WorldWideScience

Sample records for non-activated neutrophil apoptosis

  1. Mitochondria in neutrophil apoptosis

    NARCIS (Netherlands)

    van Raam, B. J.; Verhoeven, A. J.; Kuijpers, T. W.

    2006-01-01

    Central in the regulation of the short life span of neutrophils are their mitochondria. These organelles hardly contribute to the energy status of neutrophils but play a vital role in the apoptotic process. Not only do the mitochondria contain cytotoxic proteins that are released during apoptosis

  2. Effect of sevoflurane on human neutrophil apoptosis.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Both chronic occupational exposure to volatile anaesthetic agents and acute in vitro exposure of neutrophils to isoflurane have been shown to inhibit the rate of apoptosis of human neutrophils. It is possible that inhibition of neutrophil apoptosis arises through delaying mitochondrial membrane potential collapse. We assessed mitochondrial depolarization and apoptosis in unexposed neutrophils and neutrophils exposed to sevoflurane in vivo. METHODS: A total of 20 mL venous blood was withdrawn pre- and postinduction of anaesthesia, the neutrophils isolated and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. Mitochondrial depolarization was measured using the dual emission styryl dye JC-1. RESULTS: Apoptosis was significantly inhibited in neutrophils exposed to sevoflurane in vivo at 24 (exposed: 38 (12)% versus control: 28 (11)%, P = 0.001), but not at 1 or 12 h, in culture. Mitochondrial depolarization was not delayed in neutrophils exposed to sevoflurane. CONCLUSIONS: The most important findings are that sevoflurane inhibits neutrophil apoptosis in vivo and that inhibition is not mediated primarily by an effect on mitochondrial depolarization.

  3. Increased lung neutrophil apoptosis and inflammation resolution in nonresponding pneumonia.

    Science.gov (United States)

    Moret, I; Lorenzo, M J; Sarria, B; Cases, E; Morcillo, E; Perpiñá, M; Molina, J M; Menéndez, R

    2011-11-01

    Neutrophil activation state and its relationship with an inflammatory environment in community-acquired pneumonia (CAP) remain insufficiently elucidated. We aimed to evaluate the neutrophil apoptosis and cytokine pattern in CAP patients after 72 h of treatment, and their impact on infection resolution. Apoptosis of blood and bronchoalveolar lavage (BAL) neutrophils was measured in nonresponding CAP (NCAP), in responding CAP (blood only) and in patients without infection (control). Pro-inflammatory (interleukin (IL)-6, IL-8) and anti-inflammatory (IL-10) cytokines were measured. Main outcomes were clinical stability and days of hospitalisation. Basal neutrophil apoptosis was higher in the BAL and blood of NCAP, whereas spontaneous apoptosis (after 24 h culture) was lower. Cytokines in NCAP were higher than in responding CAP and control: IL-6 was increased in BAL and blood, IL-8 in BAL and IL-10 in blood. An increased basal apoptosis (≥20%) in BAL of NCAP was associated with lower systemic IL-10 (p<0.01), earlier clinical stability (p=0.05) and shorter hospital stay (p=0.02). A significant correlation was found for systemic IL-6 and IL-10 with days to reach stability and length of stay. After 72 h of treatment, an increased basal alveolar neutrophil apoptosis might contribute to downregulation of inflammation and to faster clinical stability.

  4. Accelerated apoptosis of neutrophils in familial Mediterranean fever

    DEFF Research Database (Denmark)

    Manukyan, Gayane; Aminov, Rustam; Hakobyan, Gagik

    2015-01-01

    The causative mutations for familial Mediterranean fever (FMF) are located in the MEFV gene, which encodes pyrin. Pyrin modulates the susceptibility to apoptosis via its PYD domain, but how the mutated versions of pyrin affect apoptotic processes are poorly understood. Spontaneous and induced rates...... of systemic neutrophil apoptosis as well as the levels of proteins involved in apoptosis were investigated ex vivo in patients with FMF using flow cytometry and RT-qPCR. The freshly collected neutrophils from the patients in FMF remission displayed a significantly larger number of cells spontaneously entering...... apoptosis compared to control (6.27 ± 2.14 vs. 1.69 ± 0.18%). This elevated ratio was retained after 24 h incubation of neutrophils in the growth medium (32.4 ± 7.41 vs. 7.65 ± 1.32%). Correspondingly, the mRNA level for caspase-3 was also significantly increased under these conditions. In response...

  5. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis

    NARCIS (Netherlands)

    Maianski, N. A.; Geissler, J.; Srinivasula, S. M.; Alnemri, E. S.; Roos, D.; Kuijpers, T. W.

    2004-01-01

    Mitochondria are known to combine life-supporting functions with participation in apoptosis by controlling caspase activity. Here, we report that in human blood neutrophils the mitochondria are different, because they preserve mainly death-mediating abilities. Neutrophil mitochondria hardly

  6. Iodinated contrast media induce neutrophil apoptosis through a mitochondrial and caspase mediated pathway.

    LENUS (Irish Health Repository)

    Fanning, N F

    2012-02-03

    Iodinated contrast media (ICM) can induce apoptosis (programmed cell death) in renal, myocardial and endothelial cells. Following intravascular injection, circulating immune cells are exposed to high concentrations of ICM. As neutrophils constitutively undergo apoptosis we hypothesized that ICM may adversely affect neutrophil survival. Our aim was to investigate the effect of ICM on neutrophil apoptosis. Neutrophils were isolated from healthy subjects and cultured in vitro with ionic (diatrizoate and ioxaglate) and non-ionic (iohexol and iotrolan) ICM. The effect of ICM on neutrophil apoptosis in both unstimulated and lipopolysaccharide-stimulated neutrophils was determined by annexin V flow cytometry. The influence of physicochemical properties of the different ICM on apoptosis of neutrophils was also studied. We further investigated the effects of ICM on key intracellular signal pathways, including p38 mitogen-activated protein kinase (MAPK) by Western blotting, and mitochondrial depolarization and caspase activity by flow cytometry. Isoiodine concentrations (20 mg ml(-1)) of ionic (diatrizoate 69.6+\\/-2.9%; ioxaglate 58.9+\\/-2.0%) and non-ionic (iohexol 57.3+\\/-2.9%; iotrolan 57.1+\\/-2.6%) ICM significantly induced neutrophil apoptosis over control levels (47.7+\\/-1.4%). The apoptotic effect of ICM was influenced by their chemical structure, with ionic ICM having a more significant (p<0.01) apoptotic effect than non-ionic ICM (p<0.05). Furthermore, ICM reversed the anti-apoptotic effect of lipopolysaccharide (1000 ng ml(-1)) treated neutrophils to control levels (23.0+\\/-3.5% to 61.2+\\/-5.3%; n=4; p<0.05). These agents induce apoptosis through a p38 MAPK independent pathway that results in mitochondrial depolarization, and is dependent on caspase activation. As neutrophils play a central role in host response to infection and injury, ICM, through induction of neutrophil apoptosis, could have a significant deleterious effect on host immune defence and

  7. Regulation of apoptosis and priming of neutrophil oxidative burst by diisopropyl fluorophosphate

    Directory of Open Access Journals (Sweden)

    Tsang Jennifer LY

    2010-07-01

    Full Text Available Abstract Background Diisopropyl fluorophosphate (DFP is a serine protease inhibitor that is widely used as an inhibitor of endogenous proteases in in vitro neutrophil studies. Its effects on neutrophil function are unclear. We sought to determine the biological effects of DFP on human neutrophil apoptosis and oxidative burst. Methods We isolated neutrophils from healthy volunteers, incubated them with DFP (2.5 mM, and evaluated neutrophil elastase (NE activity, neutrophil degranulation, apoptosis as reflected in hypodiploid DNA formation and exteriorization of phosphatidylserine (PS, processing and activity of caspases-3 and -8, oxidative burst activity and hydrogen peroxide release. Results Consistent with its activity as a serine protease inhibitor, DFP significantly inhibited NE activity but not the degranulation of azurophilic granules. DFP inhibited constitutive neutrophil apoptosis as reflected in DNA fragmentation, and the processing and activity of caspases-3 and -8. DFP also inhibited priming of neutrophils for oxidative burst activity and hydrogen peroxide release. However, DFP enhanced the exteriorization of PS in a dose-dependent manner. Conclusion We conclude that DFP exerts significant effects on neutrophil inflammatory function that may confound the interpretation of studies that use it for its antiprotease activity. We further conclude that endogenous proteases play a role in the biology of constitutive neutrophil apoptosis.

  8. Bid truncation, Bid/Bax targeting to the mitochondria, and caspase activation associated with neutrophil apoptosis are inhibited by granulocyte colony-stimulating factor

    NARCIS (Netherlands)

    Maianski, Nikolai A.; Roos, Dirk; Kuijpers, Taco W.

    2004-01-01

    Neutrophil apoptosis constitutes a way of managing neutrophil-mediated reactions. It allows coping with infections, but avoiding overt bystander tissue damage. Using digitonin-based subcellular fractionation and Western blotting, we found that spontaneous apoptosis of human neutrophils (after

  9. Effects of ghrelin on the apoptosis of human neutrophils in vitro

    Science.gov (United States)

    Li, Bin; Zeng, Mian; Zheng, Haichong; Huang, Chunrong; He, Wanmei; Lu, Guifang; Li, Xia; Chen, Yanzhu; Xie, Ruijie

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by lung inflammation and the diffuse infiltration of neutrophils into the alveolar space. Neutrophils are abundant, short-lived leukocytes that play a key role in immune defense against microbial infections. These cells die via apoptosis following the activation and uptake of microbes, and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter pathogens. Apoptosis is essential for the removal of neutrophils from inflamed tissues and for the timely resolution of neutrophilic inflammation. Ghrelin is an endogenous ligand for the growth hormone (GH) secretagogue receptor, produced and secreted mainly from the stomach. Previous studies have reported that ghrelin exerts anti-inflammatory effects in lung injury through the regulation of the apoptosis of different cell types; however, the ability of ghrelin to regulate alveolar neutrophil apoptosis remains largely undefined. We hypothesized that ghrelin may have the ability to modulate neutrophil apoptosis. In this study, to examine this hypothesis, we investigated the effects of ghrelin on freshly isolated neutrophils in vitro. Our findings demonstrated a decrease in the apoptotic ratio (as shown by flow cytometry), as well as in the percentage of cells with decreased mitochondrial membrane potential (ΔΨm) and in the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling-positive rate, accompanied by an increased B-cell lymphoma 2/Bax ratio and the downregulation of cleaved caspase-3 in neutrophils following exposure to lipopolysaccharide (100 ng/ml). However, pre-treatment with ghrelin at a physiological level (100 nM) did not have a notable influence on the neutrophils in all the aforementioned tests. Our findings suggest that ghrelin may not possess the ability to modulate the neutrophil lifespan in vitro. PMID:27431014

  10. Divergent effects of tumor necrosis factor alpha on apoptosis of human neutrophils

    NARCIS (Netherlands)

    van den Berg, J. M.; Weyer, S.; Weening, J. J.; Roos, D.; Kuijpers, T. W.

    2001-01-01

    Apoptosis of neutrophils is a key mechanism to control the intensity of the acute inflammatory response. Previously, the cytokine tumor necrosis factor alpha (TNF-alpha) was reported by some to have pro-apoptotic and by others to have antiapoptotic effects on neutrophils. The aim of this study was

  11. Effects of chronic occupational exposure to anaesthetic gases on the rate of neutrophil apoptosis among anaesthetists.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Volatile anaesthetic agents are known to influence neutrophil function. The aim was to determine the effect of chronic occupational exposure to volatile anaesthetic agents on the rate of neutrophil apoptosis among anaesthetists. To test this hypothesis, we compared the rate of neutrophil apoptosis in anaesthetists who had been chronically exposed to volatile anaesthetic agents with that in unexposed volunteers. METHODS: Venous blood (20 mL) was withdrawn from 24 ASA I-II volunteers, from which neutrophils were isolated, and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. RESULTS: At 1 h (but not at 12 and 24 h) in culture, the rate of neutrophil apoptosis was significantly less in the anaesthetists--13.8 (12.9%) versus 34.4 (12.1%) (P = 0.001). CONCLUSIONS: Chronic occupational exposure to volatile anaesthetic agents may inhibit neutrophil apoptosis. This may have implications for anaesthetists and similarly exposed healthcare workers in terms of the adequacy of their inflammatory response.

  12. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils.

    Directory of Open Access Journals (Sweden)

    Luísa M D Magalhães

    Full Text Available Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs associated with Chagas' disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively. Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host's immune response and favor parasite survival.

  13. Effect of smoking on neutrophil apoptosis in chronic periodontitis: An immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Sachin S Shivanaikar

    2013-01-01

    Full Text Available Context: Periodontal disease is caused by chronic infection inducing an inflammatory reaction leading to breakdown of tooth-supporting tissues. There are various risk factors for the disease, and smoking is one of them. Apoptosis plays a critical role in the regulation of inflammation and host immune response which helps in tissue homeostasis, and a disturbance in this is often associated with disease. The imbalance between the apoptosis and proliferation in the periodontal tissue results in periodontal disease. Neutrophils play an important role in the defense mechanism and are the most abundant immune cells in gingival inflammatory infiltrate in patients suffering from periodontal disease. Neutrophil disorders are associated with rapid destruction of periodontal tissues. Aim: To study the influence of smoking on apoptosis of neutrophils by quantifying them in the gingival connective tissue of smoking and nonsmoking subjects suffering from chronic periodontitis. Materials and Methods: Thirty gingival biopsies were harvested from 15 smoking and 15 nonsmoking subjects who suffered from chronic periodontitis. The apoptosis of neutrophils was assessed and quantified using p53 monoclonal mouse antihuman antibody. Statistical Analysis Used: Chi-square/Fisher′sexact test was used to find the significance of study parameters on a categorical scale between the two groups. Results: Neutrophil apoptosis was significantly more in the group of nonsmokers. There was no statistical difference between plaque and bleeding index, but there was a significant increase in clinical attachment loss among smokers. Conclusions: The study reveals that smoking plays a significant role in the inhibition of neutrophil apoptosis, thereby contributing to the destruction of periodontal tissues in periodontitis.

  14. General versus regional anaesthesia for cataract surgery: effects on neutrophil apoptosis and the postoperative pro-inflammatory state.

    LENUS (Irish Health Repository)

    Goto, Y

    2012-02-03

    At clinically relevant concentrations, volatile anaesthetic agents influence neutrophil function. Our hypothesis was that sevoflurane would inhibit neutrophil apoptosis and consequently influence the postoperative pro-inflammatory state. In order to identify selectively the effect of the anaesthetic agent sevoflurane, we studied patients undergoing minimally stimulating (cataract) surgery randomly allocated to receive either sevoflurane (n = 11) or local anaesthesia (n = 12). Venous blood samples were taken immediately prior to anaesthesia and at 1, 8 and 24 h thereafter. The rate of neutrophil apoptosis, plasma concentration of cytokines and differential white cell count were measured. The rates of neutrophil apoptosis and plasma concentrations of IL-1beta, TNF-alpha and IL-8 at each time point were similar in the two groups. IL-6 concentrations increased significantly and to a similar extent compared to preanaesthetic levels at 8 and 24 h. This study demonstrates that sevoflurane does not influence the rate of neutrophil apoptosis, cytokine concentrations and neutrophil count following cataract surgery.

  15. The effect of the anaesthetic agent isoflurane on the rate of neutrophil apoptosis in vitro.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND: Volatile anaesthetic agents influence neutrophil function, and potentially, the inflammatory response to surgery. AIM: The objective of this study was to determine the effect of isoflurane (1-4%) on human polymorphonuclear neutrophil apoptosis in vitro. METHODS: Venous blood from 12 healthy volunteers was exposed to 0, 1, and 4% isoflurane delivered via a 14G Wallace flexihub internal jugular cannula, at a fresh gas flow of 0.51\\/min for 5 minutes. Isolated neutrophils were assessed for apoptosis at 1, 12, and 24 hours in culture using dual staining with annexin V-FITC and propidium iodide (Annexin-V FITC assay). Data were analysed using paired, one-tailed Student\\'s t-tests. p<0.05 was considered significant. RESULTS: At 1 hour apoptosis was inhibited in the 1% (5.1 [6.8]%; p=0.017) and 4% (4.8 [4.5]%; p=0.008) isoflurane groups compared to control (11.3 [6.9]%). At 12 and 24 hours, a dose-dependent inhibition of apoptosis was demonstrated, i.e. 4% > 1% > 0%. CONCLUSION: Human neutrophil apoptosis is inhibited in a concentration-dependent manner in vitro by isoflurane in clinical concentrations.

  16. Does chronic occupational exposure to volatile anesthetic agents influence the rate of neutrophil apoptosis?

    LENUS (Irish Health Repository)

    Goto, Y

    2012-02-03

    PURPOSE: The purpose of this preliminary investigation was to determine whether the rate of neutrophil apoptosis in health care workers is influenced by exposure to volatile anesthetic agents. METHODS: Percentage neutrophil apoptosis (Annexin-V FITC assay) was measured in health care workers (n = 20) and unexposed volunteers (n = 10). For the health care workers, time weighted personal exposure monitoring to N2O, sevoflurane and isoflurane was carried out. RESULTS: The sevoflurane and isoflurane concentrations to which health care workers were exposed were less than recommended levels in all 20 cases. Percent apoptosis was less at 24 (but not at one and 12) hr culture in health care workers [50.5 (9.7)%; P = 0.008] than in unexposed volunteers [57.3 (5.1)%]. CONCLUSION: Inhibition of neutrophil apoptosis at 24 hr culture was demonstrated in health care workers chronically exposed to volatile anesthetic agents. Exposure was well below recommended levels in the both scavenged and unscavenged work areas in which the study was carried out. Further study is required to assess the effect of greater degrees of chronic exposure to volatile anesthetic agents on neutrophil apoptosis.

  17. House Dust Mite Allergen Regulates Constitutive Apoptosis of Normal and Asthmatic Neutrophils via Toll-Like Receptor 4.

    Directory of Open Access Journals (Sweden)

    Do Hyung Kim

    Full Text Available House dust mites (HDMs induce allergic diseases such as asthma. Neutrophil apoptosis is an important process of innate immunity, and its dysregulation is associated with asthma. In this study, we examined the effects of HDM on constitutive apoptosis of normal and asthmatic neutrophils. Extract of Dermatophagoides pteronissinus (DP inhibited neutrophil apoptosis, but Dermatophagoides farinae extract had no effect. Anti-apoptotic signaling mediated by DP involves in TLR4, Lyn, PI3K, Akt, ERK, and NF-κB in normal neutrophils. DP delayed cleavage of procaspase 9 and procaspase 3 and the decrease in Mcl-1 expression. Supernatant collected from DP-treated normal neutrophils inhibited the constitutive apoptosis of normal neutrophils, and S100A8 and S100A9 were identified as anti-apoptotic proteins in the supernatant. S100A8 and S100A9 transduced the anti-apoptotic signal via TLR4, Lyn, PI3K, Akt, ERK, and NF-κB. DP also suppressed asthmatic neutrophil apoptosis and induced secretion of S100A8 and S100A9, which delayed the constitutive apoptosis. The anti-apoptotic effects of DP, S100A8 and S100A9 in asthmatic neutrophils are associated with TLR4, Lyn, PI3K, Akt, ERK, and NF-κB. The concentrations of S100A8 and S100A9 were significantly elevated in asthmatic bronchoalveolar lavage fluid (BALF when compared to normal BALF (p<0.01, but not in serum. S100A8 concentration in BALF was positively correlated with the number of BALF neutrophils and negatively correlated with FEV1(%. These findings improve our understanding of the role of HDM in regulation of neutrophil apoptosis in normal individuals and asthmatics and will enable elucidation of asthma pathogenesis.

  18. Flow Cytometric Evaluation of Human Neutrophil Apoptosis During Nitric Oxide Generation In Vitro: The Role of Exogenous Antioxidants

    Directory of Open Access Journals (Sweden)

    Zofia Sulowska

    2005-01-01

    in vitro. The effect of exogenous supply of NO donors such as SNP, SIN-1, and GEA-3162 on the course of human neutrophil apoptosis and the role of extracellular antioxidants in this process was investigated. Isolated from peripheral blood, neutrophils were cultured in the presence or absence of NO donor compounds and antioxidants for 8, 12, and 20 hours. Apoptosis of neutrophils was determined in vitro by flow cytometric analysis of cellular DNA content and Annexin V protein binding to the cell surface. Exposure of human neutrophils to GEA-3162 and SIN-1 significantly accelerates and enhances their apoptosis in vitro in a time-dependent fashion. In the presence of SNP, intensification of apoptosis has not been revealed until 12 hours after the culture. The inhibition of GEA-3162- and SIN-1-mediated neutrophil apoptosis by superoxide dismutase (SOD but not by catalase (CAT was observed. Our results show that SOD and CAT can protect neutrophils against NO-donors-induced apoptosis and suggest that the interaction of NO and oxygen metabolites signals may determine the destructive or protective role of NO donor compounds during apoptotic neutrophil death.

  19. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Rie Ibusuki

    Full Text Available Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil peptide (HNP-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mechanism of liver injury induced by HNP-1.Transgenic (TG mice expressing HNP-1 under the control of a β-actin-based promoter were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N (WT mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of HNP-1 on hepatocytes in vitro.After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were significantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tissues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phosphorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the decreased level of Bcl2 in a concentration-dependent manner in vitro.HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepatocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p expression.

  20. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis

    Directory of Open Access Journals (Sweden)

    Ajantha Nadesalingam

    2018-03-01

    Full Text Available Tonicity of saline (NaCl is important in regulating cellular functions and homeostasis. Hypertonic saline is administered to treat many inflammatory diseases, including cystic fibrosis. Excess neutrophil extracellular trap (NET formation, or NETosis, is associated with many pathological conditions including chronic inflammation. Despite the known therapeutic benefits of hypertonic saline, its underlying mechanisms are not clearly understood. Therefore, we aimed to elucidate the effects of hypertonic saline in modulating NETosis. For this purpose, we purified human neutrophils and induced NETosis using agonists such as diacylglycerol mimetic phorbol myristate acetate (PMA, Gram-negative bacterial cell wall component lipopolysaccharide (LPS, calcium ionophores (A23187 and ionomycin from Streptomyces conglobatus, and bacteria (Pseudomonas aeruginosa and Staphylococcus aureus. We then analyzed neutrophils and NETs using Sytox green assay, immunostaining of NET components and apoptosis markers, confocal microscopy, and pH sensing reagents. This study found that hypertonic NaCl suppresses nicotinamide adenine dinucleotide phosphate oxidase (NADPH2 or NOX2-dependent NETosis induced by agonists PMA, Escherichia coli LPS (0111:B4 and O128:B12, and P. aeruginosa. Hypertonic saline also suppresses LPS- and PMA- induced reactive oxygen species production. It was determined that supplementing H2O2 reverses the suppressive effect of hypertonic saline on NOX2-dependent NETosis. Many of the aforementioned suppressive effects were observed in the presence of equimolar concentrations of choline chloride and osmolytes (d-mannitol and d-sorbitol. This suggests that the mechanism by which hypertonic saline suppresses NOX2-dependent NETosis is via neutrophil dehydration. Hypertonic NaCl does not significantly alter the intracellular pH of neutrophils. We found that hypertonic NaCl induces apoptosis while suppressing NOX2-dependent NETosis. In contrast, hypertonic

  1. Severe exercise and exercise training exert opposite effects on human neutrophil apoptosis via altering the redox status.

    Directory of Open Access Journals (Sweden)

    Guan-Da Syu

    Full Text Available Neutrophil spontaneous apoptosis, a process crucial for immune regulation, is mainly controlled by alterations in reactive oxygen species (ROS and mitochondria integrity. Exercise has been proposed to be a physiological way to modulate immunity; while acute severe exercise (ASE usually impedes immunity, chronic moderate exercise (CME improves it. This study aimed to investigate whether and how ASE and CME oppositely regulate human neutrophil apoptosis. Thirteen sedentary young males underwent an initial ASE and were subsequently divided into exercise and control groups. The exercise group (n = 8 underwent 2 months of CME followed by 2 months of detraining. Additional ASE paradigms were performed at the end of each month. Neutrophils were isolated from blood specimens drawn at rest and immediately after each ASE for assaying neutrophil spontaneous apoptosis (annexin-V binding on the outer surface along with redox-related parameters and mitochondria-related parameters. Our results showed that i the initial ASE immediately increased the oxidative stress (cytosolic ROS and glutathione oxidation, and sequentially accelerated the reduction of mitochondrial membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; ii CME upregulated glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; iii most effects of CME were unchanged after detraining; and iv CME blocked ASE effects and this capability remained intact even after detraining. Furthermore, the ASE effects on neutrophil spontaneous apoptosis were mimicked by adding exogenous H(2O(2, but not by suppressing mitochondrial membrane potential. In conclusion, while ASE induced an oxidative state and resulted in acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long periods of time even after detraining.

  2. Neutrophil and macrophage apoptosis in bronchoalveolar lavage fluid from healthy horses and horses with recurrent airway obstruction (RAO)

    Science.gov (United States)

    2014-01-01

    Background Dysregulation of apoptosis has been implicated in a range of diseases including tumors, neurodegenerative and autoimmine diseases, as well as allergic asthma and chronic obstructive pulmonary disease (COPD) in humans. Although it has a different pathophysiology, delayed apoptosis of various inflammatory cells may play a pivotal role in the development of recurrent airway obstruction (RAO) in horses. Reduction of inflammatory cell apoptosis or a dysregulation of this process could lead to chronic inflammation and tissue injury. Therefore, the aim of this study was to investigate the rate of apoptosis and necrosis of neutrophils and macrophages in bronchoalveolar lavage fluid obtained from seven horses suffering from RAO (study group) and seven control horses. Results We demonstrated that neutrophil/macrophage apoptosis is altered in RAO-affected horses compared with the control group in the BAL fluid. We found a significant difference between the median percentage of early and late apoptosis of neutrophils between the study and control group of horses. Moreover, we found a positive correlation between the rate of apoptosis and the median percentage of macrophages in RAO-affected horses. Conclusion The findings suggest that apoptosis dysregulation may play a significant role in the pathogenesis of RAO. However, further studies are needed to clarify the role of altered apoptosis in the course of equine recurrent airway obstruction. PMID:24460911

  3. The Natural Stilbenoid Piceatannol Decreases Activity and Accelerates Apoptosis of Human Neutrophils: Involvement of Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Viera Jancinova

    2013-01-01

    Full Text Available Neutrophils are able to release cytotoxic substances and inflammatory mediators, which, along with their delayed apoptosis, have a potential to maintain permanent inflammation. Therefore, treatment of diseases associated with chronic inflammation should be focused on neutrophils; formation of reactive oxygen species and apoptosis of these cells represent two promising targets for pharmacological intervention. Piceatannol, a naturally occurring stilbenoid, has the ability to reduce the toxic action of neutrophils. This substance decreased the amount of oxidants produced by neutrophils both extra- and intracellularly. Radicals formed within neutrophils (fulfilling a regulatory role were reduced to a lesser extent than extracellular oxidants, potentially dangerous for host tissues. Moreover, piceatannol did not affect the phosphorylation of p40phox—a component of NADPH oxidase, responsible for the assembly of functional oxidase in intracellular (granular membranes. The stilbenoid tested elevated the percentage of early apoptotic neutrophils, inhibited the activity of protein kinase C (PKC—the main regulatory enzyme in neutrophils, and reduced phosphorylation of PKC isoforms α, βII, and δ on their catalytic region. The results indicated that piceatannol may be useful as a complementary medicine in states associated with persisting neutrophil activation and with oxidative damage of tissues.

  4. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  5. Modulation and Apoptosis of Neutrophil Granulocytes by Extracorporeal Photopheresis in the Treatment of Chronic Graft-Versus-Host Disease.

    Directory of Open Access Journals (Sweden)

    Cindy Franklin

    Full Text Available Chronic graft-versus-host disease (cGVHD is a common side effect of allogeneic stem cell transplantation and a major cause of morbidity and mortality in affected patients. Especially skin, eyes and oral mucosa are affected. This can lead to pain and functional impairment. Extracorporeal photopheresis (ECP is an effective immunomodulatory therapy with minimal side effects but its mode of action is still largely unknown. The objective of the present study was to examine the effects of ECP on neutrophil granulocytes in patients with cGVHD. Analysis of leukocytes from cGVHD patients obtained from the ECP device during treatment showed that neutrophil granulocytes account for the majority of cells treated during ECP. Neutrophils from healthy donors treated in vitro with 8-methoxypsoralen and UVA light as well as neutrophils from buffy coats of patients with cGVHD treated by ECP showed increased apoptosis and decreased half-life. In remaining non-apoptotic cells chemoirradiation resulted in loss of activation markers and reduced effector functions. This was accompanied by an increase in extracellular arginase-1 activity. Additional comparison of neutrophils isolated from blood of cGVHD patients before and 24h after ECP revealed a decreased half-life and reduction of effector functions of post-ECP neutrophils ex vivo. These observations strongly suggest that ECP induces both apoptosis and physiological changes in neutrophils and that these changes also take place in vivo. This study is the first to show that ECP modulates apoptosis and inflammatory activity in neutrophil granulocytes, indicating that neutrophils may significantly contribute to the overall immunomodulatory effects attributed to this treatment.

  6. Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation.

    Science.gov (United States)

    Ge, Yan; Yoshiie, Kiyotaka; Kuribayashi, Futoshi; Lin, Mingqun; Rikihisa, Yasuko

    2005-01-01

    The inhibition of neutrophil apoptosis plays a central role in human granulocytic anaplasmosis. Intracellular signalling pathways through which the obligatory intracellular bacterium Anaplasma phagocytophilum inhibits the spontaneous apoptosis of human peripheral blood neutrophils were investigated. bfl-1 mRNA levels in uninfected neutrophils after 12 h in culture were reduced to approximately 5-25% of 0 h levels, but remained high in infected neutrophils. The eukaryotic RNA synthesis inhibitor, actinomycin D, prevented the maintenance of bfl-1 mRNA levels by A. phagocytophilum. Differences in mcl-1, bax, bcl-w, bad or bak mRNA levels in infected versus uninfected neutrophils were not remarkable. By using mitochondrial fluorescent dyes, Mitotracker Red and JC-1, it was found that most uninfected neutrophils lost mitochondrial membrane potential after 10-12 h incubation, whereas A. phagocytophilum-infected neutrophils maintained high membrane potential. Caspase 3 activity and the degree of apoptosis were lower in dose-dependent manner in A. phagocytophilum-infected neutrophils at 16 h post infection, as compared to uninfected neutrophils. Anti-active caspase 3 antibody labelling showed less positively stained population in infected neutrophils compared to those in uninfected neutrophils after 12 h incubation. These results suggest that A. phagocytophilum inhibits human neutrophil apoptosis via transcriptional upregulation of bfl-1 and inhibition of mitochondria-mediated activation of caspase 3.

  7. Comparison of Neutrophil Apoptosis by the Pseudomonas Aeruginosa Exotoxins between Healthy Individuals and Term Infants

    Directory of Open Access Journals (Sweden)

    Soheila Khazaei

    2013-04-01

    Full Text Available Background: Pseudomonas aeruginosa may be colonized in different human tissues and result in some infections potentially. Thus, considering that these bacteria are resistance to most of the current antibiotics, an examination on pathogenesis mechanisms of such bacteria can be effective in controlling the infections developed by it.Materials and Methods: In this project, among 40 blood samples (20 healthy persons, 20 infants, an amount of 5 ml (2 ml in the infants heparinized blood was collected form each and then neutrophils were isolated by a standard method and were counted by neubauer lam. After culturing Pseudomonas bacteria in broth medium, some tubes with densities of 1, 2, 3 and 4 McFarland were prepared and the bacteria were isolated by centrifuge method with 3000rpm for 10 minutes and then its exotoxin were exposed to neutrophils of the groups under study. The effect of time and the bacteria count on the amount of the secreted toxin and in adjacency to neutrophils was measured.Results: There were 11 men and 9 women in the health group and the infants group consisted of 12 boys and 8 girls. Death cell percentage of neutrophils was 100% in the health group and 8.90% in the infants group. Percentage of bacterial growth in the medium 1 and 2 McFarland was zero; in the medium 3 McFarland, it was 12.5% in the healthy group and 1% in the infants group (p<0.10. The average rate of cell death in the minute 15th was different in two groups (68.5% in health group vs. 92.5% in the infants (p<0.0005. Conclusion: This study showed the effect of Pseudomonas bacteria on the development of early cell death in the infants very well. As it was shown, this effect is time-dependent and this cell death (apoptosis is occurred in the infants earlier than health people.

  8. The influence of very low doses of N-nitrosodimethylamine (NDMA) on the apoptosis of rat neutrophils in vivo. The role of reactive oxygen species.

    Science.gov (United States)

    Jablonski, J; Jablonska, E; Chojnowski, M

    2001-08-13

    N-nitrosodimethylamine (NDMA) causes the apoptosis of neutrophils in vitro experiments. This compound also has the ability to stimulate neutrophils for the production of reactive oxygen species. It has been decided to examine more closely whether the apoptosis of neutrophils by NDMA is caused by the influence of the radicals produced by these cells and whether the stimulation to undergo apoptosis of neutrophils is caused by NDMA in either the original form or by its metabolites. The experiment was conducted on rats. The animals were administered a one-time dose of NDMA intragastrically, 1.5 mg/kg. The research was conducted 1,2,4,12 h consecutively following NDMA administration. The concentration of NDMA in blood was evaluated by means of the gas chromatography method. The neutrophils were isolated from blood by means of differential centrifugation. Respiratory burst was assessed in cells, by means of the cytochrome c reduction method. The percentage of cells revealing morphological properties of apoptosis was determined under the fluorescent microscope. It has been observed that the activation of the respiratory burst is caused mainly by non-metabolised NDMA. Probably the non-metabolised molecules of this compound also have a decisive role in the initiation of apoptosis of neutrophils. It can be assumed that the main factor responsible for the apoptosis of neutrophil rats following a one-time NDMA administration is the induction of respiratory burst in neutrophils by this compound.

  9. Anti-Inflammatory benefits of antibiotic-induced neutrophil apoptosis: tulathromycin induces caspase-3-dependent neutrophil programmed cell death and inhibits NF-kappaB signaling and CXCL8 transcription.

    Science.gov (United States)

    Fischer, Carrie D; Beatty, Jennifer K; Zvaigzne, Cheryl G; Morck, Douglas W; Lucas, Merlyn J; Buret, A G

    2011-01-01

    Clearance of apoptotic neutrophils is a central feature of the resolution of inflammation. Findings indicate that immuno-modulation and induction of neutrophil apoptosis by macrolide antibiotics generate anti-inflammatory benefits via mechanisms that remain obscure. Tulathromycin (TUL), a new antimicrobial agent for bovine respiratory disease, offers superior clinical efficacy for reasons not fully understood. The aim of this study was to identify the immuno-modulating effects of tulathromycin and, in this process, to establish tulathromycin as a new model for characterizing the novel anti-inflammatory properties of antibiotics. Bronchoalveolar lavage specimens were collected from Holstein calves 3 and 24 h postinfection, challenged intratracheally with live Mannheimia haemolytica (2 × 10(7) CFU), and treated with vehicle or tulathromycin (2.5 mg/kg body weight). Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining and enzyme-linked immunosorbent assay (ELISA) revealed that tulathromycin treatment significantly increased leukocyte apoptosis and reduced levels of proinflammatory leukotriene B(4) in M. haemolytica-challenged calves. In vitro, tulathromycin concentration dependently induced apoptosis in freshly isolated bovine neutrophils from healthy steers in a capase-3-dependent manner but failed to induce apoptosis in bovine fibroblasts, epithelial cells, and endothelial cells, as well as freshly isolated bovine blood monocytes and monocyte-derived macrophages. The proapoptotic effects of TUL were also, in part, drug specific; equimolar concentrations of penicillin G, oxytetracycline, and ceftiofur failed to cause apoptosis in bovine neutrophils. In addition, tulathromycin significantly reduced levels of phosphorylated IκBα, nuclear translocation of NF-κB p65, and mRNA levels of proinflammatory interleukin-8 in lipopolysaccharide (LPS)-stimulated bovine neutrophils. The findings illustrate novel mechanisms through which

  10. Neutrophils are resistant to Yersinia YopJ/P-induced apoptosis and are protected from ROS-mediated cell death by the type III secretion system.

    Directory of Open Access Journals (Sweden)

    Justin L Spinner

    2010-02-01

    Full Text Available The human innate immune system relies on the coordinated activity of macrophages and polymorphonuclear leukocytes (neutrophils or PMNs for defense against bacterial pathogens. Yersinia spp. subvert the innate immune response to cause disease in humans. In particular, the Yersinia outer protein YopJ (Y. pestis and Y. pseudotuberculosis and YopP (Y. enterocolitica rapidly induce apoptosis in murine macrophages and dendritic cells. However, the effects of Yersinia Yop J/P on neutrophil fate are not clearly defined.In this study, we utilized wild-type and mutant strains of Yersinia to test the contribution of YopJ and YopP on induction of apoptosis in human monocyte-derived macrophages (HMDM and neutrophils. Whereas YopJ and YopP similarly induced apoptosis in HMDMs, interaction of human neutrophils with virulence plasmid-containing Yersinia did not result in PMN caspase activation, release of LDH, or loss of membrane integrity greater than PMN controls. In contrast, interaction of human PMNs with the virulence plasmid-deficient Y. pestis strain KIM6 resulted in increased surface exposure of phosphatidylserine (PS and cell death. PMN reactive oxygen species (ROS production was inhibited in a virulence plasmid-dependent but YopJ/YopP-independent manner. Following phagocytic interaction with Y. pestis strain KIM6, inhibition of PMN ROS production with diphenyleneiodonium chloride resulted in a reduction of PMN cell death similar to that induced by the virulence plasmid-containing strain Y. pestis KIM5.Our findings showed that Yersinia YopJ and/or YopP did not induce pronounced apoptosis in human neutrophils. Furthermore, robust PMN ROS production in response to virulence plasmid-deficient Yersinia was associated with increased PMN cell death, suggesting that Yersinia inhibition of PMN ROS production plays a role in evasion of the human innate immune response in part by limiting PMN apoptosis.

  11. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis.

    Science.gov (United States)

    Binet, François; Cavalli, Hélène; Moisan, Eliane; Girard, Denis

    2006-02-01

    The anti-cancer drug arsenic trioxide (AT) induces apoptosis in a variety of transformed or proliferating cells. However, little is known regarding its ability to induce apoptosis in terminally differentiated cells, such as neutrophils. Because neutropenia has been reported in some cancer patients after AT treatment, we hypothesised that AT could induce neutrophil apoptosis, an issue that has never been investigated. Herein, we found that AT-induced neutrophil apoptosis and gelsolin degradation via caspases. AT did not increase neutrophil superoxide production and did not induce mitochondrial generation of reactive oxygen species. AT-induced apoptosis in PLB-985 and X-linked chronic granulomatous disease (CGD) cells (PLB-985 cells deficient in gp91(phox) mimicking CGD) at the same potency. Addition of catalase, an inhibitor of H2O2, reversed AT-induced apoptosis and degradation of the cytoskeletal proteins gelsolin, alpha-tubulin and lamin B1. Unexpectedly, AT-induced de novo protein synthesis, which was reversed by catalase. Cycloheximide partially reversed AT-induced apoptosis. We conclude that AT induces neutrophil apoptosis by a caspase-dependent mechanism and via de novo protein synthesis. H2O2 is of major importance in AT-induced neutrophil apoptosis but its production does not originate from nicotinamide adenine dinucleotide phosphate dehydrogenase activation and mitochondria. Cytoskeletal structures other than microtubules can now be considered as novel targets of AT.

  12. Apoptosis modulation in the immune system reveals a role of neutrophils in tissue damage in a murine model of chlamydial genital infection.

    Science.gov (United States)

    Zortel, Tom; Schmitt-Graeff, Annette; Kirschnek, Susanne; Häcker, Georg

    2018-03-07

    Chlamydial infection frequently causes damage to the female genital tract. The precise mechanisms of chlamydial clearance and tissue damage are unknown but studies suggest immunopathology with a particular role of neutrophils. The goal of this study was to understand the contribution of the immune system, in particular neutrophils. Using Chlamydia muridarum, we infected mice with a prolonged immune response due to expression of Bcl-2 in haematopoietic cells (Bcl-2-mice), and mice where mature neutrophils are lacking due to the deletion of Mcl-1 in myeloid cells (LysM-cre-mcl-1-flox-mice; Mcl-1-mice). We monitored bacterial clearance, cellular infiltrate and long-term tissue damage. Both mutant strains showed slightly delayed clearance of the acute infection. Bcl-2-mice had a strongly increased inflammatory infiltrate concerning almost all cell lineages. The infection of Bcl-2-mice caused increased tissue damage. The loss of neutrophils in Mcl-1-mice was associated with substantial quantitative and qualitative alterations of the inflammatory infiltrate. Mcl-1-mice had higher chlamydial burden and reduced tissue damage, including lower incidence of hydrosalpinx and less uterine dilation. Inhibition of apoptosis in the haematopoietic system increases inflammation and tissue damage. Neutrophils have broad functions, including a role in chlamydial clearance and in tissue destruction.

  13. Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR-2.

    LENUS (Irish Health Repository)

    Power, Colm P

    2012-02-03

    The human sepsis syndrome resulting from bacterial infection continues to account for a significant proportion of hospital mortality. Neutralizing strategies aimed at individual bacterial wall products (such as LPS) have enjoyed limited success in this arena. Bacterial lipoprotein (BLP) is a major constituent of the wall of diverse bacterial forms and profoundly influences cellular function in vivo and in vitro, and has been implicated in the etiology of human sepsis. Delayed polymorphonuclear cell (PMN) apoptosis is a characteristic feature of human sepsis arising from Gram-negative or Gram-positive bacterial infection. Bacterial wall product ligation and subsequent receptor-mediated events upstream of caspase inhibition in neutrophils remain incompletely understood. BLP has been shown to exert its cellular effects primarily through TLR-2, and it is now widely accepted that lateral associations with the TLRs represent the means by which CD14 communicates intracellular messages. In this study, we demonstrate that BLP inhibits neutrophil mitochondrial membrane depolarization with a subsequent reduction in caspase-3 processing, ultimately leading to a significant delay in PMN apoptosis. Pretreatment of PMNs with an anti-TLR-2 mAb or anti-CD14 mAb prevented BLP from delaying PMN apoptosis to such a marked degree. Combination blockade using both mAbs completely prevented the effects of BLP (in 1 and 10 ng\\/ml concentrations) on PMN apoptosis. At higher concentrations of BLP, the antiapoptotic effects were observed, but were not as pronounced. Our findings therefore provide the first evidence of a crucial role for both CD14 and TLR-2 in delayed PMN apoptosis arising from bacterial infection.

  14. Paraquat-induced reactive oxygen species inhibit neutrophil apoptosis via a p38 MAPK/NF-κB-IL-6/TNF-α positive-feedback circuit.

    Directory of Open Access Journals (Sweden)

    Xiaolong Wang

    Full Text Available Paraquat (PQ, a widely used herbicide and potent reactive oxygen species (ROS inducer, can injure multiple tissues and organs, especially the lung. However, the underlying mechanism is still poorly understood. According to previous reports, neutrophil aggregation and excessive ROS production might play pivotal pathogenetic roles. In the present study, we found that PQ could prolong neutrophil lifespan and induce ROS generation in a concentration-independent manner. Activated nuclear factor-κB (NF-κB, p38 mitogen-activated kinase (p38 MAPK, and myeloid cell leukemia sequence 1 (Mcl-1 but not Akt signaling pathways were involved in this process, as well as increasing levels of interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, and IL-1β. Furthermore, the proinflammatory mediators IL-6 and TNF-α could in turn promote ROS generation, creating a vicious cycle. The existence of such a feedback loop is supported by our finding that neutrophil apoptosis is attenuated by PQ in a concentration-independent manner and could partially explain the clinical dilemma why oxygen therapy will exacerbate PQ induced tissue injury.

  15. Targeting Neutrophilic Inflammation using Polymersome-Mediated Cellular Delivery

    OpenAIRE

    Robertson, J.D.; Ward, J.R.; Avila-Olias, M.; Battaglia, G.; Renshaw, S.A.

    2017-01-01

    Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In ...

  16. STUDIES IN DYNAMICS OF APOPTOSIS-RELATED SURFACE ANTIGEN (CD95 EXPRESSION ON NEUTROPHILS FROM CERVICAL AND VAGINAL SECRETIONS IN WOMEN WITH CHLAMIDIA INFECTION

    Directory of Open Access Journals (Sweden)

    O. A. Giesinger

    2010-01-01

    Full Text Available CD95 (Fas/APO-1 antigen expression was studied on the surface of neutrophil granulocytes from cervical secretions. Sixty-five female patients with established Chlamydia infection were found to have an increased CD95+ antigen expression following basic therapy. CD95+ receptors on neutrophils in the patients with Chlamydia infection have been shown to return to normal levels following a combined magnetic laser treatment.

  17. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1

    OpenAIRE

    Ruth Moges; Ruth Moges; Dimitri Desmonts De Lamache; Dimitri Desmonts De Lamache; Saman Sajedy; Bernard S. Renaux; Bernard S. Renaux; Morley D. Hollenberg; Morley D. Hollenberg; Gregory Muench; Elizabeth M. Abbott; Andre G. Buret; Andre G. Buret

    2018-01-01

    Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the ...

  18. Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery.

    Science.gov (United States)

    Robertson, James D; Ward, Jon R; Avila-Olias, Milagros; Battaglia, Giuseppe; Renshaw, Stephen A

    2017-05-01

    Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In this study, we deliver therapeutic compounds to neutrophils using biocompatible, nanometer-sized synthetic vesicles, or polymersomes, which are internalized by binding to scavenger receptors and subsequently escape the early endosome through a pH-triggered disassembly mechanism. This allows polymersomes to deliver molecules into the cell cytosol of neutrophils without causing cellular activation. After optimizing polymersome size, we show that polymersomes can deliver the cyclin-dependent kinase inhibitor (R)-roscovitine into human neutrophils to promote apoptosis in vitro. Finally, using a transgenic zebrafish model, we show that encapsulated (R)-roscovitine can speed up inflammation resolution in vivo more efficiently than the free drug. These results show that polymersomes are effective intracellular carriers for drug delivery into neutrophils. This has important consequences for the study of neutrophil biology and the development of neutrophil-targeted therapeutics. Copyright © 2017 The Authors.

  19. Estresse oxidativo e aumento da apoptose em neutrófilos de cães com azotemia pré-renal Oxidative stress and increase in apoptosis index of neutrophils from dogs with prerenal azotemia

    Directory of Open Access Journals (Sweden)

    A.C.R.A. Silva

    2013-02-01

    Full Text Available O presente trabalho tem como objetivo testar a hipótese de que, à semelhança do que ocorre na uremia, cães com azotemia pré-renal sofrem estresse oxidativo, o qual está relacionado com alterações do metabolismo oxidativo e apoptose dos neutrófilos. Para tal, foi determinada a peroxidação lipídica pela quantificação do malondialdeído (MDA e o status antioxidante total do plasma de 15 cães normais e 10 com azotemia pré-renal, correlacionando-os com a produção de superóxido e o índice apoptótico dos neutrófilos. As determinações do MDA e do status antioxidante total foram estabelecidas empregando-se um conjunto de reagentes comerciais. Por meio de citometria de fluxo capilar, a produção de superóxido e a apoptose de neutrófilos isolados de sangue periférico foram determinadas utilizando-se a sonda hidroetidina e o sistema anexina V-PE, respectivamente. Cães azotêmicos (26,29±5,32g/L apresentaram menor concentração (p=0,0264 do antioxidante albumina em relação ao grupo-controle (30,36±3,29g/L e também uma menor (p=0,0027 capacidade antioxidante total (2,36±0,32 versus 2,73±0,24mmol/L, enquanto não houve alteração da peroxidação lipídica plasmática e da produção de superóxido neutrofílica. Concluiu-se que, à semelhança do que ocorre na uremia, condições azotêmicas pré-renais no cão causam estresse oxidativo e aceleração da apoptose dos neutrófilos.This study aims to test the hypothesis that, similarly to what occurs in uremia, dogs with prerenal azotemia suffer oxidative stress associated with changes in oxidative metabolism and apoptosis in neutrophils. For this purpose, fifteen normal dogs and ten with prerenal azotemia had lipid peroxidation determined by quantifying the malondialdehyde (MDA and had plasma total antioxidant status evaluated, correlating them with the superoxide production and apoptotic index of neutrophils. MDA and plasma total antioxidant status were determined using

  20. Tamoxifen induces apoptotic neutrophil efferocytosis in horses.

    Science.gov (United States)

    Olave, C; Morales, N; Uberti, B; Henriquez, C; Sarmiento, J; Ortloff, A; Folch, H; Moran, G

    2018-03-01

    Macrophages and neutrophils are important cellular components in the process of acute inflammation and its subsequent resolution, and evidence increasingly suggests that they play important functions during the resolution of chronic, adaptive inflammatory processes. Exacerbated neutrophil activity can be harmful to surrounding tissues; this is important in a range of diseases, including allergic asthma and chronic obstructive pulmonary disease in humans, and equine asthma (also known as recurrent airway obstruction (RAO). Tamoxifen (TX) is a non-steroidal estrogen receptor modulator with effects on cell growth and survival. Previous studies showed that TX treatment in horses with induced acute pulmonary inflammation promoted early apoptosis of blood and BALF neutrophils, reduction of BALF neutrophils, and improvement in animals' clinical status. The aim of this study was to describe if TX induces in vitro efferocytosis of neutrophils by alveolar macrophages. Efferocytosis assay, myeloperoxidase (MPO) detection and translocation phosphatidylserine (PS) were performed on neutrophils isolated from peripheral blood samples from five healthy horses. In in vitro samples from heathy horses, TX treatment increases the phenomenon of efferocytosis of peripheral neutrophils by alveolar macrophages. Similar increases in supernatant MPO concentration and PS translocation were observed in TX-treated neutrophils, compared to control cells. In conclusion, these results confirm that tamoxifen has a direct effect on equine peripheral blood neutrophils, through stimulation of the engulfment of apoptotic neutrophils by alveolar macrophages.

  1. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1.

    Science.gov (United States)

    Moges, Ruth; De Lamache, Dimitri Desmonts; Sajedy, Saman; Renaux, Bernard S; Hollenberg, Morley D; Muench, Gregory; Abbott, Elizabeth M; Buret, Andre G

    2018-01-01

    Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096-9.6 µM) were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A 4 (LXA 4 ) and Resolvin D1 (RvD 1 ) while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB 4 ) in Ca 2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C-X-C motif) ligand 8 (CXCL-8, also known as Interleukin-8) and interleukin-1 alpha (IL-1α) protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects in porcine

  2. Anti-Inflammatory Benefits of Antibiotics: Tylvalosin Induces Apoptosis of Porcine Neutrophils and Macrophages, Promotes Efferocytosis, and Inhibits Pro-Inflammatory CXCL-8, IL1α, and LTB4 Production, While Inducing the Release of Pro-Resolving Lipoxin A4 and Resolvin D1

    Directory of Open Access Journals (Sweden)

    Ruth Moges

    2018-04-01

    Full Text Available Excessive accumulation of neutrophils and their uncontrolled death by necrosis at the site of inflammation exacerbates inflammatory responses and leads to self-amplifying tissue injury and loss of organ function, as exemplified in a variety of respiratory diseases. In homeostasis, neutrophils are inactivated by apoptosis, and non phlogistically removed by neighboring macrophages in a process known as efferocytosis, which promotes the resolution of inflammation. The present study assessed the potential anti-inflammatory and pro-resolution benefits of tylvalosin, a recently developed broad-spectrum veterinary macrolide derived from tylosin. Recent findings indicate that tylvalosin may modulate inflammation by suppressing NF-κB activation. Neutrophils and monocyte-derived macrophages were isolated from fresh blood samples obtained from 12- to 22-week-old pigs. Leukocytes exposed to vehicle or to tylvalosin (0.1, 1.0, or 10 µg/mL; 0.096–9.6 µM were assessed at various time points for apoptosis, necrosis, efferocytosis, and changes in the production of cytokines and lipid mediators. The findings indicate that tylvalosin increases porcine neutrophil and macrophage apoptosis in a concentration- and time-dependent manner, without altering levels of necrosis or reactive oxygen species production. Importantly, tylvalosin increased the release of pro-resolving Lipoxin A4 (LXA4 and Resolvin D1 (RvD1 while inhibiting the production of pro-inflammatory Leukotriene B4 (LTB4 in Ca2+ ionophore-stimulated porcine neutrophils. Tylvalosin increased neutrophil phospholipase C activity, an enzyme involved in releasing arachidonic acid from membrane stores. Tylvalosin also inhibited pro-inflammatory chemokine (C–X–C motif ligand 8 (CXCL-8, also known as Interleukin-8 and interleukin-1 alpha (IL-1α protein secretion in bacterial lipopolysaccharide-stimulated macrophages. Together, these data illustrate that tylvalosin has potent immunomodulatory effects

  3. Neutrophils: potential therapeutic targets in tularemia?

    Directory of Open Access Journals (Sweden)

    Lee-Ann H Allen

    2013-12-01

    Full Text Available The central role of neutrophils in innate immunity and host defense has long been recognized, and the ability of these cells to efficiently engulf and kill invading bacteria has been extensively studied, as has the role of neutrophil apoptosis in resolution of the inflammatory response. In the past few years additional immunoregulatory properties of neutrophils were discovered, and it is now clear that these cells play a much greater role in control of the immune response than was previously appreciated. In this regard, it is noteworthy that Francisella tularensis is one of relatively few pathogens that can successfully parasitize neutrophils as well as macrophages, DC and epithelial cells. Herein we will review the mechanisms used by F. tularensis to evade elimination by neutrophils. We will also reprise effects of this pathogen on neutrophil migration and lifespan as compared with other infectious and inflammatory disease states. In addition, we will discuss the evidence which suggests that neutrophils contribute to disease progression rather than effective defense during tularemia, and consider whether manipulation of neutrophil migration or turnover may be suitable adjunctive therapeutic strategies.

  4. The cystic fibrosis neutrophil: a specialized yet potentially defective cell.

    LENUS (Irish Health Repository)

    Hayes, Elaine

    2012-02-01

    Cystic fibrosis (CF) is one of the commonest genetically inherited diseases in the world. It is characterized by recurrent respiratory tract infections eventually leading to respiratory failure. One of the hallmarks of this disease is a persistent and predominantly neutrophil driven inflammation. Neutrophils provide the first line of defence by killing and digesting phagocytosed bacteria and fungi, yet despite advances in our understanding of the molecular and cellular basis of CF, there remains a paradox of why recruited CF neutrophils fail to eradicate bacterial infections in the lung. This review describes mechanisms involved in neutrophil migration, microbial killing and apoptosis leading to inflammatory resolution. We discuss dysregulated neutrophil activity and consider genetic versus inflammatory neutrophil reprogramming in CF and ultimately pharmacological modulation of the CF neutrophil for therapeutic intervention.

  5. The cystic fibrosis neutrophil: a specialized yet potentially defective cell.

    LENUS (Irish Health Repository)

    Hayes, Elaine

    2011-04-01

    Cystic fibrosis (CF) is one of the commonest genetically inherited diseases in the world. It is characterized by recurrent respiratory tract infections eventually leading to respiratory failure. One of the hallmarks of this disease is a persistent and predominantly neutrophil driven inflammation. Neutrophils provide the first line of defence by killing and digesting phagocytosed bacteria and fungi, yet despite advances in our understanding of the molecular and cellular basis of CF, there remains a paradox of why recruited CF neutrophils fail to eradicate bacterial infections in the lung. This review describes mechanisms involved in neutrophil migration, microbial killing and apoptosis leading to inflammatory resolution. We discuss dysregulated neutrophil activity and consider genetic versus inflammatory neutrophil reprogramming in CF and ultimately pharmacological modulation of the CF neutrophil for therapeutic intervention.

  6. Human neutrophils in auto-immunity.

    Science.gov (United States)

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Advanced Role of Neutrophils in Common Respiratory Diseases

    Directory of Open Access Journals (Sweden)

    Jinping Liu

    2017-01-01

    Full Text Available Respiratory diseases, always being a threat towards the health of people all over the world, are most tightly associated with immune system. Neutrophils serve as an important component of immune defense barrier linking innate and adaptive immunity. They participate in the clearance of exogenous pathogens and endogenous cell debris and play an essential role in the pathogenesis of many respiratory diseases. However, the pathological mechanism of neutrophils remains complex and obscure. The traditional roles of neutrophils in severe asthma, chronic obstructive pulmonary diseases (COPD, pneumonia, lung cancer, pulmonary fibrosis, bronchitis, and bronchiolitis had already been reviewed. With the development of scientific research, the involvement of neutrophils in respiratory diseases is being brought to light with emerging data on neutrophil subsets, trafficking, and cell death mechanism (e.g., NETosis, apoptosis in diseases. We reviewed all these recent studies here to provide you with the latest advances about the role of neutrophils in respiratory diseases.

  8. Localization and Functionality of the Inflammasome in Neutrophils

    DEFF Research Database (Denmark)

    Bakele, Martina; Joos, Melanie; Burdi, Sofia

    2014-01-01

    Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality...... of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein...... and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases...

  9. Neutrophils at work

    DEFF Research Database (Denmark)

    Nauseef, William M; Borregaard, Niels

    2014-01-01

    In this Review we discuss data demonstrating recently recognized aspects of neutrophil homeostasis in the steady state, granulopoiesis in 'emergency' conditions and interactions of neutrophils with the adaptive immune system. We explore in vivo observations of the recruitment of neutrophils from ...

  10. Chronic neutrophilic leukemia.

    Science.gov (United States)

    Bredeweg, Arthur; Burch, Micah; Krause, John R

    2018-01-01

    Chronic neutrophilic leukemia is a rare myeloproliferative disorder characterized by a sustained peripheral blood neutrophilia, absence of the BCR/ABL oncoprotein, bone marrow hypercellularity with less than 5% myeloblasts and normal neutrophil maturation, and no dysplasia. This leukemia has been associated with mutations in the colony-stimulating factor 3 receptor (CSF3R) that may activate this receptor, leading to the proliferation of neutrophils that are the hallmark of chronic neutrophilic leukemia. We present a case of chronic neutrophilic leukemia and discuss the criteria for diagnosis and the significance of mutations found in this leukemia.

  11. Neutrophils in critical illness.

    Science.gov (United States)

    McDonald, Braedon

    2018-03-01

    During critical illness, dramatic alterations in neutrophil biology are observed including abnormalities of granulopoeisis and lifespan, cell trafficking and antimicrobial effector functions. As a result, neutrophils transition from powerful antimicrobial protectors into dangerous mediators of tissue injury and organ dysfunction. In this article, the role of neutrophils in the pathogenesis of critical illness (sepsis, trauma, burns and others) will be explored, including pathological changes to neutrophil function during critical illness and the utility of monitoring aspects of the neutrophil phenotype as biomarkers for diagnosis and prognostication. Lastly, we review findings from clinical trials of therapies that target the harmful effects of neutrophils, providing a bench-to-bedside perspective on neutrophils in critical illness.

  12. Effect of Isolation Techniques on Viability of Bovine Blood Neutrophils

    Directory of Open Access Journals (Sweden)

    P. Sláma

    2006-01-01

    Full Text Available The effect of selected isolation methods on the viability of neutrophil granulocytes (neutrophils from the blood of healthy Holstein x Bohemian Red Pied crossbred heifers was evaluated. Two methods of neutrophil isolation were used: a neutrophil isolation on the basis of hypotonic erythrocyte lysis (in two variants: after the erythrocyte lysis proper, the cells were centrifuged at either 200 g or 1000 g, and b neutrophil isolation with FACS Lysing Solution as the lysing agent. The viability of the isolated neutrophils was evaluated on the basis of apoptosis and necrosis. The results obtained with flow cytometry (FCM suggest that, from the isolation techniques used, the method based on FACS Lysing Solution impaired the neutrophil viability least. After the application of this method, 5.36 ± 2.15% of neutrophils were apoptotic and 0.51 ± 0.12% were necrotic. In contrast, when the hypotonic erythrocyte lysis was used, the proportion of apoptotic neutrophils amounted to 42.14 ± 7.12% and 49.00 ± 14.70%, respectively, and 41.12 ± 5.55% and 36.91 ± 24.38% respectively of necrotic neutrophils (P < 0.01. This was also confirmed by the light microscopy. After the isolation with FASC Lysing Solution, 1.92 ± 1.74% of neutrophils were apoptotic and 1.05 ± 0.76% were necrotic, as distinct from after the hypotonic erythrocyte lysis where 9.43 ± 3.69% of neutrophils were apoptotic and 12.67 ± 4.74% of necrotic after centrifugation at 200 g, while 12.60 ± 4.35 were apoptotic and 14.96 ± 12.64% were necrotic after centrifugation at 1000 g. It follows from the above-mentioned data that hypotonic lysis is not a suitable method for the isolation of neutrophils, as the method itself markedly affects cell viability.

  13. Apoptosis and inflammation

    Directory of Open Access Journals (Sweden)

    C. Haanen

    1995-01-01

    Full Text Available During the last few decades it has been recognized that cell death is not the consequence of accidental injury, but is the expression of a cell suicide programme. Kerr et al. (1972 introduced the term apoptosis. This form of cell death is under the influence of hormones, growth factors and cytokines, which depending upon the receptors present on the target cells, may activate a genetically controlled cell elimination process. During apoptosis the cell membrane remains intact and the cell breaks into apoptotic bodies, which are phagocytosed. Apoptosis, in contrast to necrosis, is not harmful to the host and does not induce any inflammatory reaction. The principal event that leads to inflammatory disease is cell damage, induced by chemical/physical injury, anoxia or starvation. Cell damage means leakage of cell contents into the adjacent tissues, resulting in the capillary transmigration of granulocytes to the injured tissue. The accumulation of neutrophils and release of enzymes and oxygen radicals enhances the inflammatory reaction. Until now there has been little research into the factors controlling the accumulation and the tissue load of granulocytes and their histotoxic products in inflammatory processes. Neutrophil apoptosis may represent an important event in the control of intlamtnation. It has been assumed that granulocytes disintegrate to apoptotic bodies before their fragments are removed by local macrophages. Removal of neutrophils from the inflammatory site without release of granule contents is of paramount importance for cessation of inflammation. In conclusion, apoptotic cell death plays an important role in inflammatory processes and in the resolution of inflammatory reactions. The facts known at present should stimulate further research into the role of neutrophil, eosinophil and macrophage apoptosis in inflammatory diseases.

  14. Regulation of neutrophil senescence by microRNAs.

    Directory of Open Access Journals (Sweden)

    Jon R Ward

    2011-01-01

    Full Text Available Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease.

  15. Apoptosis in Pneumovirus Infection

    Directory of Open Access Journals (Sweden)

    Reinout A. Bem

    2013-01-01

    Full Text Available Pneumovirus infections cause a wide spectrum of respiratory disease in humans and animals. The airway epithelium is the major site of pneumovirus replication. Apoptosis or regulated cell death, may contribute to the host anti-viral response by limiting viral replication. However, apoptosis of lung epithelial cells may also exacerbate lung injury, depending on the extent, the timing and specific location in the lungs. Differential apoptotic responses of epithelial cells versus innate immune cells (e.g., neutrophils, macrophages during pneumovirus infection can further contribute to the complex and delicate balance between host defense and disease pathogenesis. The purpose of this manuscript is to give an overview of the role of apoptosis in pneumovirus infection. We will examine clinical and experimental data concerning the various pro-apoptotic stimuli and the roles of apoptotic epithelial and innate immune cells during pneumovirus disease. Finally, we will discuss potential therapeutic interventions targeting apoptosis in the lungs.

  16. On the Pharmacology of Oxidative Burst of Human Neutrophils

    Czech Academy of Sciences Publication Activity Database

    Nosáľ, R.; Drábiková, K.; Jančinová, V.; Mačičková, T.; Pečivová, J.; Perečko, T.; Harmatha, Juraj; Šmidrkal, J.

    2015-01-01

    Roč. 64, Suppl 4 (2015), S445-S452 ISSN 0862-8408 Institutional support: RVO:61388963 Keywords : human neutrophils * oxidative burst * chemiluminescence * protein kinase C * apoptosis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.643, year: 2015 http://www.biomed.cas.cz/physiolres/pdf/64/64_S445.pdf

  17. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis.

    Science.gov (United States)

    Park, So Young; Shrestha, Sanjeeb; Youn, Young-Jin; Kim, Jun-Kyu; Kim, Shin-Yeong; Kim, Hyun Jung; Park, So-Hee; Ahn, Won-Gyun; Kim, Shin; Lee, Myung Goo; Jung, Ki-Suck; Park, Yong Bum; Mo, Eun-Kyung; Ko, Yousang; Lee, Suh-Young; Koh, Younsuck; Park, Myung Jae; Song, Dong-Keun; Hong, Chang-Won

    2017-09-01

    Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.

  18. Growth factors G-CSF and GM-CSF differentially preserve chemotaxis of neutrophils aging in vitro

    NARCIS (Netherlands)

    Wolach, Baruch; van der Laan, Luc J. W.; Maianski, Nikolai A.; Tool, Anton T. J.; van Bruggen, Robin; Roos, Dirk; Kuijpers, Taco W.

    2007-01-01

    OBJECTIVE: The ability of human neutrophils to migrate was studied during culture in vitro. METHODS: Neutrophils were isolated from human blood and cultured at 37 degrees C. Apoptosis was determined by Annexin-V fluorescein isothiocyanate binding. Receptor expression was measured by fluorescence in

  19. Effects of Wharton's jelly-derived mesenchymal stem cells on neonatal neutrophils

    Directory of Open Access Journals (Sweden)

    Khan I

    2014-12-01

    Full Text Available Imteyaz Khan,1 Liying Zhang,2 Moiz Mohammed,1 Faith E Archer,1 Jehan Abukharmah,1 Zengrong Yuan,2 S Saif Rizvi,1 Michael G Melek,1 Arnold B Rabson,1,2 Yufang Shi,2 Barry Weinberger,1 Anna M Vetrano1,21Department of Pediatrics, Division of Neonatology, Rutgers Robert Wood Johnson Medical School, 2Rutgers Child Health Institute of New Jersey, New Brunswick, NJ, USABackground: Mesenchymal stem cells (MSCs have been proposed as autologous therapy for inflammatory diseases in neonates. MSCs from umbilical cord Wharton's jelly (WJ-MSCs are accessible, with high proliferative capacity. The effects of WJ-MSCs on neutrophil activity in neonates are not known. We compared the effects of WJ-MSCs on apoptosis and the expression of inflammatory, oxidant, and antioxidant mediators in adult and neonatal neutrophils.Methods: WJ-MSCs were isolated, and their purity and function were confirmed by flow cytometry. Neutrophils were isolated from cord and adult blood by density centrifugation. The effects of neutrophil/WJ-MSC co-culture on apoptosis and gene and protein expression were measured.Results: WJ-MSCs suppressed neutrophil apoptosis in a dose-dependent manner. WJ-MSCs decreased gene expression of NADPH oxidase-1 in both adult and neonatal neutrophils, but decreased heme oxygenase-1 and vascular endothelial growth factor and increased catalase and cyclooxygenase-2 in the presence of lipopolysaccharide only in adult cells. Similarly, generation of interleukin-8 was suppressed in adult but not neonatal neutrophils. Thus, WJ-MSCs dampened oxidative, vascular, and inflammatory activity by adult neutrophils, but neonatal neutrophils were less responsive. Conversely, Toll-like receptor-4, and cyclooxygenase-2 were upregulated in WJ-MSCs only in the presence of adult neutrophils, suggesting an inflammatory MSC phenotype that is not induced by neonatal neutrophils.Conclusion: Whereas WJ-MSCs altered gene expression in adult neutrophils in ways suggesting anti

  20. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha

    2012-01-01

    Highlights: ► Neutropenia is a principal complication of cancer treatment. ► Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. ► AD-MSC increased functions of neutrophil. ► AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-α, G-CSF, and TGF-β. ► AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor, and transforming growth factor (TGF)-β in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-α, G-CSF, and TGF-β. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  1. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yoon Shin; Lim, Goh-Woon [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung [Department of Microbiology, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Yoo, Eun-Sun [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Chan Ra, Jeong [Stem Cell Research Center, RNL BIO, Seoul 153-768 (Korea, Republic of); Ryu, Kyung-Ha, E-mail: ykh@ewha.ac.kr [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  2. Treatment of solid non-active wastes

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2008-01-01

    In this part of the text-book treatment of solid non-active wastes is described. This part consist of following chapters: (1) Law on wastes; (2) Present situation in waste management; (3) Strategic tendencies of waste management; (4) Incineration (disposal of solid wastes); (5) Disposal; (6) Composting; (7) Treatment of sludge from sewage clarification plant; (8) Biodegradation; (9) Recycling of wastes (assessing of secondary raw materials). Legal aspects of treatment of solid non-active wastes is presented

  3. With Friends Like These: The Complex Role of Neutrophils in the Progression of Severe Pneumonia

    Directory of Open Access Journals (Sweden)

    Roger D. Pechous

    2017-05-01

    Full Text Available Pneumonia is a leading cause of death from infection in the United States and across the globe. During pulmonary infection, clear resolution of host inflammatory responses occurs in the absence of appreciable lung damage. Neutrophils are the first wave of leukocytes to arrive in the lung upon infection. After activation, neutrophils traffic from the vasculature via transendothelial migration through the lung interstitium and into the alveolar space. Successful pulmonary immunity requires neutrophil-mediated killing of invading pathogens by phagocytosis and release of a myriad of antimicrobial molecules, followed by resolution of inflammation, neutrophil apoptosis, and clearing of dead or dying neutrophils by macrophages. In addition to their antimicrobial role, it is becoming clear that neutrophils are also important modulators of innate and adaptive immune responses, primarily through the release of cytokines and recruitment of additional waves of neutrophils into the airways. Though typically essential to combating severe pneumonia, neutrophil influx into the airways is a double-edged sword: Overzealous neutrophil activation can cause severe tissue damage as a result of the release of toxic agents including proteases, cationic polypeptides, cytokines, and reactive oxygen species (ROS aimed at killing invading microbes. In extreme cases, the damage caused by neutrophils and other innate immune mediators become the primary source of morbidity and mortality. Here, we review the complex role of neutrophils during severe pneumonia by highlighting specific molecules and processes that contribute to pulmonary immunity, but can also drive progression of severe disease. Depending on the identity of the infectious agent, enhancing or suppressing neutrophil-mediated responses may be key to effectively treating severe and typically lethal pneumonia.

  4. Neutrophil extracellular traps - the dark side of neutrophils

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Borregaard, Niels

    2016-01-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those ori...

  5. The effect of N-nitrosodimethylamine (NDMA) on Bax and Mcl-1 expression in human neutrophils.

    Science.gov (United States)

    Jablonski, Jakub; Jablonska, Ewa; Leonik, Agnieszka

    2011-12-01

    In the present study we examined a role of pro-apoptotic Bax and anti-apoptotic Mcl-1 proteins, participating in the regulation of intrinsic apoptosis pathway in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA), the environmental xenobiotic. For the purpose comparison, the same studies were conducted in autologous peripheral blood mononuclear cells (PBMCs). The production of cytochrome c by PMNs was also determined. A deficit of anti-apoptotic Mcl-1 and overexpression of the pro-apoptotic protein Bax suggest that the apoptosis process in human neutrophils exposed to NDMA is dependent on changes in the expression of these proteins. PMNs were more sensitive to NDMA than PBMCs.

  6. Immunosenescence of Polymorphonuclear Neutrophils

    Directory of Open Access Journals (Sweden)

    Inga Wessels

    2010-01-01

    Full Text Available All immune cells are affected by aging, contributing to the high susceptibility to infections and increased mortality observed in the elderly. The effect of aging on cells of the adaptive immune system is well documented. In contrast, knowledge concerning age-related defects of polymorphonuclear neutrophils (PMN is limited. During the past decade, it has become evident that in addition to their traditional role as phagocytes, neutrophils are able to secrete a wide array of immunomodulating molecules. Their importance is underlined by the finding that genetic defects that lead to neutropenia increase susceptibility to infections. Whereas there is consistence about the constant circulating number of PMN throughout aging, the abilities of tissue infiltration, phagocytosis, and oxidative burst of PMN from aged donors are discussed controversially. Furthermore, there are numerous discrepancies between in vivo and in vitro results, as well as between results for murine and human PMN. Most of the reported functional changes can be explained by defective signaling pathways, but further research is required to get a detailed insight into the underlying molecular mechanisms. This could form the basis for drug development in order to prevent or treat age-related diseases, and thus to unburden the public health systems.

  7. Targeting neutrophilic inflammation in severe neutrophilic asthma : can we target the disease-relevant neutrophil phenotype?

    NARCIS (Netherlands)

    Bruijnzeel, Piet L B; Uddin, Mohib; Koenderman, Leo

    2015-01-01

    In severe, neutrophilic asthma, neutrophils are thought to have an important role in both the maintenance of the disease and during exacerbations. These patients often display excessive, mucosal airway inflammation with unresolving neutrophilia. Because this variant of asthma is poorly controlled by

  8. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    LENUS (Irish Health Repository)

    Hong, Ying

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  9. Neutrophil programming dynamics and its disease relevance.

    Science.gov (United States)

    Ran, Taojing; Geng, Shuo; Li, Liwu

    2017-11-01

    Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.

  10. Dihydroxyoctadecamonoenoate esters inhibit the neutrophil ...

    Indian Academy of Sciences (India)

    PRAKASH

    that observed with arachidonic acid treatment (Li et al 1996). ..... An alternative possibility is that the methyl DiHOMEs .... nitric oxide-derived reactive species in vascular cells; Circ. ... necrosis factor 1-alpha-initiated neutrophil responses and.

  11. Equol Effectively Inhibits Toxic Activity of Human Neutrophils without Influencing Their Viability

    Czech Academy of Sciences Publication Activity Database

    Pažoureková, S.; Lucová, M.; Nosál, R.; Drábiková, K.; Harmatha, Juraj; Šmidrkal, J.; Jančinová, V.

    2016-01-01

    Roč. 97, 3/4 (2016), s. 138-145 ISSN 0031-7012 Institutional support: RVO:61388963 Keywords : neutrophils * equol * chemiluminescence * reactive oxygen species * p40(phox) * apoptosis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.442, year: 2016

  12. Serum and Glucocorticoid Regulated Kinase 1 (SGK1) Regulates Neutrophil Clearance During Inflammation Resolution

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L.; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R.; Walker, Paul; Hoggett, Emily E.; Ward, Jonathan R.; Farrow, Stuart N.; Zuercher, William J.; Jeffrey, Philip; Savage, Caroline O.; Ingham, Philip W.; Hurlstone, Adam F.; Whyte, Moira K. B.; Renshaw, Stephen A.

    2013-01-01

    The inflammatory response is integral to maintaining health, by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralise invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein Serum and Glucocorticoid Regulated Kinase 1 (SGK1). We have characterised the expression patterns and regulation of SGK family members in human neutrophils, and shown that inhibition of SGK activity completely abrogates the anti-apoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signalling, and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  13. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution.

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R; Walker, Paul; Hoggett, Emily E; Ward, Jonathan R; Farrow, Stuart N; Zuercher, William J; Jeffrey, Philip; Savage, Caroline O; Ingham, Philip W; Hurlstone, Adam F; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-15

    The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.

  14. Role of oncogene 24p3 neutrophil gelatinase-associated lipocalin (NGAL) in digestive system cancers.

    Science.gov (United States)

    Michalak, Łukasz; Bulska, Magdalena; Kudłacz, Katarzyna; Szcześniak, Piotr

    2016-01-04

    Neutrophil gelatinase-associated lipocalin, known also as 24p3 lipocalin, lipocalin-2 or uterocalin (in mouse), is a small secretory protein binding small molecular weight ligands which takes part in numerous processes including apoptosis induction in leukocytes, iron transport, smell, and prostaglandins and retinol transport [19]. It was discovered in activated neutrophils as a covalent peptide associated with human gelatinase neutrophils [7]. Neutrophil lipocalin is secreted physiologically in the digestive system, respiratory tract, renal tubular cells, liver or immunity system. Systematic (circulated in plasma) neutrophil gelatinase come from multiple sources; it may be synthesized in the liver, secreted from activated neutrophils or macrophages, or derive from atherosclerosis or inflammatory endothelial cells [17]. NGAL is stored secondarily in granulates with lactoferrin, calprotectin or MAC-1, which take part in neutrophils' action and migration [13,19]. NGAL participates in acute and chronic inflammation (production of NGAL is indicated by factors conducive to cancer progression) [13,21]. NGAL levels increase in inflammatory or endothelial damage. NGAL level is measured in blood or urine. It is known as a kidney failure factor [7,20]. NGAL is therefore one of the most promising new generation biomarkers in clinical nephrology [6]. The role of NGAL in digestive system neoplasms has not been explored in detail. However, overexpression of this marker was proved in neoplasms such as esophageal carcinoma, stomach cancer, pancreatic cancer or colon cancer, which may indicate an association between concentration and neoplasm [3].

  15. Angiotensin-(1-7 Promotes Resolution of Neutrophilic Inflammation in a Model of Antigen-Induced Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Lívia C. Barroso

    2017-11-01

    Full Text Available Defective resolution of inflammation may be crucial for the initiation and development of chronic inflammatory diseases, such as arthritis. Therefore, it has been suggested that therapeutic strategies based on molecules that facilitate inflammation resolution present great potential for the treatment of chronic inflammatory diseases. In this study, we investigated the effects and role of angiotensin-(1-7 [Ang-(1-7] in driving resolution of neutrophilic inflammation in a model of arthritis. For this purpose, male C57BL/6 mice were subjected to antigen-induced arthritis and treated with Ang-(1-7 at the peak of the inflammatory process. Analysis of the number of inflammatory cells, apoptosis, and immunofluorescence for NF-κB was performed in the exudate collected from the knee cavity. Neutrophil accumulation in periarticular tissue was measured by assaying myeloperoxidase activity. Apoptosis of human neutrophil after treatment with Ang-(1-7 was evaluated morphologically and by flow cytometry, and NF-κB phosphorylation by immunofluorescence. Efferocytosis was evaluated in vivo. Therapeutic treatment with Ang-(1-7 at the peak of inflammation promoted resolution, an effect associated with caspase-dependent neutrophils apoptosis and NF-κB inhibition. Importantly, Ang-(1-7 was also able to induce apoptosis of human neutrophils, an effect associated with NF-κB inhibition. The pro-resolving effects of Ang-(1-7 were inhibited by the Mas receptor antagonist A779. Finally, we showed that Ang-(1-7 increased the efferocytic ability of murine macrophages. Our results clearly demonstrate that Ang-(1-7 resolves neutrophilic inflammation in vivo acting in two key step of resolution: apoptosis of neutrophils and their removal by efferocytosis. Ang-(1-7 is a novel mediator of resolution of inflammation.

  16. NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival.

    Science.gov (United States)

    Prince, Lynne R; Prosseda, Svenja D; Higgins, Kathryn; Carlring, Jennifer; Prestwich, Elizabeth C; Ogryzko, Nikolay V; Rahman, Atiqur; Basran, Alexander; Falciani, Francesco; Taylor, Philip; Renshaw, Stephen A; Whyte, Moira K B; Sabroe, Ian

    2017-08-24

    The lifespan of neutrophils is plastic and highly responsive to factors that regulate cellular survival. Defects in neutrophil number and survival are common to both hematologic disorders and chronic inflammatory diseases. At sites of inflammation, neutrophils respond to multiple signals that activate protein kinase A (PKA) signaling, which positively regulates neutrophil survival. The aim of this study was to define transcriptional responses to PKA activation and to delineate the roles of these factors in neutrophil function and survival. In human neutrophil gene array studies, we show that PKA activation upregulates a significant number of apoptosis-related genes, the most highly regulated of these being NR4A2 and NR4A3 Direct PKA activation by the site-selective PKA agonist pair N6/8-AHA (8-AHA-cAMP and N6-MB-cAMP) and treatment with endogenous activators of PKA, including adenosine and prostaglandin E2, results in a profound delay of neutrophil apoptosis and concomitant upregulation of NR4A2/3 in a PKA-dependent manner. NR4A3 expression is also increased at sites of neutrophilic inflammation in a human model of intradermal inflammation. PKA activation also promotes survival of murine neutrophil progenitor cells, and small interfering RNA to NR4A2 decreases neutrophil production in this model. Antisense knockdown of NR4A2 and NR4A3 homologs in zebrafish larvae significantly reduces the absolute neutrophil number without affecting cellular migration. In summary, we show that NR4A2 and NR4A3 are components of a downstream transcriptional response to PKA activation in the neutrophil, and that they positively regulate neutrophil survival and homeostasis. © 2017 by The American Society of Hematology.

  17. Survival of Peripheral Blood Neutrophil Following Treatment with Soluble Factors from Rat Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    S Hamounnavard

    2014-11-01

    Full Text Available Introduction: Mesenchymal stem cells have immunomodulatory properties and own extensive potentials to proliferate and differentiate into different cell lineages. Thus, this study was conducted to investigate the effect of supernatant of rat MSCs on the neutrophils viability. Methods: MSCs was isolated from femoral and tibial bone marrow of rat (6-8 weeks and was cultured in DMEM. After maturation of MSCs, its supernatant was incubated with neutrophils isolated from peripheral blood of rat at 37 ° C for 1 h. Neutrophil survival was measured at 6 and 24 h incubation with supernatant of MSCs by flow cytometric analysis using An/PI. Data were analyzed by one-way ANOVA followed by Tukey test (P˂0.05. Results: 6-hour incubation of neutrophils with supernatant of MSCs significantly increased the healthy cells percentage and significantly decreased the amount of necrosis (P˂0.05, but no significant decrease was observed in regard with apoptosis compared to the controls (P˃0.05. The 24-hour incubation of neutrophils with cell supernatant significantly increased the percentage of healthy cells and apoptosis was significantly reduced compared to the control group (P˂0.05. Moreover, a reduction in cell necrosis was not significant in the treated groups compared to the control (P˃0.05. Conclusions: In addition to the clinical importance of MSCs, their biological aspects are of great potential for cell therapy, such as self-renewal, proliferation and immune modulatory effects.

  18. Neutrophils, dendritic cells and Toxoplasma.

    Science.gov (United States)

    Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya

    2004-03-09

    Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.

  19. Immune modulation by neutrophil subsets

    NARCIS (Netherlands)

    Kamp, V.M.

    2013-01-01

    We show that human neutrophils can suppress T-cell proliferation in acute systemic inflammation and thus have anti-inflammatory functions, next to their well-known pro-inflammatory functions. The suppression is mediated by ROS production and integrin MAC-1, which are also important for the

  20. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  1. Vitamin C: A Novel Regulator of Neutrophil Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Ramesh Natarajan

    2013-08-01

    Full Text Available Introduction: Neutrophil extracellular trap (NET formation was recently identified as a novel mechanism to kill pathogens. However, excessive NET formation in sepsis can injure host tissues. We have recently shown that parenteral vitamin C (VitC is protective in sepsis. Whether VitC alters NETosis is unknown. Methods: We used Gulo−/− mice as they lack the ability to synthesize VitC. Sepsis was induced by intraperitoneal infusion of a fecal stem solution (abdominal peritonitis, FIP. Some VitC deficient Gulo−/− mice received an infusion of ascorbic acid (AscA, 200 mg/kg 30 min after induction of FIP. NETosis was assessed histologically and by quantification for circulating free DNA (cf-DNA in serum. Autophagy, histone citrullination, endoplasmic reticulum (ER stress, NFκB activation and apoptosis were investigated in peritoneal PMNs. Results: Sepsis produced significant NETs in the lungs of VitC deficient Gulo−/− mice and increased circulating cf-DNA. This was attenuated in the VitC sufficient Gulo−/− mice and in VitC deficient Gulo−/− mice infused with AscA. Polymorphonuclear neutrophils (PMNs from VitC deficient Gulo−/− mice demonstrated increased activation of ER stress, autophagy, histone citrullination, and NFκB activation, while apoptosis was inhibited. VitC also significantly attenuated PMA induced NETosis in PMNs from healthy human volunteers.

  2. Cytoplasmic lipid bodies of human neutrophilic leukocytes

    International Nuclear Information System (INIS)

    Weller, P.F.; Ackerman, S.J.; Nicholson-Weller, A.; Dvorak, A.M.

    1989-01-01

    The morphology and function of cytoplasmic lipid bodies in human neutrophils were evaluated. By transmission electron microscopy, neutrophil lipid bodies were cytoplasmic inclusions, usually several microns in diameter, that occasionally coalesced to attain a diameter up to 7 microM. Neutrophil lipid bodies were not enveloped by membrane but were often surrounded by a more electron-dense shell at their periphery. Normal peripheral blood neutrophils contained an average of approximately one lipid body per cell. Lipid bodies appeared in greater numbers in neutrophils from inflammatory lesions. Perturbation of neutrophils during conventional methods of cell isolation and purification modestly increased lipid body numbers in neutrophils, whereas incubation of neutrophils with 1 microM oleic acid rapidly induced lipid body formation over 30 to 60 minutes. After granulocytes were incubated for 2 hours with 3H-fatty acids, including arachidonic, oleic, and palmitic acids, electron microscopic autoradiography demonstrated that lipid bodies represented the predominant intracellular sites of localization of each of the three 3H-fatty acids. There was lesser labeling noted in the perinuclear cisterna, but not in cell membranes. Virtually all of each of the three 3H-fatty acids incorporated by the neutrophils were esterified into chromatographically resolved classes of neutral lipids or phospholipids. These findings indicate that cytoplasmic lipid bodies are more prominent in neutrophils in vivo engaged in inflammatory responses and that these organelles in human neutrophils function as sites of deposition of esterified, incorporated fatty acids

  3. Biomaterial associated impairment of local neutrophil function.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Kormos, R L; Hardesty, R L; Simmons, R L; Mora, E M; Cardona, M; Griffith, B L

    1990-01-01

    The effect of biomaterials on neutrophil function was studied in vitro to determine if these materials activated neutrophils and to determine the subsequent response of these neutrophils to further stimulation. Two biomaterials--polyurethane, a commonly used substance, and Velcro pile (used in the Jarvik 7 heart)--were evaluated. Two control substances, polyethylene and serum-coated polystyrene, were used for comparison. Neutrophil superoxide release was measured following incubation with these materials for 10, 30, and 120 min in the absence of additional stimulation and after stimulation with formylmethionylleucylphenylalanine (fMLP) or phorbol myristate acetate (PMA). The authors observed that the incubation of neutrophils on both polyurethane and Velcro resulted in substantially increased superoxide release that was greater after the 10 min than after the 30 or 120 min association. These activated neutrophils exhibited a poor additional response to fMLP but responded well to PMA. The effect of implantation of the Novacor left ventricular assist device on peripheral blood neutrophil function was also evaluated. The peripheral blood neutrophils exhibited normal superoxide release and chemotaxis. These studies suggest that biomaterials may have a profound local effect on neutrophils, which may predispose the patient to periprosthetic infection, but that the reactivity of circulating neutrophils is unimpaired.

  4. Neutrophils Compromise Retinal Pigment Epithelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Jiehao Zhou

    2010-01-01

    Full Text Available We hypothesized that neutrophils and their secreted factors mediate breakdown of the integrity of the outer blood-retina-barrier by degrading the apical tight junctions of the retinal pigment epithelium (RPE. The effect of activated neutrophils or neutrophil cell lysate on apparent permeability of bovine RPE-Choroid explants was evaluated by measuring [H] mannitol flux in a modified Ussing chamber. The expression of matrix metalloproteinase- (MMP- 9 in murine peritoneal neutrophils, and the effects of neutrophils on RPE tight-junction protein expression were assessed by confocal microscopy and western blot. Our results revealed that basolateral incubation of explants with neutrophils decreased occludin and ZO-1 expression at 1 and 3 hours and increased the permeability of bovine RPE-Choroid explants by >3-fold (P<.05. Similarly, basolateral incubation of explants with neutrophil lysate decreased ZO-1 expression at 1 and 3 hours (P<.05 and increased permeability of explants by 75%. Further, we found that neutrophils prominently express MMP-9 and that incubation of explants with neutrophils in the presence of anti-MMP-9 antibody inhibited the increase in permeability. These data suggest that neutrophil-derived MMP-9 may play an important role in disrupting the integrity of the outer blood-retina barrier.

  5. The Resolution of Inflammation: A Mathematical Model of Neutrophil and Macrophage Interactions

    KAUST Repository

    Dunster, J. L.

    2014-07-23

    © 2014, Society for Mathematical Biology. There is growing interest in inflammation due to its involvement in many diverse medical conditions, including Alzheimer’s disease, cancer, arthritis and asthma. The traditional view that resolution of inflammation is a passive process is now being superceded by an alternative hypothesis whereby its resolution is an active, anti-inflammatory process that can be manipulated therapeutically. This shift in mindset has stimulated a resurgence of interest in the biological mechanisms by which inflammation resolves. The anti-inflammatory processes central to the resolution of inflammation revolve around macrophages and are closely related to pro-inflammatory processes mediated by neutrophils and their ability to damage healthy tissue. We develop a spatially averaged model of inflammation centring on its resolution, accounting for populations of neutrophils and macrophages and incorporating both pro- and anti-inflammatory processes. Our ordinary differential equation model exhibits two outcomes that we relate to healthy and unhealthy states. We use bifurcation analysis to investigate how variation in the system parameters affects its outcome. We find that therapeutic manipulation of the rate of macrophage phagocytosis can aid in resolving inflammation but success is critically dependent on the rate of neutrophil apoptosis. Indeed our model predicts that an effective treatment protocol would take a dual approach, targeting macrophage phagocytosis alongside neutrophil apoptosis.

  6. Neutrophil Responses to Sterile Implant Materials.

    Directory of Open Access Journals (Sweden)

    Siddharth Jhunjhunwala

    Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.

  7. Neutrophil Reverse Migration Becomes Transparent with Zebrafish

    Directory of Open Access Journals (Sweden)

    Taylor W. Starnes

    2012-01-01

    Full Text Available The precise control of neutrophil-mediated inflammation is critical for both host defense and the prevention of immunopathology. In vivo imaging studies in zebrafish, and more recently in mice, have made the novel observation that neutrophils leave a site of inflammation through a process called neutrophil reverse migration. The application of advanced imaging techniques to the genetically tractable, optically transparent zebrafish larvae was critical for these advances. Still, the mechanisms underlying neutrophil reverse migration and its effects on the resolution or priming of immune responses remain unclear. Here, we review the current knowledge of neutrophil reverse migration, its potential roles in host immunity, and the live imaging tools that make zebrafish a valuable model for increasing our knowledge of neutrophil behavior in vivo.

  8. Neutrophils in Tuberculosis: Heterogeneity Shapes the Way?

    Science.gov (United States)

    2017-01-01

    Infection with M. tuberculosis remains one of the most common infections in the world. The outcome of the infection depends on host ability to mount effective protection and balance inflammatory responses. Neutrophils are innate immune cells implicated in both processes. Accordingly, during M. tuberculosis infection, they play a dual role. Particularly, they contribute to the generation of effector T cells, participate in the formation of granuloma, and are directly involved in tissue necrosis, destruction, and infection dissemination. Neutrophils have a high bactericidal potential. However, data on their ability to eliminate M. tuberculosis are controversial, and the results of neutrophil depletion experiments are not uniform. Thus, the overall roles of neutrophils during M. tuberculosis infection and factors that determine these roles are not fully understood. This review analyzes data on neutrophil defensive and pathological functions during tuberculosis and considers hypotheses explaining the dualism of neutrophils during M. tuberculosis infection and tuberculosis disease. PMID:28626346

  9. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerg Bennike, Tue; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    microscopy and confocal microscopy. RESULTS: We identified and quantified 5711 different proteins with proteomics. The abundance of the proteins calprotectin and lactotransferrin in the tissue correlated with the degree of tissue inflammation as determined by histology. However, fecal calprotectin did...... not correlate. Forty-six proteins were measured with a statistically significant differences in abundances between the UC colon tissue and controls. Eleven of the proteins with increased abundances in the UC biopsies were associated with neutrophils and neutrophil extracellular traps. The findings were...... validated by microscopy, where an increased abundance of neutrophils and the presence of neutrophil extracellular traps by extracellular DNA present in the UC colon tissue were confirmed. CONCLUSIONS: Neutrophils, induced neutrophil extracellular traps, and several proteins that play a part in innate...

  10. Impaired neutrophil function in intestinal lymphangiectasia.

    OpenAIRE

    Bolton, R P; Cotter, K L; Losowsky, M S

    1986-01-01

    Impaired neutrophil chemotaxis and phagocytosis were shown in three patients with intestinal lymphangiectasia. Abnormalities in cell associated and serum derived activity occurred, and possible mechanisms are suggested.

  11. Regulation of Discrete Functional Responses by Syk and Src Family Tyrosine Kinases in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Thornin Ear

    2017-01-01

    Full Text Available Neutrophils play a critical role in innate immunity and also influence adaptive immune responses. This occurs in good part through their production of inflammatory and immunomodulatory cytokines, in conjunction with their prolonged survival at inflamed foci. While a picture of the signaling machinery underlying these neutrophil responses is now emerging, much remains to be uncovered. In this study, we report that neutrophils constitutively express various Src family isoforms (STKs, as well as Syk, and that inhibition of these protein tyrosine kinases selectively hinders inflammatory cytokine generation by acting posttranscriptionally. Accordingly, STK or Syk inhibition decreases the phosphorylation of signaling intermediates (e.g., eIF-4E, S6K, and MNK1 involved in translational control. By contrast, delayed apoptosis appears to be independent of either STKs or Syk. Our data therefore significantly extend our understanding of which neutrophil responses are governed by STKs and Syk and pinpoint some signaling intermediates that are likely involved. In view of the foremost role of neutrophils in several chronic inflammatory conditions, our findings identify potential molecular targets that could be exploited for future therapeutic intervention.

  12. Complement Activation Induces Neutrophil Adhesion and Neutrophil-Platelet Aggregate Formation on Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Magdalena Riedl

    2017-01-01

    Discussion: Therefore, our findings of (i neutrophils adhering to complement-activated endothelial cells, (ii the formation of neutrophil-platelet aggregates on endothelial cells, and (iii the ability of aHUS serum to induce similar effects identify a possible role for neutrophils in aHUS manifestation.

  13. Different innate neutrophil responses in controlled and uncontrolled asthma

    NARCIS (Netherlands)

    Tang, Francesca; Foxley, Gloria; Gibson, Peter; Burgess, Janette; Baines, Katherine; Oliver, Brian

    2015-01-01

    Introduction: Respiratory viruses are a major cause of asthma exacerbations. Neutrophilic inflammation occurs during infections and is associated with difficult to treat asthma. The role of neutrophils in viral infections and whether neutrophil dysfunction contributes to exacerbation pathogenesis

  14. Oral neutrophil responses to acute prolonged exercise may not be representative of blood neutrophil responses.

    Science.gov (United States)

    Davison, Glen; Jones, Arwel Wyn

    2015-03-01

    Neutrophil numbers and function (oxidative burst) were assessed in peripheral blood and oral samples before and after prolonged exercise. Blood neutrophil count increased (∼3.5-fold, P < 0.001) and function decreased (30% ± 19% decrease, P = 0.005) postexercise. Oral neutrophil count (P = 0.392) and function (P = 0.334) were unchanged. Agreement between oral and blood neutrophil function responses to exercise was poor. These findings highlight the importance of studying neutrophils within various compartments/sample types.

  15. Neutrophil migration under normal and sepsis conditions.

    Science.gov (United States)

    Lerman, Yelena V; Kim, Minsoo

    2015-01-01

    Neutrophil migration is critical for pathogen clearance and host survival during severe sepsis. Interaction of neutrophil adhesion receptors with ligands on endothelial cells results in firm adhesion of the circulating neutrophils, followed by neutrophil activation and directed migration to sites of infection through the basement membrane and interstitial extracellular matrix. Proteolytic enzymes and reactive oxygen species are produced and released by neutrophils in response to a variety of inflammatory stimuli. Although these mediators are important for host defense, they also promote tissue damage. Excessive neutrophil migration during the early stages of sepsis may lead to an exaggerated inflammatory response with associated tissue damage and subsequent organ dysfunction. On the other hand, dysregulation of migration and insufficient migratory response that occurs during the latter stages of severe sepsis contributes to neutrophils' inability to contain and control infection and impaired wound healing. This review discusses the major steps and associated molecules involved in the balance of neutrophil trafficking, the precise regulation of which during sepsis spells life or death for the host.

  16. Neutrophil heterogeneity: implications for homeostasis and pathogenesis

    NARCIS (Netherlands)

    Silvestre-Roig, Carlos; Hidalgo, Andres; Soehnlein, Oliver

    2016-01-01

    Neutrophils are polymorphonuclear leukocytes of the phagocytic system that act as first line of host defense against invading pathogens but are also important mediators of inflammation-induced injury. In contrast to other members of the innate immune system, neutrophils are classically considered a

  17. Candida albicans escapes from mouse neutrophils

    DEFF Research Database (Denmark)

    Ermert, David; Niemiec, Maria J; Röhm, Marc

    2013-01-01

    is the most widely used model organism. Neutrophils are essential immune cells to prevent opportunistic mycoses. To explore potential differences between the rodent infection model and the human host, we compared the interactions of C. albicans with neutrophil granulocytes from mice and humans. We revealed...

  18. Contribution of neutrophils to acute lung injury.

    Science.gov (United States)

    Grommes, Jochen; Soehnlein, Oliver

    2011-01-01

    Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.

  19. The complex interplay between neutrophils and cancer.

    Science.gov (United States)

    Rakic, Andrea; Beaudry, Paul; Mahoney, Douglas J

    2018-03-01

    Neutrophils are the most abundant type of white blood cell, and are an essential component of the innate immune system. They characteristically arrive rapidly at sites of infection and injury, and release a variety of cytokines and toxic molecules to eliminate pathogens and elicit an acute inflammatory response. Research into the function of neutrophils in cancer suggest they have divergent roles. Indeed, while most studies have found neutrophils to be associated with cancer progression, others have also documented anticancer effects. In this review, we describe the investigations into neutrophil populations that have been implicated in promoting tumor growth and metastasis as well those demonstrating antitumor functions. The collective research suggests a complex role for neutrophils in cancer biology, which raises the prospect of their targeting for the treatment of cancer.

  20. D-lactic acid interferes with the effects of platelet activating factor on bovine neutrophils.

    Science.gov (United States)

    Alarcón, P; Conejeros, I; Carretta, M D; Concha, C; Jara, E; Tadich, N; Hidalgo, M A; Burgos, R A

    2011-11-15

    D-lactic acidosis occurs in ruminants, such as cattle, with acute ruminal acidosis caused by ingestion of excessive amounts of highly fermentable carbohydrates. Affected animals show clinical signs similar to those of septic shock, as well as acute laminitis and liver abscesses. It has been proposed that the inflammatory response and susceptibility to infection could both be caused by the inhibition of phagocytic mechanisms. To determine the effects of d-lactic acid on bovine neutrophil functions, we pretreated cells with different concentrations of D-lactic acid and measured intracellular pH using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester (BCECF-AM) and calcium flux using FLUO-3 AM-loaded neutrophils. Reactive oxygen species (ROS) production was measured using a luminol chemiluminescence assay, and MMP-9/gelatinase-B granule release was measured by zymography. CD11b and CD62L/l-selectin expression, changes in cell shape, superoxide anion production, phagocytosis of Escherichia coli-Texas red bioparticles, and apoptosis were all measured using flow cytometry. Our results demonstrated that D-lactic acid reduced ROS production, CD11b upregulation and MMP-9 release in bovine neutrophils treated with 100 nM platelet-activating factor (PAF). D-lactic acid induced MMP-9 release and, at higher concentrations, upregulated CD11b expression, decrease L-selectin expression, and induces late apoptosis. We concluded that D-lactic acid can interfere with neutrophil functions induced by PAF, leading to reduced innate immune responses during bacterial infections. Moreover, the increase of MMP-9 release and CD11b expression induced by 10mM D-lactic acid could promote an nonspecific neutrophil-dependent inflammatory reaction in cattle with acute ruminal acidosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  2. Expression of IL-17A concentration and effector functions of peripheral blood neutrophils in food allergy hypersensitivity patients.

    Science.gov (United States)

    Żbikowska-Gotz, Magdalena; Pałgan, Krzysztof; Gawrońska-Ukleja, Ewa; Kuźmiński, Andrzej; Przybyszewski, Michał; Socha, Ewa; Bartuzi, Zbigniew

    2016-03-01

    Lymphocytes Th17 and other types of immune system cells produce IL17. By induction of cytokines and chemokines, the IL17 cytokine is involved in mechanisms of allergic reaction with participation of neutrophil granulocytes. It affects activation, recruitment, and migration of neutrophils to the tissues, regulating inflammatory reaction intensity. Excited neutrophils secrete inter alia elastase and reactive oxygen species (ROS)--significant mediators of inflammation process responsible for tissues damage.The aim of the study was to evaluate the concentrations of serum interleukin 17A, serum neutrophil elastase, and ROS production by neutrophils in patients with food allergy.The study included 30 patients with food allergy diagnosed based on interview, clinical symptoms, positive SPT, placebo controlled double-blind oral provocation trial, and the presence of asIgE in blood serum against selected food allergens using fluoro-immuno-enzymatic method FEIA UNICap 100. The control group consisted of 10 healthy volunteers. The concentrations of IL17A were determined in all patients using ELISA method with eBioscience kits, and elastase using BenderMed Systems kits. Chemiluminescence of non-stimulated neutrophils was evaluated using luminol-dependent kinetic method for 40 min on Luminoskan (Labsystems luminometer).The results of serum IL-17A concentrations and the values of chemiluminescence obtained by non-activated neutrophils, as well as elastase concentrations, were higher in patients with food allergic hypersensitivity compared to healthy volunteers.This study demonstrates a significance of IL-17A and activated neutrophil granulocytes in the course of diseases with food allergic hypersensitivity. © The Author(s) 2015.

  3. Activation of bovine neutrophils by Brucella spp.

    Science.gov (United States)

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Taurine modulates neutrophil function but potentiates uropathogenic E. coli infection in the murine bladder.

    LENUS (Irish Health Repository)

    Condron, Claire

    2010-08-01

    Eradication of a urinary tract infection (UTI) appears to be related to a number of innate host defence mechanisms and their interactions with invading bacteria. Recurrent UTIs (rUTIs) pose a difficult problem in that these bacteria use both host and bacterial factors to evade elimination. Neutrophil bactericidal function is depressed, both systemically and in urine, in patients with a history of recurrent UTI. Taurine is a semi-essential amino acid and is successful in preserving neutrophil bactericidal function in urine. Taurine may preserve neutrophil function at the urothelium and thus aid UTI resolution. Adult female (6 weeks old) C57Bl\\/6 mice were randomised into three groups: a saline gavage only control group, a saline gavage + E. coli group, and a taurine gavage + E. coli group [21 g\\/70 kg taurine in 0.9% normal saline (N\\/S) for 5 days]. Whilst taurine gavage pre-treatment resulted in increased serum neutrophils respiratory burst activity, at the urothelial-endothelial interface it caused higher colony forming units in the urine and a higher incidence of E. coli invasion in the bladder wall with no evidence of increased bladder wall neutrophils infiltration on MPO assay of histological assessment. Histologically there was also evidence of reduced bladder inflammation and urothelial cell apoptosis. In conclusion, taurine effectively increases neutrophils activity but given its anti-inflammatory properties, at the expense of decreased urothelial-endothelial activation thus preventing clearance of active E. coli infection in the bladder. Despite the negative results, this study demonstrates the importance of modulating interactions at the urothelial interface.

  5. Effects of Porphyromonas gingivalis LipopolysaccharideTolerized Monocytes on Inflammatory Responses in Neutrophils.

    Directory of Open Access Journals (Sweden)

    Xiang-Qing Zhu

    Full Text Available Periodontitis is a chronic inflammatory disease induced by bacteria. Exposure of the host to periodontal pathogens and their virulence factors induces a state of hyporesponsiveness to subsequent stimulations, which is termed endotoxin tolerance. The role and mechanism of lipopolysaccharide (LPS-tolerized monocytes in inflammatory responses in neutrophils are currently unclear. Here, conditioned supernatants were collected from THP-1 cells treated with or without repeated 1 μg/ml Porphyromonas gingivalis (P.gingivalis LPS. The chemotactic response of freshly isolated neutrophils recruited by supernatants was determined by a transwell migration assay, which demonstrated a reduced migration of neutrophils stimulated with supernatants from tolerized THP-1 cells in comparison to non-tolerized THP-1 cells. In addition, there was a marked increase in reactive oxygen species (ROS generation and a significant decrease in Caspase 3 activities in neutrophils treated with supernatants from THP-1 cells that were treated repeatedly with P.gingivalis LPS in comparison to single treatment. A cytokine antibody array was then used to assess cytokine expression patterns in THP-1 cells. In tolerized THP-1 cells, 43 cytokine (43/170 expression levels were decreased, including chemokine ligand 23 (CCL23 and IFN-γ, while 11 cytokine (11/170 expression levels were increased, such as death receptor 6 (DR6. Furthermore, there was decreased production of IFN-γ and epithelial neutrophil activating peptide-78 (ENA-78 in THP-1 cells after stimulation with repeated P. gingivalis LPS in comparison to single challenge, which was confirmed by ELISA. Therefore, P.gingivalis LPS- tolerized THP-1 cells were able to depress neutrophil chemotaxis and apoptosis, and contribute to respiratory burst, which might be related to the changes in cytokine expression patterns in THP-1 cells.

  6. Survival and differentiation defects contribute to neutropenia in glucose-6-phosphatase-β (G6PC3) deficiency in a model of mouse neutrophil granulocyte differentiation.

    Science.gov (United States)

    Gautam, S; Kirschnek, S; Gentle, I E; Kopiniok, C; Henneke, P; Häcker, H; Malleret, L; Belaaouaj, A; Häcker, G

    2013-08-01

    Differentiation of neutrophil granulocytes (neutrophils) occurs through several steps in the bone marrow and requires a coordinate regulation of factors determining survival and lineage-specific development. A number of genes are known whose deficiency disrupts neutrophil generation in humans and in mice. One of the proteins encoded by these genes, glucose-6-phosphatase-β (G6PC3), is involved in glucose metabolism. G6PC3 deficiency causes neutropenia in humans and in mice, linked to enhanced apoptosis and ER stress. We used a model of conditional Hoxb8 expression to test molecular and functional differentiation as well as survival defects in neutrophils from G6PC3(-/-) mice. Progenitor lines were established and differentiated into neutrophils when Hoxb8 was turned off. G6PC3(-/-) progenitor cells underwent substantial apoptosis when differentiation was started. Transgenic expression of Bcl-XL rescued survival; however, Bcl-XL-protected differentiated cells showed reduced proliferation, immaturity and functional deficiency such as altered MAP kinase signaling and reduced cytokine secretion. Impaired glucose utilization was found and was associated with ER stress and apoptosis, associated with the upregulation of Bim and Bax; downregulation of Bim protected against apoptosis during differentiation. ER-stress further caused a profound loss of expression and secretion of the main neutrophil product neutrophil elastase during differentiation. Transplantation of wild-type Hoxb8-progenitor cells into irradiated mice allowed differentiation into neutrophils in the bone marrow in vivo. Transplantation of G6PC3(-/-) cells yielded few mature neutrophils in bone marrow and peripheral blood. Transgenic Bcl-XL permitted differentiation of G6PC3(-/-) cells in vivo. However, functional deficiencies and differentiation abnormalities remained. Differentiation of macrophages from Hoxb8-dependent progenitors was only slightly disturbed. A combination of defects in differentiation

  7. Neutrophil Lymphocyte Ratio Predicts Postoperative Pain after ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... between preoperatively measured neutrophil-lymphocyte ratio (NLR) – as an inflammation ... analgesic (tenoxicam – as the first drug of choice, paracetamol, tramadol, or pethidine) usage ... fracture fixation). Age, sex, type of ...

  8. Investigation of urinary neutrophil gelatinase associated lipocalin ...

    African Journals Online (AJOL)

    Investigation of urinary neutrophil gelatinase associated lipocalin (NGAL) for early diagnosis of acute kidney ... African Journal of Urology ... Demographic and clinical data including surgical procedure were recorded in Excel and analyzed by ...

  9. JALUR MOLEKULER MEKANISME APOPTOSIS

    Directory of Open Access Journals (Sweden)

    Yani Corvianindya Rahayu

    2015-07-01

    Full Text Available Apoptosis or programmed cell death is a normal condition for development and live multicellular organism. Apoptosis is a morphological phenomenon that plays an important role in physiologic processes during fetal development and in adult. Mitochondria play an important role in apoptosis. Mitochondria can do apoptosis directly. Mitochondria has 2 family of protein Bcl-2. Bcl-2 and Bcl-XL are anti apoptosis while Bad an Bax are pro apoptosis. There are 3 different mechanism to receptors at the cell surface and a third may be triggered by dangerous agent that different from two ways before. Apoptosis also need caspase as cell death executor. Study of apoptosis still done especially in case of disease. Some disease have known related with disturbing of apoptosis mechanism for example cancer and auto immune. This article reviews about molecular mechanism of apoptosis for understanding disease and future therapy.

  10. Cryptococcus neoformans modulates extracellular killing by neutrophils

    Directory of Open Access Journals (Sweden)

    Asfia eQureshi

    2011-09-01

    Full Text Available We recently established a key role for host sphingomyelin synthase (SMS in the regulation of the killing activity of neutrophils against Cryptococcus neoformans. In this work, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and NK cells (Tgε26 mice. To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike C. albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. Next, we monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the medium and found that pre-incubation with live but not heat-killed fungal cells significantly inhibits further killing activity of the medium. We next studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption-ionization (MALDI tissue imaging in infected lung we found that similarly to previous observations in the isogenic wild type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells.

  11. Neutrophil extracellular trap formation in supragingival biofilms.

    Science.gov (United States)

    Hirschfeld, Josefine; Dommisch, Henrik; Skora, Philipp; Horvath, Gabor; Latz, Eicke; Hoerauf, Achim; Waller, Tobias; Kawai, Toshihisa; Jepsen, Søren; Deschner, James; Bekeredjian-Ding, Isabelle

    2015-01-01

    Oral biofilms are the causative agents of the highly prevalent oral diseases periodontitis and caries. Additionally, the host immune response is thought to play a critical role in disease onset. Neutrophils are known to be a key host response factor to bacterial challenge on host surfaces. Release of neutrophil extracellular traps (NETs) as a novel antimicrobial defense strategy has gained increasing attention in the past years. Here, we investigated the influx of neutrophils into the dental plaque and the ability of oral bacteria to trigger intra-biofilm release of NETs and intracellular proteins. Supragingival biofilms and whole saliva were sampled from systemically healthy subjects participating in an experimental gingivitis study. Biofilms were analysed by immunofluorescence followed by confocal and fluorescence microscopy. Moreover, concentrations of cytokines and immune-associated proteins in biofilm suspensions and saliva were assessed by ELISA. Neutrophils obtained from blood were stimulated with twelve bacterial species isolated from cultured biofilms or with lipopolysaccharide to monitor NET formation. Neutrophils, NETs, neutrophil-associated proteins (myeloperoxidase, elastase-2, cathepsin G, cathelicidin LL-37), interleukin-8, interleukin-1β and tumor necrosis factor were detected within plaque samples and saliva. All tested bacterial species as well as the polymicrobial samples isolated from the plaque of each donor induced release of NETs and interleukin-8. The degree of NET formation varied among different subjects and did not correlate with plaque scores or clinical signs of local inflammation. Our findings indicate that neutrophils are attracted towards dental biofilms, in which they become incorporated and where they are stimulated by microbes to release NETs and immunostimulatory proteins. Thus, neutrophils and NETs may be involved in host biofilm control, although their specific role needs to be further elucidated. Moreover, inter

  12. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition.

    Science.gov (United States)

    Juss, Jatinder K; House, David; Amour, Augustin; Begg, Malcolm; Herre, Jurgen; Storisteanu, Daniel M L; Hoenderdos, Kim; Bradley, Glyn; Lennon, Mark; Summers, Charlotte; Hessel, Edith M; Condliffe, Alison; Chilvers, Edwin R

    2016-10-15

    Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease's complex pathophysiology, yet these cells have been little studied. To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase-dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of evaluating novel therapeutic strategies in patient-derived cells.

  13. Neutrophils in Cancer: Two Sides of the Same Coin.

    Science.gov (United States)

    Uribe-Querol, Eileen; Rosales, Carlos

    2015-01-01

    Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs) have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.

  14. Neutrophils in Cancer: Two Sides of the Same Coin

    Directory of Open Access Journals (Sweden)

    Eileen Uribe-Querol

    2015-01-01

    Full Text Available Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.

  15. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  16. Morphological and photometric properties of active and non-active ...

    African Journals Online (AJOL)

    Context: The differences in properties of active and non-active galaxies in the green valley have been studied in the quest of finding the driving mechanism behind the evolutionary transition from the blue cloud to the red sequence galaxies. Aims: Using COSMOS data, as one of the deepest surveys, and X-ray detected ...

  17. Apoptotic-like tumor cells and apoptotic neutrophils in mitochondrion-rich gastric adenocarcinomas: a comparative study with light and electronmicroscopy between these two forms of cell death

    Directory of Open Access Journals (Sweden)

    Antonio Venuti

    2013-04-01

    Full Text Available Mitochondrion-rich adenocarcinomas represent a rare variant of gastric adenocarcinomas composed predominantly of columnar adenocarcinoma cells with eosinophilic cytoplasm, a strong supranuclear immunoreactivity for antimitochondrial antibody, and a marked neutrophil infiltration associated to tumor cell death. The purpose of this work is to investigate, using correlated light and electron microscopy, mitochondrion-rich gastric adenocarcinomas focusing on the nature of the death in neoplastic cells and in infiltrating neutrophils. Adenocarcinoma cells, single or in small clusters, showed convoluted nuclei, irregularly condensed chromatin, loss of microvilli, and nuclear envelope dilatation. No nuclear fragmentation was observed in these dying cells and the plasma membrane did not show signs of disruption. These ultrastructural findings represent intermediate aspects between apoptosis and necrosis and are compatible with apoptosis-like programmed cell death. By contrast, some infiltrating neutrophils showed ultrastructural signs of classic apoptosis such as chromatin condensation into compact geometric (globular, crescent-shaped figures, tightly packed cytoplasmic granules and intact cell membrane. Our study provides ultrastructural evidence of apoptosis-like tumour cell death in mitochondrion-rich gastric carcinomas and confirms that stereotyped outcome either as apoptosis or necrosis of tumor cells cannot always be expected in human neoplasms.

  18. Sepsis Induces a Dysregulated Neutrophil Phenotype That Is Associated with Increased Mortality

    Directory of Open Access Journals (Sweden)

    Jaimin M. Patel

    2018-01-01

    Full Text Available Background. Neutrophil dysfunction in sepsis has been implicated in the pathogenesis of multiorgan failure; however, the role of neutrophil extracellular traps (NETs remains uncertain. We aimed to determine the sequential changes in ex vivo NETosis and its relationship with mortality in patients with sepsis and severe sepsis. Methods. This was a prospective observational cohort study enrolling 21 healthy age-matched controls and 39 sepsis and 60 severe sepsis patients from acute admissions to two UK hospitals. Patients had sequential bloods for the ex vivo assessment of NETosis in response to phorbol-myristate acetate (PMA using a fluorometric technique and chemotaxis using time-lapse video microscopy. Continuous data was tested for normality, with appropriate parametric and nonparametric tests, whilst categorical data was analysed using a chi-squared test. Correlations were performed using Spearman’s rho. Results. Ex vivo NETosis was reduced in patients with severe sepsis, compared to patients with sepsis and controls (p=0.002. PMA NETosis from patients with septic shock was reduced further (p<0.001 compared to controls. The degree of metabolic acidosis correlated with reduced NETosis (p<0.001, and this was replicated when neutrophils from healthy donors were incubated in acidotic media. Reduced NETosis at baseline was associated with an increased 30-day (p=0.002 and 90-day mortality (p=0.014 in sepsis patients. These findings were accompanied by defects in neutrophil migration and delayed apoptosis. Resolution of sepsis was not associated with the return to baseline levels of NETosis or migration. Conclusions. Sepsis induces significant changes in neutrophil function with the degree of dysfunction corresponding to the severity of the septic insult which persists beyond physiological recovery from sepsis. The changes induced lead to the failure to effectively contain and eliminate the invading pathogens and contribute to sepsis

  19. Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence

    Directory of Open Access Journals (Sweden)

    Robert C. Allen

    2015-01-01

    Full Text Available Neutrophil leukocytes protect against a varied and complex array of microbes by providing microbicidal action that is simple, potent, and focused. Neutrophils provide such action via redox reactions that change the frontier orbitals of oxygen (O2 facilitating combustion. The spin conservation rules define the symmetry barrier that prevents direct reaction of diradical O2 with nonradical molecules, explaining why combustion is not spontaneous. In burning, the spin barrier is overcome when energy causes homolytic bond cleavage producing radicals capable of reacting with diradical O2 to yield oxygenated radical products that further participate in reactive propagation. Neutrophil mediated combustion is by a different pathway. Changing the spin quantum state of O2 removes the symmetry restriction to reaction. Electronically excited singlet molecular oxygen (O2*1 is a potent electrophilic reactant with a finite lifetime that restricts its radius of reactivity and focuses combustive action on the target microbe. The resulting exergonic dioxygenation reactions produce electronically excited carbonyls that relax by light emission, that is, chemiluminescence. This overview of neutrophil combustive microbicidal action takes the perspectives of spin conservation and bosonic-fermionic frontier orbital considerations. The necessary principles of particle physics and quantum mechanics are developed and integrated into a fundamental explanation of neutrophil microbicidal metabolism.

  20. Neutrophils in Homeostasis, Immunity, and Cancer.

    Science.gov (United States)

    Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés

    2017-01-17

    Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang; Zhang, Huoming; Guo, Tiannan; Li, Wenying; Li, Huiyu; Zhu, Yi; Huang, Shiang

    2014-01-01

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. GROUP B STREPTOCOCCUS CIRCUMVENTS NEUTROPHILS AND NEUTROPHIL EXTRACELLULAR TRAPS DURING AMNIOTIC CAVITY INVASION AND PRETERM LABOR

    Science.gov (United States)

    Boldenow, Erica; Gendrin, Claire; Ngo, Lisa; Bierle, Craig; Vornhagen, Jay; Coleman, Michelle; Merillat, Sean; Armistead, Blair; Whidbey, Christopher; Alishetti, Varchita; Santana-Ufret, Veronica; Ogle, Jason; Gough, Michael; Srinouanprachanh, Sengkeo; MacDonald, James W; Bammler, Theo K; Bansal, Aasthaa; Liggitt, H. Denny; Rajagopal, Lakshmi; Waldorf, Kristina M Adams

    2016-01-01

    Preterm birth is a leading cause of neonatal morbidity and mortality. Although microbial invasion of the amniotic cavity (MIAC) is associated with the majority of early preterm births, the temporal events that occur during MIAC and preterm labor are not known. Group B Streptococci (GBS) are β-hemolytic, gram-positive bacteria, which commonly colonize the vagina but have been recovered from the amniotic fluid in preterm birth cases. To understand temporal events that occur during MIAC, we utilized a unique chronically catheterized nonhuman primate model that closely emulates human pregnancy. This model allows monitoring of uterine contractions, timing of MIAC and immune responses during pregnancy-associated infections. Here, we show that adverse outcomes such as preterm labor, MIAC, and fetal sepsis were observed more frequently during infection with hemolytic GBS when compared to nonhemolytic GBS. Although MIAC was associated with systematic progression in chorioamnionitis beginning with chorionic vasculitis and progressing to neutrophilic infiltration, the ability of the GBS hemolytic pigment toxin to induce neutrophil cell death and subvert killing by neutrophil extracellular traps (NETs) in placental membranes in vivo facilitated MIAC and fetal injury. Furthermore, compared to maternal neutrophils, fetal neutrophils exhibit decreased neutrophil elastase activity and impaired phagocytic functions to GBS. Collectively, our studies demonstrate how a unique bacterial hemolytic lipid toxin enables GBS to circumvent neutrophils and NETs in placental membranes to induce fetal injury and preterm labor. PMID:27819066

  3. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang

    2014-06-11

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Pathogenic Bacterium Acinetobacter baumannii Inhibits the Formation of Neutrophil Extracellular Traps by Suppressing Neutrophil Adhesion

    Science.gov (United States)

    Kamoshida, Go; Kikuchi-Ueda, Takane; Nishida, Satoshi; Tansho-Nagakawa, Shigeru; Ubagai, Tsuneyuki; Ono, Yasuo

    2018-01-01

    Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs), has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA), and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections. PMID:29467765

  5. Pathogenic Bacterium Acinetobacter baumannii Inhibits the Formation of Neutrophil Extracellular Traps by Suppressing Neutrophil Adhesion

    Directory of Open Access Journals (Sweden)

    Go Kamoshida

    2018-02-01

    Full Text Available Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs, has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA, and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections.

  6. Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer

    Directory of Open Access Journals (Sweden)

    Jitka Y. Sagiv

    2015-02-01

    Full Text Available Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro- and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs. LDNs consist of both immature myeloid-derived suppressor cells (MDSCs and mature cells that are derived from HDNs in a TGF-β-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.

  7. IFNγ inhibits G-CSF induced neutrophil expansion and invasion of the CNS to prevent viral encephalitis.

    Science.gov (United States)

    Ramakrishna, Chandran; Cantin, Edouard M

    2018-01-01

    Emergency hematopoiesis facilitates the rapid expansion of inflammatory immune cells in response to infections by pathogens, a process that must be carefully regulated to prevent potentially life threatening inflammatory responses. Here, we describe a novel regulatory role for the cytokine IFNγ that is critical for preventing fatal encephalitis after viral infection. HSV1 encephalitis (HSE) is triggered by the invasion of the brainstem by inflammatory monocytes and neutrophils. In mice lacking IFNγ (GKO), we observed unrestrained increases in G-CSF levels but not in GM-CSF or IL-17. This resulted in uncontrolled expansion and infiltration of apoptosis-resistant, degranulating neutrophils into the brainstem, causing fatal HSE in GKO but not WT mice. Excessive G-CSF in GKO mice also induced granulocyte derived suppressor cells, which inhibited T-cell proliferation and function, including production of the anti-inflammatory cytokine IL-10. Unexpectedly, we found that IFNγ suppressed G-CSF signaling by increasing SOCS3 expression in neutrophils, resulting in apoptosis. Depletion of G-CSF, but not GM-CSF, in GKO mice induced neutrophil apoptosis and reinstated IL-10 secretion by T cells, which restored their ability to limit innate inflammatory responses resulting in protection from HSE. Our studies reveals a novel, complex interplay among IFNγ, G-CSF and IL-10, which highlights the opposing roles of G-CSF and IFNγ in regulation of innate inflammatory responses in a murine viral encephalitis model and reveals G-CSF as a potential therapeutic target. Thus, the antagonistic G-CSF-IFNγ interactions emerge as a key regulatory node in control of CNS inflammatory responses to virus infection.

  8. Neutrophil beta-2 microglobulin: an inflammatory mediator

    DEFF Research Database (Denmark)

    Bjerrum, O W; Nissen, Mogens Holst; Borregaard, N

    1990-01-01

    Beta-2 microglobulin (beta 2m) constitutes the light invariant chain of HLA class I antigen, and is a constituent of mobilizable compartments of neutrophils. Two forms of beta 2m exist: native beta 2m and proteolytically modified beta 2m (Des-Lys58-beta 2m), which shows alpha mobility in crossed ...

  9. Neutrophils in atherosclerosis. A brief overview

    NARCIS (Netherlands)

    Hartwig, H.; Silvestre Roig, C.; Daemen, M.; Lutgens, E.; Soehnlein, O.

    2015-01-01

    Atherosclerosis is a chronic inflammation of the arterial wall and the continuous infiltration of leukocytes into the plaque enhances the progression of the lesion. Because of the scarce detection of neutrophils in atherosclerotic plaques compared to other immune cells, their contribution was

  10. Myeloperoxidase attracts neutrophils by physical forces

    Czech Academy of Sciences Publication Activity Database

    Klinke, A.; Nussbaum, C.; Kubala, Lukáš; Friedrichs, K.; Rudolph, T.K.; Rudolph, V.; Paust, H.-J.; Schröder, Ch.; Benten, D.; Lau, D.; Szocs, K.; Furtmüller, P.G.; Heeringa, P.; Sydow, K.; Duchstein, H.-J.; Ehmke, H.; Schumacher, U.; Meinertz, T.; Sperandio, M.; Baldus, S.

    2011-01-01

    Roč. 117, č. 4 (2011), s. 1350-1358 ISSN 0006-4971 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : myeloperoxidase * polymorphonuclear neutrophils * glycocalyx Subject RIV: BO - Biophysics Impact factor: 9.898, year: 2011

  11. Rat Neutrophil Phagocytosis Following Feed Restriction

    Czech Academy of Sciences Publication Activity Database

    Slapničková, Martina; Berger, J.

    2002-01-01

    Roč. 11, č. 3 (2002), s. 172-177 ISSN 0938-7714 Institutional research plan: CEZ:AV0Z5052915 Keywords : circulating neutrophil * diet restriction * phagocytosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.167, year: 2001

  12. Chronic Inflammation and Neutrophil Activation as Possible Causes of Joint Diseases in Ballet Dancers

    Directory of Open Access Journals (Sweden)

    Leandro da Silva Borges

    2014-01-01

    Full Text Available Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK and lactate dehydrogenase (LDH activities, cytokines, complement component 3 (C3, and the concentrations of immunoglobulin (Ig, IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold immediately after class, while the activities of CK-cardiac muscle (1.0-fold and LDH (3.0-fold were observed to increase 18 hours after the class. Levels of the TNF-α, IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Conclusion. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis.

  13. Chronic inflammation and neutrophil activation as possible causes of joint diseases in ballet dancers.

    Science.gov (United States)

    Borges, Leandro da Silva; Bortolon, José Ricardo; Santos, Vinicius Coneglian; de Moura, Nivaldo Ribeiro; Dermargos, Alexandre; Cury-Boaventura, Maria Fernanda; Gorjão, Renata; Pithon-Curi, Tania Cristina; Hatanaka, Elaine

    2014-01-01

    Herein, we investigated the effects of a ballet class on the kinetic profiles of creatine kinase (CK) and lactate dehydrogenase (LDH) activities, cytokines, complement component 3 (C3), and the concentrations of immunoglobulin (Ig), IgA and IgM, in ballerinas. We also verified neutrophil death and ROS release. Blood samples were taken from 13 dancers before, immediately after, and 18 hours after a ballet class. The ballet class increased the plasma activities of CK-total (2.0-fold) immediately after class, while the activities of CK-cardiac muscle (1.0-fold) and LDH (3.0-fold) were observed to increase 18 hours after the class. Levels of the TNF-α , IL-1β, IgG, and IgA were not affected under the study conditions. The exercise was found to induce neutrophil apoptosis (6.0-fold) 18 hours after the ballet class. Additionally, immediately after the ballet class, the neutrophils from the ballerinas were found to be less responsive to PMA stimulus. Ballet class was found to result in inflammation in dancers. The inflammation caused by the ballet class remained for 18 hours after the exercise. These findings are important in preventing the development of chronic lesions that are commonly observed in dancers, such as those with arthritis and synovitis.

  14. Changes in Neutrophil Functions in Astronauts

    Science.gov (United States)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  15. Effect of moderate exercise on peritoneal neutrophils from juvenile rats.

    Science.gov (United States)

    Braz, Glauber Ruda; Ferreira, Diorginis Soares; Pedroza, Anderson Apolonio; da Silva, Aline Isabel; Sousa, Shirley Maria; Pithon-Curi, Tania Cristina; Lagranha, Claudia

    2015-09-01

    Previous studies showed that moderate exercise in adult rats enhances neutrophil function, although no studies were performed in juvenile rats. We evaluated the effects of moderate exercise on the neutrophil function in juvenile rats. Viability and neutrophils function were evaluated. Moderate exercise did not impair the viability and mitochondrial transmembrane potential of neutrophils, whereas there was greater reactive oxygen species production (164%; p < 0.001) and phagocytic capacity (29%; p < 0.05). Our results suggest that moderate exercise in juvenile rats improves neutrophil function, similar to adults.

  16. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14 from target cells in its apoptosis-inducing activity

    Directory of Open Access Journals (Sweden)

    Satoru Yui

    2002-01-01

    Full Text Available Background: Calprotectin is a calcium-binding and zinc-binding protein complex that is abundant in the cytosol of neutrophils. This factor is composed of 8 and 14 kDa subunits, which have also been termed migration inhibitory factor-related proteins MRP8 and MRP14. We previously reported that rat calprotectin purified from inflammatory neutrophils induces apoptosis of various tumor cells or normal fibroblasts in a zinc-reversible manner.

  17. Spontaneous neutrophil migration patterns during sepsis after major burns.

    Science.gov (United States)

    Jones, Caroline N; Moore, Molly; Dimisko, Laurie; Alexander, Andrew; Ibrahim, Amir; Hassell, Bryan A; Warren, H Shaw; Tompkins, Ronald G; Fagan, Shawn P; Irimia, Daniel

    2014-01-01

    Finely tuned to respond quickly to infections, neutrophils have amazing abilities to migrate fast and efficiently towards sites of infection and inflammation. Although neutrophils ability to migrate is perturbed in patients after major burns, no correlations have yet been demonstrated between altered migration and higher rate of infections and sepsis in these patients when compared to healthy individuals. To probe if such correlations exist, we designed microfluidic devices to quantify the neutrophil migration phenotype with high precision. Inside these devices, moving neutrophils are confined in channels smaller than the neutrophils and forced to make directional decisions at bifurcations and around posts. We employed these devices to quantify neutrophil migration across 18 independent parameters in 74 blood samples from 13 patients with major burns and 3 healthy subjects. Blinded, retrospective analysis of clinical data and neutrophil migration parameters revealed that neutrophils isolated from blood samples collected during sepsis migrate spontaneously inside the microfluidic channels. The spontaneous neutrophil migration is a unique phenotype, typical for patients with major burns during sepsis and often observed one or two days before the diagnosis of sepsis is confirmed. The spontaneous neutrophil migration phenotype is rare in patients with major burns in the absence of sepsis, and is not encountered in healthy individuals. Our findings warrant further studies of neutrophils and their utility for early diagnosing and monitoring sepsis in patients after major burns.

  18. Foveolar cells phagocytose apoptotic neutrophils in chronic active Helicobacter pylori gastritis.

    Science.gov (United States)

    Caruso, R A; Fedele, F; Di Bella, C; Mazzon, E; Rigoli, L

    2012-11-01

    The recognition and removal of apoptotic inflammatory cells by tissue macrophages and non-professional phagocytes, in a process called efferocytosis, is required for resolution of inflammation and is actively anti-inflammatory. We have previously demonstrated phagocytosis of apoptotic neutrophils by tumor cells in human gastric carcinoma, but to date, there have been no studies investigating this process in chronic active Helicobacter pylori gastritis. Biopsy specimens from 28 subjects with or without H. pylori infection and active inflammation were examined and graded according to the updated Sydney system. Light microscopy, electron microscopy, and Terminal Deoxynucleotidyltransferase-Mediated UTP End Labeling staining were used to identify apoptosis. H. pylori infection was detected by histology and by molecular assay in 16 out of 28 cases. DNA from paraffin-embedded gastric biopsies was amplified using primers specific for cagA, for the cag "empty site" as well as for the s and m alleles of vacA. The more virulent cagA-positive strains were found in five out of nine patients with chronic active gastritis. The vacA s1/m1 and s2/m1 genotypes were more common in nine patients with chronic active gastritis, while the vacA s2/m2 genotype was more frequent in seven patients with chronic inactive gastritis. Apoptotic neutrophils were also detected within the cytoplasmic vacuoles of the foveolar cells of nine cases with chronic active gastritis. Transmission electron micrographs revealed further apoptotic neutrophils within spacious phagosomes of foveolar cells in a similar manner to those described in late-phase efferocytosis both in vivo and in vitro. These new observations expand the morphological spectrum of gastritis in patients infected with more virulent H. pylori strains, compatible with an anti-inflammatory role for the gastric epithelial cells in their removal of apoptotic neutrophils during active chronic gastritis.

  19. Phagocytosis (cannibalism) of apoptotic neutrophils by tumor cells in gastric micropapillary carcinomas.

    Science.gov (United States)

    Barresi, Valeria; Branca, Giovanni; Ieni, Antonio; Rigoli, Luciana; Tuccari, Giovanni; Caruso, Rosario Alberto

    2015-05-14

    To identify those with a micropapillary pattern, ascertain relative frequency and document clinicopathological characteristics by reviewing gastric carcinomas. One hundred and fifty-one patients diagnosed with gastric cancer who underwent gastrectomy were retrospectively studied and the presence of a regional invasive micropapillary component was evaluated by light microscopy. All available hematoxylin-eosin (HE)-stained slides were histologically reviewed and 5 tumors were selected as putative micropapillary carcinoma when cancer cell clusters without a vascular core within empty lymphatic-like space comprised at least 5% of the tumor. Tumor tissues from these 5 invasive gastric carcinomas were immunostained using an anti-mucin 1 (MUC1) antibody (clone MA695) to detect the characteristic inside-out pattern and with D2-40 antibody to determine the presence of intratumoral lymph vessels. Detection of intraepithelial neutrophil apoptosis was evaluated in consecutive histological tissue sections by three independent methods, namely light microscopy with HE staining, the conventional terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) method and immunohistochemistry for activated caspase-3 (clone C92-605). Among 151 gastric cancers resected for cure, 5 (3.3%) were adenocarcinomas with a micropapillary component. Four of the patients died of disease from 6 to 23 mo and one patient was alive with metastases at 9 mo. All patients had advanced-stage cancer (≥ pT2) and lymph node metastasis. Positive MUC1 immunostaining on the stroma-facing surface (inside-out pattern) of the carcinomatous cluster cells, together with negative immunostaining for D2-40 in the cells limiting lymphatic-like spaces, confirmed the true micropapillary pattern in these gastric neoplasms. In all five cases, several micropapillae were infiltrated by neutrophils. HE staining, TUNEL assay and immunostaining for caspase-3 demonstrated apoptotic neutrophils within

  20. [Apoptosis and pathological process].

    Science.gov (United States)

    Rami, Mukhammed Salim Iusef

    2007-01-01

    Apoptosis (programmed cell death) occurs normally for maitenance of tissue homeostasis and play an important role in morphogenesis, embriogenesis and tissue growth. On the other hand, apoptosis may be involved in different pathological processes such as malignancy, infectious diseases and autoimmune disorders. Apoptosis is regulated by various mediators. Caspases, death receptors, mitochondria, Bcl-2 protoncogenes and tumor supressor genes are considered to be the most important of them. Advance in apoptosis regulation research suggests enormouse facilities for therapy of wide range of human illnesses.

  1. The transcription factor Jdp2 controls bone homeostasis and antibacterial immunity by regulating osteoclast and neutrophil differentiation.

    Science.gov (United States)

    Maruyama, Kenta; Fukasaka, Masahiro; Vandenbon, Alexis; Saitoh, Tatsuya; Kawasaki, Takumi; Kondo, Takeshi; Yokoyama, Kazunari K; Kidoya, Hiroyasu; Takakura, Nobuyuki; Standley, Daron; Takeuchi, Osamu; Akira, Shizuo

    2012-12-14

    Jdp2 is an AP-1 family transcription factor that regulates the epigenetic status of histones. Previous in vitro studies revealed that Jdp2 is involved in osteoclastogenesis. However, the roles of Jdp2 in vivo and its pleiotropic functions are largely unknown. Here we generated Jdp2(-/-) mice and discovered its crucial roles not only in bone metabolism but also in differentiation of neutrophils. Jdp2(-/-) mice exhibited osteopetrosis resulting from impaired osteoclastogenesis. Jdp2(-/-) neutrophils were morphologically normal but had impaired surface expression of Ly6G, bactericidal function, and apoptosis. We also found that ATF3 was an inhibitor of neutrophil differentiation and that Jdp2 directly suppresses its expression via inhibition of histone acetylation. Strikingly, Jdp2(-/-) mice were highly susceptible to Staphylococcus aureus and Candida albicans infection. Thus, Jdp2 plays pivotal roles in in vivo bone homeostasis and host defense by regulating osteoclast and neutrophil differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function.

    Directory of Open Access Journals (Sweden)

    Jérôme Beaufays

    Full Text Available BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that can interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: We previously identified 14 new lipocalin genes in the tick Ixodes ricinus. One of them codes for a protein that specifically binds leukotriene B4 with a very high affinity (Kd: +/-1 nM, similar to that of the neutrophil transmembrane receptor BLT1. By in silico approaches, we modeled the 3D structure of the protein and the binding of LTB4 into the ligand pocket. This protein, called Ir-LBP, inhibits neutrophil chemotaxis in vitro and delays LTB4-induced apoptosis. Ir-LBP also inhibits the host inflammatory response in vivo by decreasing the number and activation of neutrophils located at the tick bite site. Thus, Ir-LBP participates in the tick's ability to interfere with proper neutrophil function in inflammation. CONCLUSIONS/SIGNIFICANCE: These elements suggest that Ir-LBP is a "scavenger" of LTB4, which, in combination with other factors, such as histamine-binding proteins or proteins inhibiting the classical or alternative complement pathways, permits the tick to properly manage its blood meal. Moreover, with regard to its properties, Ir-LBP could possibly be used as a therapeutic tool for illnesses associated with an increased LTB4 production.

  3. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  4. Contribution of Neutrophils to Acute Lung Injury

    OpenAIRE

    Grommes, Jochen; Soehnlein, Oliver

    2010-01-01

    Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neut...

  5. Tumor Associated Neutrophils in Human Lung Cancer

    Science.gov (United States)

    2016-10-01

    tumor innate immune response. anti-tumor adaptive immune response, neutrophil and T cell interaction. ACCOMPLISHMENTS There were no significant...and by producing factors to recruit and acti- vate cells of the innate and adaptive immune system (Mantovani et al., 2011). Given these varying effects...vivo effects on neutro- phil activation (Figure 2, A and B) and cleavage of myeloid and lymphoid cell markers (Supplemental Figure 1, C–G). Once opti

  6. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo

    Science.gov (United States)

    Colom, Bartomeu; Bodkin, Jennifer V.; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A.; Nourshargh, Sussan

    2015-01-01

    Summary Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. PMID:26047922

  7. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo.

    Science.gov (United States)

    Colom, Bartomeu; Bodkin, Jennifer V; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A; Nourshargh, Sussan

    2015-06-16

    Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils

    Science.gov (United States)

    Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.

    2014-03-01

    Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.

  9. Sexy again: the renaissance of neutrophils in psoriasis.

    Science.gov (United States)

    Schön, Michael P; Broekaert, Sigrid M C; Erpenbeck, Luise

    2017-04-01

    Notwithstanding their prominent presence in psoriatic skin, the functional role of neutrophilic granulocytes still remains somewhat enigmatic. Sparked by exciting scientific discoveries regarding neutrophil functions within the last years, the interest in these short-lived cells of the innate immune system has been boosted recently. While it had been known for some time that neutrophils produce and respond to a number of inflammatory mediators, recent research has linked neutrophils with the pathogenic functions of IL-17, possibly in conjunction with the formation of NETs (neutrophil extracellular traps). Antipsoriatic therapies exert their effects, at least in part, through interference with neutrophils. Neutrophils also appear to connect psoriasis with comorbid diseases. However, directly tampering with neutrophil functions is not trivial as evinced by the failure of therapeutic approaches targeting redundantly regulated cellular communication networks. It has also become apparent that neutrophils link important pathogenic functions of the innate and the adaptive immune system and that they are intricately involved in regulatory networks underlying the pathophysiology of psoriasis. In order to advocate intensified research into the role of this interesting cell population, we here highlight some features of neutrophils and put them into perspective with our current view of the pathophysiology of psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Ubiquitination in apoptosis signaling

    NARCIS (Netherlands)

    van de Kooij, L.W.

    2014-01-01

    The work described in this thesis focuses on ubiquitination and protein degradation, with an emphasis on how these processes regulate apoptosis signaling. More specifically, our aims were: 1. To increase the understanding of ubiquitin-mediated regulation of apoptosis signaling. 2. To identify the E3

  11. Hyperthermia-induced apoptosis

    NARCIS (Netherlands)

    Nijhuis, E.H.A.

    2008-01-01

    This thesis describes a number of studies that investigated several aspects of heat-induced apoptosis in human lymphoid malignancies. Cells harbour both pro- and anti-apoptotic proteins and the balance between these proteins determines whether a cell is susceptible to undergo apoptosis. In this

  12. Apoptosis in the eye.

    OpenAIRE

    Chahory , Sabine; Torriglia , Alicia

    2006-01-01

    Apoptosis is a normal component of the development and health of multicellular organisms. Cells die during apoptosis in a controlled, regulated fashion. This form of cell death is very important in eye development as well as in eye pathology. We review in this chapter our current knowledge in this topic.

  13. Characterization of Yersinia pestis Interactions with Human Neutrophils In vitro

    Directory of Open Access Journals (Sweden)

    Sophia C. Dudte

    2017-08-01

    Full Text Available Yersinia pestis is a gram-negative, zoonotic, bacterial pathogen, and the causative agent of plague. The bubonic form of plague occurs subsequent to deposition of bacteria in the skin by the bite of an infected flea. Neutrophils are recruited to the site of infection within the first few hours and interactions between neutrophils and Y. pestis have been demonstrated in vivo. In contrast to macrophages, neutrophils have been considered non-permissive to Y. pestis intracellular survival. Several studies have shown killing of the vast majority of Y. pestis ingested by human neutrophils. However, survival of 10–15% of Y. pestis after phagocytosis by neutrophils is consistently observed. Furthermore, these surviving bacteria eventually replicate within and escape from the neutrophils. We set out to further characterize the interactions between Y. pestis and human neutrophils by (1 determining the effects of known Y. pestis virulence factors on bacterial survival after uptake by neutrophils, (2 examining the mechanisms employed by the neutrophil to kill the majority of intracellular Y. pestis, (3 determining the activation phenotype of Y. pestis-infected neutrophils, and (4 characterizing the Y. pestis-containing phagosome in neutrophils. We infected human neutrophils in vitro with Y. pestis and assayed bacterial survival and uptake. Deletion of the caf1 gene responsible for F1 capsule production resulted in significantly increased uptake of Y. pestis. Surprisingly, while the two-component regulator PhoPQ system is important for survival of Y. pestis within neutrophils, pre-induction of this system prior to infection did not increase bacterial survival. We used an IPTG-inducible mCherry construct to distinguish viable from non-viable intracellular bacteria and determined the association of the Y. pestis-containing phagosome with neutrophil NADPH-oxidase and markers of primary, secondary and tertiary granules. Additionally, we show that inhibition of

  14. Diverse novel functions of neutrophils in immunity, inflammation, and beyond

    OpenAIRE

    Mocsai, A.

    2013-01-01

    Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10–20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellu...

  15. Neutrophilic dermatoses in a patient with collagenous colitis

    OpenAIRE

    Didac Barco; Maria A. Barnadas; Esther Roé; Francisco J. Sancho; Elena Ricart; Agustín Alomar

    2010-01-01

    We report the case of a 75-year old woman with collagenous colitis who presented with erythematous and edematous plaques on the periorbital and eyelid regions, accompanied by oral ulcers. Histopathology showed a dermal neutrophilic infiltrate plus mild septal and lobular panniculitis with lymphocytes, neutrophils and eosinophils. Five years earlier she had presented a flare of papules and vesicles on the trunk, together with oral ulcers; a skin biopsy revealed a neutrophilic dermal infiltrate...

  16. Neutrophils in traumatic brain injury (TBI): friend or foe?

    Science.gov (United States)

    Liu, Yang-Wuyue; Li, Song; Dai, Shuang-Shuang

    2018-05-17

    Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.

  17. Hypoxia upregulates neutrophil degranulation and potential for tissue injury

    Science.gov (United States)

    Hoenderdos, Kim; Lodge, Katharine M; Hirst, Robert A; Chen, Cheng; Palazzo, Stefano G C; Emerenciana, Annette; Summers, Charlotte; Angyal, Adri; Porter, Linsey; Juss, Jatinder K; O'Callaghan, Christopher; Chilvers, Edwin R

    2016-01-01

    Background The inflamed bronchial mucosal surface is a profoundly hypoxic environment. Neutrophilic airway inflammation and neutrophil-derived proteases have been linked to disease progression in conditions such as COPD and cystic fibrosis, but the effects of hypoxia on potentially harmful neutrophil functional responses such as degranulation are unknown. Methods and results Following exposure to hypoxia (0.8% oxygen, 3 kPa for 4 h), neutrophils stimulated with inflammatory agonists (granulocyte-macrophage colony stimulating factor or platelet-activating factor and formylated peptide) displayed a markedly augmented (twofold to sixfold) release of azurophilic (neutrophil elastase, myeloperoxidase), specific (lactoferrin) and gelatinase (matrix metalloproteinase-9) granule contents. Neutrophil supernatants derived under hypoxic but not normoxic conditions induced extensive airway epithelial cell detachment and death, which was prevented by coincubation with the antiprotease α-1 antitrypsin; both normoxic and hypoxic supernatants impaired ciliary function. Surprisingly, the hypoxic upregulation of neutrophil degranulation was not dependent on hypoxia-inducible factor (HIF), nor was it fully reversed by inhibition of phospholipase C signalling. Hypoxia augmented the resting and cytokine-stimulated phosphorylation of AKT, and inhibition of phosphoinositide 3-kinase (PI3K)γ (but not other PI3K isoforms) prevented the hypoxic upregulation of neutrophil elastase release. Conclusion Hypoxia augments neutrophil degranulation and confers enhanced potential for damage to respiratory airway epithelial cells in a HIF-independent but PI3Kγ-dependent fashion. PMID:27581620

  18. Effects of Malnutrition on Neutrophil/Mononuclear Cell Apoptotic Functions in Children with Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Cakir, Fatma Betul; Berrak, Su Gülsün; Aydogan, Gonul; Tulunay, Aysin; Timur, Cetin; Canpolat, Cengiz; Eksioglu Demiralp, Emel

    2017-04-01

    Recent studies claim that apoptosis may explain immune dysfunction observed in malnutrition. The objective of this study was to determine the effect of malnutrition on apoptotic functions of phagocytic cells in acute lymphoblastic leukemia (ALL). Twenty-eight ALL patients (13 with malnutrition) and thirty controls were enrolled. Neutrophil and mononuclear cell apoptosis of ALL patients and the control group were studied on admission before chemotherapy and repeated at a minimum of three months after induction of chemotherapy or when the nutritional status of leukemic children improved. The apoptotic functions of both ALL groups on admission were significantly lower than those of the control group. The apoptotic functions were lower in ALL patients with malnutrition than those in ALL patients without malnutrition, but this was not statistically significant. The repeated apoptotic functions of both ALL groups were increased to similar values with the control group. This increase was found to be statistically significant. The apoptotic functions in ALL patients were not found to be affected by malnutrition. However, after dietary intervention, increased apoptotic functions in both ALL patient groups deserve mentioning. Dietary intervention should always be recommended as malnutrition or cachexia leads to multiple complications. Enhanced apoptosis might originate also from remission state of cancer.

  19. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  20. Anaplasma phagocytophilum Manipulates Host Cell Apoptosis by Different Mechanisms to Establish Infection

    Directory of Open Access Journals (Sweden)

    Pilar Alberdi

    2016-07-01

    Full Text Available Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human and animal granulocytic anaplasmosis and tick-borne fever of ruminants. This obligate intracellular bacterium evolved to use common strategies to establish infection in both vertebrate hosts and tick vectors. Herein, we discuss the different strategies used by the pathogen to modulate cell apoptosis and establish infection in host cells. In vertebrate neutrophils and human promyelocytic cells HL-60, both pro-apoptotic and anti-apoptotic factors have been reported. Tissue-specific differences in tick response to infection and differential regulation of apoptosis pathways have been observed in adult female midguts and salivary glands in response to infection with A. phagocytophilum. In tick midguts, pathogen inhibits apoptosis through the Janus kinase/signal transducers and activators of transcription (JAK/STAT pathway, while in salivary glands, the intrinsic apoptosis pathways is inhibited but tick cells respond with the activation of the extrinsic apoptosis pathway. In Ixodes scapularis ISE6 cells, bacterial infection down-regulates mitochondrial porin and manipulates protein processing in the endoplasmic reticulum and cell glucose metabolism to inhibit apoptosis and facilitate infection, whereas in IRE/CTVM20 tick cells, inhibition of apoptosis appears to be regulated by lower caspase levels. These results suggest that A. phagocytophilum uses different mechanisms to inhibit apoptosis for infection of both vertebrate and invertebrate hosts.

  1. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    Science.gov (United States)

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  2. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Omar Rafael Alemán

    2016-01-01

    Full Text Available Neutrophils (PMN are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  3. Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions

    NARCIS (Netherlands)

    Glogauer, Michael; Marchal, Christophe C.; Zhu, Fei; Worku, Aelaf; Clausen, Björn E.; Foerster, Irmgard; Marks, Peter; Downey, Gregory P.; Dinauer, Mary; Kwiatkowski, David J.

    2003-01-01

    Defects in myeloid cell function in Rac2 knockout mice underline the importance of this isoform in activation of NADPH oxidase and cell motility. However, the specific role of Rac1 in neutrophil function has been difficult to assess since deletion of Rac1 results in embryonic lethality in mice. To

  4. Reaper-Induced Apoptosis

    National Research Council Canada - National Science Library

    Perry, Jennifer

    2005-01-01

    Reaper is a central regulator of apoptosis in the fly, Drosophila melanogaster. At the start of this proposal our laboratory identified what was believed to be a pro-apoptotic human homolog of Reaper...

  5. Gβ1 is required for neutrophil migration in zebrafish.

    Science.gov (United States)

    Ke, Wenfan; Ye, Ding; Mersch, Kacey; Xu, Hui; Chen, Songhai; Lin, Fang

    2017-08-01

    Signaling mediated by G protein-coupled receptors (GPCRs) is essential for the migration of cells toward chemoattractants. The recruitment of neutrophils to injured tissues in zebrafish larvae is a useful model for studying neutrophil migration and trafficking in vivo. Indeed, the study of this process led to the discovery that PI3Kγ is required for the polarity and motility of neutrophils, features that are necessary for the directed migration of these cells to wounds. However, the mechanism by which PI3Kγ is activated remains to be determined. Here we show that signaling by specifically the heterotrimeric G protein subunit Gβ1 is critical for neutrophil migration in response to wounding. In embryos treated with small-molecule inhibitors of Gβγ signaling, neutrophils failed to migrate to wound sites. Although both the Gβ1 and Gβ4 isoforms are expressed in migrating neutrophils, only deficiency for the former (morpholino-based knockdown) interfered with the directed migration of neutrophils towards wounds. The Gβ1 deficiency also impaired the ability of cells to change cell shape and reduced their general motility, defects that are similar to those in neutrophils deficient for PI3Kγ. Transplantation assays showed that the requirement for Gβ1 in neutrophil migration is cell autonomous. Finally, live imaging revealed that Gβ1 is required for polarized activation of PI3K, and for the actin dynamics that enable neutrophil migration. Collectively, our data indicate that Gβ1 signaling controls proper neutrophil migration by activating PI3K and modulating actin dynamics. Moreover, they illustrate a role for a specific Gβ isoform in chemotaxis in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Hidden truth of circulating neutrophils (polymorphonuclear neutrophil function in periodontally healthy smoker subjects

    Directory of Open Access Journals (Sweden)

    Chitra Agarwal

    2016-01-01

    Full Text Available Context: Tobacco smoking is considered to be a major risk factor associated with periodontal disease. Smoking exerts a major effect on the protective elements of the immune response, resulting in an increase in the extent and severity of periodontal destruction. Aims: The aim of the present study was to assess viability and phagocytic function of neutrophils in circulating blood of the smokers and nonsmokers who are periodontally healthy. Settings and Design: Two hundred subjects in the mean range of 20–30 years of age were included in the study population. It was a retrospective study carried out for 6 months. Materials and Methods: Two hundred subjects were divided into four groups: 50 nonsmokers, 50 light smokers (15 cigarettes/day. Full mouth plaque index, sulcus bleeding index, and probing depths were measured. Percentage viability of circulating neutrophils and average number of phagocytosed Candida albicans were recorded. Statistical Analysis Used: Means and standard deviations were calculated from data obtained within the groups. Comparison between the smokers and nonsmokers was performed by Kruskal–Wallis ANOVA analysis. Comparison between smoker groups was performed using Mann–Whitney–Wilcoxon test. Results: Percentage viability of neutrophils was significantly less in heavy smokers (66.9 ± 4.0, moderate (76.6 ± 4.2, light smokers (83.1 ± 2.5 as compared to nonsmokers (92.3 ± 2.6 (P < 0.01. The ability of neutrophils to phagocytose, i.e., mean particle number was significantly less in light smokers (3.5 ± 0.5, moderate smokers (2.3 ± 0.5, and heavy smokers (1.4 ± 0.5 compared to nonsmokers (4.9 ± 0.7 (P < 0.01 with evidence of dose-response effect. Conclusions: Smoking significantly affects neutrophils viability and phagocytic function in periodontally healthy population.

  7. Evaluation of genome-wide expression profiles of blood and sputum neutrophils in cystic fibrosis patients before and after antibiotic therapy.

    Directory of Open Access Journals (Sweden)

    Massimo Conese

    Full Text Available In seeking more specific biomarkers of the cystic fibrosis (CF lung inflammatory disease that would be sensitive to antibiotic therapy, we sought to evaluate the gene expression profiles of neutrophils in CF patients before treatment in comparison with non-CF healthy individuals and after antibiotic treatment. Genes involved in neutrophil-mediated inflammation, i.e. chemotaxis, respiratory burst, apoptosis, and granule exocytosis, were the targets of this study. Microarray analysis was carried out in blood and airway neutrophils from CF patients and in control subjects. A fold change (log threshold of 1.4 and a cut-off of p<0.05 were utilized to identify significant genes. Community networks and principal component analysis were used to distinguish the groups of controls, pre- and post-therapy patients. Control subjects and CF patients before therapy were readily separated, whereas a clear distinction between patients before and after antibiotic therapy was not possible. Blood neutrophils before therapy presented 269 genes down-regulated and 56 up-regulated as compared with control subjects. Comparison between the same patients before and after therapy showed instead 44 genes down-regulated and 72 up-regulated. Three genes appeared to be sensitive to therapy and returned to "healthy" condition: phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, hydrogen voltage-gated channel 1 (HVCN1, and β-arrestin 1 (ARRB1. The up-regulation of these genes after therapy were confirmed by real time PCR. In airway neutrophils, 1029 genes were differentially expressed post- vs pre-therapy. Of these, 30 genes were up-regulated and 75 down-regulated following antibiotic treatment. However, biological plausibility determined that only down-regulated genes belonged to the gene classes studied for blood neutrophils. Finally, it was observed that commonly expressed genes showed a greater variability in airway neutrophils than that found in blood neutrophils

  8. Evaluation of genome-wide expression profiles of blood and sputum neutrophils in cystic fibrosis patients before and after antibiotic therapy.

    Science.gov (United States)

    Conese, Massimo; Castellani, Stefano; Lepore, Silvia; Palumbo, Orazio; Manca, Antonio; Santostasi, Teresa; Polizzi, Angela Maria; Copetti, Massimiliano; Di Gioia, Sante; Casavola, Valeria; Guerra, Lorenzo; Diana, Anna; Montemurro, Pasqualina; Mariggiò, Maria Addolorata; Gallo, Crescenzio; Maffione, Angela Bruna; Carella, Massimo

    2014-01-01

    In seeking more specific biomarkers of the cystic fibrosis (CF) lung inflammatory disease that would be sensitive to antibiotic therapy, we sought to evaluate the gene expression profiles of neutrophils in CF patients before treatment in comparison with non-CF healthy individuals and after antibiotic treatment. Genes involved in neutrophil-mediated inflammation, i.e. chemotaxis, respiratory burst, apoptosis, and granule exocytosis, were the targets of this study. Microarray analysis was carried out in blood and airway neutrophils from CF patients and in control subjects. A fold change (log) threshold of 1.4 and a cut-off of p<0.05 were utilized to identify significant genes. Community networks and principal component analysis were used to distinguish the groups of controls, pre- and post-therapy patients. Control subjects and CF patients before therapy were readily separated, whereas a clear distinction between patients before and after antibiotic therapy was not possible. Blood neutrophils before therapy presented 269 genes down-regulated and 56 up-regulated as compared with control subjects. Comparison between the same patients before and after therapy showed instead 44 genes down-regulated and 72 up-regulated. Three genes appeared to be sensitive to therapy and returned to "healthy" condition: phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), hydrogen voltage-gated channel 1 (HVCN1), and β-arrestin 1 (ARRB1). The up-regulation of these genes after therapy were confirmed by real time PCR. In airway neutrophils, 1029 genes were differentially expressed post- vs pre-therapy. Of these, 30 genes were up-regulated and 75 down-regulated following antibiotic treatment. However, biological plausibility determined that only down-regulated genes belonged to the gene classes studied for blood neutrophils. Finally, it was observed that commonly expressed genes showed a greater variability in airway neutrophils than that found in blood neutrophils, both before and

  9. The role of apoptosis in immunosuppression of dogs with demodicosis.

    Science.gov (United States)

    Singh, Shanker K; Dimri, Umesh; Sharma, Mahesh C; Swarup, Devendra; Sharma, Bhaskar; Pandey, Hari Om; Kumari, Priyambada

    2011-12-15

    The aim of the present study was to evaluate the status of apoptosis in peripheral blood leukocytes of dogs with demodicosis. A total of 26 dogs suffering from demodicosis, and positive for Demodex canis mites by skin scraping, participated in the study, 13 with localized demodicosis (LD) and 13 with generalized demodicosis (GD). A further 13 clinically healthy dogs, all of whom were negative for mites upon skin scraping, were used as controls. The dogs with GD revealed significantly higher (P ≤ 0.0001) percentage of leukocytes with externalization of phosphatidylserine (PS) and depolarized mitochondrial membrane potentials (ΔΨm) as compared with the dogs with LD and healthy controls. These dogs also revealed significantly lower values (P ≤ 0.0001) of hematological parameters viz. hemoglobin, total erythrocytes count total leukocytes count, lymphocytes, monocytes and neutrophils. Significantly higher (P ≤ 0.0001) percentages of leukocytes with externalization of PS and depolarized ΔΨm were also found in dogs with LD as compared with the healthy controls. These dogs also revealed significantly lower values of Hb (P ≤ 0.0001), TEC (P=0.025), TLC (P ≤ 0.0001), lymphocytes (P=0.008), monocytes (P ≤ 0.0001) and neutrophils (P=0.03). It is concluded that premature apoptosis of PBL may be implicated in the immunosuppression of the dogs with demodicosis. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Diverse novel functions of neutrophils in immunity, inflammation, and beyond.

    Science.gov (United States)

    Mócsai, Attila

    2013-07-01

    Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10-20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease.

  11. Regulation of calcium homeostasis in activated human neutrophils ...

    African Journals Online (AJOL)

    Objectives. The objectives of the current study were to: (i) present an integrated model for the restoration of calcium homeostasis in activated human neutrophils based on current knowledge and recent research; and (ii) identify potential targets for the modulation of calcium fluxes in activated neutrophils based on this model ...

  12. Neutrophilic dermatoses in a patient with collagenous colitis

    Directory of Open Access Journals (Sweden)

    Didac Barco

    2010-01-01

    Full Text Available We report the case of a 75-year old woman with collagenous colitis who presented with erythematous and edematous plaques on the periorbital and eyelid regions, accompanied by oral ulcers. Histopathology showed a dermal neutrophilic infiltrate plus mild septal and lobular panniculitis with lymphocytes, neutrophils and eosinophils. Five years earlier she had presented a flare of papules and vesicles on the trunk, together with oral ulcers; a skin biopsy revealed a neutrophilic dermal infiltrate and Sweet’s syndrome was diagnosed. Both the neutrophilic panniculitis and the Sweet’s syndrome were accompanied by fever, malaise and diarrhea. Cutaneous and intestinal symptoms disappeared with corticoid therapy. The two types of neutrophilic dermatoses that appeared in periods of colitis activity suggest that intestinal and cutaneous manifestations may be related.

  13. Swell activated chloride channel function in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Michael D. [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom); Ahluwalia, Jatinder, E-mail: j.ahluwalia@uel.ac.uk [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom)

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  14. Neutrophils, a candidate biomarker and target for radiation therapy?

    Science.gov (United States)

    Schernberg, Antoine; Blanchard, Pierre; Chargari, Cyrus; Deutsch, Eric

    2017-11-01

    Neutrophils are the most abundant blood-circulating white blood cells, continuously generated in the bone marrow. Growing evidence suggests they regulate the innate and adaptive immune system during tumor evolution. This review will first summarize the recent findings on neutrophils as a key player in cancer evolution, then as a potential biomarker, and finally as therapeutic targets, with respective focuses on the interplay with radiation therapy. A complex interplay: Neutrophils have been associated with tumor progression through multiple pathways. Ionizing radiation has cytotoxic effects on cancer cells, but the sensitivity to radiation therapy in vivo differ from isolated cancer cells in vitro, partially due to the tumor microenvironment. Different microenvironmental states, whether baseline or induced, can modulate or even attenuate the effects of radiation, with consequences for therapeutic efficacy. Inflammatory biomarkers: Inflammation-based scores have been widely studied as prognostic biomarkers in cancer patients. We have performed a large retrospective cohort of patients undergoing radiation therapy (1233 patients), with robust relationship between baseline blood neutrophil count and 3-year's patient's overall survival in patients with different cancer histologies. (Pearson's correlation test: p = .001, r = -.93). Therapeutic approaches: Neutrophil-targeting agents are being developed for the treatment of inflammatory and autoimmune diseases. Neutrophils either can exert antitumoral (N1 phenotype) or protumoral (N2 phenotype) activity, depending on the Tumor Micro Environment. Tumor associated N2 neutrophils are characterized by high expression of CXCR4, VEGF, and gelatinase B/MMP9. TGF-β within the tumor microenvironment induces a population of TAN with a protumor N2 phenotype. TGF-β blockade slows tumor growth through activation of CD8 + T cells, macrophages, and tumor associated neutrophils with an antitumor N1 phenotype. This supports

  15. Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions

    Directory of Open Access Journals (Sweden)

    Endalew Yizengaw

    2016-11-01

    Full Text Available Immunologically, active visceral leishmaniasis (VL is characterised by profound immunosuppression, severe systemic inflammatory responses and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis, however, their role in human visceral leishmaniasis is poorly understood.In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase and elastase, all contained in neutrophils’ granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analysed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species and phagocytose bacterial particles, but not Leishmania parasites.Our results suggest that impaired effector functions, increased activation and immaturity of neutrophils play a key role in the pathogenesis of VL.

  16. Apoptosis signaling and radiation protection

    International Nuclear Information System (INIS)

    Morita, Akinori; Suzuki, Norio; Hosoi, Yoshio

    2005-01-01

    Radiation protection by apoptosis control is the suppression of cell death in highly radiosensitive tissues. This paper describes the outline of radiation-induced apoptosis framework, apoptosis-concerned target molecules possibly related to apoptosis by radiation and their inhibitors. Although there are intrinsic (via mitochondria) and extrinsic (via death receptor) pathways in apoptosis, this review mainly mentions the former which is more important in radiation-induced apoptosis. Those molecules known at present in the apoptosis are caspase, Bcl-2 family and p53. Caspase, a group of cystein proteases, initiates apoptosis but its inhibition is known not always to result in apoptosis suppression, suggesting the existence of caspase-independent pathways. Bcl-2 family involves apoptosis-suppressing (possessing BH domains) and -promoting (lacking BH domains or possessing BH3 domain alone/BH3-only protein) groups. Two p53-transcription-dependent and one -independent pathways in p53-induced apoptosis are known and p53 can be a most possible target molecule since it positions at the start of apoptosis. Authors have found a vanadate inactivates p53. Inhibitors affecting upstream molecules of apoptosis will be the most useful candidate for apoptosis suppression/radiation protection. (S.I.) 106 refs

  17. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model.

    Science.gov (United States)

    Filio-Rodríguez, Georgina; Estrada-García, Iris; Arce-Paredes, Patricia; Moreno-Altamirano, María M; Islas-Trujillo, Sergio; Ponce-Regalado, M Dolores; Rojas-Espinosa, Oscar

    2017-10-01

    In 2004, a novel mechanism of cellular death, called 'NETosis', was described in neutrophils. This mechanism, different from necrosis and apoptosis, is characterized by the release of chromatin webs admixed with microbicidal granular proteins and peptides (NETs). NETs trap and kill a variety of microorganisms. Diverse microorganisms, including Mycobacterium tuberculosis, are NET inducers in vitro. The aim of this study was to examine whether M. tuberculosis can also induce NETs in vivo and if the NETs are bactericidal to the microorganism. Guinea pigs were intradermally inoculated with M. tuberculosis H37Rv, and the production of NETs was investigated at several time points thereafter. NETs were detected as early as 30 min post-inoculation and were clearly evident by 4 h post-inoculation. NETs produced in vivo contained DNA, myeloperoxidase, elastase, histones, ROS and acid-fast bacilli. Viable and heat-killed M. tuberculosis, as well as Mycobacterium bovis BCG were efficient NET inducers, as were unilamellar liposomes prepared with lipids from M. tuberculosis. In vitro, guinea pig neutrophils also produced NETs in response to M. tuberculosis. However, neither the in vivo nor the in vitro-produced NETs were able to kill M. tuberculosis. Nevertheless, in vivo, neutrophils might propitiate recruitment and activation of more efficient microbicidal cells.

  18. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent...... of the external glucose concentration and the oscillations in H(2)O(2) production are 180 degrees out of phase with the oscillations in NAD(P)H. Cytochalasin B blocked the oscillations in shape and size whereas it increased the period of the oscillations in H(2)O(2) production. 1- and 2-butanol also blocked...... the oscillations in shape and size, but only 1-butanol inhibited the oscillations in H(2)O(2) production. We conjecture that the oscillations are likely to be due to feedback regulations in the signal transduction cascade involving phosphoinositide 3-kinases (PI3K). We have tested this using a simple mathematical...

  19. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling.

    Science.gov (United States)

    Dyugovskaya, Larissa; Polyakov, Andrey; Cohen-Kaplan, Victoria; Lavie, Peretz; Lavie, Lena

    2012-10-22

    Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA) characterized by nightly intermittent hypoxia (IH). This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH) using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated the IH-induced Mcl-1 increase. In SH, only p38MAPK

  20. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    Science.gov (United States)

    Pazos, Michael A; Lanter, Bernard B; Yonker, Lael M; Eaton, Alex D; Pirzai, Waheed; Gronert, Karsten; Bonventre, Joseph V; Hurley, Bryan P

    2017-08-01

    Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2) activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  1. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    Directory of Open Access Journals (Sweden)

    Michael A Pazos

    2017-08-01

    Full Text Available Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3, initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4. We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2 activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  2. Biomaterial-induced alterations of neutrophil superoxide production.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Mora, E; Jeong, M H; Simmons, R L

    1992-08-01

    Because periprosthetic infection remains a vexing problem for patients receiving implanted devices, we evaluated the effect of several materials on neutrophil free radical production. Human peripheral blood neutrophils were incubated with several sterile, lipopolysaccharide (LPS)-free biomaterials used in surgically implantable prosthetic devices: polyurethane, woven dacron, and velcro. Free radical formation as the superoxide (O2-) anion was evaluated by cytochrome c reduction in neutrophils that were exposed to the materials and then removed and in neutrophils allowed to remain in association with the materials. Neutrophils exposed to polyurethane or woven dacron for 30 or 60 min and then removed consistently exhibited an enhanced release of O2- after simulation via receptor engagement with formyl methionyl-leucyl-phenylalanine. Enhanced reactivity to stimulation via protein kinase C with phorbol myristate acetate, however, was not consistently observed. The cells evaluated for O2- release during continuous association with the biomaterials showed enhanced metabolic activity during short periods of association (especially with polyurethane and woven dacron). Although O2- release by neutrophils in association with these materials decreased with longer periods of incubation, it was not obliterated. These studies, therefore, show that several commonly used biomaterials activate neutrophils soon after exposure and that this activated state diminishes with prolonged exposure but nevertheless remains measurable. The diminishing level of activity with prolonged exposure, however, suggests that ultimately a depletion of reactivity may occur and may result in increased susceptibility to periprosthetic infection.

  3. Neutrophils in oral paracoccidioidomycosis and the involvement of Nrf2.

    Directory of Open Access Journals (Sweden)

    Vera Cavalcanti Araújo

    Full Text Available Neutrophils have been implicated in granuloma formation in several infectious diseases, in addition to their main phagocytic and pathogen destruction role. It has been demonstrated that Nrf2 regulates antioxidant protection in neutrophils, attenuating inflammation without compromising the hosts bacterial defense. In this study, we analyzed the presence of neutrophils in Paracoccidioides brasiliensis mycosis (PCM, as well as the immunoexpression of Nrf2. Thirty-nine cases of oral PCM were classified according to quantity of fungi and to the presence of loose or well-organized granulomas and microabscesses. An Nrf2 antibody was used for immunohistochemical analysis. The results showed that neutrophils are present in microabscesses and loose granulomas, but were absent in structured granulomas. A greater quantity of fungi was shown in cases with only loose granulomas when compared to loose and well organized granulomas. Nrf2 was observed in the nuclei of neutrophils of loose granulomas and abscesses, with its expression in loose granulomas maintained despite the additional presence of well organized granulomas in the same specimen. This study suggests that neutrophils participate in P. brasiliensis granuloma formation and that Nrf2 has a possible role in neutrophil survival, via modulation of the inflammatory response.

  4. Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions.

    Science.gov (United States)

    Balajthy, Zoltán; Csomós, Krisztián; Vámosi, György; Szántó, Attila; Lanotte, Michel; Fésüs, László

    2006-09-15

    Promyelocytic NB4 leukemia cells undergo differentiation to granulocytes following retinoic acid treatment. Here we report that tissue transglutaminase (TG2), a protein cross-linking enzyme, was induced, then partially translocated into the nucleus, and became strongly associated with the chromatin during the differentiation process. The transglutaminase-catalyzed cross-link content of both the cytosolic and the nuclear protein fractions increased while NB4 cells underwent cellular maturation. Inhibition of cross-linking activity of TG2 by monodansylcadaverin in these cells led to diminished nitroblue tetrazolium (NBT) positivity, production of less superoxide anion, and decreased expression of GP91PHOX, the membrane-associated subunit of NADPH oxidase. Neutrophils isolated from TG2(-/-) mice showed diminished NBT reduction capacity, reduced superoxide anion formation, and down-regulation of the gp91phox subunit of NADPH oxidase, compared with wild-type cells. It was also observed that TG2(-/-) mice exhibited increased neutrophil phagocytic activity, but had attenuated neutrophil chemotaxis and impaired neutrophil extravasation with higher neutrophil counts in their circulation during yeast extract-induced peritonitis. These results clearly suggest that TG2 may modulate the expression of genes related to neutrophil functions and is involved in several intracellular and extracellular functions of extravasating neutrophil.

  5. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target

    Science.gov (United States)

    Knight, Jason S.; Meng, He; Coit, Patrick; Yalavarthi, Srilakshmi; Sule, Gautam; Gandhi, Alex A.; Grenn, Robert C.; Mazza, Levi F.; Ali, Ramadan A.; Renauer, Paul; Wren, Jonathan D.; Bockenstedt, Paula L.; Wang, Hui; Eitzman, Daniel T.; Sawalha, Amr H.

    2017-01-01

    Antiphospholipid antibodies, present in one-third of lupus patients, increase the risk of thrombosis. We recently reported a key role for neutrophilsneutrophil extracellular traps (NETs), in particular — in the thrombotic events that define antiphospholipid syndrome (APS). To further elucidate the role of neutrophils in APS, we performed a comprehensive transcriptome analysis of neutrophils isolated from patients with primary APS. Moreover, APS-associated venous thrombosis was modeled by treating mice with IgG prepared from APS patients, followed by partial restriction of blood flow through the inferior vena cava. In patients, APS neutrophils demonstrated a proinflammatory signature with overexpression of genes relevant to IFN signaling, cellular defense, and intercellular adhesion. For in vivo studies, we focused on P-selectin glycoprotein ligand-1 (PSGL-1), a key adhesion molecule overexpressed in APS neutrophils. The introduction of APS IgG (as compared with control IgG) markedly potentiated thrombosis in WT mice, but not PSGL-1–KOs. PSGL-1 deficiency was also associated with reduced leukocyte vessel wall adhesion and NET formation. The thrombosis phenotype was restored in PSGL-1–deficient mice by infusion of WT neutrophils, while an anti–PSGL-1 monoclonal antibody inhibited APS IgG–mediated thrombosis in WT mice. PSGL-1 represents a potential therapeutic target in APS. PMID:28931754

  6. Phenotypic changes in neutrophils related to anti-inflammatory therapy.

    Science.gov (United States)

    Barton, A E; Bayley, D L; Mikami, M; Llewellyn-Jones, C G; Stockley, R A

    2000-01-03

    Previous work from the group has shown that non-steroidal anti-inflammatory agents given to volunteers and patients inhibit PMN function possibly by affecting the developing neutrophil during the differentiation process. In this study indomethacin treatment in vivo reduced neutrophil chemotaxis and proteolytic degradation of fibronectin, with a maximal effect after 14 days. Stimulated neutrophil adherence to fibronectin was also reduced but this was not due to quantitative changes in beta(2) integrin expression or function. L-Selectin expression on resting and stimulated neutrophils was increased after 14 days and there was a small decrease in plasma levels of soluble L-selectin. These effects, however, could not be reproduced by treatment of neutrophils with indomethacin in vitro, suggesting they are due to effects on differentiating/maturing PMNs. In an attempt to interpret these changes, studies were performed with dexamethasone, which is known to alter neutrophil function and kinetics. Dexamethasone treatment reduced chemotaxis and increased superoxide generation after 1 day and was associated with increased expression of activated beta(2) integrins and reduced L-selectin expression on resting neutrophils. This suggests the appearance of mainly 'activated' cells as a result of demargination and indicates that the effects of indomethacin are distinctive and not related to changes in compartmentalisation.

  7. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    International Nuclear Information System (INIS)

    Jannat, Risat A; Hammer, Daniel A; Robbins, Gregory P; Ricart, Brendon G; Dembo, Micah

    2010-01-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K D of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β 2 -integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  8. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*

    Science.gov (United States)

    Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

    2013-01-01

    Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions. PMID:23660474

  9. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  10. Predictors of neutrophilic airway inflammation in young smokers with asthma

    DEFF Research Database (Denmark)

    Westergaard, Christian Grabow; Munck, Christian; Helby, Jens

    2014-01-01

    by a higher degree of neutrophilic inflammation than in non-smokers. A state of neutrophilic inflammation may lead to increased steroid resistance and an accelerated loss of lung function owing to tissue destruction. The aim of this study was to elucidate predictors of neutrophilic inflammation in young...... asthmatic smokers not on steroid treatment, including analysis of tobacco history and bacterial colonization. Methods: In a cross-sectional study, 52 steroid-free, current smokers with asthma were examined with induced sputum, fractional exhaled nitric oxide (FeNO), lung function, ACQ6 score, mannitol...... smokers, neutrophilia may be induced when a certain threshold of tobacco consumption is reached....

  11. Characterization of neutrophil adhesion to different titanium surfaces

    Indian Academy of Sciences (India)

    Scanning electron microscopy and flow cytometry were used to measure .... discs containing neutrophils were inverted and placed in a tube assembly that ... Representative AFM images of smooth (a) and rough (b) Ti surfaces. The arithmetic ...

  12. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    Science.gov (United States)

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  13. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  14. Cryptococcal capsular glucuronoxylomannan reduces ischaemia-related neutrophil influx

    NARCIS (Netherlands)

    Ellerbroek, PM; Schoemaker, RG; van Veghel, R; Hoepelman, AIM; Coenjaerts, FEJ

    Background The capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans interferes with the chemotaxis and transendothelial migration of neutrophils. Intravenous administration of purified GXM has been shown to reduce the influx of inflammatory cells in an animal model of

  15. Effects of Acrolein on Leukotriene Biosynthesis in Human Neutrophils

    OpenAIRE

    Zemski Berry, Karin A.; Henson, Peter M.; Murphy, Robert C.

    2008-01-01

    Acrolein is a toxic, highly reactive α,β-unsaturated aldehyde that is present in high concentrations in cigarette smoke. In the current study, the effect of acrolein on eicosanoid synthesis in stimulated human neutrophils was examined. Eicosanoid synthesis in neutrophils was initiated by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) and subsequent stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP) and 5-LO products in addition to small amounts of COX produc...

  16. Disentangling the effects of tocilizumab on neutrophil survival and function.

    Science.gov (United States)

    Gaber, Timo; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Dörffel, Yvonne; Feist, Eugen; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2016-06-01

    The synovial tissue in rheumatoid arthritis (RA) represents a hypoxic environment with up-regulated pro-inflammatory cytokines and cellular infiltrates including neutrophils. Although inhibition of the interleukin (IL)6 receptor pathway by tocilizumab is a potent treatment option for RA, it may also cause adverse effects such as an occasionally high-grade neutropenia. We analysed the impact of tocilizumab on survival, mediator secretion, oxidative burst, phagocytosis and energy availability of high-dose toll-like receptor (TLR)2/4-stimulated neutrophils (to mimic an arthritis flare) under normoxic versus hypoxic conditions. Human neutrophils were purified, pre-treated with varying doses of tocilizumab, dexamethasone or human IgG1 and high-dose-stimulated with lipopolysaccharide (LPS) alone-triggering TLR2/4-, LPS plus IL6, or left unstimulated. Cells were then incubated under normoxic (18 % O2) or hypoxic (1 % O2) conditions and subsequently analysed. Neutrophil survival and energy availability were significantly decreased by tocilizumab in a dose-dependent manner in high-dose TLR2/4-stimulated cells, but to a greater extent under normoxia as compared to hypoxia. We also found high-dose LPS-stimulated oxidative burst and phagocytosis of neutrophils to be higher under hypoxic versus normoxic conditions, but this difference was reduced by tocilizumab. Finally, we observed that tocilizumab affected neutrophil mediator secretion as a function of oxygen availability. Tocilizumab is known for both beneficial effects and a higher incidence of neutropenia when treating RA patients. Our results suggest that both effects can at least in part be explained by a reduction in neutrophil survival, a dose-dependent inhibition of hypoxia-induced NADPH oxidase-mediated oxidative burst and phagocytosis of infiltrating hypoxic neutrophils and an alteration of mediator secretion.

  17. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  18. Pathophysiology of neutrophil-mediated extracellular redox reactions.

    Science.gov (United States)

    Jaganjac, Morana; Cipak, Ana; Schaur, Rudolf Joerg; Zarkovic, Neven

    2016-01-01

    Neutrophil granulocyte leukocytes (neutrophils) play fundamental role in the innate immune response. In the presence of adequate stimuli, neutrophils release excessive amount of reactive oxygen species (ROS) that may induce cell and tissue injury. Oxidative burst of neutrophils acts as a double-edged sword. It may contribute to the pathology of atherosclerosis and brain injury but is also necessary in resolving infections. Moreover, neutrophil-derived ROS may also have both a tumor promoting and tumor suppressing role. ROS have a specific activities and diffusion distance, which is related to their short lifetime. Therefore, the manner in which ROS will act depends on the cells targeted and the intra- and extracellular levels of individual ROS, which can further cause production of reactive aldehydes like 4-hydroxynonenal (HNE) that act as a second messengers of ROS. In this review we discuss the influence of neutrophil mediated extracellular redox reactions in ischemia reperfusion injury, transplant rejection and chronic diseases (atherosclerosis, inflammatory bowel diseases and cancer). At the end a brief overview of cellular mechanisms to maintain ROS homeostasis is given.

  19. Chemotactic Activity on Human Neutrophils to Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2013-07-01

    Full Text Available Objective: The aim of this study was to evaluate chemotactic activity o neutrophil to S. mutans. Chemotaxis assay was performed in blind well chambers. Materials and Methods: Hanks balanced salt solution (HBSS containing 106 S. mutans,  108 S. mutans, 10-8 M fMLP, or HBSS alone were placed in the lower wells of the chamber and covered with polycorbonate membrane filter. Neutrophils suspension (2x105 cells was then placed in the upper compartment. After incubation for 60 mins at 37ºC in a humidified atmosphere with 5% CO2, the filters were removed and stained with Giemsa. Result: ANOVA revealed statistically significant differences among groups (p<0.05, indicating that S. mutans induced neutrophils chemotaxis. The number of neutrophils migration in response to 108 S. mutans and 106 S. mutans were signifiantly greater compared to fMLP (p<0.05. Conclusion: S. mutans may activate human neutrophils, resulting in the chemotaxis of the neutrophils.DOI: 10.14693/jdi.v16i2.99

  20. Granule protein processing and regulated secretion in neutrophils

    Directory of Open Access Journals (Sweden)

    Avinash eSheshechalam

    2014-09-01

    Full Text Available Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.

  1. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment.

  2. A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH(2)-terminal kinase pathway in human neutrophils.

    Science.gov (United States)

    Avdi, Natalie J; Malcolm, Kenneth C; Nick, Jerry A; Worthen, G Scott

    2002-10-25

    Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.

  3. High performance mass spectrometry based proteomics reveals enzyme and signaling pathway regulation in neutrophils during the early stage of surgical trauma

    DEFF Research Database (Denmark)

    Arshid, Samina; Tahir, Muhammad; Fontes, Belchor

    2017-01-01

    and surgical trauma rats in this study. Extracted proteins were analyzed using nano liquid chromatography coupled to tandem mass spectrometry. A total of 2924 rat neutrophil proteins were identified in our analysis, of which 393 were found differentially regulated between control and trauma groups. By using...... functional pathways analysis of the 190 proteins up-regulated in surgical trauma we found proteins related to transcription initiation and protein biosynthesis. On the other hand, among the 203 proteins down-regulated in surgical trauma we found enrichment for proteins of the immune response, proteasome...... degradation and actin cytoskeleton. Overall, enzyme prediction analysis revealed that regulated enzymes are directly involved in neutrophil apoptosis, directional migration and chemotaxis. Our observations were then confirmed by in silico protein-protein interaction analysis. Collectively, our results reveal...

  4. Fullerene and apoptosis

    Directory of Open Access Journals (Sweden)

    M. A. Orlova

    2013-01-01

    Full Text Available Fullerene derivatives superfamily attracts a serious attention as antiviral and anticancer agents and drug delivery carriers as well. A large number of such fullerene С60 derivatives obtained to date. However, there is an obvious deficit of information about causes and mechanisms of immediately and long-term consequences of their effects in vivo which is a true obstacle on the way leading to practical medical use of them. First, this concerns their impact on the proliferation, apoptosis and necrosis regulation. Fullerene nanoparticle functionalization type, their sizes and surface nanopathology are of great importance to further promoting of either cytoprotective or cytotoxic effects. This lecture provides modern concept analysis regarding fullerenes effects on apoptosis pathway in normal and tumor cells.

  5. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  6. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation.

    Science.gov (United States)

    Ortmann, Weronika; Kolaczkowska, Elzbieta

    2018-03-01

    Neutrophil extracellular traps or NETs are released by highly activated neutrophils in response to infectious agents, sterile inflammation, autoimmune stimuli and cancer. In the cells, the nuclear envelop disintegrates and decondensation of chromatin occurs that depends on peptidylarginine deiminase 4 (PAD4) and neutrophil elastase (NE). Subsequently, proteins from neutrophil granules (e.g., NE, lactoferrin and myeloperoxidase) and the nucleus (histones) bind to decondensed DNA and the whole structure is ejected from the cell. The DNA decorated with potent antimicrobials and proteases can act to contain dissemination of infection and in sterile inflammation NETs were shown to degrade cytokines and chemokines via serine proteases. On the other hand, overproduction of NETs, or their inadequate removal and prolonged presence in vasculature or tissues, can lead to bystander damage or even initiation of diseases. Considering the pros and cons of NET formation, it is of relevance if the stage of neutrophil maturation (immature, mature and senescent cells) affects the capacity to produce NETs as the cells of different age-related phenotypes dominate in given (pathological) conditions. Moreover, the immune system of neonates and elderly individuals is weaker than in adulthood. Is the same pattern followed when it comes to NETs? The overall importance of individual and neutrophil age on the capacity to release NETs is reviewed in detail and the significance of these facts is discussed.

  7. Effects of acrolein on leukotriene biosynthesis in human neutrophils.

    Science.gov (United States)

    Berry, Karin A Zemski; Henson, Peter M; Murphy, Robert C

    2008-12-01

    Acrolein is a toxic, highly reactive alpha,beta-unsaturated aldehyde that is present in high concentrations in cigarette smoke. In the current study, the effect of acrolein on eicosanoid synthesis in stimulated human neutrophils was examined. Eicosanoid synthesis in neutrophils was initiated by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) and subsequent stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP) and 5-lipoxygenase (5-LO) products in addition to small amounts of cyclooxygenase (COX) products were detected using LC/MS/MS. A dose-dependent decrease in the formation of 5-LO products was observed in GM-CSF/fMLP-stimulated neutrophils when acrolein (0-50 microM) was present with almost complete inhibition at > or = 25 microM acrolein. The production of COX products was not affected by acrolein in these cells. The effect of acrolein was examined on key parts of the eicosanoid pathway, such as arachidonic acid release, intracellular calcium ion concentration, and adenosine production. In addition, the direct effect of acrolein on 5-LO enzymatic activity was probed using a recombinant enzyme. Some of these factors were affected by acrolein but did not completely explain the almost complete inhibition of 5-LO product formation in GM-CSF/fMLP-treated cells with acrolein. In addition, the effect of acrolein on different stimuli that initiate the 5-LO pathway [platelet-activating factor (PAF)/fMLP, GM-CSF/PAF, opsonized zymosan, and A23187] was examined. Acrolein had no significant effect on the leukotriene production in neutrophils stimulated with PAF/fMLP, GM-CSF/ PAF, or OPZ. Additionally, 50% inhibition of the 5-LO pathway was observed in A23187-stimulated neutrophils. Our results suggest that acrolein has a profound effect on the 5-LO pathway in neutrophils, which may have implications in disease states, such as chronic obstructive pulmonary disease and other pulmonary disease, where both activated neutrophils and acrolein are

  8. Platelet modulation of human neutrophil functions

    Energy Technology Data Exchange (ETDEWEB)

    McGarrity, S.T.; Hyers, T.M.; Webster, R.O.

    1986-03-01

    The combined presence of platelets (PLTS) and neutrophils (PMN) at inflammatory sites has led to examination of the hypothesis that interaction of these cells modulates their responses to stimuli. Gel-filtered human PLTS (GFP) were found to inhibit N-formyl-met-leu-phe (FMLP) and phorbol myristate acetate (PMA) stimulated PMN O/sub 2//sup -/ generation in a concentration-dependent fashion. The heat-stable inhibitory activity was present in the supernatants of GFP after incubation with FMLP (10/sup -7/M), thrombin (0.5 U/ml) or ADP (20 ..mu..M), suggesting a role for PLT release products. PLT lysates added to PMN produced up to 80% inhibition of O/sub 2//sup -/ generation for PMA and 40% for FMLP. Like GFP, lysates failed to scavenge O/sub 2/..pi.. produced by xanthine oxidase-hypoxanthine. The inhibitory activity could not be ascribed to serotonin or adenosine. PLT lysates failed to compete with /sup 3/H-FMLP for binding to PMN. Sephadex G-200 fractionation of PLT lysates releaved two peaks of inhibitory activity with apparent Mr > 200,000 and < 14,000 Daltons. Pretreatment of PMN with PLT lysates also results in a concentration-dependent inhibition of degranulation provoked by FMLP (2 x 10/sup -7/M) or PMA (2 ng/ml) and PMN chemotaxis to FMLP (10/sup -8/M). These studies indicate that preformed PLT mediator(s) released in response to physiological stimuli may limit tissue damage by PMN at sites of inflammation.

  9. Neutrophil labeling with [99mTc]-technetium stannous colloid is complement receptor 3-mediated and increases the neutrophil priming response to lipopolysaccharide

    International Nuclear Information System (INIS)

    Gallagher, Hayley; Ramsay, Stuart C.; Barnes, Jodie; Maggs, Jacqueline; Cassidy, Nathan; Ketheesan, Natkunam

    2006-01-01

    Introduction: [ 99m Tc]-technetium stannous colloid (TcSnC)-labeled white cells are used to image inflammation. Neutrophil labeling with TcSnC is probably phagocytic, but the phagocytic receptor involved is not known. We hypothesised that complement receptor 3 (CR3) plays a key role. Phagocytic labeling could theoretically result in neutrophil activation or priming, affecting the behaviour of labeled cells. Fluorescence-activated cell sorter (FACS) analysis side scatter measurements can assess neutrophil activation and priming. Methods: We tested whether TcSnC neutrophil labeling is CR3-mediated by assessing if neutrophil uptake of TcSnC was inhibited by a monoclonal antibody (mAb) directed at the CD11b component of CR3. We tested if TcSnC-labeled neutrophils show altered activation or priming status, comparing FACS side scatter in labeled and unlabeled neutrophils and examining the effect of lipopolysaccharide (LPS), a known priming agent. Results: Anti-CD11b mAb reduced neutrophil uptake of TcSnC in a dose-dependent fashion. Labeled neutrophils did not show significantly increased side scatter compared to controls. LPS significantly increased side scatter in control cells and labeled neutrophils. However, the increase was significantly greater in labeled neutrophils than unlabeled cells. Conclusions: Neutrophil labeling with TcSnC is related to the function of CR3, a receptor which plays a central role in phagocytosis. TcSnC labeling did not significantly activate or prime neutrophils. However, labeled neutrophils showed a greater priming response to LPS. This could result in labeled neutrophils demonstrating increased adhesion on activated endothelium at sites of infection

  10. Neutrophil labeling with [{sup 99m}Tc]-technetium stannous colloid is complement receptor 3-mediated and increases the neutrophil priming response to lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Hayley [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Ramsay, Stuart C. [School of Medicine, James Cook University, Townsville, Queensland (Australia) and Townsville Nuclear Medicine, Mater Hospital, Townsville, Queensland 4812 (Australia)]. E-mail: stuart.ramsey@jcu.edu.au; Barnes, Jodie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Maggs, Jacqueline [Department of Nuclear Medicine, Townsville Hospital, Townsville, Queensland 4814 (Australia); Cassidy, Nathan [Townsville Nuclear Medicine, Mater Hospital, Townsville, Queensland 4812 (Australia); Ketheesan, Natkunam [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland (Australia)

    2006-04-15

    Introduction: [{sup 99m}Tc]-technetium stannous colloid (TcSnC)-labeled white cells are used to image inflammation. Neutrophil labeling with TcSnC is probably phagocytic, but the phagocytic receptor involved is not known. We hypothesised that complement receptor 3 (CR3) plays a key role. Phagocytic labeling could theoretically result in neutrophil activation or priming, affecting the behaviour of labeled cells. Fluorescence-activated cell sorter (FACS) analysis side scatter measurements can assess neutrophil activation and priming. Methods: We tested whether TcSnC neutrophil labeling is CR3-mediated by assessing if neutrophil uptake of TcSnC was inhibited by a monoclonal antibody (mAb) directed at the CD11b component of CR3. We tested if TcSnC-labeled neutrophils show altered activation or priming status, comparing FACS side scatter in labeled and unlabeled neutrophils and examining the effect of lipopolysaccharide (LPS), a known priming agent. Results: Anti-CD11b mAb reduced neutrophil uptake of TcSnC in a dose-dependent fashion. Labeled neutrophils did not show significantly increased side scatter compared to controls. LPS significantly increased side scatter in control cells and labeled neutrophils. However, the increase was significantly greater in labeled neutrophils than unlabeled cells. Conclusions: Neutrophil labeling with TcSnC is related to the function of CR3, a receptor which plays a central role in phagocytosis. TcSnC labeling did not significantly activate or prime neutrophils. However, labeled neutrophils showed a greater priming response to LPS. This could result in labeled neutrophils demonstrating increased adhesion on activated endothelium at sites of infection.

  11. Oral JS-38, a metabolite from Xenorhabdus sp., has both anti-tumor activity and the ability to elevate peripheral neutrophils.

    Science.gov (United States)

    Liu, Min-Yu; Xiao, Lin; Chen, Geng-Hui; Wang, Yong-Xiang; Xiong, Wei-Xia; Li, Fei; Liu, Ying; Huang, Xiao-Ling; Deng, Yi-Fang; Zhang, Zhen; Sun, Hai-Yan; Liu, Quan-Hai; Yin, Ming

    2014-10-01

    JS-38 (mitothiolore), a synthetic version of a metabolite isolated from Xenorhabdus sp., was evaluated for its anti-tumor and white blood cell (WBC) elevating activities. These anti-proliferative activities were assessed in vitro using a panel of ten cell lines. The anti-tumor activities were tested in vivo using B16 allograft mouse models and xenograft models of A549 human lung carcinoma and QGY human hepatoma in nude mice. The anti-tumor interactions of JS-38 and cyclophosphamide (CTX) or 5-fluorouracil (5-Fu) were studied in a S180 sarcoma model in ICR mice. Specific stimulatory effects were determined on peripheral neutrophils in normal and CTX- and 5-Fu-induced neutropenic mice. The IC50 values ranged from 0.1 to 2.0 μmol·L(-1). JS-38 (1 μmol·L(-1)) caused an increase in A549 tumor cell apoptosis. Multi-daily gavage of JS-38 (15, 30, and 60 mg·kg(-1)·d(-1)) inhibited in vivo tumor progression without a significant effect on body weight. JS-38 additively enhanced the in vivo anti-tumor effects of CTX or 5-Fu. JS-38 increased peripheral neutrophil counts and neutrophil rates in normal BALB/c mice almost as effectively as granulocyte colony-stimulating factor (G-CSF). In mice with neutropenia induced by CTX or 5-Fu, JS-38 rapidly restored neutrophil counts. These results suggest that JS-38 has anti-tumor activity, and also has the ability to increase peripheral blood neutrophils. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  12. Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability.

    Science.gov (United States)

    Thom, Stephen R; Bhopale, Veena M; Yu, Kevin; Huang, Weiliang; Kane, Maureen A; Margolis, David J

    2017-11-03

    Microparticles are lipid bilayer-enclosed vesicles produced by cells under oxidative stress. MP production is elevated in patients with diabetes, but the underlying cellular mechanisms are poorly understood. We hypothesized that raising glucose above the physiological level of 5.5 mm would stimulate leukocytes to produce MPs and activate the nucleotide-binding domain, leucine-rich repeat pyrin domain-containing 3 (NLRP3) inflammasome. We found that when incubated in buffer with up to 20 mm glucose, human and murine neutrophils, but not monocytes, generate progressively more MPs with high interleukin (IL)-1β content. Enhanced MP production required generation of reactive chemical species by mitochondria, NADPH oxidase, and type 2 nitric-oxide synthase (NOS-2) and resulted in S -nitrosylation of actin. Depleting cells of capon (C-terminal PDZ ligand of neuronal nitric-oxide synthase protein), apoptosis-associated speck-like protein containing C-terminal caspase recruitment domain (ASC), or pro-IL-1β prevented the hyperglycemia-induced enhancement of reactive species production, MP generation, and IL-1β synthesis. Additional components required for these responses included inositol 1,3,5-triphosphate receptors, PKC, and enhancement of filamentous-actin turnover. Numerous proteins become localized to short filamentous actin in response to S -nitrosylation, including vasodilator-stimulated phosphoprotein, focal adhesion kinase, the membrane phospholipid translocation enzymes flippase and floppase, capon, NLRP3, and ASC. We conclude that an interdependent oxidative stress response to hyperglycemia perturbs neutrophil cytoskeletal stability leading to MP production and IL-1β synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Formation of neutrophil extracellular traps under low oxygen level

    Directory of Open Access Journals (Sweden)

    Katja Branitzki-Heinemann

    2016-11-01

    Full Text Available Since their discovery, neutrophil extracellular traps (NETs have been characterized as a fundamental host innate immune defense mechanism. Conversely, excessive NET release may have a variety of detrimental consequences for the host. A fine balance between NET formation and elimination is necessary to sustain a protective effect during an infectious challenge. Our own recently published data revealed that stabilization of hypoxia inducible factor 1α (HIF-1α by the iron chelating HIF-1α-agonist desferoxamine or AKB-4924 enhanced the release of phagocyte extracellular traps. Since HIF-1α is a global regulator of the cellular response to low oxygen, we hypothesized that NET formation may be similarly increased under low oxygen conditions. Hypoxia occurs in tissues during infection or inflammation, mostly due to overconsumption of oxygen by pathogens and recruited immune cells. Therefore, experiments were performed to characterize the formation of NETs under hypoxic oxygen conditions compared to normoxia. Human blood-derived neutrophils were isolated and incubated under normoxic (21% oxygen level and compared to hypoxic (1% conditions. Dissolved oxygen levels were monitored in the primary cell culture using a Fibox4-PSt3 measurement system. The formation of NETs was quantified by fluorescence microscopy in response to the known NET-inducer phorbol 12-myristate 13-acetate (PMA or S. aureus wildtype and a nuclease-deficient mutant. In contrast to our hypothesis, spontaneous NET formation of neutrophils incubated under hypoxia was distinctly reduced compared to control neutrophils incubated under normoxia. Furthermore, neutrophils incubated under hypoxia showed significantly reduced formation of NETs in response to PMA. Gene expression analysis revealed that mRNA level of hif-1α as well as hif-1α target genes was not altered. However, in good correlation to the decreased NET formation under hypoxia, the cholesterol content of the neutrophils was

  14. Genomic profiling of neutrophil transcripts in Asian Qigong practitioners: a pilot study in gene regulation by mind-body interaction.

    Science.gov (United States)

    Li, Quan-Zhen; Li, Ping; Garcia, Gabriela E; Johnson, Richard J; Feng, Lili

    2005-02-01

    The great similarity of the genomes of humans and other species stimulated us to search for genes regulated by elements associated with human uniqueness, such as the mind-body interaction. DNA microarray technology offers the advantage of analyzing thousands of genes simultaneously, with the potential to determine healthy phenotypic changes in gene expression. The aim of this study was to determine the genomic profile and function of neutrophils in Falun Gong (FLG, an ancient Chinese Qigong) practitioners, with healthy subjects as controls. Six (6) Asian FLG practitioners and 6 Asian normal healthy controls were recruited for our study. The practitioners have practiced FLG for at least 1 year (range, 1-5 years). The practice includes daily reading of FLG books and daily practice of exercises lasting 1-2 hours. Selected normal healthy controls did not perform Qigong, yoga, t'ai chi, or any other type of mind-body practice, and had not followed any conventional physical exercise program for at least 1 year. Neutrophils were isolated from fresh blood and assayed for gene expression, using microarrays and RNase protection assay (RPA), as well as for function (phagocytosis) and survival (apoptosis). The changes in gene expression of FLG practitioners in contrast to normal healthy controls were characterized by enhanced immunity, downregulation of cellular metabolism, and alteration of apoptotic genes in favor of a rapid resolution of inflammation. The lifespan of normal neutrophils was prolonged, while the inflammatory neutrophils displayed accelerated cell death in FLG practitioners as determined by enzyme-linked immunosorbent assay. Correlating with enhanced immunity reflected by microarray data, neutrophil phagocytosis was significantly increased in Qigong practitioners. Some of the altered genes observed by microarray were confirmed by RPA. Qigong practice may regulate immunity, metabolic rate, and cell death, possibly at the transcriptional level. Our pilot study

  15. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  16. Burn injury reduces neutrophil directional migration speed in microfluidic devices.

    Directory of Open Access Journals (Sweden)

    Kathryn L Butler

    2010-07-01

    Full Text Available Thermal injury triggers a fulminant inflammatory cascade that heralds shock, end-organ failure, and ultimately sepsis and death. Emerging evidence points to a critical role for the innate immune system, and several studies had documented concurrent impairment in neutrophil chemotaxis with these post-burn inflammatory changes. While a few studies suggest that a link between neutrophil motility and patient mortality might exist, so far, cumbersome assays have prohibited exploration of the prognostic and diagnostic significance of chemotaxis after burn injury. To address this need, we developed a microfluidic device that is simple to operate and allows for precise and robust measurements of chemotaxis speed and persistence characteristics at single-cell resolution. Using this assay, we established a reference set of migration speed values for neutrophils from healthy subjects. Comparisons with samples from burn patients revealed impaired directional migration speed starting as early as 24 hours after burn injury, reaching a minimum at 72-120 hours, correlated to the size of the burn injury and potentially serving as an early indicator for concurrent infections. Further characterization of neutrophil chemotaxis using this new assay may have important diagnostic implications not only for burn patients but also for patients afflicted by other diseases that compromise neutrophil functions.

  17. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    International Nuclear Information System (INIS)

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-01-01

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-γ, tumor necrosis factor, or interleukin lα or 1β. The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes

  18. Active and non-active video gaming among Dutch adolescents: who plays and how much?

    Science.gov (United States)

    Simons, Monique; de Vet, Emely; Brug, Johannes; Seidell, Jaap; Chinapaw, Mai J M

    2014-11-01

    The aim of study was to determine prevalence and identify demographic correlates of active and non-active gaming among adolescents. Cross-sectional. A survey, assessing game behavior and correlates, was conducted among adolescents (12-16 years, n = 373), recruited via schools. Multivariable logistic regression analyses were conducted to examine demographic correlates of active gaming (≥ 1 h per week) and non-active gaming (>7h per week). Of all participants (n=373), 3% reported to play exclusively active games, 40% active games and non-active games, 40% exclusively non-active games, and 17% not playing video games at all. Active gaming adolescents played active games on average on 1.5 (sd = 1.2) days per school week for 36 (sd = 32.9)min and 1 (sd = 0.54) day per weekend for 42 (sd = 36.5)min. Non-active gaming adolescents played on average on 3.3 (sd = 1.6) days per school week for 65 (sd = 46.0)min and 1.4 (sd = 0.65) days per weekend for 80 (sd = 50.8)min. Adolescents attending lower levels of education were more likely to play active games ≥ 1 h per week than adolescents attending higher educational levels. Boys and older adolescents were more likely to play non-active games >7h per week, than girls or younger adolescents. Many adolescents play active games, especially those following a lower educational level, but time spent in this activity is relatively low compared to non-active gaming. To be feasible as a public health strategy, active gaming interventions should achieve more time is spent on active gaming at the expense of non-active gaming. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  19. Adolescents' Views on Active and Non-Active Videogames: A Focus Group Study.

    Science.gov (United States)

    Simons, Monique; de Vet, Emely; Hoornstra, Sjoukje; Brug, Johannes; Seidell, Jaap; Chinapaw, Mai

    2012-06-01

    Active games require whole-body movement and may be an innovative tool to substitute sedentary pastime with more active time and may therefore contribute to adolescents' health. To inform strategies aimed at reducing sedentary behavior by replacing non-active with active gaming, perceptions and context of active and non-active gaming are explored. Six focus groups were conducted with adolescents 12-16 years old representing a range of education levels. A semistructured question route was used containing questions about perceptions and the context of gaming. The adolescents had positive attitudes toward active gaming, especially the social interactive aspect, which was greatly appreciated. A substantial number of adolescents enjoyed non-active games more than active ones, mainly because of better game controls and more diversity in non-active games. Active games were primarily played when there was a social gathering. Few game-related rules and restrictions at home were reported. Given the positive attitudes of adolescents and the limited restrictions for gaming at home, active videogames may potentially be used in a home setting as a tool to reduce sedentary behavior. However, to make active games as appealing as non-active games, attention should be paid to the quality, diversity, and sustainability of active games, as these aspects are currently inferior to those of traditional non-active games.

  20. Radiation-induced muscositis and neutrophil granulocytes in oral mucosa; Strahleninduzierte Mukositis und neutrophile Granulozyten in der Mundschleimhaut

    Energy Technology Data Exchange (ETDEWEB)

    Schmidberger, H.; Rave-Fraenk, M.; Kim, S.; Hille, A.; Pradier, O.; Hess, C.F. [Klinik fuer Strahlentherapie und Radioonkologie, Univ. Goettingen (Germany)

    2003-10-01

    Background: Chemotherapy-induced mucositis can be related to a decrease in oral neutrophils. We tested the relationship between radiation-induced mucositis and oral neutrophil counts. Patients and Methods: Oral neutrophil counts were obtained for ten patients with head and neck cancer who received radiotherapy of the pharynx and oral cavity. Four patients received additional chemotherapy (5-FU, Mitomycin). Counts were obtained before and during treatment; four healthy volunteers were included in the study as well. For evaluation, a quantitative mouth rinse assay, including neutrophil-staining with acridin-orange, was applied. Results: We observed large inter-individual variations with respect to neutrophil counts for patients and control persons (Table 1). During treatment (irradiation or chemoirradiation), large intra-individual variations were seen additionally (Figure 1). We found a correlation between neutrophil counts and clinical reaction grade. Neutrophil counts increased with increasing mucositis (Figure 2). This increase was more pronounced for patients treated with chemoirradiation compared to radiation alone. Treatment breaks at weekends had no clear influence on neutrophil counts. Conclusions: We observed a weak correlation between neutrophil counts and clinical reaction grade. However, the variations in neutrophil counts are too large to utilize this parameter as a surrogate for clinical mucositis grading. The assumption that a decrease in oral neutrophils is associated with radiation-induced mucositis was clearly negated. (orig.) [German] Hintergrund: Die chemotherapieinduzierte Mukositis kann mit einer Verarmung der Mundschleimhaut an neutrophilen Granulozyten vergesellschaftet sein. Wir ueberprueften den Zusammenhang zwischen der radiogenen Mukositis und der Anzahl neutrophiler Granulozyten. Patienten und Methoden: Bei zehn Patienten mit Tumoren der Kopf-Hals-Region, die sich einer Strahlentherapie unterzogen, wurde die Anzahl enoraler neutrophiler

  1. Doxycycline induced photodamage to human neutrophils and tryptophan

    International Nuclear Information System (INIS)

    Sandberg, S.; Glette, J.; Hopen, G.; Solberg, C.O.

    1984-01-01

    Neutrophil function were studied following irradiation (340-380 nm) of the cells in the presence of 22 μM doxycycline. At increasing light fluence the locomotion, chemiluminescence and glucose oxidation (by the hexose monophosphate shunt) of the neutrophils steadily decreased. The photodamage increased with increasing preincubation temperature and time and was enhanced in D 2 O, reduced in azide and abolished in anaerobiosis. Superoxide dismutase, catalase or mannitol did not influence the photodamage. Photooxidation of tryptophan in the presence of doxycycline was increased 9-10-fold in D 2 O and nearly abolished in the presence of 0.25 mM NaN 3 , indicating that singlet oxygen is the most important reactive oxygen species in the doxycycline-induced photodamage. The results may explain some of the features of tetracycline-induced photosensitivity and why other authors have obtained diverging results when studying the influence of tetracyclines on neutrophil functions. (author)

  2. Neutrophilic dermatosis resembling pyoderma gangrenosum in a dog with polyarthritis.

    Science.gov (United States)

    Bardagí, M; Lloret, A; Fondati, A; Ferrer, L

    2007-04-01

    This report describes a case of neutrophilic dermatosis in a dog, with a number of clinical and pathological similarities to human pyoderma gangrenosum. A seven-year-old, female German shepherd dog with a history of non-erosive idiopathic polyarthritis was presented with severe facial swelling, bilateral erosivoulcerative lesions on the muzzle and multiple, eroded, dermal-subcutaneous nodules on the cranial trunk. Histopathological examination of skin biopsies revealed a necrotising neutrophilic dermatitis. No infectious agents could be detected using specific stains, immunohistochemistry, serology and bacterial aerobic, anaerobic or fungal cultures. A sterile neutrophilic dermatosis resembling human pyoderma gangrenosum was presumptively diagnosed, and the patient showed an excellent response to treatment with prednisone and ciclosporin.

  3. Localized Subcutaneous Acute Febrile Neutrophilic Dermatosis in a Dog

    Directory of Open Access Journals (Sweden)

    Karolin Schoellhorn

    2012-01-01

    Full Text Available A two-year-old spayed female mixed-breed dog was presented with a five-day history of hemorrhagic gastroenteritis and fever. On physical examination, the dog was lethargic and clinically dehydrated. The skin of the entire ventral abdomen extending to both flanks was erythematous, swollen and painful on palpation. Histopathological examination of skin biopsies revealed a severe diffuse neutrophilic dermatitis and panniculitis, resembling the subcutaneous form of Sweet’s syndrome in humans. A large part of the skin lesion developed full-thickness necrosis. After intensive care, three surgical wound debridements and wound adaptations, the wound healed by secondary intention within ten weeks. In the absence of infection of the skin or neoplasia, a diagnosis of neutrophilic dermatosis and panniculitis, resembling the subcutaneous form of acute febrile neutrophilic dermatosis, was made.

  4. Interleukin-8: an expanding universe beyond neutrophil chemotaxis and activation.

    Science.gov (United States)

    Mukaida, N

    2000-12-01

    Since the discovery 13 years ago of interleukin (IL)-8 as a potent neutrophil chemotactic factor, accumulating evidence has established it as a crucial mediator in neutrophil-dependent acute inflammation. Numerous observations have demonstrated that various types of cells can produce a large amount of IL-8, either in response to various stimuli or constitutively, after malignant transformation. Recent studies of IL-8-mediated signaling have revealed that IL-8 activates a wide range of signaling molecules in a coordinate manner. IL-8 has been proven to have diverse actions on various types of leukocytic and nonleukocytic cells besides neutrophils. The author reviews recent progress in IL-8 signal transduction and biological actions on nonneutrophilic leukocytes, including T lymphocytes, monocytes, and hematopoietic progenitor cells. Potential involvement of IL-8 in viral infections and tumor progression is also discussed.

  5. Reassessing apoptosis in plants.

    Science.gov (United States)

    Dickman, Martin; Williams, Brett; Li, Yurong; de Figueiredo, Paul; Wolpert, Thomas

    2017-10-01

    Cell death can be driven by a genetically programmed signalling pathway known as programmed cell death (PCD). In plants, PCD occurs during development as well as in response to environmental and biotic stimuli. Our understanding of PCD regulation in plants has advanced significantly over the past two decades; however, the molecular machinery responsible for driving the system remains elusive. Thus, whether conserved PCD regulatory mechanisms include plant apoptosis remains enigmatic. Animal apoptotic regulators, including Bcl-2 family members, have not been identified in plants but expression of such regulators can trigger or suppress plant PCD. Moreover, plants exhibit nearly all of the biochemical and morphological features of apoptosis. One difference between plant and animal PCD is the absence of phagocytosis in plants. Evidence is emerging that the vacuole may be key to removal of unwanted plant cells, and may carry out functions that are analogous to animal phagocytosis. Here, we provide context for the argument that apoptotic-like cell death occurs in plants.

  6. Spontaneous neutrophil activation in HTLV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Jaqueline B. Guerreiro

    Full Text Available Human T cell lymphotropic Virus type-1 (HTLV-1 induces lymphocyte activation and proliferation, but little is known about the innate immune response due to HTLV-1 infection. We evaluated the percentage of neutrophils that metabolize Nitroblue tetrazolium (NBT to formazan in HTLV-1 infected subjects and the association between neutrophil activation and IFN-gamma and TNF-alpha levels. Blood was collected from 35 HTLV-1 carriers, from 8 patients with HAM/TSP (HTLV-1- associated myelopathy; 22 healthy individuals were evaluated for spontaneous and lipopolysaccharide (LPS-stimulated neutrophil activity (reduction of NBT to formazan. The production of IFN-gamma and TNF-alpha by unstimulated mononuclear cells was determined by ELISA. Spontaneous NBT levels, as well as spontaneous IFN-gamma and TNF-alpha production, were significantly higher (p<0.001 in HTLV-1 infected subjects than in healthy individuals. A trend towards a positive correlation was noted, with increasing percentage of NBT positive neutrophils and levels of IFN-gamma. The high IFN-gamma producing HTLV-1 patient group had significantly greater NBT than healthy controls, 43±24% and 17±4.8% respectively (p< 0.001, while no significant difference was observed between healthy controls and the low IFN-gamma-producing HTLV-1 patient group (30±20%. Spontaneous neutrophil activation is another marker of immune perturbation resulting from HTLV-1 infection. In vivo activation of neutrophils observed in HTLV-1 infected subjects is likely to be the same process that causes spontaneous IFN-gamma production, or it may partially result from direct IFN-gamma stimulation.

  7. A Neutrophil Phenotype Model for Extracorporeal Treatment of Sepsis.

    Directory of Open Access Journals (Sweden)

    Alexander D Malkin

    2015-10-01

    Full Text Available Neutrophils play a central role in eliminating bacterial pathogens, but may also contribute to end-organ damage in sepsis. Interleukin-8 (IL-8, a key modulator of neutrophil function, signals through neutrophil specific surface receptors CXCR-1 and CXCR-2. In this study a mechanistic computational model was used to evaluate and deploy an extracorporeal sepsis treatment which modulates CXCR-1/2 levels. First, a simplified mechanistic computational model of IL-8 mediated activation of CXCR-1/2 receptors was developed, containing 16 ODEs and 43 parameters. Receptor level dynamics and systemic parameters were coupled with multiple neutrophil phenotypes to generate dynamic populations of activated neutrophils which reduce pathogen load, and/or primed neutrophils which cause adverse tissue damage when misdirected. The mathematical model was calibrated using experimental data from baboons administered a two-hour infusion of E coli and followed for a maximum of 28 days. Ensembles of parameters were generated using a Bayesian parallel tempering approach to produce model fits that could recreate experimental outcomes. Stepwise logistic regression identified seven model parameters as key determinants of mortality. Sensitivity analysis showed that parameters controlling the level of killer cell neutrophils affected the overall systemic damage of individuals. To evaluate rescue strategies and provide probabilistic predictions of their impact on mortality, time of onset, duration, and capture efficacy of an extracorporeal device that modulated neutrophil phenotype were explored. Our findings suggest that interventions aiming to modulate phenotypic composition are time sensitive. When introduced between 3-6 hours of infection for a 72 hour duration, the survivor population increased from 31% to 40-80%. Treatment efficacy quickly diminishes if not introduced within 15 hours of infection. Significant harm is possible with treatment durations ranging from 5

  8. Cardiovascular molecular imaging of apoptosis

    International Nuclear Information System (INIS)

    Wolters, S.L.; Reutelingsperger, C.P.M.; Corsten, M.F.; Hofstra, L.; Narula, J.

    2007-01-01

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  9. Cardiovascular molecular imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wolters, S.L.; Reutelingsperger, C.P.M. [Maastricht University, Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht (Netherlands); Corsten, M.F.; Hofstra, L. [Maastricht University, Department of Cardiology, Cardiovascular Research Institute Maastricht, P.O. Box 616, Maastricht (Netherlands); Narula, J. [University of California Irvine, Department of Cardiology, Irvine (United States)

    2007-06-15

    Molecular imaging strives to visualise processes at the molecular and cellular level in vivo. Understanding these processes supports diagnosis and evaluation of therapeutic efficacy on an individual basis and thereby makes personalised medicine possible. Apoptosis is a well-organised mode of cell suicide that plays a role in cardiovascular diseases (CVD). Apoptosis is associated with loss of cardiomyocytes following myocardial infarction, atherosclerotic plaque instability, congestive heart failure and allograft rejection of the transplanted heart. Thus, apoptosis constitutes an attractive target for molecular imaging of CVD. Our current knowledge about the molecular players and mechanisms underlying apoptosis offers a rich palette of potential molecular targets for molecular imaging. However, only a few have been successfully developed so far. This review highlights aspects of the molecular machinery and biochemistry of apoptosis relevant to the development of molecular imaging probes. It surveys the role of apoptosis in four major areas of CVD and portrays the importance and future perspectives of apoptosis imaging. The annexin A5 imaging protocol is emphasised since it is the most advanced protocol to measure apoptosis in both preclinical and clinical studies. (orig.)

  10. Dutch children and parents' views on active and non-active video gaming.

    Science.gov (United States)

    De Vet, Emely; Simons, Monique; Wesselman, Maarten

    2014-06-01

    Active video games that require whole body movement to play the game may be an innovative health promotion tool to substitute sedentary pastime with more active time and may therefore contribute to children's health. To inform strategies aimed at reducing sedentary behavior by replacing non-active by active gaming, opinions about active and non-active video games are explored among 8- to 12-year-old children and their parents. Six qualitative, semi-structured focus groups were held with 8- to 12-year-old children (n = 46) and four with their parents (n = 19) at three different primary schools in The Netherlands. The focus groups with children discussed game preferences, gaming context and perceived game-related parenting. The focus groups with parents addressed considerations in purchasing video games, perceived positive and negative consequences of gaming, and game-related parenting. Both children and their parents were very positive about active video games and preferred active games over non-active games. Active video games were considered more social than non-active video games, and active games were played more often together with friends and family than non-active video games. Parenting practices did not differ for active and non-active video games, although some parents were less strict regarding active games. Two conditions for practical implementation were met: children enjoyed active video games, and parents were willing to buy active video games. Active video games were preferred to non-active video games, illustrating that using active video games is a promising health promotion tool to reduce sedentary pastime in youth.

  11. Decreased neutrophil-associated miRNA and increased B-cell associated miRNA expression during tuberculosis.

    Science.gov (United States)

    van Rensburg, I C; du Toit, L; Walzl, G; du Plessis, N; Loxton, A G

    2018-05-20

    MicroRNAs are short non-coding RNAs that regulate gene expression by binding to, and suppressing the expression of genes. Research show that microRNAs have potential to be used as biomarkers for diagnosis, treatment response and can be used for therapeutic interventions. Furthermore, microRNA expression has effects on immune cell functions, which may lead to disease. Considering the important protective role of neutrophils and B-cells during M.tb infection, we evaluated the expression of microRNAs, known to alter function of these cells, in the context of human TB. We utilised real-time PCR to evaluate the levels of microRNA transcripts in the peripheral blood of TB cases and healthy controls. We found that neutrophil-associated miR-197-3p, miR-99b-5p and miR-191-5p transcript levels were significantly lower in TB cases. Additionally, B-cell-associated miR-320a, miR-204-5p, miR331-3p and other transcript levels were higher in TB cases. The miRNAs differentially expressed in neutrophils are predominantly implicated in signalling pathways leading to cytokine productions. Here, the decreased expression in TB cases may imply a lack of suppression on signalling pathways, which may lead to increased production of pro-inflammatory cytokines such as interferon-gamma. Furthermore, the miRNAs differentially expressed in B-cells are mostly involved in the induction/suppression of apoptosis. Further functional studies are however required to elucidate the significance and functional effects of changes in the expression of these microRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The emerging role of neutrophils in thrombosis – The journey of TF through NETs

    Directory of Open Access Journals (Sweden)

    Konstantinos eKambas

    2012-12-01

    Full Text Available The production of TF by neutrophils and their contribution in thrombosis was until recently a matter of scientific debate. Experimental data suggested the de novo TF production by neutrophils under inflammatory stimuli, while others proposed that these cells acquired microparticle-derived TF. Recent experimental evidence revealed the critical role of neutrophils in thrombotic events. Neutrophil derived TF has been implicated in this process in several human and animal models. Additionally, neutrophil extracellular trap (NET release has emerged as a major contributor in neutrophil-driven thrombogenicity in disease models including sepsis, deep venous thrombosis and malignancy. It is suggested that NETs provide the scaffold for fibrin deposition and platelet entrapment and subsequent activation. The recently reported autophagy-dependent extracellular delivery of TF in NETs further supports the involvement of neutrophils in thrombosis. Herein, we seek to review novel data regarding the role of neutrophils in thrombosis, emphasizing the implication of TF and NETs.

  13. CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation

    NARCIS (Netherlands)

    Marcos, Veronica; Zhou, Zhe; Yildirim, Ali Onder; Bohla, Alexander; Hector, Andreas; Vitkov, Ljubomir; Wiedenbauer, Eva-Maria; Krautgartner, Wolf Dietrich; Stoiber, Walter; Belohradsky, Bernd H.; Rieber, Nikolaus; Kormann, Michael; Koller, Barbara; Roscher, Adelbert; Roos, Dirk; Griese, Matthias; Eickelberg, Oliver; Döring, Gerd; Mall, Marcus A.; Hartl, Dominik

    2010-01-01

    Upon activation, neutrophils release DNA fibers decorated with antimicrobial proteins, forming neutrophil extracellular traps (NETs). Although NETs are bactericidal and contribute to innate host defense, excessive NET formation has been linked to the pathogenesis of autoinflammatory diseases.

  14. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma

    DEFF Research Database (Denmark)

    Jensen, Hanne Krogh; Donskov, Frede; Marcussen, Niels

    2009-01-01

    : The intratumoral neutrophils ranged from zero to 289 cells/mm(2) tumor tissue. The presence of intratumoral neutrophils was statistically significantly associated with increasing tumor size, low hemoglobin, high creatinine, and CA IX

  15. Increased neutrophil priming and sensitization before commencing cardiopulmonary bypass in cardiac surgical patients

    NARCIS (Netherlands)

    Gu, YJ; Schoen, P; Tigchelaar, [No Value; Loef, BG; Ebels, T; Rankin, AJ; van Oeveren, W

    2002-01-01

    Background. Neutrophil activation is implicated in postoperative complications in patients having cardiac surgery with cardiopulmonary bypass (CPB). This study was designed to determine the temporal fluctuations in the primability of neutrophils in the preoperative, intraoperative, and postoperative

  16. Soluble CD40 ligand stimulates CD40-dependent activation of the β2 integrin Mac-1 and protein kinase C zeda (PKCζ in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst.

    Directory of Open Access Journals (Sweden)

    Rong Jin

    Full Text Available Recent work has revealed an essential involvement of soluble CD40L (sCD40L in inflammation and vascular disease. Activated platelets are the major source of sCD40L, which has been implicated in platelet and leukocyte activation, although its exact functional impact on leukocyte-platelet interactions and the underlying mechanisms remain undefined. We aimed to determine the impact and the mechanisms of sCD40L on neutrophils. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte recruitment to the sites of injury. Our data show that CD40L contributes to neutrophil firm adhesion to and transmigration across activated surface-adherent platelets, possibly through two potential mechanisms. One involves the direct interaction of ligand-receptor (CD40L-CD40, i.e., platelet surface CD40L interaction with neutrophil CD40; another involves an indirect mechanism, i.e. soluble CD40L stimulates activation of the leukocyte-specific β2 integrin Mac-1 in neutrophils and thereby further promotes neutrophil adhesion and migration. Activation of the integrin Mac-1 is known to be critical for mediating neutrophil adhesion and migration. sCD40L activated Mac-1 in neutrophils and enhanced neutrophil-platelet interactions in wild-type neutrophils, but failed to elicit such responses in CD40-deficient neutrophils. Furthermore, our data show that the protein kinase C zeta (PKCζ is critically required for sCD40L-induced Mac-1 activation and neutrophil adhesive function. sCD40L strongly stimulated the focal clustering of Mac-1 (CD11b and the colocalization of Mac-1 with PKCζ in wild-type neutrophils, but had minimal effect in CD40-deficient neutrophils. Blocking PKCζ completely inhibited sCD40L-induced neutrophil firm adhesion. Moreover, sCD40L strongly stimulates neutrophil oxidative burst via CD40-dependent activation of PI3K/NF-KB, but independent of Mac-1 and PKCζ. These findings may contribute to a better

  17. File list: His.Bld.10.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Neutrophils hg19 Histone Blood Neutrophils SRX956551,SRX956548,SRX...956545,SRX956544,SRX956550,SRX956547 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.10.AllAg.Neutrophils.bed ...

  18. File list: His.Bld.50.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Neutrophils hg19 Histone Blood Neutrophils SRX956551,SRX956548,SRX...956545,SRX956544,SRX956547,SRX956550 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.50.AllAg.Neutrophils.bed ...

  19. File list: His.Bld.50.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Neutrophils mm9 Histone Blood Neutrophils SRX760581,SRX760584,SRX7...60583,SRX760580,SRX760582 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Neutrophils.bed ...

  20. File list: His.Bld.20.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Neutrophils mm9 Histone Blood Neutrophils SRX760584,SRX760581,SRX7...60583,SRX760580,SRX760582 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Neutrophils.bed ...

  1. File list: Unc.Bld.50.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Neutrophils hg19 Unclassified Blood Neutrophils SRX956546,SRX95655...2,SRX956549 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Neutrophils.bed ...

  2. File list: ALL.Bld.10.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Neutrophils hg19 All antigens Blood Neutrophils SRX956551,SRX95654...8,SRX956545,SRX956544,SRX956550,SRX956552,SRX956549,SRX956546,SRX956547 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.Neutrophils.bed ...

  3. File list: ALL.Bld.20.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Neutrophils mm9 All antigens Blood Neutrophils SRX760584,SRX760581...,SRX760583,SRX760580,SRX801903,SRX760582 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.20.AllAg.Neutrophils.bed ...

  4. File list: Unc.Bld.05.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Neutrophils hg19 Unclassified Blood Neutrophils SRX956546,SRX95655...2,SRX956549 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Neutrophils.bed ...

  5. File list: His.Bld.10.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Neutrophils mm9 Histone Blood Neutrophils SRX760584,SRX760583,SRX7...60581,SRX760582,SRX760580 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Neutrophils.bed ...

  6. File list: Unc.Bld.10.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Neutrophils hg19 Unclassified Blood Neutrophils SRX956552,SRX95654...9,SRX956546 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Neutrophils.bed ...

  7. File list: His.Bld.05.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Neutrophils hg19 Histone Blood Neutrophils SRX956551,SRX956548,SRX...956545,SRX956544,SRX956550,SRX956547 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.AllAg.Neutrophils.bed ...

  8. File list: His.Bld.05.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Neutrophils mm9 Histone Blood Neutrophils SRX760584,SRX760581,SRX7...60583,SRX760582,SRX760580 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Neutrophils.bed ...

  9. File list: ALL.Bld.50.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Neutrophils mm9 All antigens Blood Neutrophils SRX760581,SRX760584...,SRX760583,SRX760580,SRX801903,SRX760582 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Neutrophils.bed ...

  10. Neutrophil CD64 has a high negative predictive value for exclusion ...

    African Journals Online (AJOL)

    [13] Multiple studies agree that neutrophil CD64 has high diagnostic speci city and sensitivity.[13,18-20] In the light of the above information, we prospectively evaluated the usefulness of neutrophil CD64 expression in diagnosing neonatal infection. e main objective of the study was quantitation of neutrophil. CD64 by ow ...

  11. Evidence for a self-enforcing inflammation in neutrophil-mediated chronic diseases

    NARCIS (Netherlands)

    Overbeek, S.A.

    2011-01-01

    In summary, this thesis provides evidence for the self-sustaining role of neutrophils in the inflammatory state in the pathogenesis of COPD and CD. In active disease, neutrophils release proteolytic enzymes that breakdown collagen. One of the collagen fragments can be neutrophilic chemoattractant

  12. File list: His.Bld.20.AllAg.Neutrophils [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Neutrophils hg19 Histone Blood Neutrophils SRX956551,SRX956548,SRX...956545,SRX956544,SRX956547,SRX956550 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.AllAg.Neutrophils.bed ...

  13. Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis)

    NARCIS (Netherlands)

    de Jong, Hanna K.; Koh, Gavin C. K. W.; Achouiti, Ahmed; van der Meer, Anne J.; Bulder, Ingrid; Stephan, Femke; Roelofs, Joris J. T. H.; Day, Nick P. J.; Peacock, Sharon J.; Zeerleder, Sacha; Wiersinga, W. Joost

    2014-01-01

    Neutrophil extracellular traps (NETs) are a central player in the host response to bacteria: neutrophils release extracellular DNA (nucleosomes) and neutrophil elastase to entrap and kill bacteria. We studied the role of NETs in Burkholderia pseudomallei infection (melioidosis), an important cause

  14. On the pharmacology of oxidative burst of neutrophils

    Czech Academy of Sciences Publication Activity Database

    Nosáľ, R.; Drábiková, K.; Harmatha, Juraj; Jančinová, V.; Mačičková, T.; Pečivová, J.; Perečko, T.

    2011-01-01

    Roč. 4, č. 2 (2011), A51-A51 ISSN 1337-6853. [TOXCON 2011. Interdisciplinary Toxicology Conference /16./. 17.05.2011-20.05.2011, Praha] Institutional research plan: CEZ:AV0Z40550506 Keywords : N-feruloyl- serotonin * oxidative burst * inhibition of neutrophil activation Subject RIV: CC - Organic Chemistry

  15. Flavonoids inhibit the respiratory burst of neutrophils in mammals

    Czech Academy of Sciences Publication Activity Database

    Číž, Milan; Denev, P.; Kratchanova, M.; Vašíček, Ondřej; Ambrožová, Gabriela; Lojek, Antonín

    2012-01-01

    Roč. 2012, č. 2012 (2012), ID 181295 ISSN 1942-0900 R&D Projects: GA ČR(CZ) GA524/08/1753 Institutional research plan: CEZ:AV0Z50040702 Keywords : flavonoids * neutrophils * respiratory burst Subject RIV: BO - Biophysics Impact factor: 3.393, year: 2012

  16. Activity of neutrophil elastase reflects the progression of acute pancreatitis

    DEFF Research Database (Denmark)

    Novovic, Srdan; Andersen, Anders M; Nord, Magnus

    2013-01-01

    Abstract Objective. Neutrophil elastase (NE) concentration is associated with progression of acute pancreatitis (AP), but measuring total NE concentration includes biologically inactive NE. This study aims to investigate the relationship between NE activity and the aetiology and severity of AP...... was associated with predicted severity of AP and AP-associated respiratory failure. Specific NE inhibitors may have therapeutic potential in acute pancreatitis....

  17. Neutrophil superoxide-anion generating capacity in chronic smoking ...

    Indian Academy of Sciences (India)

    We investigated whether long-term -tocopherol therapy in chronic smoking affects superoxide generating capacity of neutrophils ex vivo. To this purpose, we randomly assigned 128 male chronic smokers (37 ± 21 pack years of smoking) to treatment with placebo ( = 64) or -tocopherol (400 IU dL--tocopherol daily, ...

  18. Platelet indices and neutrophil to lymphocyte ratio in adults with ...

    African Journals Online (AJOL)

    Background: A study was performed in adults with acute appendicitis and matched controls to assess the utility of the platelet indices and neutrophil to lymphocyte ratio, as a diagnostic adjunct. Methods: Data were retrospectively collected from a complete blood count test of 155 adult patients (72 men and 83 women) with ...

  19. Enhancement by platelets of oxygen radical responses of human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-03-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O-/sub 2/ and H/sub 2/O/sub 2/. This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O-/sub 2/ generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O-/sub 2/ responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils.

  20. Semi-Automatic Rating Method for Neutrophil Alkaline Phosphatase Activity.

    Science.gov (United States)

    Sugano, Kanae; Hashi, Kotomi; Goto, Misaki; Nishi, Kiyotaka; Maeda, Rie; Kono, Keigo; Yamamoto, Mai; Okada, Kazunori; Kaga, Sanae; Miwa, Keiko; Mikami, Taisei; Masauzi, Nobuo

    2017-01-01

    The neutrophil alkaline phosphatase (NAP) score is a valuable test for the diagnosis of myeloproliferative neoplasms, but it has still manually rated. Therefore, we developed a semi-automatic rating method using Photoshop ® and Image-J, called NAP-PS-IJ. Neutrophil alkaline phosphatase staining was conducted with Tomonaga's method to films of peripheral blood taken from three healthy volunteers. At least 30 neutrophils with NAP scores from 0 to 5+ were observed and taken their images. From which the outer part of neutrophil was removed away with Image-J. These were binarized with two different procedures (P1 and P2) using Photoshop ® . NAP-positive area (NAP-PA) and granule (NAP-PGC) were measured and counted with Image-J. The NAP-PA in images binarized with P1 significantly (P < 0.05) differed between images with NAP scores from 0 to 3+ (group 1) and those from 4+ to 5+ (group 2). The original images in group 1 were binarized with P2. NAP-PGC of them significantly (P < 0.05) differed among all four NAP score groups. The mean NAP-PGC with NAP-PS-IJ indicated a good correlation (r = 0.92, P < 0.001) to results by human examiners. The sensitivity and specificity of NAP-PS-IJ were 60% and 92%, which might be considered as a prototypic method for the full-automatic rating NAP score. © 2016 Wiley Periodicals, Inc.

  1. Yersinia pestis targets neutrophils via complement receptor 3

    Science.gov (United States)

    Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.

    2015-01-01

    Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083

  2. Circulating neutrophil transcriptome may reveal intracranial aneurysm signature.

    Directory of Open Access Journals (Sweden)

    Vincent M Tutino

    Full Text Available Unruptured intracranial aneurysms (IAs are typically asymptomatic and undetected except for incidental discovery on imaging. Blood-based diagnostic biomarkers could lead to improvements in IA management. This exploratory study examined circulating neutrophils to determine whether they carry RNA expression signatures of IAs.Blood samples were collected from patients receiving cerebral angiography. Eleven samples were collected from patients with IAs and 11 from patients without IAs as controls. Samples from the two groups were paired based on demographics and comorbidities. RNA was extracted from isolated neutrophils and subjected to next-generation RNA sequencing to obtain differential expressions for identification of an IA-associated signature. Bioinformatics analyses, including gene set enrichment analysis and Ingenuity Pathway Analysis, were used to investigate the biological function of all differentially expressed transcripts.Transcriptome profiling identified 258 differentially expressed transcripts in patients with and without IAs. Expression differences were consistent with peripheral neutrophil activation. An IA-associated RNA expression signature was identified in 82 transcripts (p<0.05, fold-change ≥2. This signature was able to separate patients with and without IAs on hierarchical clustering. Furthermore, in an independent, unpaired, replication cohort of patients with IAs (n = 5 and controls (n = 5, the 82 transcripts separated 9 of 10 patients into their respective groups.Preliminary findings show that RNA expression from circulating neutrophils carries an IA-associated signature. These findings highlight a potential to use predictive biomarkers from peripheral blood samples to identify patients with IAs.

  3. Enhancement by platelets of oxygen radical responses of human neutrophils

    International Nuclear Information System (INIS)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-01-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O- 2 and H 2 O 2 . This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O- 2 generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O- 2 responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils

  4. Modulation of neutrophil oxidative burst via histamine receptors

    Czech Academy of Sciences Publication Activity Database

    Číž, Milan; Lojek, Antonín

    2013-01-01

    Roč. 170, č. 1 (2013), s. 17-22 ISSN 0007-1188 R&D Projects: GA MŠk(CZ) LD11010 Institutional support: RVO:68081707 Keywords : neutrophil * oxidative burst * reactive oxygen species Subject RIV: BO - Biophysics Impact factor: 4.990, year: 2013

  5. (neutrophil) Activity, Chronic Gastritis, Gastric Atrophy And Intestinal ...

    African Journals Online (AJOL)

    Incidental (early gastric) cancer was found in 3%, dysplasia in 2% and reactive gastropathy in 7% of the cases. A statistically significant relationship was found between Helicobacter pylori colonization intensity and the degrees of neutrophil activity, chronic inflammation and intestinal metaplasia. Conclusion: We concluded ...

  6. ADAM9 Is a Novel Product of Polymorphonuclear Neutrophils

    DEFF Research Database (Denmark)

    Roychaudhuri, Robin; Hergrueter, Anja H; Polverino, Francesca

    2014-01-01

    A disintegrin and a metalloproteinase domain (ADAM) 9 is known to be expressed by monocytes and macrophages. In this study, we report that ADAM9 is also a product of human and murine polymorphonuclear neutrophils (PMNs). ADAM9 is not synthesized de novo by circulating PMNs. Rather, ADAM9 protein...

  7. Nucleases from Prevotella intermedia can degrade neutrophil extracellular traps.

    Science.gov (United States)

    Doke, M; Fukamachi, H; Morisaki, H; Arimoto, T; Kataoka, H; Kuwata, H

    2017-08-01

    Periodontitis is an inflammatory disease caused by periodontal bacteria in subgingival plaque. These bacteria are able to colonize the periodontal region by evading the host immune response. Neutrophils, the host's first line of defense against infection, use various strategies to kill invading pathogens, including neutrophil extracellular traps (NETs). These are extracellular net-like fibers comprising DNA and antimicrobial components such as histones, LL-37, defensins, myeloperoxidase, and neutrophil elastase from neutrophils that disarm and kill bacteria extracellularly. Bacterial nuclease degrades the NETs to escape NET killing. It has now been shown that extracellular nucleases enable bacteria to evade this host antimicrobial mechanism, leading to increased pathogenicity. Here, we compared the DNA degradation activity of major Gram-negative periodontopathogenic bacteria, Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We found that Pr. intermedia showed the highest DNA degradation activity. A genome search of Pr. intermedia revealed the presence of two genes, nucA and nucD, putatively encoding secreted nucleases, although their enzymatic and biological activities are unknown. We cloned nucA- and nucD-encoding nucleases from Pr. intermedia ATCC 25611 and characterized their gene products. Recombinant NucA and NucD digested DNA and RNA, which required both Mg 2+ and Ca 2+ for optimal activity. In addition, NucA and NucD were able to degrade the DNA matrix comprising NETs. © 2016 The Authors Molecular Oral Microbiology Published by John Wiley & Sons Ltd.

  8. Neutrophil elastase-mediated increase in airway temperature during inflammation

    DEFF Research Database (Denmark)

    Schmidt, Annika; Belaaouaj, Azzaq; Bissinger, Rosi

    2014-01-01

    in the exhaled air of cystic fibrosis (CF) patients. To further test our hypothesis, a pouch inflammatory model using neutrophil elastase-deficient mice was employed. Next, the impact of temperature changes on the dominant CF pathogen Pseudomonas aeruginosa growth was tested by plating method and RNAseq. Results...

  9. Neutrophil extracellular traps in patients with pulmonary tuberculosis

    NARCIS (Netherlands)

    van der Meer, Anne Jan; Zeerleder, Sacha; Blok, Dana C.; Kager, Liesbeth M.; Lede, Ivar O.; Rahman, Wahid; Afroz, Rumana; Ghose, Aniruddha; Visser, Caroline E.; Zahed, Abu Shahed Md; Husain, Md Anwar; Alam, Khan Mashrequl; Barua, Pravat Chandra; Hassan, Mahtabuddin; Tayab, Md Abu; Dondorp, Arjen M.; van der Poll, Tom

    2017-01-01

    Tuberculosis is a devastating infectious disease causing many deaths worldwide. Recent investigations have implicated neutrophil extracellular traps (NETs) in the host response to tuberculosis. The aim of the current study was to obtain evidence for NETs release in the circulation during human

  10. Increased neutrophil expression of pattern recognition receptors during COPD exacerbations

    NARCIS (Netherlands)

    Pouwels, Simon D.; Van Geffen, Wouter H.; Jonker, Marnix R.; Kerstjens, Huib A. M.; Nawijn, Martijn C.; Heijink, Irene H.

    Previously, we observed increased serum levels of damage-associated molecular patterns (DAMPs) during COPD exacerbations. Here, gene expression of DAMP receptors was measured in peripheral blood neutrophils of COPD patients during stable disease and severe acute exacerbation. The expression of

  11. The strength of integrin binding between neutrophils and endothelial cells

    Czech Academy of Sciences Publication Activity Database

    Labrador, V.; Říha, Pavel; Muller, S.; Dumas, D.; Wang, X.; Stoltz, J. F.

    2003-01-01

    Roč. 32, č. 8 (2003), s. 684-688 ISSN 0175-7571 R&D Projects: GA ČR GA305/01/1605 Institutional research plan: CEZ:AV0Z2060917 Keywords : endothelium * integrins * neutrophil adhesion * scanning microscopy Subject RIV: BO - Biophysics Impact factor: 1.769, year: 2003

  12. Pharmacological intervention with oxidative burst in human neutrophils

    Czech Academy of Sciences Publication Activity Database

    Nosál, R.; Drábiková, K.; Jančinová, V.; Mačičková, T.; Pečivová, J.; Perečko, T.; Harmatha, Juraj

    2017-01-01

    Roč. 10, č. 2 (2017), s. 56-60 ISSN 1337-6853 Institutional support: RVO:61388963 Keywords : human neutrophils * oxidative burst * tharapeutical drugs * natural antioxidants Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy https://www.degruyter.com/downloadpdf/j/intox.2017.10.issue-2/intox-2017-0009/intox-2017-0009.pdf

  13. Circulating neutrophil transcriptome may reveal intracranial aneurysm signature

    Science.gov (United States)

    Tutino, Vincent M.; Poppenberg, Kerry E.; Jiang, Kaiyu; Jarvis, James N.; Sun, Yijun; Sonig, Ashish; Siddiqui, Adnan H.; Snyder, Kenneth V.; Levy, Elad I.; Kolega, John

    2018-01-01

    Background Unruptured intracranial aneurysms (IAs) are typically asymptomatic and undetected except for incidental discovery on imaging. Blood-based diagnostic biomarkers could lead to improvements in IA management. This exploratory study examined circulating neutrophils to determine whether they carry RNA expression signatures of IAs. Methods Blood samples were collected from patients receiving cerebral angiography. Eleven samples were collected from patients with IAs and 11 from patients without IAs as controls. Samples from the two groups were paired based on demographics and comorbidities. RNA was extracted from isolated neutrophils and subjected to next-generation RNA sequencing to obtain differential expressions for identification of an IA-associated signature. Bioinformatics analyses, including gene set enrichment analysis and Ingenuity Pathway Analysis, were used to investigate the biological function of all differentially expressed transcripts. Results Transcriptome profiling identified 258 differentially expressed transcripts in patients with and without IAs. Expression differences were consistent with peripheral neutrophil activation. An IA-associated RNA expression signature was identified in 82 transcripts (pIAs on hierarchical clustering. Furthermore, in an independent, unpaired, replication cohort of patients with IAs (n = 5) and controls (n = 5), the 82 transcripts separated 9 of 10 patients into their respective groups. Conclusion Preliminary findings show that RNA expression from circulating neutrophils carries an IA-associated signature. These findings highlight a potential to use predictive biomarkers from peripheral blood samples to identify patients with IAs. PMID:29342213

  14. Changes in neutrophil count, creatine kinases and muscle soreness ...

    African Journals Online (AJOL)

    Objective. A primary objective was to examine circulating neutrophil count after repeated bouts of downhill running. An additional aim was to determine creatine kinase (CK) levels during the initial 12 hours, after repeated DHRs. Design. Eleven healthy, untrained Caucasian males performed 2 x 60 min bouts of DHR ...

  15. Fas-deficient mice have impaired alveolar neutrophil recruitment and decreased expression of anti-KC autoantibody:KC complexes in a model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Gil Sucheol

    2012-10-01

    Full Text Available Abstract Background Exposure to mechanical ventilation enhances lung injury in response to various stimuli, such as bacterial endotoxin (LPS. The Fas/FasL system is a receptor ligand system that has dual pro-apoptotic and pro-inflammatory functions and has been implicated in the pathogenesis of lung injury. In this study we test the hypothesis that a functioning Fas/FasL system is required for the development of lung injury in mechanically ventilated mice. Methods C57BL/6 (B6 and Fas-deficient lpr mice were exposed to either intra-tracheal PBS followed by spontaneous breathing or intra-tracheal LPS followed by four hours mechanical ventilation with tidal volumes of 10 mL/kg, respiratory rate of 150 breaths per minute, inspired oxygen 0.21 and positive end expiratory pressure (PEEP of 3 cm of water. Results Compared with the B6 mice, the lpr mice showed attenuation of the neutrophilic response as measured by decreased numbers of BAL neutrophils and lung myeloperoxidase activity. Interestingly, the B6 and lpr mice had similar concentrations of pro-inflammatory cytokines, including CXCL1 (KC, and similar measurements of permeability and apoptosis. However, the B6 mice showed greater deposition of anti-KC:KC immune complexes in the lungs, as compared with the lpr mice. Conclusions We conclude that a functioning Fas/FasL system is required for full neutrophilic response to LPS in mechanically ventilated mice.

  16. Anti-inflammatory mechanisms of IFN-γ studied in experimental autoimmune encephalomyelitis reveal neutrophils as a potential target in multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Nichole M Miller

    2015-08-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease of the central nervous system (CNS mediated by T helper (h1 and/or Th17 CD4 T cells that drive inflammatory lesion development along with demyelination and neuronal damage. Defects in immune regulatory mechanisms are thought to play a role in the pathogenesis of MS. While an early clinical trial indicated that IFN-γ administration was detrimental to MS, studies in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE, indicated that IFN-γ exhibits a number of anti-inflammatory properties within the CNS. These mechanisms include inhibition of IL-17 production, induction of regulatory T cells, T cell apoptosis and regulation of chemokine production. Mice deficient in IFN-γ or its receptor were instrumental in deciphering the anti-inflammatory properties of IFN-γ in the CNS. In particular, they revealed that IFN-γ is a major regulator of neutrophil recruitment into the CNS, which by a variety of mechanisms including disruption of the blood-brain-barrier (BBB and production of reactive oxygen species are thought to contribute to the onset and progression of EAE. Neutrophils were also shown to be instrumental in EAE relapses. To date neutrophils have not been appreciated as a driver of MS, but more recently based largely on the strong EAE data this view is being reevaluated by some investigators in the field.

  17. Neutrophil Interactions with Epithelial Expressed ICAM-1 Enhances Intestinal Mucosal Wound Healing

    Science.gov (United States)

    Sumagin, R; Brazil, JC; Nava, P; Nishio, H; Alam, A; Luissint, AC; Weber, DA; Neish, AS; Nusrat, A; Parkos, CA

    2015-01-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. While epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 plays an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing. PMID:26732677

  18. Neutrophil interactions with epithelial-expressed ICAM-1 enhances intestinal mucosal wound healing.

    Science.gov (United States)

    Sumagin, R; Brazil, J C; Nava, P; Nishio, H; Alam, A; Luissint, A C; Weber, D A; Neish, A S; Nusrat, A; Parkos, C A

    2016-09-01

    A characteristic feature of gastrointestinal tract inflammatory disorders, such as inflammatory bowel disease, is polymorphonuclear neutrophil (PMN) transepithelial migration (TEM) and accumulation in the gut lumen. PMN accumulation within the intestinal mucosa contributes to tissue injury. Although epithelial infiltration by large numbers of PMNs results in mucosal injury, we found that PMN interactions with luminal epithelial membrane receptors may also play a role in wound healing. Intercellular adhesion molecule-1 (ICAM-1) is a PMN ligand that is upregulated on apical surfaces of intestinal epithelial cells under inflammatory conditions. In our study, increased expression of ICAM-1 resulted in enhanced PMN binding to the apical epithelium, which was associated with reduced PMN apoptosis. Following TEM, PMN adhesion to ICAM-1 resulted in activation of Akt and β-catenin signaling, increased epithelial-cell proliferation, and wound healing. Such responses were ICAM-1 dependent as engagement of epithelial ICAM-1 by antibody-mediated cross-linking yielded similar results. Furthermore, using an in-vivo biopsy-based, colonic-mucosal-injury model, we demonstrated epithelial ICAM-1 has an important role in activation of epithelial Akt and β-catenin signaling and wound healing. These findings suggest that post-migrated PMNs within the intestinal lumen can regulate epithelial homeostasis, thereby identifying ICAM-1 as a potential therapeutic target for promoting mucosal wound healing.

  19. Increase in interleukin-8 production from circulating neutrophils upon antibiotic therapy in cystic fibrosis patients.

    Science.gov (United States)

    Montemurro, Pasqualina; Mariggiò, Maria A; Barbuti, Giovanna; Cassano, Amalia; Vincenti, Alessandra; Serio, Gabriella; Guerra, Lorenzo; Diana, Anna; Santostasi, Teresa; Polizzi, Angela; Fumarulo, Ruggiero; Casavola, Valeria; Manca, Antonio; Conese, Massimo

    2012-12-01

    It is not known whether antibiotic therapy for lung disease in cystic fibrosis (CF) has an influence on circulating polymorphonuclear neutrophil (PMN) function and apoptosis. Blood PMNs were obtained from 14 CF patients before and after antibiotic treatment for an acute exacerbation, and from 10 healthy controls. PMNs were evaluated for production of reactive oxygen species (ROS) by spectrophotometry, of cytokines in the conditioned medium by ELISA, and apoptotic response by cytofluorimetry. ROS and interleukin (IL)-8 were produced at higher levels by CF PMNs pre-therapy than control PMNs under basal conditions. IL-8 levels further increased after therapy. Early apoptotic response was higher in CF PMNs pre-therapy than in control PMNs, and this pattern did not change after antibiotic treatment. Circulating PMNs are primed in CF acute patients. Further studies are needed to consider PMN-produced IL-8 as a biomarker to evaluate response to antibiotic therapy in CF patients. Copyright © 2012 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  20. Ensemble models of neutrophil trafficking in severe sepsis.

    Directory of Open Access Journals (Sweden)

    Sang Ok Song

    Full Text Available A hallmark of severe sepsis is systemic inflammation which activates leukocytes and can result in their misdirection. This leads to both impaired migration to the locus of infection and increased infiltration into healthy tissues. In order to better understand the pathophysiologic mechanisms involved, we developed a coarse-grained phenomenological model of the acute inflammatory response in CLP (cecal ligation and puncture-induced sepsis in rats. This model incorporates distinct neutrophil kinetic responses to the inflammatory stimulus and the dynamic interactions between components of a compartmentalized inflammatory response. Ensembles of model parameter sets consistent with experimental observations were statistically generated using a Markov-Chain Monte Carlo sampling. Prediction uncertainty in the model states was quantified over the resulting ensemble parameter sets. Forward simulation of the parameter ensembles successfully captured experimental features and predicted that systemically activated circulating neutrophils display impaired migration to the tissue and neutrophil sequestration in the lung, consequently contributing to tissue damage and mortality. Principal component and multiple regression analyses of the parameter ensembles estimated from survivor and non-survivor cohorts provide insight into pathologic mechanisms dictating outcome in sepsis. Furthermore, the model was extended to incorporate hypothetical mechanisms by which immune modulation using extracorporeal blood purification results in improved outcome in septic rats. Simulations identified a sub-population (about 18% of the treated population that benefited from blood purification. Survivors displayed enhanced neutrophil migration to tissue and reduced sequestration of lung neutrophils, contributing to improved outcome. The model ensemble presented herein provides a platform for generating and testing hypotheses in silico, as well as motivating further experimental

  1. d(− Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    Directory of Open Access Journals (Sweden)

    Pablo Alarcón

    2017-08-01

    Full Text Available Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(− lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indicated that d(− lactic acid decreased expression of L-selectin and increased expression of CD11b to concentrations higher than 6 mM, suggesting a potential role in neutrophil adhesion onto endothelia. The two aims of this study were to evaluate whether d(− lactic acid influenced neutrophil and endothelial adhesion and to trigger neutrophil extracellular trap (NET production (NETosis in exposed neutrophils. Exposure of bovine neutrophils to 5 mM d(− lactic acid elevated NET release compared to unstimulated neutrophil negative controls. Moreover, this NET contains CD11b and histone H4 citrullinated, the latter was dependent on PAD4 activation, a critical enzyme in DNA decondensation and NETosis. Furthermore, NET formation was dependent on d(− lactic acid plasma membrane transport through monocarboxylate transporter 1 (MCT1. d(− lactic acid enhanced neutrophil adhesion onto endothelial sheets as demonstrated by in vitro neutrophil adhesion assays under continuous physiological flow conditions, indicating that cell adhesion was a NET- and a CD11b/ICAM-1-dependent process. Finally, d(− lactic acid was demonstrated for the first time to trigger NETosis in a PAD4- and MCT1-dependent manner. Thus, d(− lactic acid-mediated neutrophil activation may contribute to neutrophil-derived pro-inflammatory processes, such as aseptic laminitis and/or polysynovitis in animals suffering acute ruminal acidosis.

  2. Inhibition of neutrophil migration by aggregated immunoglobulin attached to micropore membranes.

    Science.gov (United States)

    Kemp, A S; Brown, S

    1980-01-01

    The effect of substrate-bound immunoglobulin on neutrophil migration was examined. Immunoglobulin aggregates bound to micropore membranes inhibited the neutrophil response to a chemotactic stimulus. This inhibition was reversed by the presence of aggregates in suspension suggesting competition between substrate-bound and free aggregates for neutrophil surface binding sites. The immobilization of neutrophils by substrate-bound aggregated immunoglobulin suggests a mechanism for the accumulation of neutrophils at sites of immune complex deposition and tissue-bound antibodies in vivo. PMID:7380477

  3. Interval and continuous exercise regimens suppress neutrophil-derived microparticle formation and neutrophil-promoted thrombin generation under hypoxic stress.

    Science.gov (United States)

    Chen, Yi-Ching; Ho, Ching-Wen; Tsai, Hsing-Hua; Wang, Jong-Shyan

    2015-04-01

    Acute hypoxic exposure increases vascular thrombotic risk. The release of procoagulant-rich microparticles from neutrophils accelerates the pathogenesis of inflammatory thrombosis. The present study explicates the manner in which interval and continuous exercise regimens affect neutrophil-derived microparticle (NDMP) formation and neutrophil/NDMP-mediated thrombin generation (TG) under hypoxic condition. A total of 60 sedentary males were randomized to perform either aerobic interval training [AIT; 3-min intervals at 40% and 80% V̇O2max (maximal O2 consumption)] or moderate continuous training (MCT; sustained 60% V̇O2max) for 30 min/day, 5 days/week for 5 weeks, or to a control (CTL) group who did not receive any form of training. At rest and immediately after hypoxic exercise test (HE, 100 W under 12% O2 for 30 min), the NDMP characteristics and dynamic TG were measured by flow cytometry and thrombinography respectively. Before the intervention, HE (i) elevated coagulant factor VIII/fibrinogen concentrations and shortened activated partial thromboplastin time (aPTT), (ii) increased total and tissue factor (TF)-rich/phosphatidylserine (PS)-exposed NDMP counts and (iii) enhanced the peak height and rate of TG promoted by neutrophils/NDMPs. Following the 5-week intervention, AIT exhibited higher enhancement of V̇O2max than did MCT. Notably, both MCT and AIT attenuated the extents of HE-induced coagulant factor VIII/fibrinogen elevations and aPTT shortening. Furthermore, the two exercise regimens significantly decreased TF-rich/PS-exposed NDMP formation and depressed neutrophil/NDMP-mediated dynamic TG at rest and following HE. Hence, we conclude that AIT is superior to MCT for enhancing aerobic capacity. Moreover, either AIT or MCT effectively ameliorates neutrophil/NDMP-promoted TG by down-regulating expression of procoagulant factors during HE, which may reduce thrombotic risk evoked by hypoxia. Moreover, either AIT or MCT effectively ameliorates neutrophil

  4. Neutrophilic nodules in the intestinal walls of Japanese monkeys associated with the neutrophil chemotactic activity of larval extracts and secretions of Oesophagostomum aculeatum.

    Science.gov (United States)

    Horii, Y; Ishii, A; Owhashi, M; Miyoshi, M; Usui, M

    1985-01-01

    High neutrophil chemotactic activity was detected in the culture medium from Oesophagostomum aculeatum larvae in vitro using blind-well chambers with Millipore filters, and guinea pig leucocytes as indicator cells. Neutrophil chemotactic activity was also detected in the extract from larval worms in a dose dependent fashion. This activity was detected in the low molecular weight fractions adjacent to a sodium chloride marker by gel filtration on Sephadex G200. These results were further confirmed with monkey neutrophils. The possible role of this activity in the formation of granulomatous lesions rich in neutrophils found in O aculeatum infections in the Japanese monkey is discussed.

  5. TLR2, TLR4 and the MYD88 signaling pathway are crucial for neutrophil migration in acute kidney injury induced by sepsis.

    Directory of Open Access Journals (Sweden)

    Angela Castoldi

    Full Text Available The aim of this study was to investigate the role of TLR2, TLR4 and MyD88 in sepsis-induced AKI. C57BL/6 TLR2(-/-, TLR4(-/- and MyD88(-/- male mice were subjected to sepsis by cecal ligation and puncture (CLP. Twenty four hours later, kidney tissue and blood samples were collected for analysis. The TLR2(-/-, TLR4(-/- and MyD88(-/- mice that were subjected to CLP had preserved renal morphology, and fewer areas of hypoxia and apoptosis compared with the wild-type C57BL/6 mice (WT. MyD88(-/- mice were completely protected compared with the WT mice. We also observed reduced expression of proinflammatory cytokines in the kidneys of the knockout mice compared with those of the WT mice and subsequent inhibition of increased vascular permeability in the kidneys of the knockout mice. The WT mice had increased GR1(+low cells migration compared with the knockout mice and decreased in GR1(+high cells migration into the peritoneal cavity. The TLR2(-/-, TLR4(-/-, and MyD88(-/- mice had lower neutrophil infiltration in the kidneys. Depletion of neutrophils in the WT mice led to protection of renal function and less inflammation in the kidneys of these mice. Innate immunity participates in polymicrobial sepsis-induced AKI, mainly through the MyD88 pathway, by leading to an increased migration of neutrophils to the kidney, increased production of proinflammatory cytokines, vascular permeability, hypoxia and apoptosis of tubular cells.

  6. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8.

    Science.gov (United States)

    Kamoshida, Go; Tansho-Nagakawa, Shigeru; Kikuchi-Ueda, Takane; Nakano, Ryuichi; Hikosaka, Kenji; Nishida, Satoshi; Ubagai, Tsuneyuki; Higashi, Shouichi; Ono, Yasuo

    2016-12-01

    Hospital-acquired infections as a result of Acinetobacter baumannii have become problematic because of high rates of drug resistance. Although neutrophils play a critical role in early protection against bacterial infection, their interactions with A. baumannii remain largely unknown. To elucidate the interactions between A. baumannii and human neutrophils, we cocultured these cells and analyzed them by microscopy and flow cytometry. We found that A. baumannii adhered to neutrophils. We next examined neutrophil and A. baumannii infiltration into Matrigel basement membranes by an in vitro transmigration assay. Neutrophils were activated by A. baumannii, and invasion was enhanced. More interestingly, A. baumannii was transported together by infiltrating neutrophils. Furthermore, we observed by live cell imaging that A. baumannii and neutrophils moved together. In addition, A. baumannii-activated neutrophils showed increased IL-8 production. The transport of A. baumannii was suppressed by inhibiting neutrophil infiltration by blocking the effect of IL-8. A. baumannii appears to use neutrophils for transport by activating these cells via IL-8. In this study, we revealed a novel bacterial transport mechanism that A. baumannii exploits human neutrophils by adhering to and inducing IL-8 release for bacterial portage. This mechanism might be a new treatment target. © Society for Leukocyte Biology.

  7. G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling

    Science.gov (United States)

    Bajrami, Besnik; Zhu, Haiyan; Zhang, Yu C.

    2016-01-01

    Cytokine-induced neutrophil mobilization from the bone marrow to circulation is a critical event in acute inflammation, but how it is accurately controlled remains poorly understood. In this study, we report that CXCR2 ligands are responsible for rapid neutrophil mobilization during early-stage acute inflammation. Nevertheless, although serum CXCR2 ligand concentrations increased during inflammation, neutrophil mobilization slowed after an initial acute fast phase, suggesting a suppression of neutrophil response to CXCR2 ligands after the acute phase. We demonstrate that granulocyte colony-stimulating factor (G-CSF), usually considered a prototypical neutrophil-mobilizing cytokine, was expressed later in the acute inflammatory response and unexpectedly impeded CXCR2-induced neutrophil mobilization by negatively regulating CXCR2-mediated intracellular signaling. Blocking G-CSF in vivo paradoxically elevated peripheral blood neutrophil counts in mice injected intraperitoneally with Escherichia coli and sequestered large numbers of neutrophils in the lungs, leading to sterile pulmonary inflammation. In a lipopolysaccharide-induced acute lung injury model, the homeostatic imbalance caused by G-CSF blockade enhanced neutrophil accumulation, edema, and inflammation in the lungs and ultimately led to significant lung damage. Thus, physiologically produced G-CSF not only acts as a neutrophil mobilizer at the relatively late stage of acute inflammation, but also prevents exaggerated neutrophil mobilization and the associated inflammation-induced tissue damage during early-phase infection and inflammation. PMID:27551153

  8. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2004-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of PCa cells by methyl selenium (Se)/selenol...

  9. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2008-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  10. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2003-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of PCa cells by methyl selenium (Se...

  11. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2005-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  12. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2007-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  13. Methylselenium and Prostate Cancer Apoptosis

    National Research Council Canada - National Science Library

    Lu, Junxuan

    2006-01-01

    The purpose of this research is to gain a better understanding of the biochemical pathways and molecular targets for the selective induction of apoptosis signaling and execution of prostate cancer (PCa...

  14. Active and non-active video gaming among Dutch adolescents: Who plays and how much?

    NARCIS (Netherlands)

    Simons, M.; Vet, E. de; Brug, J.; Seidell, J.; Chinapaw, M.J.M.

    2014-01-01

    Objectives: The aim of study was to determine prevalence and identify demographic correlates of active and non-active gaming among adolescents. Design: Cross-sectional. Methods: A survey, assessing game behavior and correlates, was conducted among adolescents (12-16 years, n= 373), recruited via

  15. Active and non-active video gaming among Dutch adolescents: Who plays and how much?

    NARCIS (Netherlands)

    simons, M.; de Vet, E.W.M.L.; Brug, J.; Seidell, J.C.; Chin A Paw, M.J.M.

    2014-01-01

    OBJECTIVES: The aim of study was to determine prevalence and identify demographic correlates of active and non-active gaming among adolescents. DESIGN: Cross-sectional. METHODS: A survey, assessing game behavior and correlates, was conducted among adolescents (12-16 years, n = 373), recruited via

  16. Active and non-active video gaming among Dutch adolescents : who plays and how much?

    NARCIS (Netherlands)

    Simons, Monique|info:eu-repo/dai/nl/323255639; de Vet, Emely; Brug, Johannes; Seidell, Jaap; Chinapaw, Mai J M

    2014-01-01

    OBJECTIVES: The aim of study was to determine prevalence and identify demographic correlates of active and non-active gaming among adolescents. DESIGN: Cross-sectional. METHODS: A survey, assessing game behavior and correlates, was conducted among adolescents (12-16 years, n = 373), recruited via

  17. Active and non-active video gaming among Dutch adolescents: Who plays and how much?

    NARCIS (Netherlands)

    Simons, M.; Vet, de E.W.M.L.; Brug, J.; Seidell, J.C.; Chinapaw, M.

    2014-01-01

    Objective: The aim of study was to determine prevalence and identify demographic correlates of activeand non-active gaming among adolescents.Design: Cross-sectional.Methods: A survey, assessing game behavior and correlates, was conducted among adolescents (12–16years, n = 373), recruited via

  18. Biomass derived graphene-like activated and non-activated porous ...

    Indian Academy of Sciences (India)

    Graphene-like activated and non-activated carbon nanostructures were synthesized from various natural sources like sugar, rice husk and jute. These carbon nanostructures were characterized using SEM, FTIR and Raman spectroscopy, surface area and thermogravimetric analysis. The electrochemical studies of these ...

  19. Dutch children and parents' views on active and non-active video gaming

    NARCIS (Netherlands)

    De Vet, Emely; Simons, Monique|info:eu-repo/dai/nl/323255639; Wesselman, Maarten

    Active video games that require whole body movement to play the game may be an innovative health promotion tool to substitute sedentary pastime with more active time and may therefore contribute to children's health. To inform strategies aimed at reducing sedentary behavior by replacing non-active

  20. Dutch children and parents'views on active and non-active video gaming.

    NARCIS (Netherlands)

    de Vet, E.W.M.L.; Simons, M.; Wesselman, M.C.G.

    2014-01-01

    Active video games that require whole body movement to play the game may be an innovative health promotion tool to substitute sedentary pastime with more active time and may therefore contribute to children's health. To inform strategies aimed at reducing sedentary behavior by replacing non-Active

  1. Dutch children and parents’ views on active and non-active video gaming

    NARCIS (Netherlands)

    Vet, de E.; Wesselman, M.; Simons, M.

    2014-01-01

    Active video games that require whole body movement to play the game may be an innovative health promotion tool to substitute sedentary pastime with more active time and may therefore contribute to children's health. To inform strategies aimed at reducing sedentary behavior by replacing non-active

  2. Autophagy Mediates Interleukin-1β Secretion in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Leonardo Iula

    2018-02-01

    Full Text Available Interleukin-1β (IL-1β, a major pro-inflammatory cytokine, is a leaderless cytosolic protein whose secretion does not follow the classical endoplasmic reticulum-to-Golgi pathway, and for which a canonical mechanism of secretion remains to be established. Neutrophils are essential players against bacterial and fungi infections. These cells are rapidly and massively recruited from the circulation into infected tissues and, beyond of displaying an impressive arsenal of toxic weapons effective to kill pathogens, are also an important source of IL-1β in infectious conditions. Here, we analyzed if an unconventional secretory autophagy mechanism is involved in the exportation of IL-1β by these cells. Our findings indicated that inhibition of autophagy with 3-methyladenine and Wortmannin markedly reduced IL-1β secretion induced by LPS + ATP, as did the disruption of the autophagic flux with Bafilomycin A1 and E64d. These compounds did not noticeable affect neutrophil viability ruling out that the effects on IL-1β secretion were due to cell death. Furthermore, VPS34IN-1, a specific autophagy inhibitor, was still able to reduce IL-1β secretion when added after it was synthesized. Moreover, siRNA-mediated knockdown of ATG5 markedly reduced IL-1β secretion in neutrophil-differentiated PLB985 cells. Upon LPS + ATP stimulation, IL-1β was incorporated to an autophagic compartment, as was revealed by its colocalization with LC3B by confocal microscopy. Overlapping of IL-1β-LC3B in a vesicular compartment peaked before IL-1β increased in culture supernatants. On the other hand, stimulation of autophagy by cell starvation augmented the colocalization of IL-1β and LC3B and then promoted neutrophil IL-1β secretion. In addition, specific ELISAs indicated that although both IL-1β and pro-IL-1β are released to culture supernatants upon neutrophil stimulation, autophagy only promotes IL-1β secretion. Furthermore, the serine proteases inhibitor

  3. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    Science.gov (United States)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  4. Phytoceuticals in Acute Pancreatitis: Targeting the Balance between Apoptosis and Necrosis

    Science.gov (United States)

    Gaman, Laura; Robu, Georgiana Catalina; Radoi, Mugurel Petrinel; Stroica, Laura; Badea, Mihaela

    2018-01-01

    Despite recent advances in understanding the complex pathogenesis of pancreatitis, the management of the disease remains suboptimal. The use of phytoceuticals (plant-derived pleiotropic multitarget molecules) represents a new research trend in pancreatology. The purpose of this review is to discuss the phytoceuticals with pancreatoprotective potential in acute pancreatitis and whose efficacy is based, at least in part, on their capacity to modulate the acinar cell death. The phytochemicals selected, belonging to such diverse classes as polyphenols, flavonoids, lignans, anthraquinones, sesquiterpene lactones, nitriles, and alkaloids, target the balance between apoptosis and necrosis. Activation of apoptosis via various mechanisms (e.g., inhibition of X-linked inhibitor of apoptosis proteins by embelin, upregulation of FasL gene expression by resveratrol) and/or inhibition of necrosis seem to represent the essential key for decreasing the severity of the disease. Apart from targeting the apoptosis/necrosis balance, the phytochemicals displayed other specific protective activities: inhibition of inflammasome (e.g., rutin), suppression of neutrophil infiltration (e.g., ligustrazine, resveratrol), and antioxidant activity. Even though many of the selected phytoceuticals represent a promising therapeutic alternative, there is a shortage of human evidence, and further studies are required to provide solid basis to justify their use in the treatment of pancreatitis. PMID:29686719

  5. Neutrophil extracellular traps: double-edged swords of innate immunity.

    Science.gov (United States)

    Kaplan, Mariana J; Radic, Marko

    2012-09-15

    Spectacular images of neutrophils ejecting nuclear chromatin and bactericidal proteins, in response to microbes, were first reported in 2004. As externalized chromatin could entangle bacteria, these structures were named neutrophil extracellular traps (NETs). Subsequent studies identified microorganisms and sterile conditions that stimulate NETs, as well as additional cell types that release extracellular chromatin. The release of NETs is the most dramatic stage in a cell death process called NETosis. Experimental evidence suggests that NETs participate in pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. Exaggerated NETosis or diminished NET clearance likely increases risk of autoreactivity to NET components. The biological significance of NETs is just beginning to be explored. A more complete integration of NETosis within immunology and pathophysiology will require better understanding of NET properties associated with specific disease states and microbial infections. This may lead to the identification of important therapeutic targets.

  6. Neutrophils and Granulocytic MDSC: The Janus God of Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Serena Zilio

    2016-09-01

    Full Text Available Neutrophils are the most abundant circulating blood cell type in humans, and are the first white blood cells recruited at the inflammation site where they orchestrate the initial immune response. Although their presence at the tumor site was recognized in the 1970s, until recently these cells have been neglected and considered to play just a neutral role in tumor progression. Indeed, in recent years neutrophils have been recognized to play a dual role in tumor development by either assisting the growth, angiogenesis, invasion, and metastasis or by exerting tumoricidal action directly via the secretion of antitumoral compounds, or indirectly via the orchestration of antitumor immunity. Understanding the biology of these cells and influencing their polarization in the tumor micro- and macro-environment may be the key for the development of new therapeutic strategies, which may finally hold the promise of an effective immunotherapy for cancer.

  7. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...... measured the acute effects of high glucose or the G6PD inhibitor dehydroepiandrosterone (DHEA) on the production of O(2)(-) from isolated human neutrophils....

  8. Association of microparticles and neutrophil activation with decompression sickness.

    Science.gov (United States)

    Thom, Stephen R; Bennett, Michael; Banham, Neil D; Chin, Walter; Blake, Denise F; Rosen, Anders; Pollock, Neal W; Madden, Dennis; Barak, Otto; Marroni, Alessandro; Balestra, Costantino; Germonpre, Peter; Pieri, Massimo; Cialoni, Danilo; Le, Phi-Nga Jeannie; Logue, Christopher; Lambert, David; Hardy, Kevin R; Sward, Douglas; Yang, Ming; Bhopale, Veena B; Dujic, Zeljko

    2015-09-01

    Decompression sickness (DCS) is a systemic disorder, assumed due to gas bubbles, but additional factors are likely to play a role. Circulating microparticles (MPs)--vesicular structures with diameters of 0.1-1.0 μm--have been implicated, but data in human divers have been lacking. We hypothesized that the number of blood-borne, Annexin V-positive MPs and neutrophil activation, assessed as surface MPO staining, would differ between self-contained underwater breathing-apparatus divers suffering from DCS vs. asymptomatic divers. Blood was analyzed from 280 divers who had been exposed to maximum depths from 7 to 105 meters; 185 were control/asymptomatic divers, and 90 were diagnosed with DCS. Elevations of MPs and neutrophil activation occurred in all divers but normalized within 24 h in those who were asymptomatic. MPs, bearing the following proteins: CD66b, CD41, CD31, CD142, CD235, and von Willebrand factor, were between 2.4- and 11.7-fold higher in blood from divers with DCS vs. asymptomatic divers, matched for time of sample acquisition, maximum diving depth, and breathing gas. Multiple logistic regression analysis documented significant associations (P < 0.001) between DCS and MPs and for neutrophil MPO staining. Effect estimates were not altered by gender, body mass index, use of nonsteroidal anti-inflammatory agents, or emergency oxygen treatment and were modestly influenced by divers' age, choice of breathing gas during diving, maximum diving depth, and whether repetitive diving had been performed. There were no significant associations between DCS and number of MPs without surface proteins listed above. We conclude that MP production and neutrophil activation exhibit strong associations with DCS. Copyright © 2015 the American Physiological Society.

  9. Neutrophil extracellular traps promote deep vein thrombosis in mice

    Science.gov (United States)

    Brill, A.; Fuchs, T.A.; Savchenko, A.S.; Thomas, G.M.; Martinod, K.; De Meyer, S.F.; Bhandari, A.A.; Wagner, D.D.

    2011-01-01

    Summary Background Upon activation, neutrophils can release nuclear material known as neutrophil extracellular traps (NETs), which were initially described as a part of antimicrobial defense. Extracellular chromatin was recently reported to be pro-thrombotic in vitro and to accumulate in plasma and thrombi of baboons with experimental deep vein thrombosis (DVT). Objective To explore the source and role of extracellular chromatin in DVT. Methods We used an established murine model of DVT induced by flow restriction (stenosis) in the inferior vena cava (IVC). Results We demonstrate that the levels of extracellular DNA increase in plasma after 6 h IVC stenosis, compared to sham-operated mice. Immunohistochemical staining revealed the presence of Gr-1-positive neutrophils in both red (RBC-rich) and white (platelet-rich) parts of thrombi. Citrullinated histone H3 (CitH3), an element of NETs’ structure, was present only in the red part of thrombi and was frequently associated with the Gr-1 antigen. Immunofluorescent staining of thrombi showed proximity of extracellular CitH3 and von Willebrand factor (VWF), a platelet adhesion molecule crucial for thrombus development in this model. Infusion of Deoxyribonuclease 1 (DNase 1) protected mice from DVT after 6 h and also 48 h IVC stenosis. Infusion of an unfractionated mixture of calf thymus histones increased plasma VWF and promoted DVT early after stenosis application. Conclusions Extracellular chromatin, likely originating from neutrophils, is a structural part of a venous thrombus and both the DNA scaffold and histones appear to contribute to the pathogenesis of DVT in mice. NETs may provide new targets for DVT drug development. PMID:22044575

  10. Bax/Mcl-1 balance affects neutrophil survival in intermittent hypoxia and obstructive sleep apnea: effects of p38MAPK and ERK1/2 signaling

    Directory of Open Access Journals (Sweden)

    Dyugovskaya Larissa

    2012-10-01

    Full Text Available Abstract Background Prolonged neutrophil survival is evident in various cardiovascular and respiratory morbidities, in hypoxic conditions in-vitro and in patients with obstructive sleep apnea (OSA characterized by nightly intermittent hypoxia (IH. This may lead to persistent inflammation, tissue injury and dysfunction. We therefore investigated by a translational approach the potential contribution of the intrinsic stress-induced mitochondrial pathway in extending neutrophil survival under IH conditions. Thus, neutrophils of healthy individuals treated with IH in-vitro and neutrophils of OSA patients undergoing nightly IH episodes in-vivo were investigated. Specifically, the balance between pro-apoptotic Bax and anti-apoptotic Mcl-1 protein expression, and the potential involvement of p38MAPK and ERK1/2 signaling pathways in the control of Mcl-1 expression were investigated. Methods Purified neutrophils were exposed to IH and compared to normoxia and to sustained hypoxia (SH using a BioSpherix-OxyCycler C42 system. Bax and Mcl-1 levels, and p38MAPK and ERK1/2 phosphorylation were determined by western blotting. Also, Bax/Mcl-1 expression and Bax translocation to the mitochondria were assessed by confocal microscopy in pre-apoptotic neutrophils, before the appearance of apoptotic morphology. Co-localization of Bax and mitochondria was quantified by LSM 510 CarlZeiss MicroImaging using Manders Overlap Coefficient. A paired two-tailed t test, with Bonferroni correction for multiple comparisons, was used for statistical analysis. Results Compared to normoxia, IH and SH up-regulated the anti-apoptotic Mcl-1 by about 2-fold, down-regulated the pro-apoptotic Bax by 41% and 27%, respectively, and inhibited Bax co-localization with mitochondria before visible morphological signs of apoptosis were noted. IH induced ERK1/2 and p38MAPKs phosphorylation, whereas SH induced only p38MAPK phosphorylation. Accordingly, both ERK and p38MAPK inhibitors attenuated

  11. In vivo activation of equine eosinophils and neutrophils by experimental Strongylus vulgaris infections.

    Science.gov (United States)

    Dennis, V A; Klei, T R; Chapman, M R; Jeffers, G W

    1988-12-01

    Eosinophils and neutrophils from ponies with Strongylus vulgaris-induced eosinophilia (eosinophilic ponies; activated eosinophils and neutrophils) were assayed in vitro for chemotactic and chemokinetic responses to zymosan-activated serum (ZAS) using the filter system in Boyden chambers, for Fc and complement (C) receptors using the EA and EAC-rosette assays, respectively, and for phagocytic and bactericidal activities using opsonized Escherichia coli and the acridine orange method. The responses of activated eosinophils and neutrophils in the above assays were compared with those of eosinophils and neutrophils from S. vulgaris-naive ponies without eosinophilia (noneosinophilic ponies; nonactivated eosinophils and neutrophils). Differences in cell density following centrifugation in a continuous Percoll gradient were used to further characterize the heterogeneity of activated eosinophils and neutrophils. Activated and nonactivated eosinophils demonstrated similar chemotactic responses to ZAS while activated and nonactivated neutrophils demonstrated similar chemokinetic responses to ZAS. A higher percentage of activated eosinophils and neutrophils expressed Fc and C receptors compared with nonactivated cells (P less than 0.05). Generally, higher percentages of eosinophils and neutrophils expressed C than Fc receptors. However, the percentage of neutrophils with both receptors was higher than that of eosinophils. Phagocytosis and killing of E. coli by either type of eosinophil were not consistently observed. Both activated and nonactivated neutrophils phagocytized E. coli and significant differences between the two cell types were not observed. The bacterial activity, however, of activated neutrophils was significantly greater than that obtained using nonactivated neutrophils (P less than 0.05). Activated eosinophils and neutrophils were both separated into two distinct fractions based on differences in cell densities. A higher percentage of band 2 eosinophils

  12. Autoantibodies Recognizing Secondary NEcrotic Cells Promote Neutrophilic Phagocytosis and Identify Patients With Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Mona H. C. Biermann

    2018-05-01

    Full Text Available Deficient clearance of apoptotic cells reportedly contributes to the etiopathogenesis of the autoimmune disease systemic lupus erythematosus (SLE. Based on this knowledge, we developed a highly specific and sensitive test for the detection of SLE autoantibodies (AAb utilizing secondary NEcrotic cell (SNEC-derived material as a substrate. The goal of the present study was to validate the use of SNEC as an appropriate antigen for the diagnosis of SLE in large cohort of patients. We confirmed the presence of apoptotically modified autoantigens on SNEC (dsDNA, high mobility group box 1 protein, apoptosis-associated chromatin modifications, e.g., histones H3-K27-me3; H2A/H4 AcK8,12,16; and H2B-AcK12. Anti-SNEC AAb were measured in the serum of 155 patients with SLE, 89 normal healthy donors (NHD, and 169 patients with other autoimmune connective tissue diseases employing SNEC-based indirect enzyme-linked immunosorbent assay (SNEC ELISA. We compared the test performance of SNEC ELISA with the routine diagnostic tests dsDNA Farr radioimmunoassay (RIA and nucleosome-based ELISA (anti-dsDNA-NcX-ELISA. SNEC ELISA distinguished patients with SLE with a specificity of 98.9% and a sensitivity of 70.6% from NHD clearly surpassing RIA and anti-dsDNA-NcX-ELISA. In contrast to the other tests, SNEC ELISA significantly discriminated patients with SLE from patients with rheumatoid arthritis, primary anti-phospholipid syndrome, spondyloarthropathy, psoriatic arthritis, and systemic sclerosis. A positive test result in SNEC ELISA significantly correlated with serological variables and reflected the uptake of opsonized SNEC by neutrophils. This stresses the relevance of SNECs in the pathogenesis of SLE. We conclude that SNEC ELISA allows for the sensitive detection of pathologically relevant AAb, enabling its diagnostic usage. A positive SNEC test reflects the opsonization of cell remnants by AAb, the neutrophil recruitment to tissues, and the enhancement of local

  13. Distinct neutrophil subpopulations phenotype by flow cytometry in myelodysplastic syndromes.

    Science.gov (United States)

    Vikentiou, Myrofora; Psarra, Katerina; Kapsimali, Violetta; Liapis, Konstantinos; Michael, Michalis; Tsionos, Konstantinos; Lianidou, Evi; Papasteriades, Chryssa

    2009-03-01

    The cardinal feature of myelodysplastic syndromes (MDS) is dysplasia involving one or more myeloid cell lineages. In the present study, we used 4-color flow cytometric analysis to investigate dysgranulopoiesis in bone marrow specimens from 65 patients with MDS. The antigen expression patterns of total neutrophil granulocytes (TNG) and of the two distinct neutrophil granulocytic subpopulations (NGSs), NGS-1 (dimmer CD45 expression) and NGS-2 (stronger CD45 expression) identified on the side scatter (SS) vs. CD45-intensity plot, were studied. The neutrophil granulocytes from patients with MDS showed characteristic antigen expression aberrancies which were more pronounced in NGS-2 subpopulation. Studying separately the NGS-2 subpopulation with the CD16/MPO/LF combination, the low CD16(+)/MPO(+) and low CD16(+)/LF(+) percentages seemed to discriminate between lower-risk and higher-risk patients with MDS in most occasions. Furthermore, a detailed assessment of the NGS-1 and NGS-2 immunophenotypic patterns revealed early dysplastic changes, not otherwise observed by standard TNG analysis, especially in cases of lower-risk MDS.

  14. Elevated Neutrophil Lymphocyte Ratio in Recurrent Optic Neuritis

    Directory of Open Access Journals (Sweden)

    Hande Guclu

    2015-01-01

    Full Text Available Purpose. To demonstrate the relation between optic neuritis (ON and systemic inflammation markers as neutrophil lymphocyte ratio (N/L ratio, platelet count, mean platelet volume (MPV, and red cell distribution width (RDW and furthermore to evaluate the utilization of these markers to predict the frequency of the ON episodes. Methods. Forty-two patients with acute ON and forty healthy subjects were enrolled into the study. The medical records were reviewed for age, sex, hemoglobin (Hb, Haematocrit (Htc, RDW, platelet count, MPV, white blood cell count (WBC, neutrophil and lymphocyte count, and neutrophil lymphocyte ratio (N/L ratio. Results. The mean N/L ratio, platelet counts, and RDW were significantly higher in ON group (p=0.000, p=0.048, and p=0.002. There was a significant relation between N/L ratio and number of episodes (r=0.492, p=0.001. There was a statistically significant difference for MPV between one episode group and recurrent ON group (p=0.035. Conclusions. Simple and inexpensive laboratory methods could help us show systemic inflammation and monitor ON patients. Higher N/L ratio can be a useful marker for predicting recurrent attacks.

  15. Ascorbic acid transport and accumulation in human neutrophils

    International Nuclear Information System (INIS)

    Washko, P.; Rotrosen, D.; Levine, M.

    1989-01-01

    The transport, accumulation, and distribution of ascorbic acid were investigated in isolated human neutrophils utilizing a new ascorbic acid assay, which combined the techniques of high performance liquid chromatography and coulometric electrochemical detection. Freshly isolated human neutrophils contained 1.0-1.4 mM ascorbic acid, which was localized greater than or equal to 94% to the cytosol, was not protein bound, and was present only as ascorbic acid and not as dehydroascorbic acid. Upon addition of ascorbic acid to the extracellular medium in physiologic amounts, ascorbic acid was accumulated in neutrophils in millimolar concentrations. Accumulation was mediated by a high affinity and a low affinity transporter; both transporters were responsible for maintenance of concentration gradients as large as 50-fold. The high affinity transporter had an apparent Km of 2-5 microns by Lineweaver-Burk and Eadie-Hofstee analyses, and the low affinity transporter had an apparent Km of 6-7 mM by similar analyses. Each transporter was saturable and temperature dependent. In normal human blood the high affinity transporter should be saturated, whereas the low affinity transporter should be in its linear phase of uptake

  16. Flavonoids Inhibit the Respiratory Burst of Neutrophils in Mammals

    Directory of Open Access Journals (Sweden)

    Milan Ciz

    2012-01-01

    Full Text Available Neutrophils represent the front-line defence cells in protecting organisms against infection and play an irreplaceable role in the proper performance of the immune system. As early as within the first minutes of stimulation, neutrophilic NADPH oxidase is activated, and cells release large quantities of highly toxic reactive oxygen species (ROS. These oxidants can be highly toxic not only for infectious agents but also for neighboring host tissues. Since flavonoids exhibit antioxidant and anti-inflammatory effects, they are subjects of interest for pharmacological modulation of ROS production. The present paper summarizes contemporary knowledge on the effects of various flavonoids on the respiratory burst of mammalian neutrophils. It can be summarized that the inhibitory effects of flavonoids on the respiratory burst of phagocytes are mediated via inhibition of enzymes involved in cell signaling as well as via modulation of redox status. However, the effects of flavonoids are even more complex, and several sites of action, depending upon the flavonoid structure and way of application, are included.

  17. Association between neutrophil/lymphocyte ratio and coronary collateral circulation

    Directory of Open Access Journals (Sweden)

    Mustafa Oylumlu

    2012-03-01

    Full Text Available Objectives: To investigate relation between neutrophil/lymphocyte ratio and coronary collateral flow.Material and methods: Eighty-two patients admittedDicle University Medical Faculty Hospital Cardiology Departmentwith diagnosis of coronary artery disease anddetected significant stenosis or occlusion at least one ofthe coronary arteries, were included to study. Age, sex,presence of diabetes mellitus and hypertension, acute/stable coronary disease, body mass index, neutrophil/lymphocyte ratio, white blood count, Rentrop scores andnumber of diseased vessel were recorded.Results: Well-developed coronary collateral circulationwas found in 33 of the patients. Forty-nine patients hadpoor coronary collateral circulation. Mean age, sex, bodymass index, presence of diabetes mellitus and hypertensionwere similar in two groups. Mean neutrophil/lymphocyteratio was lower in well-developed coronary collateralcirculation group than poor coronary collateral circulationgroup, but there was no significant differences (2.78 vs2.89, p=0.12.Conclusions: There was no association between neutron/hil lymphocyte ratio and coronary collateral circulationaccording to our data. J Clin Exp Invest 2012; 3(1:29-32

  18. Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death

    Directory of Open Access Journals (Sweden)

    Hiroto Kambara

    2018-03-01

    Full Text Available Summary: Gasdermin D (GSDMD is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE, released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies. : Kambara et al. find that GSDMD deficiency augments host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, establishing GSDMD as a negative regulator of innate immunity. GSDMD cleavage and activation in neutrophils is mediated by ELANE, released from cytoplasmic granules into the cytosol in aging neutrophils. Keywords: GSDMD, neutrophil death, neutrophil elastase, innate immunity, host defense

  19. Apoptosis in unicellular organisms: mechanisms and evolution.

    Science.gov (United States)

    Gordeeva, A V; Labas, Y A; Zvyagilskaya, R A

    2004-10-01

    Data about the programmed death (apoptosis) in unicellular organisms, from bacteria to ciliates, are discussed. Firstly apoptosis appeared in lower eukaryotes, but its mechanisms in these organisms are different from the classical apoptosis. During evolution, the apoptotic process has been improving gradually, with reactive oxygen species and Ca2+ playing an essential role in triggering apoptosis. All eukaryotic organisms have apoptosis inhibitors, which might be introduced by viruses. In the course of evolution, caspases and apoptosis-inducing factor appeared before other apoptotic proteins, with so-called death receptors being the last among them. The functional analogs of eukaryotic apoptotic proteins take parts in the programmed death of bacteria.

  20. Apoptosis: Targets in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Kalthoff Holger

    2003-01-01

    Full Text Available Abstract Pancreatic adenocarcinoma is characterized by poor prognosis, because of late diagnosis and lack of response to chemo- and/or radiation therapies. Resistance to apoptosis mainly causes this insensitivity to conventional therapies. Apoptosis or programmed cell death is a central regulator of tissue homeostasis. Certain genetic disturbances of apoptotic signaling pathways have been found in carcinomas leading to tumor development and progression. In the past few years, the knowledge about the complex pathways of apoptosis has strongly increased and new therapeutic approaches based on this knowledge are being developed. This review will focus on the role of apoptotic proteins contributing to pancreatic cancer development and progression and will demonstrate possible targets to influence this deadly disease.

  1. Ly6G-mediated depletion of neutrophils is dependent on macrophages.

    Science.gov (United States)

    Bruhn, Kevin W; Dekitani, Ken; Nielsen, Travis B; Pantapalangkoor, Paul; Spellberg, Brad

    2016-01-01

    Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings.

  2. RhoA determines disease progression by controlling neutrophil motility and restricting hyperresponsiveness

    DEFF Research Database (Denmark)

    Jennings, Richard T; Strengert, Monika; Hayes, Patti

    2014-01-01

    Neutrophil responses are central to host protection and inflammation. Neutrophil activation follows a two-step process where priming amplifies responses to activating stimuli. Priming is essential for life span extension, chemotaxis and respiratory burst activity. Here we show that the cytoskeletal...... organizer RhoA suppresses neutrophil priming via formins. Premature granule exocytosis in Rho-deficient neutrophils activated numerous signaling pathways and amplified superoxide generation. Deletion of Rho altered front-to-back coordination by simultaneously increasing uropod elongation, leading edge...... neutrophils exacerbated LPS-mediated lung injury, deleting Rho in innate immune cells was highly protective in Influenza A virus infection. Hence, Rho is a key regulator of disease progression by maintaining neutrophil quiescence and suppressing hyperresponsiveness....

  3. Computer-assisted image analysis assay of human neutrophil chemotaxis in vitro

    DEFF Research Database (Denmark)

    Jensen, P; Kharazmi, A

    1991-01-01

    We have developed a computer-based image analysis system to measure in-filter migration of human neutrophils in the Boyden chamber. This method is compared with the conventional manual counting techniques. Neutrophils from healthy individuals and from patients with reduced chemotactic activity were....... Another advantage of the assay is that it can be used to show the migration pattern of different populations of neutrophils from both healthy individuals and patients....

  4. Roles of inflammation and apoptosis in experimental brain death-induced right ventricular failure.

    Science.gov (United States)

    Belhaj, Asmae; Dewachter, Laurence; Rorive, Sandrine; Remmelink, Myriam; Weynand, Birgit; Melot, Christian; Galanti, Laurence; Hupkens, Emeline; Sprockeels, Thomas; Dewachter, Céline; Creteur, Jacques; McEntee, Kathleen; Naeije, Robert; Rondelet, Benoît

    2016-12-01

    Right ventricular (RV) dysfunction remains the leading cause of early death after cardiac transplantation. Methylprednisolone is used to improve graft quality; however, evidence for that remains empirical. We sought to determine whether methylprednisolone, acting on inflammation and apoptosis, might prevent brain death-induced RV dysfunction. After randomization to placebo (n = 11) or to methylprednisolone (n = 8; 15 mg/kg), 19 pigs were assigned to a brain-death procedure. The animals underwent hemodynamic evaluation at 1 and 5 hours after Cushing reflex (i.e., hypertension and bradycardia). The animals euthanized, and myocardial tissue was sampled. This was repeated in a control group (n = 8). At 5 hours after the Cushing reflex, brain death resulted in increased pulmonary artery pressure (27 ± 2 vs 18 ± 1 mm Hg) and in a 30% decreased ratio of end-systolic to pulmonary arterial elastances (Ees/Ea). Cardiac output and right atrial pressure did not change. This was prevented by methylprednisolone. Brain death-induced RV dysfunction was associated with increased RV expression of heme oxygenase-1, interleukin (IL)-6, IL-10, IL-1β, tumor necrosis factor (TNF)-α, IL-1 receptor-like (ST)-2, signal transducer and activator of transcription-3, intercellular adhesion molecules-1 and -2, vascular cell adhesion molecule-1, and neutrophil infiltration, whereas IL-33 expression decreased. RV apoptosis was confirmed by terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling staining. Methylprednisolone pre-treatment prevented RV-arterial uncoupling and decreased RV expression of TNF-α, IL-1 receptor-like-2, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and neutrophil infiltration. RV Ees/Ea was inversely correlated to RV TNF-α and IL-6 expression. Brain death-induced RV dysfunction is associated with RV activation of inflammation and apoptosis and is partly limited by methylprednisolone. Copyright © 2016

  5. Neutrophil elastase and elastin-derived peptides in BAL fluid and emphysematous changes on CT scans

    International Nuclear Information System (INIS)

    Betsuyaku, Tomoko; Nishimura, Masaharu; Yoshioka, Aya; Takeyabu, Kimihiro; Miyamoto, Kenji; Kawakami, Yoshikazu

    1996-01-01

    We examined the relationship between neutrophil elastase, elastin-derived peptides in bronchoalveolar lavage (BAL) fluid, and the development of pulmonary emphysema. The level of neutrophil elastase was higher in asymptomatic current smokers with emphysematous changes on computed tomographic scans than in current smokers without emphysematous changes, and was found to be correlated with the level of elastin-derived peptides in BAL fluid. Subjects with high levels of neutrophil elastase in BAL fluid had faster annual declines in FEV 1 . We conclude that the level of neutrophil elastase in BAL fluid can be used to differentiate asymptomatic cigarette smokers who are at risk for pulmonary emphysema from those who are not. (author)

  6. p21-Activated kinase (PAK regulates cytoskeletal reorganization and directional migration in human neutrophils.

    Directory of Open Access Journals (Sweden)

    Asako Itakura

    Full Text Available Neutrophils serve as a first line of defense in innate immunity owing in part to their ability to rapidly migrate towards chemotactic factors derived from invading pathogens. As a migratory function, neutrophil chemotaxis is regulated by the Rho family of small GTPases. However, the mechanisms by which Rho GTPases orchestrate cytoskeletal dynamics in migrating neutrophils remain ill-defined. In this study, we characterized the role of p21-activated kinase (PAK downstream of Rho GTPases in cytoskeletal remodeling and chemotactic processes of human neutrophils. We found that PAK activation occurred upon stimulation of neutrophils with f-Met-Leu-Phe (fMLP, and PAK accumulated at the actin-rich leading edge of stimulated neutrophils, suggesting a role for PAK in Rac-dependent actin remodeling. Treatment with the pharmacological PAK inhibitor, PF3758309, abrogated the integrity of RhoA-mediated actomyosin contractility and surface adhesion. Moreover, inhibition of PAK activity impaired neutrophil morphological polarization and directional migration under a gradient of fMLP, and was associated with dysregulated Ca(2+ signaling. These results suggest that PAK serves as an important effector of Rho-family GTPases in neutrophil cytoskeletal reorganization, and plays a key role in driving efficient directional migration of human neutrophils.

  7. Imaging neutrophil migration dynamics using micro-optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Chu, Kengyeh K.; Yonker, Lael; Som, Avira; Pazos, Michael; Kusek, Mark E.; Hurley, Bryan P.; Tearney, Guillermo J.

    2016-03-01

    Neutrophils are immune cells that undergo chemotaxis, detecting and migrating towards a chemical signal gradient. Neutrophils actively migrate across epithelial boundaries, interacting with the epithelium to selectively permit passage without compromising the epithelial barrier. In many inflammatory disorders, excessive neutrophil migration can cause damage to the epithelium itself. The signaling pathways and mechanisms that facilitate trans-epithelial migration are not fully characterized. Our laboratory has developed micro-optical coherence tomography (μOCT), which has 2 μm lateral resolution and 1 μm axial resolution. As a high-resolution native contrast modality, μOCT can directly visualize individual neutrophils as they interact with a cell layer cultured on a transwell filter. A chemoattractant can be applied to the apical side of inverted monolayer, and human neutrophils placed in the basolateral compartment, while μOCT captures 3D images of the chemotaxis. μOCT images can also generate quantitative metrics of migration volume to study the dependence of chemotaxis on monolayer cell type, chemoattractant type, and disease state of the neutrophils. For example, a disease known as leukocyte adhesion deficiency (LAD) can be simulated by treating neutrophils with antibodies that interfere with the CD18 receptor, a facilitator of trans-epithelial migration. We conducted a migration study of anti-CD18 treated and control neutrophils using T84 intestinal epithelium as a barrier. After one hour, μOCT time-lapse imaging indicated a strong difference in the fraction of neutrophils that remain attached to the epithelium after migration (0.67 +/- 0.12 attached anti-CD18 neutrophils, 0.23 +/- 0.08 attached control neutrophils, n = 6, p < 0.05), as well as a modest but non-significant decrease in total migration volume for treated neutrophils. We can now integrate μOCT-derived migration metrics with simultaneously acquired measurements of transepithelial electrical

  8. Chemokine Receptor Ccr1 Drives Neutrophil-Mediated Kidney Immunopathology and Mortality in Invasive Candidiasis

    Science.gov (United States)

    Lionakis, Michail S.; Swamydas, Muthulekha; Wan, Wuzhou; Richard Lee, Chyi-Chia; Cohen, Jeffrey I.; Scheinberg, Phillip; Gao, Ji-Liang; Murphy, Philip M.

    2012-01-01

    Invasive candidiasis is the 4th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1lo to Ccr1high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1+/+ and Ccr1−/− donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ. PMID:22916017

  9. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis

    Science.gov (United States)

    Ong, Catherine W. M.; Elkington, Paul T.; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T.; Tezera, Liku B.; Pabisiak, Przemyslaw J.; Moores, Rachel C.; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H.; Porter, Joanna C.; Friedland, Jon S.

    2015-01-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease. PMID:25996154

  10. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    Directory of Open Access Journals (Sweden)

    Michail S Lionakis

    Full Text Available Invasive candidiasis is the 4(th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo to Ccr1(high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+ and Ccr1(-/- donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  11. Neutrophilic granulocytes reactive response in candida vulvovaginitis patients with intracellular microorganism persistence complications

    OpenAIRE

    YAKOVYCHUK NINA DMYTRIVNA; DJUIRIAK VALENTYNA STEPANIVNA

    2015-01-01

    Polymorphic neutrophilic granulocytes reactive response and body immune reactivity in general considerably decrease in patients suffering from candida vaginitis on the basis of intracellular microorganisms persistence.

  12. The effect of midazolam on neutrophil mitogen-activated protein kinase.

    LENUS (Irish Health Repository)

    Ghori, Kamran

    2010-06-01

    Neutrophil p38 mitogen-activated protein kinase (MAPK) is a key enzyme in the intracellular signalling pathway that is responsible for many neutrophil functions, which are important in neutrophil-endothelial interaction. The imidazole compounds are inhibitors of this enzyme system. The objectives of this in-vitro investigation were to examine the effect of midazolam on neutrophil p38 MAPK activation (phosphorylation) following in-vitro ischaemia-reperfusion injury, and the expression of adhesion molecule CD11b\\/CD18.

  13. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    Science.gov (United States)

    Ong, Catherine W M; Elkington, Paul T; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T; Tezera, Liku B; Pabisiak, Przemyslaw J; Moores, Rachel C; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H; Porter, Joanna C; Friedland, Jon S

    2015-05-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.

  14. Failure of rabbit neutrophils to secrete endogenous pyrogen when stimulated with staphylococci.

    Science.gov (United States)

    Hanson, D F; Murphy, P A; Windle, B E

    1980-06-01

    Cells obtained from acute peritoneal exudates in rabbits were separated into neutrophil and mononuclear populations by centrifugation on colloidal silica gradients. When these populations were separately incubated in tissue culture medium in the presence of opsonized Staphylococcus epidermidis, endogenous pyrogen was secreted only by the adherent cells of the mononuclear population. Pyrogen production by neutrophils could not have amounted to as much as 1% of the pyrogen produced by macrophages. When mononuclear cells were added back to purified neutrophils, no pyrogen was produced that could not be accounted for by the number of macrophages added. Rabbit blood cells were similarly fractionated on colloidal silica gradients. Again, endogenous pyrogen was made only by the adherent mononuclear population. The neutrophils isolated on these gradients appeared to be morphologically normal and were 85% viable as judged by dye exclusion. They showed normal random motility. Both blood and exudate neutrophils responded chemotactically to N-formyl Met-Leu-Phe, and blood neutrophils responded chemotactically to zymosan-activated serum. Both kinds of neutrophils phagocytosed zymosan particles and both killed opsonized S. epidermidis in a roller tube system. Both blood and exudate neutrophils showed normal superoxide production when stimulated with opsonized zymosan particles. This evidence suggests that macrophages are the only source of endogenous pyrogens, and that pyrogens secreted by cell populations that are rich in neutrophils are to be attributed to the monocytes or macrophages that they contain.

  15. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide

    Science.gov (United States)

    Barquero-Calvo, Elías; Mora-Cartín, Ricardo; Arce-Gorvel, Vilma; de Diego, Juana L.; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán-Verri, Caterina; Buret, Andre G.; Gorvel, Jean-Pierre; Moreno, Edgardo

    2015-01-01

    Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. PMID:25946018

  16. Porphyromonas gingivalis regulates TREM-1 in human polymorphonuclear neutrophils via its gingipains.

    Directory of Open Access Journals (Sweden)

    Nagihan Bostanci

    Full Text Available The Triggering Receptor Expressed on Myeloid cells 1 (TREM-1 is a cell surface receptor of the immunoglobulin superfamily, with the capacity to amplify pro-inflammatory cytokine production and regulate apoptosis. Polymorphonuclear neutrophils (PMNs are the first line of defence against infection, and a major source of TREM-1. Porphyromonas gingivalis is a Gram-negative anaerobe highly implicated in the inflammatory processes governing periodontal disease, which is characterized by the destruction of the tooth-supporting tissues. It expresses a number of virulence factors, including the cysteine proteinases (or gingipains. The aim of this in vitro study was to investigate the effect of P. gingivalis on TREM-1 expression and production by primary human PMNs, and to evaluate the role of its gingipains in this process. After 4 h of challenge, P. gingivalis enhanced TREM-1 expression as identified by quantitative real-time PCR. This was followed by an increase in soluble (sTREM-1 secretion over a period of 18 h, as determined by ELISA. At this time-point, the P. gingivalis-challenged PMNs exhibited diminished TREM-1 cell-membrane staining, as identified by flow cytometry and confocal laser scanning microscopy. Furthermore engagement of TREM-1, by means of anti-TREM-1 antibodies, enhanced the capacity of P. gingivalis to stimulate interleukin (IL-8 production. Conversely, antagonism of TREM-1 using a synthetic peptide resulted in reduction of IL-8 secretion. Using isogenic P. gingivalis mutant strains, we identified the Arg-gingipain to be responsible for shedding of sTREM-1 from the PMN surface, whereas the Lys-gingipain had the capacity to degrade TREM-1. In conclusion, the differential regulation of TREM-1 by the P. gingivalis gingipains may present a novel mechanism by which P. gingivalis manipulates the host innate immune response helping to establish chronic periodontal inflammation.

  17. IFN-γ alters the expression of diverse immunity related genes in a cell culture model designed to represent maturing neutrophils.

    Directory of Open Access Journals (Sweden)

    Michael A Ellison

    Full Text Available The cytokine interferon-γ (IFN-γ is approved as a drug to treat chronic granulomatous disease (CGD and osteopetrosis and is also used in hyperimmunoglobulin E syndromes. Patients with CGD have defects in proteins of the NOX2 NADPH oxidase system. This leads to reduced production of microbicidal ROS by PMNs and recurrent life threatening infections. The goal of this study was to better understand how IFN-γ might support phagocyte function in these diseases, and to obtain information that might expand potential uses for IFN-γ. Neutrophils mature in the bone marrow and then enter the blood where they quickly undergo apoptotic cell death with a half-life of only 5-10 hours. Therefore we reasoned that IFN-γ might exert its effects on neutrophils via prolonged exposure to cells undergoing maturation in the marrow rather than by its brief exposure to short-lived circulating cells. To explore this possibility we made use of PLB-985 cells, a myeloblast-like myeloid cell line that can be differentiated into a mature, neutrophil-like state by treatment with various agents including DMSO. In initial studies we investigated transcription and protein expression in PLB-985 cells undergoing maturation in the presence or absence of IFN-γ. We observed IFN-γ induced differences in expression of genes known to be involved in classical aspects of neutrophil function (transmigration, chemotaxis, phagocytosis, killing and pattern recognition as well as genes involved in apoptosis and other mechanisms that regulating neutrophil number. We also observed differences for genes involved in the major histocompatibility complex I (MHCI and MHCII systems whose involvement in neutrophil function is controversial and not well defined. Finally, we observed significant changes in expression of genes encoding guanylate binding proteins (Gbps that are known to have roles in immunity but which have not as yet been linked to neutrophil function. We propose that changes in the

  18. Apoptosis detection in histological sections

    Czech Academy of Sciences Publication Activity Database

    Matalová, Eva; Dubská, Lenka; Míšek, Ivan

    2003-01-01

    Roč. 72, č. 7 (2003), s. 18-19 ISSN 0001-7213. [Congress of the European Association of Veterinary Anatomists/24./. 21.07.2002-25.07.2002, Brno] R&D Projects: GA ČR GP204/02/P112 Institutional research plan: CEZ:AV0Z5045916 Keywords : apoptosis Subject RIV: FF - HEENT, Dentistry

  19. Molecular mechanism of apoptosis and characterization of apoptosis induced by radiation

    International Nuclear Information System (INIS)

    Li Yumin; Zhang Yuguang; Li Yukun

    1999-01-01

    The major discoveries of apoptosis research in recent years were reviewed briefly. The mechanisms of caspases/ICE gene family and bcl-2 gene family on apoptosis were analyzed. And the signal transduction pathway of apoptosis found currently has been summarized. The characterizations of apoptosis induced by radiation such as time-effects, dose-effects and the radiosensibility were summed up

  20. Effect of Weightlessness on Neutrophils and Lymphocytes of Rats

    Directory of Open Access Journals (Sweden)

    Khusi Muhammad Saqib, Zia-ur-Rahman1 and Saeed Ahmad Nagra2

    2012-01-01

    Full Text Available In the present study, two hundreds and forty healthy albino young (n=120 and old (n=120 rats were used during winter and summer season. Rats were divided into four groups in each season i.e. young and old, consisting of male (n=30 and female (n=30 in each age category. In each age  sex matched rats, three subgroups were made and have been given the name as cage control (CC group, horizontal restrained group (HR and head down suspended (HDS group. For winter season, the room temperature of experimental period ranged from 20 to 23°C and for summer season, the experimental room temperature ranged from 30 to 33°C. A 12 hours light/12 hours dark cycle with ad libitum food offered each day to an individual rats as well as fresh water (at normal temperature were provided every day from 9-10 h (morning Rats were decapitated on day 7th (n=5 and day 28th (n=5 of experimental period from all groups to collected the blood in a hepranized tubes for the estimation of lymphocytes and neutrophils. Appropriate statistical analysis was performed to estimate the difference between age, days, treatments and their possible interactions during each season. During winter and summer seasons, male and female rats did show a significant decrease in lymphocytes, however a significant increase in the neutrophils percent was also observed in the HR and HDS groups. During summer, a significant increase in neutrophils and a decrease in lymphocytes were observed in male and female rats of HR and HDS groups.

  1. Staphylococcus epidermidis strategies to avoid killing by human neutrophils.

    Directory of Open Access Journals (Sweden)

    Gordon Y C Cheung

    2010-10-01

    Full Text Available Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs, including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS. These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus.

  2. The natural stilbenoid pinosylvin and activated neutrophils: effects on oxidative burst, protein kinase C, apoptosis and efficiency in adjuvant arthritis

    Czech Academy of Sciences Publication Activity Database

    Jančinová, V.; Perečko, T.; Nosál, R.; Harmatha, Juraj; Šmidrkal, J.; Drábiková, K.

    2012-01-01

    Roč. 33, č. 10 (2012), s. 1285-1292 ISSN 1671-4083 R&D Projects: GA ČR(CZ) GA203/07/1227 Institutional research plan: CEZ:AV0Z40550506 Keywords : pinosylvin * reactive oxygen species * adjuvant arthritis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 2.354, year: 2012

  3. of Matrix Metalloproteinase-9 and Neutrophil Gelatinase-Associated Lipocalin

    Directory of Open Access Journals (Sweden)

    De Caridi Giovanni

    2015-01-01

    Full Text Available The association of an axillary artery aneurysm and an abdominal aortic aneurysm is extremely rare. In this study, we describe this association in a 69 year-old-man. We measured this patient’s metalloproteinases (MMPs and Neutrophil Gelatinase - Associated Lipocalin (NGAL levels over a three years period before the abdominal aortic aneurysm rupture. We speculate that high serium levels of MMPs and NGAL may have a prognostic role and may predict aneurysm rupture in patients with an uncommon association of arterial aneurysms.

  4. Neutrophilic iron oxidizers adapted to highly oxic environments

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    Rapid sand filtration is an economical way to treat anoxic groundwaters and involves aeration followed by particulate and soluble substrate removal via deep bed filtration. The anoxic source groundwater can contain several potential electron donors (CH4, Fe2+, Mn2+, NH4+ and assimilable organic...... of iron oxidizing bacterial in the highly oxic environments found in typical rapid sand filters. The neutrophilic FeOB were enriched by the Fe2+/O2 opposing gradient technique and quantified by MPN methodology. Diversity fingerprints of the enrichment cultures were obtained with a 16S rRNA targeted DGGE...

  5. The effect of lipocortin 1 on neutrophil deformability

    Directory of Open Access Journals (Sweden)

    E. M. Drost

    1996-01-01

    Full Text Available Lipocortn 1 (Lc1 is an anti-inflammatory protein, which, given systemically, inhibits polymorphonuclear neutrophil (PMN emigration from the circulation to sites of inflammation; delivery of Lc1 to the inflamed site is ineffective. We have examined the effect of Lc1 on changes in PMN deformability, and observed a consistent improvement in the deformability of unstimulated PMN; N-formyl-methionyl-leucyl-phenylalanine (fMLP-activated cell deformability was unaltered. A Lc1-induced increase in cell deformability may reduce PMN sequestration so contributing to the anti-migratory effects of systemic Lc1 previously demonstrated in vivo.

  6. Neutrophils are not less sensitive than other blood leukocytes to the genomic effects of glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Gaelle Hirsch

    Full Text Available Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out.We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes.Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL alone or combined with hydrocortisone, prednisolone or dexamethasone (10(-8 M and 10(-6 M. IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations.We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils.Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to glucocorticoids observed in some

  7. Neutrophils Are Not Less Sensitive Than Other Blood Leukocytes to the Genomic Effects of Glucocorticoids

    Science.gov (United States)

    Hirsch, Gaelle; Lavoie-Lamoureux, Anouk; Beauchamp, Guy; Lavoie, Jean-Pierre

    2012-01-01

    Background Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out. Objective We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes. Methods Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL) alone or combined with hydrocortisone, prednisolone or dexamethasone (10−8 M and 10−6 M). IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations. Results We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils. Conclusions Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to

  8. 111Indium-labeled neutrophil migration into the lungs of bleomycin-treated rabbits assessed noninvasively by external scintigraphy

    International Nuclear Information System (INIS)

    Haslett, C.; Shen, A.S.; Feldsien, D.C.; Allen, D.; Henson, P.M.; Cherniack, R.M.

    1989-01-01

    Factors controlling neutrophil migration into the lung are poorly understood, but their identification is important for our understanding of the pathogenesis of inflammatory lung diseases. Pulmonary inflammation is difficult to quantify, and neutrophils in tissues and BAL may not accurately represent cell migration. In this study, intravenously delivered pulses of rabbit neutrophils labeled with Indium-111 (111In-neutrophils) were used to monitor neutrophil migration into the lungs. Radioactivity quantified in the lung region of interest (ROI) of external gamma camera scintigrams recorded 24 h after intravenous 111In-neutrophil injection accurately reflected the actual neutrophil-associated lung tissue radioactivity. ROI radioactivity at 24 h also correlated closely with the percent of 111In-neutrophils that had migrated into lavageable air spaces, and this parameter therefore provided an index of total lung 111In-neutrophil migration. Using 24-h ROI radioactivity and percent of injected 111In-neutrophils recovered in BAL at 24 h as indices of neutrophil migration into the lung, it was found that intratracheal saline caused only a transient neutrophil migration, whereas 10 U/kg intratracheal bleomycin induced migration that persisted for as long as 3 wk. 111In-neutrophil migration into the lung, assessed by external scintigraphy, correlated with total neutrophils quantified in histologic sections (r = 0.71, p = 0.006). The data suggest that this approach will be valuable in investigating mechanisms controlling neutrophil migration in lung inflammation, and that 111In-neutrophil scintigraphy may provide a noninvasive index of total lung neutrophil load that might be useful in staging inflammation in patchy diseases such as idiopathic pulmonary fibrosis

  9. Targeting Apoptosis Signaling in Pancreatic Cancer

    International Nuclear Information System (INIS)

    Fulda, Simone

    2011-01-01

    The ability to escape apoptosis or programmed cell death is a hallmark of human cancers, for example pancreatic cancer. This can promote tumorigenesis, since too little cell death by apoptosis disturbs tissue homeostasis. Additionally, defective apoptosis signaling is the underlying cause of failure to respond to current treatment approaches, since therapy-mediated antitumor activity requires the intactness of apoptosis signaling pathways in cancer cells. Thus, the elucidation of defects in the regulation of apoptosis in pancreatic carcinoma can result in the identification of novel targets for therapeutic interference and for exploitation for cancer drug discovery

  10. Targeting Apoptosis Signaling in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fulda, Simone [Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Komturstr. 3a, 60528 Frankfurt (Germany)

    2011-01-11

    The ability to escape apoptosis or programmed cell death is a hallmark of human cancers, for example pancreatic cancer. This can promote tumorigenesis, since too little cell death by apoptosis disturbs tissue homeostasis. Additionally, defective apoptosis signaling is the underlying cause of failure to respond to current treatment approaches, since therapy-mediated antitumor activity requires the intactness of apoptosis signaling pathways in cancer cells. Thus, the elucidation of defects in the regulation of apoptosis in pancreatic carcinoma can result in the identification of novel targets for therapeutic interference and for exploitation for cancer drug discovery.

  11. Neutrophil extracellular traps in vasculitis, friend or foe?

    Science.gov (United States)

    Söderberg, Daniel; Segelmark, Mårten

    2018-01-01

    Neutrophil extracellular traps (NETs) can be found at the sites of vascular lesions and in the circulation of patients with active small vessel vasculitis. Neutrophils from vasculitis patients release more NETs in vitro, and NETs have properties that can harm the vasculature both directly and indirectly. There are several ways to interfere with NET formation, which open for new therapeutic options. However, there are several types of NETs and different mechanisms of NET formation, and these might have different effects on inflammation. Here we review recent findings regarding the pathogenesis and therapeutic potentials of NETs in vasculitis. Experimental mouse models support a role for NETs in promoting vascular damage, where histones and mitochondrial DNA appear to be driving forces. Impaired formation of NETs, however, in an SLE-like mouse model leads to more severe disease, suggesting that NETs can be important in limiting inflammation. Studies on drug-induced vasculitis reveal that levamisole can induce NETosis via muscarinic receptors, predisposing for the generation of autoantibodies, including antineutrophil cytoplasmic autoantibodies (ANCA). This supports the notion that NETs can bridge the innate and adaptive immune systems. NETs can participate in the pathogenesis of vasculitis, but in some models there also seem to be protective effects of NETs. This complexity needs further evaluation with experimental models that are as specific as possible for human primary vasculitis.

  12. Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors.

    Science.gov (United States)

    Provencio, Jose Javier; Swank, Valerie; Lu, Haiyan; Brunet, Sylvain; Baltan, Selva; Khapre, Rohini V; Seerapu, Himabindu; Kokiko-Cochran, Olga N; Lamb, Bruce T; Ransohoff, Richard M

    2016-05-01

    Cognitive deficits after aneurysmal subarachnoid hemorrhage (SAH) are common and disabling. Patients who experience delayed deterioration associated with vasospasm are likely to have cognitive deficits, particularly problems with executive function, verbal and spatial memory. Here, we report neurophysiological and pathological mechanisms underlying behavioral deficits in a murine model of SAH. On tests of spatial memory, animals with SAH performed worse than sham animals in the first week and one month after SAH suggesting a prolonged injury. Between three and six days after experimental hemorrhage, mice demonstrated loss of late long-term potentiation (L-LTP) due to dysfunction of the NMDA receptor. Suppression of innate immune cell activation prevents delayed vasospasm after murine SAH. We therefore explored the role of neutrophil-mediated innate inflammation on memory deficits after SAH. Depletion of neutrophils three days after SAH mitigates tissue inflammation, reverses cerebral vasoconstriction in the middle cerebral artery, and rescues L-LTP dysfunction at day 6. Spatial memory deficits in both the short and long-term are improved and associated with a shift of NMDA receptor subunit composition toward a memory sparing phenotype. This work supports further investigating suppression of innate immunity after SAH as a target for preventative therapies in SAH. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Evasion of Neutrophil Extracellular Traps by Respiratory Pathogens.

    Science.gov (United States)

    Storisteanu, Daniel M L; Pocock, Joanna M; Cowburn, Andrew S; Juss, Jatinder K; Nadesalingam, Angalee; Nizet, Victor; Chilvers, Edwin R

    2017-04-01

    The release of neutrophil extracellular traps (NETs) is a major immune mechanism intended to capture pathogens. These histone- and protease-coated DNA structures are released by neutrophils in response to a variety of stimuli, including respiratory pathogens, and have been identified in the airways of patients with respiratory infection, cystic fibrosis, acute lung injury, primary graft dysfunction, and chronic obstructive pulmonary disease. NET production has been demonstrated in the lungs of mice infected with Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. Since the discovery of NETs over a decade ago, evidence that "NET evasion" might act as an immune protection strategy among respiratory pathogens, including group A Streptococcus, Bordetella pertussis, and Haemophilus influenzae, has been growing, with the majority of these studies being published in the past 2 years. Evasion strategies fall into three main categories: inhibition of NET release by down-regulating host inflammatory responses; degradation of NETs using pathogen-derived DNases; and resistance to the microbicidal components of NETs, which involves a variety of mechanisms, including encapsulation. Hence, the evasion of NETs appears to be a widespread strategy to allow pathogen proliferation and dissemination, and is currently a topic of intense research interest. This article outlines the evidence supporting the three main strategies of NET evasion-inhibition, degradation, and resistance-with particular reference to common respiratory pathogens.

  14. Nontypeable Haemophilus influenzae initiates formation of neutrophil extracellular traps.

    Science.gov (United States)

    Juneau, Richard A; Pang, Bing; Weimer, Kristin E D; Armbruster, Chelsie E; Swords, W Edward

    2011-01-01

    Nontypeable Haemophilus influenzae (NTHI) is a leading cause of otitis media infections, which are often chronic and/or recurrent in nature. NTHI and other bacterial species persist in vivo within biofilms during otitis media and other persistent infections. These biofilms have a significant host component that includes neutrophil extracellular traps (NETs). These NETs do not mediate clearance of NTHI, which survives within NET structures by means of specific subpopulations of lipooligosaccharides on the bacterial surface that are determinants of biofilm formation in vitro. In this study, the ability of NTHI and NTHI components to initiate NET formation was examined using an in vitro model system. Both viable and nonviable NTHI strains were shown to promote NET formation, as did preparations of bacterial DNA, outer membrane proteins, and lipooligosaccharide (endotoxin). However, only endotoxin from a parental strain of NTHI exhibited equivalent potency in NET formation to that of NTHI. Additional studies showed that NTHI entrapped within NET structures is resistant to both extracellular killing within NETs and phagocytic killing by incoming neutrophils, due to oligosaccharide moieties within the lipooligosaccharides. Thus, we concluded that NTHI elicits NET formation by means of multiple pathogen-associated molecular patterns (most notably endotoxin) and is highly resistant to killing within NET structures. These data support the conclusion that, for NTHI, formation of NET structures may be a persistence determinant by providing a niche within the middle-ear chamber.

  15. Absolute counting of neutrophils in whole blood using flow cytometry.

    Science.gov (United States)

    Brunck, Marion E G; Andersen, Stacey B; Timmins, Nicholas E; Osborne, Geoffrey W; Nielsen, Lars K

    2014-12-01

    Absolute neutrophil count (ANC) is used clinically to monitor physiological dysfunctions such as myelosuppression or infection. In the research laboratory, ANC is a valuable measure to monitor the evolution of a wide range of disease states in disease models. Flow cytometry (FCM) is a fast, widely used approach to confidently identify thousands of cells within minutes. FCM can be optimised for absolute counting using spiked-in beads or by measuring the sample volume analysed. Here we combine the 1A8 antibody, specific for the mouse granulocyte protein Ly6G, with flow cytometric counting in straightforward FCM assays for mouse ANC, easily implementable in the research laboratory. Volumetric and Trucount™ bead assays were optimized for mouse neutrophils, and ANC values obtained with these protocols were compared to ANC measured by a dual-platform assay using the Orphee Mythic 18 veterinary haematology analyser. The single platform assays were more precise with decreased intra-assay variability compared with ANC obtained using the dual protocol. Defining ANC based on Ly6G expression produces a 15% higher estimate than the dual protocol. Allowing for this difference in ANC definition, the flow cytometry counting assays using Ly6G can be used reliably in the research laboratory to quantify mouse ANC from a small volume of blood. We demonstrate the utility of the volumetric protocol in a time-course study of chemotherapy induced neutropenia using four drug regimens. © 2014 International Society for Advancement of Cytometry.

  16. A Neutrophil Proteomic Signature in Surgical Trauma Wounds

    Directory of Open Access Journals (Sweden)

    Sander Bekeschus

    2018-03-01

    Full Text Available Non-healing wounds continue to be a clinical challenge for patients and medical staff. These wounds have a heterogeneous etiology, including diabetes and surgical trauma wounds. It is therefore important to decipher molecular signatures that reflect the macroscopic process of wound healing. To this end, we collected wound sponge dressings routinely used in vacuum assisted therapy after surgical trauma to generate wound-derived protein profiles via global mass spectrometry. We confidently identified 311 proteins in exudates. Among them were expected targets belonging to the immunoglobulin superfamily, complement, and skin-derived proteins, such as keratins. Next to several S100 proteins, chaperones, heat shock proteins, and immune modulators, the exudates presented a number of redox proteins as well as a discrete neutrophil proteomic signature, including for example cathepsin G, elastase, myeloperoxidase, CD66c, and lipocalin 2. We mapped over 200 post-translational modifications (PTMs; cysteine/methionine oxidation, tyrosine nitration, cysteine trioxidation to the proteomic profile, for example, in peroxiredoxin 1. Investigating manually collected exudates, we confirmed presence of neutrophils and their products, such as microparticles and fragments containing myeloperoxidase and DNA. These data confirmed known and identified less known wound proteins and their PTMs, which may serve as resource for future studies on human wound healing.

  17. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis

    Science.gov (United States)

    Mercer, Frances; Ng, Shek Hang; Brown, Taylor M.; Boatman, Grace; Johnson, Patricia J.

    2018-01-01

    T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis–host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking “bites” of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target. PMID:29408891

  18. Treatment with Rutin - A Therapeutic Strategy for Neutrophil-Mediated Inflammatory and Autoimmune Diseases - Anti-inflammatory Effects of Rutin on Neutrophils -

    Directory of Open Access Journals (Sweden)

    Bahareh Abd Nikfarjam

    2017-03-01

    Full Text Available Objectives: Neutrophils represent the front line of human defense against infections. Immediately after stimulation, neutrophilic enzymes are activated and produce toxic mediators such as pro-inflammatory cytokines, nitric oxide (NO and myeloperoxidase (MPO. These mediators can be toxic not only to infectious agents but also to host tissues. Because flavonoids exhibit antioxidant and anti-inflammatory effects, they are subjects of interest for pharmacological modulation of inflammation. In the present study, the effects of rutin on stimulus-induced NO and tumor necrosis factor (TNF-α productions and MPO activity in human neutrophils were investigated. Methods: Human peripheral blood neutrophils were isolated using Ficoll-Hypaque density gradient centrifugation coupled with dextran T500 sedimentation. The cell preparations containing > 98% granulocytes were determined by morphological examination through Giemsa staining. Neutrophils were cultured in complete Roswell Park Memorial Institute (RPMI medium, pre-incubated with or without rutin (25 μM for 45 minutes, and stimulated with phorbol 12-myristate 13-acetate (PMA. Then, the TNF-α, NO and MPO productions were analyzed using enzyme-linked immunosorbent assay (ELISA, Griess Reagent, and MPO assay kits, respectively. Also, the viability of human neutrophils was assessed using tetrazolium salt 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT, and neutrophils were treated with various concentrations of rutin (1 - 100 μM, after which MTT was appended and incubated at 37ºC for 4 hour. Results: Rutin at concentrations up to 100 μM did not affect neutrophil viability during the 4-hour incubation period. Rutin significantly decreased the NO and TNF-α productions in human peripheral blood neutrophils compared to PMA-control cells (P < 0.001. Also, MPO activity was significantly reduced by rutin (P < 0.001. Conclusion: In this in vitro study, rutin had an anti-inflammatory effect

  19. Kinetic Study of Water Contaminants Adsorption by Bamboo Granular Activated and Non-Activated Carbon

    Directory of Open Access Journals (Sweden)

    Opololaoluwa Oladimarun Ijaola

    2013-10-01

    Full Text Available The adsorptive capacity of metal ions from surface water with activated and non-activated carbon derived from bamboo was investigated. The validation of adsorption kinetics of Cl, PO4 and Pb was done by pseudo-first and second order model while adsorption isotherms was proved by Langmuir and Freundlich isotherm model for activated and non- activated bamboo granular carbon. Generally, the amount of metal ions uptake increases with time and activation levels and the pH of bamboo granular carbon increase with activation. Similarly, the pore space of the activated carbon also increases with activation levels. The correlation coefficients (R2 show that the pseudo-second order model gave a better fit to the adsorption process with 0.9918 as the least value and 1.00 as the highest value as compared with the pseudo-first order with 0.813 as the highest value and 0 as the least. The Freundlich isotherm was more favorable when compared with the Langmuir isotherm in determining the adsorptive capacity of bamboo granular activated carbon. The study has shown that chemical activation increases the pore space, surface area and the pH of bamboo granular carbon which ultimately increases the adsorption rate of metal ions in the contaminated surface water.

  20. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation

    NARCIS (Netherlands)

    Rossaint, Jan; Herter, Jan M.; van Aken, Hugo; Napirei, Markus; Döring, Yvonne; Weber, Christian; Soehnlein, Oliver; Zarbock, Alexander

    2014-01-01

    There is emerging evidence that neutrophil extracellular traps (NETs) play important roles in inflammatory processes. Here we report that neutrophils have to be simultaneously activated by integrin-mediated outside-in- and G-protein-coupled receptor (GPCR) signaling to induce NET formation in acute

  1. Phagocytosis and killing of Candida albicans by human neutrophils after exposure to structurally different lipid emulsions.

    NARCIS (Netherlands)

    Wanten, G.J.A.; Curfs, J.H.A.J.; Meis, J.F.G.M.; Naber, A.H.J.

    2001-01-01

    BACKGROUND: To test the hypothesis that structurally different lipid emulsions have distinct immune-modulating properties, we analyzed the elimination of Candida albicans by neutrophils after exposure to various emulsions. METHODS: Neutrophils from 8 volunteers were incubated in physiologic 5 mmol/L

  2. Clinical symptoms and neutropenia: the balance of neutrophil development, functional activity, and cell death

    NARCIS (Netherlands)

    Kuijpers, Taco W.

    2002-01-01

    Neutrophilic granulocytes form the major type of leukocytes with counts ranging from about 1500-5000 cells/ micro l of blood under normal conditions. Neutrophils protect our body against bacterial and fungal infections. For this purpose, these cells are equipped with a machinery to sense the site of

  3. Synchronisation of glycolytic oscillations in a suspension of human neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Poulsen, Allan K.; Olsen, Lars Folke

    Neutrophils are known to be able to synchronize their production of superoxide. We show that glycolysis is also synchronized in human neutrophils being in suspension and suggest that oscillations in glycolysis are driving the pulsatile production of superoxide. The synchronising agent remains so...... far unknown, however, much evident points to that it might be hydrogen peroxide or an intermediate in glycolysis....

  4. Enhanced neutrophil chemotactic activity after bronchial challenge in subjects with grain dust-induced asthma.

    Science.gov (United States)

    Park, H S; Jung, K S

    1998-03-01

    There have been few reports suggesting involvement of neutrophils in induction of bronchoconstriction after inhalation of grain dust. To understand the role of neutrophils in pathogenesis of grain dust-induced asthma. We observed serum neutrophil chemotactic activity during grain dust-bronchoprovocation tests in six asthmatic subjects with positive bronchial challenges (group I). They were compared with those of six symptomatic subjects from the same workplace with negative bronchial challenges (group II). After grain dust inhalation, serum neutrophil chemotactic activity significantly increased at 30 minutes (P = .028), and then decreased to baseline level at 240 minutes (P = .028) in five subjects of group I having isolated early asthmatic responses. Enhanced neutrophil chemotactic activity was persistent for up to 240 minutes in one asthmatic subject having both early and late asthmatic responses. There was, however, no significant change in serum neutrophil chemotactic activity during bronchial challenges in subjects of group II. Pre-incubation of sera with anti-interleukin-8 (IL-8) antibody did not affect the neutrophil chemotactic activity results of group I subjects. These results suggest that enhanced neutrophil chemotactic activity distinct from IL-8 may contribute to significant bronchoconstriction induced by grain dust.

  5. Altered Innate Immune Responses in Neutrophils from Patients with Well- and Suboptimally Controlled Asthma

    Directory of Open Access Journals (Sweden)

    Francesca S. M. Tang

    2015-01-01

    Full Text Available Background. Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood and suboptimal (ASubopt asthma symptom control. Methods. Peripheral blood neutrophils from AGood (ACQ 0.75, n=7, and healthy controls (HC (n=9 were stimulated with bacterial (LPS (1 μg/mL, fMLF (100 nM, and viral (imiquimod (3 μg/mL, R848 (1.5 μg/mL, and poly I:C (10 μg/mL surrogates or live rhinovirus (RV 16 (MOI1. Cell-free supernatant was collected after 1 h for neutrophil elastase (NE and matrix metalloproteinase- (MMP- 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. Conclusions. Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control.

  6. Heterogeneity of neutrophil antibodies in patients with primary Sjögren's syndrome.

    Science.gov (United States)

    Lamour, A; Le Corre, R; Pennec, Y L; Cartron, J; Youinou, P

    1995-11-01

    Our aims were to determine the prevalence of neutrophil antibodies in patients with primary Sjögren's syndrome (pSS), identify their target antigen(s), and evaluate their functional significance. Neutrophil antibodies were detected using an indirect immunofluorescence (IIIF) test and an enzyme-linked immunosorbent assay (ELISA), using recombinant human Fc-gamma receptor (Fc gamma RIIIb) as a capture agent. Luminol-dependent chemiluminescence was then measured by an established technique. Antibodies to neutrophils were detected in 30 of 66 patients (45%) and categorized on the basis of positivity for the two assays: IIF+/ELISA+ (group A: five patients), IIF+/ELISA- (group B: five patients), and IFF-/ELISA+ (group C: 20 patients). All positive sera contained antibodies directed to the neutrophil specific Fc gamma RIIIb, and none of them bound to NAnull neutrophils. The titer of neutrophil-reactive antibodies (groups A and B) showed no correlation with the neutrophil count, but these autoantibodies did reduce the cell ability to generate a respiratory burst. Thus, neutrophil antibodies are common in patients with pSS. Their main target appears to be Fc gamma RIII, and this may partly account for the dysfunction in Fc gamma R-mediated clearance by the reticuloendothelial system reported in these patients.

  7. A convenient diagnostic function test of peripheral blood neutrophils in glycogen storage disease type Ib

    NARCIS (Netherlands)

    Verhoeven, A.J.; Visser, G; Van Zwieten, R; Gruszczynska, B; Poll-The, DWEET; Smit, GPA

    Neutrophils from patients suffering from glycogen storage disease type To (GSD-Ib) show several defects, one of which is a decreased rate of glucose utilization. In this study, we established experimental conditions to show the stimulation of the neutrophil respiratory burst by extracellular

  8. Pneumovirus-Induced Lung Disease in Mice Is Independent of Neutrophil-Driven Inflammation

    NARCIS (Netherlands)

    Cortjens, Bart; Lutter, René; Boon, Louis; Bem, Reinout A.; van Woensel, Job B. M.

    2016-01-01

    The human pneumovirus respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract disease in young children worldwide. A hallmark of severe human RSV infection is the strong neutrophil recruitment to the airways and lungs. Massive neutrophil activation has been

  9. d(−) Lactic Acid-Induced Adhesion of Bovine Neutrophils onto Endothelial Cells Is Dependent on Neutrophils Extracellular Traps Formation and CD11b Expression

    OpenAIRE

    Pablo Alarcón; Carolina Manosalva; Carolina Manosalva; Ivan Conejeros; María D. Carretta; Tamara Muñoz-Caro; Liliana M. R. Silva; Anja Taubert; Carlos Hermosilla; María A. Hidalgo; Rafael A. Burgos

    2017-01-01

    Bovine ruminal acidosis is of economic importance as it contributes to reduced milk and meat production. This phenomenon is mainly attributed to an overload of highly fermentable carbohydrate, resulting in increased d(−) lactic acid levels in serum and plasma. Ruminal acidosis correlates with elevated acute phase proteins in blood, along with neutrophil activation and infiltration into various tissues leading to laminitis and aseptic polysynovitis. Previous studies in bovine neutrophils indic...

  10. Genetic and pharmacological modifications of thrombin formation in apolipoprotein e-deficient mice determine atherosclerosis severity and atherothrombosis onset in a neutrophil-dependent manner.

    Directory of Open Access Journals (Sweden)

    Julian I Borissoff

    Full Text Available BACKGROUND: Variations in the blood coagulation activity, determined genetically or by medication, may alter atherosclerotic plaque progression, by influencing pleiotropic effects of coagulation proteases. Published experimental studies have yielded contradictory findings on the role of hypercoagulability in atherogenesis. We therefore sought to address this matter by extensively investigating the in vivo significance of genetic alterations and pharmacologic inhibition of thrombin formation for the onset and progression of atherosclerosis, and plaque phenotype determination. METHODOLOGY/PRINCIPAL FINDINGS: We generated transgenic atherosclerosis-prone mice with diminished coagulant or hypercoagulable phenotype and employed two distinct models of atherosclerosis. Gene-targeted 50% reduction in prothrombin (FII(-/WT:ApoE(-/- was remarkably effective in limiting disease compared to control ApoE(-/- mice, associated with significant qualitative benefits, including diminished leukocyte infiltration, altered collagen and vascular smooth muscle cell content. Genetically-imposed hypercoagulability in TM(Pro/Pro:ApoE(-/- mice resulted in severe atherosclerosis, plaque vulnerability and spontaneous atherothrombosis. Hypercoagulability was associated with a pronounced neutrophilia, neutrophil hyper-reactivity, markedly increased oxidative stress, neutrophil intraplaque infiltration and apoptosis. Administration of either the synthetic specific thrombin inhibitor Dabigatran etexilate, or recombinant activated protein C (APC, counteracted the pro-inflammatory and pro-atherogenic phenotype of pro-thrombotic TM(Pro/Pro:ApoE(-/- mice. CONCLUSIONS/SIGNIFICANCE: We provide new evidence highlighting the importance of neutrophils in the coagulation-inflammation interplay during atherogenesis. Our findings reveal that thrombin-mediated proteolysis is an unexpectedly powerful determinant of atherosclerosis in multiple distinct settings. These studies suggest that

  11. Increased Nucleosomes and Neutrophil Activation Link to Disease Progression in Patients with Scrub Typhus but Not Murine Typhus in Laos

    NARCIS (Netherlands)

    Paris, Daniel H.; Stephan, Femke; Bulder, Ingrid; Wouters, Diana; van der Poll, Tom; Newton, Paul N.; Day, Nicholas P. J.; Zeerleder, Sacha

    2015-01-01

    Cell-mediated immunity is essential in protection against rickettsial illnesses, but the role of neutrophils in these intracellular vasculotropic infections remains unclear. This study analyzed the plasma levels of nucleosomes, FSAP-activation (nucleosome-releasing factor), and neutrophil

  12. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation

    NARCIS (Netherlands)

    Wanten, G. J.; Geijtenbeek, T. B.; Raymakers, R. A.; van Kooyk, Y.; Roos, D.; Jansen, J. B.; Naber, A. H.

    2000-01-01

    BACKGROUND: To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. METHODS: Neutrophils, isolated from the blood of 10 healthy volunteers, were

  13. The clinical significance of neutrophilic pleocytosis in cerebrospinal fluid in patients with viral central nervous system infections

    Directory of Open Access Journals (Sweden)

    Siraya Jaijakul

    2017-06-01

    Conclusions: The results of a study exploring the association between CSF neutrophilic pleocytosis and clinical and prognostic significance are presented here. This study suggests that CSF neutrophilic pleocytosis is not associated with higher adverse clinical outcomes.

  14. A cardinal role for cathepsin d in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci.

    Directory of Open Access Journals (Sweden)

    Martin A Bewley

    2011-01-01

    Full Text Available The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D(-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function.

  15. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Tamding Wangdi

    2014-08-01

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a and C5a receptor (C5aR. Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.

  16. Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177

    DEFF Research Database (Denmark)

    Hu, Nan; Mora-Jensen, Helena; Theilgaard-Mønch, Kim

    2014-01-01

    OBJECTIVE: Differential gene expression in CD177+ and CD177- neutrophils was investigated, in order to detect possible differences in neutrophil function which could be related to the pathogenesis of ANCA-associated Vasculitides (AAV). METHODS: Neutrophils were isolated from healthy controls (HC......) with high, negative or bimodal CD177 expression, and sorted into CD177+ and CD177- subpopulations. Total RNA was screened for expression of 24,000 probes with Illumina Ref-8 Beadchips. Genes showing differential expression between CD177+ and CD177- subsets in microarray analysis were re-assessed using...... quantitative-PCR. CD177 expression on neutrophil precursors in bone marrow was analyzed using quantitative PCR and flowcytometry. RESULTS: The proportion of CD177+ cells increased during neutrophil maturation in bone marrow. Fold change analysis of gene expression profile of sorted CD177+ and CD177...

  17. New strategy for sepsis: Targeting a key role of platelet-neutrophil interaction

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2014-07-01

    Full Text Available Neutrophil and platelet are essential arms of the innate immune response. In sepsis, platelet abnormal activation as well as neutrophil paralysis are well recognized. For platelet, it is characterized by the contribution to disseminated intravascular coagulation (DIC and the enhanced inflammation response. In terms of neutrophil, its dysfunction is manifested by the impaired recruitment and migration to the infectious foci, abnormal sequestration in the remote organs, and the delayed clearance. More recently, it has been apparent that together platelet-neutrophil interaction can induce a faster and harder response during sepsis. This article focuses on the activation of platelet, dysfunction of neutrophil, and the interaction between them during sepsis and profiles some of the molecular mechanisms and outcomes in these cellular dialogues, providing a novel strategy for treatment of sepsis.

  18. Somatic cell count and milk neutrophil viability of dairy heifers with specific CXCR1 genotypes following experimental intramammary infection with Staphylococcus chromogenes originating from milk.

    Science.gov (United States)

    Verbeke, Joren; Piccart, Kristine; Piepers, Sofie; Van Poucke, Mario; Peelman, Luc; De Visscher, Anneleen; De Vliegher, Sarne

    2015-06-01

    Previous observational studies suggest an association between polymorphism c.980A>G in the CXCR1 gene, encoding the chemokine (C-X-C motif) receptor 1, and the innate immunity and infection status of the mammary gland. Mammary glands of eight Holstein heifers were experimentally infected with a Staphylococcus chromogenes isolate originating from a chronic intramammary infection (IMI) to study differences between CXCR1 genotypes c.980AG and c.980GG. Quarters from heifers with genotypes c.980AG and c.980GG developed subclinical mastitis but showed differences in the early response at 6-18 h post challenge. Bacterial count at 18 h post challenge tended to be higher in quarters from c.980AG heifers compared to c.980GG heifers. Somatic cell count (SCC) was higher at 6 h post challenge and tended to be higher at 9 h post challenge in c.980AG heifers compared to c.980GG heifers. Milk production decreased similarly. Milk neutrophils of c.980AG heifers showed more apoptosis at 9 h post challenge and tended to show more necrosis at 6, 9 and 12 h post challenge than c.980GG heifers. Differences were less pronounced in the later stage (>18 h) of infection. The results demonstrate that CXCR1 polymorphism can influence SCC and milk neutrophil viability following experimental IMI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Preoperative neutrophil response as a predictive marker of clinical outcome following open heart surgery and the impact of leukocyte filtration.

    LENUS (Irish Health Repository)

    Soo, Alan W

    2010-11-01

    Open heart surgery is associated with a massive systemic inflammatory response. Neutrophils, are the main mediator of this response. We hypothesised that the degree of neutrophil activation and inflammatory response to open heart surgery varies individually and correlates with clinical outcome. The aim of this study was to determine if individual clinical outcome can be predicted preoperatively through assessment of in-vitro stimulated neutrophil responses. Following that, the effects of neutrophil depletion through leukocyte filters are examined.

  20. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro.

    Directory of Open Access Journals (Sweden)

    Irundika H K Dias

    Full Text Available The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. - by the nicotinamide adenine dinucleotide (NADPH oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2, a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH/oxidised glutathione (GSSG ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC, and modifier (GCLM subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.

  1. Obesity is associated with more activated neutrophils in African American male youth.

    Science.gov (United States)

    Xu, X; Su, S; Wang, X; Barnes, V; De Miguel, C; Ownby, D; Pollock, J; Snieder, H; Chen, W; Wang, X

    2015-01-01

    There is emerging evidence suggesting the role of peripheral blood leukocytes in the pathogenesis of obesity and related diseases. However, few studies have taken a genome-wide approach to investigating gene expression profiles in peripheral leukocytes between obese and lean individuals with the consideration of obesity-related shifts in leukocyte types. We conducted this study in 95 African Americans (AAs) of both genders (age 14-20 years, 46 lean and 49 obese). Complete blood count with differential test (CBC) was performed in whole blood. Genome-wide gene expression analysis was obtained using the Illumina HumanHT-12 V4 Beadchip with RNA extracted from peripheral leukocytes. Out of the 95 participants, 64 had neutrophils stored. The validation study was based on real-time PCR with RNA extracted from purified neutrophils. CBC test suggested that, in males, obesity was associated with increased neutrophil percentage (P=0.03). Genome-wide gene expression analysis showed that, in males, the majority of the most differentially expressed genes were related to neutrophil activation. Validation of the gene expression levels of ELANE (neutrophil elastase) and MPO (myeloperoxidase) in purified neutrophils demonstrated that the expression of these two genes--important biomarkers of neutrophils activation--were significantly elevated in obese males (P=0.01 and P=0.02, respectively). The identification of increased neutrophil percentage and activation in obese AA males suggests that neutrophils have an essential role in the pathogenesis of obesity-related disease. Further functional and mechanistic studies on neutrophils may contribute to the development of novel intervention strategies reducing the burden associated with obesity-related health problems.

  2. Induction of hyperresponsiveness in human airway tissue by neutrophils--mechanism of action.

    Science.gov (United States)

    Anticevich, S Z; Hughes, J M; Black, J L; Armour, C L

    1996-05-01

    The two main features of asthma are bronchial hyperresponsiveness and inflammation. The inflammatory response in asthma consists of infiltration and activation of a variety of inflammatory cells including neutrophils. Our previous studies have shown that stimulated neutrophil supernatants cause hyperresponsiveness of human bronchial tissue in vitro. To investigate the effect of the sensitization status of the tissue and the albumin concentration used to prepare supernatants on the response of human bronchial tissue to stimulated neutrophil supernatants. Neutrophil supernatants were prepared from human isolated blood in the presence of varying concentrations of albumin (0%, 0.1% and 4%). Neutrophil supernatants were added to sensitized and non-sensitized human isolated bronchial tissue which was stimulated with electrical field stimulation (EFS) (20 s every 4 min). Receptor antagonists specific for the prostaglandin and thromboxane (10(-7) M GR32191), platelet activating factor (10(-6) M WEB 2086), leukotriene D4 (10(-6) M MK-679) and neurokinin A (10(-7) M SR48968) receptors were used to identify neutrophil products responsible for the effects observed in the bronchial tissue. In non-sensitized human bronchial tissue, stimulated neutrophil supernatants induced a direct contraction in the presence of 0% and 0.1% but not 4% albumin. This contraction was due to leukotriene D4 as MK-679 completely inhibited the contraction. In contrast, stimulated neutrophil supernatants increased responsiveness of sensitized human bronchial tissue to EFS. The increased responsiveness was observed only in the presence of 0.1% albumin, with the site of modulation likely to be prejunctional on the parasympathetic nerve. The increased responsiveness was not inhibited by any of the antagonists tested. Sensitization status of the tissue and albumin concentration effect the responsiveness of human bronchial tissue to stimulated neutrophil supernatant. Our results suggest a possible role for

  3. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro.

    Science.gov (United States)

    Dias, Irundika H K; Chapple, Ian L C; Milward, Mike; Grant, Melissa M; Hill, Eric; Brown, James; Griffiths, Helen R

    2013-01-01

    The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 (. -) by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 (. -) production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis.

  4. Clostridium butyricum MIYAIRI 588 shows antitumor effects by enhancing the release of TRAIL from neutrophils through MMP-8.

    Science.gov (United States)

    Shinnoh, Masahide; Horinaka, Mano; Yasuda, Takashi; Yoshikawa, Sae; Morita, Mie; Yamada, Takeshi; Miki, Tsuneharu; Sakai, Toshiyuki

    2013-03-01

    Bacillus Calmette-Guérin (BCG) intravesical therapy against superficial bladder cancer is one of the most successful immunotherapies in cancer, though the precise mechanism has not been clarified. Recent studies have demonstrated urinary tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) levels to be higher in BCG-responsive patients than non-responders and shown that polymorphonuclear neutrophils (PMNs) migrating to the bladder after BCG instillation release large amounts of TRAIL. To establish a safer and more effective intravesical therapy than BCG, we examined whether other bacteria induced similar effects. We stimulated PMNs or peripheral blood mononuclear cells (PBMCs) with BCG or other bacteria, and then aliquots of the culture supernatants or cell lysates were assayed for TRAIL. We examined the signaling pathway regulating the release of TRAIL from PMNs and evaluated the antitumor effects of BCG or other bacteria in vitro and in vivo. We have found that Clostridium butyricum MIYAIRI 588 (CBM588) induces the release of endogenous TRAIL from PMNs as well as BCG. In addition, we have shown that matrix metalloproteinase 8 (MMP-8) is one of the key factors responsible for the release. Interestingly, TLR2/4 signaling pathway has been suggested to be important for the release of TRAIL by MMP-8. CBM588 has been proven to be as effective as BCG against cancer cells by inducing apoptosis in vivo as well as in vitro. Taken together, these results strongly suggest that CBM588 is promising for a safer and more effective therapy against bladder cancer.

  5. Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5

    NARCIS (Netherlands)

    Alard, Jean-Eric; Ortega-Gomez, Almudena; Wichapong, Kanin; Bongiovanni, Dario; Horckmans, Michael; Megens, Remco T. A.; Leoni, Giovanna; Ferraro, Bartolo; Rossaint, Jan; Paulin, Nicole; Ng, Judy; Ippel, Hans; Suylen, Dennis; Hinkel, Rabea; Blanchet, Xavier; Gaillard, Fanny; D'Amico, Michele; von Hundelshausen, Phillipp; Zarbock, Alexander; Scheiermann, Christoph; Hackeng, Tilman M.; Steffens, Sabine; Kupatt, Christian; Nicolaes, Gerry A. F.; Weber, Christian; Soehnlein, Oliver

    2015-01-01

    In acute and chronic inflammation, neutrophils and platelets, both of which promote monocyte recruitment, are often activated simultaneously. We investigated how secretory products of neutrophils and platelets synergize to enhance the recruitment of monocytes. We found that neutrophil-borne human

  6. The Effects of Exercise on Judoists’ Circulating Blood Neutrophils

    Directory of Open Access Journals (Sweden)

    A Zar

    2012-05-01

    Full Text Available

    Background and Objectives: Type, intensity and duration of exercises exert pivotal effects on athletes’ immune system and probably athletes’ susceptibility to upper respiratory tract infections. In this study we examined the effects of one session of moderate-intensity exercise on male judoists’ circulating blood neutrophil counts (BNC and respiratory burst, and self-reported upper respiratory clinical infections 24 hours after the exercise and during the sport seasons. Methods: Ten male judoists after obtaining informed consent were included in the study. The athletes took part in a session of moderate-intensity exercise (60 minutes running on a treadmill at 60% of maximum heart rate. Blood samples were drawn at rest immediately after the exercise. Blood neutrophil count and percentage of Phorbol Myristate Acetate (PMA stimulated neutrophils in whole blood were assessed [as a marker of oxidative burst (OB quality]. Athletes were asked about any signs of upper respiratory infections 24 hours after the exercise and during sport seasons. Paired-t test was used for statistical analysis and statistical significance was set at p<0.05. Results: BNC were in normal range at rest, and meaningfully increased immediately after the exercise (p<0.05. At rest, the OB activity was in normal range, and increased immediately after the exercise (not significant. During 24 hours after the exercise, athletes showed no signs of upper respiratory system infections. Also they mentioned no history of increased susceptibility of upper respiratory infections during sport seasons. Conclusion: Continuous judo exercises have no negative effects on BNC and OB activity. This finding is in accordance with the absence of self-reported upper respiratory infections in judoists during sport seasons. Significant increase in BNC after a session of exercise was a

  7. Micromechanics of non-active clays in saturated state and DEM modelling

    Directory of Open Access Journals (Sweden)

    Pagano Arianna Gea

    2017-01-01

    Full Text Available The paper presents a conceptual micromechanical model for 1-D compression behaviour of non-active clays in saturated state. An experimental investigation was carried out on kaolin clay samples saturated with fluids of different pH and dielectric permittivity. The effect of pore fluid characteristics on one-dimensional compressibility behaviour of kaolin was investigated. A three dimensional Discrete Element Method (DEM was implemented in order to simulate the response of saturated kaolin observed during the experiments. A complex contact model was introduced, considering both the mechanical and physico-chemical microscopic interactions between clay particles. A simple analysis with spherical particles only was performed as a preliminary step in the DEM study in the elastic regime.

  8. Bone marrow transplantation for an infant with neutrophil dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Camitta, B M; Quesenberry, P J; Parkman, R; Boxer, L A; Stossel, T P; Cassady, J R; Rappeport, J M; Nathan, D G [Harvard Medical School, Boston, Mass. (USA); Tufts Univ., Boston, Mass. (USA). School of Medicine)

    1977-01-01

    A child with severe neutrophil dysfunction and intractable infections received bone marrow transplants from histocompatible siblings. After a first transplant preceded by cyclophosphamide (CY), antithymocyte serum (ATS) and procarbazine (PCB) preconditioning, there was no evidence for engraftment and autologous marrow function rapidly returned. Cell mediated lysis showed no evidence of patient sensitization against the marrow donor suggesting that graft rejection did not cause the transplant failure. A second transplant was performed utilizing another matched sibling donor. Total body irradiation was added to CY, ATS, and PCB for preconditioning after in vitro studies of the colony forming capacity (CFUsub(c)) of the patient's marrow cells showed normal sensitivity to radiation. Full engraftment ensued with correction of granulocyte function abnormalities. The patient eventually died of intractable pulmonary disease. Experience with this child suggests that cyclophosphamide alone may be insufficient preparation for marrow transplantation in some patients with non-neoplastic hematologic disorders. Experimental and clinical data supporting this contention are reviewed.

  9. An interesting case of pyoderma gangrenosum with immature hystiocytoid neutrophils.

    Science.gov (United States)

    Besner Morin, Catherine; Côté, Benoit; Belisle, Annie

    2018-01-01

    We present a unique case of a 36-year-old male who developed more than 20 pyoderma gangrenosum (PG) ulcers showing on histopathology a dense inflammatory infiltrate composed of histiocytoid mononuclear immature cells with a strong positivity for myeloperoxidase and Leder stain, suggesting a myeloid lineage in the absence of a concomitant myeloproliferative disorder. Histiocytoid Sweet syndrome (SS) is now recognized as a histological subtype of SS. Although PG and SS belong to the spectrum of neutrophilic diseases, to the best of our knowledge, this is the first case of a "Histiocytoid pyoderma gangrenosum" encompassing immature granulocytes in the absence of leukemia cutis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. “The NET outcome”: are neutrophil extracellular traps of any relevance to the pathophysiology of autoimmune disorders in childhood?

    Directory of Open Access Journals (Sweden)

    Stavros Giaglis

    2016-09-01

    Full Text Available Neutrophil extracellular trap (NET formation represents a form of cell death distinct from apoptosis or necrosis, by which invading pathogens are simultaneously entangled and potentially eliminated. Increased NET formation is observed in systemic lupus erythematosus (SLE, rheumatoid arthritis (RA, antineutrophil cytoplasmic antibody (ANCA-associated and small vessel vasculitis (SVV, antiphospholipid antibody syndrome (APS and psoriasis. NETs contribute to the pathogenesis of autoimmunity by exposing cryptic autoepitopes, which may facilitate the generation of autoantibodies, induce the production of interferons and activate the complement cascade. In SLE, augmented disease activity and renal disease are associated with increased NET formation, so that NETs could serve as a marker for the monitoring of disease activity. NETs can additionally cause endothelial cell damage and death and stimulate inflammation in atheromatous plaques, adding to the accelerated atherosclerosis witnessed in autoimmune disease. Since NETs induce production of interferons, assessing the extent of NET formation might facilitate the prediction of IFN-alpha levels and identification of SLE patients with presumably better responses to anti-IFN-alpha therapies or other novel therapeutic concepts, such as N-acetyl-cysteine and inhibitors of DNase 1, and peptidylarginine deiminase 4 (PAD4, which also target NETs. In summary, the study of NETs provides a novel approach to the understanding of autoimmune disease pathogenesis and opens new vistas in the development of sensitive disease markers and therapies.

  11. Cytochalasin B augments diacylglycerol levels in stimulated neutrophils

    International Nuclear Information System (INIS)

    Honeycutt, P.J.; Niedel, J.

    1986-01-01

    Diacylglycerol (DG) has gained wide acceptance as an important second messenger and intracellular activator of protein kinase C, but few studies have directly measured DG levels in cells or tissues. The authors measured the mass of DG in lipid extracts from normal human neutrophils by quantitative conversion of DG to [ 32 P] phosphatidic acid using E. coli DG kinase. The chemotactic peptide N-formyl-Met-Leu-Phe (fMLP) stimulated a transient 30% rise in DG that was maximal at 30 to 45 sec and returned to the basal level of 150 picomoles/10 7 cells by one min. This initial peak was followed by a slower, more prolonged 30% increase in DG that was maximal at 20 min. Cytochalasin B (CB) augments many biological responses of neutrophils to fMLP, including superoxide production and lysosomal enzyme release. CB alone caused no change in basal DG levels, but in the presence of CB, fMLP stimulated a rapid, large, and persistent DG response. DG levels increased to 290% of basal at 5 min with a t1/2 = 45 sec. The DG response to fMLP was maximal at 5 to 10 μm CB and 1 μM fMLP. The DG response to optimal fMLP and CB concentrations was decreased 40% by an fMLP antagonist, and no response was elicited by an inactive fMLP analog and CB. Protein kinase C has been implicated in fMLP-stimulated superoxide production and lysosomal enzyme release. These data are consistent with the hypothesis that CB may effect augmentation of biological responses by increasing DG levels

  12. Colloidal polyaniline dispersions: Antibacterial activity, cytotoxicity and neutrophil oxidative burst

    Czech Academy of Sciences Publication Activity Database

    Kuceková, Z.; Humpolíček, P.; Kašpárková, V.; Perečko, Tomáš; Lehocký, M.; Hauerlandova, I.; Saha, P.; Stejskal, Jaroslav

    Roč. 116, APR 2014 ( 2014 ), s. 411-417 ISSN 0927-7765 R&D Projects: GA ČR(CZ) GA13-08944S; GA MŠk(CZ) EE2.3.30.0030 Institutional support: RVO:68081707 ; RVO:61389013 Keywords : Cytotoxicity * Apoptosis * Necrosis Subject RIV: BO - Biophysics; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 4.152, year: 2014

  13. Activated Protein C Attenuates Severe Inflammation by Targeting VLA-3high Neutrophil Subpopulation in Mice.

    Science.gov (United States)

    Sarangi, Pranita P; Lee, Hyun-Wook; Lerman, Yelena V; Trzeciak, Alissa; Harrower, Eric J; Rezaie, Alireza R; Kim, Minsoo

    2017-10-15

    The host injury involved in multiorgan system failure during severe inflammation is mediated, in part, by massive infiltration and sequestration of hyperactive neutrophils in the visceral organ. A recombinant form of human activated protein C (rhAPC) has shown cytoprotective and anti-inflammatory functions in some clinical and animal studies, but the direct mechanism is not fully understood. Recently, we reported that, during endotoxemia and severe polymicrobial peritonitis, integrin VLA-3 (CD49c/CD29) is specifically upregulated on hyperinflammatory neutrophils and that targeting the VLA-3 high neutrophil subpopulation improved survival in mice. In this article, we report that rhAPC binds to human neutrophils via integrin VLA-3 (CD49c/CD29) with a higher affinity compared with other Arg-Gly-Asp binding integrins. Similarly, there is preferential binding of activated protein C (PC) to Gr1 high CD11b high VLA-3 high cells isolated from the bone marrow of septic mice. Furthermore, specific binding of rhAPC to human neutrophils via VLA-3 was inhibited by an antagonistic peptide (LXY2). In addition, genetically modified mutant activated PC, with a high affinity for VLA-3, shows significantly improved binding to neutrophils compared with wild-type activated PC and significantly reduced neutrophil infiltration into the lungs of septic mice. These data indicate that variants of activated PC have a stronger affinity for integrin VLA-3, which reveals novel therapeutic possibilities. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Cxcl8b and Cxcr2 Regulate Neutrophil Migration through Bloodstream in Zebrafish

    Directory of Open Access Journals (Sweden)

    Constanza Zuñiga-Traslaviña

    2017-01-01

    Full Text Available Neutrophils play an essential role during an inflammatory response, which is dependent on their rapid recruitment from the bone marrow to the vasculature. However, there is no information about the molecular signals that regulate neutrophil entry to circulation during an inflammatory process in humans. This is mainly due to the lack of a suitable model of study that contains similar set of molecules and that allows in vivo analyses. In this study, we used the zebrafish to assess the role of Cxcl8a, Cxcl8b, and Cxcr2 in neutrophil migration to blood circulation after injury. Using Tg(BACmpx:GFPi114 transgenic embryos and two damage models (severe and mild, we developed in vivo lack of function assays. We found that the transcription levels of cxcl8a, cxcl8b, and cxcr2 were upregulated in the severe damage model. In contrast, only cxcr2 and cxcl8a mRNA levels were increased during mild damage. After knocking down Cxcl8a, neutrophil quantity decreased at the injury site, while Cxcl8b decreased neutrophils in circulation. When inhibiting Cxcr2, we observed a decrease in neutrophil entry to the bloodstream. In conclusion, we identified different functions for both Cxcl8 paralogues, being the Cxcl8b/Cxcr2 axis that regulates neutrophil entry to the bloodstream, while Cxcl8a/Cxcr2 regulates the migration to the affected area.

  15. Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis.

    Science.gov (United States)

    Bhuiyan, Md Saruar; Ellett, Felix; Murray, Gerald L; Kostoulias, Xenia; Cerqueira, Gustavo M; Schulze, Keith E; Mahamad Maifiah, Mohd Hafidz; Li, Jian; Creek, Darren J; Lieschke, Graham J; Peleg, Anton Y

    2016-08-23

    Innate cellular immune responses are a critical first-line defense against invading bacterial pathogens. Leukocyte migration from the bloodstream to a site of infection is mediated by chemotactic factors that are often host-derived. More recently, there has been a greater appreciation of the importance of bacterial factors driving neutrophil movement during infection. Here, we describe the development of a zebrafish infection model to study Acinetobacter baumannii pathogenesis. By using isogenic A. baumannii mutants lacking expression of virulence effector proteins, we demonstrated that bacterial drivers of disease severity are conserved between zebrafish and mammals. By using transgenic zebrafish with fluorescent phagocytes, we showed that a mutation of an established A. baumannii global virulence regulator led to marked changes in neutrophil behavior involving rapid neutrophil influx to a localized site of infection, followed by prolonged neutrophil dwelling. This neutrophilic response augmented bacterial clearance and was secondary to an impaired A. baumannii phenylacetic acid catabolism pathway, which led to accumulation of phenylacetate. Purified phenylacetate was confirmed to be a neutrophil chemoattractant. These data identify a previously unknown mechanism of bacterial-guided neutrophil chemotaxis in vivo, providing insight into the role of bacterial metabolism in host innate immune evasion. Furthermore, the work provides a potentially new therapeutic paradigm of targeting a bacterial metabolic pathway to augment host innate immune responses and attenuate disease.

  16. CARD9-Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Rebecca A Drummond

    2015-12-01

    Full Text Available Candida is the most common human fungal pathogen and causes systemic infections that require neutrophils for effective host defense. Humans deficient in the C-type lectin pathway adaptor protein CARD9 develop spontaneous fungal disease that targets the central nervous system (CNS. However, how CARD9 promotes protective antifungal immunity in the CNS remains unclear. Here, we show that a patient with CARD9 deficiency had impaired neutrophil accumulation and induction of neutrophil-recruiting CXC chemokines in the cerebrospinal fluid despite uncontrolled CNS Candida infection. We phenocopied the human susceptibility in Card9-/- mice, which develop uncontrolled brain candidiasis with diminished neutrophil accumulation. The induction of neutrophil-recruiting CXC chemokines is significantly impaired in infected Card9-/- brains, from both myeloid and resident glial cellular sources, whereas cell-intrinsic neutrophil chemotaxis is Card9-independent. Taken together, our data highlight the critical role of CARD9-dependent neutrophil trafficking into the CNS and provide novel insight into the CNS fungal susceptibility of CARD9-deficient humans.

  17. Rapid Sequestration of Leishmania mexicana by Neutrophils Contributes to the Development of Chronic Lesion.

    Directory of Open Access Journals (Sweden)

    Benjamin P Hurrell

    2015-05-01

    Full Text Available The protozoan Leishmania mexicana parasite causes chronic non-healing cutaneous lesions in humans and mice with poor parasite control. The mechanisms preventing the development of a protective immune response against this parasite are unclear. Here we provide data demonstrating that parasite sequestration by neutrophils is responsible for disease progression in mice. Within hours of infection L. mexicana induced the local recruitment of neutrophils, which ingested parasites and formed extracellular traps without markedly impairing parasite survival. We further showed that the L. mexicana-induced recruitment of neutrophils impaired the early recruitment of dendritic cells at the site of infection as observed by intravital 2-photon microscopy and flow cytometry analysis. Indeed, infection of neutropenic Genista mice and of mice depleted of neutrophils at the onset of infection demonstrated a prominent role for neutrophils in this process. Furthermore, an increase in monocyte-derived dendritic cells was also observed in draining lymph nodes of neutropenic mice, correlating with subsequent increased frequency of IFNγ-secreting T helper cells, and better parasite control leading ultimately to complete healing of the lesion. Altogether, these findings show that L. mexicana exploits neutrophils to block the induction of a protective immune response and impairs the control of lesion development. Our data thus demonstrate an unanticipated negative role for these innate immune cells in host defense, suggesting that in certain forms of cutaneous leishmaniasis, regulating neutrophil recruitment could be a strategy to promote lesion healing.

  18. Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils.

    Directory of Open Access Journals (Sweden)

    Nauder Faraday

    Full Text Available Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies.

  19. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8.

    LENUS (Irish Health Repository)

    Bergin, David A

    2010-12-01

    Hereditary deficiency of the protein α-1 antitrypsin (AAT) causes a chronic lung disease in humans that is characterized by excessive mobilization of neutrophils into the lung. However, the reason for the increased neutrophil burden has not been fully elucidated. In this study we have demonstrated using human neutrophils that serum AAT coordinates both CXCR1- and soluble immune complex (sIC) receptor-mediated chemotaxis by divergent pathways. We demonstrated that glycosylated AAT can bind to IL-8 (a ligand for CXCR1) and that AAT-IL-8 complex formation prevented IL-8 interaction with CXCR1. Second, AAT modulated neutrophil chemotaxis in response to sIC by controlling membrane expression of the glycosylphosphatidylinositol-anchored (GPI-anchored) Fc receptor FcγRIIIb. This process was mediated through inhibition of ADAM-17 enzymatic activity. Neutrophils isolated from clinically stable AAT-deficient patients were characterized by low membrane expression of FcγRIIIb and increased chemotaxis in response to IL-8 and sIC. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased AAT binding to IL-8, increased AAT binding to the neutrophil membrane, decreased FcγRIIIb release from the neutrophil membrane, and normalization of chemotaxis. These results provide new insight into the mechanism underlying the effect of AAT augmentation therapy in the pulmonary disease associated with AAT deficiency.

  20. Murine Lung Cancer Increases CD4+ T Cell Apoptosis and Decreases Gut Proliferative Capacity in Sepsis.

    Science.gov (United States)

    Lyons, John D; Mittal, Rohit; Fay, Katherine T; Chen, Ching-Wen; Liang, Zhe; Margoles, Lindsay M; Burd, Eileen M; Farris, Alton B; Ford, Mandy L; Coopersmith, Craig M

    2016-01-01

    Mortality is significantly higher in septic patients with cancer than in septic patients without a history of cancer. We have previously described a model of pancreatic cancer followed by sepsis from Pseudomonas aeruginosa pneumonia in which cancer septic mice have higher mortality than previously healthy septic mice, associated with increased gut epithelial apoptosis and decreased T cell apoptosis. The purpose of this study was to determine whether this represents a common host response by creating a new model in which both the type of cancer and the model of sepsis are altered. C57Bl/6 mice received an injection of 250,000 cells of the lung cancer line LLC-1 into their right thigh and were followed three weeks for development of palpable tumors. Mice with cancer and mice without cancer were then subjected to cecal ligation and puncture and sacrificed 24 hours after the onset of sepsis or followed 7 days for survival. Cancer septic mice had a higher mortality than previously healthy septic mice (60% vs. 18%, p = 0.003). Cancer septic mice had decreased number and frequency of splenic CD4+ lymphocytes secondary to increased apoptosis without changes in splenic CD8+ numbers. Intestinal proliferation was also decreased in cancer septic mice. Cancer septic mice had a higher bacterial burden in the peritoneal cavity, but this was not associated with alterations in local cytokine, neutrophil or dendritic cell responses. Cancer septic mice had biochemical evidence of worsened renal function, but there was no histologic evidence of renal injury. Animals with cancer have a significantly higher mortality than previously healthy animals following sepsis. The potential mechanisms associated with this elevated mortality differ significantly based upon the model of cancer and sepsis utilized. While lymphocyte apoptosis and intestinal integrity are both altered by the combination of cancer and sepsis, the patterns of these alterations vary greatly depending on the models used.

  1. Murine Lung Cancer Increases CD4+ T Cell Apoptosis and Decreases Gut Proliferative Capacity in Sepsis.

    Directory of Open Access Journals (Sweden)

    John D Lyons

    Full Text Available Mortality is significantly higher in septic patients with cancer than in septic patients without a history of cancer. We have previously described a model of pancreatic cancer followed by sepsis from Pseudomonas aeruginosa pneumonia in which cancer septic mice have higher mortality than previously healthy septic mice, associated with increased gut epithelial apoptosis and decreased T cell apoptosis. The purpose of this study was to determine whether this represents a common host response by creating a new model in which both the type of cancer and the model of sepsis are altered.C57Bl/6 mice received an injection of 250,000 cells of the lung cancer line LLC-1 into their right thigh and were followed three weeks for development of palpable tumors. Mice with cancer and mice without cancer were then subjected to cecal ligation and puncture and sacrificed 24 hours after the onset of sepsis or followed 7 days for survival.Cancer septic mice had a higher mortality than previously healthy septic mice (60% vs. 18%, p = 0.003. Cancer septic mice had decreased number and frequency of splenic CD4+ lymphocytes secondary to increased apoptosis without changes in splenic CD8+ numbers. Intestinal proliferation was also decreased in cancer septic mice. Cancer septic mice had a higher bacterial burden in the peritoneal cavity, but this was not associated with alterations in local cytokine, neutrophil or dendritic cell responses. Cancer septic mice had biochemical evidence of worsened renal function, but there was no histologic evidence of renal injury.Animals with cancer have a significantly higher mortality than previously healthy animals following sepsis. The potential mechanisms associated with this elevated mortality differ significantly based upon the model of cancer and sepsis utilized. While lymphocyte apoptosis and intestinal integrity are both altered by the combination of cancer and sepsis, the patterns of these alterations vary greatly depending on

  2. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David; Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Sharpe, Matthew R. [Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS (United States); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2014-03-01

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear

  3. The effect of cigarette smoking on neutrophil kinetics in human lungs [see comments

    International Nuclear Information System (INIS)

    MacNee, W.; Wiggs, B.; Belzberg, A.S.; Hogg, J.C.

    1989-01-01

    Neutrophils may play a part in the pathogenesis of the centrilobular emphysema associated with cigarette smoking. The capillary bed of the lungs concentrates neutrophils approximately 100-fold with respect to erythrocytes, producing a large pool of marginated cells. We examined the effect of cigarette smoking on the kinetics of this pool of cells, using 99mTc-labeled erythrocytes to measure regional blood velocity and 111In-labeled neutrophils to measure the removal of neutrophils during the first passage through the pulmonary circulation, their subsequent washout from the lungs, and the effect of local blood velocity on the number of neutrophils retained in each lung region. We observed no difference in these measurements between subjects who had never smoked (n = 6) and smokers who did not smoke during the study (n = 12). However, subjects who did smoke during the study (n = 12) had a significantly slower rate of washout of radiolabeled neutrophils from the lung (0.08 +/- 0.04 of the total per minute, as compared with 0.13 +/- 0.06 in smokers who did not smoke during the experiment and 0.14 +/- 0.08 in non-smokers) (P = 0.02). We also observed an increase in the regional retention of labeled neutrophils with respect to blood velocity in 5 of the 12 subjects who smoked during the study, but in none of the other subjects. We conclude that the presence of cigarette smoke in the lungs of some subjects increases the local concentration of neutrophils, and suggest that the lesions that characterize emphysema may be a result of the destruction of lung tissue by neutrophils that remain within pulmonary microvessels

  4. N-Formyl-Perosamine Surface Homopolysaccharides Hinder the Recognition of Brucella abortus by Mouse Neutrophils.

    Science.gov (United States)

    Mora-Cartín, Ricardo; Chacón-Díaz, Carlos; Gutiérrez-Jiménez, Cristina; Gurdián-Murillo, Stephany; Lomonte, Bruno; Chaves-Olarte, Esteban; Barquero-Calvo, Elías; Moreno, Edgardo

    2016-06-01

    Brucella abortus is an intracellular pathogen of monocytes, macrophages, dendritic cells, and placental trophoblasts. This bacterium causes a chronic disease in bovines and in humans. In these hosts, the bacterium also invades neutrophils; however, it fails to replicate and just resists the killing action of these leukocytes without inducing significant activation or neutrophilia. Moreover, B. abortus causes the premature cell death of human neutrophils. In the murine model, the bacterium is found within macrophages and dendritic cells at early times of infection but seldom in neutrophils. Based on this observation, we explored the interaction of mouse neutrophils with B. abortus In contrast to human, dog, and bovine neutrophils, naive mouse neutrophils fail to recognize smooth B. abortus bacteria at early stages of infection. Murine normal serum components do not opsonize smooth Brucella strains, and neutrophil phagocytosis is achieved only after the appearance of antibodies. Alternatively, mouse normal serum is capable of opsonizing rough Brucella mutants. Despite this, neutrophils still fail to kill Brucella, and the bacterium induces cell death of murine leukocytes. In addition, mouse serum does not opsonize Yersinia enterocolitica O:9, a bacterium displaying the same surface polysaccharide antigen as smooth B. abortus Therefore, the lack of murine serum opsonization and absence of murine neutrophil recognition are specific, and the molecules responsible for the Brucella camouflage are N-formyl-perosamine surface homopolysaccharides. Although the mouse is a valuable model for understanding the immunobiology of brucellosis, direct extrapolation from one animal system to another has to be undertaken with caution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Role of the Mycoplasma pneumoniae/Interleukin-8/Neutrophil Axis in the Pathogenesis of Pneumonia.

    Directory of Open Access Journals (Sweden)

    Zhengrong Chen

    Full Text Available Neutrophil infiltration is the characteristic pathological feature of M. pneumoniae pneumonia (MPP. This study aimed to explore the associations among neutrophil activity, clinical presentation, and role of the M. pneumoniae/interleukin-8 (IL-8/neutrophil axis in the pathogenesis of MPP. A total of 42 patients with MPP were prospectively enrolled in the study. Neutrophil activity, including matrix metalloproteinase-9 (MMP-9, myeloperoxidase (MPO, and neutrophil elastase (NE, were measured. Clinical information was collected for all patients and control group. In vitro, IL-8 production was measured at different time points after M. pneumoniae infection of bronchial epithelial cells, and neutrophil activity was analyzed after IL-8 stimulation. The percentage of neutrophil in the bronchoalveolar lavage fluid was higher in the group of patients with high levels of M. pneumoniae DNA than in those with low levels of M. pneumoniae DNA (P < 0.05. IL-8, MMP-9, and NE in patients with MPP significantly increased compared with controls and decreased after treatment (P < 0.05. MPO and MMP-9 were associated with duration of fever (r = 0.332, P < 0.05 and length of stay (r = 0.342, P < 0.05, respectively. In vitro, M. pneumoniae induced IL-8 production by bronchial epithelial cells in a time dependent manner. MPO, MMP-9 and NE production by neutrophils significantly increased compared with medium controls after IL-8 stimulation. In summary, the M. pneumoniae/IL-8/neutrophil axis likely plays a vital role in the pathogenesis of MPP.

  6. The effect of lidocaine on neutrophil respiratory burst during induction of general anaesthesia and tracheal intubation.

    LENUS (Irish Health Repository)

    Swanton, B J

    2012-02-03

    BACKGROUND AND OBJECTIVE: Respiratory burst is an essential component of the neutrophil\\'s biocidal function. In vitro, sodium thiopental, isoflurane and lidocaine each inhibit neutrophil respiratory burst. The objectives of this study were (a) to determine the effect of a standard clinical induction\\/tracheal intubation sequence on neutrophil respiratory burst and (b) to determine the effect of intravenous lidocaine administration during induction of anaesthesia on neutrophil respiratory burst. METHODS: Twenty ASA I and II patients, aged 18-60 years, undergoing elective surgery were studied. After induction of anaesthesia [fentanyl (2 microg kg-1), thiopental (4-6 mg kg-1), isoflurane (end-tidal concentration 0.5-1.5%) in nitrous oxide (66%) and oxygen], patients randomly received either lidocaine 1.5 mg kg-1 (group L) or 0.9% saline (group S) prior to tracheal intubation. Neutrophil respiratory burst was measured immediately prior to induction of anaesthesia, immediately before and 1 and 5 min after lidocaine\\/saline. RESULTS: Neutrophil respiratory burst decreased significantly after induction of anaesthesia in both groups [87.4 +\\/- 8.2% (group L) and 88.5 +\\/- 13.4% (group S) of preinduction level (P < 0.01 both groups)]. After intravenous lidocaine (but not saline) administration, neutrophil respiratory burst returned towards preinduction levels, both before (97.1 +\\/- 23.6%) and after (94.4 +\\/- 16.6%) tracheal intubation. CONCLUSION: Induction of anaesthesia and tracheal intubation using thiopentone and isoflurane, inhibit neutrophil respiratory burst. This effect may be diminished by the administration of lidocaine.

  7. Noradrenaline increases the expression and release of Hsp72 by human neutrophils.

    Science.gov (United States)

    Giraldo, E; Multhoff, G; Ortega, E

    2010-05-01

    The blood concentration of extracellular 72kDa heat shock protein (eHsp72) increases under conditions of stress, including intense exercise. However, the signal(s), source(s), and secretory pathways in its release into the bloodstream have yet to be clarified. The aim of the present study was to evaluate the role of noradrenaline (NA) as a stress signal on the expression and release of Hsp72 by circulating neutrophils (as a source), all within a context of the immunophysiological regulation during exercise-induced stress in sedentary and healthy young (21-26years) women. The expression of Hsp72 on the surface of isolated neutrophils was determined by flow cytometry, and its release by cultured isolated neutrophils was determined by ELISA. Incubation with cmHsp70-FITC showed that neutrophils express Hsp72 on their surface under basal conditions. In addition, cultured isolated neutrophils (37 degrees C and 5% CO(2)) also released Hsp72 under basal conditions, with this release increasing from 10min to 24h in the absence of cell damage. NA at 10(-9)-10(-5)M doubled the percentage of neutrophils expressing Hsp72 after 60min and 24h incubation. NA also stimulated (by about 20%) the release of Hsp72 after 10min of incubation. (1) Hsp72 is expressed on the surface of isolated neutrophils under basal conditions, and this expression is augmented by NA. (2) Isolated neutrophils can also release Hsp72 under cultured basal conditions in the absence of cell death, and NA can increase this release. These results may contribute to confirming the hypothesis that NA can act as a "stress signal" for the increased eHsp72 in the context of exercise stress, with a role for neutrophils as a source for the expression and, to a lesser degree, the release of Hsp72 after activation by NA. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Apoptosis and Molecular Targeting Therapy in Cancer

    Science.gov (United States)

    Hassan, Mohamed; Watari, Hidemichi; AbuAlmaaty, Ali; Ohba, Yusuke; Sakuragi, Noriaki

    2014-01-01

    Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction. PMID:25013758

  9. Mycobacterium tuberculosis effectors interfering host apoptosis signaling.

    Science.gov (United States)

    Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping

    2015-07-01

    Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.

  10. Mechanisms of Neuronal Apoptosis In Vivo

    National Research Council Canada - National Science Library

    Martin, Lee J

    2004-01-01

    .... Neuronal cell death in the form of apoptosis or necrosis occurs after exposure to neurotoxins, chemical warfare agents, radiation, viruses, and after seizures, trauma, limb amputation, and hypoxic...

  11. Associations Between Neutrophil Gelatinase Associated Lipocalin, Neutrophil-to-Lymphocyte Ratio, Atrial Fibrillation and Renal Dysfunction in Chronic Heart Failure

    Science.gov (United States)

    Argan, Onur; Ural, Dilek; Kozdag, Guliz; Sahin, Tayfun; Bozyel, Serdar; Aktas, Mujdat; Karauzum, Kurtulus; Yılmaz, Irem; Dervis, Emir; Agir, Aysen

    2016-01-01

    Background Atrial fibrillation (AF) and renal dysfunction are two common comorbidities in patients with chronic heart failure with reduced ejection fraction (HFrEF). This study evaluated the effect of permanent AF on renal function in HFrEF and investigated the associations of atrial fibrillation, neutrophil gelatinase-associated lipocalin (NGAL), and neutrophil-to-lymphocyte ratio (NLR) with adverse clinical outcome. Material/Methods Serum NGAL levels measured by ELISA and NLR were compared between patients with sinus rhythm (HFrEF-SR, n=68), with permanent AF (HFrEF-AF, n=62), and a healthy control group (n=50). Results Mean eGFR levels were significantly lower, and NLR and NGAL levels were significantly higher in the HFrEF patients than in the control patients but the difference between HFrEF-SR and HFrEF-AF was not statistically significant (NGAL: 95 ng/mL in HFrEF-SR, 113 ng/mL in HFrEF-AF and 84 ng/mL in the control group; pfailure, C-reactive protein, NLR, triiodothyronine, and hemoglobin. In ROC analysis, a NLR >3 had a 68% sensitivity and 75% specificity to predict progression of kidney disease (AUC=0.72, 95% CI 0.58–0.85, p=0.001). Conclusions Presence of AF in patients with HFrEF was not an independent contributor of adverse clinical outcome (i.e., all-cause death, re-hospitalization) or progression of renal dysfunction. Renal dysfunction in HFrEF was associated with both NLR and NGAL levels, but systemic inflammation reflected by NLR seemed to be a more important determinant of progression of kidney dysfunction. PMID:27918494

  12. The dynamics of neutrophils in zebrafish (Danio rerio) during infection with the parasite Ichthyophthirius multifiliis

    DEFF Research Database (Denmark)

    Jørgensen, Louise von Gersdorff

    2016-01-01

    Ichthyophthirius multifiliis is a ciliated protozoan parasite infecting the skin and gills of freshwater fish. Neutrophils are attracted to the infection sites, as a part of the innate immune response. In this study a transgenic line of zebrafish (Tg(MPO:GFP)i114) with GFP-tagged neutrophils was ...... the infection. Neutrophils interacted directly with the parasites with pseudopod formation projecting towards the pathogen. These results indicate a strong innate immune response immediately following infection and/or a subsequent immune evasion by the parasite....

  13. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases

    DEFF Research Database (Denmark)

    Guarino, Carla; Hamon, Yveline; Croix, Cécile

    2017-01-01

    cyclopropyl nitrile CatC inhibitor almost totally lack elastase. We confirmed the elimination of neutrophil elastase-like proteases by prolonged inhibition of CatC in a non-human primate. We also showed that neutrophils lacking elastase-like protease activities were still recruited to inflammatory sites....... These preclinical results demonstrate that the disappearance of neutrophil elastase-like proteases as observed in PLS patients can be achieved by pharmacological inhibition of bone marrow CatC. Such a transitory inhibition of CatC might thus help to rebalance the protease load during chronic inflammatory diseases...

  14. Targeted mass spectrometry analysis of neutrophil-derived proteins released during sepsis progression

    DEFF Research Database (Denmark)

    Malmström, E; Davidova, A; Mörgelin, M

    2014-01-01

    systemic stimulation an immediate increase of neutrophil-borne proteins can be observed into the circulation of sepsis patients. We applied a combination of mass spectrometry (MS) based approaches, LC-MS/MS and selected reaction monitoring (SRM), to characterise and quantify the neutrophil proteome......Early diagnosis of severe infectious diseases is essential for timely implementation of lifesaving therapies. In a search for novel biomarkers in sepsis diagnosis we focused on polymorphonuclear neutrophils (PMNs). Notably, PMNs have their protein cargo readily stored in granules and following...

  15. Detection of anti-neutrophil antibodies in autoimmune neutropenia of infancy: a multicenter study.

    Science.gov (United States)

    Sella, Ruti; Flomenblit, Lena; Goldstein, Itamar; Kaplinsky, Chaim

    2010-02-01

    Autoimmune neutropenia of infancy is caused by neutrophil-specific autoantibodies. Primary AIN is characterized by neutrophil count familial or congenital neutropenias. To further assure the quality of the new test, we retested six samples previously tested by the gold standard method. All medical files were screened and clinical outcomes were recorded. Our method showed specificity of 85%, sensitivity of 62.5%, and a positive predictive value of 91.8%, values quite similar to those obtained by more traditional methods. The new method showed high specificity for detection of anti-neutrophil antibodies in the appropriate clinical setting and could be an effective tool for clinical decision making.

  16. Neutrophils as a prognostic factor in the systemic treatment of Ovarian Cancer

    DEFF Research Database (Denmark)

    Henriksen, Jon Røikjær; Dahl Steffensen, Karina

    Background and Aims: The role of the immune system regarding development and treatment of cancer has a very high interest in modern cancer research. Research in ovarian cancer immunology is sparse compared to other tumour types. Neutrophils have been shown to possess both tumor promoting and tumor...... prognostic marker in multivariate analysis comparing low vs high baseline neutrophils (HR: 1.97) ( 95% CI: 1.18-3.30)(P=0.009). Other independent prognostic markers were FIGO stage, residual tumour and performance status. Conclusions: Baseline neutrophil blood count was found to be an independent prognostic...

  17. Neutrophil chemotactic activity in bronchoalveolar lavage fluid of patients with AIDS-associated Pneumocystis carinii pneumonia

    DEFF Research Database (Denmark)

    Benfield, T L; Kharazmi, A; Larsen, C G

    1997-01-01

    been shown to confer a poor prognosis in PCP. We therefore investigated the potential of BAL fluid from 17 patients with PCP to induce neutrophil chemotaxis. BAL fluid from patients induced considerable neutrophil chemotactic activity compared to normal controls. Elevated levels of IL-8 were detected...... in patient samples as compared to controls. A specific anti-IL-8 antibody significantly reduced chemotactic activity of patient samples by more than 50%. In conclusion, IL-8 appears to be a significant participant of neutrophil chemotaxis in AIDS-associated PCP, and may participate in the recruitment...

  18. Pulmonary endothelial activation caused by extracellular histones contributes to neutrophil activation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhang, Yanlin; Guan, Li; Yu, Jie; Zhao, Zanmei; Mao, Lijun; Li, Shuqiang; Zhao, Jinyuan

    2016-11-21

    During the acute respiratory distress syndrome (ARDS), neutrophils play a central role in the pathogenesis, and their activation requires interaction with the endothelium. Extracellular histones have been recognized as pivotal inflammatory mediators. This study was to investigate the role of pulmonary endothelial activation during the extracellular histone-induced inflammatory response in ARDS. ARDS was induced in male C57BL/6 mice by intravenous injection with lipopolysaccharide (LPS) or exogenous histones. Concurrent with LPS administration, anti-histone H4 antibody (anti-H4) or non-specific IgG was administered to study the role of extracellular histones. The circulating von Willebrand factor (vWF) and soluble thrombomodulin (sTM) were measured with ELISA kits at the preset time points. Myeloperoxidase (MPO) activity in lung tissue was measured with a MPO detection kit. The translocation of P-selectin and neutrophil infiltration were measured by immunohistochemical detection. For in vitro studies, histone H4 in the supernatant of mouse lung vascular endothelial cells (MLVECs) was measured by Western blot. The binding of extracellular histones with endothelial membrane was examined by confocal laser microscopy. Endothelial P-selectin translocation was measured by cell surface ELISA. Adhesion of neutrophils to MLVECs was assessed with a color video digital camera. The results showed that during LPS-induced ARDS extracellular histones caused endothelial and neutrophil activation, as seen by P-selectin translocation, release of vWF, an increase of circulating sTM, lung neutrophil infiltration and increased MPO activity. Extracellular histones directly bound and activated MLVECs in a dose-dependent manner. On the contrary, the direct stimulatory effect of exogenous histones on neutrophils was very limited, as measured by neutrophil adhesion and MPO activity. With the contribution of activated endothelium, extracellular histones could effectively activating

  19. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    International Nuclear Information System (INIS)

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.; Haudenschild, C.C.; Diamond, R.D.

    1987-01-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of 51 Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cells (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of 51 Cr release from radiolabeled monolayers

  20. The impact of an online Facebook support group for people with multiple sclerosis on non-active users

    Directory of Open Access Journals (Sweden)

    Jacqui Steadman

    2014-11-01

    Objectives: This study therefore aimed to explore the experiences of non-active users of an online Facebook support group for PwMS. Emphasis was placed on the facilitators and the barriers that were associated with membership to this group. Method: An exploratory qualitative research design was implemented, whereby thematic analysis was utilised to examine the ten semi-structured interviews that were conducted. Results: Several facilitators were acquired through the online support group; namely emotional support (constant source of support, exposure to negative aspects of the disease,informational support (group as a source of knowledge, quality of information and social companionship (place of belonging. Some barriers were also identified; namely emotional support (emotions lost online, response to messages, exposure to negative aspects of the disease, informational support (information posted on the group, misuse of group and social companionship (non-active status. Conclusion: These findings demonstrate that the non-active members of the online support group for PwMS have valid reasons for their non-active membership status. More important,the findings suggest that the online Facebook support group provided the group members with an important support network in the form of emotional support, informational support and social companionship, despite their non-active membership status or the barriers that have been identified.

  1. [The significances of peripheral neutrophils CD(55) and myeloperoxidase expression in patients with myeloperoxidase-specific anti-neutrophil cytoplasmic antibody associated vasculitis].

    Science.gov (United States)

    Zhou, X L; Zheng, M J; Shuai, Z W; Zhang, L; Zhang, M M; Chen, S Y

    2017-06-01

    Objective: To investigate the expression of CD(55) and myeloperoxidase (MPO) on neutrophils in patients with MPO-specific anti-neutrophil cytoplasmic antibody associated vasculitis(MPO-AAV), and analyze the relationship between the expression and clinical manifestation. Methods: Forty untreated patients with active MPO-AAV (patient group) and 30 healthy volunteers (control group) were enrolled in this study. The CD(55) on neutrophils and both membrane and cytoplasmic MPO were detected by flow cytometry. Serum fragment-from the activated complement factor B(Ba) and MPO were measured by ELISA. The clinical activity of vasculitis was valued by Birmingham vasculitis activity score-version 3(BVAS-V3). The significance of laboratory data was evaluated by Spearman correlation test and multivariate linear regression analysis. Results: (1)The mean fluorescence intensity(MFI) of CD(55) expressed on neutrophils was significantly higher than that in control group[4 068.6±2 306.0 vs 2 999.5±1 504.9, P =0.033]. Similar results of serum MPO and Ba in patient group were found compared to controls [500.0(381.0, 612.7) IU/L vs 286.9(225.5, 329.1) IU/L, P <0.001; 35.2(25.2, 79.5) ng/L vs 18.0(15.0, 28.0) ng/L, P <0.001], respectively. However, MIF of cytoplasmic MPO in patients was significantly lower than that of control group(1 577.1±1 175.9 vs 3 105.3±2 323.0, P =0.003) . (2) In patient group, cytoplasmic intensity of MPO was negatively associated with the serum levels of MPO( r =-0.710, P <0.001) and Ba ( r =-0.589, P =0.001). Moreover, serum MPO was positively associated with serum Ba( r =0.691, P <0.001). Membrane intensity of CD(55) on neutrophils was positively correlated with patient age ( r =0.514, P =0.001), C reactive protein ( r =0.376, P =0.018), peripheral neutrophils count ( r =0.485, P =0.001) and BVAS-V3 ( r =0.484, P =0.002), whereas negative correlation between membrane CD(55) and disease duration was seen ( r =-0.403, P =0.01). (3) The result of multiple

  2. Lifestyle profile assessment in active and non-active hypertensive women

    Directory of Open Access Journals (Sweden)

    N. R. Cavichia

    2016-05-01

    Full Text Available The present study aimed to evaluate the lifestyle´s profile of 30 hypertensive women practitioners and nonpractitioners of physical activity in the city of Sinop/MT. We used the questionnaire Profile of Single Lifestyle (PSL consists of three issues of the components of Nutrition (N, Physical Activity (PA, Preventive Behavior (PB, Social Networking (SN and Stress Management (SM with scores ranging from 0 to 3 points and score calculated by the sum of questions divided by the number of questions. The data were analyzed statistically with a significance of 5%. The average of the active components of PSL (N = 2,07, PA = 2,04, PB = 2,18, SN = 2,38 and SM = 2,42 and average overall score of 2,16 inactive (N = 1,73, AF = 1,33, PB = 2,40, RS = 2,02 and SN = 2,09 and average score 1,86. In the comparison between groups all components were significant different. It was concluded that the profile of the active lifestyle of hypertensive women have significantly higher values than non-active women

  3. Non-activated high surface area expanded graphite oxide for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Vermisoglou, E.C.; Giannakopoulou, T.; Romanos, G.E.; Boukos, N.; Giannouri, M. [Institute of Nanoscience and Nanotechnology “Demokritos”, 153 43 Ag. Paraskevi, Attikis (Greece); Lei, C.; Lekakou, C. [Division of Mechanical, Medical, and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom); Trapalis, C., E-mail: c.trapalis@inn.demokritos.gr [Institute of Nanoscience and Nanotechnology “Demokritos”, 153 43 Ag. Paraskevi, Attikis (Greece)

    2015-12-15

    Graphical abstract: - Highlights: • One-step exfoliation and reduction of graphite oxide via microwave irradiation. • Effect of pristine graphite (type, flake size) on the microwave expanded material. • Effect of pretreatment and oxidation cycles on the produced expanded material. • Expanded graphene materials with high BET surface areas (940 m{sup 2}/g–2490 m{sup 2}/g). • Non-activated graphene based materials suitable for supercapacitors. - Abstract: Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m{sup 2}/g to 2490 m{sup 2}/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.

  4. Neutrophils and the calcium-binding protein MRP-14 mediate carrageenan-induced antinociception in mice

    Directory of Open Access Journals (Sweden)

    Rosana L. Pagano

    2002-01-01

    Full Text Available Background: We have previously shown that the calcium-binding protein MRP-14 secreted by neutrophils mediates the antinociceptive response in an acute inflammatory model induced by the intraperitoneal injection of glycogen in mice.

  5. Simultaneous occurrence of fetal and neonatal alloimmune thrombocytopenia and neonatal neutropenia due to maternal neutrophilic autoantibodies

    DEFF Research Database (Denmark)

    Taaning, Ellen; Jensen, Lise; Varming, Kim

    2012-01-01

    Foetal and neonatal alloimmune thrombocytopenia (FNAIT) and neonatal neutropenia caused by maternal autoantibodies against neutrophils are rare disorders. We describe a newborn with severe thrombocytopenia and intracerebral bleeding caused by maternal anti-HPA-3a alloantibodies and mild neutropenia...

  6. Local anesthetic-induced inhibition of human neutrophil priming: the influence of structure, lipophilicity, and charge

    NARCIS (Netherlands)

    Picardi, Susanne; Cartellieri, Sibylle; Groves, Danja; Hahnenekamp, Klaus; Gerner, Peter; Durieux, Marcel E.; Stevens, Markus F.; Lirk, Philipp; Hollmann, Markus W.

    2013-01-01

    Local anesthetics (LAs) are widely known for inhibition of voltage-gated sodium channels underlying their antiarrhythmic and antinociceptive effects. However, LAs have significant immunomodulatory properties and were shown to affect human neutrophil functions independent of sodium-channel blockade.

  7. Biochemical changes in neutrophils of cervical cancer patients treated with 60Co

    International Nuclear Information System (INIS)

    Krishnamurthy, Vijayalakshmi; Gunalan, Gayathri; Haridas, Sumathy; Thangamani, Vanitha

    2008-01-01

    Cervical carcinoma is the second most common malignancy of the female genital tract in India. The highest incidence occurs at Chennai. This study was conducted on 30 women with biopsy-proved squamous cell carcinoma of the cervix of stage IIb. The neutrophil count increased significantly in cancer patients compared to control subjects. Total protein, glycogen and total lipid increased in neutrophils of cervical cancer patients. The level of cholestrol, triglycerides and fatty acids increased significantly in neutrophils of such patients compared to control subjects. The activity of alkaline phosphatase increased significantly in cervical cancer patients. Upon treatment with cobalt-60, these changes were brought to near-normal levels. This study highlights the impairment in the neutrophil function in cervical cancer patients, which may lead to reduced immune status. (author)

  8. Tumor-Derived CXCL1 Promotes Lung Cancer Growth via Recruitment of Tumor-Associated Neutrophils

    Directory of Open Access Journals (Sweden)

    Ming Yuan

    2016-01-01

    Full Text Available Neutrophils have a traditional role in inflammatory process and act as the first line of defense against infections. Although their contribution to tumorigenesis and progression is still controversial, accumulating evidence recently has demonstrated that tumor-associated neutrophils (TANs play a key role in multiple aspects of cancer biology. Here, we detected that chemokine CXCL1 was dramatically elevated in serum from 3LL tumor-bearing mice. In vitro, 3LL cells constitutively expressed and secreted higher level of CXCL1. Furthermore, knocking down CXCL1 expression in 3LL cells significantly hindered tumor growth by inhibiting recruitment of neutrophils from peripheral blood into tumor tissues. Additionally, tumor-infiltrated neutrophils expressed higher levels of MPO and Fas/FasL, which may be involved in TAN-mediated inhibition of CD4+ and CD8+ T cells. These results demonstrate that tumor-derived CXCL1 contributes to TANs infiltration in lung cancer which promotes tumor growth.

  9. Depression of efficiency of neutrophils for Candida albicans phagocytosis in personnel working in radiation field

    International Nuclear Information System (INIS)

    Hassan, A.A.

    2000-01-01

    The neutrophil functions, chemotaxis (direct and random migration), phagocytosis using Candida albicans (percent, index), phagocytosis by NBT (percent, score) and adherence were studied on 55 persons working in radiation field (group I) and 40 persons as control (group II). The effect of radiation on blood picture of persons working in this field with special references to leucocytic counts and neutrophil functions was studied. White and red cells counts were 6.275 +- 1.723 and 5.475 +- 1.039 (group I) and 6.440 +- 1.556, 4.704 +- 0.734 for group II, respectively with no significant difference, while in neutrophil function there was a statistically significant difference in all functions between two groups (P < 0.01). This indicates the importance of neutrophil functions in following up persons working in radiation field

  10. Selective kallikrein inhibitors alter human neutrophil elastase release during extracorporeal circulation

    NARCIS (Netherlands)

    Wachtfogel, Y.T.; Hack, C.E.; Nuijens, J.H; Kettner, C.; Reilly, T.M.; Knabb, R.M.; Bischoff, Rainer; Tschesche, H.; Wenzel, H.; Kucich, U.

    1995-01-01

    Cardiopulmonary bypass causes hemorrhagic complications and initiates a biochemical and cellular "whole body inflammatory response." This study investigates whether a variety of selective inhibitors of the contact pathway of intrinsic coagulation modulate complement and neutrophil activation during

  11. The Resolution of Inflammation: A Mathematical Model of Neutrophil and Macrophage Interactions

    KAUST Repository

    Dunster, J. L.; Byrne, H. M.; King, J. R.

    2014-01-01

    to damage healthy tissue. We develop a spatially averaged model of inflammation centring on its resolution, accounting for populations of neutrophils and macrophages and incorporating both pro- and anti-inflammatory processes. Our ordinary differential

  12. Predictive value of eosinophils and neutrophils on clinical effects of ICS in COPD

    DEFF Research Database (Denmark)

    Hartjes, Floor J; Vonk, Judith M; Faiz, Alen

    2018-01-01

    BACKGROUND AND OBJECTIVE: Inflammation is present to a variable degree and composition in patients with COPD. This study investigates associations between both eosinophils and neutrophils in blood, sputum, airway wall biopsies and bronchoalveolar lavage (BAL) and their potential use as biomarkers...... and BAL were evaluated at baseline. In addition, at baseline, 6 and 30 months, forced expiratory flow in 1 s (FEV1 ), residual volume/total lung capacity (hyperinflation) and Clinical COPD Questionnaire were evaluated. RESULTS: Cross-sectional analyses at baseline showed that higher blood eosinophils were...... significantly associated with higher eosinophil counts in sputum, biopsies and BAL. However, blood neutrophils did not significantly correlate with neutrophil counts in the other compartments. Baseline eosinophils and neutrophils, in whichever compartment measured, did not predict longitudinal FEV1 changes...

  13. Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury

    DEFF Research Database (Denmark)

    Bless, N M; Smith, D; Charlton, J

    1997-01-01

    Neutrophils play an important part in the development of acute inflammatory injury. Human neutrophils contain high levels of the serine protease elastase, which is stored in azurophilic granules and is secreted in response to inflammatory stimuli. Elastase is capable of degrading many components...... of extracellular matrix [1-4] and has cytotoxic effects on endothelial cells [5-7] and airway epithelial cells. Three types of endogenous protease inhibitors control the activity of neutrophil elastase, including alpha-1 protease inhibitor (alpha-1PI), alpha-2 macroglobulin and secreted leukoproteinase inhibitor...... (SLPI) [8-10]. A disturbed balance between neutrophil elastase and these inhibitors has been found in various acute clinical conditions (such as adult respiratory syndrome and ischemia-reperfusion injury) and in chronic diseases. We investigated the effect of NX21909, a selected oligonucleotide (aptamer...

  14. Neutrophil trails guide influenza-specific CD8⁺ T cells in the airways.

    Science.gov (United States)

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Capece, Tara; Bae, Seyeon; Miller, Richard; Topham, David J; Kim, Minsoo

    2015-09-04

    During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells are unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8(+) T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditionally depleted mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8(+) T cell recruitment and effector functions. Collectively, these results suggest that neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8(+) T cell migration and localization in influenza-infected tissues. Copyright © 2015, American Association for the Advancement of Science.

  15. Neutrophil trails guide influenza-specific CD8+ T cells in the airways

    Science.gov (United States)

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Capece, Tara; Bae, Seyeon; Miller, Richard; Topham, David J.; Kim, Minsoo

    2016-01-01

    During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells is unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8+ T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditional knock-out mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8+ T cell recruitment and effector functions. Collectively, these results suggest neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8+ T cell migration and localization in influenza-infected tissues. PMID:26339033

  16. Fas-induced apoptosis in malnourished infants

    African Journals Online (AJOL)

    EL-HAKIM

    deprivation in animals, including man11. Factor of apoptosis signal (Fas) induces apoptosis in activated T cells when they are repeatedly stimulated by antigen and functions to maintain T cell tolerance by deleting auto reactive cells12. The functional role of Fas (CD95) in the immune system has been examined in a variety ...

  17. Apoptosis in mammalian oocytes: a review.

    Science.gov (United States)

    Tiwari, Meenakshi; Prasad, Shilpa; Tripathi, Anima; Pandey, Ashutosh N; Ali, Irfan; Singh, Arvind K; Shrivastav, Tulsidas G; Chaube, Shail K

    2015-08-01

    Apoptosis causes elimination of more than 99% of germ cells from cohort of ovary through follicular atresia. Less than 1% of germ cells, which are culminated in oocytes further undergo apoptosis during last phases of oogenesis and depletes ovarian reserve in most of the mammalian species including human. There are several players that induce apoptosis directly or indirectly in oocytes at various stages of meiotic cell cycle. Premature removal of encircling granulosa cells from immature oocytes, reduced levels of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate, increased levels of calcium (Ca(2+)) and oxidants, sustained reduced level of maturation promoting factor, depletion of survival factors, nutrients and cell cycle proteins, reduced meiotic competency, increased levels of proapoptotic as well as apoptotic factors lead to oocyte apoptosis. The BH3-only proteins also act as key regulators of apoptosis in oocyte within the ovary. Both intrinsic (mitochondria-mediated) as well as extrinsic (cell surface death receptor-mediated) pathways are involved in oocyte apoptosis. BID, a BH3-only protein act as a bridge between both apoptotic pathways and its cleavage activates cell death machinery of both the pathways inside the follicular microenvironment. Oocyte apoptosis leads to the depletion of ovarian reserve that directly affects reproductive outcome of various mammals including human. In this review article, we highlight some of the important players and describe the pathways involved during oocyte apoptosis in mammals.

  18. Targeted induction of apoptosis for cancer therapy

    NARCIS (Netherlands)

    Bremer, Edwin

    2006-01-01

    Introduction to the thesis Programmed cell death, known as apoptosis, is an essential cellular homeostasis mechanism that ensures correct development and function of multi-cellular organisms. The pivotal importance of correct execution of apoptosis is apparent from the many human diseases with

  19. The role of phagocytosis, oxidative burst and neutrophil extracellular traps in the interaction between neutrophils and the periodontal pathogen Porphyromonas gingivalis.

    Science.gov (United States)

    Jayaprakash, K; Demirel, I; Khalaf, H; Bengtsson, T

    2015-10-01

    Neutrophils are regarded as the sentinel cells of innate immunity and are found in abundance within the gingival crevice. Discovery of neutrophil extracellular traps (NETs) within the gingival pockets prompted us to probe the nature of the interactions of neutrophils with the prominent periopathogen Porphyromonas gingivalis. Some of the noted virulence factors of this Gram-negative anaerobe are gingipains: arginine gingipains (RgpA/B) and lysine gingipain (Kgp). The aim of this study was to evaluate the role of gingipains in phagocytosis, formation of reactive oxygen species, NETs and CXCL8 modulation by using wild-type strains and isogenic gingipain mutants. Confocal imaging showed that gingipain mutants K1A (Kgp) and E8 (RgpA/B) induced extracellular traps in neutrophils, whereas ATCC33277 and W50 were phagocytosed. The viability of both ATCC33277 and W50 dwindled as the result of phagocytosis and could be salvaged by cytochalasin D, and the bacteria released high levels of lipopolysaccharide in the culture supernatant. Porphyromonas gingivalis induced reactive oxygen species and CXCL8 with the most prominent effect being that of the wild-type strain ATCC33277, whereas the other wild-type strain W50 was less effective. Quantitative real-time polymerase chain reaction revealed a significant CXCL8 expression by E8. All the tested P. gingivalis strains increased cytosolic free calcium. In conclusion, phagocytosis is the primary neutrophil response to P. gingivalis, although NETs could play an accessory role in infection control. Although gingipains do not seem to directly regulate phagocytosis, NETs or oxidative burst in neutrophils, their proteolytic properties could modulate the subsequent outcomes such as nutrition acquisition and survival by the bacteria. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. In vivo nuclear imaging of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tae Sup; Cheon, Gi Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-04-01

    Apoptosis plays a role in the pathophysiology of many kinds of diseases and in the response of treatment. Compared to the necrosis, the apoptosis a genetically controlled and energy-dependent process which removes the unwanted cells from the body; programmed cell death or cell suicide. During the apoptosis, phosphatidylserine is expressed in the cytoplasmic outer membrane in the early phase. Annexin V, an endogenous human protein (MW=35 kD), has an affinity of about 10{sup -9} M for the phosphatidylserine exposed on the outer membrane of apoptotic cells. Annexin V can be radiolabeled with {sup 99}mTc by HYNIC or EC chelators, which can be used as an radiotracer for the in vivo imaging of apoptosis. In this article, we reviewed the apoptosis, radiolabeling of annexin V, and the experimental and clinical data using annexin V imaging.

  1. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Kenne Ellinor

    2012-01-01

    Full Text Available Abstract Background Brain edema as a result of secondary injury following traumatic brain injury (TBI is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI. Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  2. Neutrophils reduce the parasite burden in Leishmania (Leishmania amazonensis-infected macrophages.

    Directory of Open Access Journals (Sweden)

    Erico Vinícius de Souza Carmo

    2010-11-01

    Full Text Available Studies on the role of neutrophils in Leishmania infection were mainly performed with L. (L major, whereas less information is available for L. (L amazonensis. Previous results from our laboratory showed a large infiltrate of neutrophils in the site of infection in a mouse strain resistant to L. (L. amazonensis (C3H/HePas. In contrast, the susceptible strain (BALB/c displayed a predominance of macrophages harboring a high number of amastigotes and very few neutrophils. These findings led us to investigate the interaction of inflammatory neutrophils with L. (L. amazonensis-infected macrophages in vitro.Mouse peritoneal macrophages infected with L. (L. amazonensis were co-cultured with inflammatory neutrophils, and after four days, the infection was quantified microscopically. Data are representative of three experiments with similar results. The main findings were 1 intracellular parasites were efficiently destroyed in the co-cultures; 2 the leishmanicidal effect was similar when cells were obtained from mouse strains resistant (C3H/HePas or susceptible (BALB/c to L. (L. amazonensis; 3 parasite destruction did not require contact between infected macrophages and neutrophils; 4 tumor necrosis factor alpha (TNF-α, neutrophil elastase and platelet activating factor (PAF were involved with the leishmanicidal activity, and 5 destruction of the parasites did not depend on generation of oxygen or nitrogen radicals, indicating that parasite clearance did not involve the classical pathway of macrophage activation by TNF-α, as reported for other Leishmania species.The present results provide evidence that neutrophils in concert with macrophages play a previously unrecognized leishmanicidal effect on L. (L. amazonensis. We believe these findings may help to understand the mechanisms involved in innate immunity in cutaneous infection by this Leishmania species.

  3. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane

    DEFF Research Database (Denmark)

    Rørvig, Sara; Østergaard, Ole; Heegaard, Niels Henrik Helweg

    2013-01-01

    granules, SVs, and plasma membrane has been performed before. Here, we performed subcellular fractionation on freshly isolated human neutrophils by nitrogen cavitation and density centrifugation on a four-layer Percoll gradient. Granule subsets were pooled and subjected to SDS-PAGE, and gel pieces were in...... subcellular proteome profiles presented here may be used as a database in combination with the mRNA array database to predict and test the presence and localization of proteins in neutrophil granules and membranes....

  4. Targeting Neutrophil Protease-Mediated Degradation of Tsp-1 to Induce Metastatic Dormancy

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0615 TITLE: Targeting Neutrophil Protease-Mediated Degradation of Tsp-1 to Induce Metastatic Dormancy PRINCIPAL...29 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Neutrophil Protease-Mediated Degradation of Tsp-1 to Induce Metastatic Dormancy...infection or cigarette smoke enhanced pulmonary metastasis from breast cancer in humans and mice. Similarly, autoimmune arthritis, characterized by

  5. Grain dust induces IL-8 production from bronchial epithelial cells: effect on neutrophil recruitment.

    Science.gov (United States)

    Park, H S; Suh, J H; Kim, S S; Kwon, O J

    2000-06-01

    There have been several investigations suggesting an involvement of activated neutrophils in the development of grain dust (GD)-induced occupational asthma. Interleukin-8 in the sputa from GD-induced asthmatic patients increased significantly after the exposure to GD. To confirm IL-8 production from bronchial epithelial cells when exposed to GD, and to evaluate the role of IL-8 on neutrophil recruitment. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four different concentrations ranging from 1 to 200 microg/mL of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production and neutrophil chemotaxis, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant derived from subjects with GD-induced asthma exposed to 10 microg/mL of GD, and then compared with those without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. Neutrophil chemotactic activity of the culture supernatant was determined by modified Boyden chamber method. Interleukin-8 production and neutrophil chemotactic activity from bronchial epithelial cells significantly increased with additions of GD in a dose-dependent manner (P < .05, respectively), and were significantly augmented with additions of PBMC supernatant (P < .05, respectively) at each concentration. Close correlation was noted between neutrophil chemotactic activity and IL-8 level (r = 0.87, P < .05). Compared with the untreated sample, pre-treatment of anti-IL-8 antibody induced a significant suppression (up to 67.2%) of neutrophil chemotactic activity in a dose-dependent manner. These results suggest that IL-8 produced from bronchial epithelial cells may be a major cytokine, which induces neutrophil migration into the airways when exposed to GD.

  6. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils.

    OpenAIRE

    Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G

    1995-01-01

    A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils.

  7. Inhibition by sodium nitroprusside of the expression of inducible nitric oxide synthase in rat neutrophils.

    Science.gov (United States)

    Mariotto, S; Cuzzolin, L; Adami, A; Del Soldato, P; Suzuki, H; Benoni, G

    1995-01-01

    A well-known nitric oxide (NO)-releasing compound, sodium nitroprusside (SNP), decreases in a dose-dependent manner NO synthase (NOS) activity induced in rat neutrophils by treatment with lipopolysaccharide (LPS). This inhibitory action of SNP seems not to be due to its direct effect on the enzyme activity. The strong nitrosonium ion (NO+) character of SNP could be responsible for its inhibition of NOS induction in neutrophils. PMID:7542530

  8. Interleukin-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium

    Science.gov (United States)

    Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.

    2016-01-01

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  9. Modulation of oxygen-dependent and oxygen-independent metabolism of neutrophilic granulocytes by quantum points.

    Science.gov (United States)

    Pleskova, S N; Mikheeva, E R

    2011-08-01

    Inhibition of neutrophilic granulocyte metabolism under the effect of semiconductor quantum points was demonstrated. The status of the oxidative system was evaluated by the NBT test, nonoxidative status by the lysosomal cationic test. It was found that quantum points in a dose of 0.1 mg/ml irrespective of their core and composition of coating significantly inhibited oxygen-dependent and oxygen-independent metabolism of neutrophilic granulocytes.

  10. Quantification of neutrophil migration into the lungs of patients with chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Ruparelia, Prina; Summers, Charlotte; Chilvers, Edwin R [University of Cambridge School of Clinical Medicine, Department of Respiratory Medicine, Cambridge (United Kingdom); Szczepura, Katherine R [University of Cambridge School of Clinical Medicine, Department of Radiology, Cambridge (United Kingdom); Solanki, Chandra K; Balan, Kottekkattu [Cambridge University Hospitals NHS Foundation Trust, Nuclear Medicine, Addenbrooke' s Hospital, Cambridge (United Kingdom); Newbold, Paul [AstraZeneca R and D Charnwood, Loughborough (United Kingdom); Bilton, Diana [Papworth Hospital NHS Foundation Trust, Cystic Fibrosis and Lung Defence Unit, Papworth Everard (United Kingdom); Peters, A M [University of Cambridge School of Clinical Medicine, Department of Radiology, Cambridge (United Kingdom); Brighton Sussex Medical School, Brighton (United Kingdom)

    2011-05-15

    To quantify neutrophil migration into the lungs of patients with chronic pulmonary obstructive disease (COPD). Neutrophil loss via airways was assessed by dedicated whole-body counting 45 min, 24 h and 2, 4, 7 and 10 days after injection of very small activities of {sup 111}In-labelled neutrophils in 12 healthy nonsmokers, 5 healthy smokers, 16 patients with COPD (of whom 7 were ex-smokers) and 10 patients with bronchiectasis. Lung accumulation of {sup 99m}Tc-labelled neutrophils was assessed by sequential SPECT and Patlak analysis in six COPD patients and three healthy nonsmoking subjects. Whole body {sup 111}In counts, expressed as percentages of 24 h counts, decreased in all subjects. Losses at 7 days (mean {+-} SD) were similar in healthy nonsmoking subjects (5.5 {+-} 1.5%), smoking subjects (6.5 {+-} 4.4%) and ex-smoking COPD patients (5.8 {+-} 1.5%). In contrast, currently smoking COPD patients showed higher losses (8.0 {+-} 3.0%) than healthy nonsmokers (p = 0.03). Two bronchiectatic patients lost 25% and 26%, indicating active disease; mean loss in the remaining eight was 6.9 {+-} 2.5%. The rate of accumulation of {sup 99m}Tc-neutrophils in the lungs, determined by sequential SPECT, was increased in COPD patients (0.030-0.073 min{sup -1}) compared with healthy nonsmokers (0-0.002 min{sup -1}; p = 0.02). In patients with COPD, sequential SPECT showed increased lung accumulation of {sup 99m}Tc-labelled neutrophils, while whole-body counting demonstrated subsequent higher losses of {sup 111}In-labelled neutrophils in patients who continued to smoke. Sequential SPECT as a means of quantifying neutrophil migration deserves further evaluation. (orig.)

  11. Interleukin-17A and Neutrophils in a Murine Model of Bird-Related Hypersensitivity Pneumonitis.

    Directory of Open Access Journals (Sweden)

    Masahiro Ishizuka

    Full Text Available Hypersensitivity pneumonitis (HP is an immune mediated lung disease induced by the repeated inhalation of a wide variety of antigens. Bird-related hypersensitivity pneumonitis (BRHP is one of the most common forms of HP in human and results from the inhalation of avian antigens. The findings of a recent clinical analysis suggest that in addition to Th1 factors, the levels of interleukin(IL-17 and IL-17-associated transcripts are increased in the setting of HP, and that both IL-17A and neutrophils are crucial for the development of pulmonary inflammation in murine models of HP. Our objectives were to investigate the roles of IL-17A and neutrophils in granuloma-forming inflammation in an acute HP model. We developed a mouse model of acute BRHP using pigeon dropping extract. We evaluated the process of granuloma formation and the roles of both IL-17A and neutrophils in a model. We found that the neutralization of IL-17A by the antibody attenuated granuloma formation and the recruitment of neutrophils, and also decreased the expression level of chemokine(C-X-C motif ligand 5 (CXCL5 in the acute HP model. We confirmed that most of the neutrophils in the acute HP model exhibited immunoreactivity to the anti-IL-17 antibody. We have identified the central roles of both IL-17A and neutrophils in the pathogenesis of granuloma formation in acute HP. We have also assumed that neutrophils are an important source of IL-17A in an acute HP model, and that the IL-17A-CXCL5 pathway may be responsible for the recruitment of neutrophils.

  12. Quantification of neutrophil migration into the lungs of patients with chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Ruparelia, Prina; Summers, Charlotte; Chilvers, Edwin R.; Szczepura, Katherine R.; Solanki, Chandra K.; Balan, Kottekkattu; Newbold, Paul; Bilton, Diana; Peters, A.M.

    2011-01-01

    To quantify neutrophil migration into the lungs of patients with chronic pulmonary obstructive disease (COPD). Neutrophil loss via airways was assessed by dedicated whole-body counting 45 min, 24 h and 2, 4, 7 and 10 days after injection of very small activities of 111 In-labelled neutrophils in 12 healthy nonsmokers, 5 healthy smokers, 16 patients with COPD (of whom 7 were ex-smokers) and 10 patients with bronchiectasis. Lung accumulation of 99m Tc-labelled neutrophils was assessed by sequential SPECT and Patlak analysis in six COPD patients and three healthy nonsmoking subjects. Whole body 111 In counts, expressed as percentages of 24 h counts, decreased in all subjects. Losses at 7 days (mean ± SD) were similar in healthy nonsmoking subjects (5.5 ± 1.5%), smoking subjects (6.5 ± 4.4%) and ex-smoking COPD patients (5.8 ± 1.5%). In contrast, currently smoking COPD patients showed higher losses (8.0 ± 3.0%) than healthy nonsmokers (p = 0.03). Two bronchiectatic patients lost 25% and 26%, indicating active disease; mean loss in the remaining eight was 6.9 ± 2.5%. The rate of accumulation of 99m Tc-neutrophils in the lungs, determined by sequential SPECT, was increased in COPD patients (0.030-0.073 min -1 ) compared with healthy nonsmokers (0-0.002 min -1 ; p = 0.02). In patients with COPD, sequential SPECT showed increased lung accumulation of 99m Tc-labelled neutrophils, while whole-body counting demonstrated subsequent higher losses of 111 In-labelled neutrophils in patients who continued to smoke. Sequential SPECT as a means of quantifying neutrophil migration deserves further evaluation. (orig.)

  13. Coccidioides Endospores and Spherules Draw Strong Chemotactic, Adhesive, and Phagocytic Responses by Individual Human Neutrophils.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuk Lee

    Full Text Available Coccidioides spp. are dimorphic pathogenic fungi whose parasitic forms cause coccidioidomycosis (Valley fever in mammalian hosts. We use an innovative interdisciplinary approach to analyze one-on-one encounters between human neutrophils and two forms of Coccidioides posadasii. To examine the mechanisms by which the innate immune system coordinates different stages of the host response to fungal pathogens, we dissect the immune-cell response into chemotaxis, adhesion, and phagocytosis. Our single-cell technique reveals a surprisingly strong response by initially quiescent neutrophils to close encounters with C. posadasii, both from a distance (by complement-mediated chemotaxis as well as upon contact (by serum-dependent adhesion and phagocytosis. This response closely resembles neutrophil interactions with Candida albicans and zymosan particles, and is significantly stronger than the neutrophil responses to Cryptococcus neoformans, Aspergillus fumigatus, and Rhizopus oryzae under identical conditions. The vigorous in vitro neutrophil response suggests that C. posadasii evades in vivo recognition by neutrophils through suppression of long-range mobilization and recruitment of the immune cells. This observation elucidates an important paradigm of the recognition of microbes, i.e., that intact immunotaxis comprises an intricate spatiotemporal hierarchy of distinct chemotactic processes. Moreover, in contrast to earlier reports, human neutrophils exhibit vigorous chemotaxis toward, and frustrated phagocytosis of, the large spherules of C. posadasii under physiological-like conditions. Finally, neutrophils from healthy donors and patients with chronic coccidioidomycosis display subtle differences in their responses to antibody-coated beads, even though the patient cells appear to interact normally with C. posadasii endospores.

  14. Decreased activity of neutrophils in the presence of diferuloylmethane (curcumin) involves protein kinase C inhibition.

    Science.gov (United States)

    Jancinová, Viera; Perecko, Tomás; Nosál, Radomír; Kostálová, Daniela; Bauerová, Katarína; Drábiková, Katarína

    2009-06-10

    Diferuloylmethane (curcumin) has been shown to act beneficially in arthritis, particularly through downregulated expression of proinflammatory cytokines and collagenase as well as through the modulated activities of T lymphocytes and macrophages. In this study its impact on activated neutrophils was investigated both in vitro and in experimental arthritis. Formation of reactive oxygen species in neutrophils was recorded on the basis of luminol- or isoluminol-enhanced chemiluminescence. Phosphorylation of neutrophil protein kinases C alpha and beta II was assessed by Western blotting, using phosphospecific antibodies. Adjuvant arthritis was induced in Lewis rats by heat-killed Mycobacterium butyricum. Diferuloylmethane or methotrexate was administered over a period of 28 days after arthritis induction. Under in vitro conditions, diferuloylmethane (1-100 microM) reduced dose-dependently oxidant formation both at extra- and intracellular level and it effectively reduced protein kinase C activation. Adjuvant arthritis was accompanied by an increased number of neutrophils in blood and by a more pronounced spontaneous as well as PMA (phorbol myristate acetate) stimulated chemiluminescence. Whereas the arthritis-related alterations in neutrophil count and in spontaneous chemiluminescence were not modified by diferuloylmethane, the increased reactivity of neutrophils to PMA was less evident in diferuloylmethane-treated animals. The effects of diferuloylmethane were comparable with those of methotrexate. Diferuloylmethane was found to be a potent inhibitor of neutrophil functions both in vitro and in experimental arthritis. As neutrophils are considered to be cells with the greatest capacity to inflict damage within diseased joints, the observed effects could represent a further mechanism involved in the antirheumatic activity of diferuloylmethane.

  15. In vivo study of indomethacin in bronchiectasis: effect on neutrophil function and lung secretion.

    Science.gov (United States)

    Llewellyn-Jones, C G; Johnson, M M; Mitchell, J L; Pye, A; Okafor, V C; Hill, S L; Stockley, R A

    1995-09-01

    Bronchiectasis is associated with sputum containing high levels of the proteolytic enzyme elastase, which is thought to be involved in the pathogenesis of the disease. Agents which inhibit neutrophil function and interfere with neutrophil elastase release may have a beneficial effect on the development and progression of such diseases. We have studied the effects of the nonsteroidal anti-inflammatory agent indomethacin on neutrophil function in nine patients with clinically stable bronchiectasis. All patients remained clinically stable during the study. We observed a significant reduction in peripheral neutrophil chemotaxis to 10 nmol.L-1 N-formyl-methionyl-leucyl-phenylalanine (FMLP) from a mean of 19.86 (SEM 1.35) to 8.46 (0.68) cells.field-1 after 4 weeks of therapy. There was also a significant reduction in fibronectin degradation both by resting and FMLP-stimulated neutrophils, from a mean of 1.90 (0.19) micrograms x 3 x 10(5) cells at the start of therapy to 0.87 (0.08) micrograms after 4 weeks, and from 3.17 (0.35) micrograms to 1.48 (0.05) micrograms, respectively. There was no effect on spontaneous or stimulated superoxide anion generation by neutrophils. Despite the marked changes in peripheral neutrophil function, no adverse effect was observed on viable bacterial load in the bronchial secretions. In addition, there was no difference in sputum albumin, elastase or myeloperoxidase levels, and only minor changes in the chemotactic activity of the sputum. These results suggest that nonsteroidal anti-inflammatory agents have a major effect on peripheral neutrophil function but do not appear to have an adverse effect on bacterial colonization of the airways.

  16. Failure of rabbit neutrophils to secrete endogenous pyrogen when stimulated with staphylococci

    OpenAIRE

    1980-01-01

    Cells obtained from acute peritoneal exudates in rabbits were separated into neutrophil and mononuclear populations by centrifugation on colloidal silica gradients. When these populations were separately incubated in tissue culture medium in the presence of opsonized Staphylococcus epidermidis, endogenous pyrogen was secreted only by the adherent cells of the mononuclear population. Pyrogen production by neutrophils could not have amounted to as much as 1% of the pyrogen produced by macrophag...

  17. Anti-neutrophil cytoplasmic antibodies in rheumatoid arthritis: two case reports and review of literature

    Directory of Open Access Journals (Sweden)

    Spoerl David

    2012-12-01

    Full Text Available Abstract Background Anti-neutrophil cytoplasmic antibodies are typically detected in anti-neutrophil cytoplasmic antibody associated vasculitis, but are also present in a number of chronic inflammatory non-vasculitic conditions like rheumatoid arthritis. Rare cases of granulomatosis with polyangiitis (formerly known as Wegener’s granulomatosis, a vasculitic disorder frequently associated with the presence of anti-neutrophil cytoplasmic antibodies in patients with rheumatoid arthritis have been described in literature. Case presentation We report two middle-aged female patients with rheumatoid arthritis who developed anti-neutrophil cytoplasmic antibodies and symptoms reminiscent of granulomatosis with polyangiitis. Despite the lack of antibodies specific for proteinase 3 and the absence of a classical histology, we report a probable case of granulomatosis with polyangiitis in the first patient, and consider rheumatoid vasculitis in the second patient. Conclusion Taken together with previous reports, these cases highlight that anti-neutrophil cytoplasmic antibodies have to be evaluated very carefully in patients with rheumatoid arthritis. In this context, anti-neutrophil cytoplasmic antibodies detected by indirect immunofluorescence appear to have a low diagnostic value for granulomatosis with polyangiitis. Instead they may have prognostic value for assessing the course of rheumatoid arthritis.

  18. Role of β1 Integrin in Tissue Homing of Neutrophils During Sepsis

    Science.gov (United States)

    Sarangi, Pranita P.; Hyun, Young-Min; Lerman, Yelena V.; Pietropaoli, Anthony P.; Kim, Minsoo

    2012-01-01

    Aberrant activation of neutrophils during sepsis results in the widespread release of pro-inflammatory mediators, leading to multi-organ system failure and death. However, aberrant activation of neutrophils during sepsis results in the widespread release of harmful inflammatory mediators causing host tissue injuries that can lead to multi organ system failure and death. One of the pivotal components of neutrophil migration during inflammation is the expression of surface integrins. In this study, we show that administration of a cyclic analog of RGD peptide (Arg-Gly-Asp) significantly reduced the number of tissue-invading neutrophils and the degree of sepsis-induced lethality in mice as compared to control peptide. Secondly, β1 integrin (CD29) was highly up-regulated on the neutrophils isolated from both septic patients and animals. Finally, conditional genetic ablation of β1 integrin from granulocytes also improved survival and bacterial clearance in septic animals Thus, our results indicate that expression of β1 integrin is important for modulating neutrophil trafficking during sepsis, and that therapeutics designed against β1 integrins may be beneficial. PMID:22683734

  19. Effects of Actinobacillus pleuropneumoniae cytotoxins on generation of oxygen radicals by porcine neutrophils

    Directory of Open Access Journals (Sweden)

    Simson Tarigan

    1999-03-01

    Full Text Available Cytotoxins produced by Actinobacillus pleuropneumoniae (App suggested to be the most important pathogenic and virulent factors for this organism. However, the mechanisms on how the cytotoxins contribute to the disease process remain unclear. The purpose of this study is to investigate the effect of the cytotoxins on the oxidative-burst metabolism of porcine neutrophils. In this study, neutrophils were firstly loaded with an oxidative probe dichlorofluorescin diacetate (DCFHDA then expose to cytotoxins. Cells producing oxygen radicals emitted fluorescence and its intensity was measured with a FACScan flow cytometer. All cytotoxins derived from either App serotypes producing ApxI and ApxII, App serotypes producing ApxII only, or App serotypes producing ApxII and ApxIII were capable of stimulating neutrophils for oxygen-radical generation. However, compared with phorbol myristate acetate (PMA, App cytotoxins were much weaker as stimulants for oxygen radicals. In addition, Apx preparation stimulated an oxidative-burst metabolism of neutrophils at a low, narrow range of Apx doses. At higher doses, the toxins inhibit the oxidative burst metabolism. The effects of cytotoxins produced by App during infection on recruited neutrophils into the lungs are assumed to be comparable to those observed in this in vitro study. Neutrophils, and other host cells, adjacent to the bacteria become lysis due to high toxin concentration, whereas those at some distance to the bacteria produce oxygen radicals which in turn cause tissue damage or necrosis.

  20. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases.

    Science.gov (United States)

    Vij, Neeraj; Min, Taehong; Bodas, Manish; Gorde, Aakruti; Roy, Indrajit

    2016-11-01

    The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Prognostic value of the neutrophil to lymphocyte ratio in lung cancer: A meta-analysis.

    Science.gov (United States)

    Yin, Yongmei; Wang, Jun; Wang, Xuedong; Gu, Lan; Pei, Hao; Kuai, Shougang; Zhang, Yingying; Shang, Zhongbo

    2015-07-01

    Recently, a series of studies explored the correlation between the neutrophil to lymphocyte ratio and the prognosis of lung cancer. However, the current opinion regarding the prognostic role of the neutrophil to lymphocyte ratio in lung cancer is inconsistent. We performed a meta-analysis of published articles to investigate the prognostic value of the neutrophil to lymphocyte ratio in lung cancer. The hazard ratio (HR) and its 95% confidence interval (CI) were calculated. An elevated neutrophil to lymphocyte ratio predicted worse overall survival, with a pooled HR of 1.243 (95%CI: 1.106-1.397; P(heterogeneity)=0.001) from multivariate studies and 1.867 (95%CI: 1.487-2.344; P(heterogeneity)=0.047) from univariate studies. Subgroup analysis showed that a high neutrophil to lymphocyte ratio yielded worse overall survival in non-small cell lung cancer (NSCLC) (HR=1.192, 95%CI: 1.061-1.399; P(heterogeneity)=0.003) as well as small cell lung cancer (SCLC) (HR=1.550, 95% CI: 1.156-2.077; P(heterogeneity)=0.625) in multivariate studies. The synthesized evidence from this meta-analysis of published articles demonstrated that an elevated neutrophil to lymphocyte ratio was a predictor of poor overall survival in patients with lung cancer.

  2. Neutrophilic respiratory tract inflammation and peripheral blood neutrophilia after grain sorghum dust extract challenge.

    Science.gov (United States)

    Von Essen, S G; O'Neill, D P; McGranaghan, S; Olenchock, S A; Rennard, S I

    1995-11-01

    To determine if inhalation of grain sorghum dust in the laboratory would cause neutrophilic upper and lower respiratory tract inflammation in human volunteers, as well as systemic signs of illness. Prospective. University of Nebraska Medical Center. Thirty normal volunteers. Inhalation challenge with 20 mL of a nebulized solution of filter-sterilized grain sorghum dust extract (GSDE). One group received prednisone, 20 mg for 2 days, prior to the challenge. Bronchoscopy with bronchoalveolar lavage (BAL) was performed 24 h after challenge, with samples collected as bronchial and alveolar fractions. Findings included visible signs of airways inflammation, quantified as the bronchitis index. The percentage of bronchial neutrophils was significantly increased in those challenged with GSDE vs the control solution, Hanks' balanced salt solution (40.3 +/- 4.5% vs 14.3 +/- 5.1%, p grain dust extract. To explain the increase in peripheral blood neutrophil counts, the capacity of the peripheral blood neutrophils to migrate in chemotaxis experiments was examined. The results demonstrate an increase in peripheral blood neutrophils and an increase in chemotactic responsiveness. Inhalation challenge with a grain dust extract causes respiratory tract inflammation and a peripheral blood neutrophilia. One reason for this may be an increase in activated peripheral blood neutrophils.

  3. 5-Lipoxygenase-Dependent Recruitment of Neutrophils and Macrophages by Eotaxin-Stimulated Murine Eosinophils

    Directory of Open Access Journals (Sweden)

    Ricardo Alves Luz

    2014-01-01

    Full Text Available The roles of eosinophils in antimicrobial defense remain incompletely understood. In ovalbumin-sensitized mice, eosinophils are selectively recruited to the peritoneal cavity by antigen, eotaxin, or leukotriene(LTB4, a 5-lipoxygenase (5-LO metabolite. 5-LO blockade prevents responses to both antigen and eotaxin. We examined responses to eotaxin in the absence of sensitization and their dependence on 5-LO. BALB/c or PAS mice and their mutants (5-LO-deficient ALOX; eosinophil-deficient GATA-1 were injected i.p. with eotaxin, eosinophils, or both, and leukocyte accumulation was quantified up to 24 h. Significant recruitment of eosinophils by eotaxin in BALB/c, up to 24 h, was accompanied by much larger numbers of recruited neutrophils and monocytes/macrophages. These effects were abolished by eotaxin neutralization and 5-LO-activating protein inhibitor MK886. In ALOX (but not PAS mice, eotaxin recruitment was abolished for eosinophils and halved for neutrophils. In GATA-1 mutants, eotaxin recruited neither neutrophils nor macrophages. Transfer of eosinophils cultured from bone-marrow of BALB/c donors, or from ALOX donors, into GATA-1 mutant recipients, i.p., restored eotaxin recruitment of neutrophils and showed that the critical step dependent on 5-LO is the initial recruitment of eosinophils by eotaxin, not the secondary neutrophil accumulation. Eosinophil-dependent recruitment of neutrophils in naive BALB/c mice was associated with increased binding of bacteria.

  4. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils

    International Nuclear Information System (INIS)

    Hanazono, Y.; Hosoi, T.; Kuwaki, T.; Matsuki, S.; Miyazono, K.; Miyagawa, K.; Takaku, F.

    1990-01-01

    We investigated granulocyte colony-stimulating factor (G-CSF) receptors on neutrophils from three patients with chronic myelogenous leukemia (CML) in the chronic phase, in comparison with four normal volunteers. Because we experienced some difficulties in radioiodinating intact recombinant human G-CSF, we developed a new derivative of human G-CSF termed YPY-G-CSF. It was easy to iodinate this protein using the lactoperoxidase method because of two additional tyrosine residues, and its radioactivity was higher than that previously reported. The biological activity of YPY-G-CSF as G-CSF was fully retained. Scatchard analysis demonstrated that CML neutrophils had a single class of binding sites (1400 +/- 685/cell) with a dissociation constant (Kd) of 245 +/- 66 pM. The number of sites and Kd value of CML neutrophils were not significantly different from those of normal neutrophils (p greater than 0.9). Cross-linking studies revealed two specifically labeled bands of [125I]YPY-G-CSF-receptor complexes with apparent molecular masses of 160 and 110 kd on both normal and CML neutrophils. This is the first report describing two receptor proteins on neutrophils. According to the analyses of the proteolytic process of these cross-linked complexes and proteolytic mapping, we assume that alternative splicing or processing from a single gene may generate two distinct receptor proteins that bind specifically to G-CSF but have different fates in intracellular metabolism

  5. Heterogeneity of Human Neutrophil CD177 Expression Results from CD177P1 Pseudogene Conversion.

    Directory of Open Access Journals (Sweden)

    Zuopeng Wu

    2016-05-01

    Full Text Available Most humans harbor both CD177neg and CD177pos neutrophils but 1-10% of people are CD177null, placing them at risk for formation of anti-neutrophil antibodies that can cause transfusion-related acute lung injury and neonatal alloimmune neutropenia. By deep sequencing the CD177 locus, we catalogued CD177 single nucleotide variants and identified a novel stop codon in CD177null individuals arising from a single base substitution in exon 7. This is not a mutation in CD177 itself, rather the CD177null phenotype arises when exon 7 of CD177 is supplied entirely by the CD177 pseudogene (CD177P1, which appears to have resulted from allelic gene conversion. In CD177 expressing individuals the CD177 locus contains both CD177P1 and CD177 sequences. The proportion of CD177hi neutrophils in the blood is a heritable trait. Abundance of CD177hi neutrophils correlates with homozygosity for CD177 reference allele, while heterozygosity for ectopic CD177P1 gene conversion correlates with increased CD177neg neutrophils, in which both CD177P1 partially incorporated allele and paired intact CD177 allele are transcribed. Human neutrophil heterogeneity for CD177 expression arises by ectopic allelic conversion. Resolution of the genetic basis of CD177null phenotype identifies a method for screening for individuals at risk of CD177 isoimmunisation.

  6. Human Neutrophils Use Different Mechanisms To Kill Aspergillus fumigatus Conidia and Hyphae: Evidence from Phagocyte Defects.

    Science.gov (United States)

    Gazendam, Roel P; van Hamme, John L; Tool, Anton T J; Hoogenboezem, Mark; van den Berg, J Merlijn; Prins, Jan M; Vitkov, Ljubomir; van de Veerdonk, Frank L; van den Berg, Timo K; Roos, Dirk; Kuijpers, Taco W

    2016-02-01

    Neutrophils are known to play a pivotal role in the host defense against Aspergillus infections. This is illustrated by the prevalence of Aspergillus infections in patients with neutropenia or phagocyte functional defects, such as chronic granulomatous disease. However, the mechanisms by which human neutrophils recognize and kill Aspergillus are poorly understood. In this work, we have studied in detail which neutrophil functions, including neutrophil extracellular trap (NET) formation, are involved in the killing of Aspergillus fumigatus conidia and hyphae, using neutrophils from patients with well-defined genetic immunodeficiencies. Recognition of conidia involves integrin CD11b/CD18 (and not dectin-1), which triggers a PI3K-dependent nonoxidative intracellular mechanism of killing. When the conidia escape from early killing and germinate, the extracellular destruction of the Aspergillus hyphae needs opsonization by Abs and involves predominantly recognition via Fcγ receptors, signaling via Syk, PI3K, and protein kinase C to trigger the production of toxic reactive oxygen metabolites by the NADPH oxidase and myeloperoxidase. A. fumigatus induces NET formation; however, NETs did not contribute to A. fumigatus killing. Thus, our findings reveal distinct killing mechanisms of Aspergillus conidia and hyphae by human neutrophils, leading to a comprehensive insight in the innate antifungal response. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. Effect of neutrophil depletion on gelatinase expression, edema formation and hemorrhagic transformation after focal ischemic stroke

    Directory of Open Access Journals (Sweden)

    Machado Livia S

    2005-08-01

    Full Text Available Abstract Background While gelatinase (MMP-2 and -9 activity is increased after focal ischemia/reperfusion injury in the brain, the relative contribution of neutrophils to the MMP activity and to the development of hemorrhagic transformation remains unknown. Results Anti-PMN treatment caused successful depletion of neutrophils in treated animals. There was no difference in either infarct volume or hemorrhage between control and PMN depleted animals. While there were significant increases in gelatinase (MMP-2 and MMP-9 expression and activity and edema formation associated with ischemia, neutrophil depletion failed to cause any change. Conclusion The main finding of this study is that, in the absence of circulating neutrophils, MMP-2 and MMP-9 expression and activity are still up-regulated following focal cerebral ischemia. Additionally, neutrophil depletion had no influence on indicators of ischemic brain damage including edema, hemorrhage, and infarct size. These findings indicate that, at least acutely, neutrophils are not a significant contributor of gelatinase activity associated with acute neurovascular damage after stroke.

  8. The Extracellular Matrix of Candida albicans Biofilms Impairs Formation of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Johnson, Chad J; Cabezas-Olcoz, Jonathan; Kernien, John F; Wang, Steven X; Beebe, David J; Huttenlocher, Anna; Ansari, Hamayail; Nett, Jeniel E

    2016-09-01

    Neutrophils release extracellular traps (NETs) in response to planktonic C. albicans. These complexes composed of DNA, histones, and proteins inhibit Candida growth and dissemination. Considering the resilience of Candida biofilms to host defenses, we examined the neutrophil response to C. albicans during biofilm growth. In contrast to planktonic C. albicans, biofilms triggered negligible release of NETs. Time lapse imaging confirmed the impairment in NET release and revealed neutrophils adhering to hyphae and migrating on the biofilm. NET inhibition depended on an intact extracellular biofilm matrix as physical or genetic disruption of this component resulted in NET release. Biofilm inhibition of NETosis could not be overcome by protein kinase C activation via phorbol myristate acetate (PMA) and was associated with suppression of neutrophil reactive oxygen species (ROS) production. The degree of impaired NET release correlated with resistance to neutrophil attack. The clinical relevance of the role for extracellular matrix in diminishing NET production was corroborated in vivo using a rat catheter model. The C. albicans pmr1Δ/Δ, defective in production of matrix mannan, appeared to elicit a greater abundance of NETs by scanning electron microscopy imaging, which correlated with a decreased fungal burden. Together, these findings show that C. albicans biofilms impair neutrophil response through an inhibitory pathway induced by the extracellular matrix.

  9. CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation.

    Science.gov (United States)

    Bai, Ming; Grieshaber-Bouyer, Ricardo; Wang, Junxia; Schmider, Angela B; Wilson, Zachary S; Zeng, Liling; Halyabar, Olha; Godin, Matthew D; Nguyen, Hung N; Levescot, Anaïs; Cunin, Pierre; Lefort, Craig T; Soberman, Roy J; Nigrovic, Peter A

    2017-11-09

    CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1), suggesting a role in neutrophil migration. However, CD177 pos neutrophils exhibit no clear migratory advantage in vivo, despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system, we found that CD177 pos and CD177 neg neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177 pos neutrophils, an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly, CD177 ligation enhanced its interaction with β2 integrins, as revealed by fluorescence lifetime imaging microscopy, leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity, impaired internalization of integrin attachments, and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration. © 2017 by The American Society of Hematology.

  10. Neutrophil Microvesicles from Healthy Control and Rheumatoid Arthritis Patients Prevent the Inflammatory Activation of Macrophages

    Directory of Open Access Journals (Sweden)

    Hefin I. Rhys

    2018-03-01

    Full Text Available Microvesicles (MVs are emerging as a novel means to enact cell-to-cell communication in inflammation. Here, we aimed to ascertain the ability of neutrophil-derived MVs to modulate target cell behaviour, the focus being the macrophage.MVs were generated in response to tumour necrosis factor-α, from healthy control neutrophils or those from rheumatoid arthritis patients. MVs were used to stimulate human monocyte-derived macrophages in vitro, or administered intra-articularly in the K/BxN mouse model of arthritis. A macrophage/fibroblast-like synoviocyte co-culture system was used to study the effects of vesicles on the crosstalk between these cells.We demonstrate a direct role for phosphatidylserine and annexin-A1 exposed by the MVs to counteract classical activation of the macrophages, and promote the release of transforming growth factor-β, respectively. Classically-activated macrophages exposed to neutrophil MVs no longer activated fibroblast-like synoviocytes in subsequent co-culture settings. Finally, intra-articular administration of neutrophil MVs from rheumatoid arthritis patients in arthritic mice affected the phenotype of joint macrophages.Altogether these data, with the identification of specific MV determinants, open new opportunities to modulate on-going inflammation in the synovia – mainly by affecting macrophage polarization and potentially also fibroblast-like synoviocytes - through the delivery of autologous or heterologous MVs produced from neutrophils. Keywords: Neutrophils, Macrophages, Vesicles, Rheumatoid arthritis

  11. Synergic production of neutrophil chemotactic activity by colonic epithelial cells and eosinophils.

    Science.gov (United States)

    Dent, Gordon; Loweth, Sam C; Hasan, Anwar Matar; Leslie, Fiona M

    2014-10-01

    The presence of eosinophils in the lumen and mucosa of the intestine is characteristic of both ulcerative colitis (UC) and Crohn's disease (CD). There is evidence of eosinophil activation in the intestine during acute inflammatory episodes of these diseases; these episodes are also characterized by an influx of neutrophils, which have the potential to cause extensive tissue damage. We undertook a study to determine whether eosinophils in contact with colonic epithelial cells produce factors that may attract neutrophils in response to immunological stimulation. Neutrophil chemotactic activity (NCA) and concentrations of three neutrophil-attracting CXC chemokines - CXCL1 (Groα), CXCL5 (Ena78) and CXCL8 (IL8) - were measured in supernatants of T84 colonic epithelial cells and blood eosinophils or eosinophil-like myeloid leukaemia cells (AML14.3D10), alone or in combination. Cells were stimulated with serum-opsonized zymosan (OZ) particles. NCA (Peosinophil co-cultures were significantly higher than in the supernatants of either cell type alone. Release of CXCL1 (Peosinophils but not higher than from OZ-stimulated epithelial cells. Eosinophils and colonic epithelial cells exhibit synergy in production of neutrophil chemoattractants in response to immunological stimulation. This may represent a mechanism for exaggerated recruitment of neutrophils to the intestine in response to acute infection in conditions that are characterized by the presence of eosinophils in the bowel. Copyright © 2014 Elsevier GmbH. All rights reserved.

  12. Prognostic significance of neutrophil-to-lymphocyte ratio in biliary tract cancers: a systematic review and meta-analysis.

    Science.gov (United States)

    Tang, Haowen; Lu, Wenping; Li, Bingmin; Li, Chonghui; Xu, Yinzhe; Dong, Jiahong

    2017-05-30

    Inflammation was considered to perform crucial roles in the development and metastasis of malignancies. A heightened neutrophil-lymphocyte ratio has been described to be associated with detrimental survivals in different malignancies. Debate remains over the impact of heightened neutrophil-lymphocyte ratio on survivals in biliary tract cancer. The review evaluated the prognostic value of neutrophil-lymphocyte ratio in biliary tract cancer. MEDLINE, the Cochrane Library, EMBASE, and the Chinese SinoMed were systematically searched for relevant articles. Associations between neutrophil-lymphocyte ratio and long-term outcomes were expressed as the hazard ratios and 95% confidence intervals. The odds ratio was utilized to assess the association between neutrophil-lymphocyte ratio and clinicopathological parameters. Fourteen studies consisting of 3217 patients were analyzed: 1278 (39.73%) in the high pretreatment neutrophil-lymphocyte ratio group and 1939 (60.27%) in the low pretreatment neutrophil-lymphocyte ratio one. The results proved that heightened pretreatment neutrophil-lymphocyte ratio was significantly associated with detrimental overall survival and relapse free survival for biliary tract cancer patients. In addition, elevated neutrophil-lymphocyte ratio was positively correlated with higher carbohydrate antigen 19-9 levels, advanced TNM staging and greater lymph node involvement. This meta-analysis marked that an increased pretreatment neutrophil-lymphocyte ratio was significantly linked with detrimental long-term outcomes and clinicopathological parameters for patients with biliary tract cancer.

  13. Mixed species biofilms of Fusobacterium necrophorum and Porphyromonas levii impair the oxidative response of bovine neutrophils in vitro.

    Science.gov (United States)

    Lockhart, Joey S; Buret, Andre G; Ceri, Howard; Storey, Douglas G; Anderson, Stefanie J; Morck, Douglas W

    2017-10-01

    Biofilms composed of anaerobic bacteria can result in persistent infections and chronic inflammation. Host immune cells have difficulties clearing biofilm-related infections and this can result in tissue damage. Neutrophils are a vital component of the innate immune system and help clear biofilms. The comparative neutrophilic response to biofilms versus planktonic bacteria remains incompletely understood, particularly in the context of mixed infections. The objective of this study was to generate mixed species anaerobic bacterial biofilms composed of two opportunistic pathogens, Fusobacterium necrophorum and Porphyromonas levii, and evaluate neutrophil responses to extracellular fractions from both biofilms and planktonic cell co-cultures of the same bacteria. Purified bovine neutrophils exposed to culture supernatants from mixed species planktonic bacteria showed elevated oxidative activity compared to neutrophils exposed to biofilms composed of the same bacteria. Bacterial lipopolysaccharide plays a significant role in the stimulation of neutrophils; biofilms produced substantially more lipopolysaccharide than planktonic bacteria under these experimental conditions. Removal of lipopolysaccharide significantly reduced neutrophil oxidative response to culture supernatants of planktonic bacteria. Oxidative responses to LPS-removed biofilm supernatants and LPS-removed planktonic cell supernatants were similar. The limited neutrophil response to biofilm bacteria observed in this study supports the reduced ability of the innate immune system to eradicate biofilm-associated infections. Lipopolysaccharide is likely important in neutrophil response; however, the presence of other extracellular, immune modifying molecules in the bacterial media also appears to be important in altering neutrophil function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Transit and lifespan in neutrophil production: implications for drug intervention.

    Science.gov (United States)

    Câmara De Souza, Daniel; Craig, Morgan; Cassidy, Tyler; Li, Jun; Nekka, Fahima; Bélair, Jacques; Humphries, Antony R

    2018-02-01

    A comparison of the transit compartment ordinary differential equation modelling approach to distributed and discrete delay differential equation models is studied by focusing on Quartino's extension to the Friberg transit compartment model of myelosuppression, widely relied upon in the pharmaceutical sciences to predict the neutrophil response after chemotherapy, and on a QSP delay differential equation model of granulopoiesis. An extension to the Quartino model is provided by considering a general number of transit compartments and introducing an extra parameter that allows for the decoupling of the maturation time from the production rate of cells. An overview of the well established linear chain technique, used to reformulate transit compartment models with constant transit rates as distributed delay differential equations (DDEs), is then given. A state-dependent time rescaling of the Quartino model is performed to apply the linear chain technique and rewrite the Quartino model as a distributed DDE, yielding a discrete DDE model in a certain parameter limit. Next, stability and bifurcation analyses are undertaken in an effort to situate such studies in a mathematical pharmacology context. We show that both the original Friberg and the Quartino extension models incorrectly define the mean maturation time, essentially treating the proliferative pool as an additional maturation compartment. This misspecification can have far reaching consequences on the development of future models of myelosuppression in PK/PD.

  15. Acral manifestations of Sweet syndrome (neutrophilic dermatosis of the hands).

    Science.gov (United States)

    Wolf, Ronni; Tüzün, Yalçın

    Neutrophilic dermatosis of the hand (NDH) is a rare localized variant of the syndrome, originally described two decades ago by Strutton et al. The lesions of NDH and Sweet syndrome are similar, as indicated in the first report of NDH. Both diagnoses are characterized by an acute onset of fever, leukocytosis, and tender, erythematous infiltrated plaques. There are also bullae and ulceration in NDH, in contrast to Sweet syndrome, in which bullae are quite uncommon, especially at the early stages. Similar to Sweet syndrome, the majority of NDH patients are women (69%). Patients with NDH present with fever, peripheral neutrophilia, leukocytosis, and/or an elevated erythrocyte sedimentation rate or C-reactive protein level, but at a significantly lower rate than those in Sweet syndrome (33%). Similar to Sweet syndrome, NDH has been associated with the following conditions: Malignancies (particularly hematological [21%], most common of which is acute myelogenous leukemia, but many other malignancies as well), inflammatory bowel disease (19%), medication and vaccination-related eruptions, bacterial and viral infections, rheumatologic diseases, and others. The clues to the diagnosis of NDH are the same as for Sweet syndrome. Awareness of this diagnosis is important not only to avoid unnecessary medical and surgical therapy and to expediently initiate the administration of steroids for this highly responsive dermatosis, but also to conduct an appropriate workup to exclude associated diseases, especially malignancies. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cystic neutrophilic granulomatous mastitis associated with Corynebacterium including Corynebacterium kroppenstedtii.

    Science.gov (United States)

    Johnstone, Kate J; Robson, Jennifer; Cherian, Sarah G; Wan Sai Cheong, Jenny; Kerr, Kris; Bligh, Judith F

    2017-06-01

    Granulomatous (lobular) mastitis is a rare inflammatory breast disease affecting parous reproductive-aged women. Once considered idiopathic, there is growing evidence of an association with corynebacteria infection, especially in the setting of a distinct histological pattern termed cystic neutrophilic granulomatous mastitis (CNGM). We describe 15 cases with histological features either confirming (n = 12) or suggesting (n = 3) CNGM, and concurrent microbiological evidence of Corynebacterium species. The organism was detected by culture or 16S rRNA gene sequencing of specimens obtained at surgery or fine needle aspiration. In seven cases, Gram-positive organisms were seen within vacuolated spaces. Speciation was performed in nine cases, with Corynebacterium kroppenstedtii subsequently identified. These cases provide further evidence in support of this association and in doing so highlight the importance of recognising these histological clues as well as the limitations of Gram stain and microbiological culture in detecting this previously under-recognised disease process. Copyright © 2017 Royal College of Pathologists of Australasia. All rights reserved.

  17. Time-course of cadmium-induced acute hepatotoxicity in the rat liver: the role of apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Tzirogiannis, Konstantinos N.; Panoutsopoulos, Georgios I.; Hereti, Rosa I.; Alexandropoulou, Katerina N.; Basayannis, Aristidis C.; Mykoniatis, Michael G. [Department of Experimental Pharmacology, Medical School, Athens University, 75 Mikras Asias St., 115 27, Athens (Greece); Demonakou, Maria D. [Histopathology Laboratory, Sismanoglion G.D. Hospital, Sismanogliou 1, Marousi, Attiki 151 27 (Greece)

    2003-12-01

    Exposure to toxic metals and pollutants is a major environmental problem. Cadmium is a metal causing acute hepatic injury but the mechanism of this phenomenon is poorly understood. In the present study, we investigated the mechanism and time-course of cadmium-induced liver injury in rats, with emphasis being placed on apoptosis in parenchymal and nonparenchymal liver cells. Cadmium (3.5 mg/kg body weight) was injected intraperitoneally and the rats were killed 0, 9, 12, 16, 24, 48 and 60 h later. The extent of liver injury was evaluated for necrosis, apoptosis, peliosis, mitoses and inflammatory infiltration in hematoxylin-eosin-stained liver sections, and by assaying serum enzyme activities. The number of cells that died via apoptosis was quantified by TUNEL assay. The identification of nonparenchymal liver cells and activated Kupffer cells was performed histochemically. Liver regeneration was evaluated by assaying the activity of liver thymidine kinase and by the rate of {sup 3}H-thymidine incorporation into DNA. Both cadmium-induced necrotic cell death and parenchymal cell apoptosis showed a biphasic elevation at 12 and 48 h and peaked at 48 and 12 h, respectively. Nonparenchymal cell apoptosis peaked at 48 h. Peliosis hepatis, another characteristic form of liver injury, was first observed at 16 h and, at all time points, closely correlated with the apoptotic index of nonparenchymal liver cells, where the lesion was also maximial at 48 h. Kupffer cell activation and neutrophil infiltration were minimal for all time points examined. Based on thymidine kinase activity, liver regeneration was found to discern a classic biphasic peak pattern at 12 and 48 h. It was very interesting to observe that cadmium-induced liver injury did not involve inflammation at any time point. Apoptosis seems to be a major mechanism for the removal of damaged cells, and constitutes the major type of cell death in nonparenchymal liver cells. Apoptosis of nonparenchymal cells is the basis

  18. Yersinia pestis subverts the dermal neutrophil response in a mouse model of bubonic plague.

    Science.gov (United States)

    Shannon, Jeffrey G; Hasenkrug, Aaron M; Dorward, David W; Nair, Vinod; Carmody, Aaron B; Hinnebusch, B Joseph

    2013-08-27

    The majority of human Yersinia pestis infections result from introduction of bacteria into the skin by the bite of an infected flea. Once in the dermis, Y. pestis can evade the host's innate immune response and subsequently disseminate to the draining lymph node (dLN). There, the pathogen replicates to large numbers, causing the pathognomonic bubo of bubonic plague. In this study, several cytometric and microscopic techniques were used to characterize the early host response to intradermal (i.d.) Y. pestis infection. Mice were infected i.d. with fully virulent or attenuated strains of dsRed-expressing Y. pestis, and tissues were analyzed by flow cytometry. By 4 h postinfection, there were large numbers of neutrophils in the infected dermis and the majority of cell-associated bacteria were associated with neutrophils. We observed a significant effect of the virulence plasmid (pCD1) on bacterial survival and neutrophil activation in the dermis. Intravital microscopy of i.d. Y. pestis infection revealed dynamic interactions between recruited neutrophils and bacteria. In contrast, very few bacteria interacted with dendritic cells (DCs), indicating that this cell type may not play a major role early in Y. pestis infection. Experiments using neutrophil depletion and a CCR7 knockout mouse suggest that dissemination of Y. pestis from the dermis to the dLN is not dependent on neutrophils or DCs. Taken together, the results of this study show a very rapid, robust neutrophil response to Y. pestis in the dermis and that the virulence plasmid pCD1 is important for the evasion of this response. Yersinia pestis remains a public health concern today because of sporadic plague outbreaks that occur throughout the world and the potential for its illegitimate use as a bioterrorism weapon. Since bubonic plague pathogenesis is initiated by the introduction of Y. pestis into the skin, we sought to characterize the response of the host's innate immune cells to bacteria early after

  19. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Madison Floyd

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also

  20. Honey and Apoptosis in Human Gastric Mucosa

    Directory of Open Access Journals (Sweden)

    Alireza Ostadrahimi

    2012-07-01

    Full Text Available Background: Gastric cancer is the fourth most common malignancy in the world. Honey is acomplex mixture of special biological active constituents. Honey possesses antioxidant and antitumorproperties. Nutritional studies have indicated that consumption of honey modulates therisk of developing gastric cancer. On the other hand, apoptosis has been reported to play a decisiverole in precancerous changes. Our chief study was conducted to assess the relationship betweenconsumption of honey and apoptosis in human gastric mucosa.Method: This cross-sectional study was conducted on 98 subjects over 18 years old, referred totwo hospitals in Tabriz, Iran. Subjects were undergone an upper gastrointestinal endoscopy, 62subjects were finally enrolled. Honey consumption was assessed by a Food Frequency Questionnaire(FFQ and apoptosis was detected by TUNEL technique. We tested polynomial curve tofind the best fit between honey consumption and apoptosis.Results: A positive relation between honey consumption and apoptosis was found (P=0.024.Our results indicated that the final and the best fit curve was: apoptosis = 1.714+1.648(honeyamount - 0.533(honey amount2 +1.833×10-5(honey amount7.Conclusion: Honey consumption had positive effects on gastric cancer by inducing apoptosis ingastric mucosa.

  1. Chk2 mediates RITA-induced apoptosis.

    Science.gov (United States)

    de Lange, J; Verlaan-de Vries, M; Teunisse, A F A S; Jochemsen, A G

    2012-06-01

    Reactivation of the p53 tumor-suppressor protein by small molecules like Nutlin-3 and RITA (reactivation of p53 and induction of tumor cell apoptosis) is a promising strategy for cancer therapy. The molecular mechanisms involved in the responses to RITA remain enigmatic. Several groups reported the induction of a p53-dependent DNA damage response. Furthermore, the existence of a p53-dependent S-phase checkpoint has been suggested, involving the checkpoint kinase Chk1. We have recently shown synergistic induction of apoptosis by RITA in combination with Nutlin-3, and we observed concomitant Chk2 phosphorylation. Therefore, we investigated whether Chk2 contributes to the cellular responses to RITA. Strikingly, the induction of apoptosis seemed entirely Chk2 dependent. Transcriptional activity of p53 in response to RITA required the presence of Chk2. A partial rescue of apoptosis observed in Noxa knockdown cells emphasized the relevance of p53 transcriptional activity for RITA-induced apoptosis. In addition, we observed an early p53- and Chk2-dependent block of DNA replication upon RITA treatment. Replicating cells seemed more prone to entering RITA-induced apoptosis. Furthermore, the RITA-induced DNA damage response, which was not a secondary effect of apoptosis induction, was strongly attenuated in cells lacking p53 or Chk2. In conclusion, we identified Chk2 as an essential mediator of the cellular responses to RITA.

  2. The Relation of Personality Traits Wth Depression Severity in Active and Non-Active Elderly Women in Tehran City

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Aslankhani

    2010-07-01

    Full Text Available Objectives: The purpose of this study was to investigate the relation of personality traits with depression in active and non – active elderly women in Tehran city. Methods & Materials: The present research is descriptive–correlation. For this purpose, 188 elderly women (94 active and 94 non - active elders in the age range of 63-82 in Tehran city availably selected as statistical sample. Measurement instrument were demographic questionnaire, Beck depression questionnaire and NEO personality traits questionnaire. Data were analyzed using descriptive statistic (mean and standard deviation and inferential statistic (independent t test, Pearson correlation and Enter multi variant Regression. Results: Results showed that there was significant difference in personality traits and depression between active women with non-active women elders (P<0.05. Also, the result showed that significant correlation between depression score on neuroticism, extroversion, openness and conscientiousness in active women elders and conscientiousness and openness in non-active women elders (P<0.05. The results of multi variant regression also indicated that openness and extroversion variants in active elders and conscientiousness variant in non-active elders have linear relationship with criteria variant (depression and can predict its changes. Conclusion: Based on results of present research, sport and physical activity can be afforded the increase of positive personality traits (for example extroversion and openness and decrease of depression in women elders.

  3. Replacing Non-Active Video Gaming by Active Video Gaming to Prevent Excessive Weight Gain in Adolescents

    NARCIS (Netherlands)

    Simons, M.; Brug, J.; Chinapaw, M.J.M.; Boer, de M.; Seidell, J.; Vet, de E.

    2015-01-01

    Objective - The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of

  4. Replacing non-active video gaming by active video gaming to prevent excessive weight gain in adolescents

    NARCIS (Netherlands)

    Simons, M.; Brug, J.; Chinapaw, M.J.M.; Boer, M. de; Seidell, J.; Vet, E. de

    2015-01-01

    Objective: The aim of the current study was to evaluate the effects of and adherence to an active video game promotion intervention on anthropometrics, sedentary screen time and consumption of sugar-sweetened beverages and snacks among non-active video gaming adolescents who primarily were of

  5. The impact of an online Facebook support group for people with multiple sclerosis on non-active users.

    Science.gov (United States)

    Steadman, Jacqui; Pretorius, Chrisma

    2014-01-01

    Multiple sclerosis (MS) is a debilitating disease and there is little research on support networks for people with MS (PwMS). More specifically, most studies on online support groups focus on those who actively participate in the group, whereas the majority of those who utilise online support groups do so in a passive way. This study therefore aimed to explore the experiences of non-active users of an online Facebook support group for PwMS. Emphasis was placed on the facilitators and the barriers that were associated with membership to this group. An exploratory qualitative research design was implemented, whereby thematic analysis was utilised to examine the ten semi-structured interviews that were conducted. Several facilitators were acquired through the online support group; namely emotional support (constant source of support, exposure to negative aspects of the disease), informational support (group as a source of knowledge, quality of information) and social companionship (place of belonging). Some barriers were also identified; namely emotional support (emotions lost online, response to messages, exposure to negative aspects of the disease), informational support (information posted on the group, misuse of group) and social companionship (non-active status). These findings demonstrate that the non-active members of the online support group for PwMS have valid reasons for their non-active membership status. More important, the findings suggest that the online Facebook support group provided the group members with an important support network in the form of emotional support, informational support and social companionship, despite their non-active membership status or the barriers that have been identified.

  6. Baicalin improves survival in a murine model of polymicrobial sepsis via suppressing inflammatory response and lymphocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Jiali Zhu

    Full Text Available BACKGROUND: An imbalance between overwhelming inflammation and lymphocyte apoptosis is the main cause of high mortality in patients with sepsis. Baicalin, the main active ingredient of the Scutellaria root, exerts anti-inflammatory, anti-apoptotic, and even antibacterial properties in inflammatory and infectious diseases. However, the therapeutic effect of baicalin on polymicrobial sepsis remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: Polymicrobial sepsis was induced by cecal ligation and puncture (CLP in C57BL/6 mice. Mice were infused with baicalin intraperitoneally at 1 h, 6 h and 12 h after CLP. Survival rates were assessed over the subsequent 8 days. Bacterial burdens in blood and peritoneal cavity were calculated to assess the bacterial clearance. Neutrophil count in peritoneal lavage fluid was also calculated. Injuries to the lung and liver were detected by hematoxylin and eosin staining. Levels of cytokines, including tumor necrosis factor (TNF-alpha, interleukin (IL-6, IL-10 and IL-17, in blood and peritoneum were measured by enzyme-linked immunosorbent assay. Adaptive immune function was assessed by apoptosis of lymphocytes in the thymus and counts of different cell types in the spleen. Baicalin significantly enhanced bacterial clearance and improved survival of septic mice. The number of neutrophils in peritoneal lavage fluid was reduced by baicalin. Less neutrophil infiltration of the lung and liver in baicalin-treated mice was associated with attenuated injuries to these organs. Baicalin significantly reduced the levels of proinflammatory cytokines but increased the level of anti-inflammatory cytokine in blood and peritoneum. Apoptosis of CD3(+ T cell was inhibited in the thymus. The numbers of CD4(+, CD8(+ T lymphocytes and dendritic cells (DCs were higher, while the number of CD4(+CD25(+ regulatory T cells was lower in the baicalin group compared with the CLP group. CONCLUSIONS/SIGNIFICANCE: Baicalin improves survival of mice

  7. Circumventing Y. pestis Virulence by Early Recruitment of Neutrophils to the Lungs during Pneumonic Plague.

    Directory of Open Access Journals (Sweden)

    Yaron Vagima

    2015-05-01

    Full Text Available Pneumonic plague is a fatal disease caused by Yersinia pestis that is associated with a delayed immune response in the lungs. Because neutrophils are the first immune cells recruited to sites of infection, we investigated the mechanisms responsible for their delayed homing to the lung. During the first 24 hr after pulmonary infection with a fully virulent Y. pestis strain, no significant changes were observed in the lungs in the levels of neutrophils infiltrate, expression of adhesion molecules, or the expression of the major neutrophil chemoattractants keratinocyte cell-derived chemokine (KC, macrophage inflammatory protein 2 (MIP-2 and granulocyte colony stimulating factor (G-CSF. In contrast, early induction of chemokines, rapid neutrophil infiltration and a reduced bacterial burden were observed in the lungs of mice infected with an avirulent Y. pestis strain. In vitro infection of lung-derived cell-lines with a YopJ mutant revealed the involvement of YopJ in the inhibition of chemoattractants expression. However, the recruitment of neutrophils to the lungs of mice infected with the mutant was still delayed and associated with rapid bacterial propagation and mortality. Interestingly, whereas KC, MIP-2 and G-CSF mRNA levels in the lungs were up-regulated early after infection with the mutant, their protein levels remained constant, suggesting that Y. pestis may employ additional mechanisms to suppress early chemoattractants induction in the lung. It therefore seems that prevention of the early influx of neutrophils to the lungs is of major importance for Y. pestis virulence. Indeed, pulmonary instillation of KC and MIP-2 to G-CSF-treated mice infected with Y. pestis led to rapid homing of neutrophils to the lung followed by a reduction in bacterial counts at 24 hr post-infection and improved survival rates. These observations shed new light on the virulence mechanisms of Y. pestis during pneumonic plague, and have implications for the

  8. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    International Nuclear Information System (INIS)

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A.

    1990-01-01

    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons

  9. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    Science.gov (United States)

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  10. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Ryuichi Sumioka

    Full Text Available Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2 by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs. Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  11. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.

    Science.gov (United States)

    Drury, J L; Dembo, M

    2001-12-01

    It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the

  12. Assessment of neutrophil / lymphocyte ratio in patients with myocardial bridge

    Directory of Open Access Journals (Sweden)

    Abdulkadir Yıldız

    2014-03-01

    Full Text Available Objective: Myocardial bridge (MB is a congenital anomaly characterized by systolic narrowing of the epicardial coronary arterial segment while traveling in the myocardium. It is a benign entity but previous studies showed that the proximal portion is prone to an enhanced atherosclerosis. Neutrophil/lymphocyte ratio (NLR is a sensitive marker of systemic inflammation used as a predictor for adverse cardiovascular outcomes in atherosclerotic heart disease. So in this study, we sought to evaluate the association between NLR and myocardial bridging. Methods: A total of 172 patients (mean age: 50.8 ± 11.5 years, 77.3% men with either angiographically proven MB or normal coronary arteries were included in the study. For the entire study population, hematologic parameters were measured using an automatic blood counter. Results: The study population consisted of 71 patients with MB (mean age: 51.4 ± 11.9 years, 80.3% male and 101 patients with normal coronary arteries (mean age: 50.5 ± 11.3 years, 75.2% male. There were no significant differences between groups regarding hemoglobin level, platelet count, glucose and creatinine. Compared to the control group, NLR was significantly higher in patients with MB (2.45 ± 1.19 vs. 1.72 ± 0.48; p 1.82 predicted myocardial bridge presence with 70% sensitivity and 71% specificity (ROC area under curve: 0.733, 95% CI: 0.654-0.811, p < 0.001. Conclusion: Our study findings demonstrated that MB is associated with elevated NLR, which is used to assess inflammatory status of the body. J Clin Exp Invest 2014; 5 (1: 24-28

  13. Genetic Diversity as Consequence of a Microaerobic and Neutrophilic Lifestyle.

    Directory of Open Access Journals (Sweden)

    Nora-Johanna Krüger

    2016-05-01

    Full Text Available As a neutrophilic bacterium, Helicobacter pylori is growth deficient under extreme acidic conditions. The gastric pathogen is equipped with an acid survival kit, regulating urease activity by a pH-gated urea channel, opening below pH 6.5. After overcoming acid stress, the bacterium's multiplication site is situated at the gastric mucosa with near neutral pH. The pathogen exhibits exceptional genetic variability, mainly due to its capability of natural transformation, termed competence. Using single cell analysis, we show here that competence is highly regulated in H. pylori. DNA uptake complex activity was reversibly shut down below pH 6.5. pH values above 6.5 opened a competence window, in which competence development was triggered by the combination of pH increase and oxidative stress. In contrast, addition of sublethal concentrations of the DNA-damaging agents ciprofloxacin or mitomycin C did not trigger competence development under our conditions. An oxygen-sensitive mutant lacking superoxide dismutase (sodB displayed a higher competent fraction of cells than the wild type under comparable conditions. In addition, the sodB mutant was dependent on adenine for growth in broth and turned into non-cultivable coccoid forms in its absence, indicating that adenine had radical quenching capacity. Quantification of periplasmically located DNA in competent wild type cells revealed outstanding median imported DNA amounts of around 350 kb per cell within 10 min of import, with maximally a chromosomal equivalent (1.6 Mb in individual cells, far exceeding previous amounts detected in other Gram-negative bacteria. We conclude that the pathogen's high genetic diversity is a consequence of its enormous DNA uptake capacity, triggered by intrinsic and extrinsic oxidative stress once a neutral pH at the site of chronic host colonization allows competence development.

  14. Naloxone inhibits superoxide but not enzyme release by human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, C.; Alailima, S.; Tate, E.

    1986-03-01

    The release of toxic oxygen metabolites and enzymes by phagocytic cells is thought to play a role in the multisystemic tissue injury of sepsis. Naloxone protects septic animals. We have found that at concentrations administered to animals (10/sup -7/ to 10/sup -4/M), naloxone inhibited (p < .001) the release of superoxide (O/sub 2//sup -/) by human neutrophils (HN), stimulated with N-formyl methionyl leucyl phenylalanine (FMLP). Naloxone had no effect on cell viability. Maximum inhibition was 65% of the total O/sub 2//sup -/ released (13.1 nMoles/8 min/320,000 cells). FMLP-stimulated release of beta-glucoronidase or lysozyme was not altered by naloxone. Naloxone had no effect on the binding of /sup 3/H FMLP to HN. Using /sup 3/H naloxone and various concentrations of unlabeled naloxone higher affinity (K/sub D/ = 12nM) and lower affinity (K/sub D/ = 4.7 x 10/sup -5/) binding sites were detected. The K/sub D/ of the low affinity site corresponded to the ED/sub 50/ for naloxone inhibition of O/sub 2//sup -/ (1 x 10/sup -5/M). Binding to this low affinity site was decreased by (+) naloxone, beta-endorphin and N acetyl beta-endorphin, but not by leu-enkephalin, thyrotropin releasing factor, prostaglandin D/sub 2/ or E/sub 2/. Conclusions: (1) naloxone inhibits FMLP-stimulated O/sub 2/ but not enzyme release, (2) this inhibition is not due to alteration of FMLP receptor binding, (3) naloxone may act via a low affinity binding site which is ligand specific, and (4) a higher affinity receptor is present on HN.

  15. Intracellular accumulation of po