WorldWideScience

Sample records for non-abelian dilatonic stable

  1. Stable Non-Abelian Semi-Superfluid Vortices in Dense QCD

    Science.gov (United States)

    Chatterjee, Chandrasekhar; Nitta, Muneto

    Color superconductivity is expected to be formed in high density quark matter where color symmetry is spontaneously broken in the presence of di-quark condensate. Stable non-Abelian vortices or color magnetic flux tubes exist in the color-flavor locked phase at asymptotically high density. CP2 Nambu-Goldstone (NG) bosons and Majorana fermions belonging to the triplet representation are localized around a non-Abelian vortex. We discuss the zero mode analysis and the low-energy effective world sheet theory of a non-Abelian vortex. We determine the interactions of these bosonic and fermionic modes by using the nonlinear realization method. We also discuss the Aharanov-Bohm (AB) phases of charged particles, such as, electrons, muons, and color-flavor locked mesons made of tetra-quarks encircling around a non-Abelian vortex in the presence of electro-magnetic fields. This is a review based on our recent works [1-3].

  2. Dilaton, gaugino condensation and supersymmetry breaking

    International Nuclear Information System (INIS)

    Taylor, T.R.; Northeastern Univ., Boston, MA

    1990-01-01

    Non-perturbative condensation of gauginos belonging to a gauge group of the form G 1 xG 2 x...xG p , where G n are non-abelian subgroups, is examined in superstring theory by utilizing the effective lagrangian techniques. A supersymmetric vacuum with stable expectation values of the dilaton and moduli fields is shown to exist provided that the gauge group satisfies one non-trivial constraint. (orig.)

  3. Rotating dilaton black holes with hair

    International Nuclear Information System (INIS)

    Kleihaus, Burkhard; Kunz, Jutta; Navarro-Lerida, Francisco

    2004-01-01

    We consider stationary rotating black holes in SU(2) Einstein-Yang-Mills theory, coupled to a dilaton. The black holes possess nontrivial non-Abelian electric and magnetic fields outside their regular event horizon. While generic solutions carry no non-Abelian magnetic charge, but non-Abelian electric charge, the presence of the dilaton field allows also for rotating solutions with no non-Abelian charge at all. As a consequence, these special solutions do not exhibit the generic asymptotic noninteger power falloff of the non-Abelian gauge field functions. The rotating black hole solutions form sequences, characterized by the winding number n and the node number k of their gauge field functions, tending to embedded Abelian black holes. The stationary non-Abelian black hole solutions satisfy a mass formula, similar to the Smarr formula, where the dilaton charge enters instead of the magnetic charge. Introducing a topological charge, we conjecture that black hole solutions in SU(2) Einstein-Yang-Mills-dilaton theory are uniquely characterized by their mass, their angular momentum, their dilaton charge, their non-Abelian electric charge, and their topological charge

  4. Heterotic non-Abelian orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Ramos-Sanchez, Saul [UNAM, Mexico (Mexico). Dept. of Theoretical Physics; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We perform the first systematic analysis of particle spectra obtained from heterotic string compactifications on non-Abelian toroidal orbifolds. After developing a new technique to compute the particle spectrum in the case of standard embedding based on higher dimensional supersymmetry, we compute the Hodge numbers for all recently classified 331 non-Abelian orbifold geometries which yield N=1 supersymmetry for heterotic compactifications. Surprisingly, most Hodge numbers follow the empiric pattern h{sup (1,1)}-h{sup (2,1)}=0 mod 6, which might be related to the number of three standard model generations. Furthermore, we study the fundamental groups in order to identify the possibilities for non-local gauge symmetry breaking. Three examples are discussed in detail: the simplest non-Abelian orbifold S{sub 3} and two more elaborated examples, T{sub 7} and {Delta}(27), which have only one untwisted Kaehler and no untwisted complex structure modulus. Such models might be especially interesting in the context of no-scale supergravity. Finally, we briefly discuss the case of orbifolds with vanishing Euler numbers in the context of enhanced (spontaneously broken) supersymmetry.

  5. Non-Abelian gauge fields

    Science.gov (United States)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    interesting and related effect, which arises from the interplay between strong magnetic field and lattice potentials, is the famous Hofstadter butterfly: the energy spectrum of a single particle moving on a lattice and subjected to a strong magnetic field displays a beautiful fractal structure as a function of the magnetic flux penetrating each elementary plaquette of the lattice. When the effects of interparticle interactions become dominant, two-dimensional gases of electrons exhibit even more exotic behaviour leading to the fractional quantum Hall effect. In certain conditions such a strongly interacting electron gas may form a highly correlated state of matter, the prototypical example being the celebrated Laughlin quantum liquid. Even more fascinating is the behaviour of bulk excitations (quasi-hole and quasi-particles): they are neither fermionic nor bosonic, but rather behave as anyons with fractional statistics intermediate between the two. Moreover, for some specific filling factors (ratio between the electronic density and the flux density), these anyons are proven to have an internal structure (several components) and non-Abelian braiding properties. Many of the above statements concern theoretical predictions—they have never been observed in condensed matter systems. For instance, the fractional values of the Hall conductance is seen as a direct consequence of the fractional statistics, but to date direct observation of anyons has not been possible in two-dimensional semiconductors. Realizing these predictions in experiments with atoms, ions, photons etc, which potentially allow the experimentalist to perform measurements complementary to those made in condensed matter systems, is thus highly desirable! Non-Abelian gauge fields couple the motional states of the particles to their internal degrees of freedom (such as hyperfine states for atoms or ions, electronic spins for electrons, etc). In this sense external non-Abelian fields extend the concept of spin

  6. Non-Abelian vortex lattices

    Science.gov (United States)

    Tallarita, Gianni; Peterson, Adam

    2018-04-01

    We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.

  7. Fermions and non-Abelian vortex

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1986-01-01

    Some aspectos of the fermion-non-Abelian vortex system are discussed. It is shown that this system presents properties analogous to the fermion-non-Abelian magnetic monopole one. But, differrently from the fermion-monopole case, this system does not present fermion condensate V = 0. (Author) [pt

  8. Non-Abelian black holes in D=5 maximal gauged supergravity

    International Nuclear Information System (INIS)

    Cvetic, M.; Lue, H.; Pope, C. N.

    2010-01-01

    We investigate static non-Abelian black hole solutions of anti-de Sitter (AdS) Einstein-Yang-Mills-dilaton gravity, which is obtained as a consistent truncation of five-dimensional maximal gauged supergravity. If the dilaton is (consistently) set to zero, the remaining equations of motion, with a spherically-symmetric ansatz, may be derived from a superpotential. The associated first-order equations admit an explicit solution supported by a non-Abelian SU(2) gauge potential, which has a logarithmically growing mass term. In an extremal limit the horizon geometry becomes AdS 2 xS 3 . If the dilaton is also excited, the equations of motion cannot easily be solved explicitly, but we obtain the asymptotic form of the more general non-Abelian black holes in this case. An alternative consistent truncation, in which the Yang-Mills fields are set to zero, also admits a description in terms of a superpotential. This allows us to construct explicit wormhole solutions (neutral spherically-symmetric domain walls). These solutions may be generalized to dimensions other than five.

  9. Noncommuting fields and non-Abelian fluids

    International Nuclear Information System (INIS)

    Jackiw, R.

    2004-01-01

    The original ideas about noncommuting coordinates are recalled. The connection between U(1) gauge fields defined on noncommuting coordinates and fluid mechanics is explained. Non-Abelian fluid mechanics is described

  10. Non-Abelian bubbles in microstate geometries

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez, Pedro F. [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain); Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers bâtiment 774, F-91191 Gif-sur-Yvette (France)

    2016-11-24

    We find the first smooth bubbling microstate geometries with non-Abelian fields. The solutions constitute an extension of the BPS three-charge smooth microstates. These consist in general families of regular supersymmetric solutions with non-trivial topology, i.e. bubbles, of N=1, d=5 Super-Einstein-Yang-Mills theory, having the asymptotic charges of a black hole or black ring but with no horizon. The non-Abelian fields make their presence at the very heart of the microstate structure: the physical size of the bubbles is affected by the non-Abelian topological charge they carry, which combines with the Abelian flux threading the bubbles to hold them up. Interestingly the non-Abelian fields carry a set of adjustable continuous parameters that do not alter the asymptotics of the solutions but modify the local geometry. This feature can be used to obtain a classically infinite number of microstate solutions with the asymptotics of a single black hole or black ring.

  11. Non-abelian paracurrents and their generalizations

    International Nuclear Information System (INIS)

    Bardakci, K.

    1993-01-01

    Extending earlier work, the classical algebra of parafermions (paracurrents) of non-abelian coset models is quantized. The problems connected with non-associativity are resolved by generalizing the concept of factorization. Conformal generators are constructed and the associated conformal algebra with correct central charge is reproduced. It is also shown how to generalize the paracurrent algebra to arrive at new conformal models. (orig.)

  12. Non-abelian Born-Infeld revisited

    NARCIS (Netherlands)

    Roo, M. de

    2002-01-01

    We discuss the non-abelian Born-Infeld action, including fermions, as a series in α'. We review recent work establishing the complete result to α'2, and its impact on our earlier attempts to derive the Born-Infeld action using κ-symmetry.

  13. Non-Abelian strings and axions

    International Nuclear Information System (INIS)

    Gorsky, A.; Shifman, M.; Yung, A.

    2006-01-01

    We address two distinct but related issues: (i) the impact of (two-dimensional) axions in a two-dimensional theory known to model confinement, the CP(N-1) model; (ii) bulk axions in four-dimensional Yang-Mills theory supporting non-Abelian strings. In the first case n, n kinks play the role of 'quarks'. They are known to be confined. We show that introduction of axions leads to deconfinement (at very large distances). This is akin to the phenomenon of wall liberation in four-dimensional Yang-Mills theory. In the second case we demonstrate that the bulk axion does not liberate confined (anti)monopoles, in contradistinction with the two-dimensional model. A novel physical effect which we observe is the axion radiation caused by monopole-antimonopole pairs attached to the non-Abelian strings

  14. Non-Abelian states of matter.

    Science.gov (United States)

    Stern, Ady

    2010-03-11

    Quantum mechanics classifies all elementary particles as either fermions or bosons, and this classification is crucial to the understanding of a variety of physical systems, such as lasers, metals and superconductors. In certain two-dimensional systems, interactions between electrons or atoms lead to the formation of quasiparticles that break the fermion-boson dichotomy. A particularly interesting alternative is offered by 'non-Abelian' states of matter, in which the presence of quasiparticles makes the ground state degenerate, and interchanges of identical quasiparticles shift the system between different ground states. Present experimental studies attempt to identify non-Abelian states in systems that manifest the fractional quantum Hall effect. If such states can be identified, they may become useful for quantum computation.

  15. Non-Abelian magnetized blackholes and unstable attractors

    Energy Technology Data Exchange (ETDEWEB)

    Mosaffa, A.E. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: mosaffa@theory.ipm.ac.ir; Randjbar-Daemi, S. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11 34014, Trieste (Italy)], E-mail: seif@ictp.trieste.it; Sheikh-Jabbari, M.M. [Institute for Studies in Theoretical Physics and Mathematics (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@theory.ipm.ac.ir

    2008-01-21

    Fluctuations of non-Abelian gauge fields in a background magnetic charge contain 'tachyonic' modes which as we will show cause an instability of the background. We extend this result to the cases where the background charge (flux) is coupled to four-dimensional Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of (colored) Reissner-Nordstroem blackholes or the AdS{sub 2}xS{sup 2}, are also unstable unless the flux assumes its smallest allowed value, in which case the configuration is stable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes, with the exception of the minimally charged stable ones.

  16. Cosmological bounds on non-Abelian dark forces

    Science.gov (United States)

    Forestell, Lindsay; Morrissey, David E.; Sigurdson, Kris

    2018-04-01

    Non-Abelian dark gauge forces that do not couple directly to ordinary matter may be realized in nature. The minimal form of such a dark force is a pure Yang-Mills theory. If the dark sector is reheated in the early Universe, it will be realized as a set of dark gluons at high temperatures and as a collection of dark glueballs at lower temperatures, with a cosmological phase transition from one form to the other. Despite being dark, the gauge fields of the new force can connect indirectly to the standard model through nonrenormalizable operators. These operators will transfer energy between the dark and visible sectors, and they allow some or all of the dark glueballs to decay. In this work we investigate the cosmological evolution and decays of dark glueballs in the presence of connector operators to the standard model. Dark glueball decays can modify cosmological and astrophysical observables, and we use these considerations to put very strong limits on the existence of pure non-Abelian dark forces. On the other hand, if one or more of the dark glueballs are stable, we find that they can potentially make up the dark matter of the Universe.

  17. On Non-Abelian Symplectic Cutting

    DEFF Research Database (Denmark)

    Martens, Johan; Thaddeus, Michael

    2012-01-01

    We discuss symplectic cutting for Hamiltonian actions of non-Abelian compact groups. By using a degeneration based on the Vinberg monoid we give, in good cases, a global quotient description of a surgery construction introduced by Woodward and Meinrenken, and show it can be interpreted in algebro......-geometric terms. A key ingredient is the `universal cut' of the cotangent bundle of the group itself, which is identified with a moduli space of framed bundles on chains of projective lines recently introduced by the authors....

  18. Topological charge in non-abelian lattice gauge theory

    International Nuclear Information System (INIS)

    Lisboa, P.

    1983-01-01

    We report on a numerical calculation of topological charge densities in non-abelian gauge theory with gauge groups SU(2) and SU(3). The group manifold is represented by a discrete subset thereof which lies outside its finite subgroups. The results shed light on the usefulness of these representations in Monte Carlo evaluations of non-abelian lattice gauge theory. (orig.)

  19. Condensation of an ideal gas obeying non-Abelian statistics.

    Science.gov (United States)

    Mirza, Behrouz; Mohammadzadeh, Hosein

    2011-09-01

    We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.

  20. Non-Abelian anyons: when Ising meets Fibonacci

    NARCIS (Netherlands)

    Grosfeld, E.; Schoutens, K.

    2009-01-01

    We consider an interface between two non-Abelian quantum Hall states: the Moore-Read state, supporting Ising anyons, and the k=2 non-Abelian spin-singlet state, supporting Fibonacci anyons. It is shown that the interface supports neutral excitations described by a (1+1)-dimensional conformal field

  1. Stringy origin of non-Abelian discrete flavor symmetries

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuo; Nilles, Hans Peter; Ploeger, Felix; Raby, Stuart; Ratz, Michael

    2007-01-01

    We study the origin of non-Abelian discrete flavor symmetries in superstring theory. We classify all possible non-Abelian discrete flavor symmetries which can appear in heterotic orbifold models. These symmetries include D 4 and Δ(54). We find that the symmetries of the couplings are always larger than the symmetries of the compact space. This is because they are a consequence of the geometry of the orbifold combined with the space group selection rules of the string. We also study possible breaking patterns. Our analysis yields a simple geometric understanding of the realization of non-Abelian flavor symmetries

  2. Small dark energy and stable vacuum from Dilaton-Gauss-Bonnet coupling in TMT

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo I. [Ben-Gurion University of the Negev, Department of Physics, Beer-Sheva (Israel); Nishino, Hitoshi; Rajpoot, Subhash [California State University at Long Beach, Long Beach, CA (United States)

    2017-04-15

    In two measures theories (TMT), in addition to the Riemannian measure of integration, being the square root of the determinant of the metric, we introduce a metric-independent density Φ in four dimensions defined in terms of scalars φ{sub a} by Φ = ε{sup μνρσ} ε{sub abcd}(∂{sub μ}φ{sub a})(∂{sub ν}φ{sub b})(∂{sub ρ}φ{sub c})(∂{sub σ}φ{sub d}). With the help of a dilaton field φ we construct theories that are globally scale invariant. In particular, by introducing couplings of the dilaton φ to the Gauss-Bonnet (GB) topological density √(-g)φ (R{sub μνρσ}{sup 2} - 4R{sub μν}{sup 2} + R{sup 2}) we obtain a theory that is scale invariant up to a total divergence. Integration of the φ{sub a} field equation leads to an integration constant that breaks the global scale symmetry. We discuss the stabilizing effects of the coupling of the dilaton to the GB-topological density on the vacua with a very small cosmological constant and the resolution of the 'TMT Vacuum-Manifold Problem' which exists in the zero cosmological-constant vacuum limit. This problem generically arises from an effective potential that is a perfect square, and it gives rise to a vacuum manifold instead of a unique vacuum solution in the presence of many different scalars, like the dilaton, the Higgs, etc. In the non-zero cosmological-constant case this problem disappears. Furthermore, the GB coupling to the dilaton eliminates flat directions in the effective potential, and it totally lifts the vacuum-manifold degeneracy. (orig.)

  3. Quaternionic non abelian relativistic quantum fields in four dimensions

    International Nuclear Information System (INIS)

    Albeverio, S.; Hoeegh-Krohn, R.

    1986-01-01

    We give a simple construction of certain Lie-group valued Euclidean Markov random fields and quantum fields in four dimensions. These fields can be looked upon as non abelian extensions of electromagnetic fields. (orig.)

  4. A new approach to non-Abelian hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Melgarejo, Jose J. [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Rey, Soo-Jong [School of Physics & Astronomy and Center for Theoretical Physics, Seoul National University,Seoul, 08826 (Korea, Republic of); Department of Fundamental Sciences, University of Science and Technology,Daejeon, 34113 (Korea, Republic of); Center for Gauge, Gravity & Strings, Institute for Basic Sciences,Daejeon, 34047 (Korea, Republic of); Surówka, Piotr [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, D-80805 Munich (Germany)

    2017-02-23

    We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

  5. A new approach to non-Abelian hydrodynamics

    International Nuclear Information System (INIS)

    Fernández-Melgarejo, Jose J.; Rey, Soo-Jong; Surówka, Piotr

    2017-01-01

    We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a manifold of non-Abelian isometry, we obtain a four-dimensional colored dissipative fluid coupled to Yang-Mills gauge field. We derive transport coefficients of resulting colored fluid, which feature non-Abelian character of color charges. In particular, we obtain color-specific terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. We argue that our Kaluza-Klein approach provides a robust description of non-Abelian hydrodynamics, and discuss some links between this system and quark-gluon plasma and fluid/gravity duality.

  6. Local observables in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Sharatchandra, H.S.

    1981-09-01

    Labelling of the physical states of a non-Abelian gauge theory on a lattice in terms of local observables in considered. The labelling is in terms of local color electric field observables and (separately) local color magnetic field observables. Matter field is also included. The non-local variables required when space is multiply-connected, are specified. Non-Abelian version of the Stokes' theorem is considered. Relevance to the continuum theory is discussed in detail. (orig.)

  7. Collision dynamics of two-dimensional non-Abelian vortices

    Science.gov (United States)

    Mawson, Thomas; Petersen, Timothy C.; Simula, Tapio

    2017-09-01

    We study computationally the collision dynamics of vortices in a two-dimensional spin-2 Bose-Einstein condensate. In contrast to Abelian vortex pairs, which annihilate or pass through each other, we observe non-Abelian vortex pairs to undergo rungihilation—an event that converts the colliding vortices into a rung vortex. The resulting rung defect subsequently decays to another pair of non-Abelian vortices of different type, accompanied by a magnetization reversal.

  8. Non-Abelian Gauge Theory in the Lorentz Violating Background

    Science.gov (United States)

    Ganai, Prince A.; Shah, Mushtaq B.; Syed, Masood; Ahmad, Owais

    2018-03-01

    In this paper, we will discuss a simple non-Abelian gauge theory in the broken Lorentz spacetime background. We will study the partial breaking of Lorentz symmetry down to its sub-group. We will use the formalism of very special relativity for analysing this non-Abelian gauge theory. Moreover, we will discuss the quantisation of this theory using the BRST symmetry. Also, we will analyse this theory in the maximal Abelian gauge.

  9. Some aspects of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Tyburski, L.J.

    1976-01-01

    Two aspects of the theory of non-Abelian gauge fields are considered. In the first part, the fermion-fermion scattering amplitude is calculated for a non-Abelian gauge theory with SU(N) gauge symmetry in the limit of high energy with fixed momentum transfer through sixth order in the coupling constant. Only the leading logarithmic terms in each order of perturbation theory are kept. To avoid the infrared problem, the Higgs mechanism is invoked to give masses to the vector bosons of the theory. It is found that the scattering amplitude exponentiates to a Regge form. This result is qualitatively different from an earlier published calculation. In the second part of the thesis, we consider fermion-fermion scattering in a non-Abelian gauge theory with massless vector bosons, and demonstrate that for physically measurable cross sections the infrared divergences of the theory cancel out to lowest nontrivial order

  10. Problem of colour confinement in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Gribov, V.N.

    1978-01-01

    The problem of the colour confinement in the non-abelian gauge theories is studied. A more rigorous treatment of the Fadeev-Popov procedure for the quantization of the non-abelian gauge theories is presented. In the improved procedure one has to introduce additional bounds on the region of integration in the functional space of non-abelian fields. The integration is to be performed over the fields with positive-definite Faddeev-Popov determinant. This limitation has little influence on oscillations with high frequencies, but reduces drastically the amplitudes of low-frequency oscillations. This implies, that interaction of two colour charges does not go into infinity at finite distances, rather it is linearly rising with distance

  11. Physics of the Non-Abelian Coulomb Phase

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.; Shrock, Robert

    2018-01-01

    are applied to obtain further estimates of $\\gamma_{\\bar\\psi\\psi,IR}$ and $\\beta'_{IR}$ for several SU($N_c$) groups and representations $R$, and comparisons are made with lattice measurements. We apply our results to obtain new estimates of the extent of the respective non-Abelian Coulomb phases in several....... It is shown that an expansion of $\\gamma_{\\bar\\psi\\psi,IR}$ to $O(\\Delta_f^4)$ is quite accurate throughout the entire non-Abelian Coulomb phase of this supersymmetric theory....

  12. Fluctuations from dissipation in a hot non-Abelian plasma

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Manuel, Cristina

    2000-01-01

    We consider a transport equation of the Boltzmann-Langevin type for non-Abelian plasmas close to equilibrium to derive the spectral functions of the underlying microscopic fluctuations from the entropy. The correlator of the stochastic source is obtained from the dissipative processes in the plasma. This approach, based on classical transport theory, exploits the well-known link between a linearized collision integral, the entropy and the spectral functions. Applied to the ultra-soft modes of a hot non-Abelian (classical or quantum) plasma, the resulting spectral functions agree with earlier findings obtained from the microscopic theory. As a by-product, it follows that theorem.

  13. Non-Abelian gauge theory of fields associated with dyons

    International Nuclear Information System (INIS)

    Rajput, B.S.; Kumar, S.R.

    1983-01-01

    A suitable Lorentz invariant non-Abelian gauge theory of the fields associated with dyons has been constructed to describe the dual dynamics between colour isocharges and topological charges. It has been shown that the generalized particle current is gauge covariant and not conserved in non-Abelian theory. It has also been shown that in this theory the unphysical string variables and unphysical charged fields are not needed and that any extra constraint to maintain the dual symmetry of field equation and Lagrangian is also not needed. (author)

  14. Mesons from (non) Abelian T-dual backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Itsios, Georgios [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista, R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil); Department of Physics, University of Oviedo,Avda. Calvo Sotelo 18, 33007 Oviedo (Spain); Núñez, Carlos [Department of Physics, Swansea University,Swansea SA2 8PP (United Kingdom); Zoakos, Dimitrios [Centro de Física do Porto, Universidade do Porto,Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2017-01-03

    In this work we study mesonic excitations in a Quantum Field Theory dual to the non Abelian T-dual of AdS{sub 5}×S{sup 5}, using a D6 brane probe on the Sfetsos-Thompson background. Before and after the duality, we observe interesting differences between the spectra and interpret them. The spectrum of masses and the interactions between mesonic excitations teach valuable lessons about the character of non-Abelian T-duality and its implications for Holography. The case of Abelian T-duality is also studied.

  15. High-energy behavior of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Nieh, H.T.; Yao, Y.

    1976-01-01

    This paper is a detailed account of a study in perturbation theory of the high-energy behavior of non-Abelian gauge theories. The fermion-fermion scattering amplitude is calculated up to sixth order in the coupling constant in the high-energy limit s → infinity with fixed t, in the approximation of keeping only the leading logarithmic terms. Results indicate that the high-energy behavior of non-Abelian gauge theories are complicated, and quite different from the known behaviors of other field theories studied so far

  16. Fermion-dyon dynamics in non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Pant, P.C.; Pandey, V.P.; Rajput, B.S.

    1999-01-01

    The study of behaviour of a fermion in the field of non-Abelian dyon has been undertaken in Lagrangian and Hamiltonian formulation. Solving Dirac equation, expression for energy Eigen value has been obtained and the Hamiltonian of this system has been shown to involve spin as well as contribution of massive fields associated with these particles. By introducing suitable spinors, the Pauli equation for a dyon moving in the field of fermion has been solved in non-Abelian gauge gauge theory and it is shown that introduction of massive fields perceptibly modifies the energy Eigen value and Eigen function of bound states of the system. (author)

  17. Non-Abelian Dynamics and Heavy Multiquarks

    International Nuclear Information System (INIS)

    Richard, J. M.

    2011-01-01

    A brief review is first presented of attempts to predict stable multiquark states within current models of hadron spectroscopy. Then a model combining flip-flop and connected Steiner trees is introduced and shown to lead to stable multiquarks, in particular for some configurations involving several heavy quarks and bearing exotic quantum numbers. (author)

  18. Oscillator as a hidden non-Abelian monopole

    International Nuclear Information System (INIS)

    Mardoyan, L.G.; Sisakyan, A.N.; Ter-Antonyan, V.M.

    1996-01-01

    A non-Abelian SU(2) model is constructed for a five-dimensional bound system 'charge-dyon' on the basis of the Hurwitz-transformed eight-dimensional isotropic quantum oscillator. The principle of dyon-oscillator duality is formulated; the energy spectrum and wave functions of the system 'charge-dyon' are calculated. 20 refs

  19. The chiral bosonization in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Novozhilov, Y.

    1985-01-01

    The chiral bosonization in non-Abelian gauge theories is described starting directly from the QCD functional. For a given mass scale Λ, the QCD may be equivalently represented by colour chiral fields, gauge fields and high energy fermions. The effective action for colour chiral fields may admit the existence of a colour Skyrmion-boson with the baryon number 2/3. (author)

  20. Perturbative analysis of non-Abelian Aharonov-Bohm scattering

    International Nuclear Information System (INIS)

    Bak, D.; Bergman, O.

    1995-01-01

    We perform a perturbative analysis of the non-Abelian Aharonov-Bohm problem to one loop in the framework of a local field theory, and show the necessity of contact interactions for renormalizability of perturbation theory. Moreover at critical values of the contact interaction strength the theory is finite and preserves classical conformal invariance

  1. Non-abelian bosonization and higher spin symmetries

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1995-03-01

    The higher spin properties of the non-abelian bosonization in the classical theory are investigated. Both the symmetry transformation algebra and the classical current algebra for the non-abelian free fermionic model are linear Gel'fand-Dickey type algebras. However, for the corresponding WZNW model these algebras are different. There exist symmetry transformations which algebra remains the linear Gel'fand-Dickey algebra while in the corresponding current algebra nonlinear terms arised. Moreover, this algebra is closed (in Casimir form) only in an extended current space in which nonlinear currents are included. In the affine sector, it is necessary to include higher isotopic spin current too. As result we have have a triple extended algebra. (author). 30 refs

  2. Non-Abelian magnetized blackholes and unstable attractors

    International Nuclear Information System (INIS)

    Mosaffa, A.E.; Randjbar-Daemi, S.; Sheikh-Jabbari, M.M.

    2006-12-01

    Fluctuations of non-Abelian gauge fields in a background magnetic flux contain tachyonic modes and hence the background is unstable. We extend these results to the cases where the background flux is coupled to Einstein gravity and show that the corresponding spherically symmetric geometries, which in the absence of a cosmological constant are of the form of Reissner-Nordstroem blackholes or the AdS 2 x S 2 , are also unstable. We discuss the relevance of these instabilities to several places in string theory including various string compactifications and the attractor mechanism. Our results for the latter imply that the attractor mechanism shown to work for the extremal Abelian charged blackholes, cannot be applied in a straightforward way to the extremal non-Abelian colored blackholes. (author)

  3. Non-Abelian gauge fields in two spatial dimensions

    International Nuclear Information System (INIS)

    Hagen, C.R.

    1987-01-01

    Generalizing an earlier work on the Abelian case the most general non-Abelian gauge theory in two spatial dimensions is derived. It is shown that local gauge invariance leads to a new term in the action which in turn requires that the gauge current operator have a part which is bilinear in the non-Abelian gauge field-strength tensor. Although a radiation (or axial) gauge quantization is possible, this approach is found not to yield the maximal set of commutation relations among the basic fields. The latter goal can be accomplished only by a rather unusual gauge choice which has not previously been studied. Quantization conditions on the coupling constant implied by invariance under large gauge transformations are also derived

  4. Vortices and quark confinement in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1976-01-01

    Non-Abelian vortices of the type proposed by Nielsen and Olesen are discussed. It is shown that the vortices must contain a single unit of quantized flux absorbed by a Dirac monopole at each end. The monopoles satisfy a confinement condition; if quark numbers are assigned to the monopoles, is is found that the model contains a natural explanation of quark confinement. The I-spin variables associated with the non-Abelian gauge field correspond to the colour degree freedom. An alternative model in which (colour) charges and monopoles are interchanged is also suggested. The Higgs field which breaks the degeneracy of the vacuum is replaced by an operator which creates monopoles of the type suggested by 't Hooft. In such a model colour might be confined. The investigations are at a very preliminary stage, but the model appears to offer a natural explanation of confinement without the explicit introduction of monopole fields. (Auth.)

  5. Topological insulating phases of non-Abelian anyonic chains

    Energy Technology Data Exchange (ETDEWEB)

    DeGottardi, Wade

    2014-08-01

    Boundary conformal field theory is brought to bear on the study of topological insulating phases of non- Abelian anyonic chains. These phases display protected anyonic end modes. We consider spin-1/2 su(2)t chains at any level k, focusing on the most prominent examples: the case k = 2 describes Ising anyons (equivalent to Majorana fermions) and k = 3 corresponds to Fibonacci anyons. The method we develop is quite general and rests on a deep connection between boundary conformal field theory and topological symmetry. This method tightly constrains the nature of the topological insulating phases of these chains for general k. Emergent anyons which arise at domain walls are shown to have the same braiding properties as the physical quasiparticles. This suggests a "solid-stat.e" topological quantum computation scheme in which emergent anyons are braided by tuning the couplings of non-Abelian quasiparticles in a fixed network.

  6. Pair creation by an external non-Abelian field

    International Nuclear Information System (INIS)

    Hamil, B; Chetouani, L

    2014-01-01

    The problem of the creation of particle pairs of spin 0 and 1/2 from the vacuum by an external field of a non-Abelian type plane wave on the light cone is considered following the approach of Schwinger. Using simple shifts and only by an algebraic calculation, it is shown that with this form of interaction, there is no creation of particles. (paper)

  7. Construction of non-Abelian gauge theories on noncommutative spaces

    International Nuclear Information System (INIS)

    Jurco, B.; Schupp, P.; Moeller, L.; Wess, J.; Max-Planck-Inst. fuer Physik, Muenchen; Humboldt-Univ., Berlin; Schraml, S.; Humboldt-Univ., Berlin

    2001-01-01

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)

  8. Construction of non-Abelian gauge theories on noncommutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B.; Schupp, P. [Sektion Physik, Muenchen Univ. (Germany); Moeller, L.; Wess, J. [Sektion Physik, Muenchen Univ. (Germany); Max-Planck-Inst. fuer Physik, Muenchen (Germany); Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Schraml, S. [Sektion Physik, Muenchen Univ. (Germany)

    2001-06-01

    We present a formalism to explicitly construct non-Abelian gauge theories on noncommutative spaces (induced via a star product with a constant Poisson tensor) from a consistency relation. This results in an expansion of the gauge parameter, the noncommutative gauge potential and fields in the fundamental representation, in powers of a parameter of the noncommutativity. This allows the explicit construction of actions for these gauge theories. (orig.)

  9. Non Abelian T-duality in Gauged Linear Sigma Models

    Science.gov (United States)

    Bizet, Nana Cabo; Martínez-Merino, Aldo; Zayas, Leopoldo A. Pando; Santos-Silva, Roberto

    2018-04-01

    Abelian T-duality in Gauged Linear Sigma Models (GLSM) forms the basis of the physical understanding of Mirror Symmetry as presented by Hori and Vafa. We consider an alternative formulation of Abelian T-duality on GLSM's as a gauging of a global U(1) symmetry with the addition of appropriate Lagrange multipliers. For GLSMs with Abelian gauge groups and without superpotential we reproduce the dual models introduced by Hori and Vafa. We extend the construction to formulate non-Abelian T-duality on GLSMs with global non-Abelian symmetries. The equations of motion that lead to the dual model are obtained for a general group, they depend in general on semi-chiral superfields; for cases such as SU(2) they depend on twisted chiral superfields. We solve the equations of motion for an SU(2) gauged group with a choice of a particular Lie algebra direction of the vector superfield. This direction covers a non-Abelian sector that can be described by a family of Abelian dualities. The dual model Lagrangian depends on twisted chiral superfields and a twisted superpotential is generated. We explore some non-perturbative aspects by making an Ansatz for the instanton corrections in the dual theories. We verify that the effective potential for the U(1) field strength in a fixed configuration on the original theory matches the one of the dual theory. Imposing restrictions on the vector superfield, more general non-Abelian dual models are obtained. We analyze the dual models via the geometry of their susy vacua.

  10. Non-Abelian duality in N = 4 supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Dorey, Nicholas; Fraser, Christophe; Hollowood, Timithy J.; Kneipp, Marco A.C.

    1996-03-01

    A semi-classical check of the Goddard-Nuyts-Olive (GNO) generalized duality conjecture for gauge theories with adjoint Higgs fields is performed for the case where the unbroken gauge group is non-Abelian. The monopole solutions of the theory transform under the non-Abelian part of the unbroken global symmetry and the associated component of the moduli space is a Lie group coset space. The well-known problems in introducing collective coordinates for these degrees-of-freedom are solved by considering suitable multi monopole configurations in which the long-range non-Abelian fields cancel. In the context of an N = 4 supersymmetric gauge theory, the multiplicity of BPS saturated states is given by the number of ground-states of a supersymmetric quantum mechanics on the compact internal moduli space. The resulting degeneracy is expressed as the Euler character of the coset space. In all cases the number of states is consistent with the dimensions of the multiplets of the unbroken dual gauge group, and hence the results provide strong support for the GNO conjecture. (author). 39 refs

  11. Classical and quantum mechanics of non-abelian gauge fields

    International Nuclear Information System (INIS)

    Savvidy, G.K.

    1984-01-01

    Classical and quantum mechanics of non-abelian gauge fields are investigated both with and without spontaneous symmetry breaking. The fundamental subsystem (FS) of Yang-Mills classical mechanics (YMCM) is considered. It is shown to be a Kolmogorov K-system, and hence to have strong statistical properties. Integrable systems are also found, to which in terms of KAM theory Yang-Mills-Higgs classical mechanics (YMHCM) is close. Quantum-mechanical properties of the YM system and their relation to the problem of confinement are discussed. (orig.)

  12. Semiclassical strings and non-Abelian T-duality

    Directory of Open Access Journals (Sweden)

    S. Zacarías

    2014-10-01

    Full Text Available We study semiclassical strings in the Klebanov–Witten and in the non-Abelian T-dual Klebanov–Witten backgrounds. We show that both backgrounds share a subsector of equivalent states up to conditions on the T-dual coordinates. We also analyse string configurations where the strings are stretched along the T-dual coordinates. This semiclassical analysis predicts the existence of (almost chiral primary operators for the dual superconformal field theory whose (anomalous bare dimensions depend on the T-dual coordinates. We briefly discuss the Penrose limit of the dualised background.

  13. The non-Abelian gauge theory of matrix big bangs

    Science.gov (United States)

    O'Loughlin, Martin; Seri, Lorenzo

    2010-07-01

    We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantization to singular homogeneous plane waves. The non-Abelian nature of this theory is known to be important for physics near the singularity, at least as far as the number of degrees of freedom is concerned. We will show that the quartic interaction is always subleading as one approaches the singularity and that close enough to t = 0 the evolution is driven by the diverging tachyonic mass term. The evolution towards asymptotically flat space-time also reveals some surprising features.

  14. Abelian versus non-abelian Higgs model in three dimensions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Philipsen, O.

    1995-04-01

    We study the phase structure of the abelian Higgs model in three dimensions based on perturbation theory and a set of gauge independent gap equations for Higgs boson and vector boson masses. Contrary to the non-abelian Higgs model, the vector boson mass vanishes in the symmetric phase. In the Higgs phase the gap equations yield masses consistent with perturbation theory. The phase transition is first-order for small values of the scalar self-coupling λ, where the employed loop expansion is applicable. (orig.)

  15. Flavored gauge mediation with discrete non-Abelian symmetries

    Science.gov (United States)

    Everett, Lisa L.; Garon, Todd S.

    2018-05-01

    We explore the model building and phenomenology of flavored gauge-mediation models of supersymmetry breaking in which the electroweak Higgs doublets and the S U (2 ) messenger doublets are connected by a discrete non-Abelian symmetry. The embedding of the Higgs and messenger fields into representations of this non-Abelian Higgs-messenger symmetry results in specific relations between the Standard Model Yukawa couplings and the messenger-matter Yukawa interactions. Taking the concrete example of an S3 Higgs-messenger symmetry, we demonstrate that, while the minimal implementation of this scenario suffers from a severe μ /Bμ problem that is well known from ordinary gauge mediation, expanding the Higgs-messenger field content allows for the possibility that μ and Bμ can be separately tuned, allowing for the possibility of phenomenologically viable models of the soft supersymmetry-breaking terms. We construct toy examples of this type that are consistent with the observed 125 GeV Higgs boson mass.

  16. Top quark asymmetry from a non-Abelian horizontal symmetry

    CERN Document Server

    Jung, Sunghoon; Wells, James D

    2011-01-01

    Motivated by the persistence of a large measured top quark forward-backward asymmetry at the Tevatron, we examine a model of non-Abelian flavor gauge symmetry. The exchange of the gauge bosons in the $t$-channel can give a large $\\Afb$ due to the forward Rutherford scattering peak. We address generic constraints on non-Abelian $t$-channel physics models including flavor diagonal resonances and potentially dangerous contributions to inclusive top pair cross sections. We caution on the general difficulty of comparing theoretical predictions for top quark signals to the existing experimental results due to potentially important acceptance effects. The first signature at the Large Hadron Collider can be a large inclusive top pair cross section, or like-sign dilepton events, although the latter signal is much smaller than in Abelian models. Deviations of the invariant mass distributions at the LHC will also be promising signatures. A more direct consistency check of the Tevatron asymmetry through the LHC asymmetry...

  17. Non-Abelian integrable hierarchies: matrix biorthogonal polynomials and perturbations

    Science.gov (United States)

    Ariznabarreta, Gerardo; García-Ardila, Juan C.; Mañas, Manuel; Marcellán, Francisco

    2018-05-01

    In this paper, Geronimus–Uvarov perturbations for matrix orthogonal polynomials on the real line are studied and then applied to the analysis of non-Abelian integrable hierarchies. The orthogonality is understood in full generality, i.e. in terms of a nondegenerate continuous sesquilinear form, determined by a quasidefinite matrix of bivariate generalized functions with a well-defined support. We derive Christoffel-type formulas that give the perturbed matrix biorthogonal polynomials and their norms in terms of the original ones. The keystone for this finding is the Gauss–Borel factorization of the Gram matrix. Geronimus–Uvarov transformations are considered in the context of the 2D non-Abelian Toda lattice and noncommutative KP hierarchies. The interplay between transformations and integrable flows is discussed. Miwa shifts, τ-ratio matrix functions and Sato formulas are given. Bilinear identities, involving Geronimus–Uvarov transformations, first for the Baker functions, then secondly for the biorthogonal polynomials and its second kind functions, and finally for the τ-ratio matrix functions, are found.

  18. Non-Abelian vortices in N=1* gauge theory

    International Nuclear Information System (INIS)

    Markov, V.; Marshakov, A.; Yung, A.

    2005-01-01

    We consider the N=1* supersymmetric SU(2) gauge theory and demonstrate that the Z2 vortices in this theory acquire orientational zero modes, associated with the rotation of magnetic flux inside SU(2) group, and turn into the non-Abelian strings, when the masses of all chiral fields become equal. These non-Abelian strings are not BPS-saturated. We study the effective theory on the string world sheet and show that it is given by two-dimensional non-supersymmetric O(3) sigma model. The confined 't Hooft-Polyakov monopole is seen as a junction of the Z2-string and anti-string, and as a kink in the effective world sheet sigma model. We calculate its mass and show that besides the four-dimensional confinement of monopoles, they are also confined in the two-dimensional theory: the monopoles stick to anti-monopoles to form the meson-like configurations on the strings they are attached to

  19. Higgs phase in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kaymakcalan, O.S.

    1981-06-01

    A non-Abelian gauge theory involving scalar fields with non-tachyonic mass terms in the Lagrangian is considered, in order to construct a finite energy density trial vacuum for this theory. The usual scalar potential arguments suggest that the vacuum of such a theory would be in the perturbative phase. However, the obvious choices for a vacuum in this phase, the Axial gauge and the Coulomb gauge bare vacua, do not have finite energy densities even with an ultraviolet cutoff. Indeed, it is a non-trivial problem to construct finite energy density vacua for non-Abelian gauge theories and this is intimately connected with the gauge fixing degeneracies of these theories. Since the gauge fixing is achieved in the Unitary gauge, this suggests that the Unitary gauge bare vacuum might be a finite energy trial vacuum and, despite the form of the scalar potential, the vacuum of this theory might be in a Higgs phase rather than the perturbative phase

  20. Error Correction for Non-Abelian Topological Quantum Computation

    Directory of Open Access Journals (Sweden)

    James R. Wootton

    2014-03-01

    Full Text Available The possibility of quantum computation using non-Abelian anyons has been considered for over a decade. However, the question of how to obtain and process information about what errors have occurred in order to negate their effects has not yet been considered. This is in stark contrast with quantum computation proposals for Abelian anyons, for which decoding algorithms have been tailor-made for many topological error-correcting codes and error models. Here, we address this issue by considering the properties of non-Abelian error correction, in general. We also choose a specific anyon model and error model to probe the problem in more detail. The anyon model is the charge submodel of D(S_{3}. This shares many properties with important models such as the Fibonacci anyons, making our method more generally applicable. The error model is a straightforward generalization of those used in the case of Abelian anyons for initial benchmarking of error correction methods. It is found that error correction is possible under a threshold value of 7% for the total probability of an error on each physical spin. This is remarkably comparable with the thresholds for Abelian models.

  1. Neutrino oscillations from discrete non-Abelian family symmetries

    International Nuclear Information System (INIS)

    Schmaltz, M.

    1994-11-01

    The author discusses a SUSY-GUT model with a non-Abelian discrete family symmetry that explains the observed hierarchical pattern of quark and lepton masses. This SO(10) x Δ(75) model predicts modified quadratic seesaw neutrino masses and mixing angles which are interesting for three reasons: (1) they offer a solution to the solar neutrino problem, (2) the tau neutrino has the right mass for a cosmologically interesting hot dark matter candidate, and (3) they suggest a positive result for the ν μ → ν τ oscillation searches by the CHORUS and NOMAD collaborations. However, the model shares some problems with many other predictive GUT models of quark and lepton masses. Well-known and once successful mass and angle relations, such as the SU(5) relation λ b GUT = λ t GUT , are found to be in conflict with the current experimental status. Attempts to correct these relations seem to lead to rather contrived models

  2. Critical string from non-Abelian vortex in four dimensions

    Directory of Open Access Journals (Sweden)

    M. Shifman

    2015-11-01

    Full Text Available In a class of non-Abelian solitonic vortex strings supported in certain N=2 super-Yang–Mills theories we search for the vortex which can behave as a critical fundamental string. We use the Polchinski–Strominger criterion of the ultraviolet completeness. We identify an appropriate four-dimensional bulk theory: it has the U(2 gauge group, the Fayet–Iliopoulos term and four flavor hypermultiplets. It supports semilocal vortices with the world-sheet theory for orientational (size moduli described by the weighted CP(2,2 model. The latter is superconformal. Its target space is six-dimensional. The overall Virasoro central charge is critical. We show that the world-sheet theory on the vortex supported in this bulk model is the bona fide critical string.

  3. Topological degeneracy of non-Abelian states for dummies

    International Nuclear Information System (INIS)

    Oshikawa, Masaki; Kim, Yong Baek; Shtengel, Kirill; Nayak, Chetan; Tewari, Sumanta

    2007-01-01

    We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O., T. Senthil, Phys. Rev. Lett. 96 (2006) 060601] which relates fractionalization and topological order. The nontrivial groundstate degeneracy obtained by Read and Green [Phys. Rev. B 61 (2000) 10267] based on differential geometry is reproduced exactly. Some restrictions on the statistics, due to the fractional charge of the quasiparticle are also discussed. Furthermore, the groundstate degeneracy of the p + ip superconductor in two dimensions, which is closely related to the Pfaffian states, is discussed with a similar construction

  4. Topological degeneracy of non-Abelian states for dummies

    Science.gov (United States)

    Oshikawa, Masaki; Kim, Yong Baek; Shtengel, Kirill; Nayak, Chetan; Tewari, Sumanta

    2007-06-01

    We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O., T. Senthil, Phys. Rev. Lett. 96 (2006) 060601] which relates fractionalization and topological order. The nontrivial groundstate degeneracy obtained by Read and Green [Phys. Rev. B 61 (2000) 10267] based on differential geometry is reproduced exactly. Some restrictions on the statistics, due to the fractional charge of the quasiparticle are also discussed. Furthermore, the groundstate degeneracy of the p + i p superconductor in two dimensions, which is closely related to the Pfaffian states, is discussed with a similar construction.

  5. Hidden singularities in non-abelian gauge fields

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.; Tiomno, J.

    1978-01-01

    It is shown that the potential (and field) of a non-abelian gauge theory is not well determined when it has a singular point. When this is the cause, it is important to specify the regularization procedure used to give a precise definition of physical quantities at the singularity at any stage of the computation. The fact that a certain A sub(μ) (associated with the given regularization) represents the vacuum when F sub(μν) is a zero distribution not only on the global space but also in all its projections to arbitrary subspaces is discussed. The example used as a base for the discussion is A vetor = i (sigma vetor Λ r vetor / r 2 ). For this example it is shown that different regularizations give the same field in the global space but they give different distributions when projected to subspaces containing the singular point [pt

  6. Dual potentials in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Caticha, A.

    1988-01-01

    Motivated by the possibility that confinement and superconductivity are similar phenomena, dual potentials are introduced into Yang-Mills theory in two different ways. Both are extensions of Zwanziger's two-potential formalism for Abelian charges and monopoles to the non-Abelian case. In the first approach the dual potentials carry a color index and there is a rather simple, although nonlocal, dual-variable formulation. In the second approach dual variables are introduced into the so-called Abelian projection of the SU(2) Yang-Mills theory. An interesting feature is that the quartic contact interactions are absent and there is a special gauge choice for which the theory takes on a ''purely electromagnetic'' form. More important, however, is the appearance of an additional Abelian magnetic gauge symmetry the dynamical breaking of which may be associated with confinement

  7. Neutrino oscillations from discrete non-Abelian family symmetries

    International Nuclear Information System (INIS)

    Schmaltz, M.

    1995-01-01

    I disuss a SUSY GUT model with a non-Abelian discrete family symmetry that explains the observed hierarchical pattern of quark and lepton masses. This SO(10)xΔ(75) model predicts modified quadratic seesaw neutrino masses and mixing angles which are interesting for three reasons: (i) they offer a solution to the solar neutrino problem, (ii) the τ neutrino has the right mass for a cosmologically interesting hot dark matter candidate, and (iii) they suggest a positive result for the ν μ →ν τ oscillation searches by the CHORUS and NOMAD Collaborations. However, the model shares some problems with many other predictive GUT models of quark and lepton masses. The predictions from well-known mass and angle relations, such as the relation λ b GUT =λ τ GUT , fail in many cases. Attempts to correct these relations seem to lead to rather contrived models

  8. Comment on the Adler-Bardeen theorem in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1981-09-01

    It is pointed out that the constructive proof of the Adler-Bardeen theorem for the chiral and scale (counting identity) anomalies in non-Abelian gauge theories proceeds just as in the spinor electrodynamics, although several interesting features characteristic of non-Abelian theories appear. (author)

  9. Non-Abelian Kubo formula and the multiple time-scale method

    International Nuclear Information System (INIS)

    Zhang, X.; Li, J.

    1996-01-01

    The non-Abelian Kubo formula is derived from the kinetic theory. That expression is compared with the one obtained using the eikonal for a Chern endash Simons theory. The multiple time-scale method is used to study the non-Abelian Kubo formula, and the damping rate for longitudinal color waves is computed. copyright 1996 Academic Press, Inc

  10. An introduction to non-Abelian discrete symmetries for particle physicists

    CERN Document Server

    Ishimori, Hajime; Ohki, Hiroshi; Okada, Hiroshi; Shimizu, Yusuke; Tanimoto, Morimitsu

    2012-01-01

    These lecture notes provide a tutorial review of non-Abelian discrete groups and show some applications to issues in physics where discrete symmetries constitute an important principle for model building in particle physics. While Abelian discrete symmetries are often imposed in order to control couplings for particle physics - in particular model building beyond the standard model - non-Abelian discrete symmetries have been applied to understand the three-generation flavor structure in particular. Indeed, non-Abelian discrete symmetries are considered to be the most attractive choice for the flavor sector: model builders have tried to derive experimental values of quark and lepton masses, and mixing angles by assuming non-Abelian discrete flavor symmetries of quarks and leptons, yet, lepton mixing has already been intensively discussed in this context, as well. The possible origins of the non-Abelian discrete symmetry for flavors is another topic of interest, as they can arise from an underlying theory -...

  11. Standard Model-like corrections to Dilatonic Dynamics

    DEFF Research Database (Denmark)

    Antipin, Oleg; Krog, Jens; Mølgaard, Esben

    2013-01-01

    the same non-abelian global symmetries as a technicolor-like theory with matter in a complex representation of the gauge group. We then embed the electroweak gauge group within the global flavor structure and add also ordinary quark-like states to mimic the effects of the top. We find that the standard...... model-like induced corrections modify the original phase diagram and the details of the dilatonic spectrum. In particular, we show that the corrected theory exhibits near-conformal behavior for a smaller range of flavors and colors. For this range of values, however, our results suggest that near...

  12. Unveiling a spinor field classification with non-Abelian gauge symmetries

    Science.gov (United States)

    Fabbri, Luca; da Rocha, Roldão

    2018-05-01

    A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.

  13. Non-Abelian strategies in quantum penny flip game

    Science.gov (United States)

    Mishima, Hiroaki

    2018-01-01

    In this paper, we formulate and analyze generalizations of the quantum penny flip game. In the penny flip game, one coin has two states, heads or tails, and two players apply alternating operations on the coin. In the original Meyer game, the first player is allowed to use quantum (i.e., non-commutative) operations, but the second player is still only allowed to use classical (i.e., commutative) operations. In our generalized games, both players are allowed to use non-commutative operations, with the second player being partially restricted in what operators they use. We show that even if the second player is allowed to use "phase-variable" operations, which are non-Abelian in general, the first player still has winning strategies. Furthermore, we show that even when the second player is allowed to choose one from two or more elements of the group U(2), the second player has winning strategies under certain conditions. These results suggest that there is often a method for restoring the quantum state disturbed by another agent.

  14. Scalar formalism for non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Hostler, L.C.

    1986-01-01

    The gauge field theory of an N-dimensional multiplet of spin- 1/2 particles is investigated using the Klein--Gordon-type wave equation ]Pi x (1+isigma) x Pi+m 2 ]Phi = 0, Pi/sub μ/equivalentpartial/partialix/sub μ/-eA/sub μ/, investigated before by a number of authors, to describe the fermions. Here Phi is a 2 x 1 Pauli spinor, and sigma repesents a Lorentz spin tensor whose components sigma/sub μ//sub ν/ are ordinary 2 x 2 Pauli spin matrices. Feynman rules for the scalar formalism for non-Abelian gauge theory are derived starting from the conventional field theory of the multiplet and converting it to the new description. The equivalence of the new and the old formalism for arbitrary radiative processes is thereby established. The conversion to the scalar formalism is accomplished in a novel way by working in terms of the path integral representation of the generating functional of the vacuum tau-functions, tau(2,1, xxx 3 xxx)equivalent , where Psi/sub in/ is a Heisenberg operator belonging to a 4N x 1 Dirac wave function of the multiplet. The Feynman rules obtained generalize earlier results for the Abelian case of quantum electrodynamics

  15. Solution of the equations of motion for a super non-Abelian sigma model in curved background by the super Poisson-Lie T-duality

    International Nuclear Information System (INIS)

    Eghbali, Ali

    2015-01-01

    The equations of motion of a super non-Abelian T-dual sigma model on the Lie supergroup (C_1"1+A) in the curved background are explicitly solved by the super Poisson-Lie T-duality. To find the solution of the flat model we use the transformation of supercoordinates, transforming the metric into a constant one, which is shown to be a supercanonical transformation. Then, using the super Poisson-Lie T-duality transformations and the dual decomposition of elements of Drinfel’d superdouble, the solution of the equations of motion for the dual sigma model is obtained. The general form of the dilaton fields satisfying the vanishing β−function equations of the sigma models is found. In this respect, conformal invariance of the sigma models built on the Drinfel’d superdouble ((C_1"1+A) , I_(_2_|_2_)) is guaranteed up to one-loop, at least.

  16. New topological invariants for non-abelian antisymmetric tensor fields from extended BRS algebra

    International Nuclear Information System (INIS)

    Boukraa, S.; Maillet, J.M.; Nijhoff, F.

    1988-09-01

    Extended non-linear BRS and Gauge transformations containing Lie algebra cocycles, and acting on non-abelian antisymmetric tensor fields are constructed in the context of free differential algebras. New topological invariants are given in this framework. 6 refs

  17. The Weyl non-Abelian gauge field and the Thomas precession

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Pestov, A.B.

    1998-01-01

    The connection between the Fermi-Walker transport and the Weyl non-Abelian gauge field is established. A theoretical possibility of detecting the Weyl gauge field caused by the Thomas precession of a gyroscope is discussed

  18. A non-perturbative argument for the non-abelian Higgs mechanism

    Energy Technology Data Exchange (ETDEWEB)

    De Palma, G. [Scuola Normale Superiore, Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy); Strocchi, F., E-mail: franco.strocchi@sns.it [INFN, Sezione di Pisa, Pisa (Italy)

    2013-09-15

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.

  19. A non-perturbative argument for the non-abelian Higgs mechanism

    International Nuclear Information System (INIS)

    De Palma, G.; Strocchi, F.

    2013-01-01

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion

  20. Vertex operators, non-abelian orbifolds and the Riemann-Hilbert problem

    International Nuclear Information System (INIS)

    Gato, B.; Massachusetts Inst. of Tech., Cambridge

    1990-01-01

    We show how to construct the oscillator part of vertex operators for the bosonic string moving on non-abelian orbifolds, using the conserved charges method. When the three-string vertices are twisted by non-commuting group elements, the construction of the conserved charges becomes the Riemann-Hilbert problem with monodromy matrices given by the twists. This is solvable for any given configuration and any non-abelian orbifold. (orig.)

  1. Non-Abelian formulation of a vector-tensor gauge theory with topological coupling

    International Nuclear Information System (INIS)

    Barcelos Neto, J.; Cabo, A.; Silva, M.B.D.

    1995-08-01

    We obtain a non-Abelian version of a theory involving vector and tensor and tensor gauge fields interacting via a massive topological coupling, besides the nonminimum one. The new fact is that the non-Abelian theory is not reducible and Stuckelberg fields are introduced in order to compatibilize gauge invariance, nontrivial physical degrees of freedom and the limit of the Abelian case. (author). 9 refs

  2. Marginal and non-commutative deformations via non-abelian T-duality

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, Ben [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Strasse 27, 8093 Zürich (Switzerland); Thompson, Daniel C. [Theoretische Natuurkunde, Vrije Universiteit Brussel & The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2017-02-10

    In this short article we develop recent proposals to relate Yang-Baxter sigma-models and non-abelian T-duality. We demonstrate explicitly that the holographic space-times associated to both (multi-parameter)-β-deformations and non-commutative deformations of N=4 super Yang-Mills gauge theory including the RR fluxes can be obtained via the machinery of non-abelian T-duality in Type II supergravity.

  3. Non-Abelian gauge field theory in scale relativity

    International Nuclear Information System (INIS)

    Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry

    2006-01-01

    Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description

  4. Non-abelian dark sectors and their collider signatures

    International Nuclear Information System (INIS)

    Baumgart, Matthew; Cheung, Clifford; Ruderman, Joshua T.; Wang, Lian-Tao; Yavin, Itay

    2009-01-01

    Motivated by the recent proliferation of observed astrophysical anomalies, Arkani-Hamed et al. have proposed a model in which dark matter is charged under a non-abelian 'dark' gauge symmetry that is broken at ∼1 GeV. In this paper, we present a survey of concrete models realizing such a scenario, followed by a largely model-independent study of collider phenomenology relevant to the Tevatron and the LHC. We address some model building issues that are easily surmounted to accommodate the astrophysics. While SUSY is not necessary, we argue that it is theoretically well-motivated because the GeV scale is automatically generated. Specifically, we propose a novel mechanism by which mixed D-terms in the dark sector induce either SUSY breaking or a super-Higgs mechanism precisely at a GeV. Furthermore, we elaborate on the original proposal of Arkani-Hamed et al. in which the dark matter acts as a messenger of gauge mediation to the dark sector. In our collider analysis we present cross-sections for dominant production channels and lifetime estimates for primary decay modes. We find that dark gauge bosons can be produced at the Tevatron and the LHC, either through a process analogous to prompt photon production or through a rare Z decay channel. Dark gauge bosons will decay back to the SM via 'lepton jets' which typically contain >2 and as many as 8 leptons, significantly improving their discovery potential. Since SUSY decays from the MSSM will eventually cascade down to these lepton jets, the discovery potential for direct electroweak-ino production may also be improved. Exploiting the unique kinematics, we find that it is possible to reconstruct the mass of the MSSM LSP. We also present several non-SUSY and SUSY decay channels that have displaced vertices and lead to multiple leptons with partially correlated impact parameters.

  5. WIMPless dark matter from non-Abelian hidden sectors with anomaly-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Shadmi, Yael

    2011-01-01

    In anomaly-mediated supersymmetry breaking models, superpartner masses are proportional to couplings squared. Their hidden sectors therefore naturally contain WIMPless dark matter, particles whose thermal relic abundance is guaranteed to be of the correct size, even though they are not weakly interacting massive particles. We study viable dark matter candidates in WIMPless anomaly-mediated supersymmetry breaking models with non-Abelian hidden sectors and highlight unusual possibilities that emerge in even the simplest models. In one example with a pure SU(N) hidden sector, stable hidden gluinos freeze out with the correct relic density, but have an extremely low, but natural, confinement scale, providing a framework for self-interacting dark matter. In another simple scenario, hidden gluinos freeze out and decay to visible Winos with the correct relic density, and hidden glueballs may either be stable, providing a natural framework for mixed cold-hot dark matter, or may decay, yielding astrophysical signals. Last, we present a model with light hidden pions that may be tested with improved constraints on the number of nonrelativistic degrees of freedom. All of these scenarios are defined by a small number of parameters, are consistent with gauge coupling unification, preserve the beautiful connection between the weak scale and the observed dark matter relic density, and are natural, with relatively light visible superpartners. We conclude with comments on interesting future directions.

  6. Plasma instabilities and turbulence in non-Abelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, Sebastian Herwig Juergen

    2010-02-17

    Several aspects of the thermalisation process in non-Abelian gauge theories are investigated. Both numerical simulations in the classical statistical approximation and analytical computations in the framework of the two-particle-irreducible effective action are carried out and their results are compared to each other. The physical quantities of central importance are the correlation functions of the gauge field in Coulomb and temporal axial gauge as well as the gauge invariant energy-momentum tensor. Following a general introduction, the theoretical framework of the ensuing investigations is outlined. In doing so, the range of validity of the employed approximation schemes is discussed as well. The first main part of the thesis is concerned with the early stage of the thermalisation process where particular emphasis is on the role of plasma instabilities. These investigations are relevant to the phenomenological understanding of present heavy ion collision experiments. First, an ensemble of initial conditions motivated by the ''colour glass condensate'' is developed which captures characteristic properties of the plasma created in heavy ion collisions. Here, the strong anisotropy and the large occupation numbers of low-momentum degrees of freedom are to be highlighted. Numerical calculations demonstrate the occurrence of two kinds of instabilities. Primary instabilities result from the specific initial conditions. Secondary instabilities are caused by nonlinear fluctuation effects of the preceding primary instabilities. The time scale associated with the instabilities is of order 1 fm/c. It is shown that the plasma instabilities isotropize the initially strongly anisotropic ensemble in the domain of low momenta (

  7. Plasma instabilities and turbulence in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Scheffler, Sebastian Herwig Juergen

    2010-01-01

    Several aspects of the thermalisation process in non-Abelian gauge theories are investigated. Both numerical simulations in the classical statistical approximation and analytical computations in the framework of the two-particle-irreducible effective action are carried out and their results are compared to each other. The physical quantities of central importance are the correlation functions of the gauge field in Coulomb and temporal axial gauge as well as the gauge invariant energy-momentum tensor. Following a general introduction, the theoretical framework of the ensuing investigations is outlined. In doing so, the range of validity of the employed approximation schemes is discussed as well. The first main part of the thesis is concerned with the early stage of the thermalisation process where particular emphasis is on the role of plasma instabilities. These investigations are relevant to the phenomenological understanding of present heavy ion collision experiments. First, an ensemble of initial conditions motivated by the ''colour glass condensate'' is developed which captures characteristic properties of the plasma created in heavy ion collisions. Here, the strong anisotropy and the large occupation numbers of low-momentum degrees of freedom are to be highlighted. Numerical calculations demonstrate the occurrence of two kinds of instabilities. Primary instabilities result from the specific initial conditions. Secondary instabilities are caused by nonlinear fluctuation effects of the preceding primary instabilities. The time scale associated with the instabilities is of order 1 fm/c. It is shown that the plasma instabilities isotropize the initially strongly anisotropic ensemble in the domain of low momenta (< or similar 1 GeV). Essential results can be translated from the gauge group SU(2) to SU(3) by a simple rescaling procedure. Finally, the role of Nielsen-Olesen instabilities in an idealised setup is investigated. In the second part, the quasi

  8. Non-Abelian hydrodynamics and the flow of spin in spin-orbit coupled substances

    International Nuclear Information System (INIS)

    Leurs, B.W.A.; Nazario, Z.; Santiago, D.I.; Zaanen, J.

    2008-01-01

    Motivated by the heavy ion collision experiments there is much activity in studying the hydrodynamical properties of non-Abelian (quark-gluon) plasmas. A major question is how to deal with color currents. Although not widely appreciated, quite similar issues arise in condensed matter physics in the context of the transport of spins in the presence of spin-orbit coupling. The key insight is that the Pauli Hamiltonian governing the leading relativistic corrections in condensed matter systems can be rewritten in a language of SU(2) covariant derivatives where the role of the non-Abelian gauge fields is taken by the physical electromagnetic fields: the Pauli system can be viewed as Yang-Mills quantum-mechanics in a 'fixed frame', and it can be viewed as an 'analogous system' for non-Abelian transport in the same spirit as Volovik's identification of the He superfluids as analogies for quantum fields in curved space time. We take a similar perspective as Jackiw and coworkers in their recent study of non-Abelian hydrodynamics, twisting the interpretation into the 'fixed frame' context, to find out what this means for spin transport in condensed matter systems. We present an extension of Jackiw's scheme: non-Abelian hydrodynamical currents can be factored in a 'non-coherent' classical part, and a coherent part requiring macroscopic non-Abelian quantum entanglement. Hereby it becomes particularly manifest that non-Abelian fluid flow is a much richer affair than familiar hydrodynamics, and this permits us to classify the various spin transport phenomena in condensed matter physics in an unifying framework. The 'particle based hydrodynamics' of Jackiw et al. is recognized as the high temperature spin transport associated with semiconductor spintronics. In this context the absence of faithful hydrodynamics is well known, but in our formulation it is directly associated with the fact that the covariant conservation of non-Abelian currents turns into a disastrous non

  9. Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials

    International Nuclear Information System (INIS)

    Satija, Indubala I.; Dakin, Daniel C.; Clark, Charles W.

    2006-01-01

    We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. For Abelian gauges, such transitions occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum. Other key characteristics of the non-Abelian case include the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta

  10. Conformal field theory construction for non-Abelian hierarchy wave functions

    Science.gov (United States)

    Tournois, Yoran; Hermanns, Maria

    2017-12-01

    The fractional quantum Hall effect is the paradigmatic example of topologically ordered phases. One of its most fascinating aspects is the large variety of different topological orders that may be realized, in particular non-Abelian ones. Here we analyze a class of non-Abelian fractional quantum Hall model states which are generalizations of the Abelian Haldane-Halperin hierarchy. We derive their topological properties and show that the quasiparticles obey non-Abelian fusion rules of type su (q)k . For a subset of these states we are able to derive the conformal field theory description that makes the topological properties—in particular braiding—of the state manifest. The model states we study provide explicit wave functions for a large variety of interesting topological orders, which may be relevant for certain fractional quantum Hall states observed in the first excited Landau level.

  11. Fault-tolerant Greenberger-Horne-Zeilinger paradox based on non-Abelian anyons.

    Science.gov (United States)

    Deng, Dong-Ling; Wu, Chunfeng; Chen, Jing-Ling; Oh, C H

    2010-08-06

    We propose a scheme to test the Greenberger-Horne-Zeilinger paradox based on braidings of non-Abelian anyons, which are exotic quasiparticle excitations of topological states of matter. Because topological ordered states are robust against local perturbations, this scheme is in some sense "fault-tolerant" and might close the detection inefficiency loophole problem in previous experimental tests of the Greenberger-Horne-Zeilinger paradox. In turn, the construction of the Greenberger-Horne-Zeilinger paradox reveals the nonlocal property of non-Abelian anyons. Our results indicate that the non-Abelian fractional statistics is a pure quantum effect and cannot be described by local realistic theories. Finally, we present a possible experimental implementation of the scheme based on the anyonic interferometry technologies.

  12. Non-Abelian monopole in the parameter space of point-like interactions

    International Nuclear Information System (INIS)

    Ohya, Satoshi

    2014-01-01

    We study non-Abelian geometric phase in N=2 supersymmetric quantum mechanics for a free particle on a circle with two point-like interactions at antipodal points. We show that non-Abelian Berry’s connection is that of SU(2) magnetic monopole discovered by Moody, Shapere and Wilczek in the context of adiabatic decoupling limit of diatomic molecule. - Highlights: • Supersymmetric quantum mechanics is an ideal playground for studying geometric phase. • We determine the parameter space of supersymmetric point-like interactions. • Berry’s connection is given by a Wu–Yang-like magnetic monopole in SU(2) Yang–Mills

  13. Condensation and critical exponents of an ideal non-Abelian gas

    Science.gov (United States)

    Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein

    2017-11-01

    We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

  14. High-temperature response functions and the non-Abelian Kubo formula

    International Nuclear Information System (INIS)

    Jackiw, R.; Nair, V.P.

    1993-01-01

    We describe the relationship between time-ordered and retarded response functions in a plasma. We obtain an expression, including the proper iε prescription, for the induced current due to hard thermal loops in a non-Abelian theory, thus giving the non-Abelian generalization of the Kubo formula. The result is closely related to the eikonal for a Chern-Simons theory and is relevant for a guage-invariant description of Landau damping in the quark-gluon plasma at high temperature

  15. Anomalous commutator of gauge group generators in a non-Abelian chiral theory

    International Nuclear Information System (INIS)

    Jo, S.

    1985-01-01

    This paper discusses commutators among non-Abelian fermion currents that are calculated using the BJL limit. It is observed that the gauge dependence of the fermion current with fixed canonical variables should be different from the covariant seagull in order to have correct anomalous commutators

  16. Fractionalizing Majorana Fermions: Non-Abelian Statistics on the Edges of Abelian Quantum Hall States

    Directory of Open Access Journals (Sweden)

    Netanel H. Lindner

    2012-10-01

    Full Text Available We study the non-Abelian statistics characterizing systems where counterpropagating gapless modes on the edges of fractional quantum Hall states are gapped by proximity coupling to superconductors and ferromagnets. The most transparent example is that of a fractional quantum spin Hall state, in which electrons of one spin direction occupy a fractional quantum Hall state of ν=1/m, while electrons of the opposite spin occupy a similar state with ν=-1/m. However, we also propose other examples of such systems, which are easier to realize experimentally. We find that each interface between a region on the edge coupled to a superconductor and a region coupled to a ferromagnet corresponds to a non-Abelian anyon of quantum dimension sqrt[2m]. We calculate the unitary transformations that are associated with the braiding of these anyons, and we show that they are able to realize a richer set of non-Abelian representations of the braid group than the set realized by non-Abelian anyons based on Majorana fermions. We carry out this calculation both explicitly and by applying general considerations. Finally, we show that topological manipulations with these anyons cannot realize universal quantum computation.

  17. q q ¯ Pair production in non-Abelian gauge fields

    Indian Academy of Sciences (India)

    Non-Abelian interactions in the colour field are time-dependent and hence should oscillate with a characteristic frequency 0 , which depends on the amplitude of the field strength. Using the WKB approximation in complex time, we calculated the pair production probability. When the strength of the field is comparable to the ...

  18. Dual computations of non-Abelian Yang-Mills theories on the lattice

    International Nuclear Information System (INIS)

    Cherrington, J. Wade; Khavkine, Igor; Christensen, J. Daniel

    2007-01-01

    In the past several decades there have been a number of proposals for computing with dual forms of non-Abelian Yang-Mills theories on the lattice. Motivated by the gauge-invariant, geometric picture offered by dual models and successful applications of duality in the U(1) case, we revisit the question of whether it is practical to perform numerical computation using non-Abelian dual models. Specifically, we consider three-dimensional SU(2) pure Yang-Mills as an accessible yet nontrivial case in which the gauge group is non-Abelian. Using methods developed recently in the context of spin foam quantum gravity, we derive an algorithm for efficiently computing the dual amplitude and describe Metropolis moves for sampling the dual ensemble. We relate our algorithms to prior work in non-Abelian dual computations of Hari Dass and his collaborators, addressing several problems that have been left open. We report results of spin expectation value computations over a range of lattice sizes and couplings that are in agreement with our conventional lattice computations. We conclude with an outlook on further development of dual methods and their application to problems of current interest

  19. Phase structure of lattice gauge theories for non-abelian subgroups of SU(3)

    International Nuclear Information System (INIS)

    Grosse, H.; Kuehnelt, H.

    1981-01-01

    The authors study the phase structure of Euclidean lattice gauge theories in four dimensions for certain non-abelian subgroups of SU(3) by using Monte-Carlo simulations and strong coupling expansions. As the order of the group increases a splitting of one phase transition into two is observed. (Auth.)

  20. Twisted boundary conditions: a non-perturbative probe for pure non-abelian gauge theories

    International Nuclear Information System (INIS)

    Baal, P. van.

    1984-01-01

    In this thesis the author describes a pure non-abelian gauge theory on the hypertorus with gauge group SU(N). To test the flux tube picture he has studied the large distance limit of this theory, leading to a large coupling constant. To tackle this problem, he describes two approaches, in both of which twisted boundary conditions play an important role. (Auth.)

  1. Non-abelian gauge invariant classical Lagrangian formalism for point electric and magnetic charge

    International Nuclear Information System (INIS)

    Brandt, R.A.; Neri, F.

    1978-01-01

    The classical electrodynamics of electrically charged point particles has been generalized to include non-Abelian gauge groups and to include magnetically charged point particles. In this paper these two distinct generalizations are unified into a non-Abelian gauge theory of electric and magnetic charge. Just as the electrically charged particles constitute the generalized source of the gauge fields, the magnetically charged particles constitute the generalized source of the dual fields. The resultant equations of motion are invariant to the original 'electric' non-Abelian gauge group, but, because of the absence of a corresponding 'magnetic' gauge group, there is no 'duality' symmetry between electric and magnetic quantities. However, for a class of solutions to these equations, which includes all known point electric and magnetic monopole constructions, there is shown to exist an equivalent description based on a magnetic, rather than electric, gauge group. The gauge potentials in general are singular on strings extending from the particle position to infinity, but it is shown that the observables are without string singularities, and that the theory is Lorentz invariant, provided a charge quantization condition is satisfied. This condition, deduced from a stability analysis, is necessary for the consistency of the classical non-Abelian theory, in contrast to the Abelian case, where such a condition is necessary only for the consistency of the quantum theory. It is also shown that in the classical theory the strings cannot be removed by gauge transformations, as they sometimes can be in the quantum theory. (Auth.)

  2. 'Symmetry dictates interaction'. For the jubilee of the non-abelian gauge fields

    International Nuclear Information System (INIS)

    Li Huazhong

    2004-01-01

    The article is written for the Jubilee, 50 years after the birth of non-abelian gauge field theory which was proposed by C.N. yang and R. Mills in 1954. The main ideas initiated in the paper and great influences are briefly outlined

  3. Possible physical manifestation of the Weyl non-Abelian gauge field

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Pestov, A.B.

    1998-01-01

    On the basis of the Weyl equations of congruent transference, we consider a possible influence of the Weyl non-Abelian gauge field defining the transference on the precession of a gyroscope. Plane-wave solutions to the equations of the Abelian gauge field are derived

  4. Recursion rules for scattering amplitudes in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kim, C.; Nair, V.P.

    1997-01-01

    We present a functional derivation of recursion rules for scattering amplitudes in a non-Abelian gauge theory in a form valid to arbitrary loop order. The tree-level and one-loop recursion rules are explicitly displayed. copyright 1997 The American Physical Society

  5. Non-Abelian duality and confinement in N=2 supersymmetric QCD

    International Nuclear Information System (INIS)

    Shifman, M.; Yung, A.

    2009-01-01

    In N=2 supersymmetric QCD with the U(N) gauge group and N f >N we study the crossover transition from the weak coupling regime at large ξ to strong coupling at small ξ, where ξ is the Fayet-Iliopoulos parameter. We find that at strong coupling a dual non-Abelian weakly coupled N=2 theory exists, which describes low-energy physics at small ξ. The dual gauge group is U(N f -N), and the dual theory has N f flavors of light dyons, to be compared with N f quarks in the originalU(N) theory. Both, the original and dual theories are Higgsed and share the same global symmetry SU(N)xSU(N f -N)xU(1), albeit the physical meaning of the SU(N) and SU(N f -N) factors is different in the large- and small-ξ regimes. Both regimes support non-Abelian semilocal strings. In each of these two regimes particles that are in the adjoint representations with respect to one of the factor groups exist in two varieties: elementary fields and composite states bound by strings. These varieties interchange upon transition from one regime to the other. We conjecture that the composite stringy states can be related to Seiberg's M fields. The bulk duality that we observed translates into a two-dimensional duality on the world sheet of the non-Abelian strings. At large ξ the internal dynamics of the semilocal non-Abelian strings is described by the sigma model of N orientational and (N f -N) size moduli, while at small ξ the roles of orientational and size moduli interchange. The Bogomol'nyi-Prasad-Sommerfield spectra of two dual sigma models (describing confined monopoles/dyons of the bulk theory) coincide. It would be interesting to trace parallels between the non-Abelian duality we found and string theory constructions.

  6. Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates

    Science.gov (United States)

    Mawson, Thomas; Ruben, Gary; Simula, Tapio

    2015-06-01

    We have studied computationally the collision dynamics of spin-2 Bose-Einstein condensates initially confined in a triple-well trap. Depending on the phase structure of the initial-state spinor wave function, the collision of the three condensate fragments produces one of many possible vortex-antivortex lattices, after which the system transitions to quantum turbulence. We find that the emerging vortex lattice structures can be described in terms of multiwave interference. We show that the three-fragment collisions can be used to systematically produce staggered vortex-antivortex honeycomb lattices of fractional-charge vortices, whose collision dynamics are known to be non-Abelian. Such condensate collider experiments could potentially be used as a controllable pathway to generating non-Abelian superfluid turbulence with networks of vortex rungs.

  7. Neutrino tri-bi-maximal mixing from a non-Abelian discrete family symmetry

    CERN Document Server

    Varzielas, I M; Ross, Graham G

    2007-01-01

    The observed neutrino mixing, having a near maximal atmospheric neutrino mixing angle and a large solar mixing angle, is close to tri-bi-maximal. We argue that this structure suggests a family symmetric origin in which the magnitude of the mixing angles are related to the existence of a discrete non-Abelian family symmetry. We construct a model in which the family symmetry is the non-Abelian discrete group $\\Delta(27)$, a subgroup of $SU(3)$ in which the tri-bi-maximal mixing directly follows from the vacuum structure enforced by the discrete symmetry. In addition to the lepton mixing angles, the model accounts for the observed quark and lepton masses and the CKM matrix. The structure is also consistent with an underlying stage of Grand Unification.

  8. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    Science.gov (United States)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  9. Non-Abelian tensor gauge fields and higher-spin extension of standard model

    International Nuclear Information System (INIS)

    Savvidy, G.

    2006-01-01

    We suggest an extension of the gauge principle which includes non-Abelian tensor gauge fields. The invariant Lagrangian is quadratic in the field strength tensors and describes interaction of charged tensor gauge bosons of arbitrary large integer spin 1,2,l. Non-Abelian tensor gauge fields can be viewed as a unique gauge field with values in the infinite-dimensional current algebra associated with compact Lie group. The full Lagrangian exhibits also enhanced local gauge invariance with double number of gauge parameters which allows to eliminate all negative norm states of the nonsymmetric second-rank tensor gauge field, which describes therefore two polarizations of helicity-two massless charged tensor gauge boson and the helicity-zero ''axion'' The geometrical interpretation of the enhanced gauge symmetry with double number of gauge parameters is not yet known. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. Four loop wave function renormalization in the non-abelian Thirring model

    International Nuclear Information System (INIS)

    Ali, D.B.; Gracey, J.A.

    2001-01-01

    We compute the anomalous dimension of the fermion field with N f flavours in the fundamental representation of a general Lie colour group in the non-abelian Thirring model at four loops. The implications on the renormalization of the two point Green's function through the loss of multiplicative renormalizability of the model in dimensional regularization due to the appearance of evanescent four fermi operators are considered at length. We observe the appearance of one new colour group Casimir, d F abcd d F abcd , in the final four loop result and discuss its consequences for the relation of the Knizhnik-Zamolodchikov critical exponents in the Wess-Zumino-Witten-Novikov model to the non-abelian Thirring model. Renormalization scheme changes are also considered to ensure that the underlying Fierz symmetry broken by dimensional regularization is restored

  11. Statistical mechanics of an ideal gas of non-Abelian anyons

    International Nuclear Information System (INIS)

    Mancarella, Francesco; Trombettoni, Andrea; Mussardo, Giuseppe

    2013-01-01

    We study the thermodynamical properties of an ideal gas of non-Abelian Chern–Simons particles and we compute the second virial coefficient, considering the effect of general soft-core boundary conditions for the two-body wavefunction at zero distance. The behaviour of the second virial coefficient is studied as a function of the Chern–Simons coupling, the isospin quantum number and the hard-core parameters. Expressions for the main thermodynamical quantities at the lower order of the virial expansion are also obtained: we find that at this order the relation between the internal energy and the pressure is the same found (exactly) for 2D Bose and Fermi ideal gases. A discussion of the comparison of obtained findings with available results in literature for systems of hard-core non-Abelian Chern–Simons particles is also supplied.

  12. Non-abelian factorisation for next-to-leading-power threshold logarithms

    International Nuclear Information System (INIS)

    Bonocore, D.; Laenen, E.; Magnea, L.; Vernazza, L.; White, C.D.

    2016-01-01

    Soft and collinear radiation is responsible for large corrections to many hadronic cross sections, near thresholds for the production of heavy final states. There is much interest in extending our understanding of this radiation to next-to-leading power (NLP) in the threshold expansion. In this paper, we generalise a previously proposed all-order NLP factorisation formula to include non-abelian corrections. We define a non-abelian radiative jet function, organising collinear enhancements at NLP, and compute it for quark jets at one loop. We discuss in detail the issue of double counting between soft and collinear regions. Finally, we verify our prescription by reproducing all NLP logarithms in Drell-Yan production up to NNLO, including those associated with double real emission. Our results constitute an important step in the development of a fully general resummation formalism for NLP threshold effects.

  13. Non-abelian factorisation for next-to-leading-power threshold logarithms

    Energy Technology Data Exchange (ETDEWEB)

    Bonocore, D. [Nikhef, Science Park 105, NL-1098 XG Amsterdam (Netherlands); Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, Sommerfeldstr. 16, 52074 Aachen (Germany); Laenen, E. [Nikhef, Science Park 105, NL-1098 XG Amsterdam (Netherlands); ITFA, University of Amsterdam, Science Park 904, Amsterdam (Netherlands); ITF, Utrecht University, Leuvenlaan 4, Utrecht (Netherlands); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Magnea, L. [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Vernazza, L. [Higgs Centre for Theoretical Physics, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3JZ, Scotland (United Kingdom); White, C.D. [Centre for Research in String Theory, School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS (United Kingdom)

    2016-12-22

    Soft and collinear radiation is responsible for large corrections to many hadronic cross sections, near thresholds for the production of heavy final states. There is much interest in extending our understanding of this radiation to next-to-leading power (NLP) in the threshold expansion. In this paper, we generalise a previously proposed all-order NLP factorisation formula to include non-abelian corrections. We define a non-abelian radiative jet function, organising collinear enhancements at NLP, and compute it for quark jets at one loop. We discuss in detail the issue of double counting between soft and collinear regions. Finally, we verify our prescription by reproducing all NLP logarithms in Drell-Yan production up to NNLO, including those associated with double real emission. Our results constitute an important step in the development of a fully general resummation formalism for NLP threshold effects.

  14. Dual transformations of the non-abelian fields in Minkowsky, Euclid, and Galilei-Newton spaces

    International Nuclear Information System (INIS)

    Tolkaehev, E.A.; Kurochkin, Y.A.; Trequbovich, A.Y.

    1991-01-01

    In this paper it is shown that the generalization of the Yang-Mills equations in Minkowsky space to the case of the biquaternions over dual and double numbers enables one to define the corresponding representations of the Galilei and SO(4) groups in a rather natural way. it makes construction of the non-Abelian field equations in Euclidean and Galilei-Newton spaces possible and proves their invariance under generalized dual transformations by use of the analogy with the Abelian gauge

  15. LETTER TO THE EDITOR: Bicomplexes and conservation laws in non-Abelian Toda models

    Science.gov (United States)

    Gueuvoghlanian, E. P.

    2001-08-01

    A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.

  16. Mean field theory for non-abelian gauge theories and fluid dynamics. A brief progress report

    International Nuclear Information System (INIS)

    Wadia, Spenta R.

    2009-01-01

    We review the long standing problem of 'mean field theory' for non-abelian gauge theories. As a consequence of the AdS/CFT correspondence, in the large N limit, at strong coupling, and high temperatures and density, the 'mean field theory' is described by the Navier-Stokes equations of fluid dynamics. We also discuss and present results on the non-conformal fluid dynamics of the D1 brane in 1+1 dim. (author)

  17. Non-Abelian flux tubes in N=1 SQCD: Supersizing world-sheet supersymmetry

    International Nuclear Information System (INIS)

    Shifman, M.; Yung, A.

    2005-01-01

    We consider non-Abelian 1/2 Bogomol'nyi-Prasad-Sommerfield (BPS) flux tubes (strings) in a deformed N=2 supersymmetric gauge theory, with mass terms μ 1,2 of the adjoint fields breaking N=2 down to N=1. The main feature of the non-Abelian strings is the occurrence of orientational moduli associated with the possibility of rotations of their color fluxes inside a global SU(N) group. The bulk four-dimensional theory has four supercharges; half-criticality of the non-Abelian strings would imply then N=1 supersymmetry on the world sheet, i.e. two supercharges. In fact, superalgebra of the reduced moduli space has four supercharges. Internal dynamics of the orientational moduli are described by a two-dimensional CP(N-1) model on the string world sheet. We focus mainly on the SU(2) case, i.e. CP(1) world-sheet theory. We show that non-Abelian BPS strings exist for all values of μ 1,2 . The low-energy theory of moduli is indeed CP(1), with four supercharges, in a wide region of breaking parameters μ 1,2 . Only in the limit of very large μ 1,2 , above some critical value does the N=2 world-sheet supersymmetry break down to N=1. We observe 'supersymmetry emergence' for the flux-tube junction (confined monopole): The kink-monopole is half-critical considered from the standpoint of the world-sheet CP(1) model (i.e. two supercharges conserved), while in the bulk N=1 theory there is no monopole central charge at all

  18. Anomalous Quasiparticle Symmetries and Non-Abelian Defects on Symmetrically Gapped Surfaces of Weak Topological Insulators.

    Science.gov (United States)

    Mross, David F; Essin, Andrew; Alicea, Jason; Stern, Ady

    2016-01-22

    We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topological insulator surfaces manifests itself in a nontrivial action of symmetries on the quasiparticles; most strikingly, translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As a further consequence, screw dislocations form non-Abelian defects that trap Z_{4} parafermion zero modes.

  19. $N=2^∗$ (non-)Abelian theory in the $\\Omega$ background from string theory

    CERN Document Server

    Samsonyan, Marine; Antoniadis, Ignatios

    2018-01-01

    We present a D-brane realisation of the Abelian and non-Abelian N = 2 ∗ theory both in five and four dimensions. We compute topological amplitudes in string theory for Ω deformed spacetime first with one and then with two parameters. In the field theory limit we recover the perturbative partition function of the deformed N = 2 ∗ theory in agreement with the existing literature.

  20. Evidence for non-Abelian dark matter from large scale structure?

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    If dark matter multiplicity arises from a weakly coupled non-Abelian dark gauge group the corresponding "dark gluons" can have interesting signatures in cosmology which I will review: 1. the "dark gluons" contribute to the radiation content of the universe and 2. gluon interactions with the dark matter may explain the >3 sigma discrepancy between precision fits to the CMB from Planck and direct measurements of large scale structure in the universe.

  1. Algebraic inversion of the Dirac equation for the vector potential in the non-Abelian case

    International Nuclear Information System (INIS)

    Inglis, S M; Jarvis, P D

    2012-01-01

    We study the Dirac equation for spinor wavefunctions minimally coupled to an external field, from the perspective of an algebraic system of linear equations for the vector potential. By analogy with the method in electromagnetism, which has been well-studied, and leads to classical solutions of the Maxwell–Dirac equations, we set up the formalism for non-Abelian gauge symmetry, with the SU(2) group and the case of four-spinor doublets. An extended isospin-charge conjugation operator is defined, enabling the hermiticity constraint on the gauge potential to be imposed in a covariant fashion, and rendering the algebraic system tractable. The outcome is an invertible linear equation for the non-Abelian vector potential in terms of bispinor current densities. We show that, via application of suitable extended Fierz identities, the solution of this system for the non-Abelian vector potential is a rational expression involving only Pauli scalar and Pauli triplet, Lorentz scalar, vector and axial vector current densities, albeit in the non-closed form of a Neumann series. (paper)

  2. On Corestriction Principle in non-abelian Galois cohomology over local and global fields. II: Characteristic p > 0

    International Nuclear Information System (INIS)

    Nguyen Quoc Thang

    2004-08-01

    We show the validity of te Corestriction Principle for non-abelian cohomology of connected reductive groups over local ad global fields of characteristic p > 0 , by extending some results by Kneser and Douai. (author)

  3. A simple model for the evolution of a non-Abelian cosmic string network

    Energy Technology Data Exchange (ETDEWEB)

    Cella, G. [Istituto Nazionale di Fisica Nucleare, sez. Pisa, Largo Bruno Pontecorvo 3, 56126 Pisa (Italy); Pieroni, M., E-mail: giancarlo.cella@pi.infn.it, E-mail: mauro.pieroni@apc.univ-paris7.fr [AstroParticule et Cosmologie, Université Paris Diderot, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13 (France)

    2016-06-01

    In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argument to justify the lack of scaling for the residual cases.

  4. Non abelian Chern-Simons topological coupling from self-interaction

    International Nuclear Information System (INIS)

    Aragone, C.; Stephany, R.J.E.

    1986-01-01

    It is shown that the self-interaction mechanism drives in one step the topologically coupled-Maxwell-second rank antisymmetric tensor system into the Chern-Simons coupled -non abelian- (second rank) antisymmetric tensor action. Only one step is required to saturate the process because the action for the initial Maxwell-antisymmetric tensor system is given in its first-order form. The self-interaction mechanism works both for the original Chapline-Manton form of the action and for the dual form. (Author) [pt

  5. Group Approach to the Quantization of Non-Abelian Stueckelberg Models

    International Nuclear Information System (INIS)

    Aldaya, V; Lopez-Ruiz, F F; Calixto, M

    2011-01-01

    The quantum field theory of Non-Linear Sigma Models on coadjoint orbits of a semi-simple group G are formulated in the framework of a Group Approach to Quantization. In this scheme, partial-trace Lagrangians are recovered from two-cocycles defined on the infinite-dimensional group of sections of the jet-gauge group J 1 (G). This construction is extended to the entire physical system coupled to Yang-Mills fields, thus constituting an algebraic formulation of the Non-Abelian Stueckelgerg formalism devoid of the unitarity/renormalizability obstruction that this theory finds in the standard Lagrangian formalism under canonical quantization.

  6. Group Approach to the Quantization of Non-Abelian Stueckelberg Models

    Energy Technology Data Exchange (ETDEWEB)

    Aldaya, V; Lopez-Ruiz, F F [Instituto de Astrofisica de AndalucIa (IAA-CSIC), Apartado Postal 3004, 18080 Granada (Spain); Calixto, M, E-mail: valdaya@iaa.es, E-mail: Manuel.Calixto@upct.es, E-mail: flopez@iaa.es [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain)

    2011-03-01

    The quantum field theory of Non-Linear Sigma Models on coadjoint orbits of a semi-simple group G are formulated in the framework of a Group Approach to Quantization. In this scheme, partial-trace Lagrangians are recovered from two-cocycles defined on the infinite-dimensional group of sections of the jet-gauge group J{sup 1} (G). This construction is extended to the entire physical system coupled to Yang-Mills fields, thus constituting an algebraic formulation of the Non-Abelian Stueckelgerg formalism devoid of the unitarity/renormalizability obstruction that this theory finds in the standard Lagrangian formalism under canonical quantization.

  7. Dynamical generation of non-abelian gauge group via the improved perturbation theory

    International Nuclear Information System (INIS)

    Kuroki, Tsunehide

    2008-01-01

    It was suggested that the massive Yang-Mills-Chern-Simons matrix model has three phases and that in one of them a non-Abelian gauge symmetry is dynamically generated. The analysis was at the one-loop level around a classical solution of fuzzy sphere type. We obtain evidences that three phases are indeed realized as nonperturbative vacua by using the improved perturbation theory. It gives a good example that even if we start from a trivial vacuum, the improved perturbation theory around it enables us to observe nontrivial vacua. (author)

  8. On a stochastic process associated to non-abelian gauge fields

    International Nuclear Information System (INIS)

    Vilela Mendes, R.

    1989-01-01

    A stochastic process is constructed from a ground state measure that generalizes to non-abelian fields the ground state of abelian (free) gauge fields without fermions. Using a latticized version one shows how the process leads to a well-defined quantum theory in the Schroedinger representation. An analysis of the qualitative behaviour of the theory seems to imply a quasi-free behaviour at short distances and a maximally disordered field strength configuration for the low-momentum component of the ground state. Scaling relations for the mass gap are inferred from the theory of small random perturbations of dynamical systems. (orig.)

  9. Non-Abelian color dielectric - towards the effective model of the low energy QCD

    International Nuclear Information System (INIS)

    Wereszczynski, A.; Slusarczyk, M.

    2005-01-01

    Lattice motivated triplet color scalar field theory is analyzed. We consider non-minimal as well as covariant derivative coupling with SU(2) gauge fields. Field configurations generated by external electric sources are presented. Moreover non-Abelian magnetic monopoles are found. Dependence on the spatial coordinates in the obtained solutions is identical as in the usual Abelian case. We show also that after a decomposition of the fields a modified Faddeev-Niemi action can be obtained. It contains explicit O(3) symmetry breaking term parameterized by the condensate of an isoscalar field. Due to that Goldstone bosons observed in the original Faddeev-Niemi model are removed. (orig.)

  10. A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator

    International Nuclear Information System (INIS)

    Le, Van-Hoang; Nguyen, Thanh-Son; Phan, Ngoc-Hung

    2009-01-01

    We suggest one variant of generalization of the Hurwitz transformation by adding seven extra variables that allow an inverse transformation to be obtained. Using this generalized transformation we establish the connection between the Schroedinger equation of a 16-dimensional isotropic harmonic oscillator and that of a nine-dimensional hydrogen-like atom in the field of a monopole described by a septet of potential vectors in a non-Abelian model of 28 operators. The explicit form of the potential vectors and all the commutation relations of the algebra are given./

  11. Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory

    International Nuclear Information System (INIS)

    Chernicoff, Mariano; Garcia, J. Antonio; Gueijosa, Alberto

    2011-01-01

    We study the dynamics of a 'composite' or 'dressed' quark in strongly-coupled large-N c N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a Lorentz covariant formula for its rate of radiation.

  12. Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory

    OpenAIRE

    Chernicoff, Mariano; Garcia, J. Antonio; Guijosa, Alberto

    2010-01-01

    We study a `dressed' or `composite' quark in strongly-coupled N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding quantum non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a...

  13. Radiation Damping in a Non-Abelian Strongly-Coupled Gauge Theory

    Science.gov (United States)

    Chernicoff, Mariano; García, J. Antonio; Güijosa, Alberto

    2011-09-01

    We study the dynamics of a 'composite` or 'dressed` quark in strongly-coupled large-Nc N=4 super-Yang-Mills (SYM), making use of the AdS/CFT correspondence. We show that the standard string dynamics nicely captures the physics of the quark and its surrounding non-Abelian field configuration, making it possible to derive a relativistic equation of motion that incorporates the effects of radiation damping. From this equation one can deduce a non-standard dispersion relation for the composite quark, as well as a Lorentz covariant formula for its rate of radiation.

  14. A hidden non-Abelian monopole in a 16-dimensional isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Le, Van-Hoang; Nguyen, Thanh-Son; Phan, Ngoc-Hung [Department of Physics, HCMC University of Pedagogy, 280 An Duong Vuong, Ward 10, Dist. 5, Ho Chi Minh City (Viet Nam)

    2009-05-01

    We suggest one variant of generalization of the Hurwitz transformation by adding seven extra variables that allow an inverse transformation to be obtained. Using this generalized transformation we establish the connection between the Schroedinger equation of a 16-dimensional isotropic harmonic oscillator and that of a nine-dimensional hydrogen-like atom in the field of a monopole described by a septet of potential vectors in a non-Abelian model of 28 operators. The explicit form of the potential vectors and all the commutation relations of the algebra are given./.

  15. New Features about Chaos in Bianchi I non-Abelian Born-Infeld cosmology

    International Nuclear Information System (INIS)

    Dyadichev, Vladimir V.; Gal'tsov, Dmitri V.; Moniz, Paulo Vargas

    2006-01-01

    When the action is replaced by the Born-Infeld-type non-Abelian action (NBI), a chaos-order transition is observed in the high energy region for a Bianchi I cosmology with the homogeneous SU(2) Yang-Mills field. This is interpreted as a smothering effect due to (non-perturbative in α') string corrections to the classical EYM action. We give a numerical evidence for the chaos-order transition and present an analytical proof of regularity of color oscillations in the limit of strong Born-Infeld non-linearity

  16. Renormalization of non-abelian gauge theories in curved space-time

    International Nuclear Information System (INIS)

    Freeman, M.D.

    1984-01-01

    We use indirect, renormalization group arguments to calculate the gravitational counterterms needed to renormalize an interacting non-abelian gauge theory in curved space-time. This method makes it straightforward to calculate terms in the trace anomaly which first appear at high order in the coupling constant, some of which would need a 4-loop calculation to find directly. The role of gauge invariance in the theory is considered, and we discuss briefly the effect of using coordinate-dependent gauge-fixing terms. We conclude by suggesting possible applications of this work to models of the very early universe

  17. Lessons from non-Abelian plasma instabilities in two spatial dimensions

    International Nuclear Information System (INIS)

    Arnold, Peter; Leang, P.-S.

    2007-01-01

    Plasma instabilities can play a fundamental role in quark-gluon plasma equilibration in the high energy (weak coupling) limit. Early simulations of the evolution of plasma instabilities in non-Abelian gauge theory, performed in one spatial dimension, found behavior qualitatively similar to traditional QED plasmas. Later simulations of the fully three-dimensional theory found different behavior, unlike traditional QED plasmas. To shed light on the origin of this difference, we study the intermediate case of two spatial dimensions. Depending on how the 'two-dimensional' theory is formulated, we can obtain either behavior

  18. Explicit form of non-Abelian self-consistent chiral supersymmetric anomaly

    International Nuclear Information System (INIS)

    Krivoshchekov, V.K.; Medvedev, P.B.; Chekhov, L.O.; AN SSSR, Leningrad. Matematicheskij Inst.)

    1986-01-01

    An explicit form for non-abelian supersymmetric chiral anomaly is obtained by means of invariant supersymmetric regularization representing a special type of regularization by loops. Parametrical integrals were not introduced in the calculation but simple expansion in 1/m 2 was used (Mi-regularization parameters having mass quantity). The given result represents an infinite series, that permits to carry out explicit test of the condition of agreement in a closed form. The formula naturally reproduces the component result up to the third order in the Wess-Zumino gauge. It is proved in the abelian limit that the obtained result is transformed into a polynomial of the third order by V

  19. Zero-modes of non-Abelian solitons in three-dimensional gauge theories

    International Nuclear Information System (INIS)

    Eto, Minoru; Gudnason, Sven Bjarke

    2011-01-01

    We study non-Abelian solitons of the Bogomol'nyi type in N=2 (d = 2 + 1) supersymmetric Chern-Simons (CS) and Yang-Mills (YM) theory with a generic gauge group. In CS theory, we find topological, non-topological and semi-local (non-)topological vortices of non-Abelian kinds in unbroken, broken and partially broken vacua. We calculate the number of zero-modes using an index theorem and then we apply the moduli matrix formalism to realize the moduli parameters. For the topological solitons we exhaust all the moduli while we study several examples of the non-topological and semi-local solitons. We find that the zero-modes of the topological solitons are governed by the moduli matrix H 0 only and those of the non-topological solitons are governed by both H 0 and the gauge invariant field Ω. We prove local uniqueness of the master equation in the YM case and finally compare all results between the CS and YM theories.

  20. Exotic Non-Abelian Topological Defects in Lattice Fractional Quantum Hall States

    Science.gov (United States)

    Liu, Zhao; Möller, Gunnar; Bergholtz, Emil J.

    2017-09-01

    We investigate extrinsic wormholelike twist defects that effectively increase the genus of space in lattice versions of multicomponent fractional quantum Hall systems. Although the original band structure is distorted by these defects, leading to localized midgap states, we find that a new lowest flat band representing a higher genus system can be engineered by tuning local single-particle potentials. Remarkably, once local many-body interactions in this new band are switched on, we identify various Abelian and non-Abelian fractional quantum Hall states, whose ground-state degeneracy increases with the number of defects, i.e, with the genus of space. This sensitivity of topological degeneracy to defects provides a "proof of concept" demonstration that genons, predicted by topological field theory as exotic non-Abelian defects tied to a varying topology of space, do exist in realistic microscopic models. Specifically, our results indicate that genons could be created in the laboratory by combining the physics of artificial gauge fields in cold atom systems with already existing holographic beam shaping methods for creating twist defects.

  1. Quantum field theory I foundations and Abelian and non-Abelian gauge theories

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Pa...

  2. Solitons, τ-functions and hamiltonian reduction for non-Abelian conformal affine Toda theories

    Science.gov (United States)

    Ferreira, L. A.; Miramontes, J. Luis; Guillén, Joaquín Sánchez

    1995-02-01

    We consider the Hamiltonian reduction of the "two-loop" Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra G. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of G, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.

  3. Some novel features in 2D non-Abelian theory: BRST approach

    Science.gov (United States)

    Srinivas, N.; Kumar, S.; Kureel, B. K.; Malik, R. P.

    2017-08-01

    Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism, we discuss some novel features of a two (1+1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields). Besides the usual off-shell nilpotent and absolutely anticommutating (anti-)BRST symmetry transformations, we discuss the off-shell nilpotent and absolutely anticommutating (anti-)co-BRST symmetry transformations. Particularly, we lay emphasis on the existence of the coupled (but equivalent) Lagrangian densities of the 2D non-Abelian theory in view of the presence of (anti-)co-BRST symmetry transformations where we pin-point some novel features associated with the Curci-Ferrari (CF-)type restrictions. We demonstrate that these CF-type restrictions can be incorporated into the (anti-)co-BRST invariant Lagrangian densities through the fermionic Lagrange multipliers which carry specific ghost numbers. The modified versions of the Lagrangian densities (where we get rid of the new CF-type restrictions) respect some precise symmetries as well as a couple of symmetries with CF-type constraints. These observations are completely novel as far as the BRST formalism, with proper (anti-)co-BRST symmetries, is concerned.

  4. Critical non-Abelian vortex in four dimensions and little string theory

    Science.gov (United States)

    Shifman, M.; Yung, A.

    2017-08-01

    As was shown recently, non-Abelian vortex strings supported in four-dimensional N =2 supersymmetric QCD with the U(2) gauge group and Nf=4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli, non-Abelian strings under consideration carry six orientational and size moduli. Together, they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau noncompact threefold, namely, the conifold. We study closed string states which emerge in four dimensions and identify them with hadrons of four-dimensional N =2 QCD. One massless state was found previously; it emerges as a massless hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper, we find a number of massive states. To this end, we exploit the approach used in LST little string theory, namely, the equivalence between the critical string on the conifold and noncritical c =1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry "baryonic" charge (its definition differs from standard). We interpret them as "monopole necklaces" formed (at strong coupling) by the closed string with confined monopoles attached.

  5. Problems of an external field in non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.

    1992-01-01

    In the Abelian gauge field theory QED the principal problems connected with an external field are the problems of exact keeping of an external field in a perturbation theory and appearing in this case the peculiarities of the theory such as the instability of the vacuum and so on. There is the problem of an external field introduction or its interpretation side by side with this problem in Non-Abelian gauge theory. The solution of both these problems in Non-Abelian theory can be considered by analogy with QED. In the present paper, the authors discuss on the example of the spontaneously broken SU(2) x U(1) electroweak theory both the problems of an external field introduction and the problem of exact keeping of this field in the perturbation theory. The Langrangian of this theory in covariant gauge is chosen in the BRST invariant form. In spite of concrete character of the theory studied, the method can be extended to any gauge theory

  6. Non-Abelian fractional quantum Hall states for hard-core bosons in one dimension

    Science.gov (United States)

    Paredes, Belén

    2012-05-01

    I present a family of one-dimensional bosonic liquids analogous to non-Abelian fractional quantum Hall states. A new quantum number is introduced to characterize these liquids, the chiral momentum, which differs from the usual angular or linear momentum in one dimension. As their two-dimensional counterparts, these liquids minimize a k-body hard-core interaction with the minimum total chiral momentum. They exhibit global order, with a hidden organization of the particles in k identical copies of a one-dimensional Laughlin state. For k=2 the state is a p-wave paired phase corresponding to the Pfaffian quantum Hall state. By imposing conservation of the total chiral momentum, an exact parent Hamiltonian is derived which involves long-range tunneling and interaction processes with an amplitude decaying with the chord distance. This family of non-Abelian liquids is shown to be in formal correspondence with a family of spin-(k)/(2) liquids which are total singlets made out of k indistinguishable resonating valence bond states. The corresponding spin Hamiltonians are obtained.

  7. On the loop-loop scattering amplitudes in Abelian and non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Meggiolaro, Enrico

    2005-01-01

    The high-energy elastic scattering amplitude of two colour-singlet qq-bar pairs is governed by the correlation function of two Wilson loops, which follow the classical straight lines for quark (antiquark) trajectories. This quantity is expected to be free of IR divergences, differently from what happens for the parton-parton elastic scattering amplitude, described, in the high-energy limit, by the expectation value of two Wilson lines. We shall explicitly test this IR finiteness by a direct non-perturbative computation of the loop-loop scattering amplitudes in the (pedagogic, but surely physically interesting) case of quenched QED. The results obtained for the Abelian case will be generalized to the case of a non-Abelian gauge theory with Nc colours, but stopping to the order O(g4) in perturbation theory. In connection with the above-mentioned IR finiteness, we shall also discuss some analytic properties of the loop-loop scattering amplitudes in both Abelian and non-Abelian gauge theories, when going from Minkowskian to Euclidean theory, which can be relevant to the still unsolved problem of the s-dependence of hadron-hadron total cross-sections

  8. On entanglement entropy in non-Abelian lattice gauge theory and 3D quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Delcamp, Clement [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada); Department of Physics & Astronomy and Guelph-Waterloo Physics Institute, University of Waterloo,200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Dittrich, Bianca; Riello, Aldo [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, Ontario N2L 2Y5 (Canada)

    2016-11-18

    Entanglement entropy is a valuable tool for characterizing the correlation structure of quantum field theories. When applied to gauge theories, subtleties arise which prevent the factorization of the Hilbert space underlying the notion of entanglement entropy. Borrowing techniques from extended topological field theories, we introduce a new definition of entanglement entropy for both Abelian and non-Abelian gauge theories. Being based on the notion of excitations, it provides a completely relational way of defining regions. Therefore, it naturally applies to background independent theories, e.g. gravity, by circumventing the difficulty of specifying the position of the entangling surface. We relate our construction to earlier proposals and argue that it brings these closer to each other. In particular, it yields the non-Abelian analogue of the ‘magnetic centre choice’, as obtained through an extended-Hilbert-space method, but applied to the recently introduced fusion basis for 3D lattice gauge theories. We point out that the different definitions of entanglement entropy can be related to a choice of (squeezed) vacuum state.

  9. Core structure and dynamics of non-Abelian vortices in a biaxial nematic spinor Bose-Einstein condensate

    Science.gov (United States)

    Borgh, Magnus O.; Ruostekoski, Janne

    2016-05-01

    We demonstrate that multiple interaction-dependent defect core structures as well as dynamics of non-Abelian vortices can be realized in the biaxial nematic (BN) phase of a spin-2 atomic Bose-Einstein condensate (BEC). An experimentally simple protocol may be used to break degeneracy with the uniaxial nematic phase. We show that a discrete spin-space symmetry in the core may be reflected in a breaking of its spatial symmetry. The discrete symmetry of the BN order parameter leads to non-commuting vortex charges. We numerically simulate reconnection of non-Abelian vortices, demonstrating formation of the obligatory rung vortex. In addition to atomic BECs, non-Abelian vortices are theorized in, e.g., liquid crystals and cosmic strings. Our results suggest the BN spin-2 BEC as a prime candidate for their realization. We acknowledge financial support from the EPSRC.

  10. Fermionic greybody factors in dilaton black holes

    International Nuclear Information System (INIS)

    Abedi, Jahed; Arfaei, Hessamaddin

    2014-01-01

    In this paper the question of the emission of fermions in the process of dilaton black hole evolution and its characteristics for different dilaton coupling constants α are studied. The main quantity of interest, the greybody factors, are calculated both numerically and in analytical approximation. The dependence of the rates of evaporation and behaviour on the dilaton coupling constant is analysed. Having calculated the greybody factors, we are able to address the question of the final fate of the dilaton black hole. For that we also need to perform dynamical treatment of the solution by considering the backreaction, which will show a crucial effect on the final result. We find a transition line in the (Q/M,α) plane that separates the two regimes for the fate of the black hole, decay regime and extremal regime. In the decay regime the black hole completely evaporates, while in the extremal regime the black hole approaches the extremal limit by radiation and becomes stable. (paper)

  11. Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter

    OpenAIRE

    Harz, Julia; Petraki, Kalliopi

    2018-01-01

    We compute the cross-sections for the radiative capture of non-relativistic particles into bound states, in unbroken perturbative non-Abelian theories. We find that the formation of bound states via emission of a gauge boson can be significant for a variety of dark matter models that feature non-Abelian long-range interactions, including multi-TeV scale WIMPs and dark matter co-annihilating with coloured partners. Our results disagree with previous computations, on the relative sign of the Ab...

  12. Electrically charged dilatonic black rings

    International Nuclear Information System (INIS)

    Kunduri, Hari K.; Lucietti, James

    2005-01-01

    In this Letter we present (electrically) charged dilatonic black ring solutions of the Einstein-Maxwell-dilaton theory in five dimensions and we consider their physical properties. These solutions are static and as in the neutral case possess a conical singularity. We show how one may remove the conical singularity by application of a Harrison transformation, which physically corresponds to supporting the charged ring with an electric field. Finally, we discuss the slowly rotating case for arbitrary dilaton coupling

  13. New scheme for color confinement and violation of the non-Abelian Bianchi identities

    Science.gov (United States)

    Suzuki, Tsuneo; Ishiguro, Katsuya; Bornyakov, Vitaly

    2018-02-01

    A new scheme for color confinement in QCD due to violation of the non-Abelian Bianchi identities is proposed. The violation of the non-Abelian Bianchi identities (VNABI) Jμ is equal to Abelian-like monopole currents kμ defined by the violation of the Abelian-like Bianchi identities. Although VNABI is an adjoint operator satisfying the covariant conservation law DμJμ=0 , it satisfies, at the same time, the Abelian-like conservation law ∂μJμ=0 . The Abelian-like conservation law ∂μJμ=0 is also gauge-covariant. There are N2-1 conserved magnetic charges in the case of color S U (N ). The charge of each component of VNABI is quantized à la Dirac. The color-invariant eigenvalues λμ of VNABI also satisfy the Abelian conservation law ∂μλμ=0 and the magnetic charges of the eigenvalues are also quantized à la Dirac. If the color invariant eigenvalues condense in the QCD vacuum, each color component of the non-Abelian electric field Ea is squeezed by the corresponding color component of the solenoidal current Jμa. Then only the color singlets alone can survive as a physical state and non-Abelian color confinement is realized. This confinement picture is completely new in comparison with the previously studied monopole confinement scenario based on an Abelian projection after some partial gauge-fixing, where Abelian neutral states can survive as physical. To check if the scenario is realized in nature, numerical studies are done in the framework of lattice field theory by adopting pure S U (2 ) gauge theory for simplicity. Considering Jμ(x )=kμ(x ) in the continuum formulation, we adopt an Abelian-like definition of a monopole following DeGrand-Toussaint as a lattice version of VNABI, since the Dirac quantization condition of the magnetic charge is satisfied on lattice partially. To reduce severe lattice artifacts, we introduce various techniques of smoothing the thermalized vacuum. Smooth gauge fixings such as the maximal center gauge (MCG), block

  14. Asymptotic conformal invariance in a non-Abelian Chern-Simons-matter model

    Energy Technology Data Exchange (ETDEWEB)

    Acebal, J.L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Campos e Particulas]. E-mail: acebal@cbpf.br

    2002-08-01

    One shows here the existence of solutions to the Callan-Symanzik equation for the non-Abelian SU(2) Chern-Simons-matter model which exhibits asymptotic conformal invariance to every order in perturbative theory. The conformal symmetry in the classical domain is shown to hold by means of a local criteria based on the trace of the energy-momentum tensor. By using recently exhibited regimes for the dependence between the several couplings in which the set of {beta}-functions vanish, the asymptotic conformal invariance of the model appears to be valid in the quantum domain. By considering the SU (n) case the possible non validity of the proof for a particular {eta} would be merely accidental. (author)

  15. Matrix biorthogonal polynomials on the unit circle and non-Abelian Ablowitz-Ladik hierarchy

    International Nuclear Information System (INIS)

    Cafasso, Mattia

    2009-01-01

    Adler and van Moerbeke (2001 Commun. Pure Appl. Math. 54 153-205) described a reduction of the 2D-Toda hierarchy called the Toeplitz lattice. This hierarchy turns out to be equivalent to the one originally described by Ablowitz and Ladik (1975 J. Math. Phys. 16 598-603) using semidiscrete zero- curvature equations. In this paper, we obtain the original semidiscrete zero-curvature equations starting directly from the Toeplitz lattice and we generalize these computations to the matrix case. This generalization leads us to the semidiscrete zero-curvature equations for the non-Abelian (or multicomponent) version of the Ablowitz-Ladik equations (Gerdzhikov and Ivanov 1982 Theor. Math. Phys. 52 676-85). In this way, we extend the link between biorthogonal polynomials on the unit circle and the Ablowitz-Ladik hierarchy to the matrix case.

  16. Superfield approach to topological features of non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Malik, R.P.

    2002-01-01

    We discuss some of the key topological aspects of a (1+1)-dimensional (2D) self-interacting non-Abelian gauge theory (having no interaction with matter fields) in the framework of chiral superfield formalism. We provide the geometrical interpretation for the Lagrangian density, symmetric energy-momentum tensor, topological invariants, etc, by exploiting the on-shell nilpotent BRST and co-BRST symmetries that emerge after the application of (dual) horizontality conditions. We show that the above physically interesting quantities geometrically correspond to the translation of some local (but composite) chiral superfields along one of the two independent Grassmannian directions of a (2+2)-dimensional supermanifold. This translation is generated by the conserved and on-shell nilpotent (co-)BRST charges that are present in the theory. (author)

  17. Non-abelian geometrical quantum gate operation in an ultracold strontium gas

    Science.gov (United States)

    Leroux, Frederic

    The work developed in this PhD thesis is about geometric operation on a single qubit. If the external control parameters vary slowly, the quantum system evolves adiabatically in a sub-space composed of two degenerate eigenstates. After a closed loop in the space of the external parameters, the qubit acquires a geometrical rotation, which can be described by a unitary matrix in the Hilbert space of the two-level system. To the geometric rotation corresponds a non-Abelian gauge field. In this work, the qubit and the adiabatic geometrical quantum gates are implemented on a cold gas of atomic Strontium 87, trapped and cooled at the vicinity of the recoil temperature. The internal Hilbert space of the cold atoms has for basis the dressed states issued from the atom-light interaction of three lasers within a tripod configuration.

  18. Non-Abelian sigma models from Yang-Mills theory compactified on a circle

    Science.gov (United States)

    Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.

    2018-06-01

    We consider SU(N) Yang-Mills theory on R 2 , 1 ×S1, where S1 is a spatial circle. In the infrared limit of a small-circle radius the Yang-Mills action reduces to the action of a sigma model on R 2 , 1 whose target space is a 2 (N - 1)-dimensional torus modulo the Weyl-group action. We argue that there is freedom in the choice of the framing of the gauge bundles, which leads to more general options. In particular, we show that this low-energy limit can give rise to a target space SU (N) ×SU (N) /ZN. The latter is the direct product of SU(N) and its Langlands dual SU (N) /ZN, and it contains the above-mentioned torus as its maximal Abelian subgroup. An analogous result is obtained for any non-Abelian gauge group.

  19. High-energy behaviour in a non-abelian gauge theory. Pt. 2

    International Nuclear Information System (INIS)

    Bartels, J.

    1980-01-01

    In this second part of our attempt to construct a unitary high-energy description of a spontaneously broken non-abelian gauge theory we calculate, for the n → m amplitude in the multi-Regge limit, the first corrections beyond the leading logarithmic approximation. The resulting amplitudes come in the form of the reggeon calculus where the number of reggeons in each t-channel is restricted to one or two. We then study the limit where the mass of the vector particle is taken to zero: for the 2 → 2 amplitude show that this limit exists, not only for the approximation of the present paper but also for higher-order corrections. (orig.)

  20. Experimental state control by fast non-Abelian holonomic gates with a superconducting qutrit

    Science.gov (United States)

    Danilin, S.; Vepsäläinen, A.; Paraoanu, G. S.

    2018-05-01

    Quantum state manipulation with gates based on geometric phases acquired during cyclic operations promises inherent fault-tolerance and resilience to local fluctuations in the control parameters. Here we create a general non-Abelian and non-adiabatic holonomic gate acting in the (| 0> ,| 2> ) subspace of a three-level (qutrit) transmon device fabricated in a fully coplanar design. Experimentally, this is realized by simultaneously coupling the first two transitions by microwave pulses with amplitudes and phases defined such that the condition of parallel transport is fulfilled. We demonstrate the creation of arbitrary superpositions in this subspace by changing the amplitudes of the pulses and the relative phase between them. We use two-photon pulses acting in the holonomic subspace to reveal the coherence of the state created by the geometric gate pulses and to prepare different superposition states. We also test the action of holonomic NOT and Hadamard gates on superpositions in the (| 0> ,| 2> ) subspace.

  1. Non-abelian bosonization without Wess-Zumino terms. Pt. 1

    International Nuclear Information System (INIS)

    Rajeev, S.G.

    1989-01-01

    It is conjectured that the non-linear sigma-model without Wess-Zumino terms is equivalent as a quantum theory to the non-abelian massless Thirring model. However, the standard (Sugawara) current algebra of the non-linear model is not isomorphic to that of the fermionic theory. A new current algebra formalism is proposed, which depends on a parameter k. As k → ∞ it reduces to the Sugawara formalism. The new current algebra is isomorphic to the fermionic one, being the direct sum of two Kac-Moody algebras with opposite central terms. In the quantum theory, k (which is the level number) has to be an integer. The new formalism is shown to preserve Poincare and conformal invariance classically. The new current algebra is derived canonically and a new action principle for the non-linear model is proposed. (orig.)

  2. Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation

    CERN Document Server

    Scheck, Florian

    2012-01-01

    The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...

  3. Study of the 'non-Abelian' current algebra of a non-linear σ-model

    International Nuclear Information System (INIS)

    Ghosh, Subir

    2006-01-01

    A particular form of non-linear σ-model, having a global gauge invariance, is studied. The detailed discussion on current algebra structures reveals the non-Abelian nature of the invariance, with field dependent structure functions. Reduction of the field theory to a point particle framework yields a non-linear harmonic oscillator, which is a special case of similar models studied before in [J.F. Carinena et al., Nonlinearity 17 (2004) 1941, math-ph/0406002; J.F. Carinena et al., in: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 2004, p. 39, math-ph/0505028; J.F. Carinena et al., Rep. Math. Phys. 54 (2004) 285, hep-th/0501106]. The connection with non-commutative geometry is also established

  4. Non-abelian T-duality of Pilch-Warner background

    Energy Technology Data Exchange (ETDEWEB)

    Dimov, Hristo; Mladenov, Stefan; Vetsov, Tsvetan [Department of Physics, Sofia University (Bulgaria); Rashkov, Radoslav C. [Department of Physics, Sofia University (Bulgaria); Institute for Theoretical Physics, Vienna University of Technology (Austria)

    2016-08-15

    In this work we obtain the non-abelian T-dual geometry of the well-known Pilch-Warner supergravity solution in its infrared point. We derive the dual metric and the NS two-form by gauging the isometry group of the initial theory and integrating out the introduced auxiliary gauge fields. Then we use the Fourier-Mukai transform from algebraic geometry to find the transformation rules of the R-R fields. The dual background preserves the N = 1 supersymmetry of the original one due to the fact that the Killing spinor does not depend on the directions on which the N-AT-D is performed. Finally, we consider two different pp-wave limits of the T-dual geometry by performing Penrose limits for two light-like geodesics. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Projected Entangled Pair States with non-Abelian gauge symmetries: An SU(2) study

    Energy Technology Data Exchange (ETDEWEB)

    Zohar, Erez, E-mail: erez.zohar@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Wahl, Thorsten B. [Rudolf Peierls Centre for Theoretical Physics, Oxford, 1 Keble Road, OX1 3NP (United Kingdom); Burrello, Michele, E-mail: michele.burrello@mpq.mpg.de [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany); Cirac, J. Ignacio [Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching (Germany)

    2016-11-15

    Over the last years, Projected Entangled Pair States have demonstrated great power for the study of many body systems, as they naturally describe ground states of gapped many body Hamiltonians, and suggest a constructive way to encode and classify their symmetries. The PEPS study is not only limited to global symmetries, but has also been extended and applied for local symmetries, allowing to use them for the description of states in lattice gauge theories. In this paper we discuss PEPS with a local, SU(2) gauge symmetry, and demonstrate the use of PEPS features and techniques for the study of a simple family of many body states with a non-Abelian gauge symmetry. We present, in particular, the construction of fermionic PEPS able to describe both two-color fermionic matter and the degrees of freedom of an SU(2) gauge field with a suitable truncation.

  6. Classical field theory on electrodynamics, non-abelian gauge theories and gravitation

    CERN Document Server

    Scheck, Florian

    2018-01-01

    Scheck’s successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary...

  7. Signatures of non-Abelian anyons in the thermodynamics of an interacting fermion model

    Science.gov (United States)

    Borcherding, Daniel; Frahm, Holger

    2018-05-01

    The contribution of anyonic degrees of freedom emerging in the non-Abelian spin sector of a one-dimensional system of interacting fermions carrying both spin and SU(N f ) orbital degrees of freedom to the thermodynamic properties of the latter is studied based on the exact solution of the model. For sufficiently small temperatures and magnetic fields the anyons appear as zero energy modes localized at the massive kink excitations (Tsvelik 2014 Phys. Rev. Lett. 113 066401). From their quantum dimension they are identified as spin- anyons. The density of kinks (and anyons) can be controlled by an external magnetic field leading to the formation of a collective state of these anyons described by a parafermion conformal field theory for large fields. Based on the numerical analysis of the thermodynamic Bethe ansatz equations we propose a phase diagram for the anyonic modes.

  8. Decoupling, effective Lagrangian, and gauge hierarchy in spontaneously broken non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Kazama, Y.; Yao, Y.

    1982-01-01

    In spontaneously broken non-Abelian gauge theories which admit gauge hierarchy at the tree level, we show, to all orders in perturbation theory, that (i) the superheavy particles decouple from the light sector at low energies, (ii) an effective low-energy renormalizable theory emerges together with appropriate counterterms, and (iii) the gauge hierarchy can be consistently maintained in the presence of radiative corrections. These assertions are explicitly demonstrated for O(3) gauge theory with two triplets of Higgs particles in a manner easily applicable to more realistic grand unified theories. Furthermore, as a by-product of our analysis, we obtain a systematic method of computing the parameters of the effective low-energy theory via renormalization-group equations to any desired accuracy

  9. Renormalization and scaling behavior of non-Abelian gauge fields in curved spacetime

    International Nuclear Information System (INIS)

    Leen, T.K.

    1983-01-01

    In this article we discuss the one loop renormalization and scaling behavior of non-Abelian gauge field theories in a general curved spacetime. A generating functional is constructed which forms the basis for both the perturbation expansion and the Ward identifies. Local momentum space representations for the vector and ghost particles are developed and used to extract the divergent parts of Feynman integrals. The one loop diagram for the ghost propagator and the vector-ghost vertex are shown to have no divergences not present in Minkowski space. The Ward identities insure that this is true for the vector propagator as well. It is shown that the above renormalizations render the three- and four-vector vertices finite. Finally, a renormalization group equation valid in curved spacetimes is derived. Its solution is given and the theory is shown to be asymptotically free as in Minkowski space

  10. Non-Abelian, supersymmetric black holes and strings in 5 dimensions

    International Nuclear Information System (INIS)

    Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.

    2016-01-01

    We construct and study the first supersymmetric black-hole and black-string solutions of non-Abelian-gauged N=1,d=5 supergravity (N=1,d=5 Super-Einstein-Yang-Mills theory) with non-trivial SU(2) gauge fields: BPST instantons for black holes and BPS monopoles of different kinds (’t Hooft-Polyakov, Wu-Yang and Protogenov) for black strings and also for certain black holes that are well defined solutions only for very specific values of all the moduli. Instantons, as well as colored monopoles do not contribute to the masses and tensions but do contribute to the entropies. The construction is based on the characterization of the supersymmetric solutions of gauged N=1,d=5 supergravity coupled to vector multiplets achieved in ref. http://dx.doi.org/10.1088/1126-6708/2007/08/096 which we elaborate upon by finding the rules to construct supersymmetric solutions with one additional isometry, both for the timelike and null classes. These rules automatically connect the timelike and null non-Abelian supersymmetric solutions of N=1,d=5 SEYM theory with the timelike ones of N=2,d=4 SEYM theory http://dx.doi.org/10.1103/PhysRevD.78.065031; http://dx.doi.org/10.1088/1126-6708/2008/09/099 by dimensional reduction and oxidation. In the timelike-to-timelike case the singular Kronheimer reduction recently studied in ref. http://dx.doi.org/10.1016/j.physletb.2015.04.065 plays a crucial role.

  11. Chaos, scaling and existence of a continuum limit in classical non-Abelian lattice gauge theory

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Rugh, H.H.; Rugh, S.E.

    1996-01-01

    We discuss space-time chaos and scaling properties for classical non-Abelian gauge fields discretized on a spatial lattice. We emphasize that there is a open-quote no goclose quotes for simulating the original continuum classical gauge fields over a long time span since there is a never ending dynamical cascading towards the ultraviolet. We note that the temporal chaotic properties of the original continuum gauge fields and the lattice gauge system have entirely different scaling properties thereby emphasizing that they are entirely different dynamical systems which have only very little in common. Considered as a statistical system in its own right the lattice gauge system in a situation where it has reached equilibrium comes closest to what could be termed a open-quotes continuum limitclose quotes in the limit of very small energies (weak non-linearities). We discuss the lattice system both in the limit for small energies and in the limit of high energies where we show that there is a saturation of the temporal chaos as a pure lattice artifact. Our discussion focuses not only on the temporal correlations but to a large extent also on the spatial correlations in the lattice system. We argue that various conclusions of physics have been based on monitoring the non-Abelian lattice system in regimes where the fields are correlated over few lattice units only. This is further evidenced by comparison with results for Abelian lattice gauge theory. How the real time simulations of the classical lattice gauge theory may reach contact with the real time evolution of (semi-classical aspects of) the quantum gauge theory (e.g. Q.C.D.) is left an important question to be further examined

  12. A Remark on Dilaton Stabilization

    CERN Document Server

    Dvali, Gia; Dvali, Gia; Kakushadze, Zurab

    1998-01-01

    Dilaton stabilization may occur in a theory based on a single asymptotically free gauge group with matter due to an interplay between quantum modification of the moduli space and tree-level superpotential. We present a toy model where such a mechanism is realized. Dilaton stabilization in this mechanism tends to occur at strong coupling values unless some unnatural adjustment of parameters is involved.

  13. Minimal dilaton model

    Directory of Open Access Journals (Sweden)

    Oda Kin-ya

    2013-05-01

    Full Text Available Both the ATLAS and CMS experiments at the LHC have reported the observation of the particle of mass around 125 GeV which is consistent to the Standard Model (SM Higgs boson, but with an excess of events beyond the SM expectation in the diphoton decay channel at each of them. There still remains room for a logical possibility that we are not seeing the SM Higgs but something else. Here we introduce the minimal dilaton model in which the LHC signals are explained by an extra singlet scalar of the mass around 125 GeV that slightly mixes with the SM Higgs heavier than 600 GeV. When this scalar has a vacuum expectation value well beyond the electroweak scale, it can be identified as a linearly realized version of a dilaton field. Though the current experimental constraints from the Higgs search disfavors such a region, the singlet scalar model itself still provides a viable alternative to the SM Higgs in interpreting its search results.

  14. A magnetic instability of the non-Abelian Sakai-Sugimoto model

    International Nuclear Information System (INIS)

    Callebaut, Nele; Dudal, David

    2014-01-01

    In this follow-up paper of http://dx.doi.org/10.1007/JHEP03(2013)033 we further discuss the occurrence of a magnetically induced tachyonic instability of the rho meson in the two-flavour Sakai-Sugimoto model, uplifting two remaining approximations in the previous paper. That is, firstly, the magnetically induced splitting of the branes is now taken into account, evaluating without approximations the symmetrized trace which enters in the non-Abelian Dirac-Born-Infeld (DBI) action. This leads to an extra mass generating effect for the charged heavy-light rho meson through a holographic Higgs mechanism. Secondly, we compare the results in the approximation to second order in the field strength to the results using the full DBI-action. Both improvements cause an increase of the critical magnetic field for the onset of rho meson condensation. In addition, the stability in the scalar sector in the presence of the magnetic field is discussed

  15. Dyons, Superstrings, and Wormholes: Exact Solutions of the Non-Abelian Dirac-Born-Infeld Action

    Directory of Open Access Journals (Sweden)

    Edward A. Olszewski

    2015-01-01

    Full Text Available We construct dyon solutions on coincident D4-branes, obtained by applying T-duality transformations to type I SO(32 superstring theory in 10 dimensions. These solutions, which are exact, are obtained from an action comprising the non-Abelian Dirac-Born-Infeld action and a Wess-Zumino-like action. When one spatial dimension of the D4-branes is taken to be vanishingly small, the dyons are analogous to the ’t Hooft/Polyakov monopole residing in a 3+1-dimensional spacetime, where the component of the Yang-Mills potential transforming as a Lorentz scalar is reinterpreted as a Higgs boson transforming in the adjoint representation of the gauge group. Applying a T-duality transformation to the vanishingly small spatial dimension, we obtain a collection of D3-branes, not all of which are coincident. Two of the D3-branes, distinct from the others, acquire intrinsic, finite curvature and are connected by a wormhole. The dyons possess electric and magnetic charges whose values on each D3-brane are the negative of one another. The gravitational effects, which arise after the T-duality transformation, occur despite the fact that the action of the system does not explicitly include the gravitational interaction. These solutions provide a simple example of the subtle relationship between the Yang-Mills and gravitational interactions, that is, gauge/gravity duality.

  16. Non-Abelian Yang-Mills analogue of classical electromagnetic duality

    International Nuclear Information System (INIS)

    Chan, Hong-Mo; Faridani, J.; Tsun, T.S.

    1995-01-01

    The classic question of non-Abelian Yang-Mills analogue to electromagnetic duality is examined here in a minimalist fashion at the strictly four-dimensional, classical field, and point charge level. A generalization of the Abelian Hodge star duality is found which, though not yet known to give dual symmetry, reproduces analogues to many dual properties of the Abelian theory. For example, there is a dual potential, but it is a two-indexed tensor T μν of the Freedman-Townsend-type. Though not itself functioning as such, T μν gives rise to a dual parallel transport A μ for the phase of the wave function of the color magnetic charge, this last being a monopole of the Yang-Mills field but a source of the dual field. The standard color (electric) charge itself is found to be a monpole of A μ . At the same time, the gauge symmetry is found doubled from say SU(N) to SU(N)xSU(N). A novel feature is that all equations of motion, including the standard Yang-Mills and Wong equations, are here derived from a ''universal'' principle, namely, the Wu-Yang criterion for monpoles, where interactions arise purely as a consequence of the topological definition of the monopole charge. The technique used is the loop space formulation of Polyakov

  17. Non-Abelian behavior of α bosons in cold symmetric nuclear matter

    International Nuclear Information System (INIS)

    Zheng Hua; Bonasera, Aldo

    2011-01-01

    The ground-state energy of infinite symmetric nuclear matter is usually described by strongly interacting nucleons obeying the Pauli exclusion principle. We can imagine a unitary transformation which groups four nonidentical nucleons (i.e., with different spin and isospin) close in coordinate space. Those nucleons, being nonidentical, do not obey the Pauli principle, thus their relative momenta are negligibly small (just to fulfill the Heisenberg principle). Such a cluster can be identified with an α boson. But in dense nuclear matter, those α particles still obey the Pauli principle since are constituted of fermions. The ground state energy of nuclear matter α clusters is the same as for nucleons, thus it is degenerate. We could think of α particles as vortices which can now braid, for instance making 8 Be which leave the ground state energy unchanged. Further braiding to heavier clusters ( 12 C, 16 O,...) could give a different representation of the ground state at no energy cost. In contrast d-like clusters (i.e., N=Z odd-odd nuclei, where N and Z are the neutron and proton number, respectively) cannot describe the ground state of nuclear matter and can be formed at high excitation energies (or temperatures) only. We show that even-even, N=Z, clusters could be classified as non-Abelian states of matter. As a consequence an α condensate in nuclear matter might be hindered by the Fermi motion, while it could be possible a condensate of 8 Be or heavier clusters.

  18. Scaling analysis of the non-Abelian quasiparticle tunneling in [Formula: see text] FQH states.

    Science.gov (United States)

    Li, Qi; Jiang, Na; Wan, Xin; Hu, Zi-Xiang

    2018-06-27

    Quasiparticle tunneling between two counter propagating edges through point contacts could provide information on its statistics. Previous study of the short distance tunneling displays a scaling behavior, especially in the conformal limit with zero tunneling distance. The scaling exponents for the non-Abelian quasiparticle tunneling exhibit some non-trivial behaviors. In this work, we revisit the quasiparticle tunneling amplitudes and their scaling behavior in a full range of the tunneling distance by putting the electrons on the surface of a cylinder. The edge-edge distance can be smoothly tuned by varying the aspect ratio for a finite size cylinder. We analyze the scaling behavior of the quasiparticles for the Read-Rezayi [Formula: see text] states for [Formula: see text] and 4 both in the short and long tunneling distance region. The finite size scaling analysis automatically gives us a critical length scale where the anomalous correction appears. We demonstrate this length scale is related to the size of the quasiparticle at which the backscattering between two counter propagating edges starts to be significant.

  19. (Non-)Abelian Kramers-Wannier duality and topological field theory

    CERN Document Server

    Severa, Pavol

    2002-01-01

    We study a connection between duality and topological field theories. First, 2d Kramers-Wannier duality is formulated as a simple 3d topological claim (more or less Poincare duality), and a similar formulation is given for higher-dimensional cases. In this form they lead to simple TFTs with boundary coloured in two colours. The statistical models live on the boundary of these TFTs, as in the CS/WZW or AdS/CFT correspondence. Classical models (Poisson-Lie T-duality) suggest a non-abelian generalization in the 2dcase, with abelian groups replaced by quantum groups. Amazingly, the TFT formulation solves the problem without computation: quantum groups appear in pictures, independently of the classical motivation. Connection with Chern-Simons theory appears at the symplectic level, and also in the pictures of the Drinfeld double: Reshetikhin-Turaev invariants of links in 3-manifolds, computed from the double, are included in these TFTs. All this suggests nice phenomena in higher dimensions.

  20. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  1. Nonperturbative dynamics of hot non-Abelian gauge fields: Beyond the leading log approximation

    International Nuclear Information System (INIS)

    Arnold, Peter; Yaffe, Laurence G.

    2000-01-01

    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bo''deker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by Moore to yield a NLLO result for the hot electroweak baryon number violation rate

  2. Restoration of the local gauge symmetry and color confinement in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Hata, Hiroyuki

    1982-01-01

    Restoration of the local gauge symmetry and its connection to color confinement is investigated in non-Abelian gauge theories with covariant gauge fixing. We consider the Noether current J sub(μ,#betta#)sup(a) of the local gauge transformation with transformation functions #betta#sup(b)(x) linear in x sub(μ); #betta#sup(b)(x) = delta sup(ab)x sub(#betta#). This current is conserved only in the physical subspace of the state vector space and in perturbation theory contains a massless pole communicating to the gauge field. We define the local gauge symmetry restoration as the disappearance of this massless ''Goldstone'' pole from J sub(μ,#betta#)sup(a). The restoration condition is obtained and it coincides exactly with the color confinement criterion proposed earlier by Kugo and Ojima. Quarks and other colored particles are shown to be confined in the local gauge symmetry restored phase by using the Ward identities of J sub(μ,#betta#)sup(a). (author)

  3. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    Science.gov (United States)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  4. Zk string fluxes and monopole confinement in non-Abelian theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A.C.; Centro Brasileiro de Pesquisas Fisicas

    2002-11-01

    Recently we considered N = 2 Super Yang-Mills with a mass breaking term and showed the existence of BPS Z k -string solutions for arbitrary simple gauge groups which are spontaneously broken to non-Abelian residual gauge groups. We also calculated their string tensions exactly. In doing so, we have considered in particular the hyper multiplet in the representation of a diquark condensate. In the present work we shall analyze some of the different phases of the theory and find that the magnetic fluxes of the monopoles and Z k strings of the theory are proportional to one another, allowing for monopole confinement in one of the phase transitions of the theory. Then we will calculate the threshold length for a string to break in a new pair of monopole-anti monopole. We will further show that some of the resulting confining theories can obtained by adding a deformation term to N 2 or N = 4 superconformal theories and, as such, may satisfy a gauge/string correspondence. (author)

  5. Non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation and its implication to quark confinement

    Science.gov (United States)

    Matsudo, Ryutaro; Kondo, Kei-Ichi

    2015-12-01

    We give a gauge-independent definition of magnetic monopoles in the S U (N ) Yang-Mills theory through the Wilson loop operator. For this purpose, we give an explicit proof of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the Wilson loop operator in an arbitrary representation of the S U (N ) gauge group to derive a new form for the non-Abelian Stokes theorem. The new form is used to extract the magnetic-monopole contribution to the Wilson loop operator in a gauge-invariant way, which enables us to discuss confinement of quarks in any representation from the viewpoint of the dual superconductor vacuum.

  6. Mapping of parent hamiltonians from abelian and non-abelian quantum hall states to exact models of critical spin chains

    CERN Document Server

    Greiter, Martin

    2011-01-01

    This monograph introduces an exact model for a critical spin chain with arbitrary spin S, which includes the Haldane--Shastry model as the special case S=1/2.  While spinons in the Haldane-Shastry model obey abelian half-fermi statistics, the spinons in the general model introduced here obey non-abelian statistics.  This manifests itself through topological choices for the fractional momentum spacings.  The general model is derived by mapping exact models of quantized Hall states onto spin chains.  The book begins with pedagogical review of all the relevant models including the non-abelian statistics in the Pfaffian Hall state, and is understandable to every student with a graduate course in quantum mechanics.

  7. Exact diagonalization of cubic lattice models in commensurate Abelian magnetic fluxes and translational invariant non-Abelian potentials

    DEFF Research Database (Denmark)

    Burrello, M.; Fulga, Ion Cosma; Lepori, L.

    2017-01-01

    of a translational invariant non-Abelian coupling for multi-component spinors does not affect the dimension of the minimal Hamiltonian blocks, nor the dimension of the magnetic Brillouin zone. General formulas are presented for the U(2) case and explicit examples are investigated involving π and 2π/3 magnetic fluxes......We present a general analytical formalism to determine the energy spectrum of a quantum particle in a cubic lattice subject to translationally invariant commensurate magnetic fluxes and in the presence of a general spaceindependent non-Abelian gauge potential. We first review and analyze the case...... of purely Abelian potentials, showing also that the so-called Hasegawa gauge yields a decomposition of the Hamiltonian into sub-matrices having minimal dimension. Explicit expressions for such matrices are derived, also for general anisotropic fluxes. Later on, we show that the introduction...

  8. Index theorem for non-supersymmetric fermions coupled to a non-Abelian string and electric charge quantization

    Science.gov (United States)

    Shifman, M.; Yung, A.

    2018-03-01

    Non-Abelian strings are considered in non-supersymmetric theories with fermions in various appropriate representations of the gauge group U(N). We derive the electric charge quantization conditions and the index theorems counting fermion zero modes in the string background both for the left-handed and right-handed fermions. In both cases we observe a non-trivial N dependence.

  9. A note on the fate of the Landau–Yang theorem in non-Abelian gauge theories

    Directory of Open Access Journals (Sweden)

    Matteo Cacciari

    2016-02-01

    Full Text Available Using elementary considerations of Lorentz invariance, Bose symmetry and BRST invariance, we argue why the decay of a massive color-octet vector state into a pair of on-shell massless gluons is possible in a non-Abelian SU(N Yang–Mills theory, we constrain the form of the amplitude of the process and offer a simple understanding of these results in terms of effective-action operators.

  10. A note on the fate of the Landau–Yang theorem in non-Abelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Cacciari, Matteo [Université Paris Diderot, F-75013 Paris (France); Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE, F-75005 Paris (France); CNRS, UMR 7589, LPTHE, F-75005 Paris (France); CERN, PH-TH, CH-1211 Geneva 23 (Switzerland); Del Debbio, Luigi [Higgs Centre for Theoretical Physics, School of Physics & Astronomy, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom); CERN, PH-TH, CH-1211 Geneva 23 (Switzerland); Espinosa, José R. [ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona (Spain); IFAE, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Polosa, Antonio D., E-mail: antonio.polosa@roma1.infn.it [Dipartimento di Fisica and INFN, ‘Sapienza’ Università di Roma, Piazzale Aldo Moro 2, I-00185 Roma (Italy); Testa, Massimo [Dipartimento di Fisica and INFN, ‘Sapienza’ Università di Roma, Piazzale Aldo Moro 2, I-00185 Roma (Italy)

    2016-02-10

    Using elementary considerations of Lorentz invariance, Bose symmetry and BRST invariance, we argue why the decay of a massive color-octet vector state into a pair of on-shell massless gluons is possible in a non-Abelian SU(N) Yang–Mills theory, we constrain the form of the amplitude of the process and offer a simple understanding of these results in terms of effective-action operators.

  11. Nilpotent symmetries and Curci-Ferrari-type restrictions in 2D non-Abelian gauge theory: Superfield approach

    Science.gov (United States)

    Srinivas, N.; Malik, R. P.

    2017-11-01

    We derive the off-shell nilpotent symmetries of the two (1 + 1)-dimensional (2D) non-Abelian 1-form gauge theory by using the theoretical techniques of the geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. For this purpose, we exploit the augmented version of superfield approach (AVSA) and derive theoretically useful nilpotent (anti-)BRST, (anti-)co-BRST symmetries and Curci-Ferrari (CF)-type restrictions for the self-interacting 2D non-Abelian 1-form gauge theory (where there is no interaction with matter fields). The derivation of the (anti-)co-BRST symmetries and all possible CF-type restrictions are completely novel results within the framework of AVSA to BRST formalism where the ordinary 2D non-Abelian theory is generalized onto an appropriately chosen (2, 2)-dimensional supermanifold. The latter is parametrized by the superspace coordinates ZM = (xμ,𝜃,𝜃¯) where xμ (with μ = 0, 1) are the bosonic coordinates and a pair of Grassmannian variables (𝜃,𝜃¯) obey the relationships: 𝜃2 = 𝜃¯2 = 0, 𝜃𝜃¯ + 𝜃¯𝜃 = 0. The topological nature of our 2D theory allows the existence of a tower of CF-type restrictions.

  12. New Applications of Resummation in Non-Abelian Gauge Theories: QED-QCD Exponentiation for LHC Physics, IR-Improved DGLAP Theory and Resummed Quantum Gravity

    International Nuclear Information System (INIS)

    Ward, B.F.L.

    2006-01-01

    We present the elements of three applications of resummation methods in non-Abelian gauge theories: (1), QED-QCD exponentiation and shower/ME matching for LHC physics; (2), IR improvement of DGLAP theory; (3), resummed quantum gravity and the final state of Hawking radiation. In all cases, the extension of the YFS approach, originally introduced for Abelian gauge theory, to non-Abelian gauge theories, QCD and quantum general relativity, leads to new results and solutions which we briefly summarize

  13. Non-Abelian bosonization as a nonholonomic transformation from a flat to a curved field space

    International Nuclear Information System (INIS)

    Kleinert, H.

    1997-01-01

    There exists a simple rule by which path integrals for the motion of a point particle in a flat space can be transformed correctly into those in a curved space. This rule arose from well-established methods in the theory of plastic deformations, where crystals with defects are described mathematically by applying active nonholonomic coordinate transformations to ideal crystals. In the context of time-sliced path integrals, this has given rise to a quantum equivalence principle which determines the short-time action and functional integration measure of fluctuating orbits in spaces with curvature and torsion. The nonholonomic transformations have a nontrivial Jacobian which in curved spaces produces an additional energy proportional to the curvature scalar, thereby canceling an equal term found earlier by DeWitt in his formulation of Feynman close-quote s time-sliced path integral in curved space. The importance of this cancelation has been documented in various systems (H-atom, particle on the surface of a sphere, spinning top). Here we point out its relevance to the bosonization of a non-Abelian one-dimensional quantum field theory, whose fields live in a flat field space. The bosonized version is a quantum-mechanical path integral of a point particle moving in a space with constant curvature. The additional term introduced by the Jacobian is crucial for the identity between original and bosonized theory. A useful bosonization tool is the so-called Hubbard endash Stratonovich formula for which we find a nonabelian version. copyright 1997 Academic Press, Inc

  14. Classical field theory. On electrodynamics, non-Abelian gauge theories and gravitation. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Scheck, Florian

    2018-04-01

    Scheck's successful textbook presents a comprehensive treatment, ideally suited for a one-semester course. The textbook describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell's theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell's theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell's theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes with a discussion of the Schwarzschild solution of Einstein's equations and the classical tests of general relativity. The new concept of this edition presents the content divided into two tracks: the fast track for master's students, providing the essentials, and the intensive track for all wanting to get in depth knowledge of the field. Cleary labeled material and sections guide students through the preferred level of treatment. Numerous problems and worked examples will provide successful access to Classical Field Theory.

  15. Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory.

    Science.gov (United States)

    Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen

    2011-04-15

    We construct generalizations of the Kerr black holes by including higher-curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. We show that the domain of existence of these Einstein-Gauss-Bonnet-dilaton (EGBD) black holes is bounded by the Kerr black holes, the critical EGBD black holes, and the singular extremal EGBD solutions. The angular momentum of the EGBD black holes can exceed the Kerr bound. The EGBD black holes satisfy a generalized Smarr relation. We also compare their innermost stable circular orbits with those of the Kerr black holes and show the existence of differences which might be observable in astrophysical systems.

  16. Three-dimensional dilatonic gravity's rainbow: Exact solutions

    International Nuclear Information System (INIS)

    Hossein Hendi, Seyed; Eslam Panah, Behzad; Panahiyan, Shahram

    2016-01-01

    Deep relations of dark energy scenario and string theory results into dilaton gravity, on the one hand, and the connection between quantum gravity and gravity's rainbow, on the other hand, motivate us to consider three-dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions, which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.

  17. Dilaton could affect abundance of dark matter particles

    CERN Multimedia

    2007-01-01

    "The amount of dark matter left over from the early universe may be less than previously believed. new research shows that the "relic abundance" of stable dark matter particles such as the neutralino may be reduced as compared to standard cosmology theories due to the effects of the "dilaton", a particle with zero spin in the gravitational sector of strings." (1 page)

  18. Relativistic generalization and extension to the non-Abelian gauge theory of Feynman's proof of the Maxwell equations

    International Nuclear Information System (INIS)

    Tanimura, Shogo

    1992-01-01

    R. P. Feynman showed F. J. Dyson a proof of the Lorentz force law and the homogeneous Maxwell equations, which he obtained starting from Newton's law of motion and the commutation relations between position and velocity for a single nonrelativistic particle. The author formulate both a special relativistic and a general relativistic version of Feynman's derivation. Especially in the general relativistic version they prove that the only possible fields that can consistently act on a quantum mechanical particle are scalar, gauge, and gravitational fields. They also extend Feynman's scheme to the case of non-Abelian gauge theory in the special relativistic context. 8 refs

  19. Perfect-fluid models admitting a non-Abelian and maximal two-parameter group of isometries

    International Nuclear Information System (INIS)

    Van den Bergh, N.

    1988-01-01

    A proof is given that, when a spacetime admits an invariant timelike congruence orthogonal to the orbits of a non-Abelian two-parameter group of isometries, the given congruence is vorticity-free provided the group is maximal. The result is used to derive a canonical coordinate form for perfect-fluid solutions satisfying the above condition. It is also shown that such a group of isometries cannot be orthogonally transitive and a brief discussion is given of the self-similar case. (author)

  20. A non-Abelian SO(8) monopole as generalization of Dirac-Yang monopoles for a 9-dimensional space

    International Nuclear Information System (INIS)

    Le, Van-Hoang; Nguyen, Thanh-Son

    2011-01-01

    We establish an explicit form of a non-Abelian SO(8) monopole in a 9-dimensional space and show that it is indeed a direct generalization of Dirac and Yang monopoles. Using the generalized Hurwitz transformation, we have found a connection between a 16-dimensional harmonic oscillator and a 9-dimensional hydrogenlike atom in the field of the SO(8) monopole (MICZ-Kepler problem). Using the built connection the group of dynamical symmetry of the 9-dimensional MICZ-Kepler problem is found as SO(10, 2).

  1. The motion of color-charged particles as a means of testing the non-Abelian dark matter model

    OpenAIRE

    Dzhunushaliev, V.; Folomeev, V.; Protsenko, N.

    2018-01-01

    A possibility is discussed for experimental testing of the dark matter model supported by a classic non-Abelian SU(3) gauge (Yang-Mills) field. Our approach is based on the analysis of the motion of color-charged particles on the background of color electric and magnetic fields using the Wong equations. Estimating the magnitudes of the color fields near the edge of a galaxy, we employ them in obtaining the general analytic solutions to the Wong equations. Using the latter, we calculate the ma...

  2. Abelian color cycles: A new approach to strong coupling expansion and dual representations for non-abelian lattice gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at

    2017-03-15

    We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).

  3. Cosmic censorship and the dilaton

    International Nuclear Information System (INIS)

    Horne, J.H.; Horowitz, G.T.

    1993-01-01

    We investigate extremal electrically charged black holes in Einstein-Maxwell-dilaton theory with a cosmological constant inspired by string theory. These solutions are not static, and a timelike singularity eventually appears which is not surrounded by an event horizon. This suggests that cosmic censorship may be violated in this theory

  4. Dilaton thin-shell wormholes supported by a generalized Chaplygin gas

    International Nuclear Information System (INIS)

    Bejarano, Cecilia; Eiroa, Ernesto F.

    2011-01-01

    In this article, we construct spherical thin-shell wormholes with charge in dilaton gravity. The exotic matter required for the construction is provided by a generalized Chaplygin gas. We study the stability under perturbations preserving the symmetry. We find that the increase of the coupling between the dilaton and the electromagnetic fields reduces the range of the parameters for which stable configurations are possible.

  5. Black holes and gravitating axially symmetric non-abelian solitons in d 3+1 and d = 4+1

    International Nuclear Information System (INIS)

    Radu, Eugen; Shnir, Yasha; Tchrakian, D. H.

    2010-01-01

    We construct static, asymptotically flat solutions of SU(2) Einstein-Yang-Mills (EYM) theory in 4+1 dimensions, subject to bi-azimuthal symmetry. The results are compared with similar solutions of the SU(2) Yang--Mills--dilaton (YMd) model. Both particle-like and black hole solutions are considered.

  6. Thermodynamic instability of charged dilaton black holes in AdS spaces

    International Nuclear Information System (INIS)

    Sheykhi, A.; Dehghani, M. H.; Hendi, S. H.

    2010-01-01

    We study thermodynamic instability of a class of (n+1)-dimensional charged dilatonic spherically symmetric black holes in the background of the anti-de Sitter universe. We calculate the quasilocal mass of the anti-de Sitter dilaton black hole through the use of the subtraction method of Brown and York. We find a Smarr-type formula and perform a stability analysis in the canonical ensemble and disclose the effect of the dilaton field on the thermal stability of the solutions. Our study shows that the solutions are thermally stable for small α, while for large α the system has an unstable phase, where α is a coupling constant between the dilaton and matter field.

  7. Topological insulators in cold-atom gases with non-Abelian gauge fields: the role of interactions

    Energy Technology Data Exchange (ETDEWEB)

    Orth, Peter Philipp [Institut fuer Theorie der Kondensierten Materie, Karlsruher Institut fuer Technologie, 76128 Karlsruhe (Germany); Cocks, Daniel; Buchhold, Michael; Hofstetter, Walter [Institut fuer Theoretische Physik, Goethe Universitaet, 60438 Frankfurt am Main (Germany); Rachel, Stephan [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Le Hur, Karyn [Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Center for Theoretical Physics, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2012-07-01

    With the recent technological advance of creating (non)-Abelian gauge fields for ultracold atoms in optical lattices, it becomes possible to study the interplay of topological phases and interactions in these systems. Specifically, we consider a spinful and time-reversal invariant version of the Hofstadter problem. In addition, we allow for a hopping term which does not preserve S{sub z} spin symmetry and a staggered sublattice potential. Without interactions, the parameters can be tuned such that the system is a topological insulator. Using a combination of analytical techniques and the powerful real-space dynamical mean-field (R-DMFT) method, we discuss the effect of interactions and determine the interacting phase diagram.

  8. Energy-momentum tensor in theories with scalar fields and two coupling constants. I. Non-Abelian case

    International Nuclear Information System (INIS)

    Joglekar, S.D.; Misra, A.

    1989-01-01

    In this paper, we generalize our earlier discussion of renormalization of the energy-momentum tensor in scalar QED to that in non-Abelian gauge theories involving scalar fields. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/)

  9. Non-abelian action of D0-branes from Matrix theory in the longitudinal 5-brane background

    International Nuclear Information System (INIS)

    Asano, Masako; Sekino, Yasuhiro

    2002-01-01

    We study one-loop effective action of Berkooz-Douglas Matrix theory and obtain non-abelian action of D0-branes in the background field produced by longitudinal 5-branes. Since these 5-branes do not have D0-brane charge and are not present in BFSS Matrix theory, our analysis provides an independent test for the coupling of D-branes to general weak backgrounds proposed by Taylor and Van Raamsdonk from the analysis of the BFSS model. The proposed couplings appear in the Berkooz-Douglas effective action precisely as expected, which suggests the consistency of the two matrix models. We also point out the existence of the terms which are not given by the symmetrized trace prescription in the Matrix theory effective action

  10. Canonical quantization of non-abelian gauge theory in the Schroedinger picture: applications to monopoles and instantons

    International Nuclear Information System (INIS)

    Wadia, S.R.

    1979-01-01

    A detailed formulation of the quantum theory of non-abelian gauge fields is presented in the Schroedinger picture. It is applied to the semiclassical quantization of the t'Hoft-Polyakov monopole, with special attention paid to the treatment of boundary conditions and local and global gauge symmetry. The perturbation expansion is then discussed with the aid of standard collective co-ordinates. In the Prasad-Sommerfield limit, all the eigenfunctions of the fluctuation equation are presented, the ground-state wave function is constructed in terms of gauge and translation invariant co-ordinates, and its total angular momentum is computed to be zero. Aspects of instanton phenomena are then examined in the Schroedinger picture; the role of euclidean time is elucidated. The precise relation between boundary conditions, choice of gauge, and the corresponding picture of the semiclassical vacuum is demonstrated

  11. The valley method and its application to the instanton-induced phenomena in non-abelian gauge theories

    International Nuclear Information System (INIS)

    Khoze, V.V.

    1991-06-01

    The semiclassical evaluation of the functional integral on non-Abelian gauge theories is generalized by means of the so-called valley method. The physically very important example of the valley, the instanton-anti-instanton field configuration, is discussed in details and its contributions to the physical quantities for zero-temperature and for thermal field theories are investigated. The high-energy behaviour of the total cross-section σ Δ F for electroweak fermion number violating two particles collisions is studied using the optical theorem approach. The calculation is done at energies below the sphaleron mass (E<10TeV) where it leads to the most complete result for σ Δ F known to date. Some estimations and a qualitative physical picture are discussed for energies above the sphaleron mass for the confinement and Higgs phases of the gauge theory. The effects of instanton-anti-instanton interactions are also studied in thermal QCD. (au)

  12. Non-Abelian T-duality and the AdS/CFT correspondence: New N=1 backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Itsios, Georgios, E-mail: gitsios@upatras.gr [Department of Engineering Sciences, University of Patras, 26110 Patras (Greece); Department of Mathematics, University of Surrey, Guildford GU2 7XH (United Kingdom); Núñez, Carlos, E-mail: c.nunez@swansea.ac.uk [Swansea University, School of Physical Sciences, Singleton Park, Swansea SA2 8PP (United Kingdom); Sfetsos, Konstadinos, E-mail: k.sfetsos@surrey.ac.uk [Department of Mathematics, University of Surrey, Guildford GU2 7XH (United Kingdom); Department of Engineering Sciences, University of Patras, 26110 Patras (Greece); Thompson, Daniel C., E-mail: dthompson@tena4.vub.ac.be [Theoretische Natuurkunde, Vrije Universiteit Brussel (Belgium); International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium)

    2013-08-01

    We consider non-Abelian T-duality on N=1 supergravity backgrounds possessing well understood field theory duals. For the case of D3-branes at the tip of the conifold, we dualise along an SU(2) isometry. The result is a type-IIA geometry whose lift to M-theory is of the type recently proposed by Bah et al. as the dual to certain N=1 SCFT quivers produced by M5-branes wrapping a Riemann surface. In the non-conformal cases we find smooth duals in massive IIA supergravity with a Romans mass naturally quantised. We initiate the interpretation of these geometries in the context of AdS/CFT correspondence. We show that the central charge and the entanglement entropy are left invariant by this dualisation. The backgrounds suggest a form of Seiberg duality in the dual field theories which also exhibit domain walls and confinement in the infrared.

  13. Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx; Manuel-Cabrera, J., E-mail: jmanuel@ifuap.buap.mx

    2015-10-15

    A detailed Faddeev–Jackiw quantization of an Abelian and non-Abelian exotic action for gravity in three dimensions is performed. We obtain for the theories under study the constraints, the gauge transformations, the generalized Faddeev–Jackiw brackets and we perform the counting of physical degrees of freedom. In addition, we compare our results with those found in the literature where the canonical analysis is developed, in particular, we show that both the generalized Faddeev–Jackiw brackets and Dirac’s brackets coincide to each other. Finally we discuss some remarks and prospects. - Highlights: • A detailed Faddeev–Jackiw analysis for exotic action of gravity is performed. • We show that Dirac’s brackets and Generalized [FJ] brackets are equivalent. • Without fixing the gauge exotic action is a non-commutative theory. • The fundamental gauge transformations of the theory are found. • Dirac and Faddeev–Jackiw approaches are compared.

  14. Corestriction principle for non-Abelian cohomology of reductive group schemes over Dedekind rings of integers of local and global fields

    International Nuclear Information System (INIS)

    Nguyen Quoc Thang

    2006-12-01

    We prove some new results on Corestriction principle for non-abelian cohomology of group schemes over the rings of integers of local and global fields. Some connections with Grothendieck - Serre's conjecture are indicated, and applications to the study of class groups of algebraic groups over global fields are given. (author)

  15. Dilaton field released under collision of dilatonic black holes with Gauss-Bonnet term

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Bogeun [Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of); Ro, Daeho [POSTECH, Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk (Korea, Republic of)

    2017-08-15

    We investigate the upper limit of the gravitational radiation released upon the collision of two dilatonic black holes by analyzing the Gauss-Bonnet term. Dilatonic black holes have a dilaton hair coupled with this term. Using the laws of thermodynamics, the upper limit of the radiation is obtained, which reflected the effects of the dilaton hair. The amount of radiation released is greater than that emitted by a Schwarzschild black hole due to the contribution from the dilaton hair. In the collision, most of the dilaton hair can be released through radiation, where the energy radiated by the dilaton hair is maximized when the horizon of one black hole is minimized for a fixed second black hole. (orig.)

  16. Quark confinement: Dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

    Science.gov (United States)

    Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru

    2015-05-01

    The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark

  17. Dilaton vs Higgs: Nearly Conformal Physics

    Science.gov (United States)

    Kozlov, G. A.

    2016-04-01

    We consider the model in which the conformal symmetry can be broken spontaneously, and a light scalar dilaton could emerge in the low-energy spectrum. The contribution of the dark photon production relevant to two photons decays of a Higgs boson/dilaton is discussed.

  18. Classical resolution of singularities in dilaton cosmologies

    NARCIS (Netherlands)

    Bergshoeff, EA; Collinucci, A; Roest, D; Russo, JG; Townsend, PK

    2005-01-01

    For models of dilaton gravity with a possible exponential potential, such as the tensor-scalar sector of ITA supergravity, we show how cosmological solutions correspond to trajectories in a 2D Milne space (parametrized by the dilaton and the scale factor). Cosmological singularities correspond to

  19. The interaction of Dirac particles with non-abelian gauge fields and gravity - bound states

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix E-mail: felix.finster@mis.mpg.de; Smoller, Joel E-mail: smoller@umich.edu; Yau, S.-T. E-mail: yau@math.harvard.edu

    2000-09-18

    We consider a spherically symmetric, static system of a Dirac particle interacting with classical gravity and an SU(2) Yang-Mills field. The corresponding Einstein-Dirac-Yang-Mills equations are derived. Using numerical methods, we find different types of soliton-like solutions of these equations and discuss their properties. Some of these solutions are stable even for arbitrarily weak gravitational coupling.

  20. The interaction of Dirac particles with non-abelian gauge fields and gravity - bound states

    Science.gov (United States)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    2000-09-01

    We consider a spherically symmetric, static system of a Dirac particle interacting with classical gravity and an SU(2) Yang-Mills field. The corresponding Einstein-Dirac-Yang-Mills equations are derived. Using numerical methods, we find different types of soliton-like solutions of these equations and discuss their properties. Some of these solutions are stable even for arbitrarily weak gravitational coupling.

  1. The interaction of Dirac particles with non-abelian gauge fields and gravity - bound states

    International Nuclear Information System (INIS)

    Finster, Felix; Smoller, Joel; Yau, S.-T.

    2000-01-01

    We consider a spherically symmetric, static system of a Dirac particle interacting with classical gravity and an SU(2) Yang-Mills field. The corresponding Einstein-Dirac-Yang-Mills equations are derived. Using numerical methods, we find different types of soliton-like solutions of these equations and discuss their properties. Some of these solutions are stable even for arbitrarily weak gravitational coupling

  2. Fermions and vortex solutions in Abelian and non-Abelian gauge theories

    International Nuclear Information System (INIS)

    de Vega, H.J.

    1978-01-01

    The interaction of fermions with an extended vortex solution of the Higgs model is investigated. It is found that this interaction has long-range inverse-square tail. It is caused by the coupling of the fermion angular momentum with the vortex gauge field itself. The fermion-vortex bound states present at the threshold and the fermion-vortex scattering are studied. The scattering phase shifts and the Jost functions are obtained for large and small fermion momenta as well as the low-energy cross section which diverges at zero momentum. The quantum field theory in the one-vortex sectors is developed. It is found that, in the presence of fermions, a vortex with an even (odd) number of flux quanta has a half-integer (integer) fermionic number. It follows that a two-quantum vortex is stable. Finally, the stable vortex solution of an SU(2) Higgs model is investigated. The appropriate ansatz for the field is given and radial equations are discussed. It is shown that the interaction of a vortex with any nonsinglet particle has a long-range inverse-square tail

  3. Thermodynamics of novel charged dilatonic BTZ black holes

    Science.gov (United States)

    Dehghani, M.

    2017-10-01

    In this paper, the three-dimensional Einstein-Maxwell theory in the presence of a dilatonic scalar field has been studied. It has been shown that the dilatonic potential must be considered as the linear combination of two Liouville-type potentials. Two new classes of charged dilatonic BTZ black holes, as the exact solutions to the coupled scalar, vector and tensor field equations, have been obtained and their properties have been studied. The conserved charge and mass of the new black holes have been calculated, making use of the Gauss's law and Abbott-Deser proposal, respectively. Through comparison of the thermodynamical extensive quantities (i.e. temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of the first law of black hole thermodynamics has been confirmed for both of the new black holes we just obtained. A black hole thermal stability or phase transition analysis has been performed, making use of the canonical ensemble method. Regarding the black hole heat capacity, it has been found that for either of the new black hole solutions there are some specific ranges in such a way that the black holes with the horizon radius in these ranges are locally stable. The points of type one and type two phase transitions have been determined. The black holes, with the horizon radius equal to the transition points are unstable. They undergo type one or type two phase transitions to be stabilized.

  4. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian gauge theories, and gravitation. 3. ed.

    International Nuclear Information System (INIS)

    Scheck, Florian

    2010-01-01

    Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [de

  5. Faddeev-Senjanovic quantization of SU(n) N=2 supersymmetric gauge field system with a non-Abelian Chern-Simons topological term and its fractional spin

    International Nuclear Information System (INIS)

    Huang Yongchang; Huo Qiuhong

    2008-01-01

    Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-Abelian Chern-Simons topological term in 2+1 dimensions. We use consistency of Coulomb gauge condition to naturally deduce a new gauge condition. Furthermore, we obtain the generating functional of Green function in phase space, deduce the angular momentum based on the global canonical Noether theorem at quantum level, obtain the fractional spin of this supersymmetric system, and show that the total angular momentum is the sum of the orbital angular momentum and spin angular momentum of the non-Abelian gauge field. Finally, we obtain the anomalous fractional spin and discover that the fractional spin has the contributions of both the group superscript components and A 0 s (x) charge

  6. Dark matter and neutrino mass from the smallest non-Abelian chiral dark sector

    Science.gov (United States)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Zhang, Yue

    2017-10-01

    All pieces of concrete evidence for phenomena outside the standard model (SM)—neutrino masses and dark matter—are consistent with the existence of new degrees of freedom that interact very weakly, if at all, with those in the SM. We propose that these new degrees of freedom organize themselves into a simple dark sector, a chiral S U (3 )×S U (2 ) gauge theory with the smallest nontrivial fermion content. Similar to the SM, the dark S U (2 ) is spontaneously broken while the dark S U (3 ) confines at low energies. At the renormalizable level, the dark sector contains massless fermions—dark leptons—and stable massive particles—dark protons. We find that dark protons with masses between 10 and 100 TeV satisfy all current cosmological and astrophysical observations concerning dark matter even if dark protons are a symmetric thermal relic. The dark leptons play the role of right-handed neutrinos and allow simple realizations of the seesaw mechanism or the possibility that neutrinos are Dirac fermions. In the latter case, neutrino masses are also parametrically different from charged-fermion masses and the lightest neutrino is predicted to be massless. Since the new "neutrino" and "dark-matter" degrees of freedom interact with one another, these two new-physics phenomena are intertwined. Dark leptons play a nontrivial role in early Universe cosmology while indirect searches for dark matter involve, decisively, dark-matter annihilations into dark leptons. These, in turn, may lead to observable signatures at high-energy neutrino and gamma-ray observatories, especially once one accounts for the potential Sommerfeld enhancement of the annihilation cross section, derived from the low-energy dark-sector effective theory, a possibility we explore quantitatively in some detail.

  7. Worldlines and worldsheets for non-abelian lattice field theories: Abelian color fluxes and Abelian color cycles

    Directory of Open Access Journals (Sweden)

    Gattringer Christof

    2018-01-01

    Full Text Available We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes, or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles. Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2 principal chiral model with chemical potential coupled to two of the Noether charges, SU(2 lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.

  8. Worldlines and worldsheets for non-abelian lattice field theories: Abelian color fluxes and Abelian color cycles

    Science.gov (United States)

    Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta

    2018-03-01

    We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes), or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles). Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure) generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2) principal chiral model with chemical potential coupled to two of the Noether charges, SU(2) lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.

  9. Iron line spectroscopy with Einstein-dilaton-Gauss-Bonnet black holes

    Science.gov (United States)

    Nampalliwar, Sourabh; Bambi, Cosimo; Kokkotas, Kostas D.; Konoplya, Roman A.

    2018-06-01

    Einstein-dilaton-Gauss-Bonnet gravity is a well-motivated alternative theory of gravity that emerges naturally from string theory. While black hole solutions have been known in this theory in numerical form for a while, an approximate analytical metric was obtained recently by some of us, which allows for faster and more detailed analysis. Here we test the accuracy of the analytical metric in the context of X-ray reflection spectroscopy. We analyze innermost stable circular orbits (ISCO) and relativistically broadened iron lines and find that both the ISCO and iron lines are determined sufficiently accurately up to the limit of the approximation. We also find that, though the ISCO increases by about 7% as dilaton coupling increases from zero to extremal values, the redshift at ISCO changes by less than 1%. Consequently, the shape of the iron line is much less sensitive to the dilaton charge than expected.

  10. Blockspin renormalization-group study of color confinement due to violation of the non-Abelian Bianchi identity

    Science.gov (United States)

    Suzuki, Tsuneo

    2018-02-01

    Blockspin transformation of topological defects is applied to the violation of the non-Abelian Bianchi identity (VNABI) on lattice defined as Abelian monopoles. To get rid of lattice artifacts, we introduce (1) smooth gauge fixings such as the maximal center gauge (MCG), (2) blockspin transformations and (3) the tadpole-improved gauge action. The effective action can be determined by adopting the inverse Monte Carlo method. The coupling constants F (i ) of the effective action depend on the coupling of the lattice action β and the number of the blocking step n . But it is found that F (i ) satisfies a beautiful scaling; that is, they are a function of the product b =n a (β ) alone for lattice coupling constants 3.0 ≤β ≤3.9 and the steps of blocking 1 ≤n ≤12 . The effective action showing the scaling behavior can be regarded as an almost perfect action corresponding to the continuum limit, since a →0 as n →∞ for fixed b . The infrared effective monopole action keeps the global color invariance when smooth gauges such as MCG keeping the invariance are adopted. The almost perfect action showing the scaling is found to be independent of the smooth gauges adopted here as naturally expected from the gauge invariance of the continuum theory. Then we compare the results with those obtained by the analytic blocking method of topological defects from the continuum, assuming local two-point interactions are dominant as the infrared effective action. The action is formulated in the continuum limit while the couplings of these actions can be derived from simple observables calculated numerically on lattices with a finite lattice spacing. When use is made of Berezinskii-Kosterlitz-Thouless (BKT) transformation, the infrared monopole action can be transformed into that of the string model. Since large b =n a (β ) corresponds to the strong-coupling region in the string model, the physical string tension and the lowest glueball mass can be evaluated analytically

  11. Dual projection of chiral p-forms in D = 2: The non-Abelian, PST and supersymmetric formulations of Hull's notons

    International Nuclear Information System (INIS)

    Abreu, E.M.C.

    2002-08-01

    Chiral p-forms are, in fact, present in many supersymmetric and supergravity models in two, six and ten dimensions. In this work, the dual projection procedure, which is essentially equivalent to a canonical transformation, is used to diagonalize some theories in D = 2 (0-forms). The dual projection performed here provides an alternative way of gauging the chiral components without the necessity of constraints. It is shown, through the dual projection, that the nonmover field (the noton) initially introduced by Hull to cancel out the Siegel anomaly, has non-Abelian, PST and supersymmetric formulations. (author)

  12. Dilatonic imprints on exact gravitational wave signatures

    Science.gov (United States)

    McCarthy, Fiona; KubizÅák, David; Mann, Robert B.

    2018-05-01

    By employing the moduli space approximation, we analytically calculate the gravitational wave signatures emitted upon the merger of two extremally charged dilatonic black holes. We probe several values of the dilatonic coupling constant a , and find significant departures from the Einstein-Maxwell (a =0 ) counterpart studied in [Phys. Rev. D 96, 061501 (2017), 10.1103/PhysRevD.96.061501]. For (low-energy) string theory black holes (a =1 ) there are no coalescence orbits and only a memory effect is observed, whereas for an intermediate value of the coupling (a =1 /√{3 } ) the late-time merger signature becomes exponentially suppressed, compared to the polynomial decay in the a =0 case without a dilaton. Such an imprint shows a clear difference between the case with and without a scalar field (as, for example, predicted by string theory) in black hole mergers.

  13. Testing a Dilaton Gravity Model Using Nucleosynthesis

    International Nuclear Information System (INIS)

    Boran, S.; Kahya, E. O.

    2014-01-01

    Big bang nucleosynthesis (BBN) offers one of the most strict evidences for the Λ-CDM cosmology at present, as well as the cosmic microwave background (CMB) radiation. In this work, our main aim is to present the outcomes of our calculations related to primordial abundances of light elements, in the context of higher dimensional steady-state universe model in the dilaton gravity. Our results show that abundances of light elements (primordial D, 3 He, 4 He, T, and 7 Li) are significantly different for some cases, and a comparison is given between a particular dilaton gravity model and Λ-CDM in the light of the astrophysical observations

  14. Runaway dilaton and equivalence principle violations

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume; Veneziano, Gabriele; Damour, Thibault; Piazza, Federico; Veneziano, Gabriele

    2002-01-01

    In a recently proposed scenario, where the dilaton decouples while cosmologically attracted towards infinite bare string coupling, its residual interactions can be related to the amplitude of density fluctuations generated during inflation, and are large enough to be detectable through a modest improvement on present tests of free-fall universality. Provided it has significant couplings to either dark matter or dark energy, a runaway dilaton can also induce time-variations of the natural "constants" within the reach of near-future experiments.

  15. The no-hair conjecture in 2D dilaton supergravity

    International Nuclear Information System (INIS)

    Gamboa, J.; Georgelin, Y.

    1993-06-01

    Two dimensional dilaton gravity and supergravity are studied following Hamiltonian methods. The structure of constraints of 2D dilaton gravity and the 2D dilaton supergravity theory is discussed taking the square root of the bosonic constraints. The equations of motion are integrated in both cases, and it is shown that the solutions of the equation of motion of 2D dilaton supergravity differs from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables, i.e. the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the bidimensional analogue of the no-hair theorem for supergravity. (authors). 28 refs

  16. Higher-n triangular dilatonic black holes

    Science.gov (United States)

    Zadora, Anton; Gal'tsov, Dmitri V.; Chen, Chiang-Mei

    2018-04-01

    Dilaton gravity with the form fields is known to possess dyon solutions with two horizons for the discrete "triangular" values of the dilaton coupling constant a =√{ n (n + 1) / 2 }. This sequence first obtained numerically and then explained analytically as consequence of the regularity of the dilaton, should have some higher-dimensional and/or group theoretical origin. Meanwhile, this origin was explained earlier only for n = 1 , 2 in which cases the solutions were known analytically. We extend this explanation to n = 3 , 5 presenting analytical triangular solutions for the theory with different dilaton couplings a , b in electric and magnetic sectors in which case the quantization condition reads ab = n (n + 1) / 2. The solutions are derived via the Toda chains for B2 and G2 Lie algebras. They are found in the closed form in general D space-time dimensions. Solutions satisfy the entropy product rules indicating on the microscopic origin of their entropy and have negative binding energy in the extremal case.

  17. Thin-shell wormholes in dilaton gravity

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Simeone, Claudio

    2005-01-01

    In this work we construct charged thin-shell Lorentzian wormholes in dilaton gravity. The exotic matter required for the construction is localized in the shell and the energy conditions are satisfied outside the shell. The total amount of exotic matter is calculated and its dependence with the parameters of the model is analyzed

  18. Thermodynamics of (2 +1 )-dimensional black holes in Einstein-Maxwell-dilaton gravity

    Science.gov (United States)

    Dehghani, M.

    2017-08-01

    In this paper, the linearly charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered. It has been shown that the dilatonic potential must be considered in a form of generalized Liouville-type potential. Two new classes of charged dilatonic black hole solutions, as the exact solutions to the Einstein-Maxwell-dilaton (EMd) gravity, have been obtained and their properties have been studied. The conserved charge and mass related to both of the new EMd black holes have been calculated. Through comparison of the thermodynamical extensive quantities (i.e., temperature and entropy) obtained from both, the geometrical and the thermodynamical methods, the validity of first law of black hole thermodynamics has been investigated for both of the new black holes we just obtained. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new black hole solutions have been analyzed. It has been shown that there is a specific range for the horizon radius in such a way that the black holes with the horizon radius in that range are locally stable. Otherwise, they are unstable and may undergo type one or type two phase transitions to be stabilized.

  19. Theory and application of a gauge invariant effective action to the multi-loop renormalization of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Hart, C.F.

    1981-01-01

    A gauge invariant effective action which generalizes the usual background field method is applied to quantum non-Abelian gauge theories. The gauge properties of the theory as well as its equivalence to the conventional theory are presented. Solutions to the new effective field equations are found to be physical and it is shown how S-matrix elements may be computed in terms of this new effective action. Feynman rules are given and the renormalization theory is discussed using minimal subtraction and dimensional regularization. The resulting computation of counterterms is found to be simpler than that of the usual method. A complete two-loop calculation of the β function for pure Yang-Mills theory is given as a specific example of this approach

  20. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods.

    Science.gov (United States)

    James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil J; Tsvelik, Alexei M

    2018-02-26

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1  +  1D quantum chromodynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  1. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    Science.gov (United States)

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; Robinson, Neil J.; Tsvelik, Alexei M.

    2018-04-01

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb–Liniger model, 1  +  1D quantum chromodynamics, as well as Landau–Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  2. Dilaton cosmology and the modified uncertainty principle

    International Nuclear Information System (INIS)

    Majumder, Barun

    2011-01-01

    Very recently Ali et al. (2009) proposed a new generalized uncertainty principle (with a linear term in Plank length which is consistent with doubly special relativity and string theory. The classical and quantum effects of this generalized uncertainty principle (termed as modified uncertainty principle or MUP) are investigated on the phase space of a dilatonic cosmological model with an exponential dilaton potential in a flat Friedmann-Robertson-Walker background. Interestingly, as a consequence of MUP, we found that it is possible to get a late time acceleration for this model. For the quantum mechanical description in both commutative and MUP framework, we found the analytical solutions of the Wheeler-DeWitt equation for the early universe and compare our results. We have used an approximation method in the case of MUP.

  3. Quintessence as a run-away dilaton

    CERN Document Server

    Gasperini, M; Veneziano, Gabriele

    2002-01-01

    We consider a late-time cosmological model based on a recent proposal that the infinite-bare-coupling limit of superstring/M-theory exists and has good phenomenological properties, including a vanishing cosmological constant, and a massless, decoupled dilaton. As it runs away to $+ \\infty$, the dilaton can play the role of the quintessence field recently advocated to drive the late-time accelerated expansion of the Universe. If, as suggested by some string theory examples, appreciable deviations from General Relativity persist even today in the dark matter sector, the Universe may smoothly evolve from an initial "focussing" stage, lasting till radiation-matter equality, to a "dragging" regime, which eventually gives rise to an accelerated expansion with frozen $\\Omega(\\rm{dark energy})/\\Omega(\\rm{dark matter})$.

  4. Localization of bulk form fields on dilatonic domain walls

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-06-01

    We study the localization properties of bulk form potentials on dilatonic domain walls. We find that bulk form potentials of any ranks can be localized as form potentials of the same ranks or one lower ranks, for any values of the dilaton coupling parameter. For large enough values of the dilaton coupling parameter, bulk form potentials of any ranks can be localized as form potentials of both the same ranks and one lower ranks. (author)

  5. Conformal anomaly actions for dilaton interactions

    Directory of Open Access Journals (Sweden)

    Rose Luigi Delle

    2014-01-01

    Full Text Available We discuss, in conformally invariant field theories such as QCD with massless fermions, a possible link between the perturbative signature of the conformal anomaly, in the form of anomaly poles of the 1-particle irreducible effective action, and its descrip- tion in terms of Wess-Zumino actions with a dilaton. The two descriptions are expected to capture the UV and IR behaviour of the conformal anomaly, in terms of fundamental and effective degrees of freedom respectively, with the dilaton effective state appearing in a nonlinear realization. As in the chiral case, conformal anomalies seem to be related to the appearance of these effective interactions in the 1PI action in all the gauge-invariant sectors of the Standard Model. We show that, as a consequence of the underlying anomalous symmetry, the infinite hierarchy of recurrence relations involving self-interactions of the dilaton is entirely determined only by the first four of them. This relation can be generalized to any even space-time dimension.

  6. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    An exact solution is obtained for coupled dilaton and electromagnetic field in a cylindrically symmetric spacetime where an axial magnetic field as well as a radial electric field both are present. Depending on the choice of the arbitrary constants our solution reduces either to dilatonic gravity with pure electric field or to that ...

  7. The confining string from the soft dilaton theorem

    International Nuclear Information System (INIS)

    Alvarez, Enrique; Gomez, Cesar

    2000-01-01

    A candidate for the confining string of gauge theories is constructed via a representation of the ultraviolet divergences of quantum field theory by a closed string dilaton insertion, computed through the soft dilaton theorem. The resulting (critical) confining string is conformally invariant, singles out naturally d=4 dimensions, and can not be used to represent theories with Landau poles

  8. Varying dilaton as a tracer of classical string interactions

    Science.gov (United States)

    Dodelson, Matthew; Silverstein, Eva; Torroba, Gonzalo

    2017-09-01

    We analyze tree-level string amplitudes in a linear dilaton background, motivated by its use as a gauge-invariant tracer of string interactions in scattering experiments and its genericity among simple perturbative string theory limits. A simple case is given by a lightlike dependence for the dilaton. The zero mode of the embedding coordinate in the direction of dilaton variation requires special care. Employing Gaussian wave packets and a well-defined modification of the dilaton profile far from the dominant interaction region, we obtain finite results which explicitly reproduce the interaction time scales expected from joining and splitting interactions involving oscillating strings in simple string scattering processes. There is an interesting interplay between the effects of the linear dilaton and the i ɛ prescription. In more general circumstances this provides a method for tracing the degree of nonlocality in string interactions, and it gives a basis for further studies of perturbative supercritical string theory at higher loop order.

  9. Scaling solutions for dilaton quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Henz, T.; Pawlowski, J.M., E-mail: j.pawlowski@thphys.uni-heidelberg.de; Wetterich, C.

    2017-06-10

    Scaling solutions for the effective action in dilaton quantum gravity are investigated within the functional renormalization group approach. We find numerical solutions that connect ultraviolet and infrared fixed points as the ratio between scalar field and renormalization scale k is varied. In the Einstein frame the quantum effective action corresponding to the scaling solutions becomes independent of k. The field equations derived from this effective action can be used directly for cosmology. Scale symmetry is spontaneously broken by a non-vanishing cosmological value of the scalar field. For the cosmology corresponding to our scaling solutions, inflation arises naturally. The effective cosmological constant becomes dynamical and vanishes asymptotically as time goes to infinity.

  10. Asymptotic form factor of non-Abelian gauge theories, planar diagrammatics and complex poles as resonances in the analytic s-matrix

    International Nuclear Information System (INIS)

    Knight, D.W.

    1976-01-01

    Reasons are given for studying the form factor and a method for constructing all believed-to-be leading form factor diagrams in a certain class of non-Abelian gauge theories (NAGT's) in typical kinematic limits. The possibility that the form factor ''exponentiates'' in NAGT's (as it does in QED) is discussed. A method is given for constructing all 1CI planar diagrams (this is, all 1PI diagrams except those which separate upon cutting at a vertex) directly from one's heat--that is, without the need to refer to tables, et cetera. It is noted that the material is believed to be essentially completely original, that is, the technique for constructing all 1CI planar diagrams in an iterative fashion is completely new. Of course, one can construct them in an essentially random fashion, but this technique is slow and extremely error prone compared with the iterative technique given. The idea of associating an elastic resonance with a complex pole in the analytic scattering amplitude, T(E), is discussed. Calculations of the pole position and the residue of the Δ 33 resonance are given, along with an analysis of experimentally induced error in the pole position

  11. Thermodynamics of Charged Rotating Dilaton Black Branes Coupled to Logarithmic Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    A. Sheykhi

    2016-01-01

    Full Text Available We construct a new class of charged rotating black brane solutions in the presence of logarithmic nonlinear electrodynamics with complete set of the rotation parameters in arbitrary dimensions. The topology of the horizon of these rotating black branes is flat, while due to the presence of the dilaton field the asymptotic behavior of them is neither flat nor (anti-de Sitter [(AdS]. We investigate the physical properties of the solutions. The mass and angular momentum of the spacetime are obtained by using the counterterm method inspired by AdS/CFT correspondence. We derive temperature, electric potential, and entropy associated with the horizon and check the validity of the first law of thermodynamics on the black brane horizon. We study thermal stability of the solutions in both canonical and grand-canonical ensemble and disclose the effects of the rotation parameter, nonlinearity of electrodynamics, and dilaton field on the thermal stability conditions. We find the solutions are thermally stable for α1 the solutions may encounter an unstable phase, where α is dilaton-electromagnetic coupling constant.

  12. On light dilaton extensions of the Standard Model

    International Nuclear Information System (INIS)

    Megías, Eugenio; Pujolàs, Oriol; Quirós, Mariano

    2016-01-01

    We discuss the presence of a light dilaton in Conformal Field Theories deformed by a single scalar operator, in the holographic realization consisting of confining Renormalization Group flows. Then, we apply this formalism to study the extension of the Standard Model with a light dilaton in a 5D warped model. We study the spectrum of scalar and vector perturbations, compare the model predictions with Electroweak Precision Tests and find the corresponding bounds for the lightest modes. Finally, we analyze the possibility that the Higgs resonance found at the LHC be a dilaton

  13. Dilaton quantum cosmology in two dimensions

    International Nuclear Information System (INIS)

    Mazzitelli, F.D.; Russo, J.G.

    1992-11-01

    We consider a renormalizable two-dimensional model of dilaton gravity coupled to a set of conformal fields as a toy model for quantum cosmology. We discuss the cosmological solutions of the model and study the effect of including the back reaction due to quantum corrections. As a result, when the matter density is below some threshold new singularities form in a weak coupling region, which suggests that they will not be removed in full quantum theory. We also solve the Wheeler-DeWitt equation. Depending on the quantum state of the Universe, the singularities may appear in a quantum region where the wave function is not oscillatory, i.e., when there is not a well defined notion of classical spacetime. (author). 29 refs, 4 figs

  14. Trace Anomaly of Dilaton Coupled Scalars in Two Dimensions

    OpenAIRE

    Bousso, Raphael; Hawking, Stephen

    1997-01-01

    Conformal scalar fields coupled to the dilaton appear naturally in two-dimensional models of black hole evaporation. We calculate their trace anomaly. It follows that an RST-type counterterm appears naturally in the one-loop effective action.

  15. Rotating Dilaton Black Strings Coupled to Exponential Nonlinear Electrodynamics

    Directory of Open Access Journals (Sweden)

    Ahmad Sheykhi

    2014-01-01

    Full Text Available We construct a new class of charged rotating black string solutions coupled to dilaton and exponential nonlinear electrodynamic fields with cylindrical or toroidal horizons in the presence of a Liouville-type potential for the dilaton field. Due to the presence of the dilaton field, the asymptotic behaviors of these solutions are neither flat nor (AdS. We analyze the physical properties of the solutions in detail. We compute the conserved and thermodynamic quantities of the solutions and verify the first law of thermodynamics on the black string horizon. When the nonlinear parameter β2 goes to infinity, our results reduce to those of black string solutions in Einstein-Maxwell-dilaton gravity.

  16. Pair creation of dilaton black holes in extended inflation

    International Nuclear Information System (INIS)

    Bousso, R.

    1997-01-01

    Dilatonic charged Nariai instantons mediate the nucleation of black hole pairs during extended chaotic inflation. Depending on the dilaton and inflaton fields, the black holes are described by one of two approximations in the Lorentzian regime. For each case we find Euclidean solutions that satisfy the no boundary proposal. The complex initial values of the dilaton and inflaton are determined, and the pair creation rate is calculated from the Euclidean action. Similar to standard inflation, black holes are abundantly produced near the Planck boundary, but highly suppressed later on. An unusual feature we find is that the earlier in inflation the dilatonic black holes are created, the more highly charged they can be. copyright 1997 The American Physical Society

  17. Z n clock models and chains of so(n)2 non-Abelian anyons: symmetries, integrable points and low energy properties

    Science.gov (United States)

    Finch, Peter E.; Flohr, Michael; Frahm, Holger

    2018-02-01

    We study two families of quantum models which have been used previously to investigate the effect of topological symmetries in one-dimensional correlated matter. Various striking similarities are observed between certain {Z}n quantum clock models, spin chains generalizing the Ising model, and chains of non-Abelian anyons constructed from the so(n)2 fusion category for odd n, both subject to periodic boundary conditions. In spite of the differences between these two types of quantum chains, e.g. their Hilbert spaces being spanned by tensor products of local spin states or fusion paths of anyons, the symmetries of the lattice models are shown to be closely related. Furthermore, under a suitable mapping between the parameters describing the interaction between spins and anyons the respective Hamiltonians share part of their energy spectrum (although their degeneracies may differ). This spin-anyon correspondence can be extended by fine-tuning of the coupling constants leading to exactly solvable models. We show that the algebraic structures underlying the integrability of the clock models and the anyon chain are the same. For n  =  3,5,7 we perform an extensive finite size study—both numerical and based on the exact solution—of these models to map out their ground state phase diagram and to identify the effective field theories describing their low energy behaviour. We observe that the continuum limit at the integrable points can be described by rational conformal field theories with extended symmetry algebras which can be related to the discrete ones of the lattice models.

  18. Non-Abelian string and particle braiding in topological order: Modular SL (3 ,Z ) representation and (3 +1 ) -dimensional twisted gauge theory

    Science.gov (United States)

    Wang, Juven C.; Wen, Xiao-Gang

    2015-01-01

    String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.

  19. Diagrammatic Monte Carlo for the weak-coupling expansion of non-Abelian lattice field theories: Large-N U (N ) ×U (N ) principal chiral model

    Science.gov (United States)

    Buividovich, P. V.; Davody, A.

    2017-12-01

    We develop numerical tools for diagrammatic Monte Carlo simulations of non-Abelian lattice field theories in the t'Hooft large-N limit based on the weak-coupling expansion. First, we note that the path integral measure of such theories contributes a bare mass term in the effective action which is proportional to the bare coupling constant. This mass term renders the perturbative expansion infrared-finite and allows us to study it directly in the large-N and infinite-volume limits using the diagrammatic Monte Carlo approach. On the exactly solvable example of a large-N O (N ) sigma model in D =2 dimensions we show that this infrared-finite weak-coupling expansion contains, in addition to powers of bare coupling, also powers of its logarithm, reminiscent of resummed perturbation theory in thermal field theory and resurgent trans-series without exponential terms. We numerically demonstrate the convergence of these double series to the manifestly nonperturbative dynamical mass gap. We then develop a diagrammatic Monte Carlo algorithm for sampling planar diagrams in the large-N matrix field theory, and apply it to study this infrared-finite weak-coupling expansion for large-N U (N ) ×U (N ) nonlinear sigma model (principal chiral model) in D =2 . We sample up to 12 leading orders of the weak-coupling expansion, which is the practical limit set by the increasingly strong sign problem at high orders. Comparing diagrammatic Monte Carlo with conventional Monte Carlo simulations extrapolated to infinite N , we find a good agreement for the energy density as well as for the critical temperature of the "deconfinement" transition. Finally, we comment on the applicability of our approach to planar QCD at zero and finite density.

  20. Very light dilaton and naturally light Higgs boson

    Science.gov (United States)

    Hong, Deog Ki

    2018-02-01

    We study very light dilaton, arising from a scale-invariant ultraviolet theory of the Higgs sector in the standard model of particle physics. Imposing the scale symmetry below the ultraviolet scale of the Higgs sector, we alleviate the fine-tuning problem associated with the Higgs mass. When the electroweak symmetry is spontaneously broken radiatively à la Coleman-Weinberg, the dilaton develops a vacuum expectation value away from the origin to give an extra contribution to the Higgs potential so that the Higgs mass becomes naturally around the electroweak scale. The ultraviolet scale of the Higgs sector can be therefore much higher than the electroweak scale, as the dilaton drives the Higgs mass to the electroweak scale. We also show that the light dilaton in this scenario is a good candidate for dark matter of mass m D ˜ 1 eV - 10 keV, if the ultraviolet scale is about 10-100 TeV. Finally we propose a dilaton-assisted composite Higgs model to realize our scenario. In addition to the light dilaton the model predicts a heavy U(1) axial vector boson and two massive, oppositely charged, pseudo Nambu-Goldstone bosons, which might be accessible at LHC.

  1. Dilaton dynamics from production of tensionless membranes

    International Nuclear Information System (INIS)

    Cremonini, Sera; Watson, Scott

    2006-01-01

    In this paper we consider classical and quantum corrections to cosmological solutions of 11D supergravity (SUGRA) coming from dynamics of membrane states. We first consider the supermembrane spectrum following the approach of Russo and Tseytlin for consistent quantization. We calculate the production rate of Bogomol'nyi-Prasad-Sommerfield (BPS) membrane bound states in a cosmological background and find that such effects are generically suppressed by the Planck scale, as expected. However, for a modified brane spectrum possessing enhanced symmetry, production can be finite and significant. We stress that this effect could not be anticipated given only a knowledge of the low-energy effective theory. Once on shell, inclusion of these states leads to an attractive force pulling the dilaton towards a fixed point of S-duality, namely g s =1. Although the SUGRA description breaks down in this regime, inclusion of the enhanced states suggests that the center of M-theory moduli space is a dynamical attractor. Moreover, our results seem to suggest that string dynamics does indeed favor a vacuum near fixed points of duality

  2. Thermal power terms in the Einstein-dilaton system

    International Nuclear Information System (INIS)

    Zuo, Fen

    2014-01-01

    We employ the gauge/string duality to study the thermal power terms of various thermodynamic quantities in gauge theories and the renormalized Polyakov loop above the deconfinement phase transition. We restrict ourselves to the five-dimensional Einstein gravity coupled to a single scalar, the dilaton. The asymptotic solutions of the system for a general dilaton potential are employed to study the power contributions of various quantities. If the dilaton is dual to the dimension-4 operator TrF μν 2 , no power corrections would be generated. Then the thermal quantities approach their asymptotic values much more quickly than those observed in lattice simulation. When the dimension of the dual operator is different from 4, various power terms are generated. The lowest power contributions to the thermal quantities are always quadratic in the dilaton, while that of the Polyakov loop is linear. As a result, the quadratic terms in inverse temperature for both the trace anomaly and the Polyakov loop, observed in lattice simulation, cannot be implemented consistently in the system. This is in accordance with the field theory expectation, where no gauge-invariant operator can accommodate such contributions. Two simple models, where the dilaton is dual to operators with different dimensions, are studied in detail to clarify the conclusion.

  3. Heat engines for dilatonic Born-Infeld black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bhamidipati, Chandrasekhar; Yerra, Pavan Kumar [Indian Institute of Technology Bhubaneswar, School of Basic Sciences, Bhubaneswar (India)

    2017-08-15

    In the context of dilaton coupled Einstein gravity with a negative cosmological constant and a Born-Infeld field, we study heat engines where a charged black hole is the working substance. Using the existence of a notion of thermodynamic mass and volume (which depend on the dilaton coupling), the mechanical work takes place via the pdV terms present in the first law of extended gravitational thermodynamics. The efficiency is analyzed as a function of dilaton and Born-Infeld couplings, and the results are compared with analogous computations in the related conformal solutions in the Brans-Dicke-Born-Infeld theory and black holes in anti-de Sitter space-time. (orig.)

  4. Thermal fluctuations of dilaton black holes in gravity's rainbow

    Science.gov (United States)

    Dehghani, M.

    2018-06-01

    In this work, thermodynamics and phase transition of some new dilaton black hole solutions have been explored in the presence of the rainbow functions. By introducing an energy dependent space time, the dilaton potential has been obtained as the linear combination of two Liouville-type potentials and three new classes of black hole solutions have been constructed. The conserved and thermodynamic quantities of the new dilaton black holes have been calculated in the energy dependent space times. It has been shown that, even if some of the thermodynamic quantities are affected by the rainbow functions, the thermodynamical first law still remains valid. Also, the impacts of rainbow functions on the stability or phase transition of the new black hole solutions have been investigated. Finally, the quantum gravitational effects on the thermodynamics and phase transition of the solutions have been studied through consideration of the thermal fluctuations.

  5. Black hole dynamics in Einstein-Maxwell-dilaton theory

    Science.gov (United States)

    Hirschmann, Eric W.; Lehner, Luis; Liebling, Steven L.; Palenzuela, Carlos

    2018-03-01

    We consider the properties and dynamics of black holes within a family of alternative theories of gravity, namely Einstein-Maxwell-dilaton theory. We analyze the dynamical evolution of individual black holes as well as the merger of binary black hole systems. We do this for a wide range of parameter values for the family of Einstein-Maxwell-dilaton theories, investigating, in the process, the stability of these black holes. We examine radiative degrees of freedom, explore the impact of the scalar field on the dynamics of merger, and compare with other scalar-tensor theories. We argue that the dilaton can largely be discounted in understanding merging binary systems and that the end states essentially interpolate between charged and uncharged, rotating black holes. For the relatively small charge values considered here, we conclude that these black hole systems will be difficult to distinguish from their analogs within General Relativity.

  6. Supersymmetry breaking in the linear representation of the dilaton

    International Nuclear Information System (INIS)

    Gaida, I.

    1995-01-01

    String effective theories with N=1 supersymmetry in 4 dimensions are subject of the discussion. These theories are effective in the sense, that they are low-energy limits of a given higher dimensional string theory after dimensional reduction and integrating out all heavy modes. At tree level the gauge coupling constant can be expressed by the vacuum expectation value of the dilaton superfield S:g 2 =2 -1 . Throughout this text S+ anti S will be denoted as the chiral representation of the dilaton. It has been shown that there exists a supersymmetric legendre transformation called supersymmetric duality, which transforms S+ anti S into a linear superfield L, where L will be called the linear representation of the dilaton. (orig.)

  7. Equivalence principle violations and couplings of a light dilaton

    International Nuclear Information System (INIS)

    Damour, Thibault; Donoghue, John F.

    2010-01-01

    We consider possible violations of the equivalence principle through the exchange of a light 'dilaton-like' scalar field. Using recent work on the quark-mass dependence of nuclear binding, we find that the dilaton-quark-mass coupling induces significant equivalence-principle-violating effects varying like the inverse cubic root of the atomic number - A -1/3 . We provide a general parametrization of the scalar couplings, but argue that two parameters are likely to dominate the equivalence-principle phenomenology. We indicate the implications of this framework for comparing the sensitivities of current and planned experimental tests of the equivalence principle.

  8. Photoproduction of gravitons and dilatons in an external electromagnetic field

    International Nuclear Information System (INIS)

    Le Khac Huong; Hoang Ngoc Long.

    1990-07-01

    An attempt is made to present experimental predictions of the Kaluza-Klein based models. We consider the creation of gravitons and dilatons by photons in an external electromagnetic field, namely in the electric field of a flat condenser and in the static magnetic field. The relation between the cross sections of these two processes is given. A numerical evaluation shows that in the present technical scenario the creation of high frequency gravitons and dilatons may be indirectly observable. (author). 10 refs, 2 figs

  9. Nonlinear structure formation with the environmentally dependent dilaton

    International Nuclear Information System (INIS)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine; Shaw, Douglas J.; Li, Baojiu

    2011-01-01

    We have studied the nonlinear structure formation of the environmentally dependent dilaton model using N-body simulations. We find that the mechanism of suppressing the scalar fifth force in high-density regions works very well. Within the parameter space allowed by the solar-system tests, the dilaton model predicts small deviations of the matter power spectrum and the mass function from their ΛCDM counterparts. The importance of taking full account of the nonlinearity of the model is also emphasized.

  10. Electroweak vacuum stability in the Higgs-Dilaton theory

    Energy Technology Data Exchange (ETDEWEB)

    Shkerin, A. [Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL),CH-1015, Lausanne (Switzerland); Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, 117312, Moscow (Russian Federation)

    2017-05-30

    We study the stability of the Electroweak (EW) vacuum in a scale-invariant extension of the Standard Model and General Relativity, known as a Higgs-Dilaton theory. The safety of the EW vacuum against possible transition towards another vacuum is a necessary condition for the model to be phenomenologically acceptable. We find that, within a wide range of parameters of the theory, the decay rate is significantly suppressed compared to that of the Standard Model. We also discuss properties of a tunneling solution that are specific to the Higgs-Dilaton theory.

  11. N = (2,0) self-dual non-Abelian tensor multiplet in D = 3 + 3 generates N = (1,1) self-dual systems in D = 2 + 2

    Science.gov (United States)

    Nishino, Hitoshi; Rajpoot, Subhash

    2018-03-01

    We formulate an N = (2 , 0) system in D = 3 + 3 dimensions consisting of a Yang-Mills (YM)-multiplet (ˆ μ ˆ IA, λˆI), a self-dual non-Abelian tensor multiplet (ˆ μ ˆ ν ˆ IB, χˆI ,φˆI), and an extra vector multiplet (C ˆ μ ˆ IC, ρˆI). We next perform the dimensional reductions of this system into D = 2 + 2, and obtain N = (1 , 1) systems with a self-dual YM-multiplet (AIμ ,λI), a self-dual tensor multiplet (BIμν , χI , φI), and an extra vector multiplet (CIμ , ρI). In D = 2 + 2, we reach two distinct theories: 'Theory-I' and 'Theory-II'. The former has the self-dual field-strength Hμν(+)I of CIμ already presented in our recent paper, while the latter has anti-self-dual field strength Hμν(-)I. As an application, we show that Theory-II actually generates supersymmetric-KdV equations in D = 1 + 1. Our result leads to a new conclusion that the D = 3 + 3 theory with non-Abelian tensor multiplet can be a 'Grand Master Theory' for self-dual multiplet and self-dual YM-multiplet in D = 2 + 2, that in turn has been conjectured to be the 'Master Theory' for all supersymmetric integrable theories in D ≤ 3.

  12. Thermodynamics of charged rotating dilaton black branes with power-law Maxwell field

    International Nuclear Information System (INIS)

    Zangeneh, M.K.; Sheykhi, A.; Dehghani, M.H.

    2015-01-01

    In this paper, we construct a new class of charged rotating dilaton black brane solutions, with a complete set of rotation parameters, which is coupled to a nonlinear Maxwell field. The Lagrangian of the matter field has the form of the power-law Maxwell field. We study the causal structure of the spacetime and its physical properties in ample details. We also compute thermodynamic and conserved quantities of the spacetime, such as the temperature, entropy, mass, charge, and angular momentum. We find a Smarr-formula for the mass and verify the validity of the first law of thermodynamics on the black brane horizon. Finally, we investigate the thermal stability of solutions in both the canonical and the grand-canonical ensembles and disclose the effects of dilaton field and nonlinearity of the Maxwell field on the thermal stability of the solutions. We find that, for α ≤ 1, charged rotating black brane solutions are thermally stable independent of the values of the other parameters. For α > 1, the solutions can encounter an unstable phase depending on the metric parameters. (orig.)

  13. Dilaton and second-rank tensor fields as supersymmetric compensators

    International Nuclear Information System (INIS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2007-01-01

    We formulate a supersymmetric theory in which both a dilaton and a second-rank tensor play roles of compensators. The basic off-shell multiplets are a linear multiplet (B μν ,χ,φ) and a vector multiplet (A μ ,λ;C μνρ ), where φ and B μν are, respectively, a dilaton and a second-rank tensor. The third-rank tensor C μνρ in the vector multiplet is ''dual'' to the conventional D field with 0 on-shell or 1 off-shell degree of freedom. The dilaton φ is absorbed into one longitudinal component of A μ , making it massive. Initially, B μν has 1 on-shell or 3 off-shell degrees of freedom, but it is absorbed into the longitudinal components of C μνρ . Eventually, C μνρ with 0 on-shell or 1 off-shell degree of freedom acquires in total 1 on-shell or 4 off-shell degrees of freedom, turning into a propagating massive field. These basic multiplets are also coupled to chiral multiplets and a supersymmetric Dirac-Born-Infeld action. Some of these results are also reformulated in superspace. The proposed mechanism may well provide a solution to the long-standing puzzle of massless dilatons and second-rank tensors in supersymmetric models inspired by string theory

  14. Brane solutions of gravity-dilaton-axion systems

    NARCIS (Netherlands)

    Bergshoeff, E; Collinucci, A; Gran, U; Roest, D; Vandoren, S; Lukierski, J; Sorokin, D

    2005-01-01

    We consider general properties of brane solutions of gravity-dilaton-axion systems. We focus on the case of 7-branes and instantons. In both cases we show that besides the standard solutions there are new deformed solutions whose charges take value in any of the three conjugacy classes of SL(2, R).

  15. Coupled dilaton and electromagnetic field in cylindrically symmetric ...

    Indian Academy of Sciences (India)

    The dilaton black hole solutions have attracted considerable attention for the ... theory and study the corresponding cylindrically symmetric spacetime, where .... where Йm and Йe are integration constants to be interpreted later as the ..... feature is apparent for the cylindrically symmetric spacetime in the presence of the dila-.

  16. Six-dimensional Yang black holes in dilaton gravity

    International Nuclear Information System (INIS)

    Abbott, Michael C.; Lowe, David A.

    2008-01-01

    We study the six-dimensional dilaton gravity Yang black holes of Bergshoeff, Gibbons and Townsend, which carry (1,-1) charge in SU(2)xSU(2) gauge group. We find what values of the asymptotic parameters (mass and scalar charge) lead to a regular horizon, and show that there are no regular solutions with an extremal horizon

  17. Searching for dilaton dark matter with atomic clocks

    Science.gov (United States)

    Arvanitaki, Asimina; Huang, Junwu; Van Tilburg, Ken

    2015-01-01

    We propose an experiment to search for ultralight scalar dark matter (DM) with dilatonic interactions. Such couplings can arise for the dilaton as well as for moduli and axion-like particles in the presence of C P violation. Ultralight dilaton DM acts as a background field that can cause tiny but coherent oscillations in Standard Model parameters such as the fine-structure constant and the proton-electron mass ratio. These minute variations can be detected through precise frequency comparisons of atomic clocks. Our experiment extends current searches for drifts in fundamental constants to the well-motivated high-frequency regime. Our proposed setups can probe scalars lighter than 1 0-15 eV with a discovery potential of dilatonic couplings as weak as 1 0-11 times the strength of gravity, improving current equivalence principle bounds by up to 8 orders of magnitude. We point out potential 1 04 sensitivity enhancements with future optical and nuclear clocks, as well as possible signatures in gravitational-wave detectors. Finally, we discuss cosmological constraints and astrophysical hints of ultralight scalar DM, and show they are complimentary to and compatible with the parameter range accessible to our proposed laboratory experiments.

  18. Thermodynamic Relations for Kiselev and Dilaton Black Hole

    International Nuclear Information System (INIS)

    Jamil, Mubasher; Pradhan, Parthapratim; Majeed, Bushra

    2015-01-01

    We investigate the thermodynamics and phase transition for Kiselev black hole and dilaton black hole. Specifically we consider Reissner-Nordström black hole surrounded by radiation and dust and Schwarzschild black hole surrounded by quintessence, as special cases of Kiselev solution. We have calculated the products relating the surface gravities, surface temperatures, Komar energies, areas, entropies, horizon radii, and the irreducible masses at the Cauchy and the event horizons. It is observed that the product of surface gravities, product of surface temperature, and product of Komar energies at the horizons are not universal quantities for the Kiselev solutions while products of areas and entropies at both the horizons are independent of mass of the above-mentioned black holes (except for Schwarzschild black hole surrounded by quintessence). For charged dilaton black hole, all the products vanish. The first law of thermodynamics is also verified for Kiselev solutions. Heat capacities are calculated and phase transitions are observed, under certain conditions

  19. No hair theorem in quasi-dilaton massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, De-Jun, E-mail: wudejun10@mails.ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Shuang-Yong, E-mail: sxz353@case.edu [Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2016-06-10

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  20. Neutron stars in screened modified gravity: Chameleon versus dilaton

    Science.gov (United States)

    Brax, Philippe; Davis, Anne-Christine; Jha, Rahul

    2017-04-01

    We consider the scalar field profile around relativistic compact objects such as neutron stars for a range of modified gravity models with screening mechanisms of the chameleon and Damour-Polyakov types. We focus primarily on inverse power law chameleons and the environmentally dependent dilaton as examples of both mechanisms. We discuss the modified Tolman-Oppenheimer-Volkoff equation and then implement a relaxation algorithm to solve for the scalar profiles numerically. We find that chameleons and dilatons behave in a similar manner and that there is a large degeneracy between the modified gravity parameters and the neutron star equation of state. This is exemplified by the modifications to the mass-radius relationship for a variety of model parameters.

  1. No hair theorem in quasi-dilaton massive gravity

    International Nuclear Information System (INIS)

    Wu, De-Jun; Zhou, Shuang-Yong

    2016-01-01

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  2. Holographic renormalization of Einstein-Maxwell-Dilaton theories

    International Nuclear Information System (INIS)

    Kim, Bom Soo

    2016-01-01

    We generalize the boundary value problem with a mixed boundary condition that involves the gauge and scalar fields in the context of Einstein-Maxwell-Dilaton theories. In particular, the expectation value of the dual scalar operator can be a function of the expectation value of the current operator. The properties are prevalent in a fixed charge ensemble because the conserved charge is shared by both fields through the dilaton coupling, which is also responsible for non-Fermi liquid properties. We study the on-shell action and the stress energy tensor to note practical importances of the boundary value problem. In the presence of the scalar fields, physical quantities are not fully fixed due to the finite boundary terms that manifest in the massless scalar or the scalar with mass saturating the Breitenlohner-Freedman bound.

  3. Frozen up dilaton and the GUT/Planck mass ratio

    Science.gov (United States)

    Davidson, Aharon; Ygael, Tomer

    2017-09-01

    By treating modulus and phase on equal footing, as prescribed by Dirac, local scale invariance can consistently accompany any Brans-Dicke ω-theory. We show that in the presence of a soft scale symmetry breaking term, the classical solution, if it exists, cannot be anything else but general relativistic. The dilaton modulus gets frozen up by the Weyl-Proca vector field, thereby constituting a gravitational quasi-Higgs mechanism. Assigning all grand unified scalars as dilatons, they enjoy Weyl universality, and upon symmetry breaking, the Planck (mass)2 becomes the sum of all their individual (VEV)2s. The emerging GUT/Planck (mass)2 ratio is thus ∼ ωgGUT2 / 4 π.

  4. Charged dilatonic black holes in gravity's rainbow

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Faizal, Mir [University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada); Panah, B.E. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Panahiyan, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of)

    2016-05-15

    In this paper, we present charged dilatonic black holes in gravity's rainbow. We study the geometric and thermodynamic properties of black hole solutions. We also investigate the effects of rainbow functions on different thermodynamic quantities for these charged black holes in dilatonic gravity's rainbow. Then we demonstrate that the first law of thermodynamics is valid for these solutions. After that, we investigate thermal stability of the solutions using the canonical ensemble and analyze the effects of different rainbow functions on the thermal stability. In addition, we present some arguments regarding the bound and phase transition points in context of geometrical thermodynamics. We also study the phase transition in extended phase space in which the cosmological constant is treated as the thermodynamic pressure. Finally, we use another approach to calculate and demonstrate that the obtained critical points in extended phase space represent a second order phase transition for these black holes. (orig.)

  5. Solution of the dilaton problem in open bosonic string theories

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z. (Los Alamos National Lab., NM (United States)); Dunbar, D.C. (Liverpool Univ. (United Kingdom))

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.

  6. Solution of the dilaton problem in open bosonic string theories

    International Nuclear Information System (INIS)

    Bern, Z.; Dunbar, D.C.

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories

  7. Classical and quantum integrability of 2D dilaton gravities in Euclidean space

    International Nuclear Information System (INIS)

    Bergamin, L; Grumiller, D; Kummer, W; Vassilevich, D V

    2005-01-01

    Euclidean dilaton gravity in two dimensions is studied exploiting its representation as a complexified first order gravity model. All local classical solutions are obtained. A global discussion reveals that for a given model only a restricted class of topologies is consistent with the metric and the dilaton. A particular case of string motivated Liouville gravity is studied in detail. Path integral quantization in generic Euclidean dilaton gravity is performed non-perturbatively by analogy to the Minkowskian case

  8. Entropy of charged dilaton-axion black hole

    International Nuclear Information System (INIS)

    Ghosh, Tanwi; SenGupta, Soumitra

    2008-01-01

    Using the brick wall method, the entropy of the charged dilaton-axion black hole is determined for both asymptotically flat and nonflat cases. The entropy turns out to be proportional to the horizon area of the black hole confirming the Bekenstein-Hawking area-entropy formula for black holes. The leading order logarithmic corrections to the entropy are also derived for such black holes.

  9. Charged string solutions with dilaton and modulus fields

    CERN Document Server

    Cvetic, M

    1994-01-01

    We find charged, abelian, spherically symmetric solutions (in flat space-time) corresponding to the effective action of $D=4$ heterotic string theory with scale-dependent dilaton $\\p$ and modulus $\\vp$ fields. We take into account perturbative (genus-one), moduli-dependent `threshold' corrections to the coupling function $f(\\p,\\vp)$ in the gauge field kinetic term $f(\\p,\\vp) F^2_{\\m\

  10. Systematic simulations of modified gravity: symmetron and dilaton models

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo

    2012-01-01

    We study the linear and nonlinear structure formation in the dilaton and symmetron models of modified gravity using a generic parameterisation which describes a large class of scenarios using only a few parameters, such as the coupling between the scalar field and the matter, and the range of the scalar force on very large scales. For this we have modified the N-body simulation code ECOSMOG, which is a variant of RAMSES working in modified gravity scenarios, to perform a set of 110 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a large portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM template cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc −1 . Our results show the full effect of screening on nonlinear structure formation and the associated deviation from ΛCDM. We also investigate how differences in the force mediated by the scalar field in modified gravity models lead to qualitatively different features for the nonlinear power spectrum and the halo mass function, and how varying the individual model parameters changes these observables. The differences are particularly large in the nonlinear power spectra whose shapes for f(R), dilaton and symmetron models vary greatly, and where the characteristic bump around 1 hMpc −1 of f(R) models is preserved for symmetrons, whereas an increase on much smaller scales is particular to symmetrons. No bump is present for dilatons where a flattening of the power spectrum takes place on small scales. These deviations from ΛCDM and the differences between modified gravity models, such as dilatons and symmetrons, could be tested with future surveys

  11. Numerical calculation of the entanglement entropy for scalar field in dilaton spacetimes

    Science.gov (United States)

    Huang, Shifeng; Fang, Xiongjun; Jing, Jiliang

    2018-06-01

    Using coupled harmonic oscillators model, we numerical analyze the entanglement entropy of massless scalar field in Gafinkle-Horowitz-Strominger (GHS) dilaton spacetime and Gibbons-Maeda (GM) dilaton spacetime. By numerical fitting, we find that the entanglement entropy of the dilaton black holes receive contribution from dilaton charge and is proportional to the area of the event horizon. It is interesting to note that the results of numerical fitting are coincide with ones obtained by using brick wall method and Euclidean path integral approach.

  12. Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity

    Science.gov (United States)

    Dehghani, M.

    2018-02-01

    In this paper, the charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered in the rainbow gravity. The dilatonic potential has been written as the linear combination of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, as the exact solution to the coupled field equations of the energy dependent space time, have been obtained. Two of them are correspond to the Coulomb's electric field and the others are consequences of a modified Coulomb's law. Total charge and mass as well as the entropy, temperature and electric potential of the new charged black holes have been calculated in the presence of rainbow functions. Although the thermodynamic quantities are affected by the rainbow functions, it has been found that the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.

  13. Holographic conductivity for logarithmic charged dilaton-Lifshitz solutions

    Directory of Open Access Journals (Sweden)

    A. Dehyadegari

    2016-07-01

    Full Text Available We disclose the effects of the logarithmic nonlinear electrodynamics on the holographic conductivity of Lifshitz dilaton black holes/branes. We analyze thermodynamics of these solutions as a necessary requirement for applying gauge/gravity duality, by calculating conserved and thermodynamic quantities such as the temperature, entropy, electric potential and mass of the black holes/branes. We calculate the holographic conductivity for a (2+1-dimensional brane boundary and study its behavior in terms of the frequency per temperature. Interestingly enough, we find out that, in contrast to the Lifshitz–Maxwell-dilaton black branes which have conductivity for all z, here in the presence of nonlinear gauge field, the holographic conductivity does exist provided z≤3 and vanishes for z>3. It is shown that independent of the nonlinear parameter β, the real part of the conductivity is the same for a specific value of frequency per temperature in both AdS and Lifshitz cases. Besides, the behavior of real part of conductivity for large frequencies has a positive slope with respect to large frequencies for a system with Lifshitz symmetry whereas it tends to a constant for a system with AdS symmetry. This behavior may be interpreted as existence of an additional charge carrier rather than the AdS case, and is due to the presence of the scalar dilaton field in model. Similar behavior for optical conductivity of single-layer graphene induced by mild oxygen plasma exposure has been reported.

  14. Slowly varying dilaton cosmologies and their field theory duals

    International Nuclear Information System (INIS)

    Awad, Adel; Das, Sumit R.; Ghosh, Archisman; Oh, Jae-Hyuk; Trivedi, Sandip P.

    2009-01-01

    We consider a deformation of the AdS 5 xS 5 solution of IIB supergravity obtained by taking the boundary value of the dilaton to be time dependent. The time dependence is taken to be slowly varying on the anti-de Sitter (AdS) scale thereby introducing a small parameter ε. The boundary dilaton has a profile which asymptotes to a constant in the far past and future and attains a minimum value at intermediate times. We construct the supergravity (sugra) solution to first nontrivial order in ε, and find that it is smooth, horizon-free, and asymptotically AdS 5 xS 5 in the far future. When the intermediate values of the dilaton becomes small enough the curvature becomes of order the string scale and the sugra approximation breaks down. The resulting dynamics is analyzed in the dual SU(N) gauge theory on S 3 with a time dependent coupling constant which varies slowly. When Nε 5 xS 5 again. When Nε>>1, we formulate a classical adiabatic perturbation theory based on coherent states which arises in the large N limit. For large values of the 't Hooft coupling this reproduces the supergravity results. For small 't Hooft coupling the coherent state calculations become involved and we cannot reach a definite conclusion. We argue that the final state should have a dual description which is mostly smooth AdS 5 space with the possible presence of a small black hole.

  15. Thermodynamics of charged dilatonic BTZ black holes in rainbow gravity

    Directory of Open Access Journals (Sweden)

    M. Dehghani

    2018-02-01

    Full Text Available In this paper, the charged three-dimensional Einstein's theory coupled to a dilatonic field has been considered in the rainbow gravity. The dilatonic potential has been written as the linear combination of two Liouville-type potentials. Four new classes of charged dilatonic rainbow black hole solutions, as the exact solution to the coupled field equations of the energy dependent space time, have been obtained. Two of them are correspond to the Coulomb's electric field and the others are consequences of a modified Coulomb's law. Total charge and mass as well as the entropy, temperature and electric potential of the new charged black holes have been calculated in the presence of rainbow functions. Although the thermodynamic quantities are affected by the rainbow functions, it has been found that the first law of black hole thermodynamics is still valid for all of the new black hole solutions. At the final stage, making use of the canonical ensemble method and regarding the black hole heat capacity, the thermal stability or phase transition of the new rainbow black hole solutions have been analyzed.

  16. Are black holes in alternative theories serious astrophysical candidates? The case for Einstein-dilaton-Gauss-Bonnet black holes

    International Nuclear Information System (INIS)

    Pani, Paolo; Cardoso, Vitor

    2009-01-01

    It is generally accepted that Einstein's theory will get some as yet unknown corrections, possibly large in the strong-field regime. An ideal place to look for these modifications is in the vicinities of compact objects such as black holes. Here, we study dilatonic black holes, which arise in the framework of Gauss-Bonnet couplings and one-loop corrected four-dimensional effective theory of heterotic superstrings at low energies. These are interesting objects as a prototype for alternative, yet well-behaved gravity theories: they evade the 'no-hair' theorem of general relativity but were proven to be stable against radial perturbations. We investigate the viability of these black holes as astrophysical objects and try to provide some means to distinguish them from black holes in general relativity. We start by extending previous works and establishing the stability of these black holes against axial perturbations. We then look for solutions of the field equations describing slowly rotating black holes and study geodesic motion around this geometry. Depending on the values of mass, dilaton charge, and angular momentum of the solution, one can have differences in the innermost-stable-circular-orbit location and orbital frequency, relative to black holes in general relativity. In the most favorable cases, the difference amounts to a few percent. Given the current state-of-the-art, we discuss the difficulty of distinguishing the correct theory of gravity from electromagnetic observations or even with gravitational-wave detectors.

  17. Dilaton gravity, Poisson sigma models and loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Reyes, Juan D

    2009-01-01

    Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.

  18. Quantum criticality in Einstein-Maxwell-dilaton gravity

    International Nuclear Information System (INIS)

    Wen, Wen-Yu

    2012-01-01

    We investigate the quantum Lifshitz criticality in a general background of Einstein-Maxwell-dilaton gravity. In particular, we demonstrate the existence of critical point with dynamic critical exponent z by tuning a nonminimal coupling to its critical value. We also study the effect of nonminimal coupling and exponent z to the Efimov states and holographic RG flow in the overcritical region. We have found that the nonminimal coupling increases the instability for a probe scalar to condensate and its back reaction is discussed. At last, we give a quantum mechanics treatment to a solvable system with z=2, and comment for generic z>2.

  19. Engineering of mixed pairing and non-Abelian Majorana states in chiral p-wave superconductor Sr2RuO4 and other materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics

    2015-11-30

    This project deals with odd-parity superconductor Sr2RuO4 and related material systems, aiming at understanding the unconventional nature of superconductivity in this material. An odd-parity superconductor is expected to feature a novel topological object, the half-flux-quantum vortex that hosts a Majorana anyons. Majorana anyons carry non-Abelian statistics that can be used as the building block for constructing a fault-tolerated topological quantum computer. Half-flux-quantum vortices form in an odd-parity superconductor because of the availability of charge neutral spin supercurrent in addition to the normal supercurrent. Half-height magnetization steps were found in a cantilever magnetometry measurement of doubly connected mesoscopic samples of Sr2RuO4 in the presence of an in-plane magnetic field (J. Jang, D. G. Ferguson, V. Vakaryuk, R. Budakian, S. B. Chung, P. M. Goldbart, and Y. Maeno, Science 331, 186 (2011)), which suggests the presence of a half-flux-quantum (Φ0/2 = h/4e) state. Evidence for half flux quantum states, which can be viewed as coreless half vortices, was obtained in mesoscopic samples of Sr2RuO4 in the torque magnetomitry measurements. However, the existence of such an important property has not been confirmed by any other independent measurement.

  20. The information entropy of a static dilaton black hole

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In accordance with holographic principle, by calculating the statistical entropy of the quantum field just at the event horizon of the Garfinkle-Horowitz-Strominger dilaton black hole, the information entropy of the black hole was investigated and the Bekenstein-Hawking formula was obtained. The results show that black hole entropy is identical with the statistical entropy of the quantum field at the horizon. Using the generalized uncertainty relation, the divergence of the state density near the event horizon in usual quantum field theory was removed, and the cutoffs and the little mass approximation in the heat gas method of black hole entropy were avoided. Thus, the microstates of the massive scalar field just at the event horizon of the static dilaton black hole were studied directly and a description on holograph principle was presented. By using residue theorem, the integral difficulty in the calculation was overcome, and the information entropy and the Bekenstein-Hawking formula were obtained quantitatively. Compared with the black hole entropy from the loop quantum gravity, the consistency of methods and results of calculating black hole entropy in non-commutative quantum field theory and loop quantum gravity was investigated. By this, the gravity correction constant in the generalized uncertainty relation was suggested and the sense of holographic principle was discussed.

  1. Topology, entropy, and Witten index of dilaton black holes

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Kallosh, R.E.

    1995-01-01

    We have found that for extreme dilaton black holes an inner boundary must be introduced in addition to the outer boundary to give an integer value to the Euler number. The resulting manifolds have (if one identifies imaginary time) a topology S 1 xRxS 2 and Euler number χ=0 in contrast with the nonextreme case with χ=2. The entropy of extreme U(1) dilaton black holes is already known to be zero. We include a review of some recent ideas due to Hawking on the Reissner-Nordstroem case. By regarding all extreme black holes as having an inner boundary, we conclude that the entropy of all extreme black holes, including [U(1)] 2 black holes, vanishes. We discuss the relevance of this to the vanishing of quantum corrections and the idea that the functional integral for extreme holes gives a Witten index. We have studied also the topology of ''moduli space'' of multi-black-holes. The quantum mechanics on black hole moduli spaces is expected to be supersymmetric despite the fact that they are not hyper-Kaehler since the corresponding geometry has a torsion unlike the BPS monopole case. Finally, we describe the possibility of extreme black hole fission for states with an energy gap. The energy released, as a proportion of the initial rest mass, during the decay of an electromagnetic black hole is 300 times greater than that released by the fission of a 235 U nucleus

  2. EFT for Vortices with Dilaton-dependent Localized Flux

    CERN Document Server

    Burgess, C P; Williams, M

    2015-01-01

    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical `fat brane' solution, and in the effective theory of `point branes' appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper to include dilaton-dependence for the tension and localized flux. In the effective theory, such flux-localization is described by the next-to-leading effective interaction, and the boundary conditions to which it gives rise are known to play an important role in how (and...

  3. E-ELT constraints on runaway dilaton scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Martinelli, M. [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120, Heidelberg (Germany); Calabrese, E. [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Martins, C.J.A.P., E-mail: m.martinelli@thphys.uni-heidelberg.de, E-mail: erminia.calabrese@physics.ox.ac.uk, E-mail: carlos.martins@astro.up.pt [Centro de Astrofìsica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2015-11-01

    We use a combination of simulated cosmological probes and astrophysical tests of the stability of the fine-structure constant α, as expected from the forthcoming European Extremely Large Telescope (E-ELT), to constrain the class of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We consider three different scenarios for the dark sector couplings in the model and discuss the observational differences between them. We improve previously existing analyses investigating in detail the degeneracies between the parameters ruling the coupling of the dilaton field to the other components of the universe, and studying how the constraints on these parameters change for different fiducial cosmologies. We find that if the couplings are small (e.g., α{sub b} = α{sub V} ∼ 0) these degeneracies strongly affect the constraining power of future data, while if they are sufficiently large (e.g., α{sub b} ∼> 10{sup −5}−α{sub V} ∼> 0.05, as in agreement with current constraints) the degeneracies can be partially broken. We show that E-ELT will be able to probe some of this additional parameter space.

  4. Violations of the equivalence principle in a dilaton-runaway scenario

    CERN Document Server

    Damour, Thibault Marie Alban Guillaume; Veneziano, Gabriele

    2002-01-01

    We explore a version of the cosmological dilaton-fixing and decoupling mechanism in which the dilaton-dependence of the low-energy effective action is extremized for infinitely large values of the bare string coupling $g_s^2 = e^{\\phi}$. We study the efficiency with which the dilaton $\\phi$ runs away towards its ``fixed point'' at infinity during a primordial inflationary stage, and thereby approximately decouples from matter. The residual dilaton couplings are found to be related to the amplitude of the density fluctuations generated during inflation. For the simplest inflationary potential, $V (\\chi) = {1/2} m_{\\chi}^2 (\\phi) \\chi^2$, the residual dilaton couplings are shown to predict violations of the universality of gravitational acceleration near the $\\Delta a / a \\sim 10^{-12}$ level. This suggests that a modest improvement in the precision of equivalence principle tests might be able to detect the effect of such a runaway dilaton. Under some assumptions about the coupling of the dilaton to dark matter...

  5. Non-Kaehler heterotic string solutions with non-zero fluxes and non-constant dilaton

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Marisa [Universidad del País Vasco,Facultad de Ciencia y Tecnología, Departamento de Matemáticas,Apartado 644, 48080 Bilbao (Spain); Ivanov, Stefan [University of Sofia “St. Kl. Ohridski”,Faculty of Mathematics and Informatics,Blvd. James Bourchier 5, 1164 Sofia (Bulgaria); Institute of Mathematics and Informatics, Bulgarian Academy of Sciences (Bulgaria); Ugarte, Luis [Departamento de Matemáticas - I.U.M.A., Universidad de Zaragoza,Campus Plaza San Francisco, 50009 Zaragoza (Spain); Vassilev, Dimiter [Department of Mathematics and Statistics, University of New Mexico,Albuquerque, New Mexico, 87131-0001 (United States)

    2014-06-12

    Conformally compact and complete smooth solutions to the Strominger system with non vanishing flux, non-trivial instanton and non-constant dilaton using the first Pontrjagin form of the (−)-connection on 6-dimensional non-Kähler nilmanifold are presented. In the conformally compact case the dilaton is determined by the real slices of the elliptic Weierstrass function. The dilaton of non-compact complete solutions is given by the fundamental solution of the Laplacian on R{sup 4}. All solutions satisfy the heterotic equations of motion up to the first order of α{sup ′}.

  6. D-brane gases and stabilization of extra dimensions in dilaton gravity

    International Nuclear Information System (INIS)

    Arapoglu, Savas; Kaya, Ali

    2004-01-01

    We consider a toy cosmological model with a gas of wrapped Dp-branes in 10-dimensional dilaton gravity compactified on a p-dimensional Ricci flat internal manifold. A consistent generalization of the low energy effective field equations in the presence of a conserved brane source coupled to dilaton is obtained. It is then shown that the compact dimensions are dynamically stabilized in string frame as a result of a balance between negative winding and positive momentum pressures. Curiously, when p=6, i.e., when the observed space is three-dimensional, the dilaton becomes a constant and stabilization in Einstein frame is also realized

  7. arXiv Clockwork / Linear Dilaton: Structure and Phenomenology

    CERN Document Server

    Giudice, Gian F.; McCullough, Matthew; Torre, Riccardo; Urbano, Alfredo

    2018-06-01

    The linear dilaton geometry in five dimensions, rediscovered recently in the continuum limit of the clockwork model, may offer a solution to the hierarchy problem which is qualitatively different from other extra-dimensional scenarios and leads to distinctive signatures at the LHC. We discuss the structure of the theory, in particular aspects of naturalness and UV completion, and then explore its phenomenology, suggesting novel strategies for experimental searches. In particular, we propose to analyze the diphoton and dilepton invariant mass spectra in Fourier space in order to identify an approximately periodic structure of resonant peaks. Among other signals, we highlight displaced decays from resonantly-produced long-lived states and high-multiplicity final states from cascade decays of excited gravitons.

  8. Saddle point solutions in Yang-Mills-dilaton theory

    International Nuclear Information System (INIS)

    Bizon, P.

    1992-01-01

    The coupling of a dilaton to the SU(2)-Yang-Mills field leads to interesting non-perturbative static spherically symmetric solutions which are studied by mixed analytical and numerical methods. In the abelian sector of the theory there are finite-energy magnetic and electric monopole solutions which saturate the Bogomol'nyi bound. In the nonabelian sector there exist a countable family of globally regular solutions which are purely magnetic but have zero Yang-Mills magnetic charge. Their discrete spectrum of energies is bounded from above by the energy of the abelian magnetic monopole with unit magnetic charge. The stability analysis demonstrates that the solutions are saddle points of the energy functional with increasing number of unstable modes. The existence and instability of these solutions are 'explained' by the Morse-theory argument recently proposed by Sudarsky and Wald. (author)

  9. Timelike geodesics around a charged spherically symmetric dilaton black hole

    Directory of Open Access Journals (Sweden)

    Blaga C.

    2015-01-01

    Full Text Available In this paper we study the timelike geodesics around a spherically symmetric charged dilaton black hole. The trajectories around the black hole are classified using the effective potential of a free test particle. This qualitative approach enables us to determine the type of orbit described by test particle without solving the equations of motion, if the parameters of the black hole and the particle are known. The connections between these parameters and the type of orbit described by the particle are obtained. To visualize the orbits we solve numerically the equation of motion for different values of parameters envolved in our analysis. The effective potential of a free test particle looks different for a non-extremal and an extremal black hole, therefore we have examined separately these two types of black holes.

  10. Dilatonic BTZ black holes with power-law field

    International Nuclear Information System (INIS)

    Hendi, S.H.; Eslam Panah, B.; Panahiyan, S.; Sheykhi, A.

    2017-01-01

    Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.

  11. Hawking radiation from dilatonic black holes via anomalies

    International Nuclear Information System (INIS)

    Jiang Qingquan; Cai Xu; Wu Shuangqing

    2007-01-01

    Recently, Hawking radiation from a Schwarzschild-type black hole via a gravitational anomaly at the horizon has been derived by Robinson and Wilczek. Their result shows that, in order to demand general coordinate covariance at the quantum level to hold in the effective theory, the flux of the energy-momentum tensor required to cancel the gravitational anomaly at the horizon of the black hole is exactly equal to that of (1+1)-dimensional blackbody radiation at the Hawking temperature. In this paper, we attempt to apply the analysis to derive Hawking radiation from the event horizons of static, spherically symmetric dilatonic black holes with arbitrary coupling constant α, and that from the rotating Kaluza-Klein (α=√(3)) as well as the Kerr-Sen (α=1) black holes via an anomalous point of view. Our results support Robinson and Wilczek's opinion. In addition, the properties of the obtained physical quantities near the extreme limit are qualitatively discussed

  12. Dilatonic BTZ black holes with power-law field

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H., E-mail: hendi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha P.O. Box 55134-441 (Iran, Islamic Republic of); Eslam Panah, B., E-mail: behzad.eslampanah@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha P.O. Box 55134-441 (Iran, Islamic Republic of); Panahiyan, S., E-mail: sh.panahiyan@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran 19839 (Iran, Islamic Republic of); Sheykhi, A., E-mail: asheykhi@shirazu.ac.ir [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha P.O. Box 55134-441 (Iran, Islamic Republic of)

    2017-04-10

    Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.

  13. Axion-dilaton domain walls and fake supergravity

    International Nuclear Information System (INIS)

    Sonner, Julian; Townsend, Paul K

    2007-01-01

    Dynamical systems methods are used to investigate domain-wall solutions of a two-parameter family of models in which gravity is coupled to an axion and to a dilaton with an exponential potential of either sign. A complete global analysis is presented for (i) constant axion and (ii) flat walls, including a study of bifurcations and a new exact domain-wall solution with non-constant axion. We reconsider 'fake-supergravity' issues in light of these results. We show, by example, how domain walls determine multi-valued superpotentials that branch at stationary points that are not stationary points of the potential, and we apply this result to potentials with anti-de Sitter vacua. We also show by example that 'adapted' truncation to a single-scalar model may be inconsistent, and we propose a 'generalized' fake-supergravity formalism that applies in some such cases

  14. Dilatonic BTZ black holes with power-law field

    Science.gov (United States)

    Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Sheykhi, A.

    2017-04-01

    Motivated by low energy effective action of string theory and numerous applications of BTZ black holes, we will consider minimal coupling between dilaton and nonlinear electromagnetic fields in three dimensions. The main goal is studying thermodynamical structure of black holes in this set up. Temperature and heat capacity of these black holes are investigated and a picture regarding their phase transitions is given. In addition, the role and importance of studying the mass of black holes is highlighted. We will see how different parameters modify thermodynamical quantities, hence thermodynamical structure of these black holes. In addition, geometrical thermodynamics is used to investigate thermodynamical properties of these black holes. In this regard, the successful method is presented and the nature of interaction around bound and phase transition points is studied.

  15. Holographic Fermions in Anisotropic Einstein-Maxwell-Dilaton-Axion Theory

    International Nuclear Information System (INIS)

    Kuang, Xiao-Mei; Fang, Li-Qing

    2015-01-01

    We investigate the properties of the holographic Fermionic system dual to an anisotropic charged black brane bulk in Einstein-Maxwell-Dilaton-Axion gravity theory. We consider the minimal coupling between the Dirac field and the gauge field in the bulk gravity theory and mainly explore the dispersion relation exponents of the Green functions of the dual Fermionic operators in the dual field theory. We find that along both the anisotropic and the isotropic directions the Fermi momentum will be effected by the anisotropy of the bulk theory. However, the anisotropy has influence on the dispersion relation which is almost linear for massless Fermions with charge q=2. The universal properties that the mass and the charge of the Fermi possibly correspond to nonlinear dispersion relation are also investigated

  16. Starobinsky-Like Inflation in Dilaton-Brane Cosmology

    CERN Document Server

    Ellis, John; Nanopoulos, Dimitri V

    2014-01-01

    We discuss how Starobinsky-like inflation may emerge from dilaton dynamics in brane cosmology scenarios based on string theory, in which our universe is represented as a three-brane. The effective potential may acquire a constant term from a density of effectively point-like non-pertubative defects on the brane. Higher-genus corrections generate corrections to the effective potential that are exponentially damped at large field values, as in the Starobinsky model, but at a faster rate, leading to a smaller prediction for the tensor-to scalar perturbation ratio r. This may be compensated partially by logarithmic deformations on the world-sheet due to recoil of the defects due to scattering by string matter on the brane, which tend to enhance the tensor-to-scalar ratio.

  17. EFT for vortices with dilaton-dependent localized flux

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [Physics & Astronomy, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5 (Canada); Division PH -TH, CERN, CH-1211, Genève 23 (Switzerland); Diener, Ross [Physics & Astronomy, McMaster University, Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5 (Canada); Williams, M. [Instituut voor Theoretische Fysica, Katholieke Universiteit Leuven, B-3001 Leuven (Belgium)

    2015-11-09

    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical ‘fat brane’ solution, and in the effective theory of ‘point branes’ appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper http://arxiv.org/abs/1506.08095 to include dilaton-dependence for the tension and localized flux. In the effective theory, such flux-localization is described by the next-to-leading effective interaction, and the boundary conditions to which it gives rise are known to play an important role in how (and whether) the vortex causes supersymmetry to break in the bulk. We track how both tension and localized flux determine the curvature of the space-filling dimensions. Our calculations provide the tools required for computing how scale-breaking vortex interactions can stabilize the extra-dimensional size by lifting the dilaton’s flat direction. For small vortices we derive a simple relation between the near-vortex boundary conditions of bulk fields as a function of the tension and localized flux in the vortex action that provides the most efficient means for calculating how physical vortices mutually interact without requiring a complete construction of their internal structure. In passing we show why a common procedure for doing so using a δ-function can lead to incorrect results. Our procedures generalize straightforwardly to general co-dimension objects.

  18. Hamiltonian thermodynamics of charged three-dimensional dilatonic black holes

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2008-01-01

    The action for a class of three-dimensional dilaton-gravity theories, with an electromagnetic Maxwell field and a cosmological constant, can be recast in a Brans-Dicke-Maxwell type action, with its free ω parameter. For a negative cosmological constant, these theories have static, electrically charged, and spherically symmetric black hole solutions. Those theories with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity (ω→±∞), a dimensionally reduced cylindrical four-dimensional general relativity theory (ω=0), and a theory representing a class of theories (ω=-3), all with a Maxwell term. The Hamiltonian formalism is set up in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces and the radial component of the vector potential one-form are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unconstrained theory with two pairs of canonical coordinates (M,P M ;Q,P Q ), where M is the mass parameter, which for ω M is the conjugate momenta of M, Q is the charge parameter, and P Q is its conjugate momentum. The resulting Hamiltonian is a sum of boundary terms only. A quantization of the theory is performed. The Schroedinger evolution operator is constructed, the trace is taken, and the partition function of the grand canonical ensemble is obtained, where the chemical potential is the scalar electric field φ. Like the uncharged cases studied previously, the charged black hole entropies differ, in general, from the usual quarter of the horizon area due to the dilaton.

  19. EFT for vortices with dilaton-dependent localized flux

    International Nuclear Information System (INIS)

    Burgess, C.P.; Diener, Ross; Williams, M.

    2015-01-01

    We study how codimension-two objects like vortices back-react gravitationally with their environment in theories (such as 4D or higher-dimensional supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system. We do so both in the full theory, for which the vortex is an explicit classical ‘fat brane’ solution, and in the effective theory of ‘point branes’ appropriate when the vortices are much smaller than the scales of interest for their back-reaction (such as the transverse Kaluza-Klein scale). We extend the standard Nambu-Goto description to include the physics of flux-localization wherein the ambient flux of the external Maxwell field becomes partially localized to the vortex, generalizing the results of a companion paper http://arxiv.org/abs/1506.08095 to include dilaton-dependence for the tension and localized flux. In the effective theory, such flux-localization is described by the next-to-leading effective interaction, and the boundary conditions to which it gives rise are known to play an important role in how (and whether) the vortex causes supersymmetry to break in the bulk. We track how both tension and localized flux determine the curvature of the space-filling dimensions. Our calculations provide the tools required for computing how scale-breaking vortex interactions can stabilize the extra-dimensional size by lifting the dilaton’s flat direction. For small vortices we derive a simple relation between the near-vortex boundary conditions of bulk fields as a function of the tension and localized flux in the vortex action that provides the most efficient means for calculating how physical vortices mutually interact without requiring a complete construction of their internal structure. In passing we show why a common procedure for doing so using a δ-function can lead to incorrect results. Our procedures generalize straightforwardly to general co-dimension objects.

  20. Cosmic censorship and Weak Gravity Conjecture in the Einstein-Maxwell-dilaton theory

    Science.gov (United States)

    Yu, Ten-Yeh; Wen, Wen-Yu

    2018-06-01

    We explore the cosmic censorship in the Einstein-Maxwell-dilaton theory following Wald's thought experiment to destroy a black hole by throwing in a test particle. We discover that at probe limit the extremal charged dilaton black hole could be destroyed by a test particle with specific energy. Nevertheless the censorship is well protected if backreaction or self-force is included. At the end, we discuss an interesting connection between Hoop Conjecture and Weak Gravity Conjecture.

  1. Perturbed black holes in Einstein-dilaton-Gauss-Bonnet gravity: stability, ringdown, and gravitational-wave emission

    CERN Document Server

    Blázquez-Salcedo, Jose Luis

    2016-01-01

    Gravitational waves emitted by distorted black holes---such as those arising from the coalescence of two neutron stars or black holes---carry not only information about the corresponding spacetime but also about the underlying theory of gravity. Although general relativity remains the simplest, most elegant and viable theory of gravitation, there are generic and robust arguments indicating that it is not the ultimate description of the gravitational universe. Here we focus on a particularly appealing extension of general relativity, which corrects Einstein's theory through the addition of terms which are second order in curvature: the topological Gauss-Bonnet invariant coupled to a dilaton. We study gravitational-wave emission from black holes in this theory, and (i) find strong evidence that black holes are linearly (mode) stable against both axial and polar perturbations; (ii) discuss how the quasinormal modes of black holes can be excited during collisions involving black holes, and finally (iii) show that...

  2. An alternative perspective to observe the critical phenomena of dilaton black holes

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Jie-Xiong [Lingnan Normal University, Institute of Theoretical Physics, Zhanjiang, Guangdong (China)

    2017-08-15

    The critical phenomena of dilaton black holes are probed from a totally different perspective other than the P-v criticality and the q-U criticality discussed in former literature. We investigate not only the two point correlation function but also the entanglement entropy of dilaton black holes. For both the two point correlation function and the entanglement entropy we consider 4 x 2 x 2 = 16 cases due to different choices of parameters. The van der Waals-like behavior can be clearly witnessed from all the T -δL (T -δS) graphs for q < q{sub c}. Moreover, the effects of dilaton gravity and the spacetime dimensionality on the phase structure of dilaton black holes are disclosed. Furthermore, we discuss the stability of dilaton black holes by applying the analogous specific heat definition and remove the unstable branch by introducing a bar T = T{sub *}. It is shown that the first order phase transition temperature T{sub *} is affected by both α and n. The analogous equal area laws for both the T -δL graph and the T -δS graph are examined numerically. The relative errors for all cases are small enough so that we can safely conclude that the analogous equal area laws hold for T -δL (T -δS) graph of dilaton black holes. (orig.)

  3. Quantum dilaton gravity in two dimensions with matter

    International Nuclear Information System (INIS)

    Grumiller, D.M.L.

    2001-05-01

    One of the main goals of 20 th century physics was the quantization of gravity. Despite of 70 years of research a comprehensive theory fulfilling this task could not be obtained. There are various explanations for this failure: gravity is a non-linear theory and as opposed to other field theories which are defined on a fixed background manifold, geometry becomes dynamical in general relativity. It is perturbatively non-renormalizable in contrast to the Standard Model of particle physics. Experimental evidence for quantum gravity is scarce due to its sheer weakness. Therefore, physicists have considered various toy models -- among them the so-called dilaton models in two dimensions -- in order to separate technical problems from conceptual ones. Unfortunately, most of them lack a certain feature present in ordinary gravity: they contain no continuous physical degrees of freedom. One way to overcome this without leaving the comfortable realm of two dimensions is the inclusion of matter. In this thesis special emphasis is put on the spherically reduced Einstein-massless-Klein-Gordon model using a first order approach for geometric quantities, because phenomenologically it is probably the most relevant of all dilaton models with matter. After a Hamiltonian BRST analysis path integral quantization is performed using temporal gauge for the Cartan variables. Retrospectively, the simpler Faddeev-Popov approach turns out to be sufficient. It is possible to eliminate all unphysical and geometric quantities establishing a non-local and non-polynomial action depending solely on the scalar field and on some integration constants, fixed by suitable boundary conditions on the asymptotic effective line element. Then, attention is turned to the evaluation of the (two) lowest order tree vertices, explicitly assuming a perturbative expansion in the scalar field being valid. Each of them diverges, but unexpected cancellations yield a finite 'S'-matrix element when both contributions

  4. Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dayyani, Z.; Dehghani, M.H.; Hajkhalili, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Sheykhi, A. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2018-02-15

    In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T > T{sub c}, we have no phase transition. When T = T{sub c}, the system admits a second-order phase transition, while for T = T{sub f} < T{sub c} the system experiences a first-order transition. Interestingly, for T{sub f} < T < T{sub c} we observe a zeroth-order phase transition in the presence of a dilaton field. This novel zeroth-order phase transition occurs due to a finite jump in the Gibbs free energy which is generated by the dilaton-electromagnetic coupling constant, α, for a certain range of pressure. (orig.)

  5. Signatures of Higgs dilaton and critical Higgs inflation.

    Science.gov (United States)

    García-Bellido, Juan

    2018-03-06

    We test the Higgs dilaton inflation model (HDM) using the latest cosmological datasets, including the cosmic microwave background temperature, polarization and lensing data from the Planck satellite (2015), the BICEP and Keck Array experiments, the type Ia supernovae from the JLA catalogue, the baryon acoustic oscillations from CMASS, LOWZ and 6dF, the weak lensing data from the CFHTLenS survey and the matter power spectrum measurements from the latest SDSS data release. We find that the values of all cosmological parameters allowed by the HDM are well within the Planck satellite (2015) constraints. In particular, we determine [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] (at 95.5% c.l.). We also place new stringent constraints on the couplings of the HDM, ξ χ Higgs inflation model, taking into account the running of both the self-coupling λ( μ ) and the non-minimal coupling to gravity ξ ( μ ). We find peaks in the curvature power spectrum at scales corresponding to the critical value μ that re-enter during the radiation era and collapse to form a broad distribution of clustered primordial black holes, which could constitute today the main component of dark matter.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).

  6. Supersymmetric black holes in 2D dilaton supergravity: baldness and extremality

    Energy Technology Data Exchange (ETDEWEB)

    Bergamin, L; Grumiller, D; Kummer, W [Institut fuer Theoretische Physik, Technische Universitaet Wien, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2004-03-26

    We present a systematic discussion of supersymmetric solutions of 2D dilaton supergravity. In particular those solutions which retain at least half of the supersymmetries are ground states with respect to the bosonic Casimir function (essentially the ADM mass). Nevertheless, by tuning the prepotential appropriately, black-hole solutions may emerge with an arbitrary number of Killing horizons. The absence of dilatino and gravitino hair is proved. Moreover, the impossibility of supersymmetric dS ground states and of nonextremal black holes is confirmed, even in the presence of a dilaton. In these derivations, knowledge of the general analytic solution of 2D dilaton supergravity plays an important role. The latter result is addressed in the more general context of gPSMs which have no supergravity interpretation. Finally it is demonstrated that the inclusion of non-minimally coupled matter, a step which is already nontrivial by itself, does not change these features in an essential way.

  7. Supersymmetric black holes in 2D dilaton supergravity: baldness and extremality

    International Nuclear Information System (INIS)

    Bergamin, L; Grumiller, D; Kummer, W

    2004-01-01

    We present a systematic discussion of supersymmetric solutions of 2D dilaton supergravity. In particular those solutions which retain at least half of the supersymmetries are ground states with respect to the bosonic Casimir function (essentially the ADM mass). Nevertheless, by tuning the prepotential appropriately, black-hole solutions may emerge with an arbitrary number of Killing horizons. The absence of dilatino and gravitino hair is proved. Moreover, the impossibility of supersymmetric dS ground states and of nonextremal black holes is confirmed, even in the presence of a dilaton. In these derivations, knowledge of the general analytic solution of 2D dilaton supergravity plays an important role. The latter result is addressed in the more general context of gPSMs which have no supergravity interpretation. Finally it is demonstrated that the inclusion of non-minimally coupled matter, a step which is already nontrivial by itself, does not change these features in an essential way

  8. Phantom-like behaviour in dilatonic brane-world scenario with induced gravity

    International Nuclear Information System (INIS)

    Bouhmadi-Lopez, Mariam

    2008-01-01

    The Dvali, Gabadadze and Porrati (DGP) model has a self-accelerating solution, the positive branch, where the brane is asymptotically de Sitter. A de Sitter space-time can be seen as a boundary between quintessence-like behaviour and phantom-like behaviour. We show that in a 5D dilatonic bulk, where the dilaton has an exponential potential, with an induced gravity term on the brane, whose matter content corresponds only to vacuum energy, the positive branch solution undergoes a phantom-like stage where it faces a curvature singularity in its infinite future. The singularity can be interpreted as the 'big rip' singularity pushed towards an infinite future cosmic time. The phantom-like behaviour on the brane occurs without violating the null energy condition. There is another solution, the negative branch, where the brane can undergo an early-epoch (transient) inflationary phase induced by the dilaton field

  9. Tunneling across dilaton coupled black holes in anti de Sitter spacetime

    International Nuclear Information System (INIS)

    Ghosh, Tanwi; SenGupta, Soumitra

    2011-01-01

    Considering generalised action for dilaton coupled Maxwell-Einstein theory in four dimensions, Gao and Zhang obtained black holes solutions for asymptotically anti de Sitter (Ads) and de Sitter (ds) spacetimes. We study the Hawking radiation in Parikh-Wilczek's tunneling formalism as well as using Bogoliubov transformations. We compare the expression of the Hawking temperature obtained from these two different approaches. Stability and the extremality conditions for such black holes are discussed. The exact dependences of the Hawking temperature and flux on the dilaton coupling parameter are determined. It is shown that the Hawking flux increases with the dilaton coupling parameter. Finally we show that the expression for the Hawking flux obtained using Bogoliubov transformation matches exactly with flux calculated via chiral gauge and gravitational anomalies. This establishes a correspondence among all these different approaches of estimating Hawking radiation from these classes of black holes.

  10. Signatures of Higgs dilaton and critical Higgs inflation

    Science.gov (United States)

    García-Bellido, Juan

    2018-01-01

    We test the Higgs dilaton inflation model (HDM) using the latest cosmological datasets, including the cosmic microwave background temperature, polarization and lensing data from the Planck satellite (2015), the BICEP and Keck Array experiments, the type Ia supernovae from the JLA catalogue, the baryon acoustic oscillations from CMASS, LOWZ and 6dF, the weak lensing data from the CFHTLenS survey and the matter power spectrum measurements from the latest SDSS data release. We find that the values of all cosmological parameters allowed by the HDM are well within the Planck satellite (2015) constraints. In particular, we determine , , , and (at 95.5% c.l.). We also place new stringent constraints on the couplings of the HDM, ξχ (at 95.5% c.l.). We find that the HDM is only slightly better than the w0waCDM model, with . Given that the HDM has two fewer parameters, we find Bayesian evidence favouring the HDM over the w0waCDM model. We also study the critical Higgs inflation model, taking into account the running of both the self-coupling λ(μ) and the non-minimal coupling to gravity ξ(μ). We find peaks in the curvature power spectrum at scales corresponding to the critical value μ that re-enter during the radiation era and collapse to form a broad distribution of clustered primordial black holes, which could constitute today the main component of dark matter. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.

  11. Constraint Lie algebra and local physical Hamiltonian for a generic 2D dilatonic model

    International Nuclear Information System (INIS)

    Corichi, Alejandro; Karami, Asieh; Rastgoo, Saeed; Vukašinac, Tatjana

    2016-01-01

    We consider a class of two-dimensional dilatonic models, and revisit them from the perspective of a new set of ‘polar type’ variables. These are motivated by recently defined variables within the spherically symmetric sector of 4D general relativity. We show that for a large class of dilatonic models, including the case with matter, one can perform a series of canonical transformations in such a way that the Poisson algebra of the constraints becomes a Lie algebra. Furthermore, we construct Dirac observables and a reduced Hamiltonian that accounts for the time evolution of the system. (paper)

  12. The twelve-flavor β-function and dilaton tests of the sextet scalar

    Directory of Open Access Journals (Sweden)

    Fodor Zoltan

    2018-01-01

    Full Text Available We discuss near-conformal gauge theories beyond the standard model (BSM where interesting results on the twelve-flavor β-function of massless fermions in the fundamental representation of the SU(3 color gauge group and dilaton tests of the light scalar with two massless fermions in the two-index symmetric tensor (sextet representation can be viewed as parts of the same BSM paradigm under investigation. The clear trend in the decreasing size of β-functions at fixed renormalized gauge coupling is interpreted as a first indicator how the conformal window (CW is approached in correlation with emergent near-conformal light scalars. BSM model building close to the CW will be influenced by differing expectations on the properties of the emergent light 0++ scalar either as a σ-particle of chiral symmetry breaking (ΧS B, or as a dilaton of scale symmetry breaking. The twelve-flavor β-function emerges as closest to the CW, perhaps near-conformal, or perhaps with an infrared fixed point (IRFP at some unexplored strong coupling inside the CW. It is premature to speculate on dilaton properties of the twelveflavor model since the near-conformal realization remains an open question. However, it is interesting and important to investigate dilaton tests of the light sextet scalar whose β-function is closest to the CW in the symmetry breaking phase and emerges as the leading candidate for dilaton tests of the light scalar. We report results from high precision analysis of the twelve-flavor β-function [1] refuting its published IRFP [2, 3]. We present our objections to recent claims [4, 5] for non-universal behavior of staggered fermions used in our analysis. We also report our first analysis of dilaton tests of the light 0++ scalar in the sextet model and comment on related post-conference developments. The dilaton test is the main thrust of this conference contribution including presentation #405 on the nf = 12 β-function and presentation #260 on dilaton

  13. Fermionic greybody factors of two and five-dimensional dilatonic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2014-08-15

    We study fermionic perturbations in the background of a two and five-dimensional dilatonic black holes. Then, we compute the reflection and transmission coefficients and the absorption cross section for fermionic fields, and we show numerically that the absorption cross section vanishes in the low and high frequency limit. Also we find that beyond a certain value of the horizon radius r{sub 0} the absorption cross section for five-dimensional dilatonic black hole is constant. Besides, we have find that the absorption cross section decreases for higher angular momentum, and it decreases when the mass of the fermionic field increases. (orig.)

  14. String-coupling constant and dilaton vacuum expectation value in string field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    1987-01-01

    In the first quantized approaches to strings, it is well known that the string-coupling constant is determined by the vacuum expectation value of the dilaton field. This property, however, has never been demonstrated within the framework of string field theory. An explicit reparametrization of the string field associated with the shifts of the dilaton vacuum expectation value and the string-coupling constant is constructed exhibiting the above property in the light-cone field theory of the closed bosonic string. (orig.)

  15. The entropy of Garfinkle-Horne dilaton black hole due to arbitrary spin fields

    Institute of Scientific and Technical Information of China (English)

    SHEN; Yougen(沈有根)

    2002-01-01

    Using the membrane model which is based on brick wall model, we calculated the free energy and entropy of Garfinkle-Horne dilatonic black hole due to arbitrary spin fields. The result shows that the entropy of scalar field and the entropy of Fermionic field have similar formulas. There is only a coefficient between them.

  16. Matter with dilaton charge in Weyl-Cartan spacetime and evolution of the universe

    International Nuclear Information System (INIS)

    Babourova, Olga V; Frolov, Boris N

    2003-01-01

    The perfect dilaton-spin fluid (as a model of the dilaton matter, the particles of which are endowed with intrinsic spin and dilaton charge) is considered as the source of the gravitational field in a Weyl-Cartan spacetime. The variational formalism of the gravitational field in a Weyl-Cartan spacetime is developed in the exterior form language. A homogeneous and isotropic universe filled with the dilaton matter as the dark matter is considered and one of the field equations is represented as the Einstein-like equation which leads to the modified Friedmann-Lemaitre equation. From this equation the absence of the initial singularity in the cosmological solution follows. Also the existence of two points of inflection of the scale factor function is established, the first of which corresponds to the early stage of the universe and the second to the modern era when the expansion with deceleration is replaced by the expansion with acceleration. Possible equations of state for the self-interacting cold dark matter are found on the basis of the modern observational data. An inflation-like solution is obtained

  17. Conformal field theory with two kinds of Bosonic fields and two linear dilatons

    International Nuclear Information System (INIS)

    Kamani, Davoud

    2010-01-01

    We consider a two-dimensional conformal field theory which contains two kinds of the bosonic degrees of freedom. Two linear dilaton fields enable to study a more general case. Various properties of the model such as OPEs, central charge, conformal properties of the fields and associated algebras will be studied. (author)

  18. Abbott-Deser-Tekin Charge of Dilaton Black Holes with Squashed Horizons

    Institute of Scientific and Technical Information of China (English)

    Jun-Jin Peng; Wen-Chang Xiang; Shao-Hong Cai

    2016-01-01

    We consider the conserved charge of static black holes with squashed horizons in the Einstein-Maxwell-dilaton theory via both the Abbott-Deser-Tekin (ADT) method and its off-shell generalization.We first make use of the original ADT method to compute the mass of the dilaton squashed black holes in terms of three different reference spacetimes,which are the asymptotic geometry,the fiat background and the spacetime of the KaluzaKlein monopole with boundary matched to the original metric,respectively.Each mass satisfies the first law of black hole thermodynamics,although the mass computed on the basis of the boundary matching the KaluzaKlein monopole is different from that of the other two reference spacetimes.Then the mass of the black holes is evaluated through the off-shell generalized ADT method.

  19. History of cosmic evolution with modified Gauss-Bonnet-dilatonic coupled term

    International Nuclear Information System (INIS)

    Debnath, Subhra; Sanyal, Abhik Kumar; Ruz, Soumendra Nath; Mandal, Ranajit

    2017-01-01

    Gauss-Bonnet-dilatonic coupling in four dimensions plays an important role to explain late-time cosmic evolution. However, this term is an outcome of the low energy string effective action and thus ought to be important in the early universe too. Unfortunately, a phase-space formulation of such a theory does not exist in the literature due to branching. We therefore consider a modified theory of gravity, which contains a nonminimally coupled scalar-tensor sector in addition to a higher-order scalar curvature invariant term with Gauss-Bonnet-dilatonic coupling. Such an action unifies early inflation with late-time cosmic acceleration. The quantum version of the theory is also well behaved. (orig.)

  20. History of cosmic evolution with modified Gauss-Bonnet-dilatonic coupled term

    Energy Technology Data Exchange (ETDEWEB)

    Debnath, Subhra; Sanyal, Abhik Kumar [Jangipur College, Department of Physics, Murshidabad (India); Ruz, Soumendra Nath [Ramananda Centenary College, Department of Physics, Purulia (India); Mandal, Ranajit [University of Kalyani, Department of Physics, Nadia (India)

    2017-05-15

    Gauss-Bonnet-dilatonic coupling in four dimensions plays an important role to explain late-time cosmic evolution. However, this term is an outcome of the low energy string effective action and thus ought to be important in the early universe too. Unfortunately, a phase-space formulation of such a theory does not exist in the literature due to branching. We therefore consider a modified theory of gravity, which contains a nonminimally coupled scalar-tensor sector in addition to a higher-order scalar curvature invariant term with Gauss-Bonnet-dilatonic coupling. Such an action unifies early inflation with late-time cosmic acceleration. The quantum version of the theory is also well behaved. (orig.)

  1. Subsubleading soft theorems of gravitons and dilatons in the bosonic string

    International Nuclear Information System (INIS)

    Vecchia, Paolo Di; Marotta, Raffaele; Mojaza, Matin

    2016-01-01

    Starting from the amplitude with an arbitrary number of massless closed states of the bosonic string, we compute the soft limit when one of the states becomes soft to subsubleading order in the soft momentum expansion, and we show that when the soft state is a graviton or a dilaton, the full string amplitude can be expressed as a soft theorem through subsubleading order. It turns out that there are string corrections to the field theoretical limit in the case of a soft graviton, while for a soft dilaton the string corrections vanish. We then show that the new soft theorems, including the string corrections, can be simply obtained from the exchange diagrams where the soft state is attached to the other external states through the three-point string vertex of three massless states. In the soft-limit, the propagator of the exchanged state is divergent, and at tree-level these are the only divergent contributions to the full amplitude. However, they do not form a gauge invariant subset and must be supplemented with extra non-singular terms. The requirement of gauge invariance then fixes the complete amplitude through subsubleading order in the soft expansion, reproducing exactly what one gets from the explicit calculation in string theory. From this it is seen that the string corrections at subsubleading order arise as a consequence of the three-point amplitude having string corrections in the bosonic string. When specialized to a soft dilaton, it remarkably turns out that the string corrections vanish and that the non-singular piece of the subsubleading term of the dilaton soft theorem is the generator of space-time special conformal transformation.

  2. Proton and neutron charge form factors in soliton model with dilaton-quarkonium fields

    International Nuclear Information System (INIS)

    Magar, E.N.; Nikolaev, V.A.; Tkachev, O.G.; Novozhilov, V.Yu.

    1997-01-01

    Nucleon electromagnetic form factors are considered in the framework of the generalized Skyrme model with dilaton-quarkonium fields. In our first publication we got big discrepancy between calculated form factors and dipole approximation formula. Here we have reasonably good accordance between them in finite impulse region after vector meson dominance has been taken into account. Omega- and rho-mesons have been included only into hadron structure of the photon

  3. S- and T-self-dualities in dilatonic f(R) theories

    Energy Technology Data Exchange (ETDEWEB)

    Rador, Tonguc [Bogazici University, Department of Physics, Istanbul (Turkey); Izmir Institute of Technology, Department of Physics, Izmir (Turkey)

    2017-12-15

    We search for theories, in general spacetime dimensions, that would incorporate a dilaton and higher powers of the scalar Ricci curvature such that they have exact S- or T-self-dualities. The theories we find are free of Ostrogradsky instabilities. We also show that within the framework we are confining ourselves, a theory of the form mentioned above cannot have both T- and S-dualities except for the case where the action is linear in the scalar curvature. (orig.)

  4. Heun equation in a 5D sine-Gordon brane-world model with dilaton

    International Nuclear Information System (INIS)

    Cunha, M.S.; Christiansen, H.

    2011-01-01

    Full text: In a brane-world scenario we find the propagation modes of the gauge field in a five-dimensional space-time. We adopt warping factors of the Randall-Sundrum type which are appropriate to regularize the hierarchy problem without imposing finite compactified extra dimensions. The existence and localization of gauge particles in the ordinary four-dimensional world is studied in detail on a thick brane derived out from the equations of motion of an action with a sine-Gordon potential contribution. Maxwell zero modes together with torsion effective fields are then obtained in a gravity-dilaton background inspired in close string theories. The dilaton plays a crucial role in order that the gauge field gets localized in a conformally invariant context. Kaluza-Klein massive states are also computed and, depending on certain parameters like dilaton coupling constant and asymptotic curvature, we are able to do it fully analytically. In a general approach we find that the solutions are of the Heun type. In some specific cases we can show that the Heun general solutions can be transformed into hypergeometric functions. In others, confluent Heun solutions can be transformed into simpler functions like Mathieu functions. Exact mass spectra are found in several cases. In others, we performed numerical calculations that show a well behaved phenomenology as well. In all the cases, Kaluza-Klein modes are strongly suppressed on the brane in the effective four-dimensional theory. (author)

  5. Redundant and physical black hole parameters: Is there an independent physical dilaton charge?

    Directory of Open Access Journals (Sweden)

    K. Hajian

    2017-05-01

    Full Text Available Black holes as solutions to gravity theories, are generically identified by a set of parameters. Some of these parameters are associated with black hole physical conserved charges, like ADM charges. There can also be some “redundant parameters.” We propose necessary conditions for a parameter to be physical. The conditions are essentially integrability and non-triviality of the charge variations arising from “parametric variations,” variation of the solution with respect to the chosen parameters. In addition, we prove that variation of the redundant parameters which do not meet our criteria do not appear in the first law of thermodynamics. As an interesting application, we show that dilaton moduli are redundant parameters for black hole solutions to Einstein–Maxwell–(Axion–Dilaton theories, because variations in dilaton moduli would render entropy, mass, electric charges or angular momenta non-integrable. Our results are in contrast with modification of the first law due to scalar charges suggested in Gibbons–Kallosh–Kol paper [1] and its follow-ups. We also briefly discuss implications of our results for the attractor behavior of extremal black holes.

  6. Redundant and physical black hole parameters: Is there an independent physical dilaton charge?

    Energy Technology Data Exchange (ETDEWEB)

    Hajian, K., E-mail: kamalhajian@ipm.ir; Sheikh-Jabbari, M.M., E-mail: jabbari@theory.ipm.ac.ir

    2017-05-10

    Black holes as solutions to gravity theories, are generically identified by a set of parameters. Some of these parameters are associated with black hole physical conserved charges, like ADM charges. There can also be some “redundant parameters.” We propose necessary conditions for a parameter to be physical. The conditions are essentially integrability and non-triviality of the charge variations arising from “parametric variations,” variation of the solution with respect to the chosen parameters. In addition, we prove that variation of the redundant parameters which do not meet our criteria do not appear in the first law of thermodynamics. As an interesting application, we show that dilaton moduli are redundant parameters for black hole solutions to Einstein–Maxwell–(Axion)–Dilaton theories, because variations in dilaton moduli would render entropy, mass, electric charges or angular momenta non-integrable. Our results are in contrast with modification of the first law due to scalar charges suggested in Gibbons–Kallosh–Kol paper and its follow-ups. We also briefly discuss implications of our results for the attractor behavior of extremal black holes.

  7. Higgs-dilaton cosmology: An inflation-dark-energy connection and forecasts for future galaxy surveys

    Science.gov (United States)

    Casas, Santiago; Pauly, Martin; Rubio, Javier

    2018-02-01

    The Higgs-dilaton model is a scale-invariant extension of the Standard Model nonminimally coupled to gravity and containing just one additional degree of freedom on top of the Standard Model particle content. This minimalistic scenario predicts a set of measurable consistency relations between the inflationary observables and the dark-energy equation-of-state parameter. We present an alternative derivation of these consistency relations that highlights the connections and differences with the α -attractor scenario. We study how far these constraints allow one to distinguish the Higgs-dilaton model from Λ CDM and w CDM cosmologies. To this end we first analyze existing data sets using a Markov chain Monte Carlo approach. Second, we perform forecasts for future galaxy surveys using a Fisher matrix approach, both for galaxy clustering and weak lensing probes. Assuming that the best fit values in the different models remain comparable to the present ones, we show that both Euclid- and SKA2-like missions will be able to discriminate a Higgs-dilaton cosmology from Λ CDM and w CDM .

  8. Radiating black holes in Einstein-Maxwell-dilaton theory and cosmic censorship violation

    International Nuclear Information System (INIS)

    Aniceto, Pedro; Pani, Paolo; Rocha, Jorge V.

    2016-01-01

    We construct exact, time-dependent, black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling, a. For a=1 this theory arises as the four-dimensional low-energy effective description of heterotic string theory. These solutions represent electrically charged, spherically symmetric black holes emitting or absorbing charged null fluids and generalize the Vaidya and Bonnor-Vaidya solutions of general relativity and of Einstein-Maxwell theory, respectively. The a=1 case stands out as special, in the sense that it is the only choice of the coupling that allows for a time-dependent dilaton field in this class of solutions. As a by-product, when a=1 we show that an electrically charged black hole in this theory can be overcharged by bombarding it with a stream of electrically charged null fluid, resulting in the formation of a naked singularity. This provides an example of cosmic censorship violation in an exact dynamical solution to low-energy effective string theory and in a case in which the total stress-energy tensor satisfies all energy conditions. When a≠1, our solutions necessarily have a time-independent scalar field and consequently cannot be overcharged.

  9. Radiating black holes in Einstein-Maxwell-dilaton theory and cosmic censorship violation

    Energy Technology Data Exchange (ETDEWEB)

    Aniceto, Pedro [CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Pani, Paolo [Dipartimento di Fisica, “Sapienza” Università di Roma & Sezione INFN Roma 1,Piazzale Aldo Moro 5, 00185 Roma (Italy); CENTRA, Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Rocha, Jorge V. [Departament de Física Fonamental, Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2016-05-19

    We construct exact, time-dependent, black hole solutions of Einstein-Maxwell-dilaton theory with arbitrary dilaton coupling, a. For a=1 this theory arises as the four-dimensional low-energy effective description of heterotic string theory. These solutions represent electrically charged, spherically symmetric black holes emitting or absorbing charged null fluids and generalize the Vaidya and Bonnor-Vaidya solutions of general relativity and of Einstein-Maxwell theory, respectively. The a=1 case stands out as special, in the sense that it is the only choice of the coupling that allows for a time-dependent dilaton field in this class of solutions. As a by-product, when a=1 we show that an electrically charged black hole in this theory can be overcharged by bombarding it with a stream of electrically charged null fluid, resulting in the formation of a naked singularity. This provides an example of cosmic censorship violation in an exact dynamical solution to low-energy effective string theory and in a case in which the total stress-energy tensor satisfies all energy conditions. When a≠1, our solutions necessarily have a time-independent scalar field and consequently cannot be overcharged.

  10. Black holes in the dilatonic Einstein-Gauss-Bonnet theory in various dimensions. 1. Asymptotically flat black holes

    International Nuclear Information System (INIS)

    Guo, Zong-Kuan; Ohta, Nobuyoshi; Torii, Takashi

    2008-01-01

    We study spherically symmetric, asymptotically flat black hole solutions in the low-energy effective heterotic string theory, which is the Einstein gravity with Gauss-Bonnet term and the dilaton, in various dimensions. We derive the field equations for suitable ansatz for general D dimensions and construct black hole solutions of various masses numerically in D=4,5,6 and 10 dimensional spacetime with (D-2)-dimensional hypersurface with positive constant curvature. A detailed comparison with the non-dilatonic solutions is made. We also examine the thermodynamic properties of the solutions. It is found that the dilaton has significant effects on the black hole solutions, and we discuss physical consequences. (author)

  11. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    International Nuclear Information System (INIS)

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  12. Uniqueness theorem for static phantom wormholes in Einstein–Maxwell-dilaton theory

    Directory of Open Access Journals (Sweden)

    Boian Lazov

    2018-03-01

    Full Text Available We prove a uniqueness theorem for completely regular traversable electrically charged wormhole solutions in the Einstein–Maxwell-dilaton gravity with a phantom scalar field and a possible phantom electromagnetic field. In a certain region of the parameter space, determined by the asymptotic values of the scalar field and the lapse function, the regular wormholes are completely specified by their mass, scalar charge and electric charge. The argument is based on the positive energy theorem applied on an appropriate conformally transformed Riemannian space.

  13. Greybody factors of massive charged fermionic fields in a charged two-dimensional dilatonic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-02-01

    We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)

  14. Evolution of the fine-structure constant in runaway dilaton models

    Energy Technology Data Exchange (ETDEWEB)

    Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Vielzeuf, P.E., E-mail: pvielzeuf@ifae.es [Institut de Física d' Altes Energies, Universitat Autònoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Martinelli, M., E-mail: martinelli@thphys.uni-heidelberg.de [Institute for Theoretical Physics, University of Heidelberg, Philosophenweg 16, 69120, Heidelberg (Germany); Calabrese, E., E-mail: erminia.calabrese@astro.ox.ac.uk [Sub-department of Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Pandolfi, S., E-mail: stefania@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark)

    2015-04-09

    We study the detailed evolution of the fine-structure constant α in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α measurements and discuss ways to distinguish it from alternative models for varying α. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical ΛCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α measurements, will thus dramatically constrain these scenarios.

  15. Evolution of the fine-structure constant in runaway dilaton models

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Vielzeuf, P.E.; Martinelli, M.; Calabrese, E.; Pandolfi, S.

    2015-01-01

    We study the detailed evolution of the fine-structure constant α in the string-inspired runaway dilaton class of models of Damour, Piazza and Veneziano. We provide constraints on this scenario using the most recent α measurements and discuss ways to distinguish it from alternative models for varying α. For model parameters which saturate bounds from current observations, the redshift drift signal can differ considerably from that of the canonical ΛCDM paradigm at high redshifts. Measurements of this signal by the forthcoming European Extremely Large Telescope (E-ELT), together with more sensitive α measurements, will thus dramatically constrain these scenarios

  16. Total Energy of Charged Black Holes in Einstein-Maxwell-Dilaton-Axion Theory

    Directory of Open Access Journals (Sweden)

    Murat Korunur

    2012-01-01

    Full Text Available We focus on the energy content (including matter and fields of the Møller energy-momentum complex in the framework of Einstein-Maxwell-Dilaton-Axion (EMDA theory using teleparallel gravity. We perform the required calculations for some specific charged black hole models, and we find that total energy distributions associated with asymptotically flat black holes are proportional to the gravitational mass. On the other hand, we see that the energy of the asymptotically nonflat black holes diverge in a limiting case.

  17. Majorana-Fermions, Their-Own Antiparticles, Following Non-Abelian Anyon/Semion Quantum-Statistics : Solid-State MEETS Particle Physics Neutrinos: Spin-Orbit-Coupled Superconductors and/or Superfluids to Neutrinos; Insulator-Heisenberg-Antiferromagnet MnF2 Majorana-Siegel-Birgenau-Keimer - Effect

    Science.gov (United States)

    Majorana-Fermi-Segre, E.-L.; Antonoff-Overhauser-Salam, Marvin-Albert-Abdus; Siegel, Edward Carl-Ludwig

    2013-03-01

    Majorana-fermions, being their own antiparticles, following non-Abelian anyon/semion quantum-statistics: in Zhang et.al.-...-Detwiler et.al.-...``Worlds-in-Collision'': solid-state/condensed-matter - physics spin-orbit - coupled topological-excitations in superconductors and/or superfluids -to- particle-physics neutrinos: ``When `Worlds' Collide'', analysis via Siegel[Schrodinger Centenary Symp., Imperial College, London (1987); in The Copenhagen-Interpretation Fifty-Years After the Como-Lecture, Symp. Fdns. Mod.-Phys., Joensu(1987); Symp. on Fractals, MRS Fall-Mtg., Boston(1989)-5-papers!!!] ``complex quantum-statistics in fractal-dimensions'', which explains hidden-dark-matter(HDM) IN Siegel ``Sephirot'' scenario for The Creation, uses Takagi[Prog.Theo.Phys. Suppl.88,1(86)]-Ooguri[PR D33,357(85)] - Picard-Lefschetz-Arnol'd-Vassil'ev[``Principia Read After 300 Years'', Not.AMS(1989); quantum-theory caveats comment-letters(1990); Applied Picard-Lefschetz Theory, AMS(2006)] - theorem quantum-statistics, which via Euler- formula becomes which via de Moivre- -formula further becomes which on unit-circle is only real for only, i.e, for, versus complex with imaginary-damping denominator for, i.e, for, such that Fermi-Dirac quantum-statistics for

  18. arXiv Global $SU(2)_L \\otimes$BRST symmetry and its LSS theorem: Ward-Takahashi identities governing Green's functions, on-shell T-Matrix elements, and $V_{eff}$, in the scalar-sector of certain spontaneously broken non-Abelian gauge theories

    CERN Document Server

    Güngör, Özenç; Starkman, Glenn D.; Stora, Raymond

    This work is dedicated to the memory of Raymond Stora (1930-2015). $SU(2)_L$ is the simplest spontaneous symmetry breaking (SSB) non-Abelian gauge theory: a complex scalar doublet $\\phi=\\frac{1}{\\sqrt{2}}\\begin{bmatrix}H+i\\pi_3-\\pi_2 +i\\pi_1\\end{bmatrix}\\equiv\\frac{1}{\\sqrt{2}}\\tilde{H}e^{2i\\tilde{t}\\cdot\\tilde{\\vec{\\pi}}/}\\begin{bmatrix}10\\end{bmatrix}$ and a vector $\\vec{W}^\\mu$. In Landau gauge, $\\vec{W}^\\mu$ is transverse, $\\vec{\\tilde{\\pi}}$ are massless derivatively coupled Nambu-Goldstone bosons (NGB). A global shift symmetry enforces $m^{2}_{\\tilde{\\pi}}=0$. We observe that on-shell T-matrix elements of physical states $\\vec{W}^\\mu$,$\\phi$ are independent of global $SU(2)_{L}$ transformations, and the associated global current is exactly conserved for amplitudes of physical states. We identify two towers of "1-soft-pion" global Ward-Takahashi Identities (WTI), which govern the $\\phi$-sector, and represent a new global symmetry, $SU(2)_L\\otimes$BRST, a symmetry not of the Lagrangian but of the physical...

  19. Chameleonic dilaton, nonequivalent frames, and the cosmological constant problem in quantum string theory

    International Nuclear Information System (INIS)

    Zanzi, Andrea

    2010-01-01

    The chameleonic behavior of the string theory dilaton is suggested. Some of the possible consequences of the chameleonic string dilaton are analyzed in detail. In particular, (1) we suggest a new stringy solution to the cosmological constant problem and (2) we point out the nonequivalence of different conformal frames at the quantum level. In order to obtain these results, we start taking into account the (strong coupling) string loop expansion in the string frame (S-frame), therefore the so-called form factors are present in the effective action. The correct dark energy scale is recovered in the Einstein frame (E-frame) without unnatural fine-tunings and this result is robust against all quantum corrections, granted that we assume a proper structure of the S-frame form factors in the strong coupling regime. At this stage, the possibility still exists that a certain amount of fine-tuning may be required to satisfy some phenomenological constraints. Moreover in the E-frame, in our proposal, all the interactions are switched off on cosmological length scales (i.e., the theory is IR-free), while higher derivative gravitational terms might be present locally (on short distances) and it remains to be seen whether these facts clash with phenomenology. A detailed phenomenological analysis is definitely necessary to clarify these points.

  20. Conformal internal symmetry of 2d σ-models coupled to gravity and a dilaton

    International Nuclear Information System (INIS)

    Julia, B.

    1996-01-01

    General relativity reduced to two dimensions possesses a large group of symmetries that exchange classical solutions. The associated Lie algebra is known to contain the affine Kac-Moody algebra A 1 (1) and half of a real Witt algebra. In this paper we exhibit the full symmetry under the semi-direct product of Lie(A 1 (1) ) by the Witt algebra Lie(W). Furthermore we exhibit the corresponding hidden gauge symmetries. We show that the theory can be understood in terms of an infinite dimensional potential space involving all degrees of freedom: the dilaton as well as matter and gravitation. In the dilaton sector the linear system that extends the previously known Lax pair has the form of a twisted self-duality constraint that is the analog of the self-duality constraint arising in extended supergravities in higher space-time dimensions. Our results furnish a group theoretical explanation for the simultaneous occurrence of two spectral parameters, a constant one (=y) and a variable one (=t). They hold for all 2d non-linear σ-models that are obtained by dimensional reduction of G/H models in three dimensions coupled to pure gravity. (orig./WL) (orig.)

  1. Dilatonic dyon-like black hole solutions in the model with two Abelian gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Abishev, M.E. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation); Boshkayev, K.A. [Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Almaty (Kazakhstan); Ivashchuk, V.D. [Center for Gravitation and Fundamental Metrology, VNIIMS, Moscow (Russian Federation); Institute of Gravitation and Cosmology, RUDN University, Moscow (Russian Federation)

    2017-03-15

    Dilatonic black hole dyon-like solutions in the gravitational 4d model with a scalar field, two 2-forms, two dilatonic coupling constants λ{sub i} ≠ 0, i = 1,2, obeying λ{sub 1} ≠ -λ{sub 2} and the sign parameter ε = ±1 for scalar field kinetic term are considered. Here ε = -1 corresponds to a ghost scalar field. These solutions are defined up to solutions of two master equations for two moduli functions, when λ{sup 2}{sub i} ≠ 1/2 for ε = -1. Some physical parameters of the solutions are obtained: gravitational mass, scalar charge, Hawking temperature, black hole area entropy and parametrized post-Newtonian (PPN) parameters β and γ. The PPN parameters do not depend on the couplings λ{sub i} and ε. A set of bounds on the gravitational mass and scalar charge are found by using a certain conjecture on the parameters of solutions, when 1 + 2λ{sub i}{sup 2} ε > 0, i = 1,2. (orig.)

  2. U-duality and symplectic formulation of dilaton-axion gravity

    International Nuclear Information System (INIS)

    Gal'tsov, D.V.; Kechkin, O.V.

    1995-07-01

    We study a bosonic four-dimensional effective action corresponding to the heterotic string compactified on a 6-torus (dilaton-axion gravity with one vector field) on a curved space-time manifold possessing a time-like Killing vector field. Previously an existence of the SO(2,3) ∼ Sp(4,R) global symmetry (U-duality) as well as the symmetric space property of the corresponding σ-model have been established following Neugebauer and Kramer approach. Here we present an explicit form of the Sp(4,R) generators in terms of coset variables and construct a representation of the coset in terms of the physical target space coordinates. Complex symmetric 2 x 2 matrix Z (''matrix dilaton - axion'') is then introduced for which U-duality takes the matrix valued SL(2,R) form. In terms of this matrix the theory is further presented as a Kaehler σ-model. This leads to a more concise 2 x 2 formulation which opens new ways to construct exact classical solution. New solution (corresponding to constant ImZ) is obtained which describes the system of point massless magnetic monopoles endowed with axion charges equal to minus monopole charges. In such a system mutual magnetic repulsion is exactly balanced by axion attraction so that the resulting space-time is locally flat but possess multiple Taub-NUT singularities. (author). 35 refs

  3. A numerical algorithm for modelling boson-fermion stars in dilatonic gravity

    CERN Document Server

    Boyadzhiev, T L; Todorov, M D; Yazadjiev, S S

    2002-01-01

    We investigate numerically the class of models of the static spherically symmetric boson-fermion stars in the scalar-tensor theory of gravity with massive dilaton field. The proper mathematical model of such stars is interpreted as a nonlinear two-parametric eigenvalue problem. The first of the parameters is the unknown internal boundary (the radius of the fermionic part of the star) R sub s , and the second one represents the frequency OMEGA of the time oscillations of the boson field. To solve this problem, the whole space [0, infinity) is splitted into two domains: internal [0, R sub s] (inside the star) and external [R sub s , infinity) (outside the star). In each domain the physical model leads to two nonlinear boundary value problems in respect to metric functions, the functions describing the fermionic and bosonic matter, and the dilaton field. These boundary value problems have different dimensions inside and outside the star, respectively. The solutions in these regions are obtained separately and ma...

  4. Symmetries, holography, and quantum phase transition in two-dimensional dilaton AdS gravity

    Science.gov (United States)

    Cadoni, Mariano; Ciulu, Matteo; Tuveri, Matteo

    2018-05-01

    We revisit the Almheiri-Polchinski dilaton gravity model from a two-dimensional (2D) bulk perspective. We describe a peculiar feature of the model, namely the pattern of conformal symmetry breaking using bulk Killing vectors, a covariant definition of mass and the flow between different vacua of the theory. We show that the effect of the symmetry breaking is both the generation of an infrared scale (a mass gap) and to make local the Goldstone modes associated with the asymptotic symmetries of the 2D spacetime. In this way a nonvanishing central charge is generated in the dual conformal theory, which accounts for the microscopic entropy of the 2D black hole. The use of covariant mass allows to compare energetically the two different vacua of the theory and to show that at zero temperature the vacuum with a constant dilaton is energetically preferred. We also translate in the bulk language several features of the dual CFT discussed by Maldacena et al. The uplifting of the 2D model to (d +2 )-dimensional theories exhibiting hyperscaling violation is briefly discussed.

  5. Exactly solvable models of two-dimensional dilaton cosmology with quantum backreaction

    International Nuclear Information System (INIS)

    Zaslavskii, O B

    2003-01-01

    We consider a general approach to exactly solvable 2D dilaton cosmology with one-loop backreaction from conformal fields taken into account. It includes as particular cases previous models discussed in the literature. We list different types of solutions and investigate their properties for simple models, typical for string theory. We find a rather rich class of everywhere-regular solutions, which exist practically in every type of analysed solution. They exhibit different kinds of asymptotic behaviour in the past and future, including inflation, superinflation, deflation, power expansion or contraction. In particular, for some models the dS spacetime with a time-dependent dilaton field is the exact solution of the field equations. For some kinds of solution the weak-energy condition is violated independently of a specific model. We also find the solutions with a singularity which is situated in an infinite past (or future), so at any finite moment of a comoving time the universe is singularity-free. It is pointed out that for some models the spacetime may be everywhere regular even in spite of infinitely large quantum backreaction in an infinite past

  6. Conformal internal symmetry of 2d σ-models coupled to gravity and a dilaton

    International Nuclear Information System (INIS)

    Julia, B.; Nicolai, H.

    1996-08-01

    General relativity reduced to two dimensions possesses a large group of symmetries that exchange classical solutions. The associated Lie algebra is known to contain the affine Kac-Moody algebra A 1 (1) and half of a real Witt algebra. In this paper we exhibit the full symmetry under the semi-direct product of Lie(A 1 (1) ) by the Witt algebra Lie(W). Furthermore we exhibit the corresponding hidden gauge symmetries. We show that the theory can be understood in terms of an infinite dimensional potential space involving all degrees of freedom: The dilaton as well as matter and gravitation. In the dilaton sector the linear system that extends the previously known Lax pair has the form of a twisted self-duality constraint that is the analog of the self-duality constraint arising in extended supergravities in higher spacetime dimensions. Our results furnish a group theoretical explanation for the simultaneous occurrence of two spectral parameters, a constant one (=y) and a variable one (=t). They hold for all 2d non-linear σ-models that are obtained by dimensional reduction of G/H models in three dimensions coupled to pure gravity. In that case the Lie algebra is Lie(W∝G (1) ); this symmetry acts on a set of off shell fields (in a fixed gauge) and preserves the equations of motion. (orig.)

  7. Dilatonic black holes in gravity's rainbow with a nonlinear source: the effects of thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panah, B.E. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); ICRANet, Pescara (Italy); Panahiyan, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Helmholtz-Institut Jena, Jena (Germany); Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Momennia, M. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2017-09-15

    This paper is devoted to an investigation of nonlinearly charged dilatonic black holes in the context of gravity's rainbow with two cases: (1) by considering the usual entropy, (2) in the presence of first order logarithmic correction of the entropy. First, exact black hole solutions of dilatonic Born-Infeld gravity with an energy dependent Liouville-type potential are obtained. Then, thermodynamic properties of the mentioned cases are studied, separately. It will be shown that although mass, entropy and the heat capacity are modified due to the presence of a first order correction, the temperature remains independent of it. Furthermore, it will be shown that divergences of the heat capacity, hence phase transition points are also independent of a first order correction, whereas the stability conditions are highly sensitive to variation of the correction parameter. Except for the effects of a first order correction, we will also present a limit on the values of the dilatonic parameter and show that it is possible to recognize AdS and dS thermodynamical behaviors for two specific branches of the dilatonic parameter. In addition, the effects of nonlinear electromagnetic field and energy functions on the thermodynamical behavior of the solutions will be highlighted and dependency of critical behavior, on these generalizations will be investigated. (orig.)

  8. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Khaledian, M.S.; Felegary, F.; Azarmi, Z. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-03-29

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  9. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Khaledian, M.S.; Felegary, F.; Azarmi, Z.

    2010-01-01

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  10. Poisson-Lie T-duality of string effective actions: A new approach to the dilaton puzzle

    Czech Academy of Sciences Publication Activity Database

    Jurčo, B.; Vysoký, Jan

    2018-01-01

    Roč. 130, August (2018), s. 1-26 ISSN 0393-0440 Institutional support: RVO:67985840 Keywords : Poisson-Lie T-duality * string effective actions * dilaton field Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.819, year: 2016 https://www.sciencedirect.com/science/article/pii/S0393044018301748?via%3Dihub

  11. Microcanonical algorithm of carged roteting dilatonic black holes from the viewpoint of the Kaluza-Klein theory

    CERN Document Server

    Fujisaki, H

    2003-01-01

    Microcanonical ensemble paradigm is described in proper reference to the thermal aspect of the extremal state for a dilute gas of charged rotating black holes coupled to a dilaton field on the basis of the boosted Kerr solution of the Kaluza-Klein theory.

  12. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    International Nuclear Information System (INIS)

    Akarsu, Özgür; Dereli, Tekin

    2013-01-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales

  13. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    Science.gov (United States)

    Akarsu, Özgür; Dereli, Tekin

    2013-02-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.

  14. Poisson-Lie T-duality of string effective actions: A new approach to the dilaton puzzle

    Czech Academy of Sciences Publication Activity Database

    Jurčo, B.; Vysoký, Jan

    2018-01-01

    Roč. 130, August (2018), s. 1-26 ISSN 0393-0440 Institutional support: RVO:67985840 Keywords : Poisson-Lie T- dual ity * string effective actions * dilaton field Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.819, year: 2016 https://www.sciencedirect.com/science/article/pii/S0393044018301748?via%3Dihub

  15. Dilatonic black holes in gravity's rainbow with a nonlinear source: the effects of thermal fluctuations

    International Nuclear Information System (INIS)

    Hendi, S.H.; Panah, B.E.; Panahiyan, S.; Momennia, M.

    2017-01-01

    This paper is devoted to an investigation of nonlinearly charged dilatonic black holes in the context of gravity's rainbow with two cases: (1) by considering the usual entropy, (2) in the presence of first order logarithmic correction of the entropy. First, exact black hole solutions of dilatonic Born-Infeld gravity with an energy dependent Liouville-type potential are obtained. Then, thermodynamic properties of the mentioned cases are studied, separately. It will be shown that although mass, entropy and the heat capacity are modified due to the presence of a first order correction, the temperature remains independent of it. Furthermore, it will be shown that divergences of the heat capacity, hence phase transition points are also independent of a first order correction, whereas the stability conditions are highly sensitive to variation of the correction parameter. Except for the effects of a first order correction, we will also present a limit on the values of the dilatonic parameter and show that it is possible to recognize AdS and dS thermodynamical behaviors for two specific branches of the dilatonic parameter. In addition, the effects of nonlinear electromagnetic field and energy functions on the thermodynamical behavior of the solutions will be highlighted and dependency of critical behavior, on these generalizations will be investigated. (orig.)

  16. Chern–Simons dilaton black holes in 2 + 1 dimensions

    International Nuclear Information System (INIS)

    Moussa, Karim Ait; Clément, Gérard; Guennoune, Hakim

    2016-01-01

    We construct rotating magnetic solutions to the three-dimensional Einstein–Maxwell–Chern–Simons-dilaton theory with a Liouville potential. These include a class of black hole solutions which generalize the warped AdS black holes. The regular black holes belong to two disjointed sectors. The first sector includes black holes which have a positive mass and are co-rotating, while the black holes of the second sector have a negative mass and are counter-rotating. We also show that a particular, non-black hole, subfamily of our three-dimensional solutions may be uplifted to new regular non-asymptotically flat solutions of five-dimensional Einstein–Maxwell–Chern–Simons theory. (paper)

  17. Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity

    CERN Document Server

    Iizuka, Norihiro; Narayan, Prithvi; Trivedi, Sandip P

    2012-01-01

    We study the two-point function for fermionic operators in a class of strongly coupled systems using the gauge-gravity correspondence. The gravity description includes a gauge field and a dilaton which determines the gauge coupling and the potential energy. Extremal black brane solutions in this system typically have vanishing entropy. By analyzing a charged fermion in these extremal black brane backgrounds we calculate the two-point function of the corresponding boundary fermionic operator. We find that in some region of parameter space it is of Fermi liquid type. Outside this region no well-defined quasi-particles exist, with the excitations acquiring a non-vanishing width at zero frequency. At the transition, the two-point function can exhibit non-Fermi liquid behaviour.

  18. Two-Phase Equilibrium Properties in Charged Topological Dilaton AdS Black Holes

    Directory of Open Access Journals (Sweden)

    Hui-Hua Zhao

    2016-01-01

    Full Text Available We discuss phase transition of the charged topological dilaton AdS black holes by Maxwell equal area law. The two phases involved in the phase transition could coexist and we depict the coexistence region in P-v diagrams. The two-phase equilibrium curves in P-T diagrams are plotted, the Clapeyron equation for the black hole is derived, and the latent heat of isothermal phase transition is investigated. We also analyze the parameters of the black hole that could have an effect on the two-phase coexistence. The results show that the black holes may go through a small-large phase transition similar to that of a usual nongravity thermodynamic system.

  19. Exact solutions and critical chaos in dilaton gravity with a boundary

    Energy Technology Data Exchange (ETDEWEB)

    Fitkevich, Maxim [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Moscow Institute of Physics and Technology,Institutskii per. 9, Dolgoprudny 141700, Moscow Region (Russian Federation); Levkov, Dmitry [Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary Prospect 7a, Moscow 117312 (Russian Federation); Zenkevich, Yegor [Dipartimento di Fisica, Università di Milano-Bicocca,Piazza della Scienza 3, I-20126 Milano (Italy); INFN, sezione di Milano-Bicocca,I-20126 Milano (Italy); National Research Nuclear University MEPhI,Moscow 115409 (Russian Federation)

    2017-04-19

    We consider (1+1)-dimensional dilaton gravity with a reflecting dynamical boundary. The boundary cuts off the region of strong coupling and makes our model causally similar to the spherically-symmetric sector of multidimensional gravity. We demonstrate that this model is exactly solvable at the classical level and possesses an on-shell SL(2, ℝ) symmetry. After introducing general classical solution of the model, we study a large subset of soliton solutions. The latter describe reflection of matter waves off the boundary at low energies and formation of black holes at energies above critical. They can be related to the eigenstates of the auxiliary integrable system, the Gaudin spin chain. We argue that despite being exactly solvable, the model in the critical regime, i.e. at the verge of black hole formation, displays dynamical instabilities specific to chaotic systems. We believe that this model will be useful for studying black holes and gravitational scattering.

  20. Magnetized black holes and black rings in the higher dimensional dilaton gravity

    International Nuclear Information System (INIS)

    Yazadjiev, Stoytcho S.

    2006-01-01

    In this paper we consider magnetized black holes and black rings in the higher dimensional dilaton gravity. Our study is based on exact solutions generated by applying a Harrison transformation to known asymptotically flat black hole and black ring solutions in higher dimensional spacetimes. The explicit solutions include the magnetized version of the higher dimensional Schwarzschild-Tangherlini black holes, Myers-Perry black holes, and five-dimensional (dipole) black rings. The basic physical quantities of the magnetized objects are calculated. We also discuss some properties of the solutions and their thermodynamics. The ultrarelativistic limits of the magnetized solutions are briefly discussed and an explicit example is given for the D-dimensional magnetized Schwarzschild-Tangherlini black holes

  1. Lifshitz black branes and DC transport coefficients in massive Einstein-Maxwell-dilaton gravity

    Science.gov (United States)

    Kuang, Xiao-Mei; Papantonopoulos, Eleftherios; Wu, Jian-Pin; Zhou, Zhenhua

    2018-03-01

    We construct analytical Lifshitz massive black brane solutions in massive Einstein-Maxwell-dilaton gravity theory. We also study the thermodynamics of these black brane solutions and obtain the thermodynamical stability conditions. On the dual nonrelativistic boundary field theory with Lifshitz symmetry, we analytically compute the DC transport coefficients, including the electric conductivity, thermoelectric conductivity, and thermal conductivity. The novel property of our model is that the massive term supports the Lifshitz black brane solutions with z ≠1 in such a way that the DC transport coefficients in the dual field theory are finite. We also find that the Wiedemann-Franz law in this dual boundary field theory is violated, which indicates that it may involve strong interactions.

  2. Electric-magnetic duality in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Mizrachi, L.

    1982-03-01

    The duality transformation of the vacuum expectation value of the operator which creates magnetic vortices (the 't Hooft loop operator in the Higgs phase) is performed in the radial gauge (xsub(μ)Asub(μ)sup(a)(x)=0). It is found that in the weak coupling region (small g) of a pure Yang-Mills theory the dual operator creates electric vortices whose strength is 1/g. The theory is self dual in this region, and the effective coupling of the dual Lagrangian is 1/g. Thus the above duality transformation reduces to electric-magnetic duality where the electric field in the 't Hooft loop operator transforms into a magnetic field in the dual operator. In a spontaneously broken gauge theory these results are valid only within the region where the vortices (or the monopoles) are concentrated, or in directions of the algebra space of unbroken symmetry, as self duality holds only for this subset of fields. In the strong coupling region a strong coupling expansion in powers of 1/g is suggested. (author)

  3. Concerning Gribov vacuum copies in non-abelian gauge theory

    International Nuclear Information System (INIS)

    Frampton, P.H.; Palmer, W.F.; Pinsky, S.S.

    1978-01-01

    Construction of gauge field configurations A/sub μ//sup a/(x) in an SU(2) Yang-Mills theory satisfying everywhere F/sub μν//sup a/(x) = 0 is discussed. Using the method of sections, a field related to the zero-size limit of an instanton is presented. The corresponding limit for a multi-instanton solution requires a generalization of the Landau gauge condition. Finally, an alternative method and explicit solution is given for the case of delta/sub μ/A/sub μ//sup a/ = 0

  4. Cosmological monopoles and non-Abelian black holes

    International Nuclear Information System (INIS)

    Brihaye, Yves; Hartmann, Betti; Radu, Eugen; Stelea, Cristian

    2007-01-01

    We discuss magnetic monopole solutions of the Einstein-Yang-Mills-Higgs equations with a positive cosmological constant. These configurations approach asymptotically the de Sitter spacetime background and exist only for a nonzero Higgs potential. We find that the total mass of the solutions within the cosmological horizon is finite. However, their mass evaluated by using the surface counterterm method outside the cosmological horizon at early/late time infinity generically diverges. Magnetic monopole solutions with finite mass and non-integer charge exist however in a truncation of the theory with a vanishing Higgs field. Both solutions with a regular origin and cosmological black holes are studied, special attention being paid to the computation of the global charges

  5. Topological Nematic States and Non-Abelian Lattice Dislocations

    Directory of Open Access Journals (Sweden)

    Maissam Barkeshli

    2012-08-01

    Full Text Available An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  6. Monte Carlo studies of non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Creutz, M.

    1980-05-01

    After some general remarks on the efficiency of various Monte Carlo algorithms for gauge theories, the calculation of the asymptotic freedom scales of SU(2) and SU(3) gauge theories in the absence of quarks was discussed. There are large numerical factors between these scales when defined in terms of the bare coupling of the lattice theory or when defined in terms of the physical force between external sources

  7. Thirring strings: use of generalized non abelian bosonization techniques

    International Nuclear Information System (INIS)

    Abdalla, E.

    1988-02-01

    A discussion of compactified bosonic string theory is presented, with a thorough use of conformal invariance in order to relate the theory to the WZW model and U(n) invariant Thirring model at critical coupling. The quantization of these theories is discussed, as well as the definition of vertex operators in the various equivalent models above. (author) [pt

  8. Topological Nematic States and Non-Abelian Lattice Dislocations

    Science.gov (United States)

    Barkeshli, Maissam; Qi, Xiao-Liang

    2012-07-01

    An exciting new prospect in condensed matter physics is the possibility of realizing fractional quantum Hall states in simple lattice models without a large external magnetic field. A fundamental question is whether qualitatively new states can be realized on the lattice as compared with ordinary fractional quantum Hall states. Here we propose new symmetry-enriched topological states, topological nematic states, which are a dramatic consequence of the interplay between the lattice translational symmetry and topological properties of these fractional Chern insulators. The topological nematic states are realized in a partially filled flat band with a Chern number N, which can be mapped to an N-layer quantum Hall system on a regular lattice. However, in the topological nematic states the lattice dislocations can act as wormholes connecting the different layers and effectively change the topology of the space. Consequently, lattice dislocations become defects with a nontrivial quantum dimension, even when the fractional quantum Hall state being realized is, by itself, Abelian. Our proposal leads to the possibility of realizing the physics of topologically ordered states on high-genus surfaces in the lab even though the sample has only the disk geometry.

  9. Dynamical chaos of non-Abelian gauge fields

    International Nuclear Information System (INIS)

    Matinyan, S.G.

    1985-01-01

    The review studies a special class of Yang--Mills fields: spatially homogeneous fields (classical Yang--Mills mechanics), which have no analog in linear Abelian electrodynamics. Computer and analytic approaches show that such fields possess dynamical stochasticity, on the basis of which it may be asserted that the classical Yang--Mills equations without external sources constitute a nonintegrable system. The Higgs mechanism eliminates this stochasticity, and at a certain value of the vacuum expectation of the scalar field there is a phase transition of the disorder-order (confinement-deconfinement) type. The system with external sources apparently behaves similarly. The connection between this stochasticity and the mechanism of dimensional reduction in macroscopic systems and with the color-confinement phenomenon is considered. It is shown that the presence in the vacuum of random (Gaussian) currents leads to confinement of the fields generated by these currents. Attention is drawn to the possible manifestation of the stochasticity of the classical fields in multiparticle hadron-production processes. Such manifestation reflects universal stochastic features characteristic of systems of very different natures (statistics of the counting of thermoelectrons from random sources and photoelectrons from laser radiation that passes through a liquid in the critical state, developed turbulence in hydrodynamics, stellar systems, and KNO scaling in multiparticle production)

  10. Infrared problem in non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Yao, Y.

    1976-01-01

    I extend the Bloch--Nordsieck idea to show that in the lowest nontrivial order of radiative correction the fermion--fermion and gauge-meson--fermion scattering rates are finite, provided that they are averaged over the initial and summed over the final internal spin states. Questions of the physical gauge coupling and infrared slavery are discussed

  11. Non-abelian bosonization in higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Koh, I.G.; Yu, M.

    1988-01-01

    We propose a generalization of the character formulas of the SU(2) Kac-Moody algebra to higher genus Riemann surfaces. With this construction, we show that the modular invariant partition funciton of the SO(4) k = 1 Wess-Zumino model is equivalent, in arbitrary genus Riemann surfaces, to that of free fermion theory. (orig.)

  12. Magnetic monopole solution in non-Abelian gauge theory

    International Nuclear Information System (INIS)

    Hietarinta, J.; Takasugi, E.; Tanaka, K.

    1976-01-01

    An approximate analytic solution of the equations of motion of the 't Hooft magnetic monopole model is proposed. Virial type global tests are carried out for the solution. Then, the monopole mass, energies of the vector field A/sub mu/sup a/, Higgs field phi/sup a/ and interaction are computed in closed form. The form factors of A/sub i/sup a/ and phi/sup a/ in a quantized version are also calculated

  13. Approaching conformality in non-Abelian gauge theories

    NARCIS (Netherlands)

    Nunes da Silva, Tiago Jose

    2016-01-01

    The Standard Model has been experimentally tested to a remarkable precision. Some questions, however, have still found no solution within its framework, and physicists look for possible solutions in extensions of it, a research area usually referred to as {it Beyond the Standard Model Physics}. This

  14. Non-locality of non-Abelian anyons

    International Nuclear Information System (INIS)

    Brennen, G K; Iblisdir, S; Pachos, J K; Slingerland, J K

    2009-01-01

    Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.

  15. Non-locality of non-Abelian anyons

    Science.gov (United States)

    Brennen, G. K.; Iblisdir, S.; Pachos, J. K.; Slingerland, J. K.

    2009-10-01

    Entangled states of quantum systems can give rise to measurement correlations of separated observers that cannot be described by local hidden variable theories. Usually, it is assumed that entanglement between particles is generated due to some distance-dependent interaction. Yet anyonic particles in two dimensions have a nontrivial interaction that is purely topological in nature. In other words, it does not depend on the distance between two particles, but rather on their exchange history. The information encoded in anyons is inherently non-local even in the single subsystem level making the treatment of anyons non-conventional. We describe a protocol to reveal the non-locality of anyons in terms of correlations in the outcomes of measurements in two separated regions. This gives a clear operational measure of non-locality for anyonic states and it opens up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.

  16. Non-Abelian S-term dark energy and inflation

    Science.gov (United States)

    Rodríguez, Yeinzon; Navarro, Andrés A.

    2018-03-01

    We study the role that a cosmic triad in the generalized SU(2) Proca theory, specifically in one of the pieces of the Lagrangian that involves the symmetric version Sμν of the gauge field strength tensor Fμν, has on dark energy and primordial inflation. Regarding dark energy, the triad behaves asymptotically as a couple of radiation perfect fluids whose energy densities are negative for the S term but positive for the Yang-Mills term. This leads to an interesting dynamical fine-tuning mechanism that gives rise to a combined equation of state parameter ω ≃ - 1 and, therefore, to an eternal period of accelerated isotropic expansion for an ample spectrum of initial conditions. Regarding primordial inflation, one of the critical points of the associated dynamical system can describe a prolonged period of isotropic slow-roll inflation sustained by the S term. This period ends up when the Yang-Mills term dominates the energy density leading to the radiation dominated epoch. Unfortunately, in contrast to the dark energy case, the primordial inflation scenario is strongly sensitive to the coupling constants and initial conditions. The whole model, including the other pieces of the Lagrangian that involve Sμν, might evade the recent strong constraints coming from the gravitational wave signal GW170817 and its electromagnetic counterpart GRB 170817A.

  17. Dark matter model with non-Abelian gauge symmetry

    International Nuclear Information System (INIS)

    Zhang Hao; Li Chongsheng; Cao Qinghong; Li Zhao

    2010-01-01

    We propose a dark-matter model in which the dark sector is gauged under a new SU(2) group. The dark sector consists of SU(2) dark gauge fields, two triplet dark Higgs fields, and two dark fermion doublets (dark-matter candidates in this model). The dark sector interacts with the standard model sector through kinetic and mass mixing operators. The model explains both PAMELA and Fermi LAT data very well and also satisfies constraints from both the dark-matter relic density and standard model precision observables. The phenomenology of the model at the LHC is also explored.

  18. Non-abelian binding energies from the lightcone bootstrap

    Energy Technology Data Exchange (ETDEWEB)

    Li, Daliang [Department of Physics, Yale University,New Haven, CT 06511 (United States); Department of Physics and Astronomy, Johns Hopkins University,Baltimore, MD 21218 (United States); Meltzer, David [Department of Physics, Yale University,New Haven, CT 06511 (United States); Poland, David [Department of Physics, Yale University,New Haven, CT 06511 (United States); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-02-23

    We analytically study the lightcone limit of the conformal bootstrap for 4-point functions containing scalars charged under global symmetries. We show the existence of large spin double-twist operators in various representations of the global symmetry group. We then compute their anomalous dimensions in terms of the central charge C{sub T}, current central charge C{sub J}, and the OPE coefficients of low dimension scalars. In AdS, these results correspond to the binding energy of two-particle states arising from the exchange of gravitons, gauge bosons, and light scalar fields. Using unitarity and crossing symmetry, we show that gravity is universal and attractive among different types of two-particle states, while the gauge binding energy can have either sign as determined by the representation of the two-particle state, with universal ratios fixed by the symmetry group. We apply our results to 4D N=1 SQCD and the 3D O(N) vector models. We also show that in a unitary CFT, if the current central charge C{sub J} stays finite when the global symmetry group becomes infinitely large, such as the N→∞ limit of the O(N) vector model, then the theory must contain an infinite number of higher spin currents.

  19. Non-Abelian plasmons and their kinetics equation

    International Nuclear Information System (INIS)

    Zheng Xiaoping; Li Jiarong

    1998-01-01

    After the fluctuated modes in QGP are treated as plasmons, the kinetics equation for the plasmons in linear approximation is established starting from Yang-Mills fields equation. The kinetics equation can be considered as the balance equation for the number of plasmons, which indicates the balance of the number variation (growth or damping) in space and time because of their motion with velocities that equal to the wave's group velocity and the emission or absorption of plasmons by plasma particles

  20. MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton

    Science.gov (United States)

    Bergé, Joel; Brax, Philippe; Métris, Gilles; Pernot-Borràs, Martin; Touboul, Pierre; Uzan, Jean-Philippe

    2018-04-01

    The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller than 10-12 eV (i.e., range larger than a few 1 05 m ), we improve existing constraints by one order of magnitude to |α |baryon number and to |α |baryon and the lepton numbers. We also consider a model describing the coupling of a generic dilaton to the standard matter fields with five parameters, for a light field: We find that, for masses smaller than 10-12 eV , the constraints on the dilaton coupling parameters are improved by one order of magnitude compared to previous equivalence principle tests.

  1. Radiative Corrections to e+e-→ Zh at Future Higgs Factory in the Minimal Dilaton Model

    International Nuclear Information System (INIS)

    Heng Zhao-Xia; Li Dong-Wei; Zhou Hai-Jing

    2015-01-01

    The minimal dilaton model (MDM) extends the Standard Model by one singlet scalar called dilaton and one top quark partner called t'. In this work we investigate the t'-induced radiative correction to the Higgs-strahlung production process e + e − → Zh at future Higgs factory. We first present the analytical calculations in detail and show how to handle the ultraviolet divergence. Then we calculate the correction numerically by considering the constraints from precision electroweak data. We find that, for sinθ L = 0.2 and m t' = 1200 GeV, the correction is 0.26% and 2.1% for √s e + e - - 240 GeV, 1 TeV respectively, and a larger value can be achieved as sin θ L increases. (physics of elementary particles and fields)

  2. Soft behavior of a closed massless state in superstring and universality in the soft behavior of the dilaton

    Energy Technology Data Exchange (ETDEWEB)

    Vecchia, Paolo Di [The Niels Bohr Institute, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden); Marotta, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli (Italy); Mojaza, Matin [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Potsdam (Germany)

    2016-12-06

    We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string. Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory.

  3. Soft behavior of a closed massless state in superstring and universality of the soft behavior of the dilaton

    DEFF Research Database (Denmark)

    di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin

    2016-01-01

    We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless sector of closed superstrings in the case where one external state becomes soft. We compute the amplitudes generically for any number of dimensions and any number and kind of the massless closed states through...... the subsubleading order in the soft expansion. We show that, when the soft state is a graviton or a dilaton, the full result can be expressed as a soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar to what has previously been observed in field theory and in the bosonic string....... Differently from the bosonic string, the supersymmetric soft theorem for the graviton has no string corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found to be universally free of string corrections in any string theory....

  4. Global properties of locally rotational symmetric Bianchi I spacetimes in the Einstein-Yang-Mills-dilaton system

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Makoto [Department of Mathematics, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan (China)

    2006-12-21

    We discuss the strong cosmic censorship conjecture for cosmological spacetimes in the Einstein-Yang-Mills-dilaton system. Locally rotational symmetric Bianchi I spacetimes are considered. We show local and global existence theorems for the system. Asymptotic behaviour for the spacetimes is also investigated. The curvature invariant is blowup at the initial singularities and the spacetimes are future geodesic complete. Thus, the strong cosmic censorship conjecture for the spacetimes holds.

  5. Global properties of locally rotational symmetric Bianchi I spacetimes in the Einstein-Yang-Mills-dilaton system

    International Nuclear Information System (INIS)

    Narita, Makoto

    2006-01-01

    We discuss the strong cosmic censorship conjecture for cosmological spacetimes in the Einstein-Yang-Mills-dilaton system. Locally rotational symmetric Bianchi I spacetimes are considered. We show local and global existence theorems for the system. Asymptotic behaviour for the spacetimes is also investigated. The curvature invariant is blowup at the initial singularities and the spacetimes are future geodesic complete. Thus, the strong cosmic censorship conjecture for the spacetimes holds

  6. Stable Dyonic Thin-Shell Wormholes in Low-Energy String Theory

    Directory of Open Access Journals (Sweden)

    Ali Övgün

    2017-01-01

    Full Text Available Considerable attention has been devoted to the wormhole physics in the past 30 years by exploring the possibilities of finding traversable wormholes without the need for exotic matter. In particular, the thin-shell wormhole formalism has been widely investigated by exploiting the cut-and-paste technique to merge two space-time regions and to research the stability of these wormholes developed by Visser. This method helps us to minimize the amount of the exotic matter. In this paper, we construct a four-dimensional, spherically symmetric, dyonic thin-shell wormhole with electric charge Q, magnetic charge P, and dilaton charge Σ, in the context of Einstein-Maxwell-dilaton theory. We have applied Darmois-Israel formalism and the cut-and-paste method by joining together two identical space-time solutions. We carry out the dyonic thin-shell wormhole stability analyses by using a linear barotropic gas, Chaplygin gas, and logarithmic gas for the exotic matter. It is shown that, by choosing suitable parameter values as well as equation of state parameter, under specific conditions, we obtain a stable dyonic thin-shell wormhole solution. Finally, we argue that the stability domain of the dyonic thin-shell wormhole can be increased in terms of electric charge, magnetic charge, and dilaton charge.

  7. Black hole formation and space-time fluctuations in two dimensional dilaton gravity and complementarity

    International Nuclear Information System (INIS)

    Das, S.R.; Mukherji, S.

    1994-01-01

    We study black hole formation in a model of two dimensional dilaton gravity and 24 massless scalar fields with a boundary. We find the most general boundary condition consistent with perfect reflection of matter and the constraints. We show that in the semiclassical approximation and for the generic value of a parameter which characterizes the boundary conditions, the boundary starts receding to infinity at the speed of light whenever the total energy of the incoming matter flux exceeds a certain critical value. This is also the critical energy which marks the onset of black hole formation. We then compute the quantum fluctuations of the boundary and of the rescaled scalar curvature and show that as soon as the incoming energy exceeds this critical value, and asymptotic observer using normal time resolutions will always measure large quantum fluctuations of space-time near the horizon, even though the freely falling observer does not. This is an aspect of black hole complementarity relating directly to quantum gravity effects. (author). 30 refs, 4 figs

  8. Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture

    CERN Document Server

    Burgess, C P; Williams, M

    2015-01-01

    We complete here a three-part study (see also arXiv:1506.08095 and 1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse `bulk' is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantiza...

  9. Perfect fluid of p-branes, 2D dilaton gravity and the big-bang

    International Nuclear Information System (INIS)

    Borlaf, J.

    2001-01-01

    This paper starts by building the energy-momentum tensor of a perfect fluid of p-branes coupled to (p+4)-dimensional general relativity. Having three homogeneous and isotropic macroscopical spatial dimensions, the system gravity/fluid can be reduced to an effective theory over the branes. For the string fluid (p=1) the effective theory is nothing but the 2D dilaton gravity where the potential for the scalar field, which is the scale factor of the macroscopical space, is fixed by the state equation and the three-dimensional geometry. This theory can be solved allowing us to compare some relevant aspects in our homogeneous and isotropic string cosmologies with those of the Robertson-Walker ones. In particular, unlike the point-particle models, the existence of an initial singularity is strongly sensitive to the state equation, and it is remarkable that this model picks out the radiation state equation as the canonical case where the big-bang is kinematically forbidden. Moreover, we cannot reduce the Robertson-Walker cosmologies to the limit when the string size approaches to zero, because the existence of an upper bound on the string size is not compatible with the big-bang. Some examples are presented

  10. Compact stars in alternative theories of gravity: Einstein-Dilaton-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Pani, Paolo; Berti, Emanuele; Cardoso, Vitor; Read, Jocelyn

    2011-01-01

    We develop a theoretical framework to study slowly rotating compact stars in a rather general class of alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories from electromagnetic and gravitational-wave observations of compact stars. Our Lagrangian includes as special cases scalar-tensor theories (and indirectly f(R) theories) as well as models with a scalar field coupled to quadratic curvature invariants. As a first application of the formalism, we discuss (for the first time in the literature) compact stars in Einstein-Dilaton-Gauss-Bonnet gravity. We show that compact objects with central densities typical of neutron stars cannot exist for certain values of the coupling constants of the theory. In fact, the existence and stability of compact stars sets more stringent constraints on the theory than the existence of black hole solutions. This work is a first step in a program to systematically rule out (possibly using Bayesian model selection) theories that are incompatible with astrophysical observations of compact stars.

  11. Geometric properties of static Einstein-Maxwell dilaton horizons with a Liouville potential

    International Nuclear Information System (INIS)

    Abdolrahimi, Shohreh; Shoom, Andrey A.

    2011-01-01

    We study nondegenerate and degenerate (extremal) Killing horizons of arbitrary geometry and topology within the Einstein-Maxwell-dilaton model with a Liouville potential (the EMdL model) in d-dimensional (d≥4) static space-times. Using Israel's description of a static space-time, we construct the EMdL equations and the space-time curvature invariants: the Ricci scalar, the square of the Ricci tensor, and the Kretschmann scalar. Assuming that space-time metric functions and the model fields are real analytic functions in the vicinity of a space-time horizon, we study the behavior of the space-time metric and the fields near the horizon and derive relations between the space-time curvature invariants calculated on the horizon and geometric invariants of the horizon surface. The derived relations generalize similar relations known for horizons of static four- and five-dimensional vacuum and four-dimensional electrovacuum space-times. Our analysis shows that all the extremal horizon surfaces are Einstein spaces. We present the necessary conditions for the existence of static extremal horizons within the EMdL model.

  12. Particle creation phenomenology, Dirac sea and the induced Weyl and Einstein-dilaton gravity

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, V.A.; Dokuchaev, V.I.; Eroshenko, Yu.N., E-mail: berezin@inr.ac.ru, E-mail: dokuchaev@inr.ac.ru, E-mail: eroshenko@inr.ac.ru [Institute for Nuclear Research, Russian Academy of Sciences, 60th October Anniversary Prospect 7a, 117312 Moscow (Russian Federation)

    2017-01-01

    We constructed the conformally invariant model for scalar particle creation induced by strong gravitational fields. Starting from the 'usual' hydrodynamical description of the particle motion written in the Eulerian coordinates we substituted the particle number conservation law (which enters the formalism) by 'the particle creation law', proportional to the square of the Weyl tensor (following the famous result by Ya.B. Zel'dovich and A.A. Starobinsky). Then, demanding the conformal invariance of the whole dynamical system, we have got both the (Weyl)-conformal gravity and the Einstein-Hilbert gravity action integral with dilaton field. Thus, we obtained something like the induced gravity suggested first by A.D. Sakharov. It is shown that the resulting system is self-consistent. We considered also the vacuum equations. It is shown that, beside the 'empty vacuum', there may exist the 'dynamical vacuum', which is nothing more but the Dirac sea. The latter is described by the unexpectedly elegant equation which includes both the Bach and Einstein tensors and the cosmological terms.

  13. Perfect fluid of p-branes, 2D dilaton gravity and the big-bang

    Energy Technology Data Exchange (ETDEWEB)

    Borlaf, J. E-mail: jborlaf@redestb.es

    2001-01-15

    This paper starts by building the energy-momentum tensor of a perfect fluid of p-branes coupled to (p+4)-dimensional general relativity. Having three homogeneous and isotropic macroscopical spatial dimensions, the system gravity/fluid can be reduced to an effective theory over the branes. For the string fluid (p=1) the effective theory is nothing but the 2D dilaton gravity where the potential for the scalar field, which is the scale factor of the macroscopical space, is fixed by the state equation and the three-dimensional geometry. This theory can be solved allowing us to compare some relevant aspects in our homogeneous and isotropic string cosmologies with those of the Robertson-Walker ones. In particular, unlike the point-particle models, the existence of an initial singularity is strongly sensitive to the state equation, and it is remarkable that this model picks out the radiation state equation as the canonical case where the big-bang is kinematically forbidden. Moreover, we cannot reduce the Robertson-Walker cosmologies to the limit when the string size approaches to zero, because the existence of an upper bound on the string size is not compatible with the big-bang. Some examples are presented.

  14. Stable isotopes

    International Nuclear Information System (INIS)

    Evans, D.K.

    1986-01-01

    Seventy-five percent of the world's stable isotope supply comes from one producer, Oak Ridge Nuclear Laboratory (ORNL) in the US. Canadian concern is that foreign needs will be met only after domestic needs, thus creating a shortage of stable isotopes in Canada. This article describes the present situation in Canada (availability and cost) of stable isotopes, the isotope enrichment techniques, and related research programs at Chalk River Nuclear Laboratories (CRNL)

  15. Stability under scalar perturbations and quasinormal modes of 4D Einstein-Born-Infeld dilaton spacetime. Exact spectrum

    International Nuclear Information System (INIS)

    Destounis, Kyriakos; Panotopoulos, Grigoris; Rincon, Angel

    2018-01-01

    We study the stability under scalar perturbations, and we compute the quasinormal modes of the Einstein-Born-Infeld dilaton spacetime in 1 + 3 dimensions. Solving the full radial equation in terms of hypergeometric functions, we provide an exact analytical expression for the spectrum. We find that the frequencies are purely imaginary, and we confirm our results by computing them numerically. Although the scalar field that perturbs the black hole is electrically neutral, an instability similar to that seen in charged scalar perturbations of the Reissner-Nordstroem black hole is observed. (orig.)

  16. Effective actions from the conformal invariance conditions of bosonic σ-models with graviton and dilaton backgrounds

    International Nuclear Information System (INIS)

    Mavromatos, N.E.; Miramontes, J.L.

    1988-01-01

    We discuss generalised functional relations between the β-functions of bosonic σ-models propagating in graviton and dilaton backgrounds and field variations of the associated effective actions based on these backgrounds. We analyse the constraints on the possible form of the proportionality (non-degenerate) tensors, imposed by classical symmetries of the associated point-like action. As an application we derive the second order [O(α')] effective action and we find that it is consistent with a ghost free combination for both fields. Moreover we show explicitly that this action is related to the one computed within the framework of string tree-amplitudes by field redefinitions. (orig.)

  17. Stability under scalar perturbations and quasinormal modes of 4D Einstein-Born-Infeld dilaton spacetime. Exact spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Destounis, Kyriakos; Panotopoulos, Grigoris [Universidade de Lisboa, Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Lisbon (Portugal); Rincon, Angel [Pontificia Universidad Catolica de Chile, Instituto de Fisica, Santiago (Chile)

    2018-02-15

    We study the stability under scalar perturbations, and we compute the quasinormal modes of the Einstein-Born-Infeld dilaton spacetime in 1 + 3 dimensions. Solving the full radial equation in terms of hypergeometric functions, we provide an exact analytical expression for the spectrum. We find that the frequencies are purely imaginary, and we confirm our results by computing them numerically. Although the scalar field that perturbs the black hole is electrically neutral, an instability similar to that seen in charged scalar perturbations of the Reissner-Nordstroem black hole is observed. (orig.)

  18. Physical process version of the first law of thermodynamics for black holes in Einstein-Maxwell axion-dilaton gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rogatko, Marek [Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin (Poland)

    2002-07-21

    We derive general formulae for the first-order variation of the ADM mass and angular momentum for the linear perturbations of a stationary background in Einstein-Maxwell axion-dilaton gravity which is the low-energy limit of the heterotic string theory. All these variations were expressed in terms of the perturbed matter energy-momentum tensor and the perturbed charge current density. Combining these expressions, we reached at the form of the physical process version of the first law of black-hole dynamics for the stationary black holes in the considered theory which is a strong support for the cosmic censorship hypothesis.

  19. MICROSCOPE Mission: First Constraints on the Violation of the Weak Equivalence Principle by a Light Scalar Dilaton.

    Science.gov (United States)

    Bergé, Joel; Brax, Philippe; Métris, Gilles; Pernot-Borràs, Martin; Touboul, Pierre; Uzan, Jean-Philippe

    2018-04-06

    The existence of a light or massive scalar field with a coupling to matter weaker than gravitational strength is a possible source of violation of the weak equivalence principle. We use the first results on the Eötvös parameter by the MICROSCOPE experiment to set new constraints on such scalar fields. For a massive scalar field of mass smaller than 10^{-12}  eV (i.e., range larger than a few 10^{5}  m), we improve existing constraints by one order of magnitude to |α|difference between the baryon and the lepton numbers. We also consider a model describing the coupling of a generic dilaton to the standard matter fields with five parameters, for a light field: We find that, for masses smaller than 10^{-12}  eV, the constraints on the dilaton coupling parameters are improved by one order of magnitude compared to previous equivalence principle tests.

  20. Self-tuning at large (distances): 4D description of runaway dilaton capture

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [Physics & Astronomy, McMaster University,1280 Main St. W., Hamilton, L8S 4M1 ON (Canada); Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, N2L 2Y5 ON (Canada); Division PH-TH, CERN,CH-1211, Genève 23 (Switzerland); Diener, Ross [Physics & Astronomy, McMaster University,1280 Main St. W., Hamilton, L8S 4M1 ON (Canada); Perimeter Institute for Theoretical Physics,31 Caroline St. N., Waterloo, N2L 2Y5 ON (Canada); Williams, M. [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2015-10-27

    We complete here a three-part study (see also http://arxiv.org/abs/1506.08095 and http://arxiv.org/abs/1508.00856) of how codimension-two objects back-react gravitationally with their environment, with particular interest in situations where the transverse ‘bulk’ is stabilized by the interplay between gravity and flux-quantization in a dilaton-Maxwell-Einstein system such as commonly appears in higher-dimensional supergravity and is used in the Supersymmetric Large Extra Dimensions (SLED) program. Such systems enjoy a classical flat direction that can be lifted by interactions with the branes, giving a mass to the would-be modulus that is smaller than the KK scale. We construct the effective low-energy 4D description appropriate below the KK scale once the transverse extra dimensions are integrated out, and show that it reproduces the predictions of the full UV theory for how the vacuum energy and modulus mass depend on the properties of the branes and stabilizing fluxes. In particular we show how this 4D theory learns the news of flux quantization through the existence of a space-filling four-form potential that descends from the higher-dimensional Maxwell field. We find a scalar potential consistent with general constraints, like the runaway dictated by Weinberg’s theorem. We show how scale-breaking brane interactions can give this potential minima for which the extra-dimensional size, ℓ, is exponentially large relative to underlying physics scales, r{sub B}, with ℓ{sup 2}=r{sub B}{sup 2}e{sup −φ} where −φ≫1 can be arranged with a small hierarchy between fundamental parameters. We identify circumstances where the potential at the minimum can (but need not) be parametrically suppressed relative to the tensions of the branes, provide a preliminary discussion of the robustness of these results to quantum corrections, and discuss the relation between what we find and earlier papers in the SLED program.

  1. Unpredictably Stable

    DEFF Research Database (Denmark)

    Failla, Virgilio; Melillo, Francesca; Reichstein, Toke

    2014-01-01

    Is entrepreneurship a more stable career choice for high employment turnover individuals? We find that a transition to entrepreneurship induces a shift towards stayer behavior and identify job matching, job satisfaction and lock-in effects as main drivers. These findings have major implications...

  2. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  3. Stable isotopes

    International Nuclear Information System (INIS)

    Brazier, J.L.; Guinamant, J.L.

    1995-01-01

    According to the progress which has been realised in the technology of separating and measuring isotopes, the stable isotopes are used as preferable 'labelling elements' for big number of applications. The isotopic composition of natural products shows significant variations as a result of different reasons like the climate, the seasons, or their geographic origins. So, it was proved that the same product has a different isotopic composition of alimentary and agriculture products. It is also important in detecting the pharmacological and medical chemicals. This review article deals with the technology, like chromatography and spectrophotometry, adapted to this aim, and some important applications. 17 refs. 6 figs

  4. Stable Tetraquarks

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris [Fermilab

    2018-04-13

    For very heavy quarks, relations derived from heavy-quark symmetry imply novel narrow doubly heavy tetraquark states containing two heavy quarks and two light antiquarks. We predict that double-beauty states will be stable against strong decays, whereas the double-charm states and mixed beauty+charm states will dissociate into pairs of heavy-light mesons. Observing a new double-beauty state through its weak decays would establish the existence of tetraquarks and illuminate the role of heavy color-antitriplet diquarks as hadron constituents.

  5. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  6. Thermodynamics, phase transitions and Ruppeiner geometry for Einstein-dilaton-Lifshitz black holes in the presence of Maxwell and Born-Infeld electrodynamics

    International Nuclear Information System (INIS)

    Zangeneh, M.K.; Dehyadegari, A.; Mehdizadeh, M.R.; Wang, B.; Sheykhi, A.

    2017-01-01

    In this paper, we first obtain the higher-dimen-sional dilaton-Lifshitz black hole solutions in the presence of Born-Infeld (BI) electrodynamics. We find that there are two different solutions for the cases of z = n + 1 and z ≠ n + 1 where z is the dynamical critical exponent and n is the number of spatial dimensions. Calculating the conserved and thermodynamical quantities, we show that the first law of thermodynamics is satisfied for both cases. Then we turn to the study of different phase transitions for our Lifshitz black holes. We start with the Hawking-Page phase transition and explore the effects of different parameters of our model on it for both linearly and BI charged cases. After that, we discuss the phase transitions inside the black holes. We present the improved Davies quantities and prove that the phase transition points shown by them are coincident with the Ruppeiner ones. We show that the zero temperature phase transitions are transitions in the radiance properties of black holes by using the Landau-Lifshitz theory of thermodynamic fluctuations. Next, we turn to the study of the Ruppeiner geometry (thermodynamic geometry) for our solutions. We investigate thermal stability, interaction type of possible black hole molecules and phase transitions of our solutions for linearly and BI charged cases separately. For the linearly charged case, we show that there are no phase transitions at finite temperature for the case z ≥ 2. For z < 2, it is found that the number of finite temperature phase transition points depends on the value of the black hole charge and there are not more than two. When we have two finite temperature phase transition points, there is no thermally stable black hole between these two points and we have discontinuous small/large black hole phase transitions. As expected, for small black holes, we observe finite magnitude for the Ruppeiner invariant, which shows the finite correlation between possible black hole molecules, while

  7. Thermodynamics, phase transitions and Ruppeiner geometry for Einstein-dilaton-Lifshitz black holes in the presence of Maxwell and Born-Infeld electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zangeneh, M.K. [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center of Astronomy and Astrophysics, Shanghai (China); Shiraz University, Physics Department and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Shahid Chamran University of Ahvaz, Physics Department, Faculty of Science, Ahvaz (Iran, Islamic Republic of); Dehyadegari, A. [Shiraz University, Physics Department and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Mehdizadeh, M.R. [Shahid Bahonar University, Department of Physics, P.O. Box 76175, Kerman (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of); Wang, B. [Shanghai Jiao Tong University, Department of Physics and Astronomy, Center of Astronomy and Astrophysics, Shanghai (China); Sheykhi, A. [Shiraz University, Physics Department and Biruni Observatory, Shiraz (Iran, Islamic Republic of); Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2017-06-15

    In this paper, we first obtain the higher-dimen-sional dilaton-Lifshitz black hole solutions in the presence of Born-Infeld (BI) electrodynamics. We find that there are two different solutions for the cases of z = n + 1 and z ≠ n + 1 where z is the dynamical critical exponent and n is the number of spatial dimensions. Calculating the conserved and thermodynamical quantities, we show that the first law of thermodynamics is satisfied for both cases. Then we turn to the study of different phase transitions for our Lifshitz black holes. We start with the Hawking-Page phase transition and explore the effects of different parameters of our model on it for both linearly and BI charged cases. After that, we discuss the phase transitions inside the black holes. We present the improved Davies quantities and prove that the phase transition points shown by them are coincident with the Ruppeiner ones. We show that the zero temperature phase transitions are transitions in the radiance properties of black holes by using the Landau-Lifshitz theory of thermodynamic fluctuations. Next, we turn to the study of the Ruppeiner geometry (thermodynamic geometry) for our solutions. We investigate thermal stability, interaction type of possible black hole molecules and phase transitions of our solutions for linearly and BI charged cases separately. For the linearly charged case, we show that there are no phase transitions at finite temperature for the case z ≥ 2. For z < 2, it is found that the number of finite temperature phase transition points depends on the value of the black hole charge and there are not more than two. When we have two finite temperature phase transition points, there is no thermally stable black hole between these two points and we have discontinuous small/large black hole phase transitions. As expected, for small black holes, we observe finite magnitude for the Ruppeiner invariant, which shows the finite correlation between possible black hole molecules, while

  8. The fate of unstable gauge flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C P [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics and Astronomy; [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Parameswaran, S L [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Zavala, I [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.

    2008-12-15

    Fluxes are widely used to stabilise extra dimensions, but the supporting monopolelike configurations are often unstable, particularly if they arise as gauge flux within a non-abelian gauge sector. We here seek the endpoint geometries to which this instability leads, focussing on the simplest concrete examples: sphere-monopole compactifications in six dimensions. Without gravity most monopoles in non-abelian gauge groups are unstable, decaying into the unique stable monopole in the same topological class. We show that the same is true in Einstein-YM systems, with the new twist that the decay leads to a shrinkage in the size of the extra dimensions and curves the non-compact directions: in D dimensions a Mink{sub D-2} x S{sub 2} geometry supported by an unstable monopole relaxes to AdS{sub D-2} x S{sub 2}, with the endpoint sphere smaller than the initial one. For supergravity the situation is more complicated because the dilaton obstructs such a simple evolution. The endpoint instead acquires a dilaton gradient, thereby breaking some of the spacetime symmetries. For 6D supergravity we argue that it is the 4D symmetries that break, and examine several candidates for the endpoint geometry. By using the trick of dimensional oxidation it is possible to recast the supergravity system as a higher-dimensional Einstein-YM monopole, allowing understanding of this system to guide us to the corresponding endpoint. The result is a Kasner-like geometry conformal to Mink{sub 4} times S{sub 2}, with nontrivial conformal factor and dilaton breaking the maximal 4D symmetry and generating a singularity. Yet the resulting configuration has a lower potential energy than did the initial one, and is perturbatively stable, making it a sensible candidate endpoint for the evolution. (orig.)

  9. The fate of unstable gauge flux compactifications

    International Nuclear Information System (INIS)

    Burgess, C.P.; Parameswaran, S.L.; Zavala, I.

    2008-12-01

    Fluxes are widely used to stabilise extra dimensions, but the supporting monopolelike configurations are often unstable, particularly if they arise as gauge flux within a non-abelian gauge sector. We here seek the endpoint geometries to which this instability leads, focussing on the simplest concrete examples: sphere-monopole compactifications in six dimensions. Without gravity most monopoles in non-abelian gauge groups are unstable, decaying into the unique stable monopole in the same topological class. We show that the same is true in Einstein-YM systems, with the new twist that the decay leads to a shrinkage in the size of the extra dimensions and curves the non-compact directions: in D dimensions a Mink D-2 x S 2 geometry supported by an unstable monopole relaxes to AdS D-2 x S 2 , with the endpoint sphere smaller than the initial one. For supergravity the situation is more complicated because the dilaton obstructs such a simple evolution. The endpoint instead acquires a dilaton gradient, thereby breaking some of the spacetime symmetries. For 6D supergravity we argue that it is the 4D symmetries that break, and examine several candidates for the endpoint geometry. By using the trick of dimensional oxidation it is possible to recast the supergravity system as a higher-dimensional Einstein-YM monopole, allowing understanding of this system to guide us to the corresponding endpoint. The result is a Kasner-like geometry conformal to Mink 4 times S 2 , with nontrivial conformal factor and dilaton breaking the maximal 4D symmetry and generating a singularity. Yet the resulting configuration has a lower potential energy than did the initial one, and is perturbatively stable, making it a sensible candidate endpoint for the evolution. (orig.)

  10. Novel complete non-compact symmetries for the Wheeler-DeWitt equation in a wormhole scalar model and axion-dilaton string cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben; Granados, Victor D [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del IPN, Unidad Profesional Adolfo Lopez Mateos, Edificio 9, 07738 Mexico DF (Mexico); Mota, Roberto D, E-mail: cordero@esfm.ipn.mx, E-mail: granados@esfm.ipn.mx, E-mail: rmotae@ipn.mx [Departamento de ICE de la Escuela Superior de IngenierIa Mecanica y Electrica del IPN, Unidad Culhuacan. Av. Santa Ana No 1000, San Francisco Culhuacan, Coyoacan Mexico DF, CP 04430 (Mexico)

    2011-09-21

    We find the full symmetries of the Wheeler-DeWitt equation for the Hawking and Page wormhole model and an axion-dilaton string cosmology. We show that the Wheeler-DeWitt Hamiltonian admits a U(1, 1) hidden symmetry for the Hawking and Page model and U(2, 1) for the axion-dilaton string cosmology. If we consider the existence of matter-energy renormalization, for each of these models we find that the Wheeler-DeWitt Hamiltonian accepts an additional SL(2, R) dynamical symmetry. In this case, we show that the SL(2, R) dynamical symmetry generators transform the states from one energy Hilbert eigensubspace to another. Some new wormhole-type solutions for both models are found.

  11. Black hole physics from two-dimensional dilaton gravity based on the SL(2,R)/U(1) coset model

    International Nuclear Information System (INIS)

    Nojiri, S.; Oda, I.

    1994-01-01

    We analyze the quantum two-dimensional dilaton gravity model, which is described by the SL(2,R)/U(1) gauged Wess-Zumino-Witten model deformed by a (1,1) operator. We show that the curvature singularity does not appear when the central charge c matter of the matter fields is given by 22 matter matter matter ∝δ(x + -x 0 + ), create a kind of wormholes, i.e., causally disconnected regions. Most of the quantum information in past null infinity is lost in future null infinity but the lost information would be carried by the wormholes. We also discuss the problem of defining the mass of quantum black holes. On the basis of the argument by Regge and Teitelboim, we show that the ADM mass measured by the observer who lives in one of the asymptotically flat regions is finite and does not vanish in general. On the other hand, the Bondi mass is ill defined in this model. Instead of the Bondi mass, we consider the mass measured by observers who live in an asymptotically flat region at first. A class of observers finds the mass of the black hole created by a shock wave changes as the observers' proper time goes by, i.e., they observe Hawking radiation. The measured mass vanishes after the infinite proper time and the black hole evaporates completely. Therefore the total Hawking radiation is positive even when N<24

  12. Stable Isotope Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Tissue samples (skin, bone, blood, muscle) are analyzed for stable carbon, stable nitrogen, and stable sulfur analysis. Many samples are used in their entirety for...

  13. Extended phase space thermodynamics and P-V criticality: Brans-Dicke-Born-Infeld vs. Einstein-Born-Infeld-dilaton black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P. O. Box 55134-441, Maragha (Iran, Islamic Republic of); Tad, R.M.; Armanfard, Z.; Talezadeh, M.S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2016-05-15

    Motivated by a thermodynamic analogy of black holes and Van der Waals liquid/gas systems, in this paper, we study P-V criticality of both dilatonic Born-Infeld black holes and their conformal solutions, Brans-Dicke-Born-Infeld solutions. Due to the conformal constraint, we have to neglect the old Lagrangian of dilatonic Born-Infeld theory and its black hole solutions, and introduce a new one. We obtain spherically symmetric nonlinearly charged black hole solutions in both Einstein and Jordan frames and then we calculate the related conserved and thermodynamic quantities. After that, we extend the phase space by considering the proportionality of the cosmological constant and thermodynamical pressure. We obtain critical values of the thermodynamic coordinates through numerical methods and plot the relevant P-V and G-T diagrams. Investigation of the mentioned diagrams helps us to study the thermodynamical phase transition. We also analyze the effects of varying different parameters on the phase transition of black holes. (orig.)

  14. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  15. stableGP

    Data.gov (United States)

    National Aeronautics and Space Administration — The code in the stableGP package implements Gaussian process calculations using efficient and numerically stable algorithms. Description of the algorithms is in the...

  16. Angina Pectoris (Stable Angina)

    Science.gov (United States)

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Angina Pectoris (Stable Angina) Updated:Aug 21,2017 You may have heard the term “angina pectoris” or “stable angina” in your doctor’s office, ...

  17. Clapeyron equation and phase equilibrium properties in higher dimensional charged topological dilaton AdS black holes with a nonlinear source

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huai-Fan; Zhao, Hui-Hua; Zhang, Li-Chun; Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China)

    2017-05-15

    Using Maxwell's equal area law, we discuss the phase transition of higher dimensional charged topological dilaton AdS black hole with a nonlinear source. The coexisting region of the two phases is found and we depict the coexistence region in the P-v diagrams. The two-phase equilibrium curves in the P-T diagrams are plotted, and we take the first order approximation of volume v in the calculation. To better compare with a general thermodynamic system, the Clapeyron equation is derived for a higher dimensional charged topological black hole with a nonlinear source. The latent heat of an isothermal phase transition is investigated. We also study the effect of the parameters of the black hole on the region of two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems. (orig.)

  18. Stable Boundary Layer Issues

    OpenAIRE

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The development of robust stable boundary layer parameterizations for use in NWP and climate models is hampered by the multiplicity of processes and their unknown interactions. As a result, these models suffer ...

  19. On the relation between fields and potentials in non abelian Gauge Theories

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1979-01-01

    Some examples have been given in the literature of ambiguous gauge fields, i.e. those not having a unique potential (up to a gauge transformation). An example given by Deser and Wilczek is examined and found the condition (for any gauge group) that the group element generating the potentials must satisfy in order for the potentials not to be related by any gauge transformation. In three dimensions (for Su 2 ) there are other families of ambiguous fields characterized by arbitrary unit vector fields n vector (n vector) (n 2 vector =1). The example given by Wu and Yang belongs to a particular family with n vector = n vector. r vector / r vector. The sources of these fields and some interesting relations between them are also found [pt

  20. Non-Abelian parafermions in time-reversal-invariant interacting helical systems

    Science.gov (United States)

    Orth, Christoph P.; Tiwari, Rakesh P.; Meng, Tobias; Schmidt, Thomas L.

    2015-02-01

    The interplay between bulk spin-orbit coupling and electron-electron interactions produces umklapp scattering in the helical edge states of a two-dimensional topological insulator. If the chemical potential is at the Dirac point, umklapp scattering can open a gap in the edge state spectrum even if the system is time-reversal invariant. We determine the zero-energy bound states at the interfaces between a section of a helical liquid which is gapped out by the superconducting proximity effect and a section gapped out by umklapp scattering. We show that these interfaces pin charges which are multiples of e /2 , giving rise to a Josephson current with 8 π periodicity. Moreover, the bound states, which are protected by time-reversal symmetry, are fourfold degenerate and can be described as Z4 parafermions. We determine their braiding statistics and show how braiding can be implemented in topological insulator systems.

  1. BPS string solutions in non-Abelian Yang-Mills theories

    Energy Technology Data Exchange (ETDEWEB)

    Kneipp, Marco A.C.; Brockill, Patrick [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas]. E-mail: kneipp@cbpf.br; brockill@cbpf.br

    2001-04-01

    Starting from the bosonic part of N=2 Super QCD with a 'Seiberg-Witten' N = 2 breaking mass term, we obtain string BPS conditions for arbitrary semi-simple gauge groups. We show that the vacuum structure is compatible with a symmetry breaking scheme which allows the existence of Z{sub k}-strings and which has Spin (10) {yields} SU(5) x Z{sub 2} as a particular case. We obtain BPS Z{sub k}-string solutions and show that they satisfy the same first order differential equations and string tension as the BPS string for the U(1) case. (author)

  2. Existence of non-abelian representations of the near hexagon Q(5,2 ...

    Indian Academy of Sciences (India)

    A near hexagon is a partial linear space of diameter 3 in which for every point x and every line l ... (iii) rx /∈ Z(R) for each x ∈ P and ψ is faithful. ..... As a consequence of the ..... [4] De Bruyn B, Near polygons (2006) (Basel: Birkhäuser Verlag).

  3. SU(2,R)q symmetries of non-Abelian Toda theories

    International Nuclear Information System (INIS)

    Gomes, J.F.; Zimerman, A.H.; Sotkov, G.M.

    1998-03-01

    The classical and quantum algebras of a class of conformal NA-Toda models are studied. It is shown that the SL (2,R) q . Poisson brackets algebra generated by certain chiral and antichiral charges of the nonlocal currents and the global U(1) charge appears as an algebra of the symmetries of these models. (author)

  4. Phase synchronization of non-Abelian oscillators on small-world networks

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhi-Ming [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhao, Ming [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou, Tao [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)]. E-mail: zhutou@ustc.edu; Zhu, Chen-Ping [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Bing-Hong [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2007-02-26

    In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts-Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems.

  5. Blockspin and multigrid for staggered fermions in non-abelian gauge fields

    International Nuclear Information System (INIS)

    Kalkreuter, T.; Mack, G.; Speh, M.

    1991-07-01

    We discuss blockspins for staggered fermions, i.e. averaging and interpolation procedures which are needed in a real space renormalization group approach to gauge theories with staggered fermions and in a multigrid approach to the computation of gauge covariant propagators. The discussion starts from the requirement that the symmetries of the free action should be preserved by the blocking procedure in the limit of a pure gauge. A definition of an averaging kernel as a solution of a gauge covariant eigenvalue equation is proposed, and the properties of a corresponding interpolation kernel are examined in the light of general criteria for good choices of blockspins. Some results of multigrid computation of bosonic propagation in an SU(2) gauge field in 4 dimensions are also presented. (orig.)

  6. Atomic Quantum Simulations of Abelian and non-Abelian Gauge Theories

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, in a collaboration of atomic and particle physicists, we have constructed a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum link models which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows investigations of string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods. Similarly, using ultracold alkaline-earth atoms in optical lattices, we have constructed a quantum simulator for U(N) and SU(N) lattice gauge theories with fermionic matter based on quantum link models. These systems share qualitative features with QCD, including chiral symmetry breaking and restoration at non-zero temperature or baryon density. Unlike classical simulations, a quantum ...

  7. Colored, spinning classical particle in an external non-Abelian gauge field

    International Nuclear Information System (INIS)

    Arodz, H.

    1982-04-01

    Classical non-relativistic equations of motion are derived for a colored, spinning point-like particle in an external SU(2) gauge field from Dirac equation. It is found that in addition to the classical spin and color spin vectors, S, I, it is necessary to introduce a new classical dynamical variable [Jsup(ab)], a,b = 1,2,3, describing a mixing of the spin and color. The constraint relations between [Jsup(ab)], S, I are also found. (Auth.)

  8. Real non-abelian mixed hodge structures for quasi-projective varieties

    CERN Document Server

    Pridham, J P

    2016-01-01

    The author defines and constructs mixed Hodge structures on real schematic homotopy types of complex quasi-projective varieties, giving mixed Hodge structures on their homotopy groups and pro-algebraic fundamental groups. The author also shows that these split on tensoring with the ring \\mathbb{R}[x] equipped with the Hodge filtration given by powers of (x-i), giving new results even for simply connected varieties. The mixed Hodge structures can thus be recovered from the Gysin spectral sequence of cohomology groups of local systems, together with the monodromy action at the Archimedean place. As the basepoint varies, these structures all become real variations of mixed Hodge structure.

  9. On the elimination of infinitesimal Gribov ambiguities in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Pereira, Antonio D.; Sobreiro, Rodrigo F.

    2013-01-01

    An alternative method to account for the Gribov ambiguities in gauge theories is presented. It is shown that, to eliminate Gribov ambiguities, at infinitesimal level, it is required to break the BRST symmetry in a soft manner. This can be done by introducing a suitable extra constraint that eliminates the infinitesimal Gribov copies. It is shown that the present approach is consistent with the well established known cases in the literature, i.e., the Landau and maximal Abelian gauges. The method is valid for gauges depending exclusively on the gauge field and is restricted to classical level. However, occasionally, we deal with quantum aspects of the technique, which are used to improve the results. (orig.)

  10. Diagrammatical display of the counter-example to non-Abelian Bloch-Nordsieck conjecture

    International Nuclear Information System (INIS)

    Yoshida, Nobuo

    1981-01-01

    The reason why the Bloch-Nordsieck theorem breaks down in the Drell-Yan process is shown through a simple diagrammatical calculation. The uncancelled contribution is from the retarded soft gluons, and the colour weight different for each ''double cut diagram'' interrupts the cancellation analogous to QED. (author)

  11. Dynamics of particle production by strong electric fields in non-Abelian plasmas

    International Nuclear Information System (INIS)

    Dawson, John F.; Mihaila, Bogdan; Cooper, Fred

    2010-01-01

    We develop methods for computing the dynamics of fermion pair production by strong color electric fields including backreaction using the semiclassical Boltzmann-Vlasov (B-V) equation. We implement the Schwinger pair production by inserting a source term in the B-V equation which includes Pauli-Blocking effects. We present numerical results for a model with SU(2) symmetries in (1+1) Cartesian dimensions.

  12. A further pathology of the Coulomb gauge in non-Abelian Yang-Mills theories

    International Nuclear Information System (INIS)

    Ademollo, M.; Napolitano, E.; Sciuto, S.

    1978-01-01

    In the first part the vacuum structure of SU(2) Yang-Mills theories in the Coulomb gauge is discussed. It is proved that the only transverse pure gauge field Asub(μ)(x) = U -1 deltasub(μ)U with U(x) → (as r→infinity) const., is the trivial one Asub(μ)(x) equivalent to 0; the features of other possible vacua with U(x) → (as r→infinity) U(theta, pli) are studied. In the second part, regular Euclidean configurations that connect a vacuum state at x 4 = -infinity to another at x 4 = +infinity are discussed. It is proved, always working in the Coulomb gauge, that the perturbative vacuum Asub(μ)(x) equivalent to 0 cannot tunnel into any other one and that regular configurations with non-vanishing Pontryagin number q cannot affect such a vacuum. Moreover, strong arguments are given to show that many-instanton configurations (mod(q)>=2) cannot be expressed at all in the Coulomb gauge, that is by a regular field Asub(μ) satisfying the transversality condition deltasub(i)Asub(i) (x, x 4 ) = 0. (Auth.)

  13. Role of Lie algebra for confinement in non-abelian gauge field scheme

    International Nuclear Information System (INIS)

    Fukushima, K.; Sato, H.

    2014-01-01

    This article reports an explicit function form for confining classical Yang-Mills vector potentials and quantum fluctuations around the classical field. The classical vector potential, which is composed of a confining localized function and an unlocalized function, satisfies the classical Yang-Mills equation. The confining localized function contributes to the Wilson loop, while the unlocalized function makes no contribution to this loop. The confining linear potential between a heavy fermion and antifermion is due to (1) the Lie algebra and (2) the form of the confining localized function which has opposite signs at the positions of the particle and antiparticle along the Wilson loop in the time direction. Some classical confining parts of vector potentials also change sign on inversion of the coordinates of the axis perpendicular to the axis joining the two particles. The localized parts of the vector potentials are squeezed around the axis connecting the two particles, and the string tension of the confining linear potential is derived. Quantum fluctuations are formulated using a field expression in terms of local basis functions in real spacetime. The quantum path integral gives the Coulomb potential between the two particles in addition to the linear potential due to the classical fields

  14. Dynamical properties of the vacuum in non-Abelian field theories with and without supersymmetry

    International Nuclear Information System (INIS)

    Hata, H.; Kazama, Y.

    1984-01-01

    In QCD with massless quarks, the effective potential for the color singlet operator (Fsup(a)sub(μν)) 2 can be constructed by the use of the trace anomaly equation and tells us that magnetic gluon condensation, 2 vertical stroke0> > 0, occurs. When the method is applied to supersymmetric QCD, however, it gives us a puzzle; the gluons condense with negative energy density, and supersymmetry is broken in a pathological manner with the appearance of a negatively normed Nambu-Goldstone fermion. Spurred on by this observation, we examine in detail the properties of the vacuum for the super (and ordinary) O(N) non-linear sigma model in two dimensions for which a similar puzzling situation occurs with regard to the lagrangian condensate. We find, in particular, that (I) the chiral condensate plays a crucial role in resolving the puzzle and that (II) it is the nature of the response of the lagrangian condensate to the test charge, not the sign or the magnitude of the condensate itself, that determines, the phase of the system. Implications of these results for (super) QCD, including an unconventional possibility of 'electric' gluon condensation, are discussed. (orig.)

  15. Non-abelian gauge bosons in the compactified bosonic membrane theory

    International Nuclear Information System (INIS)

    Kubo, J.

    1988-01-01

    We consider the bosonic membrane compactified on a torus. The membrane motion is stabilized by a topologically non-trivial background. We find that, in the narrow membrane limit, the mass formula to O(ℎ) reduces to exactly the same form as that of the compactified closed bosonic string theory, and we obtain (almost) massless vector bosons in the adjoint representation of a simply laced Lie group in D=27. This is only dimension at which the graviton and gauge bosons may coexist in that background. (orig.)

  16. Non-abelian chiral anomalies and Wess-Zumino effective actions

    International Nuclear Information System (INIS)

    Petersen, J.L.

    1984-06-01

    An elementary account is given of the construction of anomalies and effective actions for Goldstone bosons, using the techniques of differential geometry. The emphasis is on simplicity of presentation, comparison of different renormalization schemes and the relationship to bosonization in the case of 2 dimensions. (Auth.)

  17. Adler's theorem in finite massless QED and possible extensions to non- Abelian gauge theories II

    CERN Document Server

    Bernstein, J

    1975-01-01

    For pt.I see ibid., vol.B95, p.461 (1975). The indefinite metric produced by the ghost fields in the Coulomb gauge in Yang-Mills theories is discussed. It is shown that the ghosts greatly complicate the job of proving, or disproving, an Adler theorem in this gauge. An old result of Schwinger (1962) for Coulomb gauge Yang-Mills theories is also found to be compromised by ghosts. (7 refs).

  18. Non-abelian factorisation for next-to-leading-power threshold logarithms

    NARCIS (Netherlands)

    Bonocore, D.; Laenen, E.; Magnea, L.; Vernazza, L.; White, C.D.

    2016-01-01

    Soft and collinear radiation is responsible for large corrections to many hadronic cross sections, near thresholds for the production of heavy final states. There is much interest in extending our understanding of this radiation to next-to-leading power (NLP) in the threshold expansion. In this

  19. SUSY non-Abelian gauge models: exact beta function from one loop of perturbation theory

    International Nuclear Information System (INIS)

    Shifman, M.A.; Vajnshtejn, A.I.; Zakharov, V.I.

    1985-01-01

    The method for calculating the exact β function (to all orders in the coupling constant) proposed earlier in supersymmetric electrodynamics is extended. The starting point is the observation that the low-energy effective action is exhausted by one loop provided that the theory is regularized supersymmetrically both in the ultraviolet and infrared domains in four dimensions. The Pouli-Villars method of the ultraviolet regularization is used. Two methods for the infrared regularization are considered. The first one - quantization in a box with a finite volume L 3 - is universally applicable to anygauge theory. The second method is based on the effective Higgs mechanism for mass generation and requires the presence of certain matter superfields in the lagrangian. Within this method the necessary condition is the existence of flat directions, so called valeys, along which the vacuum energy vanishes. The theory is quantized near epsilon non-vanishing value of the scalar field from the bottom of the valley. After calculating the one-loop effective action one and the same exact expression is obtained for the β function within the both approaches, and it also coincides with our earlier result extracted from instanton calculus. A few remarks on the problem of anomalies in SUSY gauge theories are presented

  20. Phase synchronization of non-Abelian oscillators on small-world networks

    International Nuclear Information System (INIS)

    Gu, Zhi-Ming; Zhao, Ming; Zhou, Tao; Zhu, Chen-Ping; Wang, Bing-Hong

    2007-01-01

    In this Letter, by extending the concept of Kuramoto oscillator to the left-invariant flow on general Lie group, we investigate the generalized phase synchronization on networks. The analyses and simulations of some typical dynamical systems on Watts-Strogatz networks are given, including the n-dimensional torus, the identity component of 3-dimensional general linear group, the special unitary group, and the special orthogonal group. In all cases, the greater disorder of networks will predict better synchronizability, and the small-world effect ensures the global synchronization for sufficiently large coupling strength. The collective synchronized behaviors of many dynamical systems, such as the integrable systems, the two-state quantum systems and the top systems, can be described by the present phase synchronization frame. In addition, it is intuitive that the low-dimensional systems are more easily to synchronize, however, to our surprise, we found that the high-dimensional systems display obviously synchronized behaviors in regular networks, while these phenomena cannot be observed in low-dimensional systems

  1. Lattice artifacts in the non-Abelian Debye screening mass in one-loop order

    International Nuclear Information System (INIS)

    Kaste, P.; Rothe, H.J.

    1997-01-01

    We compute the electric screening mass in lattice QCD with Wilson fermions at finite temperature and chemical potential to one-loop order, and show that lattice artifacts arising from a finite lattice spacing result in an enhancement of the screening mass as compared to the continuum. We discuss the magnitude of this enhancement as a function of the temperature and chemical potential for lattices with a different number of lattice sites in the temporal direction that can be implemented in lattice simulations. Most of the enhancement is found to be due to the fermion loop contribution. copyright 1997 The American Physical Society

  2. High-energy behaviour in a non-abelian gauge theory. Pt. 3

    International Nuclear Information System (INIS)

    Bartels, J.

    1991-07-01

    The high energy limit (Regge limit) of a spontaneously broken SU(2) gauge theory is studied beyond the leading-lns approximation. Calculations are based upon the analytic structure of scattering amplitudes in generalized Regge limits, and the resulting amplitudes satisfy reggeon unitarity in the t-channel as well as unitarity in the s-channel. The calculations lead to a systematic construction of a reggeon field theory. (orig.)

  3. Adler's theorem in finite massless QED and possible extensions to non-Abelian gauge theories. II

    International Nuclear Information System (INIS)

    Bernstein, J.

    1975-01-01

    The indefinite metric produced by the ghost fields in the Coulomb gauge in Yang-Mills theories is discussed. It is shown that the ghosts greatly complicate the job of proving, or disproving, an Adler theorem in this gauge. An old result of Schwinger for Coulomb gauge Yang-Mills theories is also found to be compromised by ghosts. (Auth.)

  4. Inert two-Higgs-doublet model strongly coupled to a non-Abelian vector resonance

    Science.gov (United States)

    Rojas-Abatte, Felipe; Mora, Maria Luisa; Urbina, Jose; Zerwekh, Alfonso R.

    2017-11-01

    We study the possibility of a dark matter candidate having its origin in an extended Higgs sector which, at least partially, is related to a new strongly interacting sector. More concretely, we consider an i2HDM (i.e., a Type-I two Higgs doublet model supplemented with a Z2 under which the nonstandard scalar doublet is odd) based on the gauge group S U (2 )1×S U (2 )2×U (1 )Y . We assume that one of the scalar doublets and the standard fermion transform nontrivially under S U (2 )1 while the second doublet transforms under S U (2 )2. Our main hypothesis is that standard sector is weakly coupled while the gauge interactions associated to the second group is characterized by a large coupling constant. We explore the consequences of this construction for the phenomenology of the dark matter candidate and we show that the presence of the new vector resonance reduces the relic density saturation region, compared to the usual i2DHM, in the high dark matter mass range. In the collider side, we argue that the mono-Z production is the channel which offers the best chances to manifest the presence of the new vector field. We study the departures from the usual i2HDM predictions and show that the discovery of the heavy vector at the LHC is challenging even in the mono-Z channel since the typical cross sections are of the order of 10-2 fb .

  5. Non-abelian bosonization in two-dimensional condensed matter physics

    International Nuclear Information System (INIS)

    Froehlich, J.; Kerler, T.; Marchetti, P.A.

    1992-01-01

    We derive mathematical identities proving that some systems of interacting, non-relativistic fermions of spin or 'isospin' S=1/2, 3/3, 5/2, ... confined to a plane (e.g. a heterojuncture) can be described in terms of a complex boson of spin or isospin S coupled to statistical U(1) and SU(2) gauge fields. In a Feynman path integral formulation, the U(1) gauge field has a Chern-Simons action with coupling constant k=2/(2l+1), l=0, 1, 2, ..., while the SU(2) gauge field has a Chern-Simons action with level 2S. Generalization to internal symmetry groups other than SU(2) are sketched, and applications of our formalism to an analysis of excitations with braid statistics in incompressible quantum fluids and of holons and spinons in the t-J model are discussed. (orig.)

  6. Non-abelian operations on majorana fermions via single-charge control

    DEFF Research Database (Denmark)

    Flensberg, Karsten

    2011-01-01

    similar to braiding, though not in real space. Unlike braiding operations, rotations by a continuum of angles are possible, while still being partially robust against perturbations. The quantum dots can also be used for readout of the state of the Majorana system via a charge measurement....

  7. Point-splitting analysis of commutator anomalies in non-abelian chiral gauge theories

    International Nuclear Information System (INIS)

    Ghosh, S.; Banerjee, R.

    1988-01-01

    A gauge covariant point-splitting regularisation is employed to calculate different anomalous commutators in four dimensional chiral gauge theories. For an external gauge field the fixed time anomalous commutator of the gauge group generators is seen to violate the Jacobi identity. The cohomological prediction can be confirmed provided the electric fields do not commute. Other commutators like the current-current and current-electric field are consistent with the Bjorken-Johnson-Low (BJL) derivation. (orig.)

  8. Stable isotopes labelled compounds

    International Nuclear Information System (INIS)

    1982-09-01

    The catalogue on stable isotopes labelled compounds offers deuterium, nitrogen-15, and multiply labelled compounds. It includes: (1) conditions of sale and delivery, (2) the application of stable isotopes, (3) technical information, (4) product specifications, and (5) the complete delivery programme

  9. Evolutionary Stable Strategy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 9. Evolutionary Stable Strategy: Application of Nash Equilibrium in Biology. General Article Volume 21 Issue 9 September 2016 pp 803- ... Keywords. Evolutionary game theory, evolutionary stable state, conflict, cooperation, biological games.

  10. Stable Boundary Layer Issues

    NARCIS (Netherlands)

    Steeneveld, G.J.

    2012-01-01

    Understanding and prediction of the stable atmospheric boundary layer is a challenging task. Many physical processes are relevant in the stable boundary layer, i.e. turbulence, radiation, land surface coupling, orographic turbulent and gravity wave drag, and land surface heterogeneity. The

  11. Normal modified stable processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    Gaussian (NGIG) laws. The wider framework thus established provides, in particular, for added flexibility in the modelling of the dynamics of financial time series, of importance especially as regards OU based stochastic volatility models for equities. In the special case of the tempered stable OU process......This paper discusses two classes of distributions, and stochastic processes derived from them: modified stable (MS) laws and normal modified stable (NMS) laws. This extends corresponding results for the generalised inverse Gaussian (GIG) and generalised hyperbolic (GH) or normal generalised inverse...

  12. Applications of stable isotopes

    International Nuclear Information System (INIS)

    Letolle, R.; Mariotti, A.; Bariac, T.

    1991-06-01

    This report reviews the historical background and the properties of stable isotopes, the methods used for their measurement (mass spectrometry and others), the present technics for isotope enrichment and separation, and at last the various present and foreseeable application (in nuclear energy, physical and chemical research, materials industry and research; tracing in industrial, medical and agronomical tests; the use of natural isotope variations for environmental studies, agronomy, natural resources appraising: water, minerals, energy). Some new possibilities in the use of stable isotope are offered. A last chapter gives the present state and forecast development of stable isotope uses in France and Europe

  13. Analysing Stable Time Series

    National Research Council Canada - National Science Library

    Adler, Robert

    1997-01-01

    We describe how to take a stable, ARMA, time series through the various stages of model identification, parameter estimation, and diagnostic checking, and accompany the discussion with a goodly number...

  14. Uses of stable isotopes

    International Nuclear Information System (INIS)

    Axente, Damian

    1998-01-01

    The most important fields of stable isotope use with examples are presented. These are: 1. Isotope dilution analysis: trace analysis, measurements of volumes and masses; 2. Stable isotopes as tracers: transport phenomena, environmental studies, agricultural research, authentication of products and objects, archaeometry, studies of reaction mechanisms, structure and function determination of complex biological entities, studies of metabolism, breath test for diagnostic; 3. Isotope equilibrium effects: measurement of equilibrium effects, investigation of equilibrium conditions, mechanism of drug action, study of natural processes, water cycle, temperature measurements; 4. Stable isotope for advanced nuclear reactors: uranium nitride with 15 N as nuclear fuel, 157 Gd for reactor control. In spite of some difficulties of stable isotope use, particularly related to the analytical techniques, which are slow and expensive, the number of papers reporting on this subject is steadily growing as well as the number of scientific meetings organized by International Isotope Section and IAEA, Gordon Conferences, and regional meeting in Germany, France, etc. Stable isotope application development on large scale is determined by improving their production technologies as well as those of labeled compound and the analytical techniques. (author)

  15. Calcium stable isotope geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gausonne, Nikolaus [Muenster Univ. (Germany). Inst. fuer Mineralogie; Schmitt, Anne-Desiree [Strasbourg Univ. (France). LHyGeS/EOST; Heuser, Alexander [Bonn Univ. (Germany). Steinmann-Inst. fuer Geologie, Mineralogie und Palaeontologie; Wombacher, Frank [Koeln Univ. (Germany). Inst. fuer Geologie und Mineralogie; Dietzel, Martin [Technische Univ. Graz (Austria). Inst. fuer Angewandte Geowissenschaften; Tipper, Edward [Cambridge Univ. (United Kingdom). Dept. of Earth Sciences; Schiller, Martin [Copenhagen Univ. (Denmark). Natural History Museum of Denmark

    2016-08-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  16. Calcium stable isotope geochemistry

    International Nuclear Information System (INIS)

    Gausonne, Nikolaus; Schmitt, Anne-Desiree; Heuser, Alexander; Wombacher, Frank; Dietzel, Martin; Tipper, Edward; Schiller, Martin

    2016-01-01

    This book provides an overview of the fundamentals and reference values for Ca stable isotope research, as well as current analytical methodologies including detailed instructions for sample preparation and isotope analysis. As such, it introduces readers to the different fields of application, including low-temperature mineral precipitation and biomineralisation, Earth surface processes and global cycling, high-temperature processes and cosmochemistry, and lastly human studies and biomedical applications. The current state of the art in these major areas is discussed, and open questions and possible future directions are identified. In terms of its depth and coverage, the current work extends and complements the previous reviews of Ca stable isotope geochemistry, addressing the needs of graduate students and advanced researchers who want to familiarize themselves with Ca stable isotope research.

  17. Stable isotope studies

    International Nuclear Information System (INIS)

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs

  18. Interactive Stable Ray Tracing

    DEFF Research Database (Denmark)

    Dal Corso, Alessandro; Salvi, Marco; Kolb, Craig

    2017-01-01

    Interactive ray tracing applications running on commodity hardware can suffer from objectionable temporal artifacts due to a low sample count. We introduce stable ray tracing, a technique that improves temporal stability without the over-blurring and ghosting artifacts typical of temporal post-pr...

  19. The Stable Concordance Genus

    OpenAIRE

    Kearney, M. Kate

    2013-01-01

    The concordance genus of a knot is the least genus of any knot in its concordance class. Although difficult to compute, it is a useful invariant that highlights the distinction between the three-genus and four-genus. In this paper we define and discuss the stable concordance genus of a knot, which describes the behavior of the concordance genus under connected sum.

  20. Stable radiographic scanning agents

    International Nuclear Information System (INIS)

    1976-01-01

    Stable compositions which are useful in the preparation of Technetium-99m-based scintigraphic agents are discussed. They are comprised of ascorbic acid or a pharmaceutically acceptable salt or ester thereof in combination with a pertechnetate reducing agent or dissolved in oxidized pertechnetate-99m (sup(99m)TcO 4 - ) solution

  1. Some stable hydromagnetic equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J L; Oberman, C R; Kulsrud, R M; Frieman, E A [Project Matterhorn, Princeton University, Princeton, NJ (United States)

    1958-07-01

    We have been able to find and investigate the properties of equilibria which are hydromagnetically stable. These equilibria can be obtained, for example, by wrapping conductors helically around the stellarator tube. Systems with I = 3 or 4 are indicated to be optimum for stability purposes. In some cases an admixture of I = 2 fields can be advantageous for achieving equilibrium. (author)

  2. Stable isotope analysis

    International Nuclear Information System (INIS)

    Tibari, Elghali; Taous, Fouad; Marah, Hamid

    2014-01-01

    This report presents results related to stable isotopes analysis carried out at the CNESTEN DASTE in Rabat (Morocco), on behalf of Senegal. These analyzes cover 127 samples. These results demonstrate that Oxygen-18 and Deuterium in water analysis were performed by infrared Laser spectroscopy using a LGR / DLT-100 with Autosampler. Also, the results are expressed in δ values (‰) relative to V-SMOW to ± 0.3 ‰ for oxygen-18 and ± 1 ‰ for deuterium.

  3. Forensic Stable Isotope Biogeochemistry

    Science.gov (United States)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  4. Theory of stable allocations

    Directory of Open Access Journals (Sweden)

    Pantelić Svetlana

    2014-01-01

    Full Text Available The Swedish Royal Academy awarded the 2012 Nobel Prize in Economics to Lloyd Shapley and Alvin Roth, for the theory of stable allocations and the practice of market design. These two American researchers worked independently from each other, combining basic theory and empirical investigations. Through their experiments and practical design they generated a flourishing field of research and improved the performance of many markets. Born in 1923 in Cambridge, Massachusetts, Shapley defended his doctoral thesis at Princeton University in 1953. For many years he worked at RAND, and for more than thirty years he was a professor at UCLA University. He published numerous scientific papers, either by himself or in cooperation with other economists.

  5. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  6. One-dimensional stable distributions

    CERN Document Server

    Zolotarev, V M

    1986-01-01

    This is the first book specifically devoted to a systematic exposition of the essential facts known about the properties of stable distributions. In addition to its main focus on the analytic properties of stable laws, the book also includes examples of the occurrence of stable distributions in applied problems and a chapter on the problem of statistical estimation of the parameters determining stable laws. A valuable feature of the book is the author's use of several formally different ways of expressing characteristic functions corresponding to these laws.

  7. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1980-12-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for non-destructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Materials Research Collection and does not designate whether a sample is out on loan or in reprocessing

  8. Stable configurations in social networks

    Science.gov (United States)

    Bronski, Jared C.; DeVille, Lee; Ferguson, Timothy; Livesay, Michael

    2018-06-01

    We present and analyze a model of opinion formation on an arbitrary network whose dynamics comes from a global energy function. We study the global and local minimizers of this energy, which we call stable opinion configurations, and describe the global minimizers under certain assumptions on the friendship graph. We show a surprising result that the number of stable configurations is not necessarily monotone in the strength of connection in the social network, i.e. the model sometimes supports more stable configurations when the interpersonal connections are made stronger.

  9. Development of Stable Isotope Technology

    International Nuclear Information System (INIS)

    Jeong, Do Young; Kim, Cheol Jung; Han, Jae Min

    2009-03-01

    KAERI has obtained an advanced technology with singular originality for laser stable isotope separation. Objectives for this project are to get production technology of Tl-203 stable isotope used for medical application and are to establish the foundation of the pilot system, while we are taking aim at 'Laser Isotope Separation Technology to make resistance to the nuclear proliferation'. And we will contribute to ensuring a nuclear transparency in the world society by taking part in a practical group of NSG and being collaboration with various international groups related to stable isotope separation technology

  10. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    Science.gov (United States)

    Jurco, B.; Schraml, S.; Schupp, P.; Wess, J.

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces.

  11. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    International Nuclear Information System (INIS)

    Jurco, B.; Schraml, S.; Wess, J.; Schupp, P.

    2000-01-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces. (orig.)

  12. Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [Max-Planck-Institut fuer Mathematik, Bonn (Germany); Schraml, S.; Wess, J. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany); Schupp, P. [Sektion Physik, Universitaet Muenchen, Theresienstrasse 37, 80333 Muenchen (Germany)

    2000-11-01

    An enveloping algebra-valued gauge field is constructed, its components are functions of the Lie algebra-valued gauge field and can be constructed with the Seiberg-Witten map. This allows the formulation of a dynamics for a finite number of gauge field components on non-commutative spaces. (orig.)

  13. Topologically protected gates for quantum computation with non-Abelian anyons in the Pfaffian quantum Hall state

    Science.gov (United States)

    Georgiev, Lachezar S.

    2006-12-01

    We extend the topological quantum computation scheme using the Pfaffian quantum Hall state, which has been recently proposed by Das Sarma , in a way that might potentially allow for the topologically protected construction of a universal set of quantum gates. We construct, for the first time, a topologically protected controlled-NOT gate, which is entirely based on quasihole braidings of Pfaffian qubits. All single-qubit gates, except for the π/8 gate, are also explicitly implemented by quasihole braidings. Instead of the π/8 gate we try to construct a topologically protected Toffoli gate, in terms of the controlled-phase gate and CNOT or by a braid-group-based controlled-controlled- Z precursor. We also give a topologically protected realization of the Bravyi-Kitaev two-qubit gate g3 .

  14. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1984-03-01

    This report contains a listing of electromagnetically separated stable isotopes which are available at the Oak Ridge National Laboratory for distribution for nondestructive research use on a loan basis. This inventory includes all samples of stable isotopes in the Research Materials Collection and does not designate whether a sample is out on loan or is in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  15. French days on stable isotopes

    International Nuclear Information System (INIS)

    2000-01-01

    These first French days on stable isotopes took place in parallel with the 1. French days of environmental chemistry. Both conferences had common plenary sessions. The conference covers all aspects of the use of stable isotopes in the following domains: medicine, biology, environment, tracer techniques, agronomy, food industry, geology, petroleum geochemistry, cosmo-geochemistry, archaeology, bio-geochemistry, hydrology, climatology, nuclear and particle physics, astrophysics, isotope separations etc.. Abstracts available on CD-Rom only. (J.S.)

  16. Stable isotope research pool inventory

    International Nuclear Information System (INIS)

    1982-01-01

    This report contains a listing of electromagnetically separated stable isotopes which are available for distribution within the United States for nondestructive research use from the Oak Ridge National Laboratory on a loan basis. This inventory includes all samples of stable isotopes in the Material Research Collection and does not designate whether a sample is out on loan or in reprocessing. For some of the high abundance naturally occurring isotopes, larger amounts can be made available; for example, Ca-40 and Fe-56

  17. Pharmaceuticals labelled with stable isotopes

    International Nuclear Information System (INIS)

    Krumbiegel, P.

    1986-11-01

    The relatively new field of pharmaceuticals labelled with stable isotopes is reviewed. Scientific, juridical, and ethical questions are discussed concerning the application of these pharmaceuticals in human medicine. 13 C, 15 N, and 2 H are the stable isotopes mainly utilized in metabolic function tests. Methodical contributions are given to the application of 2 H, 13 C, and 15 N pharmaceuticals showing new aspects and different states of development in the field under discussion. (author)

  18. [Current Treatment of Stable Angina].

    Science.gov (United States)

    Toggweiler, Stefan; Jamshidi, Peiman; Cuculi, Florim

    2015-06-17

    Current therapy for stable angina includes surgical and percutaneous revascularization, which has been improved tremendously over the last decades. Smoking cessation and regular exercise are the cornerstone for prevention of further cerebrovascular events. Medical treatment includes treatment of cardiovascular risk factors and antithrombotic management, which can be a challenge in some patients. Owing to the fact the coronary revascularization is readily accessible these days in many industrialized countries, the importance of antianginal therapy has decreased over the past years. This article presents a contemporary overview of the management of patients with stable angina in the year 2015.

  19. Possibility of stable quark stars

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.

    1976-08-01

    A recent zero temperature equation of state which contains quark-partons separated from conventional baryons by a phase transition is used to investigate the stability of quark stars. The sensitivity to the input physics is also considered. The conclusions, which are found to be relatively model independent, indicate that a separately identifiable class of stable objects called quark stars does not exist

  20. Radiation-stable polyolefin compositions

    International Nuclear Information System (INIS)

    Rekers, J.W.

    1986-01-01

    This invention relates to compositions of olefinic polymers suitable for high energy radiation treatment. In particular, the invention relates to olefinic polymer compositions that are stable to sterilizing dosages of high energy radiation such as a gamma radiation. Stabilizers are described that include benzhydrol and benzhydrol derivatives; these stabilizers may be used alone or in combination with secondary antioxidants or synergists