping duty finding on polychloroprene rubber from Japan would be likely to lead to continuation or...

  15. Rotational elasticity

    Science.gov (United States)

    Vassiliev, Dmitri

    2017-04-01

    We consider an infinite three-dimensional elastic continuum whose material points experience no displacements, only rotations. This framework is a special case of the Cosserat theory of elasticity. Rotations of material points are described mathematically by attaching to each geometric point an orthonormal basis that gives a field of orthonormal bases called the coframe. As the dynamical variables (unknowns) of our theory, we choose the coframe and a density. We write down the general dynamic variational functional for our rotational theory of elasticity, assuming our material to be physically linear but the kinematic model geometrically nonlinear. Allowing geometric nonlinearity is natural when dealing with rotations because rotations in dimension three are inherently nonlinear (rotations about different axes do not commute) and because there is no reason to exclude from our study large rotations such as full turns. The main result of the talk is an explicit construction of a class of time-dependent solutions that we call plane wave solutions; these are travelling waves of rotations. The existence of such explicit closed-form solutions is a non-trivial fact given that our system of Euler-Lagrange equations is highly nonlinear. We also consider a special case of our rotational theory of elasticity which in the stationary setting (harmonic time dependence and arbitrary dependence on spatial coordinates) turns out to be equivalent to a pair of massless Dirac equations. The talk is based on the paper [1]. [1] C.G.Boehmer, R.J.Downes and D.Vassiliev, Rotational elasticity, Quarterly Journal of Mechanics and Applied Mathematics, 2011, vol. 64, p. 415-439. The paper is a heavily revised version of preprint https://arxiv.org/abs/1008.3833

  16. Morphology, Tensile Strength and Oil Resistance of Gum Rubber Sheets Prepared from Lignin Modified Natural Rubber

    Directory of Open Access Journals (Sweden)

    Asrul M.

    2014-07-01

    Full Text Available The paper describes the preparation of lignin filled natural rubber latex composite and its subsequent use to obtain lignin modified rubber. Two types of lignin i.e.: rubber wood and commercial alkali lignin were used as rubber filler. Gum rubber sheets were prepared from the lignin modified rubber and their properties were compared to Standard Malaysian Rubber (SMR 20 and a type of rubber obtained from the coagulation of high ammonia latex. Rubber morphology was investigated using Scanning Electron Microscope on the cross-sectional area of cryo-fractured samples. Oil resistance of the rubber sheets was determined by measuring the mass change before and after ASTM IRM 903 oil immersion, while the tensile strengths were determined according to ASTM D412 standard. Low values of tensile strength obtained for the commercial alkali lignin modified rubber sheet relative to the rest of the rubber samples was attributed to poor lignin dispersion. This occurrence was substantiated by the SEM analysis of cryo-fractured samples where crazes and inhomogeneity was observed. Nonetheless, both lignin modified rubbers exhibited higher level of oil resistance compared to SMR 20. This is due to the nature of lignin as a hydrophilic component and its presence in the rubber matrix complicates the oil diffusion process into rubber.

  17. Origin of rubber-like behaviour in metal alloys

    Science.gov (United States)

    Ren, Xiaobing; Otsuka, Kazuhiro

    1997-10-01

    Since 1932 it has been known that a number of ordered alloys show an unusual kind of deformation behaviour. These alloys (including Au-Cd, Au-Cu-Zn, Cu-Zn-Al, Cu-Al-Ni), after being aged for some time in a martensitic state (the low-symmetry phase of a diffusionless transformation), can be deformed like a soft and pseudo-elastic rubber (with a recoverable strain as large as a few per cent). Accompanying martensite ageing is the development of martensite stabilization (increase in the temperature of reverse transformation to the parent state), the avoidance of which is important in actuator applications of the shape-memory effect, (which these alloys also generally exhibit. The origin of this rubber-like behaviour and of the ageing effect has remained unclear. Here we show that this behaviour does not involve a change in the degree of long-range order, but is instead due to an atomic rearrangement within the same sublattice of the imperfectly ordered alloy during martensite ageing. This process is driven by a general tendency for the equilibrium symmetry of the short-range order configuration of lattice imperfections to conform to the symmetry of the lattice. This principle not only explains all the observed aspects of the rubber-like behaviour and the ageing effect in both ordered and disordered alloys, but may also further our understanding of some diffusion phenomena in other crystalline materials.

  18. Investigation of cement based composites made with recycled rubber aggregate

    Directory of Open Access Journals (Sweden)

    Jevtić Dragica Lj.

    2012-01-01

    Full Text Available The results of experimental investigations performed on cement based composites made with addition of recycled rubber as a partial replacement of natural river aggregate are presented in this paper. Different properties of cement based mortar were analyzed, both in fresh and in hardened state. Tested properties in the fresh state included: density, consistency and volume of entrained air. In the hardened state, the following properties were tested: density, mechanical properties (compressive and flexural strength, modulus of elasticity, adhesion to concrete substrate, water absorption, freeze-thaw resistance and ultrasonic pulse velocity. The obtained results indicate that recycled rubber can be successfully applied as a partial replacement of natural river aggregate in cement based composites, in accordance with the sustainable development concept. The investigation showed that physical-mechanical properties of cementituous composites depend to a great extent on the percentage of replacement of natural river aggregate with recycled rubber, especially when the density, strength, adhesion and freeze-thaw resistance are concerned. The best results were obtained in the freeze-thaw resistance of such composites.

  19. Studies on mechanical, thermal and morphological properties of irradiated recycled polyamide and waste rubber powder blends

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Medhat M., E-mail: medhat_smh@yahoo.co [National Center for Radiation Research and Technology, Nasr City, Cairo 11731 (Egypt); Badway, Nagwa A.; Gamal, Azza M. [Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo (Egypt); Elnaggar, Mona Y.; Hegazy, El-Sayed A. [National Center for Radiation Research and Technology, Nasr City, Cairo 11731 (Egypt)

    2010-05-01

    The aim of this article was to show the effect of gamma irradiation on mechanical and thermal properties of recycled polyamide (rPA) copolymer blended with different content of waste rubber powder (WRP). In order to study the structural modifications of prepared blends have been subjected to irradiation doses up to 200 kGy were applied to all samples. Non-irradiated blends were used as control samples. Mechanical properties, namely, tensile strength (TS), elastic modulus, elongation at break and hardness have been followed up as a function of irradiation dose and degree of loading with rubber content. Furthermore, the influence of radiation dose in the thermal parameters, melting temperature, heat of fusion, DELTAH{sub f} of the recycled PA and its blend with waste rubber powder (WRP) was also investigated.

  20. Blue rubber bleb naevus syndrome

    DEFF Research Database (Denmark)

    Lybecker, Martin Bell; Stawowy, Marek; Clausen, Niels

    2016-01-01

    Blue rubber bleb naevus syndrome (BRBNS) is a rare vascular disorder with malformed veins, or blebs, appearing in the skin or internal organs. Gastrointestinal tract involvement is the most common feature and often subject to bleeding, potentially resulting in chronic occult blood loss and iron...

  1. Development in Rubber Preparation for Endoscopic Training Simulator

    Directory of Open Access Journals (Sweden)

    D. Surangsrirat

    2016-01-01

    Full Text Available Endoscopy is one of the most important procedures in diagnosis and treatment of gastrointestinal tract problems. While endoscopic procedure has tremendous benefits, physicians require considerable practice and time to develop competency. Current endoscopic training process involves cognitive learning and hands-on training under the supervision of an expert gastroenterologist. Previous studies have shown that fellow involvement prolongs procedural time and incurs additional expenses to the institution. Moreover, the patient also experiences more discomfort and injury risk. Introduction of training simulator into the training process could reduce the involvement of the patients and thus reduce the risk. Porcine model is commonly used for training in endoscopy due to the similar tactile response to a human gastrointestinal tract. However, information on elastic behavior of pig or human gastrointestinal tract for the engineering purposes was limited. In this study, the modulus of elasticity and ultimate tensile stress data of the pig stomach and intestines, small and large intestines, were measured and compared with multiple rubber stomach and intestines models. Based on the experimental results and experienced gastroenterologists feedback, the proposed dipped rubber composition can provide a satisfactory tactile feedback and could be used to simulate a human gastrointestinal tract for an endoscopic simulation training model.

  2. APPLICATION OF FUNCTIONAL OLIGODIENES FOR MODIFICATION OF COMPOSITIONS BASED ON 1,4-CIS-ISOPRENE RUBBER SKI-5

    Directory of Open Access Journals (Sweden)

    N. A. Shabunina

    2013-01-01

    Full Text Available Application liquid oligodienes as a part of polymeric compositions on the basis of 1,4-cispolyisoprene SKI-5 rubber is investigated. Extent of influence of quantity of an entered oligomer and his functionality on rheological and elastic and strength properties of elastomeric compositions is established. Nature of dispersing action functional and nonfunctional oligodienes is defined.

  3. In-depth proteome analysis of the rubber particle of Hevea brasiliensis (para rubber tree).

    Science.gov (United States)

    Dai, Longjun; Kang, Guijuan; Li, Yu; Nie, Zhiyi; Duan, Cuifang; Zeng, Rizhong

    2013-05-01

    The rubber particle is a special organelle in which natural rubber is synthesised and stored in the laticifers of Hevea brasiliensis. To better understand the biological functions of rubber particles and to identify the candidate rubber biosynthesis-related proteins, a comprehensive proteome analysis was performed on H. brasiliensis rubber particles using shotgun tandem mass spectrometry profiling approaches-resulting in a thorough report on the rubber particle proteins. A total of 186 rubber particle proteins were identified, with a range in relative molecular mass of 3.9-194.2 kDa and in isoelectric point values of 4.0-11.2. The rubber particle proteins were analysed for gene ontology and could be categorised into eight major groups according to their functions: including rubber biosynthesis, stress- or defence-related responses, protein processing and folding, signal transduction and cellular transport. In addition to well-known rubber biosynthesis-related proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and cis-prenyl transferase (CPT), many proteins were firstly identified to be on the rubber particles, including cyclophilin, phospholipase D, cytochrome P450, small GTP-binding protein, clathrin, eukaryotic translation initiation factor, annexin, ABC transporter, translationally controlled tumour protein, ubiquitin-conjugating enzymes, and several homologues of REF, SRPP and CPT. A procedure of multiple reaction monitoring was established for further protein validation. This comprehensive proteome data of rubber particles would facilitate investigation into molecular mechanisms of biogenesis, self-homeostasis and rubber biosynthesis of the rubber particle, and might serve as valuable biomarkers in molecular breeding studies of H. brasiliensis and other alternative rubber-producing species.

  4. Comparison of claw health and milk yield in dairy cows on elastic or concrete flooring.

    Science.gov (United States)

    Kremer, P V; Nueske, S; Scholz, A M; Foerster, M

    2007-10-01

    This article reports on the effects of elastic (rubber) flooring compared with concrete flooring on claw health and milk yield in dairy cows. Milk yield and activity data of 53 complete lactations from 49 cows were recorded by an automatic milking system in the University of Munich Livestock Center dairy herd. Cows were kept in a loose housing system on concrete-slatted or rubber-matted slatted flooring. Claws were trimmed and measured linearly in combination with claw lesion diagnosis 3 times during one lactation period (including the transition phase). An automatic milking system recorded milk yield and activity. The net horn growth of the claws increased on elastic flooring. Therefore, correct and frequent claw trimming is at least as important for claw health in dairy herds kept on rubber flooring as for those on concrete-slatted flooring. Cows housed on rubber had an increased incidence of sole ulcers. Sole hemorrhages (except for hemorrhages associated with sole ulcers) occurred less frequently on rubber than on concrete. Results concerning digital dermatitis were difficult to assess, because manual manure scraping on rubber required sprinkling the flooring twice daily, which additionally moistened the digital skin of the cows. This might explain the greater incidence of digital dermatitis on elastic flooring. The incidence of clinically lame cows did not differ between flooring types. Cows showed greater activity on rubber, most likely caused by the more comfortable walking surface compared with the concrete-slatted flooring. The greater activity may indicate better overall health of high-yielding dairy cows on rubber flooring. Milk yield, however, did not differ between flooring types.

  5. A CONFORMATIONAL ELASTICITY THEORY

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A new statistical theory based on the rotational isomeric state model describing the chain conformational free energy has been proposed. This theory can be used to predict different tensions of rubber elongation for chemically different polymers, and the energy term during the elongation of natural rubber coincides with the experimental one.

  6. Thermomechanical characterisation of cellular rubber

    Science.gov (United States)

    Seibert, H.; Scheffer, T.; Diebels, S.

    2016-09-01

    This contribution discusses an experimental possibility to characterise a cellular rubber in terms of the influence of multiaxiality, rate dependency under environmental temperature and its behaviour under hydrostatic pressure. In this context, a mixed open and closed cell rubber based on an ethylene propylene diene monomer is investigated exemplarily. The present article intends to give a general idea of the characterisation method and the considerable effects of this special type of material. The main focus lies on the experimental procedure and the used testing devices in combination with the analysis methods such as true three-dimensional digital image correlation. The structural compressibility is taken into account by an approach for a material model using the Theory of Porous Media with additional temperature dependence.

  7. Constructing better roads with asphalt rubber

    Directory of Open Access Journals (Sweden)

    Pais Jorge C.

    2015-12-01

    Full Text Available Brazilians mixtures containing asphalt rubber were evaluated by mechanical laboratory tests. A conventional mixture with asphalt CAP-50/70 was produced as a mixture control. With the aim of compare the Brazilians mixtures performance, a Portuguese asphalt rubber mixture was tested as well. The testing set involved the determination of the mechanical properties, fatigue and permanent deformation, of asphalt rubber produced by wet process through two different systems: continuous blend and terminal blend. The asphalt rubber morphology was evaluated in order to determine the compatibility of the systems. The asphalt rubber mixtures exhibit good resistance to permanent deformation and prolonged fatigue life in relation to mixture control. Therefore it is concluded that the application of asphalt rubber alters the characteristics of asphalt mixture in a very beneficial way.

  8. Impregnation of Natural Rubber into Rubber Wood: A Green Wood Composite

    OpenAIRE

    Wassa Ruayruay; Sureurg Khongtong

    2014-01-01

    A green wood composite material was developed from the two environmentally friendly substrates natural rubber (cis-1,4-polyisoprene) and rubber wood (Hevea brasiliensis). Natural rubber (NR) was introduced into rubber wood by pressurization of NR latex, followed by the removal of the aqueous phase to allow only dry NR to remain inside the wood structure. Scanning electron microscopy images and the weight increase of the dry impregnated samples revealed the retention of dry NR within the rubbe...

  9. VULCANIZATION KINETICS OF SILICONE RUBBER

    Institute of Scientific and Technical Information of China (English)

    YUAN Qiang; LI Yufu; LI Guangliang

    1988-01-01

    Vulcanization rate of silicone rubber with the aid of organic peroxide or hydrosilylation agent was studied by using oscillation disk rheometer. It was found that the process of network formation would take place through one, two or three steps depending on the structure of the reactants. The effect of phenyl group, vinyl terminals on polysiloxane chain and the functionality of silylation agent was also studied.

  10. Chemistry of rubber processing and disposal.

    Science.gov (United States)

    Bebb, R L

    1976-10-01

    The major chemical changes during the processing of rubber occur with the breakdown in mastication and during vulcanization of the molded tire. There is little chemical change during the compounding, calendering, extrusion, and molding steps. Reclaiming is the process of converting scrap rubber into an unsaturated, processible product that can be vulcanized with sulfur. Pyrolysis of scrap rubber yields a complex mixture of liquids, gas, and residue in varying ratios dependent on the nature of the scrap and the conditions of pyrolysis.

  11. Rubber friction: comparison of theory with experiment.

    Science.gov (United States)

    Lorenz, B; Persson, B N J; Dieluweit, S; Tada, T

    2011-12-01

    We have measured the friction force acting on a rubber block slid on a concrete surface. We used both unfilled and filled (with carbon black) styrene butadiene (SB) rubber and have varied the temperature from -10 °C to 100 °C and the sliding velocity from 1 μm/s to 1000 μm/s. We find that the experimental data at different temperatures can be shifted into a smooth master-curve, using the temperature-frequency shifting factors obtained from measurements of the bulk viscoelastic modulus. The experimental data has been analyzed using a theory which takes into account the contributions to the friction from both the substrate asperity-induced viscoelastic deformations of the rubber, and from shearing the area of real contact. For filled SB rubber the frictional shear stress σ(f) in the area of real contact results mainly from the energy dissipation at the opening crack on the exit side of the rubber-asperity contact regions. For unfilled rubber we instead attribute σ(f) to shearing of a thin rubber smear film, which is deposited on the concrete surface during run in. We observe very different rubber wear processes for filled and unfilled SB rubber, which is consistent with the different frictional processes. Thus, the wear of filled SB rubber results in micrometer-sized rubber particles which accumulate as dry dust, which is easily removed by blowing air on the concrete surface. This wear process seams to occur at a steady rate. For unfilled rubber a smear film forms on the concrete surface, which cannot be removed even using a high-pressure air stream. In this case the wear rate appears to slow down after some run in time period.

  12. Chemical modifications of liquid natural rubber

    Science.gov (United States)

    Azhar, Nur Hanis Adila; Rasid, Hamizah Md; Yusoff, Siti Fairus M.

    2016-11-01

    Liquid natural rubber (LNR) was synthesized via photosentisized degradation of natural rubber (NR). LNR was modified into epoxidized liquid natural rubber (LENR) and hydroxylated liquid natural rubber (LNR-OH) using Na2WO4/CH3COOH/H2O2 catalytic system. Chemical structures of LNR and modified LNRs were characterized using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) and 1H Nuclear Magnetic Resonance (NMR) spectroscopies. Integration of 1H NMR was used to calculate the epoxy content (%) of LENR. 1H NMR detected the formation of LNR-OH after prolonged heating and increased of catalyst in oxidation reaction.

  13. Malaria-associated rubber plantations in Thailand.

    Science.gov (United States)

    Bhumiratana, Adisak; Sorosjinda-Nunthawarasilp, Prapa; Kaewwaen, Wuthichai; Maneekan, Pannamas; Pimnon, Suntorn

    2013-01-01

    Rubber forestry is intentionally used as a land management strategy. The propagation of rubber plantations in tropic and subtropic regions appears to influence the economical, sociological and ecological aspects of sustainable development as well as human well-being and health. Thailand and other Southeast Asian countries are the world's largest producers of natural rubber products; interestingly, agricultural workers on rubber plantations are at risk for malaria and other vector-borne diseases. The idea of malaria-associated rubber plantations (MRPs) encompasses the complex epidemiological settings that result from interactions among human movements and activities, land cover/land use changes, agri-environmental and climatic conditions and vector population dynamics. This paper discusses apparent issues pertaining to the connections between rubber plantations and the populations at high risk for malaria. The following questions are addressed: (i) What are the current and future consequences of rubber plantations in Thailand and Southeast Asia relative to malaria epidemics or outbreaks of other vector-borne diseases? (ii) To what extent is malaria transmission in Thailand related to the forest versus rubber plantations? and (iii) What are the vulnerabilities of rubber agricultural workers to malaria, and how contagious is malaria in these areas?

  14. Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer

    OpenAIRE

    Lötters, Joost Conrad; Lotters, Joost Conrad; Olthuis, Wouter; Veltink, Petrus H.; Bergveld, Piet

    1996-01-01

    Polydimethylsiloxane is a silicone rubber. It has a unique flexibility, resulting in one of the lowest glass-transition temperatures of any polymer. Furthermore, it shows a low elasticity change versus temperature, a high thermal stability, chemical inertness, dielectric stability, shear stability and high compressibility. Because of its high flexibility and the very low drift of its properties with time and temperature, polydimethylsiloxane could be well suited for mechanical sensors, such a...

  15. Influence of crumb rubber and digestion time on the asphalt rubber binders

    OpenAIRE

    Neto, Silvrano Adonias Dantas; De Farias, Márcio Muniz; Pais, Jorge C.; Pereira, Paulo A. A.; Sousa, Jorge B.

    2006-01-01

    This paper shows the results of a study about the mechanical behavior of dense graded asphalt-rubber hot mixes prepared with two different types of asphalt-rubber binders. These asphalt-rubber binders were obtained with penetration grade asphalt (AC 50/70) mixed with 21% and 25% of crumb rubber in weight. The rubber was recycled from unserviceable tires using the ambient grinding process. Hot mixes made with the conventional binder AC 50/70 were also studied for comparison. The...

  16. EPDM Rubber Reclaim from Devulcanized EPDM

    NARCIS (Netherlands)

    Sutanto, P.; Picchioni, F.; Janssen, L.P.B.M.; Dijkhuis, K.A.J.; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.

    2006-01-01

    Two types of ethylene-propylene-diene monomer (EPDM) rubbers, namely an efficient vulcanized (EV) and a semiefficient vulcanized (SEV), have been used to produce devulcanizates in a continuous setup. The devulcanizates are re-cured using the same recipes as for the virgin rubber. The influence of

  17. EPDM rubber reclaim from devulcanized EPDM

    NARCIS (Netherlands)

    Sutanto, P.; Picchioni, F.; Janssen, L. P. B. M.; Dijkhuis, K. A. J.; Dierkes, W. K.; Noordermeer, J. W. M.

    2006-01-01

    Two types of ethylene-propylene-diene monomer (EPDM) rubbers, namely an efficient vulcanized (EV) and a serniefficient vulcanized (SEV), have been used to produce devulcanizates in a continuous setup. The devulcanizates are re-cured using the same recipes as for the virgin rubber. The influence of

  18. Unraveling the Mystery of Natural Rubber Biosynthesis

    Science.gov (United States)

    Natural rubber (NR) is primarily obtained from Hevea brasiliensis, commonly known as the Brazilian rubber tree. As this species contains little genetic variation, it is susceptible to pathogen-based eradication. Consequently, it is imperative that a biomimetic pathway for NR production be developed....

  19. EPDM rubber reclaim from devulcanized EPDM

    NARCIS (Netherlands)

    Sutanto, P.; Picchioni, F.; Janssen, L. P. B. M.; Dijkhuis, K. A. J.; Dierkes, W. K.; Noordermeer, J. W. M.

    2006-01-01

    Two types of ethylene-propylene-diene monomer (EPDM) rubbers, namely an efficient vulcanized (EV) and a serniefficient vulcanized (SEV), have been used to produce devulcanizates in a continuous setup. The devulcanizates are re-cured using the same recipes as for the virgin rubber. The influence of m

  20. Biorefinery of proteins from rubber plantation residues

    NARCIS (Netherlands)

    Widyarani, R.

    2016-01-01

    Biorefinery of rubber tree side streams could add economic value and income for farmers, who already grow the trees for latex production. The objective of this research was to design a process for the recovery of proteinaceous fractions from rubber tree. The aimed applications were expected to be su

  1. Rheological testing of crumb rubber modified bitumen

    CSIR Research Space (South Africa)

    Mturi, GAJ

    2011-08-01

    Full Text Available used to analyse crumb rubber modified (CRM) bitumen is that the specified gap setting in the configuration of the DSR between the upper and lower test platens is too small to accommodate crumb rubber particles. DSR testing of CRM bitumen therefore...

  2. Biorefinery of proteins from rubber plantation residues

    NARCIS (Netherlands)

    Widyarani, R.

    2016-01-01

    Biorefinery of rubber tree side streams could add economic value and income for farmers, who already grow the trees for latex production. The objective of this research was to design a process for the recovery of proteinaceous fractions from rubber tree. The aimed applications were expected to be su

  3. Better Tomorrow of China Rubber Chemicals Industry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    I. Development of China Rubber Chemicals Industry During the "11th Five-Year Plan" period, China rubber Chemicals industry fully implemented the development guideline of "Adhering to science and technology development, developing green chemistry with environmental protection, safety and energy conservation as the core, and building enterprise and world brands". With the great support of the state,

  4. Zinc leaching from tire crumb rubber.

    Science.gov (United States)

    Rhodes, Emily P; Ren, Zhiyong; Mays, David C

    2012-12-04

    Because tires contain approximately 1-2% zinc by weight, zinc leaching is an environmental concern associated with civil engineering applications of tire crumb rubber. An assessment of zinc leaching data from 14 studies in the published literature indicates that increasing zinc leaching is associated with lower pH and longer leaching times, but the data display a wide range of zinc concentrations, and do not address the effect of crumb rubber size or the dynamics of zinc leaching during flow through porous crumb rubber. The present study was undertaken to investigate the effect of crumb rubber size using the synthetic precipitation leaching procedure (SPLP), the effect of exposure time using quiescent batch leaching tests, and the dynamics of zinc leaching using column tests. Results indicate that zinc leaching from tire crumb rubber increases with smaller crumb rubber and longer exposure time. Results from SPLP and quiescent batch leaching tests are interpreted with a single-parameter leaching model that predicts a constant rate of zinc leaching up to 96 h. Breakthrough curves from column tests displayed an initial pulse of elevated zinc concentration (~3 mg/L) before settling down to a steady-state value (~0.2 mg/L), and were modeled with the software package HYDRUS-1D. Washing crumb rubber reduces this initial pulse but does not change the steady-state value. No leaching experiment significantly reduced the reservoir of zinc in the crumb rubber.

  5. Amino acid modifiers in guayule rubber compounds

    Science.gov (United States)

    Tire producers are increasingly interested in biobased materials, including rubber but also as compounding chemicals. An alternative natural rubber for tire use is produced by guayule, a woody desert shrub native to North America. Alternative compounding chemicals include naturally-occurring amino a...

  6. Physical-biopolymer characterization of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) blended with natural rubber latex

    Energy Technology Data Exchange (ETDEWEB)

    Kuntanoo, K., E-mail: thip-kk@hotmail.com [Graduate School of Khon Kaen University, Khon Kaen, 40002 Thailand (Thailand); Promkotra, S., E-mail: sarunya@kku.ac.th [Department of Geotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Kaewkannetra, P., E-mail: paknar@kku.ac.th [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand)

    2015-03-30

    A biopolymer of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is blended with bio-based materials, natural rubber latex, to improve their microstructures. The various ratios between PHBV and natural rubber latex are examined to develop their mechanical properties. In general, physical properties of PHBV are hard, brittle and low flexible while natural rubber (NR) is presented itself as high elastic materials. Concentrations of the PHBV solution are constituted at 1%, 2% and 3% (w/v). The mixtures of their PHBV solutions to natural rubber latex are produced the blended films in three different ratios of 4:6, 5:5 and 6:4, respectively. They are characterized by appearance analyses which are the scanning electron microscope (SEM), universal testing machine (UTM) and differential scanning calorimetry (DSC). The SEM photomicrographs of the blended films and the controlled PHBV can provide the void distribution in the range of 12-14% and 19-21%, respectively. For mechanical properties of the blended films, the various elastic moduli of 1%, 2% and 3% (w/v) PHBV are the average of 773, 956 and 1,007 kPa, respectively. The tensile strengths of the blends increase with the increased concentrations of PHBV, similarly trend to the elastic modulus. The crystallization and melting behavior of unmixed PHBV and the blends are determined by DSC. Melting transition temperatures (T{sub m}) of the unmixed PHBV are stated two melting peak at 154°C and 173°C. Besides, the melting peaks of the blends alter in the range of 152-156°C and 168-171°C, respectively. According to morphology of the blends, the void distribution decreases twice compared to the unmixed PHBV. The results of mechanical properties and thermal analysis indicate that the blended PHBV can be developed their properties by more resilient and wide range of temperature than usual.

  7. Physical-biopolymer characterization of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) blended with natural rubber latex

    Science.gov (United States)

    Kuntanoo, K.; Promkotra, S.; Kaewkannetra, P.

    2015-03-01

    A biopolymer of polyhydroxybutyrate-co-hydroxyvalerate (PHBV) is blended with bio-based materials, natural rubber latex, to improve their microstructures. The various ratios between PHBV and natural rubber latex are examined to develop their mechanical properties. In general, physical properties of PHBV are hard, brittle and low flexible while natural rubber (NR) is presented itself as high elastic materials. Concentrations of the PHBV solution are constituted at 1%, 2% and 3% (w/v). The mixtures of their PHBV solutions to natural rubber latex are produced the blended films in three different ratios of 4:6, 5:5 and 6:4, respectively. They are characterized by appearance analyses which are the scanning electron microscope (SEM), universal testing machine (UTM) and differential scanning calorimetry (DSC). The SEM photomicrographs of the blended films and the controlled PHBV can provide the void distribution in the range of 12-14% and 19-21%, respectively. For mechanical properties of the blended films, the various elastic moduli of 1%, 2% and 3% (w/v) PHBV are the average of 773, 956 and 1,007 kPa, respectively. The tensile strengths of the blends increase with the increased concentrations of PHBV, similarly trend to the elastic modulus. The crystallization and melting behavior of unmixed PHBV and the blends are determined by DSC. Melting transition temperatures (Tm) of the unmixed PHBV are stated two melting peak at 154°C and 173°C. Besides, the melting peaks of the blends alter in the range of 152-156°C and 168-171°C, respectively. According to morphology of the blends, the void distribution decreases twice compared to the unmixed PHBV. The results of mechanical properties and thermal analysis indicate that the blended PHBV can be developed their properties by more resilient and wide range of temperature than usual.

  8. Estimation of genetic parameters in rubber progenies

    Directory of Open Access Journals (Sweden)

    Cecília Khusala Verardi

    2012-09-01

    Full Text Available This study was designed to evaluate the genetic variability, the potential for rubber yield and secondary traits of rubber tree progenies at three locations in the state of Sao Paulo. The experiments were conducted in a randomized block design with 22 progenies and 6 replications. At the age of three years, the progenies were evaluated for rubber yield, girth growth and total number of latex vessel rings. The results showed the existence of genetic variability among progenies for each location separately as well as between locations, with differences in the progeny performance for the traits. The individual heritabilities calculated for rubber yield, girth growth and total number of latex vessel rings (0.30, 0.63 and 0.29, respectively, associated with high genetic gains with selection for the traits studied at each site, showed that the populations can be considered suitable for the rubber breeding program, provided that an appropriate selection procedure is used.

  9. Lignocellulosic fiber reinforced rubber composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available stream_source_info John_d1_2009.pdf.txt stream_content_type text/plain stream_size 43167 Content-Encoding UTF-8 stream_name John_d1_2009.pdf.txt Content-Type text/plain; charset=UTF-8 -252- CHAPTER 10: LIGNOCELLULOSIC... FIBER REINFORCED RUBBER COMPOSITES Maya JACOB JOHN1 Rajesh D. ANANDJIWALA2 (1)CSIR Materials Science and Manufacturing, Fibres and Textiles Competence Area, P.O. Box 1124, Port Elizabeth 6000, South Africa, E-mail: mjohn@csir.co.za (2) Department...

  10. Rubber band ligation of hemorrhoids: A guide for complications

    Science.gov (United States)

    Albuquerque, Andreia

    2016-01-01

    Rubber band ligation is one of the most important, cost-effective and commonly used treatments for internal hemorrhoids. Different technical approaches were developed mainly to improve efficacy and safety. The technique can be employed using an endoscope with forward-view or retroflexion or without an endoscope, using a suction elastic band ligator or a forceps ligator. Single or multiple ligations can be performed in a single session. Local anaesthetic after ligation can also be used to reduce the post-procedure pain. Mild bleeding, pain, vaso-vagal symptoms, slippage of bands, priapism, difficulty in urination, anal fissure, and chronic longitudinal ulcers are normally considered minor complications, more frequently encountered. Massive bleeding, thrombosed hemorrhoids, severe pain, urinary retention needing catheterization, pelvic sepsis and death are uncommon major complications. Mild pain after rubber band ligation is the most common complication with a high frequency in some studies. Secondary bleeding normally occurs 10 to 14 d after banding and patients taking anti-platelet and/or anti-coagulant medication have a higher risk, with some reports of massive life-threatening haemorrhage. Several infectious complications have also been reported including pelvic sepsis, Fournier’s gangrene, liver abscesses, tetanus and bacterial endocarditis. To date, seven deaths due to these infectious complications were described. Early recognition and immediate treatment of complications are fundamental for a favourable prognosis. PMID:27721924

  11. Rubber-like materials derived from biosourced phenolic resins

    Science.gov (United States)

    Amaral-Labat, G.; Grishechko, L. I.; Silva, G. F. B. Lenz e.; Kuznetsov, B. N.; Fierro, V.; Pizzi, A.; Celzard, A.

    2017-07-01

    The present work describes new gels derived from cheap, abundant and non-toxic wood bark extracts of phenolic nature, behaving like elastomers. Especially, we show that these materials might be used as rubber springs. Such amazing properties were obtained by a quite simple synthesis based on the autocondensation of flavonoid tannins in water at low pH in the presence of a plasticizer. After gelation and drying, the materials presented elastic properties that could be tuned from hard and brittle to quite soft and deformable, depending on the amount of plasticizer in the starting formulation. Not only the materials containing the relevant amount of plasticizer had stress-strain characteristics in quasi-static and cyclic compression similar to most commercial rubber springs, but they presented outstanding fire retardance, surviving 5 min in a flame at 1000°C in air. Neither flame propagation nor drips were noticed during the fire test, and the materials were auto-extinguishable. These excellent features make these materials potential substitutes to usual organic elastomers.

  12. Extraction and characterization of latex and natural rubber from rubber-bearing plants.

    Science.gov (United States)

    Buranov, Anvar U; Elmuradov, Burkhon J

    2010-01-27

    Consecutive extraction of latex and natural rubber from the roots of rubber-bearing plants such as Taraxacum kok-saghyz (TKS), Scorzonera tau-saghyz (STS), and Scorzonera Uzbekistanica (SU) were carried out. Latex extraction was carried via two methods: Blender method and Flow method. The results of latex extraction were compared. Cultivated rubber-bearing plants contained slightly higher latex contents compared to those from wild fields. Several creaming agents for latex extraction were compared. About 50% of total natural rubber was extracted as latex. The results of the comparative studies indicated that optimum latex extraction can be achieved with Flow method. The purity of latex extracted by Blender method ( approximately 75%) was significantly lower than that extracted by Flow method (99.5%). When the latex particles were stabilized with casein, the latex was concentrated significantly. Through concentrating latex by flotation, the latex concentration of 35% was obtained. Bagasse contained mostly solid natural rubber. The remaining natural rubber in the bagasse (left after the latex extraction) was extracted using sequential solvent extraction first with acetone and then with several nonpolar solvents. Solid natural rubber was analyzed for gel content and characterized by size exclusion chromatography (SEC) for molecular weight determinations. SEC of solid natural rubber has shown that the molecular weight is about 1.8E6 and they contain less gel compared to TSR20 (Grade 20 Technically Specified Rubber), a commercial natural rubber from Hevea brasiliensis.

  13. Computational Elastic Knots

    KAUST Repository

    Zhao, Xin

    2013-05-01

    Elastic rods have been studied intensively since the 18th century. Even now the theory of elastic rods is still developing and enjoying popularity in computer graphics and physical-based simulation. Elastic rods also draw attention from architects. Architectural structures, NODUS, were constructed by elastic rods as a new method of form-finding. We study discrete models of elastic rods and NODUS structures. We also develop computational tools to find the equilibria of elastic rods and the shape of NODUS. Applications of elastic rods in forming torus knot and closing Bishop frame are included in this thesis.

  14. How to Develop Rubber Production in Xishuangbanna Dai Autonomous Prefecture?

    Institute of Scientific and Technical Information of China (English)

    Huide; HUANG; Haolun; HUANG; Wanzhen; ZHANG

    2015-01-01

    The natural rubber planting area in Xishuangbanna Dai Autonomous Prefecture accounts for about 30% of rubber planting area in China. At the end of 2013,the rubber planting area in Xishuangbanna Dai Autonomous Prefecture was 29. 4 ha,the tapped rubber plantation area was 17. 49 ha,and the dry rubber production was 317000 t. Currently,the production and management level of rubber plantation has declined in Xishuangbanna Dai Autonomous Prefecture,the tapping technique is outdated,and the tapping technology management system is difficult to implement. Therefore,some ways can be employed to promote the development of rubber industry such as enhancing the operation and management level of rubber industry,organizing the rubber production team,and developing the new rubber farmers’ cooperatives.

  15. Influence of Crumb-Rubber in the Mechanical Response of Modified Portland Cement Concrete

    Directory of Open Access Journals (Sweden)

    J. Retama

    2017-01-01

    Full Text Available The influence of crumb-rubber on the mechanical properties of Portland cement concrete (PCC is studied by experimental tests and numerical simulations. The main hypothesis of the study is that replacing part of the stone aggregate with crumb-rubber in the mix modifies the energy dissipation during the cracking process and affects the concrete behaviour under monotonically increasing loads. The experimental research program characterizes the mechanical properties of PCC for three different types of concrete with a variable content of crumb-rubber. The experimental results showed that fracture energy and other properties are directly related to the rubber fineness used in the mixture. The material properties derived for these laboratory tests are used to study, by numerical models, its response through its damage evolution. The numerical model used to simulate the damage evolution of the concrete is the Embedded Discontinuity Method (EDM. One characteristic of the EDM is that it does not need to modify the mesh topology to propagate the damage through the continuum solid. For this study, the Disk-Shaped Compact Tension specimen geometry, normed by the D7313-13 of the ASTM, is used. Results showed that the numerical methods provide good approximation of the experimental curve in the elastic and softening branches.

  16. Zinc Leaching from Tire Crumb Rubber

    Science.gov (United States)

    Rhodes, E. P.; Ren, J.; Mays, D. C.

    2010-12-01

    Recent estimates indicate that more than 2 billion scrap tires are currently stockpiled in the United States and approximately 280 million more tires are added annually. Various engineering applications utilize recycled tires in the form of shredded tire crumb rubber. However, the use of tire crumb rubber may have negative environmental impacts, especially when the rubber comes into contact with water. A review of the literature indicates that leaching of zinc from tire crumb rubber is the most significant water quality concern associated with using this material. Zinc is generally used in tire manufacturing, representing approximately 1.3% of the final product by mass. This study will report results from the U.S. Environmental Protection Agency’s (EPA’s) Synthetic Precipitation Leaching Procedure, batch leaching tests, and column leaching tests performed to quantify the process by which zinc leaches from tire crumb rubber into water. Results are interpreted with a first-order kinetic attachment/detachment model, implemented with the U.S. Agricultural Research Service software HYDRUS-1D, in order to determine the circumstances when zinc leaching from tire crumb rubber would be expected to comply with the applicable discharge limits. One potential application for recycled tires is replacing sand with tire crumb rubber in granular media filters used for stormwater pollution control. For this to be a viable application, the total zinc in the stormwater discharge must be below the EPA’s benchmark value of 0.117 mg/L.

  17. History of Rubber and Its Use

    Science.gov (United States)

    Müller, Ingo; Strehlow, Peter

    Despite its spectacular properties rubber was not much good for anything before the latter part of the 19th century. To be sure the Aztecs had used it to make balls for their ceremonial ball games - or so we are told. But those games died along with the Aztec culture in the 16th century and there is no record of other useful applications until the late 18th century. But then, after that, rubber took off in a small way. After the American inventor Samuel Peal had obtained a patent in 1791 for the production of rubber-coated watertight textiles, the Scottish chemist Charles Macintosh (1766-1843) used such textiles for making rain-coats, and Thomas Hancock (1786-1865) produced rubber boots. At that time it was not really appropriate to speak of a rubber industry. What little material the evil-smelling workshops in New York and London needed, could be satisfied with the import of 30 tons of Caoutchouc1 annually - extracted from the sap of the tree Hevea brasiliensis - and most of that went for making erasers. Indeed, it had been reported by the English minister and scientist Joseph Priestley (1733-1804) that pieces of rubber are well-suited to rub out (sic!) pencil marks. Even today there is nothing better for the purpose and rubber became the English word for Caoutchouc.

  18. Polypropylene–rubber blends: 2. The effect of the rubber content on the deformation and impact behaviour

    NARCIS (Netherlands)

    Wal, van der A.; Nijhof, R.; Gaymans, R.J.

    1999-01-01

    The effect of the rubber content on the deformation and impact behaviour of polypropylene–EPDM rubber blends is studied. The blends are made on a twin screw extruder. The rubber content ranged from 0 to 40 vol.%. The tensile modulus and the yield stress decrease linearly with increasing rubber conte

  19. Increased damping of natural rubber stocks from prior elongation-retraction

    Science.gov (United States)

    Fitzgerald, Edwin R.

    1995-05-01

    The effects of elongation on the audiofrequency dynamic mechanical properties of a natural rubber (Hevea) gum stock have been described previously in terms of the elastic (J') and the viscous (J') components of a complex shear compliance, J* equals J' - iJ'. In this prior work emphasis was on the changes in compliance levels and the frequency dependencies of the elastic and viscous components at static elongations from 0 to 400%, and after retractions to elongations below 300%. At elongations above 300%, several large, sharp resonances appeared in the compliance-frequency plots coincident with the well known stretch-induced, oriented crystallinity above 300% elongation for the initially amorphous rubber at room temperatures. In the present work attention is on the loss tangent, J'/J', which governs vibration damping, and for which no data were given in the earlier report. After extensions to 400%, as described above, followed by retraction to 275%, for example, values of loss tangent were two or three times those found at any of the first elongations from 0 to 400%. Current measurements using an automated measurement system yield similar results. Additional information on the effect of time at an elongation and the elongation-retraction sequence on enhanced damping has also been gathered. In any case, it is evident that natural rubber gum stocks, ordinarily with low damping, when treated smartly can be changed to high damping materials at some audio frequencies.

  20. Fatigue Performance and Multiscale Mechanisms of Concrete Toughened by Polymers and Waste Rubber

    Directory of Open Access Journals (Sweden)

    Bo Chen

    2014-01-01

    Full Text Available For improving bending toughness and fatigue performance of brittle cement-based composites, two types of water-soluble polymers (such as dispersible latex powder and polyvinyl alcohol powder and waste tire-rubber powders are added to concrete as admixtures. Multiscale toughening mechanisms of these additions in concretes were comprehensively investigated. Four-point bending fatigue performance of four series concretes is conducted under a stress level of 0.70. The results show that the effects of dispersible latex powder on bending toughness and fatigue life of concrete are better than those of polyvinyl alcohol powder. Furthermore, the bending fatigue lives of concrete simultaneously containing polymers and waste rubber powders are larger than those of concrete with only one type of admixtures. The multiscale physics-chemical mechanisms show that high bonding effect and high elastic modulus of polymer films as well as good elastic property and crack-resistance of waste tire-rubber powders are beneficial for improving bending toughness and fatigue life of cementitious composites.

  1. Effect of Rubberized Bitumen Blending Methods on Permanent Deformation of SMA Rubberized Asphalt Mixtures

    Directory of Open Access Journals (Sweden)

    Herda Yati Katman

    2016-01-01

    Full Text Available This study aims at comparing the permanent deformation of Stone Mastic Asphalt (SMA rubberized asphalt mixtures produced by the wet process. In this study, rubberized binders were prepared using two different blending methods, namely, continuous blend and terminal blend. To study the creep behaviour of control and rubberized asphalt mixtures, the dynamic creep test was performed using Universal Materials Testing Apparatus (UMATTA at different temperatures and stress levels. Zhou three-stage creep model was utilized to evaluate the deformation characteristics of the mixtures. In all test conditions, the highest resistance to permanent deformation is showed by the rubberized mixtures produced with continuous blend binders. This study also reveals that the permanent deformation of rubberized mixtures cannot be predicted based on the characteristics of the rubberized binders.

  2. Structural characterization of rubber from jackfruit and euphorbia as a model of natural rubber.

    Science.gov (United States)

    Mekkriengkrai, Dararat; Ute, Koiichi; Swiezewska, Ewa; Chojnacki, Tadeusz; Tanaka, Yasuyuki; Sakdapipanich, Jitladda T

    2004-01-01

    A structural study of low molecular weight rubbers from Jackfruit (Artocarpus heterophyllus) and Painted spurge (Euphorbia heterophylla) was carried out as model compounds of natural rubber from Hevea brasiliensis. The rubber content of latex from Jackfruit was 0.4-0.7%, which is very low compared with that of 30-35% in the latex from Hevea tree. The rubber from Jackfruit latex was low molecular weight with narrow unimodal molecular weight distribution (MWD), whereas that obtained from E. heterophylla showed very broad MWD. The 1H and 13C NMR analyses showed that Jackfruit rubber consists of a dimethylallyl group and two trans-isoprene units connected to a long sequence of cis-isoprene units. The alpha-terminal group of Jackfruit rubber was presumed to be composed of a phosphate group based on the presence of 1H NMR signal at 4.08 ppm corresponding to the terminal =CH-CH2OP group.

  3. Thermal properties of hydrogenated liquid natural rubber

    Energy Technology Data Exchange (ETDEWEB)

    Jamaluddin, Naharullah; Abdullah, Ibrahim; Yusoff, Siti Fairus M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Natural rubber (NR) was modified to form liquid natural rubber (LNR) via photooxidative degradation. Hydrogenated liquid natural rubber (HLNR) was synthesized by using diimide as source of hydrogen which the diimide is produced by thermolysis of p-toluenesulfonyl hydrazide (TSH). The structure of HLNR was characterized by determining the changes of main peaks in Fourier Transform infrared and nuclear magnetic resonance spectra after hydrogenation. Thermogravimetric analysis showed that the HLNR had higher decomposition temperature compared to LNR and the decomposition temperature is directly proportional to the percentage of conversion.

  4. Life assessment of rubber articles in fuels

    OpenAIRE

    Selldén, Emmy

    2013-01-01

    The choice of rubber material for use in sealings and hoses in the fuel system is of great importance. If a wrong type of rubber is used, premature failure during service may occur. This impacts the environmental performance, the safety during driving, uptime and economy of the transport. In this diploma work, rubbers for use in sealing and hoses in the fuel system have been evaluated to assess which materials have the potential to be used under long-term use in contact with commercial fuels....

  5. Chemistry of rubber processing and disposal.

    Science.gov (United States)

    Bebb, R L

    1976-01-01

    The major chemical changes during the processing of rubber occur with the breakdown in mastication and during vulcanization of the molded tire. There is little chemical change during the compounding, calendering, extrusion, and molding steps. Reclaiming is the process of converting scrap rubber into an unsaturated, processible product that can be vulcanized with sulfur. Pyrolysis of scrap rubber yields a complex mixture of liquids, gas, and residue in varying ratios dependent on the nature of the scrap and the conditions of pyrolysis. PMID:799964

  6. Suitability of rubber concrete for railway sleepers

    Directory of Open Access Journals (Sweden)

    Afia S. Hameed

    2016-09-01

    Full Text Available An experimental investigation by replacing 15% by volume fraction of fine aggregate by crumb rubber was conducted to find the fatigue failure load and impact resistance. The design strength of 50 and 55 MPa was achieved. Test result indicated that there was reduction in compressive strength and modulus values. The fatigue failure and impact resistance were high for rubber concrete when compared with ordinary high strength concrete. The impact strength for railway sleeper with crumb rubber replacement showed increase of about 60% when compared to prestressed concrete sleeper.

  7. Material Model Research on Rubber Vibration Isolators

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three parameters to characterize the hyperelastic static properties of rubber materials,and the other component incorporating two relaxation time parameters, corresponding to high and low strain rates, respectively, to describe the dynamic response under vibration and impact loadings. Based on this proposed constitutive model, a series of experiments were performed on two types of rubber materials over a wide strain rate range. The results predicted from this model are in good agreement with the experimental data.

  8. An interactive web-based design system for rubber injection mold: Automotive rubber parts

    OpenAIRE

    Chamnarn Thongmark; Jariyaporn Onwong

    2016-01-01

    This research aims at integrating a knowledge-based system and web-based technology to facilitate the rubber and rubber composite injection mold design. The system integrates both of computer-aided design and web-based management by using the application programming interface. The research processes started with gathering data and knowledge concerning on rubber injection mold design and process, with the designed framework of the system included. An example part was demonstrated i...

  9. An interactive web-based design system for rubber injection mold: Automotive rubber parts

    OpenAIRE

    Chamnarn Thongmark; Jariyaporn Onwong

    2016-01-01

    This research aims at integrating a knowledge-based system and web-based technology to facilitate the rubber and rubber composite injection mold design. The system integrates both of computer-aided design and web-based management by using the application programming interface. The research processes started with gathering data and knowledge concerning on rubber injection mold design and process, with the designed framework of the system included. An example part was demonstrated i...

  10. Contributions crumb rubber in hot mix asphalt to the resilient modulus

    Science.gov (United States)

    Ariyapijati, Raden Hendra; Hadiwardoyo, Sigit Pranowo; Sumabrata, R. Jachrizal

    2017-06-01

    indicated that by the addition of crumb rubber, the pavement material becomes more elastic, so it can reduce the level of damage in the form of cracks on roads, but it also declines the ability of the pavement to withstand the loads.

  11. Pseudo-Casimir stresses and elasticity of a confined elastomer film

    Science.gov (United States)

    Lu, Bing-Sui; Naji, Ali; Podgornik, Rudolf

    Investigations of the elastic behavior of bulk elastomers have traditionally proceeded on the basis of classical rubber elasticity, which regards chains as thermally fluctuating but disregards the thermal fluctuations of the cross-links. Here, we consider an incompressible and flat elastomer film of an axisymmetric shape confined between two large hard co-planar substrates, with the axis of the film perpendicular to the substrates. We address the impact that thermal fluctuations of the cross-links have on the free energy of elastic deformation of the system, subject to the requirement that the fluctuating elastomer cannot detach from the substrates. We examine the behavior of the deformation free energy for one case where a rigid pinning boundary condition is applied to a class of elastic fluctuations at the confining surfaces, and another case where the same elastic fluctuations are subjected to soft "gluing" potentials. We find that there can be significant departures (both quantitative and qualitative) from the prediction of classical rubber elasticity theory when elastic fluctuations are included. Finally, we compare the character of the attractive part of the elastic fluctuation-induced, or pseudo-Casimir, stress with the standard thermal Casimir stress in confined but non-elastomeric systems, finding the same power law decay behavior when a rigid pinning boundary condition is applied, for the case of the gluing potential, we find that the leading order correction to the attractive part of the fluctuation stress decays inversely with the inter-substrate separation.

  12. Micromorphological characterization and label-free quantitation of small rubber particle protein in natural rubber latex.

    Science.gov (United States)

    Wang, Sai; Liu, Jiahui; Wu, Yanxia; You, Yawen; He, Jingyi; Zhang, Jichuan; Zhang, Liqun; Dong, Yiyang

    2016-04-15

    Commercial natural rubber is traditionally supplied by Hevea brasiliensis, but now there is a big energy problem because of the limited resource and increasing demand. Intensive study of key rubber-related substances is urgently needed for further research of in vitro biosynthesis of natural rubber. Natural rubber is biosynthesized on the surface of rubber particles. A membrane protein called small rubber particle protein (SRPP) is a key protein associated closely with rubber biosynthesis; however, SRPP in different plants has been only qualitatively studied, and there are no quantitative reports so far. In this work, H. brasiliensis was chosen as a model plant. The microscopic distribution of SRPP on the rubber particles during the washing process was investigated by transmission electron microscopy-immunogold labeling. A label-free surface plasmon resonance (SPR) immunosensor was developed to quantify SRPP in H. brasiliensis for the first time. The immunosensor was then used to rapidly detect and analyze SRPP in dandelions and prickly lettuce latex samples. The label-free SPR immunosensor can be a desirable tool for rapid quantitation of the membrane protein SRPP, with excellent assay efficiency, high sensitivity, and high specificity. The method lays the foundation for further study of the functional relationship between SRPP and natural rubber content.

  13. Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz

    Directory of Open Access Journals (Sweden)

    Prüfer Dirk

    2010-02-01

    Full Text Available Abstract Background Natural rubber is a biopolymer with exceptional qualities that cannot be completely replaced using synthetic alternatives. Although several key enzymes in the rubber biosynthetic pathway have been isolated, mainly from plants such as Hevea brasiliensis, Ficus spec. and the desert shrub Parthenium argentatum, there have been no in planta functional studies, e.g. by RNA interference, due to the absence of efficient and reproducible protocols for genetic engineering. In contrast, the Russian dandelion Taraxacum koksaghyz, which has long been considered as a potential alternative source of low-cost natural rubber, has a rapid life cycle and can be genetically transformed using a simple and reliable procedure. However, there is very little molecular data available for either the rubber polymer itself or its biosynthesis in T. koksaghyz. Results We established a method for the purification of rubber particles - the active sites of rubber biosynthesis - from T. koksaghyz latex. Photon correlation spectroscopy and transmission electron microscopy revealed an average particle size of 320 nm, and 13C nuclear magnetic resonance (NMR spectroscopy confirmed that isolated rubber particles contain poly(cis-1,4-isoprene with a purity >95%. Size exclusion chromatography indicated that the weight average molecular mass (w of T. koksaghyz natural rubber is 4,000-5,000 kDa. Rubber particles showed rubber transferase activity of 0.2 pmol min-1 mg-1. Ex vivo rubber biosynthesis experiments resulted in a skewed unimodal distribution of [1-14C]isopentenyl pyrophosphate (IPP incorporation at a w of 2,500 kDa. Characterization of recently isolated cis-prenyltransferases (CPTs from T. koksaghyz revealed that these enzymes are associated with rubber particles and are able to produce long-chain polyprenols in yeast. Conclusions T. koksaghyz rubber particles are similar to those described for H. brasiliensis. They contain very pure, high molecular mass

  14. Material matters: Controllable rubber trailing edge flap regulates load on wind turbine blades

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge

    2010-01-01

    In wind farms, nearby wind turbines exert considerable influence and generate turbulence on turbine blades. Because the blades are so long, there can be considerable differences in localized loading from the gusts along the blade. The Risø DTU researchers has developed a controllable rubber...... trailing edge flap, known as CRTEF. The trailing edge blade design is expected to help mitigate localized loading, and its molded rubber design, the sharp trailing edge, produces less noise and greater output. With CRTEF, the blade automatically has a completely sharp edge. The elastic flap tested...... in an open jet wind tunnel shows promising results. In the wind tunnel, it is possible to regulate the wind speed as well as turn the blade profile to simulate a change in wind direction in relation to the profile....

  15. Modification of Bitumen with Desulfurized Crumb Rubber in the Present of Reactive Additives

    Institute of Scientific and Technical Information of China (English)

    YE Zhigang; ZHANG Yuzhen; KONG Xianming

    2005-01-01

    Bitumen was modified with desulfurized crumb rubber (DCR) in the present of reactive additives. The effect of the kinds and content of the reactive additive on properties of DCR modified bitumen (DCRMB) was investigated. The morphology of DCRMB was characterized by SEM and the changes of the chemical structure of DCRMB without and with the addition of the reactive additive were analyzed by FTIR. The experimented results show that the softening point,the elasticity recovery and the storage stability of DCRMB were improved significantly by the addition of the reactive additive. This is because that a network structure of rubber in DCRMB was formed and the chemical reaction between C=C double bonds in bitumen and DCR has happened after the reactive additive was added into DCRMB.

  16. Visual evoked potentials in rubber factory workers.

    Science.gov (United States)

    Tandon, O P; Kumar, V

    1997-01-01

    Pattern reversal visual evoked potentials (pVEP) were studied in 39 male rubber factory workers in the age range of 18-55 years and 20 control subjects (aged 18-46 years) not exposed to the rubber factory environment. Results revealed that 20 (51%) rubber factory workers had abnormal latencies of wave P1 (dominant component of pVEP) as per accepted criteria of 99% tolerance limit set for the control group (i.e. any value above mean +3 SD of control was considered abnormal). The section-wise per cent distribution of abnormalities was vulcanization (83%), tubing (75%), calendering (60%), loading (38%) and mixing (14%). This study provides electrophysiological evidence that rubber factory environments affect the conduction processes in optical pathways from their origin in the retina to striate cortex. However, this study has its limitations in not identifying the specific chemical(s) causing these changes in VEP.

  17. Oils and rubber from arid land plants

    Science.gov (United States)

    Johnson, J. D.; Hinman, C. W.

    1980-05-01

    In this article the economic development potentials of Cucurbita species (buffalo gourd and others), Simmondsia chinensis (jojoba), Euphorbia lathyris (gopher plant), and Parthenium argentatum (guayule) are discussed. All of these plants may become important sources of oils or rubber.

  18. Finite element analysis of the laminated rubber bearingused in base isolation system. Sekiso gum isolater no yugen yoso kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Takayama, M.; Tada, H. (Fukuoka Univ., Fukuoka (Japan). Faculty of Engineering)

    1990-09-01

    Characteristics of the laminated rubber bearing for a base isolation system of buildings were analyzed by a finite element method. Instead of an elastic modulus and Poisson {prime} s ratio, the rubber material was characterized by a strain energy function for modeling, and material constants were determined in the biaxial tensile test of rubber sheets before analyzing. The nonlinear stress analysis program based on a modified variational principle was used together with the model with 4,136 elements and 7,120 nodes in total. The compressive analysis was conducted up to 1,000kgf/cm {sup 2} in compressive stress, and the compressive shearing one up to 370% in horizontal deformability (ratio of horizontal deformation to total rubber thickness). As a result, the load-deformation characteristics were well agreed between the analysis and experiment. Large strain was observed in the periphery of the rubber bearing and no strain in the central portion under a compressive load condition, while uniform strain was observed over the central area under a compressive shearing load condition. 7 refs., 26 figs.

  19. Contact allergy to rubber accelerators remains prevalent

    DEFF Research Database (Denmark)

    Schwensen, J F; Menné, T; Johansen, J D

    2016-01-01

    INTRODUCTION: Chemicals used for the manufacturing of rubber are known causes of allergic contact dermatitis on the hands. Recent European studies have suggested a decrease in thiuram contact allergy. Moreover, while an association with hand dermatitis is well established, we have recently observ.......2% (19/54) and 35.4% (17/48) of the cases respectively. CONCLUSION: Contact allergy to rubber accelerators remains prevalent. Clinicians should be aware of the hitherto unexplored clinical association with facial dermatitis....

  20. THERMAL CONDUCTIVITY OF RUBBERIZED GYPSUM BOARD

    OpenAIRE

    Taher Abu-Lebdeh; Ellie Fini; Ashraf Fadiel

    2014-01-01

    The disposal of scrap tires is a challenging task and hence an innovative solution to meet these challenges is needed. Extensive work has been done on the utilization of waste tires in a variety of applications in asphalt pavements and concrete. However, previous investigations focus only on the mechanical properties of the rubberized materials, but few on the thermal performance. This is especially true for rubberized gypsum. Limited or no experimental data on the thermal performance of rubb...

  1. Rubber-Modified Epoxies: Transitions and Morphology.

    Science.gov (United States)

    1980-09-01

    temperatures used for cure (i.e. Tso > Tcure). A low molecular weight liquid diglycidyl ether of bisphenol A ( DGEBA ) epoxy resin, Epon 828, Shell Chemical Co...the rubber damping peak always occurs at or below the Tg of unreacted CTBN even though CTBN is capped with DGEBA (see Ref. 5 which also shows that the...depression of RTg decreases with increasing amounts of rubber modifier in the formulations). DGEBA and CTBN must be incorporated in the domains since

  2. [Detection of pentachlorophenol in natural rubber latex].

    Science.gov (United States)

    Jaworska, E

    1976-01-01

    The method of detection of pentachlorophenol in natural rubber latex is proposed. Pentachlorophenol is isolated from other nonrubber-like substances by thin-layer chromatography and identified by spectroscopic method in UV-light. Isolation of pentachlorophenol is carried out from water extracts obtained from the dry caoutchouc films, so the same method can be used for examination of the rubber articles designed for the medicinetoo.

  3. Methodical fitting for mathematical models of rubber-like materials

    Science.gov (United States)

    Destrade, Michel; Saccomandi, Giuseppe; Sgura, Ivonne

    2017-02-01

    A great variety of models can describe the nonlinear response of rubber to uniaxial tension. Yet an in-depth understanding of the successive stages of large extension is still lacking. We show that the response can be broken down in three steps, which we delineate by relying on a simple formatting of the data, the so-called Mooney plot transform. First, the small-to-moderate regime, where the polymeric chains unfold easily and the Mooney plot is almost linear. Second, the strain-hardening regime, where blobs of bundled chains unfold to stiffen the response in correspondence to the `upturn' of the Mooney plot. Third, the limiting-chain regime, with a sharp stiffening occurring as the chains extend towards their limit. We provide strain-energy functions with terms accounting for each stage that (i) give an accurate local and then global fitting of the data; (ii) are consistent with weak nonlinear elasticity theory and (iii) can be interpreted in the framework of statistical mechanics. We apply our method to Treloar's classical experimental data and also to some more recent data. Our method not only provides models that describe the experimental data with a very low quantitative relative error, but also shows that the theory of nonlinear elasticity is much more robust that seemed at first sight.

  4. Establishment of new crops for the production of natural rubber.

    Science.gov (United States)

    van Beilen, Jan B; Poirier, Yves

    2007-11-01

    Natural rubber is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic alternatives. The rubber tree Hevea brasiliensis is the almost exclusive commercial source of natural rubber currently and alternative crops should be developed for several reasons, including: a disease risk to the rubber tree that could potentially decimate current production, a predicted shortage of natural rubber supply, increasing allergic reactions to rubber obtained from the Brazilian rubber tree and a general shift towards renewables. This review summarizes our knowledge of plants that can serve as alternative sources of natural rubber, of rubber biosynthesis and the scientific gaps that must be filled to bring the alternative crops into production.

  5. Microstructure and Properties of Desulfurized Crumb Rubber Modified Bitumen

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The microstructures of general crumb rubber(CR), dynamic desulfurized crumb rubber(DDCR) and high speed agitation desulfurized crumb rubber(HSADCR) modified bitumens were investigated by a fluorescence microscope, and the physical properties of these three modified bitumens were studied.The results show that the dynamic desulfuration can improve the swelling capacity of crumb rubber in bitumen by destroying the sulfuratized bond of the crumb rubber,but the reunion of rubber particles during dynamic desulfuration also makes the swelling and the DDCR in bitumen difficult, so properties of the DDCR modified bitumen are not superior to the general crumb rubber modified bitumen.However,high speed agitation desulfuration can not only improve the swelling capacity of crumb rubber in bitumen,but also avoid the reunion of rubber particles,so some properties of bitumen can be improved by the modification of HSADCR.

  6. Use of waste rubber as concrete additive.

    Science.gov (United States)

    Chou, Liang Hsing; Lu, Chun-Ku; Chang, Jen-Ray; Lee, Maw Tien

    2007-02-01

    For resource reutilization, scrap tyres have long been investigated as an additive to concrete to form 'Rubcrete' for various applications and have shown promising results. However, the addition of rubber particles leads to the degradation of physical properties, particularly, the compressive strength of the concrete. In this study, a theoretical model was proposed to shed light on the mechanisms of decrease in compressive strength due to the addition of rubber particles as well as improvement in compressive strength through modification of particle surfaces. The literature suggests that the compressive strength can be improved by soaking the rubber particles in alkaline solution first to increase the inter-phase bonding between the rubber particles and cement. Instead, we discovered that the loss in compressive strength was due to local imperfections in the hydration of cement, induced by the addition of heterogeneous and hydrophobic rubber particles. Microscopic studies showed that the rubber particles disturbed the water transfer to create channels, which were prone to cracking and led to a loss in the compressive strength. Unexpectedly, no cracking was found along the surfaces of the rubber particles, indicating that the bonding strength between the rubber particles and cement phases was not the critical factor in determining the compressive strength. Therefore, a theoretical model was proposed to describe the water transfer in the Rubcrete specimens to explain the experimental data. In the model, the local water available for hydration (Q) is: Q = -A(slv)/6piv, where Q, A(slv), and v are mass flow rate (kg s(-1)), Hamaker constant (J), and dynamic viscosity (m2 s(-1)), respectively. By maximizing the quantity Q and, in turn, the Hamaker constant A(slv), the compressive strength could be improved. The Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that for the hydrated cement particles; the water transfer rate was lower in

  7. The use of plasticizing additives based on recycled raw materials in the petrochemical rubber mixtures

    Directory of Open Access Journals (Sweden)

    Z. S. Shashok

    2016-01-01

    Full Text Available At present, the development of alternative products for elastomers based on recycling petrochemical raw materials is a new trend of the rubber industry progress. Petrochemical raw materials include spent lubricants and motor oils are among such recycling products. In this context, the influence of the products of recycling waste engine oil (DVCH and RA in comparison with industrial oil (I-20 on the technological properties of filled elastomeric compositions was investigated. The elastomeric compositions were based on poly isoprene and divinyl rubbers. The plasticizing components were manufactured by IOOO “DVCH-Menedzhment”. They are mixture of hydro-carbons, C16–C20 and differ from each other in the content of linear and branched paraffin. Plastic-elastic properties of rubber compounds on the shear disk viscometer MV2000 in accordance with GOST 10722–76 was carried out. Kinetics of vulcanization on the rheometer ODR2000 according to GOST 12535–84 was defined. It is shown that the introduction of RA test plasticizing component provides a significant effect on Mooney viscosity, as compared to elastomeric compositions containing a plasticizer and I-20 and plasticizing additive DVCH. It revealed that the administration of all components in the studied plasticizing elastomer compositions based on a combination poly isoprene and divinyl rubbers has no significant effect on the rate of relaxation of stress of rubber compounds. It is found that elastomeric compositions containing as additives investigated processing waste oil products (DVCH and RA are characterized by a slightly smaller value of time to reach an optimal degree of vulcanization.

  8. Sericin-binded-deprotenized natural rubber film containing chitin whiskers as elasto-gel dressing.

    Science.gov (United States)

    Watthanaphanit, Anyarat; Rujiravanit, Ratana

    2017-03-18

    Here, we aims to demonstrate a simple concept in biomaterials design by using natural resources solely as raw materials to fabricate elastic wound care dressing. Elasto-gel films comprise of silk sericin (SRC), natural rubber (NR), and chitin whisker (CTW) were developed. A glue-like protein SRC found in silk cocoons is beneficial for the treatment of wounds due to its superior skin moisturizing ability. However, the pure SRC film is generally difficult to be fabricated because of its weak structural feature. This limitation was overcome by using NR as a binder which consecutively rendered elasticity and strength of the films. CTW was chosen as another component to promote ability of the films for tissue restoration. Before the film formation, protein in the natural rubber latex (NRL) was removed to avoid allergic and cytotoxic problems. The enzyme-treated NR/SRC (ETNR/SRC) films having different blend compositions were fabricated by solution casting technique. The highest amount of the SRC to gain an easy to handle ETNR/SRC film was 30%. The ETNR/SRC/CTW films having 20% SRC were fabricated and studied in comparison. Essential properties of the films as elastic wound care dressings were investigated and effect of the materials chemistry on the observed properties were discussed.

  9. Effect of non-rubber constituents on guayule and Hevea rubber intrinsic properties

    Science.gov (United States)

    To meet the increasing demand for natural rubber (NR), and address price volatility and steadily increasing labor costs, alternate rubber-producing species are in commercial development. One of these, guayule (Parthenium argentatum), has emerged on the market as a sustainable commercial source of h...

  10. Euphorbia characias latex: micromorphology of rubber particles and rubber transferase activity.

    Science.gov (United States)

    Spanò, Delia; Pintus, Francesca; Esposito, Francesca; Loche, Danilo; Floris, Giovanni; Medda, Rosaria

    2015-02-01

    We have recently characterized a natural rubber in the latex of Euphorbia characias. Following that study, we here investigated the rubber particles and rubber transferase in that Mediterranean shrub. Rubber particles, observed by scanning electron microscopy, are spherical in shape with diameter ranging from 0.02 to 1.2 μm. Washed rubber particles exhibit rubber transferase activity with a rate of radiolabeled [(14)C]IPP incorporation of 4.5 pmol min(-1)mg(-1). Denaturing electrophoresis profile of washed rubber particles reveals a single protein band of 37 kDa that is recognized in western blot analysis by antibodies raised against the synthetic peptide whose sequence, DVVIRTSGETRLSNF, is included in one of the five regions conserved among cis-prenyl chain elongation enzymes. The cDNA nucleotide sequence of E. characias rubber transferase (GenBank JX564541) and the deduced amino acid sequence appear to be highly homologous to the sequence of several plant cis-prenyltransferases.

  11. Elastomers for Tracked Vehicles: 1980-1997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles

    Science.gov (United States)

    2015-06-01

    blends of the polymers styrene butadiene rubber , natural rubber , and... Natural -SBR-PBD rubber blends : formulations .........................................................50 Table 15b Natural -SBR-PBD rubber blends ...properties .............................................................53 Table 16a SBR blends with natural and polybutadiene rubber

  12. Conformational elasticity theory of chain molecules

    Institute of Scientific and Technical Information of China (English)

    YANG; Xiaozhen

    2001-01-01

    This paper develops a conformational elasticity theory of chain molecules, which is based on three key points: (ⅰ) the molecular model is the rotational isomeric state (RIS) model; (ⅱ) the conformational distribution function of a chain molecule is described by a function of two variables, the end-to-end distance of a chain conformation and the energy of the conformation; (ⅲ) the rule of changes in the chain conformational states during deformation is that a number of chain conformations would vanish. The ideal deformation behavior calculated by the theory shows that the change in chain conformations is physically able to make the upward curvature of the stress-strain curve at the large-scale deformation of natural rubber. With the theory, different deformation behaviors between polymers with different chemical structures can be described, the energy term of the stress in the deformations can be predicted, and for natural rubber the fraction of the energy term is around 13%, coinciding with the experimental results.

  13. 21 CFR 801.437 - User labeling for devices that contain natural rubber.

    Science.gov (United States)

    2010-04-01

    ... User labeling for devices that contain natural rubber. (a) Data in the Medical Device Reporting System..., natural rubber that contacts humans. The term “natural rubber” includes natural rubber latex, dry natural rubber, and synthetic latex or synthetic rubber that contains natural rubber in its......

  14. Self Assembly and Elasticity of Nuclear Pasta

    Science.gov (United States)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2015-10-01

    While the outer crust of a neutron star is likely a solid ion lattice, the core consists of uniform nuclear matter at or above saturation density. In between, nuclei adopt exotic non-spherical geometries called ``nuclear pasta'' in order to minimize the nuclear attraction and Coulomb repulsion between protons. These structures have been well studied with both classical and quantum molecular dynamics, and their geometry can be predicted from the density, temperature, and proton fraction. Recent classical molecular dynamics simulations find evidence for a phase transition at T ~ 0 . 5 MeV, where simulations with low proton fractions undergo a solid-liquid phase transition, while simulations with high proton fractions under a glass-rubber phase transition. This is expected to have nontrivial consequences for the elastic properties of the pasta. Additionally, recent observations indicate that the structure of nuclear pasta may be related to structures observed in biophysics, specifically self assembling lipid membranes.

  15. Experimental and Numerical Assessment of Vibro-Acoustic Behavior of Rubber-Damped Railway Wheels

    Science.gov (United States)

    Pešek, Luděk; Půst, Ladislav

    The reduction of noise and vibrations is very important task in many industrial and transport applications. The sources of intensive noise and vibrations are also tram and railway wheels at high speeds. Therefore the modern types of steel railway wheels contain the visco-elastic paddings. The first problem treated in this contribution is concerned with the theoretical and experimental investigation of the thermo-mechanical properties of rubber-like damping elements loaded with prestress by harmonic force. The dynamic modal and spectral properties of the whole railway wheel with damping elements will be investigated by the 3-D FEM model as the second problem.

  16. Insulation of nonlinear and random vibrations in the mining industry. [elastodynamic response of rubber insulator

    Science.gov (United States)

    Zeveleanu, C.

    1974-01-01

    The insulation of nonlinear and random vibrations is considered for some ore preparing and sorting implements: rotary crushers, resonance screens, hammer mills, etc. The appearance of subharmonic vibrations is analyzed, and the conditions for their appearance are determined. A method is given for calculating the insulation of these vibrations by means of elastic elements made of rubber. The insulation of the random vibrations produced by Symons crushers is calculated by determining the transmissability and deformation of the insulation system for a narrow band random response.

  17. Rubber Tree (Hevea brasiliensis Muell. Arg).

    Science.gov (United States)

    Venkatachalam, Perumal; Jayashree, Radha; Rekha, Karumamkandathil; Sushmakumari, Sreedharannair; Sobha, Sankaren; Kumari Jayasree, Parukkuttyamma; Kala, Radha Gopikkuttanunithan; Thulaseedharan, Arjunan

    2006-01-01

    Rubber tree (Hevea brasiliensis Muell. Arg.) is an important industrial crop for natural rubber production. At present, more than 9.5 million hectares in about 40 countries are devoted to rubber tree cultivation with a production about 6.5 million tons of dry rubber each year. The world supply of natural rubber is barely keeping up with a global demand for 12 million tons of natural rubber in 2020. Tapping panel dryness (TPD) is a complex physiological syndrome widely found in rubber tree plantations, which causes severe yield and crop losses in natural rubber producing countries. Currently, there is no effective prevention or treatment for this serious malady. As it is a perennial tree crop, the integration of specific desired traits through conventional breeding is both time-consuming and labour-intensive. Genetic transformation with conventional breeding is certainly a more promising tool for incorporation of agronomically important genes that could improve existing Hevea genotype. This chapter provides an Agrobacterium-mediated transformation protocol for rubber tree using immature anther-derived calli as initial explants. We have applied this protocol to generate genetically engineered plants from a high yielding Indian clone RRII 105 of Hevea brasiliensis (Hb). Calli were co-cultured with Agrobacterium tumefaciens harboring a plasmid vector containing the Hb superoxide dismutase (SOD) gene and the reporter gene used was beta-glucuronidase (GUS) gene (uidA). The selectable marker gene used was neomycin phosphotransferase (nptII) and kanamycin was used as selection agent. We found that a suitable transformation protocol for Hevea consists of a 3-d co-cultivation with Agrobacterium in the presence of 20 mM acetosyringone, 15 mM betaine HCl, and 11.55 mM proline followed by selection on medium containing 300 mg/L kanamycin. Transformed calli surviving on medium containing 300 mg/L kanamycin showed a strong GUS-positive reaction. Upon subsequent subculture into

  18. Comparative analysis of rubber seed methyl ester with other methyl ...

    African Journals Online (AJOL)

    Comparative analysis of rubber seed methyl ester with other methyl esters. ... In order to achieve a two-step transesterification process was developed to convert rubber seed oil to its methyl esters. The first step, acid catalyzed ... Article Metrics.

  19. A crumb rubber modified syntactic foam

    Energy Technology Data Exchange (ETDEWEB)

    Li Guoqiang [Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Department of Mechanical Engineering, Southern University, Baton Rouge, LA 70813 (United States)], E-mail: guoli@me.lsu.edu; John, Manu [Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States)

    2008-02-15

    In this study, the impact response and residual strength of a crumb rubber modified syntactic foam, which contained up to 20% by volume of crumb rubbers, were investigated. The foam had a hybrid microstructure bridging over several length scales. It was formed by dispersing hollow glass beads and crumb rubber particles into a microfiber and nanoclay filled epoxy matrix. Sandwich beam specimens were prepared using the hybrid foam as core and fiber reinforced epoxy as facings. A low velocity impact test using an instrumented drop tower impact machine was conducted on the sandwich beams and control beams made of the foam only. Four-point bending tests were conducted on the impact damaged specimens and control specimens without impact damage. The effect of the hybrid foam on the low velocity impact response and residual strength was evaluated based on the test results. The stress field interaction was evaluated using a finite element analysis. It was found that the rubberized syntactic foam possessed a higher capacity to dissipate impact energy and to retain bending strength. There was a positive composite action between the hollow glass bead particles and crumb rubber particles by means of stress field interaction and reduction in stress concentration.

  20. Removal Water Turbidity by Crumb Rubber Media

    Directory of Open Access Journals (Sweden)

    Abeer I. Alwared

    2014-06-01

    Full Text Available The removal of water turbidity by using crumb rubber filter was investigated .The present study was conducted to evaluate the effect of variation of influent water turbidity (10, 25 and 50 NTU, media size (0.6and 1.14mm, filtration rate (25, 45 and 65 l/hr and bed depth (30 and 60 cm on the performance of mono crumb rubber filter in response to the effluent filtered water turbidity and head loss development, and compare it with that of conventional sand filter. Results revealed that 25 l/hr flow rate and 25 NTU influent turbidity were the best operating conditions. smaller media size and higher bed depth gave the best removal efficiency while higher media size and small bed depth gave lower head loss. The optimum results show that 92.7% removal efficiency and 8.3 mm head loss. The comparison results show that at constant operating conditions, pressure drop for crumb rubber filter is lower than conventional sand filter; about 42% reduction in pressure drop than sand filter and the conventional sand filter has a little enhancement in removal efficiency than crumb rubber filter, 96.8% for sand while for crumb rubber 92.7%.

  1. Improved model-free adaptive control for a class of non-affine nonlinear discrete systems%一类非仿射非线性离散系统的改进无模型自适应控制

    Institute of Scientific and Technical Information of China (English)

    翁永鹏; 高宪文; 吕明阳

    2014-01-01

    An improved model-free adaptive control(IMFAC) approach is proposed for the more general non-affine nonlinear discrete systems. The nonparametric dynamic linearization technique is used in the controller design. By applying the observer strategy, the real-time dynamic linearization for the disturbance systems is realized. Thus the application scope of MFAC approach is extended to the more general non-affine nonlinear discrete-time systems. Then, the robust convergence of the IMFAC algorithm is also addressed. A numerical example is selected to validate the feasibility and effectiveness of the proposed method.%针对一类更广泛的非仿射非线性离散系统,提出一种改进的无模型自适应控制算法。该算法基于非参数动态线性化方法,运用观测器的思想,实现带有扰动系统的实时动态线性化,进而将无模型自适应控制方法的应用推广到更广泛的非仿射非线性离散系统。同时,对推广后的改进无模型自适应控制方法进行理论上的证明,并通过仿真实例验证了所提出的改进无模型自适应控制方法的可行性和有效性。

  2. Isolation of Microorganisms Able To Metabolize Purified Natural Rubber

    OpenAIRE

    Heisey, R. M.; Papadatos, S

    1995-01-01

    Bacteria able to grow on purified natural rubber in the absence of other organic carbon sources were isolated from soil. Ten isolates reduced the weight of vulcanized rubber from latex gloves by >10% in 6 weeks. Scanning electron microscopy clearly revealed the ability of the microorganisms to colonize, penetrate, and dramatically alter the physical structure of the rubber. The rubber-metabolizing bacteria were identified on the basis of fatty acid profiles and cell wall characteristics. Seve...

  3. Study on Production of Rubber Sealing Strips with Steel Bones

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Rubber sealing strips with steel bones are used in car manufacturing that produced in large quantities. Cutting processes, such as milling and punching, are needed when the strips are produced. Accuracy, smoothness and flatness of the machined surface have to be guaranteed in the cutting process; moreover, deformation of the steel bone and peeling-off of the rubber must be avoided. Therefore cutting action of rubber/steel strips differs from that of rubber or metal workpiece separately. In this paper, milli...

  4. Lifetime Analysis of Rubber Gasket Composed of Methyl Vinyl Silicone Rubber with Low-Temperature Resistance

    Directory of Open Access Journals (Sweden)

    Young-Doo Kwon

    2015-01-01

    Full Text Available Most machines and instruments constantly require elastomeric materials like rubber for the purposes of shock absorption, noise attenuation, and sealing. The material properties and accurate lifetime prediction of rubber are closely related to the quality of machines, especially their durability and reliability. The properties of rubber-like elastomers are influenced by ambient conditions, such as temperature, environment, and mechanical load. Moreover, the initial properties of rubber gaskets must be sustained under working conditions to satisfy their required function. Because of its technical merits, as well as its low cost, the highly accelerated life test (HALT is used by many researchers to predict the long-term lifetime of rubber materials. Methyl vinyl silicone rubber (VMQ has recently been adopted to improve the lifetime of automobile radiator gaskets. A four-parameter method of determining the recovery ability of the gaskets was recently published, and two revised methods of obtaining the recovery were proposed for polyacrylate (ACM rubber. The recovery rate curves for VMQ were acquired using the successive zooming genetic algorithm (SZGA. The gasket lifetime for the target recovery (60% of a compressed gasket was computed somewhat differently depending on the selected regression model.

  5. Synergistic effect of plasma-modified halloysite nanotubes and carbon black in natural rubber-butadiene rubber blend

    NARCIS (Netherlands)

    Poikelispaa, Minna; Das, Amit; Dierkes, Wilma; Vuorinen, Jyrki

    2013-01-01

    Halloysite nanotubes (HNTs) were investigated concerning their suitability for rubber reinforcement. As they have geometrical similarity with carbon nanotubes, they were expected to impart a significant reinforcement effect on the rubber compounds but the dispersion of the nanofillers is difficult.

  6. Food Preferences of the Rubber Plantation Litter Beetle, Luprops tristis, a Nuisance Pest in Rubber Tree Plantations

    National Research Council Canada - National Science Library

    Thomas K. Sabu; K.V. Vinod

    2009-01-01

    .... Ready availability of the preferred, prematurely fallen, tender rubber tree leaves as a food resource is suggested as being responsible for the exceptionally high abundance of L. tristis in rubber tree plantation belts.

  7. Greenhouse Gas Emissions from Rubber Industry in Thailand

    NARCIS (Netherlands)

    Jawjit, W.; Kroeze, C.; Rattanapan, S.

    2010-01-01

    Rubber production has been taking place in Thailand for many decades. Thailand is currently the world's largest natural rubber producer. We present emissions of greenhouse gases associated with the production of fresh latex, and three primary rubber products, including concentrated latex, block rubb

  8. Guayule and Russian dandelion as alternative sources of natural rubber.

    Science.gov (United States)

    van Beilen, Jan B; Poirier, Yves

    2007-01-01

    Natural rubber, obtained almost exclusively from the Para rubber tree (Hevea brasiliensis), is a unique biopolymer of strategic importance that, in many of its most significant applications, cannot be replaced by synthetic rubber alternatives. Several pressing motives lead to the search for alternative sources of natural rubber. These include increased evidence of allergenic reactions to Hevea rubber, the danger that the fungal pathogen Microcyclus ulei, causative agent of South American Leaf Blight (SALB), might spread to Southeast Asia, which would severely disrupt rubber production, potential shortages of supply due to increasing demand and changes in land use, and a general trend towards the replacement of petroleum-derived chemicals with renewables. Two plant species have received considerable attention as potential alternative sources of natural rubber: the Mexican shrub Guayule (Parthenium argentatum Gray) and the Russian dandelion (Taraxacum koksaghyz). This review will summarize the current production methods and applications of natural rubber (dry rubber and latex), the threats to the production of natural rubber from the rubber tree, and describe the current knowledge of the production of natural rubber from guayule and Russian dandelion.

  9. Interface interactions of natural rubber and protein/fiber aggregates

    Science.gov (United States)

    Mechanical properties of natural rubber are improved with a renewable filler for rubber applications. Aggregates of protein and fiber that constitute soy protein concentrate were shear-reduced and used to enhance the tensile modulus of the natural rubber. The aqueous dispersion of the shear-reduced ...

  10. Greenhouse Gas Emissions from Rubber Industry in Thailand

    NARCIS (Netherlands)

    Jawjit, W.; Kroeze, C.; Rattanapan, S.

    2010-01-01

    Rubber production has been taking place in Thailand for many decades. Thailand is currently the world's largest natural rubber producer. We present emissions of greenhouse gases associated with the production of fresh latex, and three primary rubber products, including concentrated latex, block

  11. 21 CFR 872.6300 - Rubber dam and accessories.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Rubber dam and accessories. 872.6300 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6300 Rubber dam and accessories. (a) Identification. A rubber dam and accessories is a device composed of a thin sheet of latex with a hole in...

  12. 27 CFR 21.125 - Rubber hydrocarbon solvent.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rubber hydrocarbon solvent. 21.125 Section 21.125 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU....125 Rubber hydrocarbon solvent. (a) Rubber hydrocarbon solvent is a petroleum derivative....

  13. 30 CFR 77.606-1 - Rubber gloves; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Rubber gloves; minimum requirements. 77.606-1... COAL MINES Trailing Cables § 77.606-1 Rubber gloves; minimum requirements. (a) Rubber gloves (lineman's... be used and tested in accordance with the provisions of §§ 77.704-6 through 77.704-8. (b)...

  14. Treatment of wastewater from rubber industry in Malaysia ...

    African Journals Online (AJOL)

    Treatment of wastewater from rubber industry in Malaysia. ... Discharge of untreated rubber effluent to waterways resulted in water pollution that affected the human health. ... waste minimization, utilization of waste, resource recovery and recycling of ... Key words: Rubber industry, effluent, waste management, Malaysia.

  15. Development of rubber gloves by radiation vulcanization

    Science.gov (United States)

    Makuuchi, K.; Yoshii, F.; Ishigaki, I.; Tsushima, K.; Mogi, M.; Saito, T.

    The processes of radiation vulcanization and production of protective rubber gloves for radioactive contamination are described. A newly developed sensitizing system consisting of 5 phr 2-ethylhexyl acrylate and 1 phr carbon tetrachloride was used to vulcanize natural rubber latex at 12 kGy. Transparent and soft gloves were obtained from the radiation vulcanized latex by a coagulant dipping process. The mechanical properties of the gloves meet Japanese Industrial Standard specification for protective gloves. Combustion analysis of the gloves revealed that the amount of evolved sulfur dioxide and remaining ashes are less than those from commercially available rubber gloves. A trial usage of the gloves at a nuclear power plant showed that the gloves were easy to use for delicate work without undergoing fatigue.

  16. The Properties of Sulfur Rubber Concrete (SRC)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The mix designs and specimen preparation for the dry process and wet process of sulfur rubber concrete (SRC) were investigated.The compressive strength, corrosion-resistance and toughness were studied and discussed.The results show that SRC is corrosion-resistanct.Although the compressive strength of SRC decreases with increasing rubber content, the toughness increases instead.Adding micro-filler will improve the compressive strength of SRC. There is a threshold value for the sulfur content, at which the compressive strength and the work ability of SRC reach an optimum balanc e.The bond between rubber particles and surrounding sulfur is strong due to the vulcanization process that generates cross-links through S-C bonds.

  17. Supply of Rubber Wood Log in Malaysia

    Directory of Open Access Journals (Sweden)

    A. W. Noraida

    2014-06-01

    Full Text Available Issue on shortage of raw material for wood processing solved by discovery of rubber wood log as one of the substitutes the natural log. This paper examines the supply of rubber wood log in Malaysia. We employ ARDL Bound Approach Test and time series data from 1980 to 2010 which represented the whole Malaysia are used to achieve the established objectives. The result shown, in the long run harvested area and wages have 1% and 10% significant level respectively. While in the short run, there was only harvested area having an impact with 1% significant level. This result indicates that, the harvested area become the most impact towards supply of rubber wood log either in short run or in the long run. While wages as input cost gave less impact in another word it become unburden to the producers.

  18. Effect of crumb rubber gradation on a rubberized cold recycled mixture for road pavements

    DEFF Research Database (Denmark)

    Pettinari, Matteo; Simone, Andrea

    2015-01-01

    asphalt design. The mix design represents a key phase of the cold mix production. The study of workability and compactability properties combined with a deep laboratory investigation is required. The idea of introducing crumb rubber in the cold mixtures was developed based on the concept of maximizing...... and cement. The spring-back effects of the rubber particles, which occur after compaction, together with the Indirect Tensile Strength and the Indirect Tensile Stiffness Modulus have been studied. The results show that the gradation of the adopted crumb rubber sensibly affects the compaction and mechanical...

  19. Elastically Decoupling Dark Matter

    CERN Document Server

    Kuflik, Eric; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2015-01-01

    We present a novel dark matter candidate, an Elastically Decoupling Relic (ELDER), which is a cold thermal relic whose present abundance is determined by the cross-section of its elastic scattering on Standard Model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross-section with electrons, photons and/or neutrinos in the $10^{-3}-1$ fb range.

  20. Elastically Decoupling Dark Matter.

    Science.gov (United States)

    Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai

    2016-06-03

    We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1  fb range.

  1. ElasticSearch cookbook

    CERN Document Server

    Paro, Alberto

    2013-01-01

    Written in an engaging, easy-to-follow style, the recipes will help you to extend the capabilities of ElasticSearch to manage your data effectively.If you are a developer who implements ElasticSearch in your web applications, manage data, or have decided to start using ElasticSearch, this book is ideal for you. This book assumes that you've got working knowledge of JSON and Java

  2. Oxygen exchange in silicone rubber capillaries.

    Science.gov (United States)

    Heineken, F G; Predecki, P K; Filley, G F

    1978-06-01

    Capillaries of 7 and 12.5 mu diameter have been fabricated in silicone rubber. Whole blood treated with heparin has been perfused through these capillaries. Under flowing conditions, no clotting or other clumping effects have been observed and red cells appear to maintain a constant velocity. Oxygen transfer data to and from saline perfusing the 12.5 mu diameter capillaries have been obtained in order to determine how rapidly O2 will permeate the silicone rubber film. The data indicate that the capillaries simulate lung tissue oxygen exchange and will allow for the first time the experimental determination of oxygen exchange kinetics in flowing whole blood.

  3. A Nonlinear Model of Mix Coil Spring – Rubber for Vertical Suspension of Railway Vehicle

    Directory of Open Access Journals (Sweden)

    Dumitriu Mădălina

    2016-03-01

    Full Text Available The paper focuses on a nonlinear model to represent the mechanical behaviour of a mix coil spring - rubber used in the secondary suspension of passenger rail vehicles. The principle of the model relies on overlapping of the forces corresponding to three components - the elastic component, the viscous component and the dry friction component. The model has two sources on non-linearity, in the elastic force and the friction force, respectively. The main attributes of the model are made visible by its response to an imposed displacement-type harmonic excitation. The results thus obtained from the applications of numerical simulation show a series of basic properties of the model, namely the dependence on amplitude and the excitation frequency of the model response, as well as of its stiffness and damping.

  4. Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer

    Science.gov (United States)

    Lötters, Joost C.; Olthuis, Wouter; Veltink, Peter H.; Bergveld, Piet

    1996-03-01

    Polydimethylsiloxane is a silicone rubber. It has a unique flexibility, resulting in one of the lowest glass-transition temperatures of any polymer. Furthermore, it shows a low elasticity change versus temperature, a high thermal stability, chemical inertness, dielectric stability, shear stability and high compressibility. Because of its high flexibility and the very low drift of its properties with time and temperature, polydimethylsiloxane could be well suited for mechanical sensors, such as accelerometers. A novel capacitive accelerometer with polydimethylsiloxane layers as springs has been realized. The obtained measurement results are promising and show a good correspondence with the theoretical values.

  5. Elastic Moduli Inheritance and Weakest Link in Bulk Metallic Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Lu, Z.P. [University of Science and Technology, Beijing; Clausen, Bjorn [Los Alamos National Laboratory (LANL); Brown, Donald [Los Alamos National Laboratory (LANL)

    2012-01-01

    We show that a variety of bulk metallic glasses (BMGs) inherit their Young s modulus and shear modulus from the solvent components. This is attributed to preferential straining of locally solvent-rich configurations among tightly bonded atomic clusters, which constitute the weakest link in an amorphous structure. This aspect of inhomogeneous deformation, also revealed by our in-situ neutron diffraction studies of an elastically deformed BMG, suggests a scenario of rubber-like viscoelasticity owing to a hierarchy of atomic bonds in BMGs.

  6. Simulation Process Analysis of Rubber Shock Absorber for Machine Tool

    Directory of Open Access Journals (Sweden)

    Chai Rong Xia

    2016-01-01

    Full Text Available The simulation on rubber shock absorber of machine tool was studied. The simple material model of rubber was obtained by through the finite element analysis software ABAQUS. The compression speed and the hardness of rubber material were considered to obtain the deformation law of rubber shock absorber. The location of fatigue were confirmed from the simulation results. The results shown that the fatigue position is distributed in the corner of shock absorber. The degree of deformation is increased with increasing of compress speed, and the hardness of rubber material is proportional to deformation.

  7. An interactive web-based design system for rubber injection mold: Automotive rubber parts

    Directory of Open Access Journals (Sweden)

    Chamnarn Thongmark

    2016-10-01

    Full Text Available This research aims at integrating a knowledge-based system and web-based technology to facilitate the rubber and rubber composite injection mold design. The system integrates both of computer-aided design and web-based management by using the application programming interface. The research processes started with gathering data and knowledge concerning on rubber injection mold design and process, with the designed framework of the system included. An example part was demonstrated in order to validate the developed system. Based on standardized procedures, the system provides counseling that is able to resolve relevant issues at the early stage of the mold design. The system can be used for both designing and training in rubber mold fabrication.

  8. Effect of gamma irradiation on the properties of natural rubber/styrene butadiene rubber blends

    OpenAIRE

    A.B. Moustafa; Rania Mounir; A.A. El Miligy; Maysa A. Mohamed

    2016-01-01

    Blends of natural rubber (NR) with styrene butadiene rubber (SBR) with varying ratios have been prepared. Vulcanization of the prepared blends has been induced by irradiation of gamma rays with varying doses up to 250 kGy. Mechanical properties, namely tensile strength, tensile modulus at 100% elongation, elongation at break have been followed up as a function of irradiation dose as well as blend composition. Physical properties, namely gel fraction and swelling number have been followed up u...

  9. Behaviour of asphalt rubber mixtures with different crumb rubber and asphalt binder sources

    OpenAIRE

    Fontes, Liseane P. T. L.; Pereira, Paulo A. A.; Pais, Jorge C.; Trichês, Glicério

    2006-01-01

    This study evaluates the performance in laboratory of gap graded mixture prepared with different crumb rubber types and different conventional grade asphalt binders. The asphalt rubbers were prepared via wet process (continuous blend) and their properties were measured through the current tests: (i) penetration;(ii) softening point: (iii) resilience; (iv) apparent viscosity using a Brookfield viscometer. The rheological properties for conventional asphalts were measured too, in order to evalu...

  10. Natural rubber (NR) biosynthesis: perspectives from polymer chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Barkakaty, Balaka [ORNL

    2014-01-01

    Natural rubber is an important strategic raw material for manufacturing a wide variety of industrial products. There are at least 2,500 different latex-producing plant species; however, only Hevea brasiliensis (the Brazilian rubber tree) is a commercial source. The chemical structure of natural rubber is cis-1,4-polyisoprene, but the exact structure of the head and end groups remains unknown. Since synthetic cis-1,4-polyisoprenes cannot match the superior properties of natural rubber, understanding the chemistry behind the biosynthetic process is key to finding a possible replacement. T his chapter summarizes our current understandings from the perspective of a polymer scientist by comparing synthetic polyisoprenes to natural rubber. The chapter also highlights biomimetic polymerization, research towards a synthetic match of natural rubber and the role of natural rubber in health care.

  11. Effect of SBS Compatibilizer SBS and Particle size on Mechanical Properties of Blends of PS/Waste Rubber (SBRr

    Directory of Open Access Journals (Sweden)

    Carlos Bruno Barreto Luna

    2014-10-01

    Full Text Available One way to modify the properties of polymer systems is to mixture one or more polymer and/or copolymers, i.e., to obtain polymer blends. The aim of this work was to produce polymer blends from a polystyrene matrix with rubber wastes, aiming to study the effect granulometry and compatibilizer on the mechanical properties and impact strength. The blends of polystyrene/rubber wastes were prepared in a corrotacional twin screw extruder and subsequently the extruded granules were injection molded. It was shown that 5 wt% of the SBS compatibilizer optimized the results of impact strength for ternary blends. The elastic modulus of the systems decreased in relation to modulus of the pure polystyrene matrix. The granulometry influenced significantly the property of impact resistance for the compatibilized blends, with a finer rubber particle size that have the best results. These results show a good alternative for toughening of polystyrene, as well as reduce costs using rubber wastes that would otherwise be discarded.

  12. Rubber recovery from centrifuged natural rubber latex residue using sulfuric acid

    Directory of Open Access Journals (Sweden)

    Wirach Taweepreda

    2013-04-01

    Full Text Available Waste latex sludge from centrifuged residue, which is a null by-product of concentrated latex manufacturing, wasdigested to retrieve the rubber by using sulfuric acid. It was found that the acid concentration and digestion time have aneffect on the amount and purity of the retrieved rubber. Sulfuric acid at concentrations of more than 10% by weight with adigestion time of 48 hours completely digested waste latex sludge and gave rubber 10% by weight. The quality of the retrievedrubber was examined for Mooney viscosity (MV, plasticity retention index, nitrogen content, and ash content. The averagemolecular weight of the retrieved rubber, using gel permeation chromatography, was lower than that of normal natural rubber(NR which corresponds with the MV and initial plasticity (Po. The molecular structure from Fourier transform infraredspectroscopy (FT-IR indicated that the retrieved rubber surface is wet composed with hydroxyl functional ended group.The residue solution was evaporated and crystallized. The structure of crystals was determined using power X-ray diffractometer.

  13. Hardness and compression resistance of natural rubber and synthetic rubber mixtures

    Science.gov (United States)

    Arguello, J. M.; Santos, A.

    2016-02-01

    This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.

  14. Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates

    Science.gov (United States)

    Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit

    2014-06-01

    In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.

  15. Elastic limit of silicane.

    Science.gov (United States)

    Peng, Qing; De, Suvranu

    2014-10-21

    Silicane is a fully hydrogenated silicene-a counterpart of graphene-having promising applications in hydrogen storage with capacities larger than 6 wt%. Knowledge of its elastic limit is critical in its applications as well as tailoring its electronic properties by strain. Here we investigate the mechanical response of silicane to various strains using first-principles calculations based on density functional theory. We illustrate that non-linear elastic behavior is prominent in two-dimensional nanomaterials as opposed to bulk materials. The elastic limits defined by ultimate tensile strains are 0.22, 0.28, and 0.25 along armchair, zigzag, and biaxial directions, respectively, an increase of 29%, 33%, and 24% respectively in reference to silicene. The in-plane stiffness and Poisson ratio are reduced by a factor of 16% and 26%, respectively. However, hydrogenation/dehydrogenation has little effect on its ultimate tensile strengths. We obtained high order elastic constants for a rigorous continuum description of the nonlinear elastic response. The limitation of second, third, fourth, and fifth order elastic constants are in the strain range of 0.02, 0.08, and 0.13, and 0.21, respectively. The pressure effect on the second order elastic constants and Poisson's ratio were predicted from the third order elastic constants. Our results could provide a safe guide for promising applications and strain-engineering the functions and properties of silicane monolayers.

  16. ElasticSearch cookbook

    CERN Document Server

    Paro, Alberto

    2015-01-01

    If you are a developer who implements ElasticSearch in your web applications and want to sharpen your understanding of the core elements and applications, this is the book for you. It is assumed that you've got working knowledge of JSON and, if you want to extend ElasticSearch, of Java and related technologies.

  17. Reinforcement of graphene in natural rubber nanocomposite

    Science.gov (United States)

    Azira, A. A.; Kamal, M. M.; Rusop, M.

    2016-07-01

    In the present work, we report the use of graphene as multi-functional nanofiller for natural rubber (NR). Dispersion of reduced graphene into natural rubber (NR) was found to enhance the mechanical and electrical properties of NR. Through a facile approach rubber molecules are successfully grafted onto the surface of graphene. Stable graphene suspension with NR afforded a weblike morphology consisting of platelet networks between the rubber particles, while internal mixer processing broke down this structure, yielding a homogeneous and improved dispersion. The resulting graphene can be dispersed in NR via dry mixing. It is found that graphene is prominent in improving the mechanical properties of NR at low filler loading. The percolation point of graphene in the nanocomposites takes place at a content of less than 0.1 wt%. With incorporation of as low as 0.1 wt% of graphene, an increase in the tensile strength and improvement in the tensile modulus achieved. The improvement in the mechanical properties of NR nanocomposites at such low filler loading is attributed to the strong interfacial interaction and the molecular-level dispersion of graphene in the NR matrix. .

  18. Valorisation of Proteins from Rubber Tree

    NARCIS (Netherlands)

    Widyarani,; Coulen, Stef C.W.; Sanders, Johan P.M.; Bruins, Marieke E.

    2016-01-01

    Purpose: The objective of this study was to identify the availability, possible applications, and economic potential of proteins that are present in different parts of the rubber tree. Proteins from non-food sources can be used in e.g. animal feed or biochemicals production with no or little competi

  19. Rubber Recycling: Chemistry, Processing, and Applications

    NARCIS (Netherlands)

    Myhre, M.; Saiwari, S.; Dierkes, W.K.; Noordermeer, J.W.M.

    2012-01-01

    For both environmental and economic reasons, there is broad interest in recycling rubber and in the continued development of recycling technologies. The use of postindustrial materials is a fairly well-established and documented business. Much effort over the past decade has been put into dealing wi

  20. NUTRITIVE VALUE OF RUBBER SEED (Hevea brasiliensis

    Directory of Open Access Journals (Sweden)

    Md. Emran HOSSAIN

    2016-01-01

    Full Text Available The study was undertaken to find out the chemical composition of rubber seeds (Hevea brasiliensis available in Bangladesh. Hevea brasiliensis seeds were collected directly from 200 rubber trees of the rubber garden in the Bandarban area under standard random sampling technique. Seeds were decorticated, ground and dried in hot air oven. Chemical analyses of the samples were carried out in triplicate for moisture, dry matter (DM, crude protein (CP, crude fiber (CF, nitrogen free extract (NFE, ether extract (EE and ash in the animal nutrition laboratory, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh. Metabolizable energy (ME was calculated mathematically by using standard mathematical formula. Results indicated that, decorticated Hevea brasiliensis seeds contained 85.7% DM, 26.1% CP, 43.0% CF, 13.8% NFE, 11.0% EE and 1.8% ash. ME contents in in the seeds was 2101.1 kcal/kg DM. Since, decorticated rubber seeds contained substantial amount of metabolizable energy and proximate components, therefore it could be assumed that, like other unconventional feeds, it might be a promising feed resource for livestock.

  1. Numerical modelling of rubber vibration isolators

    NARCIS (Netherlands)

    Beijers, Clemens A.J.; Boer, de André; Nilsson, A.; Boden, H.

    2003-01-01

    An important cause for interior noise in vehicles is structure-borne sound from the engine. The vibrations of the source (engine) are transmitted to the receiver structure (the vehicle) causing interior noise in the vehicle. For this reason the engine is supported by rubber isolators for passive iso

  2. Filled liquid silicone rubbers: Possibilities and challenges

    DEFF Research Database (Denmark)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul Bin

    2014-01-01

    Liquid silicone rubbers (LSRs) have been shown to possess very favorable properties as dielectric electroactive polymers due to their very high breakdown strengths (up to 170 V/μm) combined with their fast response, relatively high tear strength, acceptable Young’s modulus as well as they can...

  3. Identification and Waste Reduction on Rubber Industry

    Science.gov (United States)

    Syahputri, K.; Sari, R. M.; Rizkya, I.; Siregar, I.

    2017-03-01

    Lots of activities in production process can be lead to waste activities. The waste may cause a degree of efficiency of an industry to be low. This research was conducted in the rubber industry. In the rubber industry has been a decline in the level of efficiency. Decreased levels of efficiency occurs because many inefficient activities that take place during the production process. Activities that were not contributed to the value of the product lead to waste during the production process. Identification by the activity is a way to minimize the waste that occurs so that the efficiency of the production process can be improved. Process activity mapping in the rubber industry used to identify the activities that take place on the floor of production in order to reduce waste and propose improvements that can be done to improve efficiency. The total waste that occurs in crumb rubber industry amounted to 94 minutes or 1.56 hours. For the proposed improvements in order to reduce waste are based on two activities, such as transport and unnecessary motion. Transport activities proposed use of material handling in their daily activities and to unnecessary motion by doing a variety of work on the operator.

  4. Effects of Cryogenic Temperature on Fracture Toughness of Core-Shell Rubber (CSR) Toughened Epoxy Nanocomposites

    Science.gov (United States)

    Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.

    2008-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).

  5. Quantification of fibronectin adsorption to silicone-rubber cell culture substrates.

    Science.gov (United States)

    Cunningham, James J; Nikolovski, Janeta; Linderman, Jennifer J; Mooney, David J

    2002-04-01

    As the role of mechanical force in cellular signaling gained recognition, investigators designed a number of devices to deliver controlled regimens of mechanical force to cultured cells. One type of device uses thin silicone-rubber membranes to support monolayer cell adhesion and to transmit mechanical force in the form of biaxial strain. We have observed that cell attachment and spreading are impaired on these membranes compared to polystyrene, even when both are passively coated with identical amounts of extracellular matrix. The purpose of these studies was to quantify the efficiency and stability of passive matrix adsorption onto commercially available elastic culture substrates. A theoretically saturating density (1 microg/cm2) of fibronectin was added to each well, and the initial efficiency of adsorption to the walls and elastic membranes was found to be 31 +/- 2% of the protein added. Strikingly, when the protein adsorbed specifically to the membranes was quantified after seven days, only 10-26 ng/cm2 fibronectin were present, revealing that most of the adsorption is to the sides of the wells. These results indicate that the adsorption of matrix proteins to silicone-rubber substrates is relatively inefficient and that investigators who use these systems must be aware of this fact and design their experiments accordingly.

  6. Effects of Cryogenic Temperature on Fracture Toughness of Core-Shell Rubber (CSR) Toughened Epoxy Nanocomposites

    Science.gov (United States)

    Wang, J.; Cannon, S. A.; Magee, D.; Schneider, J. A.

    2008-01-01

    This study investigated the effects of core-shell rubber (CSR) nanoparticles on the mechanical properties and fracture toughness of an epoxy resin at ambient and liquid nitrogen (LN2) temperatures. Varying amounts of Kane Ace MX130 toughening agent were added to a commercially available EPON 862/Epikure W epoxy resin. Elastic modulus was calculated using quasi-static tensile data. Fracture toughness was evaluated by the resulting breaking energy measured in Charpy impact tests conducted on an instrumented drop tower. The size and distribution of the CSR nanoparticles were characterized using Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). Scanning Electron Microscopy (SEM) was used to study the fracture surface morphology. The addition of the CSR nanoparticles increased the breaking energy with negligible change in elastic modulus and ultimate tensile stress (UTS). At ambient temperature the breaking energy increased with increasing additions of the CSR nanoparticles, while at LN2 temperatures, it reached a maximum at 5 wt% CSR concentration. KEY WORDS: liquid nitrogen (LN2) properties, fracture toughness, core-shell rubber (CSR).

  7. Cancer mortality and morbidity among rubber workers.

    Science.gov (United States)

    Monson, R R; Fine, L J

    1978-10-01

    Mortality and morbidity from cancer among a cohort of 13,570 white male rubber workers were examined. Each man worked for at least 5 years at the Akron, Ohio, plant of the B. F. Goodrich Company. The potential period of follow-up was from January 1, 1940 to June 30, 1976. Departmental work histories were based primarily on records maintained by Local no. 5, United Rubber Workers. The occurrence of cancer was measured by death certificates and by a survey of Akron-area hospital tumor registries from 1964 to 1974. Two types of analyses were made: 1) an external comparison of mortality rates of rubber workers versus rates of U.S. white males, and 2) an internal comparison of cancer morbidity rates among persons who were employed in various work areas of the plant. Excess cases of specific cancers (observed/expected numbers) among workers in specific work areas included: stomach and intestine: rubber making (30/14.4); lung: tire curing (31/14.1), fuel cells and/or deicers (46/29.1); bladder: chemical plant (6/2.4), and tire building (16/10.7); skin cancer: tire assembly (12/1.9); brain cancer: tire assembly (8/2.0); lymphatic cancer: tire building (8/3.2); and leukemia: calendering (8/2.2), tire curing (8/2.6), tire building (12/7.5), elevators (4/1.4), tubes (4/1.6), and rubber fabrics (4/1.1). Agents that may be responsible for these excesses were considered.

  8. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa).

    Science.gov (United States)

    Chakrabarty, Romit; Qu, Yang; Ro, Dae-Kyun

    2015-05-01

    Natural rubber, cis-1,4-polyisoprene, is an important raw material in chemical industries, but its biosynthetic mechanism remains elusive. Natural rubber is known to be synthesized in rubber particles suspended in laticifer cells in the Brazilian rubber tree (Hevea brasiliensis). In the rubber tree, rubber elongation factor (REF) and its homolog, small rubber particle protein (SRPP), were found to be the most abundant proteins in rubber particles, and they have been implicated in natural rubber biosynthesis. As lettuce (Lactuca sativa) can synthesize natural rubber, we utilized this annual, transformable plant to examine in planta roles of the lettuce REF/SRPP homologs by RNA interference. Among eight lettuce REF/SRPP homologs identified, transcripts of two genes (LsSRPP4 and LsSRPP8) accounted for more than 90% of total transcripts of REF/SRPP homologs in lettuce latex. LsSRPP4 displays a typical primary protein sequence as other REF/SRPP, while LsSRPP8 is twice as long as LsSRPP4. These two major LsSRPP transcripts were individually and simultaneously silenced by RNA interference, and relative abundance, polymer molecular weight, and polydispersity of natural rubber were analyzed from the LsSRPP4- and LsSRPP8-silenced transgenic lettuce. Despite previous data suggesting the implications of REF/SRPP in natural rubber biosynthesis, qualitative and quantitative alterations of natural rubber could not be observed in transgenic lettuce lines. It is concluded that lettuce REF/SRPP homologs are not critically important proteins in natural rubber biosynthesis in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Elastic scattering phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Mackintosh, R.S. [The Open University, School of Physical Sciences, Milton Keynes (United Kingdom)

    2017-04-15

    We argue that, in many situations, fits to elastic scattering data that were historically, and frequently still are, considered ''good'', are not justifiably so describable. Information about the dynamics of nucleon-nucleus and nucleus-nucleus scattering is lost when elastic scattering phenomenology is insufficiently ambitious. It is argued that in many situations, an alternative approach is appropriate for the phenomenology of nuclear elastic scattering of nucleons and other light nuclei. The approach affords an appropriate means of evaluating folding models, one that fully exploits available empirical data. It is particularly applicable for nucleons and other light ions. (orig.)

  10. Neuro-fuzzy estimation of passive robotic joint safe velocity with embedded sensors of conductive silicone rubber

    Science.gov (United States)

    Al-Shammari, Eiman Tamah; Petković, Dalibor; Danesh, Amir Seyed; Shamshirband, Shahaboddin; Issa, Mirna; Zentner, Lena

    2016-05-01

    Robotic operations need to be safe for unpredictable contacts. Joints with passive compliance with springs can be used for soft robotic contacts. However the joints cannot measure external collision forces. In this investigation was developed one passive compliant joint which have soft contacts with external objects and measurement capabilities. To ensure it, conductive silicone rubber was used as material for modeling of the compliant segments of the robotic joint. These compliant segments represent embedded sensors. The conductive silicone rubber is electrically conductive by deformations. The main task was to obtain elastic absorbers for the external collision forces. These absorbers can be used for measurement in the same time. In other words, the joint has an internal measurement system. Adaptive neuro fuzzy inference system (ANFIS) was used to estimate the safety level of the robotic joint by head injury criteria (HIC).

  11. Excitation of the soliton-type wave of change of reflection and conduction in the rubber: new experimental data important for its mechanism development

    Science.gov (United States)

    Kudriavtsev, Eugene M.; Zodov, S. D.

    2002-05-01

    It was shown experimentally, that in elastic soft polymer samples such as rubber the IR-laser pulse excites components of the soliton-like Wave of change of reflection and conduction (WCRC). It is most probable, that the arrival of a wave results in local decreasing of the temperature of different rubber samples. At room temperature the WCRC velocity measurement for two vacuum rubber samples with different thickness given agreeable data correspond to the nineteenth WCRC component. In crude, not polymerized rubber and at cooling of vacuum rubber up to approximately 230 K the WCRC also was excited. As well as in researches with plexiglas, in the present work of the effect of saturation of a new sample by components of soliton-like WCRC was observed. The obtained data confirm availability of soliton properties for studied WCRC and in applicability of the dislocations recombination mechanism as the causes resulting in formation WCRC. These results are important for the WCRC mechanism development. It presents a phenomenon, which in process of its research appears to be more and more universal. The work was made at financial support by RFBR, project 00-02-17249-(a), and by KIE.

  12. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation

    Science.gov (United States)

    Vignali, Valeria; Mazzotta, Francesco; Sangiorgi, Cesare; Simone, Andrea; Lantieri, Claudio; Dondi, Giulio

    2016-01-01

    In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene) polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures. PMID:28773965

  13. Incorporation of Rubber Powder as Filler in a New Dry-Hybrid Technology: Rheological and 3D DEM Mastic Performances Evaluation

    Directory of Open Access Journals (Sweden)

    Valeria Vignali

    2016-10-01

    Full Text Available In recent years, the use of crumb rubber as modifier or additive within asphalt concretes has allowed obtaining mixtures able to bind high performances to recovery and reuse of discarded tires. To date, the common technologies that permit the reuse of rubber powder are the wet and dry ones. In this paper, a dry-hybrid technology for the production of Stone Mastic Asphalt mixtures is proposed. It allows the use of the rubber powder as filler, replacing part of the limestone one. Fillers are added and mixed with a high workability bitumen, modified with SBS (styrene-butadiene-styrene polymer and paraffinic wax. The role of rubber powder and limestone filler within the bituminous mastic has been investigated through two different approaches. The first one is a rheological approach, which comprises a macro-scale laboratory analysis and a micro-scale DEM simulation. The second, instead, is a performance approach at high temperatures, which includes Multiple Stress Creep Recovery tests. The obtained results show that the rubber works as filler and it improves rheological characteristics of the polymer modified bitumen. In particular, it increases stiffness and elasticity at high temperatures and it reduces complex modulus at low temperatures.

  14. Statistical mechanics of elasticity

    CERN Document Server

    Weiner, JH

    2012-01-01

    Advanced, self-contained treatment illustrates general principles and elastic behavior of solids. Topics include thermoelastic behavior of crystalline and polymeric solids, interatomic force laws, behavior of solids, and thermally activated processes. 1983 edition.

  15. Mastering ElasticSearch

    CERN Document Server

    Kuc, Rafal

    2013-01-01

    A practical tutorial that covers the difficult design, implementation, and management of search solutions.Mastering ElasticSearch is aimed at to intermediate users who want to extend their knowledge about ElasticSearch. The topics that are described in the book are detailed, but we assume that you already know the basics, like the query DSL or data indexing. Advanced users will also find this book useful, as the examples are getting deep into the internals where it is needed.

  16. Occupational disease in the rubber industry.

    Science.gov (United States)

    Peters, J M; Monson, R R; Burgess, W A; Fine, L J

    1976-10-01

    We have studied mortality patterns in a large cohort of rubber workers. We have examined workers exposed to curing fumes, processing dusts, and industrial talc and have begun to evaluate exposures of these workers in detail. Gastrointestinal (especially stomach) cancer appears in excess in processing workers. Lung cancer is excessive in curing workers. Leukemia is increased generally. All three groups studied for respiratory disease have an increase in disease prevalence which is related to intensity and duration of exposure. Since both an increase in stomach cancer and respiratory disease is seen in processing workers, exposures in this area must be controlled. Since both lung cancer and chronic respiratory disease is excessive in curing rooms, this exposure must be controlled. The leukemia risk is probably related to solvents. Whether this is all explainable by past benzene exposure is unknown. Further studies are planned to refine our knowledge concerning these risks so that occupational disease in the rubber industry can be prevented.

  17. Synthetic rubbers prepared by lanthanide coordination catalysts

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China is rich in rare earth resources. Rare earth elements, also named lanthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis-1,4-polybutatine rubber and cis-1,4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.

  18. Synthetic rubbers prepared by lanthanide coordination catalysts

    Institute of Scientific and Technical Information of China (English)

    CHEN WenQi; WANG FoSong

    2009-01-01

    China is rich in rare earth resources. Rare earth elements, also named Ianthanides, are number 58 to number 81 elements in the elemental periodic table. They have unique electronic structures and may form various coordination compounds. In the early 1960s, researchers at the Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CIAC) found the catalytic activities of lanthanide compounds in stereospecific polymerization of conjugated dienes, and published the first paper on this topic in 1964. On the basis of this finding, CIAC launched extensive research activities on lanthanide compounds as diene polymerization catalysts, from a series of fundamental research to the efforts of industrializing the rare earth catalyzed cis~(-1),4-polybutatine rubber and cis~(-1),4-polyisoprene rubber. This review aims to summarize the progress in this field in the past half century.

  19. Biodiesel Production from Rubber Seed Oil via Esterification Process

    Directory of Open Access Journals (Sweden)

    W Widayat

    2012-07-01

    Full Text Available One promise source of alternative energy is biodiesel from rubber seed oil, because the raw materials available in plentiful quantities and can be renewed. In addition, the rubber seed is still lack of utilization, and Indonesia is one of the largest rubbers producing country in the world. The objective of this research is to studied on biodiesel production by esterification process. Parameters used in this study are the ratio of catalyst and temperature and its influence on the characteristics of the resulting biodiesel product. Characterization of rubber seed include acid content number analysis, saponification numbers, density, viscosity, iodine number, type of free fatty acids and triglyceride oils. The results of analysis showed that rubber seed oil content obtained is 50.5%. The results of the GCMS analysis showed that a free fatty acid level in rubber seed is very high. Conversion into bio-diesel oil is obtained by at most 59.91% and lowest 48.24%.

  20. Rubber tracks are still not good enough!

    DEFF Research Database (Denmark)

    Lamande, Mathieu André Maurice; Schjønning, Per

    Subsoil compaction is persistent. Elasticity theory and recent studies have confirmed the elasticity theory and established wheel load as the primary source of high stress in the subsoil. In contrast, stresses at the tire/soil interface are determined primarily by the tyre inflation pressure...

  1. MODIFYING V-14 RUBBER WITH CARBON FIBERS

    Directory of Open Access Journals (Sweden)

    Shadrinov N. V.

    2016-01-01

    Full Text Available The influence of carbon fibers and modified carbon fibers on properties of industrially produced V-14 rubber is examined. The dependences of physical and mechanical properties, hardness, abrasion resistance and resistance in aggressive environment on few amount of filled fiber are established. Structural properties of reinforced elastomeric composites are studied by scanning electron microscopy. Elastomeric layer on the surface of modified carbon fiber, confirmed with high adhesion is identified

  2. Magnesium affects rubber biosynthesis and particle stability in Ficus elastica, Hevea brasiliensis and Parthenium argentatum

    Science.gov (United States)

    Natural rubber biosynthesis occurs in laticifers of Ficus elastica and Hevea brasiliensis, and in parenchyma cells of Parthenium argentatum. Natural rubber is synthesized by rubber transferase using allylic pyrophosphates as initiators, isopentenyl pyrophosphate as monomeric substrate and magnesium ...

  3. 75 FR 36472 - Goodyear Tire and Rubber Company, Receipt of Petition for Decision of Inconsequential Noncompliance

    Science.gov (United States)

    2010-06-25

    ... National Highway Traffic Safety Administration Goodyear Tire and Rubber Company, Receipt of Petition for Decision of Inconsequential Noncompliance Goodyear Tire and Rubber Company, (Goodyear),\\1\\ has determined... 573, Defect and Noncompliance Responsibility and Reports. \\1\\ Goodyear Tire and Rubber...

  4. 78 FR 9775 - Cooper Tire & Rubber Company, Receipt of Petition for Decision of Inconsequential Noncompliance

    Science.gov (United States)

    2013-02-11

    ... National Highway Traffic Safety Administration Cooper Tire & Rubber Company, Receipt of Petition for.... ACTION: Receipt of Petition. SUMMARY: Cooper Tire & Rubber Company (Cooper),\\1\\ has determined that..., Defect and Noncompliance Responsibility and Reports. \\1\\ Cooper Tire & Rubber Company, is a...

  5. 76 FR 28502 - Cooper Tire & Rubber Tire Company, Receipt of Petition for Decision of Inconsequential Noncompliance

    Science.gov (United States)

    2011-05-17

    ... National Highway Traffic Safety Administration Cooper Tire & Rubber Tire Company, Receipt of Petition for Decision of Inconsequential Noncompliance Cooper Tire & Rubber Tire Company, (Cooper),\\1\\ has determined...\\ Cooper Tire & Rubber Tire Company (Cooper) is a replacement equipment manufacturer incorporated in...

  6. Use of rubber crumb for preparation of asphalt-concrete mixtures

    Directory of Open Access Journals (Sweden)

    Yerbol Tileuberdi

    2012-03-01

    Full Text Available In this article use of rubber crumb from spent tire for preparation of rubber-bitumen compounds is investigated. Then the rubber-bitumen compositions are used in composition of asphalt concrete mixes .

  7. Use of rubber crumb for preparation of asphalt-concrete mixtures

    OpenAIRE

    Yerbol Tileuberdi; S. Kozbakarova; Yerdos Ongarbayev; B. Tuleutaev; Zulkhair Mansurov

    2012-01-01

    In this article use of rubber crumb from spent tire for preparation of rubber-bitumen compounds is investigated. Then the rubber-bitumen compositions are used in composition of asphalt concrete mixes .

  8. Impact resistance of concrete – using slit rubber from tyres

    OpenAIRE

    Coventry, Kathryn; Richardson, Alan; Diaz, Eli

    2015-01-01

    This paper examines recycled tyre rubber, which was machine cut into slits and these were added to Portland cement concrete mixes in different percentages, based on specimen volume. They were then tested to determine the impact performance of each mix in comparison to a plain non-rubberised mix. \\ud The results indicated that concrete samples containing recycled rubber, exhibited a loss in compressive strength when compared to the plain concrete mix, however, the rubber modified samples were ...

  9. The improvement of pavement performance using asphalt rubber hot mixes

    OpenAIRE

    Pais, Jorge C.; Pereira, Paulo A. A.

    2007-01-01

    The need of a better pavement performance has led researchers to develop new road materials, mainly for the asphalt layers, where the modification of the asphalt is the main example. This modification usually forces the use of polymers and fibers and, more recently, the use of crumb rubber from ground tires, where the modified asphalt is known as asphalt rubber. This asphalt rubber used in asphalt mixtures produces a superior performance if compared to the asphalt mixtures with...

  10. Effect of base bitumen composition on asphalt rubber binder properties

    OpenAIRE

    Partl, M.N.; Ould-Henia, M.; Dumont, A.-G.

    2008-01-01

    The asphalt rubber blend properties are strongly related to its base components properties. The base bitumen composition is considered as a key factor influencing the final rheological properties of asphalt rubber binder. This paper describes results from a laboratory investigation of the interaction between crumb rubber and different composition bitumen according to the wet process. The bitumen composition is determined according to the SARA decomposition approac...

  11. Design, manufacturing and testing of Controllable Rubber Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Løgstrup Andersen, Tom; Aagaard Madsen, Helge; Barlas, Thanasis K

    The overall goal for the INDUFLAP project was realization of a test facility for development and test of Controllable Rubber Trailing Edge Flaps (CRTEF) for wind turbines. This report covers experimental work at DTU Wind Energy including design, manufacture and test of different configurations...... of flaps with voids in chord- or spanwise direction. Development of rubber flaps has involved further design improvements. Non-metallic spring elements and solutions for sealing of continuous extruded rubber profiles have been investigated....

  12. Impact resistance of concrete – using slit rubber from tyres

    OpenAIRE

    Coventry, Kathryn; Richardson, Alan; Diaz, Eli

    2015-01-01

    This paper examines recycled tyre rubber, which was machine cut into slits and these were added to Portland cement concrete mixes in different percentages, based on specimen volume. They were then tested to determine the impact performance of each mix in comparison to a plain non-rubberised mix. \\ud The results indicated that concrete samples containing recycled rubber, exhibited a loss in compressive strength when compared to the plain concrete mix, however, the rubber modified samples were ...

  13. Mortality among rubber workers: V. processing workers.

    Science.gov (United States)

    Delzell, E; Monson, R R

    1982-07-01

    Cause-specific mortality was evaluated among 2,666 men employed in the processing division of a rubber manufacturing plant. The division was divided into two sections: front processing (compounding, mixing and milling operations) and back processing (extrusion, calendering, cement mixing and rubberized fabrics operations). Mortality rates for all processing workers combined and for men in each section were compared with rates for U.S. White males or for workers employed in other divisions of the same plant. Compared with either referent group, men in the processing division had increased mortality from leukemia, emphysema, and cancers of the stomach, large intestine, and biliary passages and liver. An excess number of deaths from stomach and larger intestine cancer was found predominantly among men in the front processing section (33 observed vs. 17.7 expected deaths, based on rates in nonprocessing workers). Increased mortality from leukemia (14 observed vs. 7.3 expected) and from emphysema (22 observed vs. 11.0 expected) was present among men employed in the back processing section. Examination of mortality from these causes according to age and the year starting work, duration of employment, and years since starting work in the relevant sections of the processing division suggested that observed excesses of stomach cancer, large intestine cancer, leukemia, and emphysema among processing workers are related to occupational exposures. These results are consistent with the findings of studies of other groups of rubber workers.

  14. Boron-Loaded Silicone Rubber Scintillators

    CERN Document Server

    Bell, Z W; Maya, L; Sloop, F V J

    2003-01-01

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon respons...

  15. Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM Network Visualization

    NARCIS (Netherlands)

    Sarkawi, S.S.; Dierkes, W.K.; Noordermeer, J.W.M.

    2014-01-01

    Filler-to-rubber interaction is a key parameter in the reinforcement of rubber. This paper presents an investigation into filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber (NR) in the presence and absence of a silane coupling agent. Using a special network visual

  16. The Stress-Strain State and Potential Crack Trajectories in 2D Elastic Brittle Materials from Steady-State Flow Experiments

    NARCIS (Netherlands)

    Küntz, M.; Dyskin, A.; Lavallée, P.

    1998-01-01

    A steady-state flow method is used to examine micromechanisms of brittle failure in 2D elastic cracked media submitted to uniaxial compressive stress. The steady-state flow experiments were conducted with an incompressible Newtonian fluid in a Hele Shaw cell. Thin linear rubber inclusions were

  17. Barrierity of hydrogenated butadiene-acrylonitrile rubber and butyl rubber after exposure to organic solvents.

    Science.gov (United States)

    Krzemińska, Sylwia; Rzymski, Władysław M

    2011-01-01

    Resistance of antichemical clothing primarily depends on the type of material it is made from, in particular on the type of polymer used for coating the fabric carrier. This paper reports on systematic investigations on the influence of the cross-linking density of an elastomer and the composition of a cross-linked elastomer on its resistance to permeation of selected organic solvents. Tests of barrier material samples made from nonpolar butyl rubber (IIR) and polar hydrogenated butadiene-acrylonitrile rubber (HNBR) showed that (a) in rubber-solvent systems with medium thermodynamic affinity, cross-linking density influenced resistance to permeation and (b) the polarity of the system had a significant influence on barrierity.

  18. Geotechnical Properties of Rubber Tires and Sediments Mixtures

    Directory of Open Access Journals (Sweden)

    H. Sellaf

    2014-04-01

    Full Text Available An experimental work was undertaken to study the effect of rubber tires on the geotechnical properties of a dredged sediment, using a mixing ratio of large size. For comparison, two types of soil were studied (dredged sediment from Fergoug dam and Tizi Tuff from the north west of Algeria. Taking into account the high compressibility and the low water absorption of the rubber tires, grain size analysis, density, Atterberg limits analysis, chemical composition, direct shear tests, loading-unloading tests, modified Proctor and CBR tests are performed on the two soils and their mixtures with different scrap tire rubber (10, 20, 25 and 50%. The results show that liquid limits and plastic indexes decrease with the scrap tire rubber content and that the decrease is more significant for soil with high plasticity. Cohesion also decreases with scrap tire rubber content when the internal friction angle is vacillating. Compression and recompression indexes increase gradually with the scrap tire rubber content and the variation for compression index is more significant for the two soils. Compaction characteristics and CBR values decrease with scrap tire rubber content. The CBR values for W=3% are important compared to those with W=5% excepted for mixture with (75% tuff and 25% scrap tire rubber. The results show that the scrap tire rubber can be used as a reinforcement material for dredged soil, but with a content that should not highly affect the compressibility.

  19. [Contamination of solid-cast rubber tires by microscopic fungi].

    Science.gov (United States)

    Chuienko, A I; Subbota, A H; Olishevs'ka, S V; Zaslavs'kyĭ, V A; Zhdanova, N M

    2010-01-01

    The main peculiarities of fungal resistance of two types of unit cast rubber tires of domestic manufacture have been investigated. Rubber tires which contained synthetic plasticizer were non-resistant to fungal contamination in contrast to ones with natural plasticizer. Using the method of confocal laser-scanning microscopy, it was shown that inner layers of two types of rubber tires were contaminated with fungal mycelium. Our findings indicate that the investigation of microscopic fungi resistance of new materials is necessary for general mechanical rubber goods, especially exported to tropical climate countries.

  20. Amphiphilic semi-interpenetrating polymer networks using pulverized rubber

    Science.gov (United States)

    Shahidi, Nima

    Scrap rubber materials provide a significant challenge to either reuse or safe disposal. Every year, millions of tires are discarded to landfills in the United States, consuming a staggering amount of land space, creating a high risk for large fires, breeding mosquitoes that spread diseases, and wasting the planet's natural resources. This situation cannot be sustained. The challenge of reusing scrap rubber materials is mainly due to the crosslinked structure of vulcanized rubber that prevent them from melting and further processing for reuse. The most feasible recycling approach is believed to be a process in which the vulcanized rubber is first pulverized into a fine powder and then incorporated into new products. The production of fine rubber particles is generally accomplished through the use of a cryogenic process that is costly. Therefore, development of a cost effective technology that utilizes a large quantity of the scrap rubber materials to produce high value added materials is an essential element in maintaining a sustainable solution to rubber recycling. In this research, a cost effective pulverization process, solid state shear extrusion (SSSE), was modified and used for continuous pulverization of the rubber into fine particles. In the modified SSSE process, pulverization takes place at high compressive shear forces and a controlled temperature. Furthermore, an innovative particle modification process was developed to enhance the chemical structure and surface properties of the rubber particles for manufacturing of high value added products. Modification of rubber particles was accomplished through the polymerization of a hydrophilic monomer mixture within the intermolecular structure of the hydrophobic rubber particles. The resulting composite particles are considered as amphiphilic particulate phase semi-interpenetrating polymer networks (PPSIPNs). The modified rubber particles are water dispersible and suitable for use in a variety of aqueous media

  1. Research on the sound absorption performance of metal rubber material

    Institute of Scientific and Technical Information of China (English)

    XIA Yuhong; JIANG Hongyuan; WU Guoqi; E.A. Izzheurov

    2009-01-01

    The sound absorption performance of Metal Rubber material was studied theoreti-cally and experimentally. The acoustic impedance rate and the sound absorption coefficient were derived based on the acoustic parameters of metal rubber material. The relation of structure constant, compressibility modulus and structural parameters was investigated experimentally. The results showed that the specimen of metal rubber with the same mean porosity diame-ter had the same structure constant. For the same structural parameters, the compressibility modulus of metal rubber material was approximately constant in certain frequency range. The calculated acoustic parameters are in good agreement with the experimental results, demon-strating the effectiveness of theoretical models.

  2. Effect of Chipped Rubber Aggregates on Performance of Concrete

    Directory of Open Access Journals (Sweden)

    Sunil N. Shah

    2014-12-01

    Full Text Available Due to rapid growth in automobile industry, use of tyre increases day to day and there is no reuse of the same to decrease the environmental pollution. The decomposition and disposing of waste tyre rubber is harmful to environment. This research reflects the reuse of waste tyre rubber into concrete after observing their properties. In that experimental work chipped rubber aggregates replaced to the natural coarse aggregates by varying percentage of 3, 6, 9 and 12 with comparison of 0% replacement. Silica fume is replaced in 10% with cement for improving the bond properties between cement paste and rubber. In evaluation, test has been carried out to determine the properties of concrete such as workability, unit weight, flexural strength and split tensile strength. The workability of fresh concrete is observed with the help of compaction factor test. From the test of compaction factor, workability is decrease with increasing percentage of chipped rubber. The specific gravity of chipped rubber aggregates is lower as compared to natural aggregates therefore decrease the unit weight of rubber mix concrete. Increasing chipped rubber aggregates as partial replacement into concrete reduces compressive strength. So these can use in non-primary structural applications of medium to low strength requirements. The overall results of study show that it is possible to use recycled rubber tyre aggregates in concrete construction as partial replacement to natural coarse aggregates.

  3. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  4. A systematic framework for computer-aided design of engineering rubber formulations

    Science.gov (United States)

    Ghosh, Prasenjeet

    This thesis considers the design of engineering rubber formulations, whose unique properties of elasticity and resilience enable diverse applications. Engineering rubber formulations are a complex mixture of different materials called curatives that includes elastomers, fillers, crosslinking agents, accelerators, activators, retarders, anti-oxidants and processing aids, where the amount of curatives must be adjusted for each application. The characterization of the final properties of the rubber in application is complex and depends on the chemical interplay between the different curatives in formulation via vulcanization chemistry. The details of the processing conditions and the thermal, deformational, and chemical environment encountered in application also have a pronounced effect on the performance of the rubber. Consequently, for much of the history of rubber as an engineering material, its recipe formulations have been developed largely by trial-and-error, rather than by a fundamental understanding. A computer-aided, systematic and automated framework for the design of such materials is proposed in this thesis. The framework requires the solution to two sub-problems: (a) the forward problem, which involves prediction of the desired properties when the formulation is known and (b) the inverse problem that requires identification of the appropriate formulation, given the desired target properties. As part of the forward model, the chemistry of accelerated sulfur vulcanization is reviewed that permits integration of the knowledge of the past five decades in the literature to answer some old questions, reconcile some of the contradicting mechanisms and present a holistic description of the governing chemistry. Based on this mechanistic chemistry, a fundamental kinetic model is derived using population balance equations. The model quantitatively describes, for the first time, the different aspects of vulcanization chemistry. Subsequently, a novel three

  5. A Review on the Effect of Crumb Rubber Addition to the Rheology of Crumb Rubber Modified Bitumen

    Directory of Open Access Journals (Sweden)

    Mohd Rasdan Ibrahim

    2013-01-01

    Full Text Available Crumb rubber modification has been proven to enhance the properties of pure bitumen. This paper looks at some of the international standards for producing crumb rubber modified bitumen (CRMB and reviews the effect of crumb rubber to the rheology of crumb rubber modified bitumen. The review shows that the rheology of CRMB depends on internal factors such as crumb rubber quantity, particle size, and pure bitumen composition, and external factors such as the mixing time, temperature, and also the modification technique. These factors govern the swelling process of crumb rubber particles that lead to the increase of viscosity of the modified bitumen. However, the mixing temperature and duration can cause rubber particles to depolymerize and subsequently cause loss of viscosity. Crumb rubber modification also improves the properties of bitumen by increasing the storage and loss modulus and enhancing the high and low temperature susceptibility. The effect of crumb rubber to aging properties of CRMB is also discussed. Finally several techniques of chemical modification to terminal blends of CRMB and the subsequent improvement to the settling property of CRMB are explained.

  6. Elastic anisotropy of crystals

    Directory of Open Access Journals (Sweden)

    Christopher M. Kube

    2016-09-01

    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  7. Elastic constants of calcite

    Science.gov (United States)

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  8. Elastic scattering of hadrons

    CERN Document Server

    Dremin, I M

    2012-01-01

    When colliding, the high energy hadrons can either produce new particles or scatter elastically without change of their quantum num- bers and other particles produced. Namely elastic scattering of hadrons is considered in this review paper. Even though the inelastic processes dominate at high energies, the elastic scattering constitutes the notice- able part of the total cross section ranging between 18 and 25% with some increase at higher energies. The scattering proceeds mostly at small angles and reveals peculiar dependences at larger angles disclos- ing the geometrical structure of the colliding particles and di?erent dynamical mechanisms. The fast decreasing Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoul- ders and dips and then by the power-like decrease. Results of various theoretical approaches are compared with exper- imental data. Phenomenological models pretending to describe this process are reviewed. The unitarity condition requires the exponen- tial re...

  9. An elastic second skin

    Science.gov (United States)

    Yu, Betty; Kang, Soo-Young; Akthakul, Ariya; Ramadurai, Nithin; Pilkenton, Morgan; Patel, Alpesh; Nashat, Amir; Anderson, Daniel G.; Sakamoto, Fernanda H.; Gilchrest, Barbara A.; Anderson, R. Rox; Langer, Robert

    2016-08-01

    We report the synthesis and application of an elastic, wearable crosslinked polymer layer (XPL) that mimics the properties of normal, youthful skin. XPL is made of a tunable polysiloxane-based material that can be engineered with specific elasticity, contractility, adhesion, tensile strength and occlusivity. XPL can be topically applied, rapidly curing at the skin interface without the need for heat- or light-mediated activation. In a pilot human study, we examined the performance of a prototype XPL that has a tensile modulus matching normal skin responses at low strain (<40%), and that withstands elongations exceeding 250%, elastically recoiling with minimal strain-energy loss on repeated deformation. The application of XPL to the herniated lower eyelid fat pads of 12 subjects resulted in an average 2-grade decrease in herniation appearance in a 5-point severity scale. The XPL platform may offer advanced solutions to compromised skin barrier function, pharmaceutical delivery and wound dressings.

  10. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  11. Hybrid elastic solids

    KAUST Repository

    Lai, Yun

    2011-06-26

    Metamaterials can exhibit electromagnetic and elastic characteristics beyond those found in nature. In this work, we present a design of elastic metamaterial that exhibits multiple resonances in its building blocks. Band structure calculations show two negative dispersion bands, of which one supports only compressional waves and thereby blurs the distinction between a fluid and a solid over a finite frequency regime, whereas the other displays super anisotropy-in which compressional waves and shear waves can propagate only along different directions. Such unusual characteristics, well explained by the effective medium theory, have no comparable analogue in conventional solids and may lead to novel applications. © 2011 Macmillan Publishers Limited. All rights reserved.

  12. Mechanics of elastic composites

    CERN Document Server

    Cristescu, Nicolaie Dan; Soós, Eugen

    2003-01-01

    This is a comprehensive, reader-friendly treatment of the theory behind modern elastic composite materials. The treatment includes recently developed results and methods drawn from research papers published in Eastern Europe that until now were unavailable in many western countries. Among the book''s many notable features is the inclusion of more than 400 problems, many of which are solved at the end of the book. Mechanics of Elastic Composites is an outstanding textbook for graduate-level course work and a valuable reference for engineers and researchers. Developed over many years by leading

  13. ElasticSearch server

    CERN Document Server

    Rogozinski, Marek

    2014-01-01

    This book is a detailed, practical, hands-on guide packed with real-life scenarios and examples which will show you how to implement an ElasticSearch search engine on your own websites.If you are a web developer or a user who wants to learn more about ElasticSearch, then this is the book for you. You do not need to know anything about ElastiSeach, Java, or Apache Lucene in order to use this book, though basic knowledge about databases and queries is required.

  14. Experimental study of temperature distribution in rubber material during microwave heating and vulcanization process

    Science.gov (United States)

    Chen, Hai-Long; Li, Tao; Liang, Yun; Sun, Bin; Li, Qing-Ling

    2017-03-01

    Microwave technology has been employed to heat sheet rubber, the optical fiber temperature online monitor and optical fiber temperature sensor have been employed to measure the temperature in sheet rubber. The temperature of sheet rubber increased with increase of heating time during microwave heating process in which the maximum of temperature was rubber was higher than the rate of temperature rising in marginal zone of sheet rubber, and the final temperature in central zone of sheet rubber was also higher than the final temperature in marginal zone of sheet rubber. In the microwave heating and vulcanization process of sheet rubber, the maximum of rate of temperature rising and the maximum of temperature belong to the central zone of sheet rubber, so the distribution of electric field was uneven in heating chamber, which led to the uneven temperature distribution of sheet rubber. The higher electric field intensity value converges on the central zone of sheet rubber.

  15. Natural rubber/nitrile butadiene rubber/hindered phenol composites with high-damping properties

    Directory of Open Access Journals (Sweden)

    Xiuying Zhao

    2015-10-01

    Full Text Available New natural rubber (NR/nitrile butadiene rubber (NBR/hindered phenol (AO-80 composites with high-damping properties were prepared in this study. The morphological, structural, and mechanical properties were characterized by atomic force microscopy (AFM, polarized Fourier transform infrared spectrometer (FTIR, dynamic mechanical thermal analyzer (DMTA, and a tensile tester. Each composite consisted of two phases: the NR phase and the NBR/AO-80 phase. There was partial compatibility between the NR phase and the NBR/AO-80 phase, and the NR/NBR/AO-80 (50/50/20 composite exhibited a co-continuous morphology. Strain-induced crystallization occurred in the NR phase at strains higher than 200%, and strain-induced orientation appeared in the NBR/AO-80 phase with the increase of strain from 100% to 500%. The composites had a special stress–strain behavior and mechanical properties because of the simultaneous strain-induced orientation and strain-induced crystallization. In the working temperature range of a seismic isolation bearing, the composites (especially the NR/NBR/AO-80 (50/50/20 composite presented a high loss factor, high area of loss peak (TA, and high hysteresis energy. Therefore, the NR/NBR/AO-80 rubber composites are expected to have important application as a high-performance damping material for rubber bearing.

  16. Penelitian penggunaan campuran karet alam RSS dengan stiren butadien rubber (SBR dalam pembuatan soft rubber lining

    Directory of Open Access Journals (Sweden)

    Penny Setyowati

    1995-06-01

    Full Text Available The objective of this research is to obtain optimum composition of RSS and SBR compound for making soft rubber lining compound. Based on seven combination of trials in compound formulation proved that formulation with composition of RSS 50 parts and SBR 50 parts give the best physical properties and highly cemented on steel by using “Desmodur R” adhesive solution.

  17. Creep Characteristics of Crumb Rubber Modified Asphalt Binder

    Institute of Scientific and Technical Information of China (English)

    WANG Lan; CHANG Chunqing; XING Yongming

    2011-01-01

    Crumb rubber modified asphalt containing 20 percent crumb rubber particles of 30mesh has been examined by Scanning Electron Microscope (SEM) to observe the microcosmic appearance and the characteristic distribution of crumb rubber particles in asphalt. The SEM pictures reveal that the crumb rubber particles distribute evenly in the asphalt and they are compatible well with asphalt. The shear creep test of crumb rubber modified asphalt was carried out at - 10 ℃ and 40 ℃ by Dynamic Shear Rheology (DSR). The shearing deformation at different temperature and creep stiffness modulus curve at loading stage of crumb rubber modified asphalt have been measured. The stiffness modulus of crumb rubber modified asphalt is much temperature sensitive and it decays much quick at the early stage of loading than normal asphalt. The rate of decay of stiffness modulus is slow at the subsequent stage and stiffness modulus approaches to a stable value at the final stage at a higher temperature. In addition, Burgers model is suitable to describe and simulate experimental results of viscoelastic properties of the crumb rubber modified asphalt.

  18. PHA-rubber blends: synthesis, characterization and biodegradation.

    Science.gov (United States)

    Bhatt, Rachana; Shah, Dishma; Patel, K C; Trivedi, Ujjval

    2008-07-01

    Medium chain length polyhydroxyalkanoates (mcl-PHA) and different rubbers; namely natural rubber, nitrile rubber and butadiene rubber were blended at room temperature using solution blending technique. Blends constituted 5%, 10% and 15% of mcl-PHA in different rubbers. Thermogravimetric analysis of mcl-PHA showed the melting temperature of the polymer around 50 degrees C. Thermal properties of the synthesized blend were studied by Differential Scanning Calorimetry which confirmed effective blending between the polymers. Blending of mcl-PHA with natural rubber led to the synthesis of a different polymer having the melting point of 90 degrees C. Degradation studies of the blends were carried out using a soil isolate, Pseudomonas sp. 202 for 30 days. Extracellular protein concentration as well as OD660 due to the growth of Pseudomonas sp. 202 was studied. The degradation of blended plastic material, as evidenced by % weight loss after degradation and increase in the growth of organism correlated with the amount of mcl-PHA present in the sample. Growth of Pseudomonas sp. 202 resulted in 14.63%, 16.12% and 3.84% weight loss of PHA:rubber blends (natural, nitrile and butadiene rubber). Scanning electron microscopic studies after 30 days of incubation further confirmed biodegradation of the films.

  19. Blends of guayule natural rubber latex with commercial latex polymers

    Science.gov (United States)

    Guayule (Parthenium argentatum) is a woody desert shrub that produces natural rubber, cis-1,4 polyisoprene, by biosynthesis. It is currently cultivated in the southwestern United States as a source of latex and rubber for commercial development. Guayule latex is similar to Hevea latex in polymer mo...

  20. A study of amino acid modifiers in guayule natural rubber

    Science.gov (United States)

    Natural rubber from the Hevea tree is a critical agricultural material vital to United States industry, medicine, and defense, yet the country is dependent on imports to meet domestic needs. Guayule, a desert shrub indigenous to the US, is under development as an alternative source of natural rubber...

  1. Flexible diamond-like carbon film coated on rubber

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Pal, J.P. van der; Martinez-Martinez, D.; Hosson, J.Th.M. De

    2013-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 70% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin films by which the coefficient of friction is reduced to less than one tenth. Coating

  2. Flexible protective diamond-like carbon film on rubber

    NARCIS (Netherlands)

    Pei, Y.T.; Bui, X.L.; Hosson, J.Th.M. De

    2010-01-01

    In this paper we report an experimental approach to deposit flexible diamond-like carbon (DLC) films on rubber via self-segmentation. By making use of the substantial thermal mismatch between the DLC film and rubber substrate a dense network of cracks forms in the DLC film, contributing to its flexi

  3. Research and Application Progress of Silicone Rubber Materials in Aviation

    Directory of Open Access Journals (Sweden)

    HUANG Yanhua

    2016-06-01

    Full Text Available The research progress of heat resistance, cold resistance, electrical conductivity and damping properties of aviation silicone rubber were reviewed in this article. The heat resistance properties of silicone rubber can be enhanced by changing the molecular structure (main chain, end-group, side chain and molecular weight of the gum and adding special heat-resistance filler. The cold resistance of aviation silicone rubber can be enhanced by adjusting the side chain molecular structure of the gum and the content of different gum chain. The electrical conductivity of silicone rubber can be improved by optimizing, blending and dispersing of conductive particles. The damping property of silicone rubber can be improved by designing and synthesizing of high-molecular polysiloxane damping agent. Furthermore, the application of aviation silicone rubber used in high-low temperature seal, electrical conduction and vibration damping technology are also summarized, and the high performance (for example long-term high temperature resistance, ultralow temperature resistance, high electromagnetic shelding, long-term fatigue resistance vibration damping, quasi constant modulus and so on of special silicone rubber is the future direction of aviation silicone rubber.

  4. Top 10 News of China Rubber Industry in 2011

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    1 Price of Rubber Raw Materials Greatly Fluctuated, Cost of Enterprises Hard to Be Controlled In 2011, the price of raw materials such as rubber fluctuated greatly. In the first quarter, NR hit the highest historical record of 43,500 yuan/ton.

  5. Influence of Plasma Treatments on the Frictional Performance of Rubbers

    NARCIS (Netherlands)

    Wolthuizen, D.J.; Martinez-Martinez, D.; Pei, Y.T.; Hosson, J.Th.M. De

    2012-01-01

    The frictional performance of several rubbers after pulsed-DC plasma treatments has been examined. In all cases, the treated rubbers showed better performance than the corresponding untreated ones. Stronger treatments, in terms of longer process time and/or higher substrate bias voltage, led to larg

  6. Reinforcement of latex rubber by the incorporation of amphiphilic nanoparticles

    Science.gov (United States)

    Latex rubbers are fabricated from latex suspensions. During the fabrication process, latex particles are bound together while water is removed from the suspension. This report shows the mechanical properties of latex rubbers can be improved by incorporating a small amount of amphiphilic nanoparticle...

  7. An overview of the potentials of natural rubber (Hevea brasiliensis ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-29

    Dec 29, 2009 ... Rubber grows well in deciduous rain-forest regions of lowland tropics with temperature ranges of between 21. - 35°C and a well distributed .... In the bark of the rubber tree is a complex network of laticifers, or latex vessels, ... develop into embryo-like structures that go on to form plantlets. MULTIPLYING ...

  8. Guayule resin detection and influence on guayule rubber

    Science.gov (United States)

    Guayule (Parthenium argentatum) is a natural rubber (cis-1,4-polyisoprene) producing crop, native to North America. Guayule also produces organic resins, complex mixtures of terpenes, triglycerides, guayulins, triterpenoids and other components. During natural rubber extraction, guayule resins can b...

  9. Lifetime of metal rubber isolator with different vibration amplitudes

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong-yuan; XIA Yu-hong; AO Hong-rui; DONG Chun-fang; A.M.Ulanov

    2005-01-01

    The lifetime of metal rubber isolator and its characteristics during lifetime experiment were studied. The stepped-up test principle was adopted to study the lifetime of resonant frequency, the breakage form of metal rubber isolator was obtained, and the relation between the energy dissipation, resonant frequency and stiffness was obtained in available lifetime of the isolator. Furthermore, the reason for the changes of properties of metal rubber isolator was analyzed with contact model of metal rubber material. The results show that if the resonant amplitude is large, the stiffness of metal rubber isolator will be kept steadily for a long time, its resonant frequency will be stable and the effective working time in the protecting area will be long. The lifetime of metal rubber isolator is more than 1 376 h in the experiment. The main failure forms of metal rubber isolator are accumulative wear and breaking of metal wires and spirals. In protecting area the metal rubber isolator can work effectively for a long time, and the effective working time depends on the concrete working condition.

  10. Cohesion in crumb rubber modified bitumen

    Directory of Open Access Journals (Sweden)

    Páez Dueñas, A.

    2006-12-01

    Full Text Available This article reports on a study of crumb rubber-mediated improvement in bitumen cohesion, analyzed with the UCL method. UCL, a procedure developed to characterize bituminous binders, evaluates the cohesion obtained by adding a certain amount of bitumen or bituminous mastic to a standard mix aggregate. This method was chosen because it can be used to assess bitumen containing crumb rubber added by either the wet or the dry mix process. In the dry mix process crumb rubber is combined with the mix as if it were a fine aggregate; i.e., crumb rubber and binder are blended during mix manufacture, laying and compaction. In the wet mix process, the binder is blended with the crumb rubber prior to mixing with the aggregate; i.e., when added to the mix, it has already been modified. The effect of digesting this dry mixed material prior to use was also analyzed in the present study. A comparison of the dry (with and without digestion and wet mix processes showed the latter to be more effective, particularly when the crumb rubber was blended with the binder via microscopic dispersion.El objetivo de este artículo es estudiar la influencia del polvo de neumático en la mejora de la cohesión proporcionada por la adición del polvo de neumático al betún mediante el método UCL. El método UCL es un procedimiento desarrollado para caracterizar ligantes bituminosos, basado en la evaluación de la cohesión dada por una cantidad determinada de un betún o un mástico bituminoso a unos áridos de granulometría establecida (mezcla patrón. Se ha empleado este método porque permite valorar al mismo tiempo los dos procedimientos de incorporación del polvo de neumático al betún: vía seca y vía húmeda.El procedimiento seco se lleva a cabo añadiendo el polvo de neumático a la mezcla como si fuera un filler, de modo que el polvo de neumático y el ligante se mezclan durante la fabricación, extendido y compactación de la mezcla. En el procedimiento h

  11. bessel functions for axisymmetric elasticity problems of the elastic ...

    African Journals Online (AJOL)

    HOD

    ELASTIC HALF SPACE SOIL: A POTENTIAL FUNCTION METHOD. C. C. Ike1 ... OF CIVIL ENGR., ENUGU STATE UNIVERSITY OF SCIENCE AND TECHNOLOGY, ENUGU, ENUGU STATE. ..... Elasticity, Third Edition,McGraw Hill, New York.

  12. Acquired disorders of elastic tissue: Part II. decreased elastic tissue.

    Science.gov (United States)

    Lewis, Kevan G; Bercovitch, Lionel; Dill, Sara W; Robinson-Bostom, Leslie

    2004-08-01

    Elastic fibers in the extracellular matrix are integral components of dermal connective tissue. The resilience and elasticity required for normal structure and function of the skin are attributable to the network of elastic tissue. Advances in our understanding of elastic tissue physiology provide a foundation for studying the pathogenesis of elastic tissue disorders. Many acquired disorders are nevertheless poorly understood owing to the paucity of reported cases. Several acquired disorders in which loss of dermal elastic tissue produces prominent clinical and histopathologic features have recently been described, including middermal elastolysis, papular elastorrhexis, and pseudoxanthoma-like papillary dermal elastolysis, which must be differentiated from more well-known disorders such as anetoderma, acquired cutis laxa, and acrokeratoelastoidosis. Learning objective At the conclusion of this learning activity, participants should have an understanding of the similarities and differences between acquired disorders of elastic tissue that are characterized by a loss of elastic tissue.

  13. COMPRESSIVE AND SHEAR ANALYSIS OF RUBBER BLOCK UNDER LARGE STRAIN

    Directory of Open Access Journals (Sweden)

    K. Sridharan

    2013-01-01

    Full Text Available The Elastomeric materials have found use in a wide range of applications, including hoses, tires, gaskets, seals, vibration isolators, bearings and dock fenders. The analysis of rubber blocks for its compression and shear behavior has been carried out using the imaging techniques. The dynamic stressing and its associated change in shape of the rubber blocks during large compression are very limited as their measurements were difficult. A newly developed Machine Vision based image processing test has been effectively used to study the deformation characteristics of the rubber blocks under large strains. An extended analysis on the rubber blocks has been carried out to understand the compression and deformation behavior in static and dynamic condition and the nonlinear behavior were also characterized. The rubber blocks of distinguished geometries have shown diverse change in shape and nonlinear deformation behavior under compression/shear loading.

  14. Dynamic simulation on rubber spring supporting equipment of vibrating screen

    Institute of Scientific and Technical Information of China (English)

    SU Rong-hua; PENG Chen-yu

    2011-01-01

    By ANSYS, dynamic simulation analysis of rubber spring supporting equipment used in vibrating screen was made. The modal frequency, mode, and harmonic displacement under working frequency were obtained. Variation of rubber spring supporting equipment's dynamic performance was discussed first, which is under the condition of existing spring stiffness difference and exciting force bias. Also, the quantitative calculation formulas were given. The results indicate that the performance of vibrating screen is closely related with rubber spring supporting equipment's dynamic performance. Differences of springs' stiffness coefficients reduce the modal frequency reduced, decrease the dynamic stiffness, and increase vibration displacement. Exciting force bias induces a larger lateral displacement. When rubber springs' stiffness coefficients exist, differences and lateral force accounts for 5% in total exciting force; rubber spring supporting equipment's side swing is larger than 1 mm, exceeding the side swing limit.

  15. Analysis of impact of suspension rubber mounts on ride comfort

    Science.gov (United States)

    Chen, Bao; Chen, Zheming; Lei, Gang

    2017-01-01

    Two multi-body car models with rubber mounts and without rubber mounts have been built up to research how the suspension rubber mounts impact ride comfort. The comfort mount was used to simulate the impact process. Two scenarios have been set up, and time integrations have been performed to get the acceleration-time histories of seat surface in the x-, y-, and z-direction. A MATLAB program was compiled to calculate the weighted RMS acceleration. For the first scenario, the relative difference of weighted RMS acceleration between the car models with rubber mounts and without rubber mounts gradually decreases as the road roughness increases. For the second scenario, the relative difference increases as the driving speed increases. The conclusion shows that the change of driving speed or road roughness impacts ride comfort. Especially for high driving speed this impact is quite obvious.

  16. 3D silicone rubber interfaces for individually tailored implants.

    Science.gov (United States)

    Stieghorst, Jan; Bondarenkova, Alexandra; Burblies, Niklas; Behrens, Peter; Doll, Theodor

    2015-01-01

    For the fabrication of customized silicone rubber based implants, e.g. cochlear implants or electrocortical grid arrays, it is required to develop high speed curing systems, which vulcanize the silicone rubber before it runs due to a heating related viscosity drop. Therefore, we present an infrared radiation based cross-linking approach for the 3D-printing of silicone rubber bulk and carbon nanotube based silicone rubber electrode materials. Composite materials were cured in less than 120 s and material interfaces were evaluated with scanning electron microscopy. Furthermore, curing related changes in the mechanical and cell-biological behaviour were investigated with tensile and WST-1 cell biocompatibility tests. The infrared absorption properties of the silicone rubber materials were analysed with fourier transform infrared spectroscopy in transmission and attenuated total reflection mode. The heat flux was calculated by using the FTIR data, emissivity data from the infrared source manufacturer and the geometrical view factor of the system.

  17. New type of liquid rubber and compositions based on it.

    Science.gov (United States)

    Semikolenov, S V; Nartova, A V; Voronchikhin, V D; Dubkov, K A

    2014-11-01

    The new method for producing the functionalized polymers and oligomers containing carbonyl C=O groups is developed. The method is based on the noncatalytic oxidation of unsaturated rubbers by nitrous oxide (N2O) at 180-230 °С. The proposed method allows obtaining the new type of functionalized rubbers-liquid unsaturated polyketones with regulated molecular weight and concentration of C=O groups. The influence of the liquid polyketone addition on properties of rubber-based composites is investigated. The study indicates good prospects of using the liquid polyketones for the improvement of properties and operating characteristics of the various types of rubbers and the rubber-cord systems.

  18. Performance of the Cement Matrix Composite Material With Rubber Powder

    Institute of Scientific and Technical Information of China (English)

    SONG Shao-min; LIU Juan-hong; ZHANG Xi-qing

    2004-01-01

    The effect of the deferent rubber content substituted for fine aggregate on the mortar performancewas studied. The effects of the rubber coated with the coating materials on the mortar compressive strength, bendingstrength and impact work were discussed. The optimum rubber powder content and the suitable coating materialwere found. Through the electrical probe test- BEI, SEI and calcium ion distribution, and the slight crack and theinterface between the rubber and cement matrix are analyzed. The results show that the rubber powder coated withthe surface treatment materials A, B and C bas the capability of absorbing a large amount of energy under thecompressive and flexural load and the slight cracks of R- C were controlled and restrained.

  19. Reinforcement of rubber by fractal aggregates

    Science.gov (United States)

    Witten, T. A.; Rubinstein, M.; Colby, R. H.

    1993-03-01

    Rubber is commonly reinforced with colloidal aggregates of carbon or silica, whose structure has the scale invariance of a fractal object. Reinforced rubbers support large stresses, which often grow faster than linearly with the strain. We argue that under strong elongation the stress arises through lateral compression of the aggregates, driven by the large bulk modulus of the rubber. We derive a power-law relationship between stress and elongation λ when λgg 1. The predicted power p depends on the fractal dimension D and a second structural scaling exponent C. For diffusion-controlled aggregates this power p should lie beween 0.9 and 1.1 ; for reaction-controlled aggregates p should lie between 1.8 and 2.4. For uniaxial compression the analogous powers lie near 4. Practical rubbers filled with fractal aggregates should approach the conditions of validity for these scaling laws. On renforce souvent le caoutchouc avec des agrégats de carbone ou de silice dont la structure a l'invariance par dilatation d'un objet fractal. Les caoutchoucs ainsi renforcés supportent de grandes contraintes qui croissent souvent plus vite que l'élongation. Nous prétendons que, sous élongation forte, cette contrainte apparaît à cause d'une compression latérale des agrégats induite par le module volumique important du caoutchouc. Nous établissons une loi de puissance reliant la contrainte et l'élongation λ quand λgg 1. Cet exposant p dépend de la dimension fractale D et d'un deuxième exposant structural C. Pour des agrégats dont la cinétique de formation est limitée par diffusion, p vaut entre 0,9 et 1,1. Si la cinétique est limitée par le soudage local des particules, p vaut entre 1,8 et 2,4. Sous compression uniaxiale, les puissances homologues valent environ 4. Des caoutchoucs pratiques chargés de tels agrégats devraient approcher des conditions où ces lois d'échelle sont valables.

  20. On the inflation of a rubber balloon

    Science.gov (United States)

    Vandermarlière, Julien

    2016-12-01

    It is a well-known fact that it is difficult to start a balloon inflating. But after a pressure peak that occurs initially, it becomes far easier to do it! The purpose of this article is to establish the experimental pressure-radius chart for a rubber balloon and to compare it to the theoretical one. We will demonstrate that the barometer of a smartphone is a very suitable tool to reach this goal. We hope that this phenomenon will help students realize that sometimes very simple questions can lead to very interesting and counterintuitive science.

  1. Demotivating factors influencing rubber production workers

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Iravani

    2012-01-01

    Full Text Available Motivation is one of the most important factors influencing workers' productivity. An increase in workers' motivation could add more value to organizations' structure and influence the profitability, significantly. In this paper, we study different factors on demotivating workers using questionnaire consist of various questions. The questionnaire is distributed among some employees who work for rubber production units located in Esfahan, Iran. The results of this survey indicate that discrimination on annual job compensation, entrusting responsibilities and unpleasant relationship with family partner are some of the most important factors influencing employees' motivation. While financial factors play important role on increasing employees' motivation, non-financial factors are considered more important.

  2. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    Science.gov (United States)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-12-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (Tg). Shape-memory polymer maintains its shape after it has cooled below Tg and returns to a predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet.

  3. THE EFFECT OF AN ACUTE BOUT OF RUBBER TUBE RUNNING CONSTRAINT ON KINEMATICS AND MUSCLE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Anita Haudum

    2012-09-01

    Full Text Available We examined the effect of an acute bout of treadmill running with rubber tube (RT and without rubber tube (NT elastic constraints on electromyographic (EMG, 3D kinematics variability, and blood lactate concentration (LA. In the RT test, the constraints were attached to the hips and ankles. The selected variables were compared between 30 min of NT running and 30 minutes of RT running in 13 healthy recreationally trained male runners who had no prior exposure to RT. Statistical analysis revealed significantly higher EMG variability (p < 0.01 and muscle activity (p < 0.05 during RT compared to NT that decreased over time approaching NT, indicating movement pattern adaptation. 3D-kinematics and their variability remained generally unaltered. Changes occurred predominantly in the sagittal plane, specifically to the knee and the swing. A significant increase in LA was measured at the end of RT (p < 0.05. These findings suggest that RT running influences muscle recruitment and variability, but has only a minor influence on kinematics. Changes in LA were significant, although relatively small. The observed adaptations in EMG and kinematics suggest that the RTs provide a possibility to create within movement variability in various sports, and thus, variable training conditions may foster strategies to increase the ability to flexibly adapt to different and new situations

  4. Statistical Discrimination of Latex between Healthy and White Root Infected Rubber Tree based on Dry Rubber Content

    Science.gov (United States)

    Suhaimi Sulaiman, Mohd; Hashim, Hadzli; Faiz Mohd Sampian, Ahmad; Korlina Madzhi, Nina; Faris Mohd Azmi, Azrie; Aishah Khairuzzaman, Noor; Aima Ismail, Faridatul

    2015-11-01

    Dry rubber content (DRC) is one of main material existing inside latex. It is usually in ranged of 25% - 45% of rubber latex. Statistical analysis are done to determine the discrimination of dry rubber content of latex between healthy and white root infected rubber tree. Based on 150 rubber trees and 10 clones tested, parametric test which include normality test, error-bar plot, and paired samples test are done. The result outcomes have shown that both data of dry rubber content of latex for healthy and white root infected rubber tree are normally distributed. Error-bar plot test is clearly indicated that there is visible discrimination between both cases. Paired samples test are done to reinforce this findings in terms of numerical p- value which is found to be less than 0.05. Thus, this indicate overwhelming evidence that healthy group can be discriminated from white root. Conclusively, changes in DRC content in latex can be correlated with white root disease infections of rubber tree.

  5. Reinforcing effect of plasma modified halloysite nanotubes in a carbon black filled natural rubber-butadien rubber matrix

    NARCIS (Netherlands)

    Poikelispaa, Minna; Das, Amit; Dierkes, Wilma; Vuorinen, Jyrki

    2011-01-01

    Rubber composites are generally produced by the direct incorporation of fillers like carbon black and/or silica into the rubber matrix. The incorporation of different types of nanofillers is the subject of recent research with the aim of preparing composites with special compositions and properties.

  6. Flexible diamond-like carbon films on rubber : Friction and the effect of viscoelastic deformation of rubber substrates

    NARCIS (Netherlands)

    Pei, Y. T.; Martinez-Martinez, D.; van der Pal, J. P.; Bui, X. L.; Zhou, X. B.; De Hosson, J. Th. M.

    2012-01-01

    This paper focuses on the frictional behavior of flexible diamond-like carbon (DLC) film-coated hydrogenated nitrile butadiene rubber. By making use of the substantial thermal mismatch between DLC film and rubber substrate, a dense network of cracks forms in the DLC films and contributes to flexibil

  7. Characterization of gas transfer and mixing in a bubble column equipped with a rubber membrane diffuser

    Science.gov (United States)

    Poulsen; Iversen

    1998-06-20

    Gas transfer and mixing were characterized in a 32-L bubble column reactor equipped with a commercially available rubber membrane diffuser. The performance of the membrane diffuser indicates that the slits in the membrane are best described as holes with elastic lids, acting as valves cutting off bubbles from the gas stream. The membrane diffuser thus functions as a one-way valve preventing backflow of liquid. Our design of the bottom plate of the reactor enabled us to optimize the aeration by changing the tension of the membrane. We thereby achieved mass transfer coefficients higher than those previously reported in bubble columns. A strong dependence of mass transfer on gas holdup and bubble size was indicated by estimates based on these two variables. The microalga, Rhodomonas sp. , sensitive to chemical and physical stress, was maintained for 8 months in continuous culture with a productivity identical to cultures grown in stirred tank reactors. Copyright 1998 John Wiley & Sons, Inc.

  8. Force-sensitive resistor of carbon-filled liquid silicone rubber

    Science.gov (United States)

    Hu, Wangyu; Zhao, Lihua; Wu, Lijun; Wang, Lingling; Zhang, Bangwei; Hu, Wangyu; Guan, Hengrong; Zhang, Bangwei

    1996-01-01

    The effects of carbon content, tensile force, and temperature on the electrical resistance of carbon-filled liquid silicone rubber composites are studied. The relaxation process of resistance following loading can be described by an exponential function. The force dependence of the equilibrium resistance can be expressed by a second order polynomial, and such a relationship can be derived from the quantum mechanical tunneling conduction mechanism by assuming that the separation distance between carbon aggregates changes as a function of the tensile force with a form of Δw=kF2. Combining with the experimental data and typical values of theoretical parameters, the elastic modulus, the separation distance, and the proportional constant k can be obtained. Finally, the temperature dependence of resistance can be interpreted by the general form of R=R0 exp(const./T) with two different constants at different temperature ranges.

  9. Negative pressures during swing phase in below-knee prostheses with rubber sleeve suspension.

    Science.gov (United States)

    Chino, N; Pearson, J R; Cockrell, J L; Mikishko, H A; Koepke, G H

    1975-01-01

    Negative pressures in the small space between the distal stump and the below-knee prosthetic socket were measured during swing phase for a series of nine subjects. A molded rubber sleeve connecting the prosthesis and the thigh was found to enhance this effect so that suction suspension occurred during the entire swing phase. Deterioration of the suction occurred when the sleeve was intentionally pierced, and when other suspensions such as a suprapatellar cuff or thigh band were tested. The findings indicate that the total-contact socket, gel liner and elastic sleeve combine to create suction in the below-knee socket which improves overall comfort and function for the patient in using the prosthesis.

  10. Stretching Rubber, Stretching Minds: a polymer physics lab for teaching entropy

    CERN Document Server

    Brzinski, Theodore A

    2015-01-01

    Entropy is a difficult concept to teach using real-world examples. Unlike temperature, pressure, volume, or work, it's not a quantity which most students encounter in their day-to-day lives. Even the way entropy is often qualitatively described, as a measure of disorder, is incomplete and can be misleading. In an effort to address these obstacles, we have developed a simple laboratory activity, the stretching of an elastic rubber sheet, intended to give students hands-on experience with the concepts of entropy, temperature and work in both adiabatic and quasistatic processes. We present two versions of the apparatus: a double-lever system, which may be reproduced with relatively little cost, and a commercial materials testing system, which provides students experience with scientific instrumentation that is used in research.

  11. Tuning the vibration of a rotor with shape memory alloy metal rubber supports

    Science.gov (United States)

    Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie

    2015-09-01

    The paper describes a novel smart rotor support damper with variable stiffness made with a new multifunctional material - the shape memory alloy metal rubber (SMA-MR). SMA-MR gives high load bearing capability (yield limit up to 100 MPa and stiffness exceeding 1e8 N/m), high damping (loss factor between 0.15 and 0.3) and variable stiffness (variation of 2.6 times between martensite and austenite phases). The SMA-MR has been used to replace a squeeze film damper and combined with an elastic support. The mechanical performance of the smart support damper has been investigated at room and high temperatures on a rotor test rig. The vibration tuning capabilities of the SMA-MR damper have been evaluated through FEM simulations and experimental tests. The study shows the feasibility of using the SMA-MR material for potential applications of active vibration control at different temperatures in rotordynamics systems.

  12. Acoustoelastic analysis of reflected waves in nearly incompressible, hyper-elastic materials: forward and inverse problems.

    Science.gov (United States)

    Kobayashi, Hirohito; Vanderby, Ray

    2007-02-01

    Many materials (e.g., rubber or biologic tissues) are "nearly" incompressible and often assumed to be incompressible in their constitutive equations. This assumption hinders realistic analyses of wave motion including acoustoelasticity. In this study, this constraint is relaxed and the reflected waves from nearly incompressible, hyper-elastic materials are examined. Specifically, reflection coefficients are considered from the interface of water and uni-axially prestretched rubber. Both forward and inverse problems are experimentally and analytically studied with the incident wave perpendicular to the interface. In the forward problem, the wave reflection coefficient at the interface is evaluated with strain energy functions for nearly incompressible materials in order to compute applied strain. For the general inverse problem, mathematical relations are derived that identify both uni-axial strains and normalized material constants from reflected wave data. The validity of this method of analysis is demonstrated via an experiment with stretched rubber. Results demonstrate that applied strains and normalized material coefficients can be simultaneously determined from the reflected wave data alone if they are collected at several different (but unknown) levels of strain. This study therefore indicates that acoustoelasticity, with an appropriate constitutive formulation, can determine strain and material properties in hyper-elastic, nearly incompressible materials.

  13. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors

    Science.gov (United States)

    Sekitani, Tsuyoshi; Nakajima, Hiroyoshi; Maeda, Hiroki; Fukushima, Takanori; Aida, Takuzo; Hata, Kenji; Someya, Takao

    2009-06-01

    Stretchability will significantly expand the applications scope of electronics, particularly for large-area electronic displays, sensors and actuators. Unlike for conventional devices, stretchable electronics can cover arbitrary surfaces and movable parts. However, a large hurdle is the manufacture of large-area highly stretchable electrical wirings with high conductivity. Here, we describe the manufacture of printable elastic conductors comprising single-walled carbon nanotubes (SWNTs) uniformly dispersed in a fluorinated rubber. Using an ionic liquid and jet-milling, we produce long and fine SWNT bundles that can form well-developed conducting networks in the rubber. Conductivity of more than 100Scm-1 and stretchability of more than 100% are obtained. Making full use of this extraordinary conductivity, we constructed a rubber-like stretchable active-matrix display comprising integrated printed elastic conductors, organic transistors and organic light-emitting diodes. The display could be stretched by 30-50% and spread over a hemisphere without any mechanical or electrical damage.

  14. 非仿射高阶关联大系统的分散模糊输出反馈控制%Decentralized Fuzzy Output Feedback Control for Non-affine High-order Connective Large-scale Systems

    Institute of Scientific and Technical Information of China (English)

    毛玉青; 黄云龙

    2012-01-01

    For the class of non-affine uncertain nonlinear connective large-scale systems with the output variables of subsystems can be measured only, considering the interconnections among subsystems which are common high-order polynomials about system's states, by using Leunberger observer to observe the unknown state' s variables without the strict positive real condition and by combining the universal approximation theory of fuzzy systems with supervisory control technology and adaptive control technology, a new decentralized adaptive fuzzy output feedback control method is provided with proof by contradiction. The control method can not only cancel the assumption that approximate error to be squared integrable, but also the upper bound of the first derivative of implicit function about control gain is more general nonlinear functions. The closed-loop system is proved to be globally uniformly ultimately bounded with tracking error converging to zero by using lyapunov stability theory. Simulation results show the effectiveness of the control scheme.%针对一类仅子系统输出变量可测的非仿射不确定非线性关联大系统,考虑其关联项是关于系统状态的普通高阶多项式,在无须严格正实(SPR)的条件下采用Leunberger观测器观测未知状态向量,结合模糊系统的万能逼近原理,监督控制技术和自适应控制技术,借助反证法提出一种新的分散自适应模糊输出反馈控制方案,该方案不仅取消了逼近误差平方可积的假设条件,而且控制增益隐含数一阶导数的上界是更具一般性的未知非线性函数,基于Lyapunov稳定理论分析证明了闭环系统的全局稳定性,跟踪误差收敛到零,仿真结果表明所提控制方案的有效性.

  15. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  16. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes

    Science.gov (United States)

    Matsuhisa, Naoji; Inoue, Daishi; Zalar, Peter; Jin, Hanbit; Matsuba, Yorishige; Itoh, Akira; Yokota, Tomoyuki; Hashizume, Daisuke; Someya, Takao

    2017-08-01

    Printable elastic conductors promise large-area stretchable sensor/actuator networks for healthcare, wearables and robotics. Elastomers with metal nanoparticles are one of the best approaches to achieve high performance, but large-area utilization is limited by difficulties in their processability. Here we report a printable elastic conductor containing Ag nanoparticles that are formed in situ, solely by mixing micrometre-sized Ag flakes, fluorine rubbers, and surfactant. Our printable elastic composites exhibit conductivity higher than 4,000 S cm-1 (highest value: 6,168 S cm-1) at 0% strain, and 935 S cm-1 when stretched up to 400%. Ag nanoparticle formation is influenced by the surfactant, heating processes, and elastomer molecular weight, resulting in a drastic improvement of conductivity. Fully printed sensor networks for stretchable robots are demonstrated, sensing pressure and temperature accurately, even when stretched over 250%.

  17. Printable elastic conductors with a high conductivity for electronic textile applications

    Science.gov (United States)

    Matsuhisa, Naoji; Kaltenbrunner, Martin; Yokota, Tomoyuki; Jinno, Hiroaki; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao

    2015-06-01

    The development of advanced flexible large-area electronics such as flexible displays and sensors will thrive on engineered functional ink formulations for printed electronics where the spontaneous arrangement of molecules aids the printing processes. Here we report a printable elastic conductor with a high initial conductivity of 738 S cm-1 and a record high conductivity of 182 S cm-1 when stretched to 215% strain. The elastic conductor ink is comprised of Ag flakes, a fluorine rubber and a fluorine surfactant. The fluorine surfactant constitutes a key component which directs the formation of surface-localized conductive networks in the printed elastic conductor, leading to a high conductivity and stretchability. We demonstrate the feasibility of our inks by fabricating a stretchable organic transistor active matrix on a rubbery stretchability-gradient substrate with unimpaired functionality when stretched to 110%, and a wearable electromyogram sensor printed onto a textile garment.

  18. Mathematical methods in elasticity imaging

    CERN Document Server

    Ammari, Habib; Garnier, Josselin; Wahab, Abdul

    2015-01-01

    This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertai

  19. The Determination of the Elastic Modulus of Rubber Mooring Tethers and Their Use in Coastal Moorings

    Science.gov (United States)

    2005-12-01

    meters (Geyer et al., 1992). The Vector Averaging Current Meter (VACM) utilizes a Savonius rotor to measure current speed and a vane to obtain...direction. If the VACM were moved up and down by the waves on a mooring that is tilted, the non-linearly of the Savonius rotor can rectify the oscillating

  20. Rubber hand illusion affects joint angle perception.

    Directory of Open Access Journals (Sweden)

    Martin V Butz

    Full Text Available The Rubber Hand Illusion (RHI is a well-established experimental paradigm. It has been shown that the RHI can affect hand location estimates, arm and hand motion towards goals, the subjective visual appearance of the own hand, and the feeling of body ownership. Several studies also indicate that the peri-hand space is partially remapped around the rubber hand. Nonetheless, the question remains if and to what extent the RHI can affect the perception of other body parts. In this study we ask if the RHI can alter the perception of the elbow joint. Participants had to adjust an angular representation on a screen according to their proprioceptive perception of their own elbow joint angle. The results show that the RHI does indeed alter the elbow joint estimation, increasing the agreement with the position and orientation of the artificial hand. Thus, the results show that the brain does not only adjust the perception of the hand in body-relative space, but it also modifies the perception of other body parts. In conclusion, we propose that the brain continuously strives to maintain a consistent internal body image and that this image can be influenced by the available sensory information sources, which are mediated and mapped onto each other by means of a postural, kinematic body model.

  1. INDUSTRIAL SAFETY IN THE PRODUCTION OF RUBBER

    Directory of Open Access Journals (Sweden)

    S. V. Danilova

    2015-01-01

    Full Text Available Russian industry of synthetic rubber, is one of the most competitive and occupies a prominent place in the global petrochemical industry. However, the company production of synthetic rubber are among the most hazardous industrial facilities. The main operational risks are to fire and explosion hazards of raw materials used. Accidents in such establishments can damage not only the equipment, materials or buildings, but also cause serious environmental and economic consequences for the region. For the prevention of accidents, mitigation and elimination of losses, it is necessary to apply a set of measures aimed at the management and control of industrial safety. The legal basis of industrial safety in the Russian Federation is the Federal Law № 116-FZ dated 21.07.97 "On industrial safety of hazardous production facilities." Industrial Safety at work an important part of its normal functioning. The most important condition of industrial safety of hazardous production facilities is the examination of industrial safety. Federal rules and regulations in the field of industrial safety "rules of examination of industrial safety", approved by Order of RTN on November 14, 2013 N 538 established: the procedure of examination of industrial safety requirements for the design of expert opinions and requirements for experts.

  2. Pyrolysis of Rubber in a Screw Reactor

    Science.gov (United States)

    Lozhechnik, A. V.; Savchin, V. V.

    2016-11-01

    On the basis of an analysis of thermal methods described in the literature and from the results of experimental investigations of steam conversion, the authors have developed and created a facility for thermal processing of rubber waste. Rubber crumb was used as the raw material; the temperature in the reactor was 500°C; nitrogen, steam, and a mixture of light hydrocarbons (noncondensable part of pyrolysis products) represented the working medium. The pyrolysis yielded 36-38% of a solid fraction, 54-56% of a liquid hydrocarbon fraction, and 6-9% of noncondensable gases. Changes in the composition of the gas mixture have been determined at different stages of processing. Gas chromatography of pyrolysis gases has shown that the basic gases produced by pyrolysis are H2 and hydrocarbons C2H4, C3H6, C3H8, C4H8, C2H6, C3H6O2, and C4H10, and a small amount of H2S, CO, and CO2. Noncondensable gases will be used as a fuel to heat the reactor and to implement the process.

  3. Plant and bird diversity in rubber agroforests in the lowlands of Sumatra, Indonesia

    NARCIS (Netherlands)

    Beukema, Hendrien; Danielsen, Finn; Vincent, Gregoire; Hardiwinoto, Suryo; van Andel, Jelte

    Plant and bird diversity in the Indonesian jungle rubber agroforestry system was compared to that in primary forest and rubber plantations by integrating new and existing data from a lowland rain forest area in Sumatra. Jungle rubber gardens are low-input rubber (Hevea brasiliensis) agroforests that

  4. Plant and bird diversity in rubber agroforests in the lowlands of Sumatra, Indonesia

    NARCIS (Netherlands)

    Beukema, Hendrien; Danielsen, Finn; Vincent, Gregoire; Hardiwinoto, Suryo; van Andel, Jelte

    2007-01-01

    Plant and bird diversity in the Indonesian jungle rubber agroforestry system was compared to that in primary forest and rubber plantations by integrating new and existing data from a lowland rain forest area in Sumatra. Jungle rubber gardens are low-input rubber (Hevea brasiliensis) agroforests that

  5. 40 CFR 428.30 - Applicability; description of the solution crumb rubber subcategory.

    Science.gov (United States)

    2010-07-01

    ... solution crumb rubber subcategory. 428.30 Section 428.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Solution Crumb Rubber Subcategory § 428.30 Applicability; description of the solution crumb rubber...

  6. 75 FR 51981 - Polychloroprene Rubber from Japan: Final Results of Sunset Review and Revocation of Finding

    Science.gov (United States)

    2010-08-24

    ... International Trade Administration Polychloroprene Rubber from Japan: Final Results of Sunset Review and... review of the antidumping finding on polychloroprene rubber from Japan. Because the domestic interested... polychloroprene rubber from Japan. See Polychloroprene Rubber from Japan, 38 FR 33593 (December 6, 1973)....

  7. 40 CFR 428.40 - Applicability; description of the latex rubber subcategory.

    Science.gov (United States)

    2010-07-01

    ... latex rubber subcategory. 428.40 Section 428.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Latex Rubber Subcategory § 428.40 Applicability; description of the latex rubber subcategory. The provisions...

  8. 40 CFR 428.20 - Applicability; description of the emulsion crumb rubber subcategory.

    Science.gov (United States)

    2010-07-01

    ... emulsion crumb rubber subcategory. 428.20 Section 428.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Emulsion Crumb Rubber Subcategory § 428.20 Applicability; description of the emulsion crumb rubber...

  9. Approximation by planar elastic curves

    DEFF Research Database (Denmark)

    Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge

    2016-01-01

    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....

  10. Enhancement of Adhesion between EPDM and Polyester Fabric by Using Natural Rubber Modified by Maleic Anhydride

    Directory of Open Access Journals (Sweden)

    A. A. El-Wakil

    2011-01-01

    Full Text Available This study presents a new method for improving adhesion between ethylene propylene diene monomer (EPDM rubber and polyester fabric. In this work, natural rubber was modified by maleic anhydride in order to improve the adhesion force between ethylene propylene diene monomer rubber and polyester fabric. The effect of thermal aging and ionizing radiation on the stability of the rubber mix as well as on the peel strength of the rubber-coated fabric was investigated. It was observed that the natural rubber modified by maleic anhydride improved the peel strength of the EPDM rubber-coated polyester fabric.

  11. Comparative studies on crosslinked and uncrosslinked natural rubber biodegradation by Pseudomonas sp.

    Science.gov (United States)

    Roy, Ram Vinod; Das, Mithu; Banerjee, Rintu; Bhowmick, Anil K

    2006-12-01

    A comparative study on biodegradation of di-cumyl peroxide (DCP) crosslinked and uncrosslinked natural rubber by Pseudomonas sp. was carried out. Decrease in organic carbon content along with the changes in tensile strength of the treated rubber, both DCP crosslinked and uncrosslinked natural rubber, indicated rubber hydrocarbon utilization by the Pseudomonas sp. A decrease in 60.88% MPa and 41.66% MPa was observed after five month's old treated uncrosslinked natural rubber and DCP crosslinked rubber, respectively. Biodegradation was more pronounced in natural uncrosslinked rubber, which was further confirmed by the formation of aldehydic compounds with decrease in CH2 stretching frequencies.

  12. Mechanical properties and durability of crumb rubber concrete

    Science.gov (United States)

    Chylík, Roman; Trtík, Tomáš; Fládr, Josef; Bílý, Petr

    2017-09-01

    This paper is focused on concrete with admixture of rubber powder, generally called crumb rubber concrete (CRC). The inspiration was found in Arizona, where one of the first CRCs has been created. However, Arizona has completely different climates than Central Europe. Could we use the crumb rubber concrete on construction applications in the Central European climate too? The paper evaluates the influence of the rubber powder on material characteristics and durability of CRC. CRCs with various contents of fine and coarse crumb powder were compared. The tested parameters were slump, air content, permeability, resistance of concrete to water with deicing chemicals, compressive and splitting tensile strength. The tests showed that workability, compressive strength and permeability decreased as the amount of rubber increased, but the air content increased as the rubber content increased. Photos of air voids in cement matrix from electron microscope were captured. The results of laboratory tests showed that admixture of rubber powder in concrete could have a positive impact on durability of concrete and concurrently contribute to sustainable development. Considering the lower compressive strength, CRC is recommended for use in applications where the high strength of concrete is not required.

  13. Characterization of associated proteins and phospholipids in natural rubber latex.

    Science.gov (United States)

    Sansatsadeekul, Jitlada; Sakdapipanich, Jitladda; Rojruthai, Porntip

    2011-06-01

    Non-rubber components present in natural rubber (NR) latex, such as proteins and phospholipids, are presumed to be distributed in the serum fraction as well as surrounding the rubber particle surface. The phospholipid-protein layers covering the rubber particle surface are especially interesting due to their ability to enhance the colloidal stability of NR latex. In this study, we have characterized the components surrounding the NR particle surface and investigated their role in the colloidal stability of NR particles. Proteins from the cream fraction were proteolytically removed from the NR latex and compare to those from the serum fractions using SDS-polyacrylamide gel electrophoresis revealing that both fractions contained similar proteins in certain molecular weights such as 14.5, 25 and 27 kDa. Phospholipids removed from latex by treatment with NaOH were analyzed using (1)H-NMR spectroscopy and several major signals were assignable to -(CH(2))(n)-, -CH(2)OP, -CH(2)OC═O and -OCH(2)CH(2)NH-. These signals are important evidence that indicates phospholipids associate with the rubber chain. The colloidal behavior of rubber lattices before and after removal of protein-lipid membrane was evaluated by zeta potential analysis and scanning electron microscope (SEM). The lowest zeta potential value of NR particles was observed at pH 10, consequently leading to the highest stability of rubber particles. Additionally, SEM micrographs clearly displayed a gray ring near the particle surface corresponding to the protein-lipid membrane layer.

  14. Volume Changes in Filled Rubber Under Uniaxial Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Elina KAZINA

    2011-09-01

    Full Text Available Styrene-butadiene rubber, neat and filled with different silica content was investigated under uniaxial cyclic loading under a constant crosshead speed, with increasing deformation amplitude in subsequent loading cycles. Rubber was investigated in order to evaluate the reversibility of structure rearrangements, occurring in rubber when subjected to cyclic loading. Volume uniformly increases with growing strain and shows hysteresis at unloading. After complete unloading, no residual strain changes are observed. These data are in good conformity with the data of density measurements, which were made on specimens before and after the tests. By correlating data, obtained from volume changes and kinetics of hysteresis losses there were made assumptions on deformation mechanisms at different elongations. Deformational mechanisms, responsible for volume changes in rubber are reversible. Volume changes in specimen occur due to voids formation caused by filler microstructure breakage, rubber chains disentanglement, spaces between rubber macromolecular chains shrinkage, and chain slippage under higher elongations. Voids formation and deformation of rubber macromolecular chain reaches equilibrium state after certain elongation.http://dx.doi.org/10.5755/j01.ms.17.3.592

  15. The Abrasion-resistance Investigation of Rubberized Concrete

    Institute of Scientific and Technical Information of China (English)

    KANG Jingfu; ZHANG Bo; LI Guangyu

    2012-01-01

    The abrasion resistance properties of rubberized concrete were comparatively studied by taking silica fume and crumb tire rubber as the additives.The abrasion tests were conducted in accordance with the Chinese standard test method DL/T 5150-2001,two recommended test methods:under water method and ring method,were used.The crumb tire rubbers with the sieve size of 8-mesh and 16-mesh were incorporated into the concrete by replacing same volume of sand and as an additive.The abrasion resistance of concrete was evaluated according to the abrasion resistance strength and the mass loss.Test results show that the addition of silica fume enhanced both compressive strength and abrasion resistance of concrete,and the addition of crumb rubber reduced the compressive strength but increased notably the abrasion resistance of the concrete.Silica fume concrete performed a better abrasion resistance than control concrete,and the rubberized concrete performed a much better abrasion resistance than silica fume concrete.The abrasion resistance of rubberized concrete increased with the increase of rubber content.

  16. Circuit racing, track texture, temperature and rubber friction

    Science.gov (United States)

    Sharp, R. S.; Gruber, P.; Fina, E.

    2016-04-01

    Some general observations relating to tyre shear forces and road surfaces are followed by more specific considerations from circuit racing. The discussion then focuses on the mechanics of rubber friction. The classical experiments of Grosch are outlined and the interpretations that can be put on them are discussed. The interpretations involve rubber viscoelasticity, so that the vibration properties of rubber need to be considered. Adhesion and deformation mechanisms for energy dissipation at the interface between rubber and road and in the rubber itself are highlighted. The enquiry is concentrated on energy loss by deformation or hysteresis subsequently. Persson's deformation theory is outlined and the material properties necessary to apply the theory to Grosch's experiments are discussed. Predictions of the friction coefficient relating to one particular rubber compound and a rough surface are made using the theory and these are compared with the appropriate results from Grosch. Predictions from Persson's theory of the influence of nominal contact pressure on the friction coefficient are also examined. The extent of the agreement between theory and experiment is discussed. It is concluded that there is value in the theory but that it is far from complete. There is considerable scope for further research on the mechanics of rubber friction.

  17. Improving rubber concrete by waste organic sulfur compounds.

    Science.gov (United States)

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.

  18. Elastic platonic shells.

    Science.gov (United States)

    Yong, Ee Hou; Nelson, David R; Mahadevan, L

    2013-10-25

    On microscopic scales, the crystallinity of flexible tethered or cross-linked membranes determines their mechanical response. We show that by controlling the type, number, and distribution of defects on a spherical elastic shell, it is possible to direct the morphology of these structures. Our numerical simulations show that by deflating a crystalline shell with defects, we can create elastic shell analogs of the classical platonic solids. These morphologies arise via a sharp buckling transition from the sphere which is strongly hysteretic in loading or unloading. We construct a minimal Landau theory for the transition using quadratic and cubic invariants of the spherical harmonic modes. Our approach suggests methods to engineer shape into soft spherical shells using a frozen defect topology.

  19. Series elastic actuators

    Science.gov (United States)

    Williamson, Matthew M.

    1995-01-01

    This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.

  20. Introduction to linear elasticity

    CERN Document Server

    Gould, Phillip L

    2013-01-01

    Introduction to Linear Elasticity, 3rd Edition, provides an applications-oriented grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical, and biomedical engineering, as well as materials and earth science. The book is distinct from the traditional text aimed at graduate students in solid mechanics by introducing the subject at a level appropriate for advanced undergraduate and beginning graduate students. The author's presentation allows students to apply the basic notions of stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials, viscoelasticity and finite method analysis. This book also:  Emphasizes tensor-based approach while still distilling down to explicit notation Provides introduction to theory of plates, theory of shells, wave propagation, viscoelasticity and plasticity accessible to advanced undergraduate students Appropriate for courses following emerging trend of teaching solid mechan...

  1. Elastic plate spallation

    Science.gov (United States)

    Oline, L.; Medaglia, J.

    1972-01-01

    The dynamic finite element method was used to investigate elastic stress waves in a plate. Strain displacement and stress strain relations are discussed along with the stiffness and mass matrix. The results of studying point load, and distributed load over small, intermediate, and large radii are reported. The derivation of finite element matrices, and the derivation of lumped and consistent matrices for one dimensional problems with Laplace transfer solutions are included. The computer program JMMSPALL is also included.

  2. Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete

    OpenAIRE

    Hanbing Liu; Xianqiang Wang; Yubo Jiao; Tao Sha

    2016-01-01

    Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume content...

  3. Interplanting banana at high densities with immature rubber crop for improved water use

    OpenAIRE

    Harischandra Lakshman Rodrigo, Vitharanage; Maeve Stirling, Clare; Teklehaimanot, Zewge; Kusum Samarasekera, Renuka; Dharmasiri Pathirana, Pathiranage

    2005-01-01

    International audience; Consumptive water use of the rubber/banana intercropping systems was assessed. Five systems were tested; sole rubber (R) and banana (B) crops and three intercrops comprising additive series of one (BR), two (BBR) and three (BBBR) rows banana to one row of rubber. Planting density of rubber remained constant across the treatments, hence the rate of transpiration associated closely with the planting density of banana with ca. 140% increase from banana-rubber to banana-ba...

  4. Experimental Investigation of the Mechanical and Durability Properties of Crumb Rubber Concrete

    OpenAIRE

    Hanbing Liu; Xianqiang Wang; Yubo Jiao; Tao Sha

    2016-01-01

    Recycling waste tire rubber by incorporating it into concrete has become the preferred solution to dispose of waste tires. In this study, the effect of the volume content of crumb rubber and pretreatment methods on the performances of concrete was evaluated. Firstly, the fine aggregate and mixture were partly replaced by crumb rubber to produce crumb rubber concrete. Secondly, the mechanical and durability properties of crumb rubber concrete with different replacement forms and volume content...

  5. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    Science.gov (United States)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  6. Effect of gamma irradiation on the properties of natural rubber/styrene butadiene rubber blends

    Directory of Open Access Journals (Sweden)

    A.B. Moustafa

    2016-09-01

    Full Text Available Blends of natural rubber (NR with styrene butadiene rubber (SBR with varying ratios have been prepared. Vulcanization of the prepared blends has been induced by irradiation of gamma rays with varying doses up to 250 kGy. Mechanical properties, namely tensile strength, tensile modulus at 100% elongation, elongation at break have been followed up as a function of irradiation dose as well as blend composition. Physical properties, namely gel fraction and swelling number have been followed up using benzene as a solvent. Thermal measurements namely thermogravimetric analysis were carried out. The results indicated that the addition of NR has improved the properties of NR / SBR blends. Also NR/SBR blend is thermally stable than NR alone.

  7. Functionalization of Liquid Natural Rubber via Oxidative Degradation of Natural Rubber

    Directory of Open Access Journals (Sweden)

    Suhawati Ibrahim

    2014-12-01

    Full Text Available Natural rubber (NR is a high molecular weight natural polymer and can be degraded to liquid natural rubber (LNR leaving certain functional groups at the end of chains. In this study, LNR samples prepared via oxidative degradation using H2O2 and NaNO2 as reagents were found to have different end groups depending on the pH of the reaction medium. In an acidic medium, LNR with hydroxyl terminal groups was formed as the degradation reaction was initiated by hydroxyl radicals produced from decomposition of peroxynitrite acid. In contrast, a redox reaction took place in an alkaline medium to yield LNR with carbonyl terminal groups. The mechanisms of reaction are discussed and proposed to explain the formation of different end groups when reaction carried out in acidic and alkaline media. Chain degradation in an acidic medium seems to be more effective than in an alkaline medium, and thus yields LNR with lower Mn.

  8. Radiation crosslinking of styrene-butadiene rubber containing waste tire rubber and polyfunctional monomers

    Science.gov (United States)

    Yasin, Tariq; Khan, Sara; Shafiq, Muhammad; Gill, Rohama

    2015-01-01

    The objective of this study was to investigate the influence of polyfunctional monomers (PFMs) and absorbed dose on the final characteristics of styrene-butadiene rubber (SBR) mixed with waste tire rubber (WTR). A series of SBR/WTR blends were prepared by varying the ratios of WTR in the presence of PFMs, namely trimethylolpropane trimethacrylate (TMPTMA) and trimethylolpropane triacrylate (TMPTA) and crosslinked using gamma rays. The physicochemical characteristics of the prepared blends were investigated. It was observed that tensile strength, hardness and gel content of the blends increased with absorbed dose while the blends containing TMPTA showed higher tensile strength, gel content and thermal stability as compared to the blends containing TMPTMA. Higher thermal stability was observed in the blends which were crosslinked by radiation as compared to the blends crosslinked by sulfur. These blends exhibited higher rate of swelling in organic solvents, whereas negligible swelling was observed in acidic and basic environment.

  9. Elastic scattering of hadrons

    Science.gov (United States)

    Dremin, I. M.

    2013-01-01

    Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.

  10. The cross linking of EPDM and NBR rubber

    Directory of Open Access Journals (Sweden)

    Samardžija-Jovanović Suzana

    2005-01-01

    Full Text Available In the process of macromolecule cross linking, the choice of type and quantity of the components and the experimental conditions are important to obtain the new cross linked materials with better mechanical and chemical characteristics. The cross linking method depends on the rubber type and structure. Intermolecular cross linking results in the formation elastomer network. The basis of the cross linking process, between ethylene propylene diene rubber (EPDM and acrylonitrile butadiene rubber (NBR, is a chemical reaction. Fillers and other additives are present in different mass ratios in the material. The exploitation properties of the cross linked materials depend on the quantity of additive in the cross linked systems.

  11. Development of a Method to Fingerprint Rubber Fuel Hose Materials

    Science.gov (United States)

    1990-10-01

    ASTM Method D297 . The EPA method was chosen because it is commonly performed in 89293.01F:RWT Page 1-7 these laboratories and is of a larger scale...5746, March, 1987. 3 Method for Rubber Products - Chemical Analysis, Annual Book of ASTM Standards, ASTM D297 -81, v. 09.01, 1984. 4 Method for Rubber...composition and materials of construction. 2. Applicable Documents 2.1 ASTM Standards D297 - Rubber Products - Chemical Analysis, Sec 16-18 D3421

  12. Short Fibre and Particulate-reinforced Rubber Composites

    Directory of Open Access Journals (Sweden)

    Kavita Agarwal

    2002-07-01

    Full Text Available Particulate fillers (carbon black and silica and short fibre (aromatic polyamide, Kevlar have been utilised to produce rubber composites based on acrylonitrile-co-butadiene rubber (NBR. Mechanical properties of these composites have been determined and compared with unfilled rubber vulcanisate. The effect of surface treatment on the improvement of strength, in case of Kevlar, has also been considered. The influence of elevated temperature on tear strength, an important failure criterion, has been evaluated. Scanning electron microscopy has been used as a tool to correlate the topographical features associated with changes in the tear strength of the composites.

  13. Shear Flow Induced Alignment of Carbon Nanotubes in Natural Rubber

    Directory of Open Access Journals (Sweden)

    Yan He

    2015-01-01

    Full Text Available A new procedure for the fabrication of natural rubber composite with aligned carbon nanotubes is provided in this study. The two-step approach is based on (i the preparation of mixture latex of natural rubber, multiwalled carbon nanotubes, and other components and (ii the orientation of carbon nanotubes by a flow field. Rubber composite sheets filled with variable volume fraction of aligned carbon nanotubes were fabricated and then confirmed by transmission electron microscopy and Raman spectroscopy studies. An obvious increase in thermal conductivity has been obtained after the alignment of carbon nanotubes. The dynamic mechanical analysis was carried out in a tear mode for the composite.

  14. SUPPLY-CHAIN OF NATURAL RUBBER IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Bustanul Arifin

    2011-08-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} The study examines the supply chain of natural rubber production in Indonesia and assessing the transmission of prices to rubber growers and provides recommendations for a suitable scheme that would help to ensure high production standards and a sustainable return for natural rubber production.  The frameworks to examine the performance of supply chain of rubber marketing rely mostly on the efficiency level of marketing system of natural rubbers, including the value chain principles in marketing margin, and revealed price transmission from consumers to growers. The results show that the roles of subdistrict middlemen are extremely crucial in moving up the slabs from the village level to urban areas, where trader-brokers are expecting the slabs to be forwarded directly to crumb-rubber factories.  Changes in world price, hence the profits being accumulated by traders and rubber factories, are not transmitted properly to rubber farmers and/or sharetappers. Information asymmetry, the access over price information, and immediate response of rubber growers to the change in world price could explain this non-cointegration in price data between growers and exporters.  In the near future, the policy reforms in supply chain of natural rubber marketing in Indonesia should carefully address these issues in a more comprehensive manner.  Finally, in order to contribute to the positive environmental and social benefits, the major challenge for natural rubber

  15. Sulcus formation in a compressed elastic half space

    Science.gov (United States)

    Biggins, John; Mahadevan, L.

    2012-02-01

    When a block of rubber, biological tissue or other soft material is subject to substantial compression, its surfaces undergo a folding instability. Rather than having a smooth profile, these folds contain cusps and hence have been called creases or sulcii rather than wrinkles. The stability of a compressed surface was first investigated by Biot (1965), assuming the strains associated with the instability were small. However, the compression threshold predicted with this approach is substantially too high. I will introduce a family of analytic area preserving maps that contain cusps (and hence points of infinite strain) that save energy before the linear stability threshold even at vanishing amplitude. This establishes that there is a region before the linear stability threshold is reached where the system is unstable to infinitesimal perturbations, but that this instability is quintessentially non-linear and cannot be found with linear strain elasticity.

  16. Elastic mesh braided worm robot for locomotive endoscopy.

    Science.gov (United States)

    Manwell, Thomas; Vítek, Tomáš; Ranzani, Tommaso; Menciassi, Arianna; Althoefer, Kaspar; Liu, Hongbin

    2014-01-01

    This paper presents a new design of worm robot whose body is constructed using a novel crimped elastic mesh braid inspired by the earthworm. The proposed worm robot is intended for inspection within the human body via natural orifices. The design and fabrication procedure of the worm robot are given in the paper. The imitation of peristalsis, used by natural worms, is used to control the worm robot for the purpose of producing motion while causing minimal trauma to biological tissue. The forward locomotive function of the worm robot has been tested on both a flat surface and in a rubber tube. It is shown that the worm robot is capable of propagating forwards for both test conditions in a form similar to the earthworm. The test results indicate the proposed worm robot design has promising application for natural tube inspection, like the colon and the esophagus.

  17. Self-healing properties of carbon nanotube filled natural rubber/bromobutyl rubber blends

    Directory of Open Access Journals (Sweden)

    H. H. Le

    2017-03-01

    Full Text Available In the present work, the development and characterization of an intrinsically self-healable material based on butyl imidazole modified bromobutyl rubber (BIIR/natural rubber (NR blends, which are filled with carbon nanotubes (CNTs are reported. It was found that the addition of CNTs and the blending with NR significantly enhance the tensile strength of the BIIR composites. The use of butyl imidazole as physical cross-linker for the BIIR phase provides the blend composites the non-covalent bondings, which are responsible for their self-healing properties. Owing to the increase of the viscosity of the BIIR phase upon its physical crosslinking the island-matrix morphology of the blend changes over to a co-continuous structure. The preferential wetting of the CNT surface by the low-loading NR phase in the NR/BIIR blends can be explained by the good rubber-filler interaction between the linked phospholipids of the NR molecules and the π-electrons of the CNT surface. As a result, the favored localization of the CNTs in the NR phase strongly improves the electrical properties of the blends according to the double percolation theory. On the other hand it does not deteriorate the self-healing of the BIIR phase. The high electrical conductivity provides us a possibility to heat the blend by application of an electrical voltage in order to accelerate the self-healing process.

  18. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tiwen [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Jia, Zhixin, E-mail: zxjia@scut.edu.cn [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Luo, Yuanfang; Jia, Demin [College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Peng, Zheng [Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524001 (China)

    2015-02-15

    Highlights: • Substantiate the ring open reaction between Si-OH of silica and epoxy groups of ENR. • ENR can act as a bridge between NR and silica to enhance the interfacial interaction. • As a modifier, ENR gets the potential to be used in the tread of green tire for improving the wet skid resistance apparently. - Abstract: The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress–strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  19. Numerical simulation of hydro-elastic problems with smoothed particle hydro-dynamics method

    Institute of Scientific and Technical Information of China (English)

    刘谋斌; 邵家儒; 李慧琦

    2013-01-01

    Violent free surface flows with strong fluid-solid interactions can produce a tremendous pressure load on structures, resu-lting in elastic and even plastic deformations. Modeling hydro-elastic problems with structure deformations and a free surface break-up is difficult by using routine numerical methods. This paper presents an improved Smoothed Particle Hydrodynamics (SPH) method for modeling hydro-elastic problems. The fluid particles are used to model the free surface flows governed by Navier-Stokes equations, and the solid particles are used to model the dynamic movement and deformation of the elastic solid objects. The impro-ved SPH method employs a Kernel Gradient Correction (KGC) technique to improve the computational accuracy and a Fluid-Solid Interface Treatment (FSIT) algorithm with the interface fluid and solid particles being treated as the virtual particles against their counterparts and a soft repulsive force to prevent the penetration and a corrective density approximation scheme to remove the nume-rical oscillations. Three typical numerical examples are simulated, including a head-on collision of two rubber rings, the dam break with an elastic gate and the water impact onto a forefront elastic plate. The obtained SPH results agree well with experimental obse-rvations and numerical results from other sources.

  20. Unraveling the mystery of natural rubber biosythesis part I: investigation of the composition and growth of in vitro natural rubber using high resolution size exclusion chromatography

    Science.gov (United States)

    Monitoring the growth of in vitro natural rubberwas accomplished by high resolution size exclusion chromatography, SEC.Washed rubber particles isolated from H. brasiliensis latex, containing the rubber transferase enzyme, were used to catalyze the polymerization of synthetic isopentenyl pyrophosphat...

  1. Allergenic proteins of natural rubber latex.

    Science.gov (United States)

    Yeang, H Y; Arif, Siti Arija M; Yusof, Faridah; Sunderasan, E

    2002-05-01

    As the living cytoplasm of laticiferous cells, Hevea brasiliensis latex is a rich blend of organic substances that include a mélange of proteins. A small number of these proteins have given rise to the problem of latex allergy. The salient characteristics of H. brasiliensis latex allergens that are recognized by the International Union of Immunological Societies (IUIS) are reviewed. These are the proteins associated with the rubber particles, the cytosolic C-serum proteins and the B-serum proteins that originate mainly from the lutoids. Procedures for the isolation and purification of latex allergens are discussed, from latex collection in the field to various preparative approaches adopted in the laboratory. As interest in recombinant latex allergens increases, there is a need to validate recombinant proteins to ascertain equivalence with their native counterparts when used in immunological studies, diagnostics, and immunotherapy.

  2. Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites.

    Science.gov (United States)

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain

    2016-02-10

    Natural rubber (NR) latex particles were oxidized using KMnO4 as oxidant to promote the insertion of hydroxyl groups in the surface polyisoprene chains. Different degrees of oxidation were investigated. Both unoxidized and oxidized NR (ONR) latex were used to prepare nanocomposite films reinforced with cellulose nanocrystals (CNCs) by casting/evaporation. The oxidation of NR was carried out to promote chemical interactions between the hydroxyl groups of ONR with those of CNCs through hydrogen bonding. The effect of the degree of oxidation of the NR latex on the rheological behavior of CNC/NR and CNC/ONR suspensions, as well as on the mechanical, swelling and thermal properties of ensuing nanocomposites was investigated. Improved properties were observed for intermediate degrees of oxidation but they were found to degrade for higher oxidation levels.

  3. Polybenzoxazole-filled nitrile butadiene rubber compositions

    Science.gov (United States)

    Gajiwala, Himansu M. (Inventor); Guillot, David G. (Inventor)

    2008-01-01

    An insulation composition that comprises at least one nitrile butadiene rubber (NBR) having an acrylonitrile content that ranges from approximately 26% by weight to approximately 35% by weight and polybenzoxazole (PBO) fibers. The NBR may be a copolymer of acrylonitrile and butadiene and may be present in the insulation composition in a range of from approximately 45% by weight to approximately 56% by weight of a total weight of the insulation composition. The PBO fibers may be present in a range of from approximately 3% by weight to approximately 10% by weight of a total weight of the insulation composition. A rocket motor including the insulation composition and a method of insulating a rocket motor are also disclosed.

  4. Cellulose nanocrystals reinforced foamed nitrile rubber nanocomposites.

    Science.gov (United States)

    Chen, Yukun; Zhang, Yuanbing; Xu, Chuanhui; Cao, Xiaodong

    2015-10-05

    Research on foamed nitrile rubber (NBR)/cellulose nanocrystals (CNs) nanocomposites is rarely found in the literatures. In this paper, CNs suspension and NBR latex was mixed to prepared the foamed NBR/CNs nanocomposites. We found that the CNs mainly located in the cell walls, effectively reinforcing the foamed NBR. The strong interaction between the CNs and NBR matrix restricted the mobility of NBR chains surrounding the CNs, hence increasing the crosslink density of the NBR matrix. CNs exhibited excellent reinforcement on the foamed NBR: a remarkable increase nearly 76% in the tensile strength of the foamed nanocomposites was achieved with a load of only 15 phr CNs. Enhanced mechanical properties make the foamed NBR/CNs nanocomposites a promising damping material for industrial applications with a potential to reduce the petroleum consumption.

  5. HYDROPHOBICITY OF CONTAMINATED SILICONE RUBBER SURFACES

    Institute of Scientific and Technical Information of China (English)

    Zhi-min Zheng; Cai-hong Xu; Jian Jiang; Chang-yu Ren; Wei Gao; Ze-min Xie

    2002-01-01

    Silicone rubber (SIR) shows superior performance when used outdoors, but its surface can be transformed frominherently hydrophobic to hydrophilic by the adsorption of contaminants. Al(OH)3, Al2O3, quartz powder and active carbonwere selected as authentic contaminants. Hydrophobicity of the surface was determined using contact angle measurement.The results indicate that the adsorbability of the contaminants can strongly affect the hydrophobicity of contaminated SIRsurface. The increasing rate of contact angle of specimens contaminated by Al(OH)3 was much faster than that by Al2O3 andquartz due to the adsorption of migrated low molecular weight (LMW) polydimethylsiloxanes. Specimens contaminated byactive carbon could achieve surface hydrophobicity within 15 min because active carbon has high adsorbability. Surfaces ofcontaminated ultrapure SIR, polytetrafluoroethylene (PTFE) and glass remain hydrophilic because they contain no mobileLMW components. The addition of oligomeric polydimethylsiloxanes has little effect on the hydrophobicity of contaminantscovered on SIR surface.

  6. A constant compliance force modulation technique for scanning force microscopy (SFM) imaging of polymer surface elasticity

    Science.gov (United States)

    Stroup, E.W.; Pungor, A/

    2012-01-01

    A new method of force modulation scanning force microscopy (SFM) imaging based on a constant compliance feedback loop is presented. The feedback adjusts the loading force applied by the SFM tip to the surface in order to maintain a constant compliance beneath the tip. The new method, constant compliance force modulation (CCFM), has the advantage of being able to quantify the loading force exerted by the tip onto the sample surface and thus to estimate the elastic modulus of the material probed by the SFM tip. Once the elastic modulus of one region is known, the elastic moduli of other surface regions can be estimated from the spatial map of loading forces using the Hertz model of deformation. Force vs. displacement measurements made on one surface locality could also be used to estimate the local modulus. Several model surfaces, including a rubber-toughened epoxy polymer blend which showed clearly resolved compliant rubber phases within the harder epoxy matrix, were analyzed with the CCFM technique to illustrate the method’s application. PMID:9195751

  7. Elastic contact mechanics: percolation of the contact area and fluid squeeze-out.

    Science.gov (United States)

    Persson, B N J; Prodanov, N; Krick, B A; Rodriguez, N; Mulakaluri, N; Sawyer, W G; Mangiagalli, P

    2012-01-01

    The dynamics of fluid flow at the interface between elastic solids with rough surfaces depends sensitively on the area of real contact, in particular close to the percolation threshold, where an irregular network of narrow flow channels prevails. In this paper, numerical simulation and experimental results for the contact between elastic solids with isotropic and anisotropic surface roughness are compared with the predictions of a theory based on the Persson contact mechanics theory and the Bruggeman effective medium theory. The theory predictions are in good agreement with the experimental and numerical simulation results and the (small) deviation can be understood as a finite-size effect. The fluid squeeze-out at the interface between elastic solids with randomly rough surfaces is studied. We present results for such high contact pressures that the area of real contact percolates, giving rise to sealed-off domains with pressurized fluid at the interface. The theoretical predictions are compared to experimental data for a simple model system (a rubber block squeezed against a flat glass plate), and for prefilled syringes, where the rubber plunger stopper is lubricated by a high-viscosity silicon oil to ensure functionality of the delivery device. For the latter system we compare the breakloose (or static) friction, as a function of the time of stationary contact, to the theory prediction.

  8. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Directory of Open Access Journals (Sweden)

    Kunio Shimada

    2017-02-01

    Full Text Available Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  9. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid.

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-02-10

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  10. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-01-01

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement. PMID:28208625

  11. minimum variance estimation of yield parameters of rubber tree with ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... STAMP, an OxMetric modular software system for time series analysis, was used to estimate the yield ... derlying regression techniques. .... Kalman Filter Minimum Variance Estimation of Rubber Tree Yield Parameters. 83.

  12. Thermo-Mechanical Analyses of Dynamically Loaded Rubber Cylinders

    Science.gov (United States)

    Johnson, Arthur R.; Chen, Tzi-Kang

    2002-01-01

    Thick rubber components are employed by the Army to carry large loads. In tanks, rubber covers road wheels and track systems to protect roadways. It is difficult for design engineers to simulate the details of the hysteretic heating for large strain viscoelastic deformations. In this study, an approximation to the viscoelastic energy dissipated per unit time is investigated for use in estimating mechanically induced viscoelastic heating. Coupled thermo-mechanical simulations of large cyclic deformations of rubber cylinders are presented. The cylinders are first compressed axially and then cyclically loaded about the compressed state. Details of the algorithm and some computational issues are discussed. The coupled analyses are conducted for tall and short rubber cylinders both with and without imbedded metal disks.

  13. Metal Rubber Sensor Appliquis for Rotor Blade Air Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thin film Metal RubberTM sensor appliqus have the potential to reduce the time, complexity and cost of measuring air flow-induced skin friction during the...

  14. Prevention of Fungal Growth on Rubber Earpads of Telecommunication Equipments

    Directory of Open Access Journals (Sweden)

    B. P. Uniyal

    1971-01-01

    Full Text Available This paper recommends an addition of 100% zinc oxide to the rubber composition during its manufacture to effectively prevent fungal growth on the earpads without producing any adverse on its materials/performance or the user.

  15. Super Lightweight, Metal Rubber Fabric for Extreme Space Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has fabricated revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films via layer-by-layer, molecular self-assembly, which...

  16. Radiation Resistant, Reconfigurable, Shape Memory Metal Rubber Space Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has demonstrated that Shape Memory Metal RubberTM (SM-MR) adaptive skins exhibit reconfigurable and durable RF properties. It is hypothesized that such...

  17. Sand - rubber mixtures submitted to isotropic loading: a minimal model

    Science.gov (United States)

    Platzer, Auriane; Rouhanifar, Salman; Richard, Patrick; Cazacliu, Bogdan; Ibraim, Erdin

    2017-06-01

    The volume of scrap tyres, an undesired urban waste, is increasing rapidly in every country. Mixing sand and rubber particles as a lightweight backfill is one of the possible alternatives to avoid stockpiling them in the environment. This paper presents a minimal model aiming to capture the evolution of the void ratio of sand-rubber mixtures undergoing an isotropic compression loading. It is based on the idea that, submitted to a pressure, the rubber chips deform and partially fill the porous space of the system, leading to a decrease of the void ratio with increasing pressure. Our simple approach is capable of reproducing experimental data for two types of sand (a rounded one and a sub-angular one) and up to mixtures composed of 50% of rubber.

  18. Ciprofloxacin Release Using Natural Rubber Latex Membranes as Carrier

    National Research Council Canada - National Science Library

    Dias Murbach, Heitor; Jaques Ogawa, Guilherme; Azevedo Borges, Felipe; Romeiro Miranda, Matheus Carlos; Lopes, Rute; Roberto de Barros, Natan; Guedes Mazalli, Alexandre Vinicius; Gonçalves da Silva, Rosângela; Ferreira Cinman, José Luiz; de Camargo Drago, Bruno; Donizetti Herculano, Rondinelli

    2014-01-01

      Natural rubber latex (NRL) from Hevea brasiliensis is easily manipulated, low cost, is of can stimulate natural angiogenesis and cellular adhesion, is a biocompatible, material and presents high mechanical resistance. Ciprofloxacin (CIP...

  19. Radiation Vulcanised Natural Rubber Latex: safer than conventionally processed latex?

    NARCIS (Netherlands)

    Geertsma RE; Orzechowski TJH; Jonker M; Dorpema JW; Asten JAAM van; LGM

    1996-01-01

    Door middel van cytotoxiciteitstesten is aangetoond dat RVNRL (straling-gevulcaniseerde natuurlijke latex rubber) materialen aanzienlijk minder cytotoxisch zijn dan zwavel-gevulcaniseerde materialen. Dit is een sterke aanwijzing dat een deel van de allergieproblemen, namelijk de zogeheten Type

  20. Utilization of surface-treated rubber particles from waste tires

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.G. [Argonne National Lab., IL (United States). Energy Systems Div.]|[Environmental Technologies Alternatives, Inc., Lima, OH (United States)

    1994-12-01

    During a 12-month program, the author successfully demonstrated commercial applications for surface-treated rubber particles in two major markets: footwear (shoe soles and components) and urethane-foam carpet underlay (padding). In these markets, he has clearly demonstrated the ease of using R-4080 and R-4030 surface-treated rubber particles in existing manufacturing plants and processes and have shown that the material meets or exceeds existing standards for performance, quality, and cost-effectiveness. To produce R-4080 and R-4030, vulcanized rubber, whole-tire material is finely ground to particles of nominal 80 and mesh size respectively. Surface treatment is achieved by reacting these rubber particles with chlorine gas. In this report, the author describes the actual test and evaluations of the participant companies, and identifies other potential end uses.

  1. Multifunctional, Nanostructured Metal Rubber Protective Films for Space Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has developed revolutionary nanostructured, yet macroscale, multifunctional Metal RubberTM films. In support of NASA's Vision for Space Exploration, low...

  2. Lightweight Metal RubberTM Sensors and Interconnects Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this NASA Phase II program is to develop and increase the Technology Readiness Level of multifunctional Metal RubberTM (MRTM) materials that can be...

  3. Advanced Metal Rubber Sensors for Hypersonic Decelerator Entry Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to design and develop light-weight, low-modulus, and durable Metal Rubber™ sensors for aeroelastic analysis of Hypersonic Decelerator Entry...

  4. Strength of Concrete Containing Rubber Particle as Partial Cement Replacement

    Directory of Open Access Journals (Sweden)

    Abdullah Siti Radziah

    2016-01-01

    Full Text Available Uncontrolled issues of disposal waste tire rubber create huge environmental impact and health hazards. An alternative viable solution to minimize these problems is by utilizing the waste rubber tires in construction materials, which in turn can reduce the use of natural resources and eventually lessen the cost of construction. This paper mainly focuses on the use of waste rubber tires particles in concrete with different set of composition ranging from 3 to 12% of cement replacement. Concrete cubes size of 150mm x 150mm x 150mm were prepared for compressive strength test, and concrete cylinders size of 150m x 300mm were prepared for splitting tensile test. The result shows that the compressive and split tensile strength of concrete with rubber as cement replacements is 6-21% lower than the normal concrete.

  5. Tribological Aspect of Rubber Based Parts used in Engineering

    Directory of Open Access Journals (Sweden)

    D. Stamenković

    2014-03-01

    Full Text Available In most of the cases, the friction is considered as a negative side-effect concerning energy loss following every process of the power transmission. However, the friction has significant positive side effects, because it is an indispensable prerequisite for the movement of people, machines, transportation means and others. Efficiency of these movements mostly depends on the friction between rubber and different materials such as metals, concrete, earth, wood, plastic, etc. Certain standards relating to measurement and determination of the friction characteristics of rubber were established. However considering that tribology of the rubber is very complex problem, numerous studies around the world are conducted. This paper gives an overview of some of the existing standards and conducted researches in this area. The paper also provides an overview of theoretical and experimental studies of friction the rubber and the other materials, which are done at Faculty of Mechanical Engineering in Niš.

  6. Altered levels of the Taraxacum kok-saghyz (Russian dandelion) small rubber particle protein, TkSRPP3, result in qualitative and quantitative changes in rubber metabolism.

    Science.gov (United States)

    Collins-Silva, Jillian; Nural, Aise Taban; Skaggs, Amanda; Scott, Deborah; Hathwaik, Upul; Woolsey, Rebekah; Schegg, Kathleen; McMahan, Colleen; Whalen, Maureen; Cornish, Katrina; Shintani, David

    2012-07-01

    Several proteins have been identified and implicated in natural rubber biosynthesis, one of which, the small rubber particle protein (SRPP), was originally identified in Hevea brasiliensis as an abundant protein associated with cytosolic vesicles known as rubber particles. While previous in vitro studies suggest that SRPP plays a role in rubber biosynthesis, in vivo evidence is lacking to support this hypothesis. To address this issue, a transgene approach was taken in Taraxacum kok-saghyz (Russian dandelion or Tk) to determine if altered SRPP levels would influence rubber biosynthesis. Three dandelion SRPPs were found to be highly abundant on dandelion rubber particles. The most abundant particle associated SRPP, TkSRPP3, showed temporal and spatial patterns of expression consistent with patterns of natural rubber accumulation in dandelion. To confirm its role in rubber biosynthesis, TkSRPP3 expression was altered in Russian dandelion using over-expression and RNAi methods. While TkSRPP3 over-expressing lines had slightly higher levels of rubber in their roots, relative to the control, TkSRPP3 RNAi lines showed significant decreases in root rubber content and produced dramatically lower molecular weight rubber than the control line. Not only do results here provide in vivo evidence of TkSRPP proteins affecting the amount of rubber in dandelion root, but they also suggest a function in regulating the molecular weight of the cis-1, 4-polyisoprene polymer.

  7. Time series analysis of the behavior of brazilian natural rubber

    Directory of Open Access Journals (Sweden)

    Antônio Donizette de Oliveira

    2009-03-01

    Full Text Available The natural rubber is a non-wood product obtained of the coagulation of some lattices of forest species, being Hevea brasiliensis the main one. Native from the Amazon Region, this species was already known by the Indians before the discovery of America. The natural rubber became a product globally valued due to its multiple applications in the economy, being its almost perfect substitute the synthetic rubber derived from the petroleum. Similarly to what happens with other countless products the forecast of future prices of the natural rubber has been object of many studies. The use of models of forecast of univariate timeseries stands out as the more accurate and useful to reduce the uncertainty in the economic decision making process. This studyanalyzed the historical series of prices of the Brazilian natural rubber (R$/kg, in the Jan/99 - Jun/2006 period, in order tocharacterize the rubber price behavior in the domestic market; estimated a model for the time series of monthly natural rubberprices; and foresaw the domestic prices of the natural rubber, in the Jul/2006 - Jun/2007 period, based on the estimated models.The studied models were the ones belonging to the ARIMA family. The main results were: the domestic market of the natural rubberis expanding due to the growth of the world economy; among the adjusted models, the ARIMA (1,1,1 model provided the bestadjustment of the time series of prices of the natural rubber (R$/kg; the prognosis accomplished for the series supplied statistically adequate fittings.

  8. Dalian Rubber & Plastics Hong Kong Company Acquired a Rubber Machinery Enterprise of the Czech Republic%Dalian Rubber & Plastics Hong Kong Company Acquired a Rubber Machinery Enterprise of the Czech Republic

    Institute of Scientific and Technical Information of China (English)

    FengPei

    2011-01-01

    To further widen the international market, improve the technical content of products and boost the profitability of the enterprise, Dalian Rubber & Plastics Hong Kong Company, jointly invested and established by Dalian State-owned Assets Investment and Management Group Co., Ltd. and Dalian Rubber & Plastics Machinery Co., Ltd., plans to invest about EUR 12.50 million to acquire 90% stock fight of Buzuluk Company of the Czech Republic.

  9. Serbia: A new process for waste rubber and plastic recycling

    Directory of Open Access Journals (Sweden)

    Ozren Ocic

    2010-02-01

    Full Text Available This paper intends to describe a new technological process for waste rubber and plastic recycling up to the commercial components in safe environmental friendly way. Researches and all relevant technical-technological data related to this process are checked at constructed pilot plant. The future construction of these units for waste rubber and plastic recycling will allow interested parties to achieve the environmental effectiveness and economic efficiency.

  10. Studies on Hydrogenation of Liquid Natural Rubber Using Diimide

    Directory of Open Access Journals (Sweden)

    Nur Hanis Adila Azhar

    2015-01-01

    Full Text Available Liquid natural rubber (LNR is a depolymerized natural rubber (NR which consists of shorter polymeric chains and lower molecular weight (Mw90% was achieved by manipulating the reaction parameters such as sources of diimide, TSH concentration, solvent, and reaction time. The optimum condition was 3 : 1 weight ratio of TSH/LNR in o-xylene at 130°C in 4-hour reaction period.

  11. The toughening mechanism of rubber particles in polypropylene composite

    Science.gov (United States)

    Shi, L.; Xiao, J. M.

    2017-01-01

    Filling polypropylene materials with rubber particles can effectively increase the toughness of PP material and improve its cushioning properties. In this paper, we used the two kinds of method of the finite element analysis and experiment to study the rubber particles toughening mechanism, got the deformation process of particles when polypropylene material compressed and the yield stress of polypropylene after compression with particles filled or not.

  12. Characterization of Rubbers from Spherical Punch - Plate Indentation Tests

    Directory of Open Access Journals (Sweden)

    Florina Carmen Ciornei

    2016-12-01

    Full Text Available Rubber plates with different compositions and hardness were tested by continuous indentation, using a spherical punch and hysteretic phenomenon was evidenced. The experimental data interpolation with polynomial functions is accurate and permits estimation of the lost work during loading cycles. The interpolation by power law functions is more convenient by using less parameters and having a form accepted in literature. From the rubbers tested, two were considered to present good damping properties.

  13. Mathematical foundations of elasticity

    CERN Document Server

    Marsden, Jerrold E

    1994-01-01

    This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.The first two chapters cover the background geometry ― developed as needed ― and use this discussion to obtain the basic results on kinematics and dynamics of con

  14. An integrated characteristic simulation method for hydraulically damped rubber mount of vehicle engine

    Science.gov (United States)

    Wang, Li-Rong; Wang, Jia-Cai; Hagiwara, Ichiro

    2005-09-01

    Hydraulically Damped Rubber Mount (HDM) is widely equipped in vehicle powertrain mounting system and plays an important role in noise, vibration and harshness (NVH) control of vehicle. It is necessary that static and dynamic characteristics of HDM and its effectiveness on vibration isolation of powertrain system are predicted at design and development stage. In this paper, a kind of graphic HDM modeling method integrating with parameter identifications obtained from finite element (FE) analysis and experimental analysis is investigated to predict performance of HDM. The fluid-structure interactions in HDM are explored by predictions of volumetric elasticity and equivalent piston area of fluid chamber using a kind of hydrostatic fluid-structure FE method in commercial code of ABAQUS. Predications of static elasticity and dynamic characteristics and frequency response analysis of a typical HDM with fixed-decoupler verify the effectiveness of the proposed method. This research helps automotive engineers to enhance computer-aided system technology in design and development of HDM and powertrain mounting system.

  15. Criteria for asphalt-rubber concrete in civil airport pavements: Mixture design

    Science.gov (United States)

    Roberts, F. L.; Lytton, R. L.; Hoyt, D.

    1986-07-01

    A mixture design procedure is developed to allow the use of asphalt-rubber binders in concrete for flexible airport pavement. The asphalt-rubber is produced by reacting asphalt with ground, scrap tire rubber to produce the binder for the asphalt-rubber concrete. Procedures for laboratory preparation of alsphalt-rubber binders using an equipment setup that was found by researchers to produce laboratory binders with similar properties to field processes are included. The rubber-asphalt concrete mixture design procedure includes adjustments to the aggregate gradation to permit space for the rubber particles in the asphalt-rubber binder as well as suggested mixing and compaction temperatures, and compaction efforts. While the procedure was used in the laboratory to successfully produce asphalt-rubber concrete mixtures, it should be evaluated in the field to ensure that consistent results can be achieved in a production environment.

  16. Waste tyre rubberized concrete: properties at fresh and hardened state.

    Science.gov (United States)

    Aiello, M A; Leuzzi, F

    2010-01-01

    The main objective of this paper is to investigate the properties of various concrete mixtures at fresh and hardened state, obtained by a partial substitution of coarse and fine aggregate with different volume percentages of waste tyres rubber particles, having the same dimensions of the replaced aggregate. Workability, unit weight, compressive and flexural strength and post-cracking behaviour were evaluated and a comparison of the results for the different rubcrete mixtures were proposed in order to define the better mix proportions in terms of mechanical properties of the rubberized concrete. Results showed in this paper were also compared to data reported in literature. Moreover, a preliminary geometrical, physical and mechanical characterization on scrap tyre rubber shreds was made. The rubberized concrete mixtures showed lower unit weight compared to plain concrete and good workability. The results of compressive and flexural tests indicated a larger reduction of mechanical properties of rubcrete when replacing coarse aggregate rather than fine aggregate. On the other hand, the post-cracking behaviour of rubberized concrete was positively affected by the substitution of coarse aggregate with rubber shreds, showing a good energy absorption and ductility indexes in the range observed for fibrous concrete, as suggested by standard (ASTM C1018-97, 1997).

  17. Dielectric Properties of Compatibilised EPDM/Silicone rubber Nanocomposites

    Directory of Open Access Journals (Sweden)

    Vijayalekshmi Vijayakumar

    2017-06-01

    Full Text Available EPDM/Silicone rubber nanocomposites are prepared by incorporating various phr of organically modified montmorillonite (OMMT nanoclay onto compatibilised and uncompatibilised EPDM/Silicone rubber blends using two roll mill. Compatibilisation of EPDM and Silicone rubber blend is achieved through insitu grafting of silane onto EPDM during mixing of rubbers. Effect of OMMT content and compatibilisation of blend system on electrical, mechanical and thermal properties of the nanocomposites are investigated. The results obtained for various properties indicate that the compatibilised EPDM/Silicone rubber nanocomposites have improved dielectric, mechanical and thermal properties compared to that of uncompatibilised blend nanocomposites. It is observed that, the addition of OMMT upto 5 phr onto both compatibilised and uncompatibilised blends of EPDM/Silicone offers significant improvement in the above mentioned properties. Increasing content of OMMT onto the blends cause marked enhancement in thermal stability of the nanocomposties. Transmission electron micrographs shows the compatibility between EPDM and silicone rubbers in the blend and the exfoliation of OMMT layers in the matrix phase. The present work reveals that the compatibilised EPDM/ Silicone/ OMMT nanocomposite can be a better candidate for high voltage electrical insulation due to its enhanced dielectric, mechanical and themal characteristics.

  18. Effects of rubberized flooring on Asian elephant behavior in captivity.

    Science.gov (United States)

    Meller, Camie L; Croney, Candace C; Shepherdson, David

    2007-01-01

    Six Asian elephants at the Oregon Zoo were observed to determine the effects of a poured rubber flooring substrate on captive Asian elephant behavior. Room utilization also was evaluated in seven rooms used for indoor housing, including Front and Back observation areas. Data were collected in three phases. Phase I (Baseline Phase) examined elephant behavior on old concrete floors. In Phase II (Choice Phase), elephant behavior was observed in the Back observation area where room sizes were comparable and when a choice of flooring substrates was available. Phase III (Final Phase) examined elephant behavior when all rooms in both observation areas, Front and Back, were converted to rubberized flooring. Room use in both observation areas remained stable throughout the study, suggesting that flooring substrate did not affect room use choice. However, there was a clear pattern of decreased discomfort behaviors on the new rubber flooring. Normal locomotion as well as stereotypic locomotion increased on the new rubber flooring. In addition, resting behavior changed to more closely reflect the resting behavior of wild elephants, which typically sleep standing up, and spend very little time in lateral recumbence. Overall, these findings suggest that the rubber flooring may have provided a more comfortable surface for locomotion as well as standing resting behavior. It is suggested that poured rubber flooring may be a beneficial addition to similar animal facilities. Zoo Biol 0:1-11, 2007. (c) 2007 Wiley-Liss, Inc.

  19. [Allergic contact dermatitis to synthetic rubber, neoprene in compression stockings].

    Science.gov (United States)

    Mizuno, Ju; In-Nami, Hiroshi

    2011-01-01

    Compression stockings are used for patients under general anesthesia to prevent occurrence of deep venous thrombosis. We report a case of allergic contact dermatitis to synthetic rubber, neoprene in compression stockings. A 53-year-old house wife had a history of sensitivity like skin eruption and disstasis to rubber products such as rubber band. Left nephrectomy for rupture of renal angiomyolipoma was scheduled under general and epidural anesthesia. Further examination for gum allergy was not performed before the operation, although latex allergy was suspected. The operation was performed uneventfully under latex-safe environment in the operating room under guideline for latex allergy. Postoperatively, ringed edematous erythema and wheal occurred in her bilateral thighs compressed with the upper part of compression stockings. The skin symptoms continued for more than four days. After disappearance of the skin symptoms, she was discharged from the hospital on the ninth day after the operation. Synthetic rubber, neoprene, in the upper part of compression stockings to prevent slipping down might cause allergic contact dermatitis. We should take care of occurrence of allergic contact dermatitis to synthetic rubber, neoprene in compression stockings in patients with rubber allergy.

  20. COORDINATION CROSSLINKING OF NITRILE RUBBER FILLED WITH COPPER SULFATE PARTICLES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By incorporating copper sulfate (CuSO4) particles into acrylonitrile butadiene rubber (NBR) followed by heat pressing.a novel vulcanization method is developed in rubber through the formation of coordination crosslinking.This method totally differs from traditional covalent or non-covalent vulcanization approaches of rubber.No other vulcanizing agent or additional additive is involved in this process.By analyzing the results of DMA,XPS and FT-IR,it is found that the crosslinking of CuSO4 particles filled NBR was induced by in situ coordination between nitrogen atoms of nitrile groups (-CN) and copper ions (Cu2+) from CuSO4.SEM and EDX results revealed the generation of a core (CuSO4 solid particle) shell (adherent NBR) structure,which leads to a result that the crosslinked rubber has excellent mechanical properties.Moreover,poly (vinyl chloride)(PVC) and liquid acrylonitrile-butadiene rubber (LNBR) were used as mobilizer to improve the coordination crosslinking of CuSO4/NBR.The addition of PVC or LNBR could lead to higher crosslink density and better mechanical properties of coordination vulcanization.In addition,crystal water in CuSO4 played a positive role to coordination crosslinking of rubber because it decreased the metal point of CuSO4 and promoted the metal ionization.

  1. Effect of rubber dam on mercury exposure during amalgam removal.

    Science.gov (United States)

    Kremers, L; Halbach, S; Willruth, H; Mehl, A; Welzl, G; Wack, F X; Hickel, R; Greim, H

    1999-06-01

    It was the aim of this investigation to treat 20 volunteers with maximally 5 amalgam fillings by the same comprehensive protocol in which all removals with (n = 8) and without (n = 12) rubber dam had been performed within a few months. Nine amalgam-related parameters indicated a close matching of both groups before removal. In the group without rubber dam, mercury (Hg) levels in plasma increased significantly above preremoval values at days 1 and 3 after removal; they decreased significantly below preremoval values at day 30 in the rubber-dam group and at day 100 in both groups. Excretion rates did not increase significantly in either group, but decreased significantly at day 100 in the protected group. Peak plasma-Hg was 0.6 ng/mL on average at day one and decreased with halftimes of 3 and 43 d in subjects protected by rubber dam. The results indicated that concentrations of total mercury in plasma responded rapidly to changes in the amalgam status and reflected the actual absorption most reliably. Notably, plasma-Hg levels were sensitive enough to detect a transient attenuation of the additional exposure by using rubber dam during the removal of only a few fillings. However, being small in magnitude and lasting 100 d at best, the rubber-dam effect had minor toxicological relevance.

  2. Genotoxic risk in rubber manufacturing industry: a systematic review.

    Science.gov (United States)

    Bolognesi, Claudia; Moretto, Angelo

    2014-10-15

    A large body of evidence from epidemiological studies among workers employed in the rubber manufacturing industry has indicated a significant excess cancer risk in a variety of sites. The International Agency for Research on Cancer has recently classified the "Occupational exposures in the rubber-manufacturing industry" as carcinogenic to humans (Group 1). A genotoxic mechanism for the increased cancer risk was suggested on the basis of the evidence from the scientific literature. Exposure assessment studies have shown that workers in the rubber manufacturing industry may be exposed to different airborne carcinogenic and/or genotoxic chemicals, such as certain aromatic amines, polycyclic aromatic hydrocarbons, N-nitrosamines, although the available information does not allow to establish a causal association of cancer or genotoxic risk with particular substances/classes of chemicals or specific jobs. The aim of this paper is to critically evaluate, by conducting a systematic review, the available biomonitoring studies using genotoxicity biomarkers in rubber manufacturing industry. This systematic review suggests that a genotoxic hazard may still be present in certain rubber manufacturing industries. A quantitative risk assessment needs further studies addressing the different, processes and chemicals in the rubber manufacturing industries.

  3. DAMAGE OF SILICONE RUBBER INDUCED BY PROTON IRRADIATION

    Institute of Scientific and Technical Information of China (English)

    Li-xin Zhang; Shi-qin Yang; Shi-yu He

    2003-01-01

    In this paper, the damage to methyl silicone rubber induced by irradiation with protons of 150 keV energy was studied. The surface morphology, tensile strength, Shore hardness, cross-linking density and glass transition temperature were examined. Positron annihilation lifetime spectrum analysis (PALS) was perfomed to reveal the damage mechanisms of the rubber. The results showed that tensile strength and Shore hardness of the rubber increased first and then decreased with increasing irradiation fluence. The PALS characteristics τ3 and I3, as well as the free volume Vf, decreased with increasing irradiation fluence up to 1015 cm-2, and then increased slowly. It indicates that proton irradiation causes a decrease of free volume in the methyl silicone rubber when the fluence is less than l015 cm-2, while the free volume increases when the fluence is greater than 1015 cm-2. The results on cross-linking density indicate that the cross-linking induced by proton irradiation is dominant at smaller proton fluences, increasing the tensile strength and Shore hardness of the rubber, while the degradation of rubber dominates at greater fluence, leading to a decrease of tensile strength and Shore hardness.

  4. Effect of filler water absorption on water swelling properties of natural rubber

    Science.gov (United States)

    Trakuldee, J.; Boonkerd, K.

    2017-07-01

    The efficient water swelling rubber can be obtained by using high hydrophilic rubber such as chloroprene rubber. However, chloroprene rubber is synthetic rubber developed from the petroleum. Recently, many researches try to replace the usage of synthetic rubber with natural rubber. This is not only due to the concerning of environment but the cost reduction as well. However, natural rubber is hydrophobic, thus not absorbing water. To develop the water swelling rubber from natural rubber, the addition of water absorption filler is needed. The study was aimed to formulate water swelling rubber from natural rubber filled with sodium polyacrylate (SA)/sodium bentonite clay (SBC) hybrid filler used to water absorbent. The filler loading was kept constantly at 150 phr. The effect of SA/SBC ratio varied from 1:0, 1:1, 1:2 and 1:3 on the water absorption of the hybrid filled natural rubber was determined. The obtained result showed that the water adsorption proportionally increased with increasing SA loading but decreased with increasing SBC loading. The effect of glycidyl methacrylate (GM) and poly ethylene glycol (PEG) on the water absorption was studied later. The result from a scanning electron microscope depicted that the presence of GM can depress the falling out of SA from the rubber matrix while the presence of PEG increased water absorption.

  5. STUDY ON THE PROPERTIES OF BLEND OF NATURAL RUBBER LATEX/METHYL METHACRYLATE GRAFTED RUBBER LATEX BY GAMMA RADIATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Natural rubber latex (NRL) and methyl methacrylate (MMA) grafted rubber latex were blended in different ratios and irradiated at various absorbed doses by gamma rays from Co-60 source at room temperature.The tensile properties,swelling ratio and permanent set were measured.The maximum tensile strength and modulus at 500% elongation were obtained at an absorbed dose of 8 kGy.Modulus increases from 6.99 Mpa to 9.87 Mpa for an increase in proportion of MMA grafted rubber from 40% to 60% in the blend at similar absorbed dose.Elongation at break and swelling ratio decrease with increasing absorbed dose as well as the MMA grafted rubber content in the blends.The decreasing trend of permanent set is high up to 5 kGy absorbed dose, and beyond that dose,it becomes almost flat.

  6. Polysoaps: Configurations and Elasticity

    Science.gov (United States)

    Halperin, A.

    1997-03-01

    Simple polymers are very long, flexible, linear molecules. Amphiphiles, soaps, are small molecules comprising of a part that prefers water over oil and a part that prefers oil over water. By combining the two we arrive at an interesting, little explored, class of materials: Polysoaps. These comprise of a water soluble backbone incorporating, at intervals, covalently bound amphiphilic monomers. In water, the polymerised amphiphiles aggregate into self assembled units known as micelles. This induces a dramatic modification of the spatial configurations of the polymers. What were featureless random coils now exhibit intramolecular, hierachial self organisation. Due to this self organisation it is necessary to modify the paradigms describing the large scale behaviour of these polymers: Their configurations, dimensions and elasticity. Understanding the behaviour of these polymers is of practical interest because of their wide range of industrial applications, ranging from cosmetics to paper coating. It is of fundamental interest because polysoaps are characterised by a rugged free energy landscape that is reminiscent of complex systems such as proteins and glasses. The talk concerns theoretical arguments regarding the following issues: (i) The design parameters that govern the spatial configurations of the polysoaps, (ii) The interaction between polysoaps and free amphiphiles, (iii) The effect of the intramolecular self organisation on the elasticity of the chains.

  7. Elastic emission polishing

    Energy Technology Data Exchange (ETDEWEB)

    Loewenthal, M.; Loseke, K.; Dow, T.A.; Scattergood, R.O.

    1988-12-01

    Elastic emission polishing, also called elastic emission machining (EEM), is a process where a stream of abrasive slurry is used to remove material from a substrate and produce damage free surfaces with controlled surface form. It is a noncontacting method utilizing a thick elasto-hydrodynamic film formed between a soft rotating ball and the workpiece to control the flow of the abrasive. An apparatus was built in the Center, which consists of a stationary spindle, a two-axis table for the workpiece, and a pump to circulate the working fluid. The process is controlled by a programmable computer numerical controller (CNC), which presently can operate the spindle speed and movement of the workpiece in one axis only. This apparatus has been used to determine material removal rates on different material samples as a function of time, utilizing zirconium oxide (ZrO{sub 2}) particles suspended in distilled water as the working fluid. By continuing a study of removal rates the process should become predictable, and thus create a new, effective, yet simple tool for ultra-precision mechanical machining of surfaces.

  8. Biodegradation of a blended starch/natural rubber foam biopolymer and rubber gloves by Streptomyces coelicolor CH13

    OpenAIRE

    2012-01-01

    Background: The growing problem of environmental pollution caused by synthetic plastics has led to the search for alternative materials such as biodegradable plastics. Of the biopolymers presently under development, starch/natural rubber is one promising alternative. Several species of bacteria and fungi are capable of degrading natural rubber and many can degrade starch. Results: Streptomyces coelicolor CH13 was isolated from soil according to its ability to produce translucent halos on a mi...

  9. Reinforcing effect of plasma modified halloysite nanotubes in a carbon black filled natural rubber-butadien rubber matrix

    OpenAIRE

    Poikelispaa, Minna; Das, Amit; Dierkes, Wilma; Vuorinen, Jyrki

    2011-01-01

    Rubber composites are generally produced by the direct incorporation of fillers like carbon black and/or silica into the rubber matrix. The incorporation of different types of nanofillers is the subject of recent research with the aim of preparing composites with special compositions and properties. A successful application of such composites depends mainly on the degree of dispersion of the nano-sized fillers. Recently, a naturally occurring clay mineral, halloysite nanotubes (HNTs), is inve...

  10. A Home Experiment in Elasticity

    CERN Document Server

    Aguirregabiria, J M; Rivas, M

    2006-01-01

    We analyze a simple problem in elasticity: the \\emph{initial} motion of an elastic bar that after being hanged from an end is suddenly released. In a second problem a point mass is attached on the top of the bar. The analytical solutions uncover some unexpected properties, which can be checked, with a digital camera or camcorder, in an alternative setup in which a spring is substituted for the bar. The theoretical model and the experiments are useful to understand the similarities and differences between the elastic properties of bar and spring. Students can take advantage of the home experiments to improve their understanding of elastic waves.

  11. Elastic superlattices with simultaneously negative effective mass density and shear modulus

    Science.gov (United States)

    Solís-Mora, I. S.; Palomino-Ovando, M. A.; Pérez-Rodríguez, F.

    2013-03-01

    We investigate the vibrational properties of superlattices with layers of rubber and polyurethane foam, which can be either conventional or auxetic. Phononic dispersion calculations show a second pass band for transverse modes inside the lowest band gap of the longitudinal modes. In such a band, the superlattices behave as a double-negative elastic metamaterial since the effective dynamic mass density and shear modulus are both negative. The pass band is associated to a Fabry-Perot resonance band which turns out to be very narrow as a consequence of the high contrast between the acoustic impedances of the superlattice components.

  12. 40 CFR 428.90 - Applicability; description of the pan, dry digestion, and mechanical reclaimed rubber subcategory.

    Science.gov (United States)

    2010-07-01

    ..., dry digestion, and mechanical reclaimed rubber subcategory. 428.90 Section 428.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS RUBBER MANUFACTURING POINT SOURCE CATEGORY Pan, Dry Digestion, and Mechanical Reclaimed Rubber Subcategory §...

  13. Predicting the glass transition temperature as function of crosslink density and polymer interactions in rubber compounds

    Science.gov (United States)

    D'Escamard, Gabriella; De Rosa, Claudio; Auriemma, Finizia

    2016-05-01

    Crosslink sulfur density in rubber compounds and interactions in polymer blends are two of the composition elements that affect the rubber compound properties and glass transition temperature (Tg), which is a marker of polymer properties related to its applications. Natural rubber (NR), butadiene rubber (BR) and styrene-butadiene rubber (SBR) compounds were investigated using calorimetry (DSC) and dynamic mechanical analysis (DMA). The results indicate that the Di Marzio's and Schneider's Models predict with accuracy the dependence of Tg on crosslink density and composition in miscible blends, respectively, and that the two model may represent the base to study the relevant "in service" properties of real rubber compounds.

  14. MECHANICAL PROPERTIES OF TIRE RUBBER CONCRETE = PROPRIEDADES MECÂNICAS DO CONCRETO ADICIONADO COM BORRACHA DE PNEUS

    Directory of Open Access Journals (Sweden)

    J. L. Akasaki

    2006-01-01

    Full Text Available The residues disposal from tire rubber out of use has become a problem for most of countries. This work proposal is to provide an alternative and clean way to recycle this material that is harmful for the environment. The work’s aim is to study the behavior of tire rubber concrete through different mix proportions and two tire rubber aggregates gradation and evaluate properties as: compressive strength, splitting tensile test, modulus of elasticity, water absorption and workability. The tests were carried out to the ages of 7, 28 and 56 days using cylindrical specimens of (10x20 cm and (15x30 cm. The last specimens were used for modulus of elasticity tests. The results show that the addition of tire rubber in concrete reduces workability and mechanical properties values. = A disposição de resíduos provenientes de pneus fora de uso tem se tornado um problema para a maioria dos países. A proposta deste trabalho é proporcionar uma forma alternativa e limpa de reciclagem deste material prejudicial ao meio ambiente. O trabalho realizado tem como objetivo estudar o comportamento do concreto adicionado de resíduos de borracha de pneus; para isso, foram feitos vários traços com duas granulometrias diferentes e avaliadas propriedades como: resistência à compressão, resistência à tração, módulo de elasticidade, absorção de água e trabalhabilidade. Os ensaios foram feitos para as idades de 7, 28 e 56 dias em corpos-de-prova cilíndricos de dimensões (10x20 cm e (15x30 cm sendo o último utilizado apenas para o ensaio de módulo de elasticidade. Os resultados indicam redução nos valores referentes às propriedades mecânicas e perda na trabalhabilidade após a adição do resíduo.

  15. short communication thermodynamic parameters of elasticity and ...

    African Journals Online (AJOL)

    a

    of natural rubber composites reinforced separately with some agricultural wastes have been determined. ... INTRODUCTION ... egg shell, maize shaft, banana peel, rice husk, mango seed skin, groundnut shell and been seed .... Natural rubber vulcanizate being a polymer in which all chemical bonding is of the covalent.

  16. Visco-elastic effects on wave dispersion in three-phase acoustic metamaterials

    Science.gov (United States)

    Krushynska, A. O.; Kouznetsova, V. G.; Geers, M. G. D.

    2016-11-01

    This paper studies the wave attenuation performance of dissipative solid acoustic metamaterials (AMMs) with local resonators possessing subwavelength band gaps. The metamaterial is composed of dense rubber-coated inclusions of a circular shape embedded periodically in a matrix medium. Visco-elastic material losses present in a matrix and/or resonator coating are introduced by either the Kelvin-Voigt or generalized Maxwell models. Numerical solutions are obtained in the frequency domain by means of k(ω)-approach combined with the finite element method. Spatially attenuating waves are described by real frequencies ω and complex-valued wave vectors k. Complete 3D band structure diagrams including complex-valued pass bands are evaluated for the undamped linear elastic and several visco-elastic AMM cases. The changes in the band diagrams due to the visco-elasticity are discussed in detail; the comparison between the two visco-elastic models representing artificial (Kelvin-Voigt model) and experimentally characterized (generalized Maxwell model) damping is performed. The interpretation of the results is facilitated by using attenuation and transmission spectra. Two mechanisms of the energy absorption, i.e. due to the resonance of the inclusions and dissipative effects in the materials, are discussed separately. It is found that the visco-elastic damping of the matrix material decreases the attenuation performance of AMMs within band gaps; however, if the matrix material is slightly damped, it can be modeled as linear elastic without the loss of accuracy given the resonator coating is dissipative. This study also demonstrates that visco-elastic losses properly introduced in the resonator coating improve the attenuation bandwidth of AMMs although the attenuation on the resonance peaks is reduced.

  17. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    Science.gov (United States)

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications.

  18. Characteristics and Application of Polyurethane Rubber-covered Roll%聚氨酯胶辊的特性与应用

    Institute of Scientific and Technical Information of China (English)

    余桂林

    2012-01-01

    Characteristics and application of polyurethane rubber-covered roll were discussed. Problems of nitrile rubber-covered roll were analyzed. Basic property, manufacturing methods and application features of polyurethane rubber-covered roll were introduced. The spinning performance of polyurethane rubber-covered roll and nitrile rubber-covered roll was contrasted. The result shows that there are many advantages for polyurethane rubber-covered roll,such as better elasticity and wearability ,smaller deformation, thermal insulation and vibration absorption, stable hardness,resistance to oil & light & ozone, stronger anti-aging cracking, better antistatic and absorbing or releasing moisture after adding antistatic agent or conductive composition. It is proved by long time comparison test,the spinning yam quality and anti-winding is better than that of nitrile rubber-covered roll. The grinding cycle and life are longer than of nitrile rubber-covered roll. Currently,it is considered that each property demands of rubber-covered roll can be satisfied well by adopting pouring processing. Yarn quality can be improved, spinnability of rubber-covered roll can be increased and production cost can be reduced by using polyurethane rubber-covered roll.%探讨聚氨酯胶辊的特性和应用效果.分析了丁腈胶辊存在的问题,介绍了聚氨酯胶辊的基本性能、制造方法和应用特性,并与丁腈胶辊进行了纺纱性能对比.结果表明:聚氨酯胶辊具有优良的弹性和耐磨性,压缩变形小、隔热吸振、硬度稳定,耐油、耐光照、耐臭氧、抗老化龟裂性强,添加抗静电剂或导电成分后,具有良好的抗静电性和吸放湿性,弥补了丁腈胶辊性能的不足.经长时间对比试验证明,其纺纱条干质量和抗缠绕性优于丁腈胶辊,复磨周期和使用寿命较长.认为,目前采用“浇注型”制造工艺,能够较好的满足胶辊各项性能要求.推广聚氨酯胶辊,有助于改善

  19. The unique processing of rubber-insulated wires by radiation

    Science.gov (United States)

    Ishitani, Hayao; Saito, Eisuke; Sasaki, Yasushi

    Ethylene-propylene rubbers are able to be crosslinked (vulcanized) by high energy radiation. The radiation-induced crosslinking of ethylene-propylene copolymer or ethylene-propylene-diene terpolymer depends upon the ethylene/propylene ratio, the molecular weight of the polymer, the unsaturating degree of terpolymer and kinds of tercomponents. The mechanical properties of the crosslinked rubber were affected mainly by the E/P ratio and the molecular weight, and improved by blending of low density polyethylene or ethylene-vinylacetate copolymer. Aging of the rubber, due to kinds and contents of tercomponents, was mostly determined by addition of antioxidants to the compound. We developed EP rubber compounds for wire insulation crosslinked by electron beam radiation and applied to the insulation cores of the ship's cables, in the place of the wire vulcanized conventionally by the pressurized steam in the continuous vulcanizer. The rubber compounds are consisted of ethylene-propylene-diene terpolymer with high ethylene contents, ethylene-vinylacetate copolymer and antioxidants. The high-ethylene polymers are supplied in the shape of pellets, and antioxidants were added to the compounds by means of dry blending of concentrates in which antioxidants are mixed into pellets of ethylene copolymer. The EP rubbers were covered on the copper wire by the extruder, used to plastic material, and irradiated with the electron beam from an accelerator. These insulated cores manufactured on radiation processing had the excellent properties, particularly aging and electrical properties. Further, they are more simply colored. Therefore, they will be considered to be used to other applications. This method of manufacturing of the rubber-insulated wires made it possible to reduce both the material costs by simple compounding and the operating costs by radiation-induced crosslinking, to compare with the conventional compounding and vulcanizing process, in which the materials are

  20. Questions about elastic waves

    CERN Document Server

    Engelbrecht, Jüri

    2015-01-01

    This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.

  1. Interaction of Chloroprene and Nitrile- Butadiene Rubber with Lubricating Greases and Base Oils

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The present communication addresses compatibility of two synthetic rubber types, chloroprene and nitrilebutadiene ones, with a number of base oils of petroleum origin and lubricating greases produced thereof. Four base oils,including three naphthenic products with varying degrees of refining and one paraffinic product,were compared with each other in terms of their effect on the rubbers. Degenerative changes occurring in the rubbers on contact with the oils and greases were studied using accelerated ageing tests. Alterations in rubber parameters, such as hardness, weight and glass transition temperature, caused by interaction with oil were monitored. The main physicochemical mechanisms standing behind the changes observed in the rubber properties were found to be (i) migration of plasticizer from rubber into the oil phase, (ii) absorption of oil by rubber,and (iii) oxidation of rubber. An increase in glass transition temperature (Tg) of rubber aged in a base oil or grease was considered as an indirect indication that the plasticizer had migrated out of rubber;the plasticizer accumulation in the oil phase being directly confirmed by gas chromatography. In order to suppress the plasticizer migration, oil additivation with dioctyl adipate (DOA), a common plasticizer used in rubber formulations, was attempted. However, the BOA-additivated oils, while reducing plasticizer migration, were found to cause more swelling than the original oils in the case of chloroprene rubber. As an alternative, replacement of BOA by an alkylated aryl phosphate in nitrile- butadiene rubber formulations was considered, but it did not solve the problem either.The results of this study suggest conclusively that the type of rubber, the plasticizer, and the base oil are all the crucial parameters that should be considered when matching rubber with oil in real- life applications. Interaction of rubber with base oils and with greases produced thereof is largely controlled by (i) solvency of the

  2. The optimal elastic flagellum

    Science.gov (United States)

    Spagnolie, Saverio E.; Lauga, Eric

    2010-03-01

    Motile eukaryotic cells propel themselves in viscous fluids by passing waves of bending deformation down their flagella. An infinitely long flagellum achieves a hydrodynamically optimal low-Reynolds number locomotion when the angle between its local tangent and the swimming direction remains constant along its length. Optimal flagella therefore adopt the shape of a helix in three dimensions (smooth) and that of a sawtooth in two dimensions (nonsmooth). Physically, biological organisms (or engineered microswimmers) must expend internal energy in order to produce the waves of deformation responsible for the motion. Here we propose a physically motivated derivation of the optimal flagellum shape. We determine analytically and numerically the shape of the flagellar wave which leads to the fastest swimming for a given appropriately defined energetic expenditure. Our novel approach is to define an energy which includes not only the work against the surrounding fluid, but also (1) the energy stored elastically in the bending of the flagellum, (2) the energy stored elastically in the internal sliding of the polymeric filaments which are responsible for the generation of the bending waves (microtubules), and (3) the viscous dissipation due to the presence of an internal fluid. This approach regularizes the optimal sawtooth shape for two-dimensional deformation at the expense of a small loss in hydrodynamic efficiency. The optimal waveforms of finite-size flagella are shown to depend on a competition between rotational motions and bending costs, and we observe a surprising bias toward half-integer wave numbers. Their final hydrodynamic efficiencies are above 6%, significantly larger than those of swimming cells, therefore indicating available room for further biological tuning.

  3. The First Law of Elasticity

    Science.gov (United States)

    Girill, T. R.

    1972-01-01

    The Boyle-Mariotte gas law was formulated in terms of pneumatic springs," subsumed by Hooke under his own stress-strain relation, and generally regarded as a law of elasticity. The subsequent development of Boyle's principle and elasticity provide thought-provoking test cases for Kuhn's notations of paradigm and puzzle solving in physics.…

  4. PAGOSA Sample Problem. Elastic Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Weseloh, Wayne N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clancy, Sean Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-03

    A PAGOSA simulation of a flyer plate impact which produces an elastic precursor wave is examined. The simulation is compared to an analytic theory for the Mie-Grüneisen equation of state and an elastic-perfectly-plastic strength model.

  5. Elastic model of dry friction

    Energy Technology Data Exchange (ETDEWEB)

    Larkin, A. I.; Khmelnitskii, D. E., E-mail: dekl2@cam.ac.uk [Landau Institute for Theoretical Physics (Russian Federation)

    2013-09-15

    Friction of elastic bodies is connected with the passing through the metastable states that arise at the contact of surfaces rubbing against each other. Three models are considered that give rise to the metastable states. Friction forces and their dependence on the pressure are calculated. In Appendix A, the contact problem of elasticity theory is solved with adhesion taken into account.

  6. Oil Gels Based on Styrene Butadiene Rubber

    Institute of Scientific and Technical Information of China (English)

    ZHOU Mei-hua (周美华); XU Jing-bo(徐静波); Won-jei CHO

    2004-01-01

    Four oil absorbents based on styrene butadiene (SBR),i. e., pure SBR (PS), 4- tert-butylstyrene-SBR (PBS),EPDM-SBR network (PES) and 4-tert-butylstyrene-EPDMSBR ( PBES ), were produced from crosslinking polymerization of uncured styrene butadiene rubber (SBR),4- tert-butylstyrene ( tBS ) and ethylene-propylene-diene terpolymer (EPDM). The reaction took place in toluene using benzoyl peroxide (BPO) as an initiator. Uncured SBR was used as both a pre-polymer and a crosslink agent in this work, and the crosslinked polymer was identified by IR spectroscopy. The oil absorbency of the crosslinked polymer was evaluated with the method ASTM (F726 - 81). The order of maximum oil absorbency was PBES > PBS >PES > PS. The maximum values of oil absorbency of PBES and PBS were 74.0g/g and 69.5g/g, respectively. Gel fractions and swelling kinetic constants, however, had the opposite sequences. The swelling kinetic constant of PS evaluated by an experimental equation was 49. 97 ×10-2h-1.

  7. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  8. About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433 K

    Science.gov (United States)

    Mansilla, M. A.; Marzocca, A. J.

    2012-08-01

    Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds. In this work the cure kinetic at 433 K of NR/SBR blends vulcanized with the system sulfur/TBBS (N-t-butyl-2-benzothiazole sulfenamide) is analyzed in samples prepared by mechanical mixing and solution blending. The two methods produce elastomer domains of NR and SBR, which present different microstructure due to the cure level attained during vulcanization. The cure kinetics is studied by means of rheometer tests and the model proposed by Kamal and Sourour. The analysis of the cure rate is presented and is related to the structure obtained during the vulcanization process.

  9. About the cure kinetics in natural rubber/styrene Butadiene rubber blends at 433 K

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla, M.A., E-mail: mmansilla@df.uba.ar [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1, C1428EGA Buenos Aires (Argentina); Marzocca, A.J. [Laboratorio de Polimeros y Materiales Compuestos, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon 1, C1428EGA Buenos Aires (Argentina)

    2012-08-15

    Vulcanized blends of elastomers are employed in several goods mainly to improve physical properties and reduce costs. One of the most used blends of this kind is that composed by natural rubber (NR) and styrene butadiene rubber (SBR). The cure kinetic of these blends depends mainly on the compound formulation and the cure temperature and time. The preparation method of the blends can influence the mechanical properties of the vulcanized compounds. In this work the cure kinetic at 433 K of NR/SBR blends vulcanized with the system sulfur/TBBS (N-t-butyl-2-benzothiazole sulfenamide) is analyzed in samples prepared by mechanical mixing and solution blending. The two methods produce elastomer domains of NR and SBR, which present different microstructure due to the cure level attained during vulcanization. The cure kinetics is studied by means of rheometer tests and the model proposed by Kamal and Sourour. The analysis of the cure rate is presented and is related to the structure obtained during the vulcanization process.

  10. DEPENDENCE OF DAMPING CHARACTERISTICS OF A BEAM WITH DAMPING RUBBER MAGNETIC POWDER ON RUBBER PROPERTY

    Institute of Scientific and Technical Information of China (English)

    Ming Li; Zeng He; Huiming Zheng; Ning Zhang

    2008-01-01

    A cantilever beam with Damping Material Applying Rubber Magnetic Powder (DRM)has been investigated.Two methods are selected to hold DRM to a vibrating steel beam,one is to attach DRM by the magnetic attractive force (called DRM beam) and the other by adhesive bonding (called AB-DRM beam).Different from the damping property of AB-DRM beam caused by shear deformation of damping material,the damping property of DRM beam is characterized by the sliding frictional loss together with the internal loss of damping material.The authors established a formulation to predict the damping characteristics of DRM beam,which was validated experimentally.It is found that rubber material loss factor/β has a decisive influence on damping improvement of DRM beam versus AB-DRM beam.If/β is smaller than the critical value around 0.8255,a valid range of vibratory amplitude always exists in which DRM beam can achieve better damping than AB-DRM beam;conversely,if/β is bigger than the critical value,the valid range does not exist when slide occurs.Such results are used to determine the merits and limitations of DRM and develop design guidelines.

  11. Some Tribological Characterization of “EPDM” Rubber

    Directory of Open Access Journals (Sweden)

    A. Mukhopadhyay

    2014-06-01

    Full Text Available Ethylene Propylene Diene Monomer (EPDM rubber emerges as a dominant elastomer for major engineering applications. The major properties of EPDM are its outstanding heat, ozone and weather resistance ability. It has a good resistance to polar substances and steam condition too. In automobiles EPDM rubber has a common use as seals. This includes door seals, window seals, trunk seals and sometimes hood seals. Frequently these seals are the source of noise due to the movement of the door versus the car body. This is due to friction between the EPDM rubber parts and the mating surfaces. Thus, the contact iteration between the rubber sealing and the indenting object must be known to optimize the performance of rubber sealing. However, it is need less to mention that the behaviour of any viscoelastic material is very difficult to be predicted. In the present work various tribo-characteristics of EPDM rubber of different hardness have been evaluated utilizing the available laboratory test facilities in the Jadavpur University, Kolkata, India. Compression tests have been carried out using ‘Instron’ to determine the flow behaviour of EPDM rubber of different hardness both in dry as well as under different conditions of lubrication. The flow behaviour like load -vs.- elongation curves, true stress -vs.- elongation curves and true stress -vs.- true strain curves have been drawn from the experimental data. Abrasive wear behaviour has been evaluated using a two-body abrasion tester and the pattern abrasion has been appraised through SEM/EDAX study. Experimental results reveal that the hardness of EPDM rubber has significant effect on the flow behaviour and wear characteristics. The hardness, again, depends on the proportion of carbon black (CB content. Thus it can be stated that the flow behaviour can be governed by controlling the CB concentration in the EPDM rubber. Based on the experimental results conclusion has been drawn accordingly. Some of the

  12. VARIATION OF PHYSICO-CHEMICAL PROPERTIES OF RADIATION CROSSLINKED RUBBER WITH STORAGE TIME

    Institute of Scientific and Technical Information of China (English)

    N.C. Dafader; M.E. Haque; F. Akhtar

    2005-01-01

    The effect of storage on physico-chemical properties of non-irradiated natural rubber and radiation vulcanized natural rubber (RVNR) were evaluated. The rubber films were stored under two different conditions, namely in open air and sealed polyethylene bags. The antioxidant, tris(nonylated phenyl) phosphite (TNPP) was used for preventing degradation of RVNR films. Gel content, cross-link density, tensile strength at break and 500% elongation of rubber films were measured.The results show that the retention (%) of tensile properties of rubber films with TNPP is higher than that of rubber films without antioxidants. The rubber films stored in polyethylene bags also show better retention of tensile properties than those of rubber films stored in open air.

  13. Influence of Ultrasonic Vibrations on the Static Friction Characteristics of a Rubber/Aluminum Couple

    Institute of Scientific and Technical Information of China (English)

    程廷海; 高焓; 包钢

    2011-01-01

    A novel ultrasonic vibration approach is introduced into a chloroprene rubber/aluminum friction couple for improving the static friction properties betwesn rubber and metal.Compared to the test results without vibrations,the static friction force of a chloroprene rubber/aluminum couple decreases observably,leading to the ultimate displacement of rubber.The values of the static friction force and ultimate displacement can be ultimately reduced to 23.1% and 50% of those without ultrasonic vibrations,respectively.%A novel ultrasonic vibration approach is introduced into a chioroprene rubber/aluminum friction couple for improving the static friction properties between rubber and metal. Compared to the test results without vibrations, the static friction force of a chioroprene rubber/aluminum couple decreases observably, leading to the ultimate displacement of rubber. The values of the static friction force and ultimate displacement can be ultimately reduced to 23.1% and 50% of those without ultrasonic vibrations, respectively.

  14. Caltrans use of scrap tires in asphalt rubber products: a comprehensive review

    National Research Council Canada - National Science Library

    Zhou, Haiping; Holikatti, Sri; Vacura, Peter

    2014-01-01

    ...) and dry processes were used in early trials. Caltrans has also used rubber modified binders containing both crumb rubber modifier and polymer modifier that could be manufactured at a refinery facility, a terminal blend wet process...

  15. Nanolipoprotein particles comprising a natural rubber biosynthetic enzyme complex and related products, methods and systems

    Energy Technology Data Exchange (ETDEWEB)

    Hoeprich, Paul D.; Whalen, Maureen

    2016-04-05

    Provided herein are nanolipoprotein particles that comprise a biosynthetic enzyme more particularly an enzyme capable of catalyzing rubber or other rubbers polymerization, and related assemblies, devices, methods and systems.

  16. Microclimate, development and productivity of robusta coffee shaded by rubber trees and at full sun

    National Research Council Canada - National Science Library

    André Vasconcellos Araújo; Fábio Luiz Partelli; Gleison Oliosi; José Ricardo Macedo Pezzopane

    2016-01-01

      There are few studies about the shading of Robusta coffee with rubber trees. The aim of this study was evaluate the microclimate, development and yield of Coffea canephora grown at full sun and shaded by rubber trees...

  17. Patch testing with rubber series in Europe : a critical review and recommendation

    NARCIS (Netherlands)

    Warburton, Katharine L; Uter, Wolfgang; Geier, Johannes; Spiewak, Radoslaw; Mahler, Vera; Crépy, Marie-Noëlle; Schuttelaar, Marie-Louise; Bauer, Andrea; Wilkinson, Mark

    2016-01-01

    BACKGROUND: Rubber additives constitute an important group of contact allergens, particularly in certain occupations. OBJECTIVES: To collect information regarding the current practice of using a 'rubber series' in Europe, and discuss this against the background of evidence concerning the prevalence

  18. Three dimensional base isolation system on laminated thick rubber bearings

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Kenji; Matsuda, Akihiro; Hirata, Kazuta [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.

    1997-08-01

    In order to reduce horizontal and vertical earthquake response of internal equipments in the nuclear power plants, we evaluated the performance of three dimensional base isolation system using laminated thick rubber bearings. From the loading test of scaled model of laminated thick rubber bearing, it was found that the natural rubber bearing was able to be extended to thick rubber bearings, and the difference of mechanical characteristics was only the dependency of the vertical stiffness on the horizontal displacement. Second, we carried out shaking table test for scaled model of base isolated structure. The results showed that horizontal characteristics of thick rubber bearing was almost the same as the thin one, and the vertical stiffness was able to be determined according to the resonance period of internal equipments. After the test, we carried out the numerical analysis on the shaking table test. Numerical results showed that the response of the model for earthquake input motion and its response spectra were in good agreement with the experiment, and the resonance peak of the floor response spectra can be reduced when the damping coefficient of the vertical damper increases. (author)

  19. Taxonomic revision and phylogenetic analyses of rubber powdery mildew fungi.

    Science.gov (United States)

    Liyanage, K K; Khan, Sehroon; Brooks, Siraprapa; Mortimer, Peter E; Karunarathna, Samantha C; Xu, Jianchu; Hyde, Kevin D

    2017-02-09

    Powdery mildew is a fungal disease that infects a wide range of plants, including rubber trees, which results in a reduction of latex yields of up to 45%. The causal agent of powdery mildew of rubber was first described as Oidium heveae, but later morpho-molecular research suggested that in the past, O. heveae has been confused with Erysiphe quercicola. However, it is still under debate whether the causal agent should be classified as a species of the genus Erysiphe emend. or Golovinomyces and Podosphaera, respectively. Therefore, the aim of this study was to undertake the morpho-molecular characterization of powdery mildew species associated with rubber trees, thus resolving these taxonomic issues. Morphological observation under light and scanning electron microscopes (SEM) clearly identified two morphotypes of the rubber powdery mildew. With the support of morphological and phylogenetic data, one of the two morphotypes was identified as the asexual morph of E. quercicola, while the second morphotype is still insufficiently known and according to the morphological results obtained we assume that it might belong to the genus Golovinomyces. More collections and additional molecular data are required for final conclusions regarding the exact taxonomic position of the second morphotype of rubber powdery mildew and its relation to the name O. heveae. The haplotype analysis identified eight haplotype groups of E. quercicola indicating the high genetic diversity of the species.

  20. Relaxation phenomena in rubber/layered silicate nanocomposites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Broadband Dielectric Spectroscopy (BDS is employed in order to investigate relaxation phenomena occurring in natural rubber (NR, polyurethane rubber (PUR and PUR/NR blend based nanocomposites, reinforced by 10 parts per hundred (phr Layered Silicates (LS. Nanocomposites and matrices were examined under identical conditions in a wide frequency (10–1 to 106 Hz and temperature (–100 to 50°C range. Experimental data are analyzed in terms of electric modulus formalism. The recorded relaxation phenomena include contributions from both the polymer matrices and the nanofiller. Natural rubber is a non-polar material and its performance is only slightly affected by the presence of layered silicates. Polyurethane rubber exhibits four distinct relaxation processes attributed, with ascending relaxation rate, to Interfacial Polarization (IP, glass/rubber transition (α-mode, local motions of polar side groups and small segments of the polymer chain (β, γ-mode. The same processes have been detected in all systems containing PUR. IP is present in all nanocomposites being the slowest recorded process. Finally, pronounced interfacial relaxation phenomena, occurring in the PUR+10 phr LS spectra, are attributed to nanoscale effects of intercalation and exfoliation.