WorldWideScience

Sample records for noiseless kilohertz-frame-rate imaging

  1. Frequency-locked pulse sequencer for high-frame-rate monochromatic tissue motion imaging.

    Science.gov (United States)

    Azar, Reza Zahiri; Baghani, Ali; Salcudean, Septimiu E; Rohling, Robert

    2011-04-01

    To overcome the inherent low frame rate of conventional ultrasound, we have previously presented a system that can be implemented on conventional ultrasound scanners for high-frame-rate imaging of monochromatic tissue motion. The system employs a sector subdivision technique in the sequencer to increase the acquisition rate. To eliminate the delays introduced during data acquisition, a motion phase correction algorithm has also been introduced to create in-phase displacement images. Previous experimental results from tissue- mimicking phantoms showed that the system can achieve effective frame rates of up to a few kilohertz on conventional ultrasound systems. In this short communication, we present a new pulse sequencing strategy that facilitates high-frame-rate imaging of monochromatic motion such that the acquired echo signals are inherently in-phase. The sequencer uses the knowledge of the excitation frequency to synchronize the acquisition of the entire imaging plane to that of an external exciter. This sequencing approach eliminates any need for synchronization or phase correction and has applications in tissue elastography, which we demonstrate with tissue-mimicking phantoms. © 2011 IEEE

  2. Imaging of vaporised sub-micron phase change contrast agents with high frame rate ultrasound and optics

    Science.gov (United States)

    Lin, Shengtao; Zhang, Ge; Jamburidze, Akaki; Chee, Melisse; Hau Leow, Chee; Garbin, Valeria; Tang, Meng-Xing

    2018-03-01

    Phase-change ultrasound contrast agent (PCCA), or nanodroplet, shows promise as an alternative to the conventional microbubble agent over a wide range of diagnostic applications. Meanwhile, high-frame-rate (HFR) ultrasound imaging with microbubbles enables unprecedented temporal resolution compared to traditional contrast-enhanced ultrasound imaging. The combination of HFR ultrasound imaging and PCCAs can offer the opportunity to observe and better understand PCCA behaviour after vaporisation captures the fast phenomenon at a high temporal resolution. In this study, we utilised HFR ultrasound at frame rates in the kilohertz range (5-20 kHz) to image native and size-selected PCCA populations immediately after vaporisation in vitro within clinical acoustic parameters. The size-selected PCCAs through filtration are shown to preserve a sub-micron-sized (mean diameter  1 µm) that originate from native PCCA emulsion. The results demonstrate imaging signals with different amplitudes and temporal features compared to that of microbubbles. Compared with the microbubbles, both the B-mode and pulse-inversion (PI) signals from the vaporised PCCA populations were reduced significantly in the first tens of milliseconds, while only the B-mode signals from the PCCAs were recovered during the next 400 ms, suggesting significant changes to the size distribution of the PCCAs after vaporisation. It is also shown that such recovery in signal over time is not evident when using size-selective PCCAs. Furthermore, it was found that signals from the vaporised PCCA populations are affected by the amplitude and frame rate of the HFR ultrasound imaging. Using high-speed optical camera observation (30 kHz), we observed a change in particle size in the vaporised PCCA populations exposed to the HFR ultrasound imaging pulses. These findings can further the understanding of PCCA behaviour under HFR ultrasound imaging.

  3. Noiseless imaging detector for adaptive optics with kHz frame rates

    CERN Document Server

    Vallerga, J V; Mikulec, Bettina; Tremsin, A; Clark, Allan G; Siegmund, O H W; CERN. Geneva

    2004-01-01

    A new hybrid optical detector is described that has many of the attributes desired for the next generation AO wavefront sensors. The detector consists of a proximity focused MCP read out by four multi-pixel application specific integrated circuit (ASIC) chips developed at CERN (â€ワMedipix2”) with individual pixels that amplify, discriminate and count input events. The detector has 512 x 512 pixels, zero readout noise (photon counting) and can be read out at 1 kHz frame rates. The Medipix2 readout chips can be electronically shuttered down to a temporal window of a few microseconds with an accuracy of 10 nanoseconds. When used in a Shack-Hartman style wavefront sensor, it should be able to centroid approximately 5000 spots using 7 x 7 pixel sub-apertures resulting in very linear, off-null error correction terms. The quantum efficiency depends on the optical photocathode chosen for the bandpass of interest. A three year development effort for this detector technology has just been funded as part of the...

  4. MCP detector read out with a bare quad Timepix at kilohertz frame rates

    International Nuclear Information System (INIS)

    Vallerga, J; Tremsin, A; McPhate, J; Siegmund, O; Raffanti, R

    2011-01-01

    The existing Berkeley neutron sensitive MCP/Timepix hybrid detector has been very successful at demonstrating energy resolved spatial imaging with a single Timepix ASIC read out at a ∼ 30 Hz frame rate where each neutron's position and time (energy) is determined (X,Y,E). By increasing the detector format using a quad arrangement of Timepix readouts and increasing the frame rate to 1 kHz, we can increase our total event throughput by a factor of 120, thereby taking full advantage of the high fluxes of modern pulsed neutron sources (10 6 n cm -2 s -1 ). The key to this conversion is a new design for the ASIC readout, called the Berkeley Quad Timepix detector, consisting of 3 major subsystems. The first is a quad (2 x 2) bare Timepix ASIC board mounted directly behind the neutron sensitive MCPs in a hermetic vacuum enclosure with a sapphire window. The data from the Timepix ASICs flow to the second subsystem called the Interface board whose field programmable gate array (FPGA) rearranges and converts the digital bit stream to LVDS logic levels before sending downstream to the third subsystem, the Roach board. The Roach board is also FPGA based, and takes the data from all the ASICs and analyses the frames to extract information on the input events to pass on to the host PC. This paper describes in detail the hardware and firmware designs to accomplish this task.

  5. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  6. Increased Frame Rate for Plane Wave Imaging Without Loss of Image Quality

    DEFF Research Database (Denmark)

    Jensen, Jonas; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2015-01-01

    Clinical applications of plane wave imaging necessitate the creation of high-quality images with the highest possible frame rate for improved blood flow tracking and anatomical imaging. However, linear array transducers create grating lobe artefacts, which degrade the image quality especially...... in the near field for λ-pitch transducers. Artefacts can only partly be suppressed by increasing the number of emissions, and this paper demonstrates how the frame rate can be increased without loss of image quality by using λ/2-pitch transducers. The number of emissions and steering angles are optimized...

  7. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-06-15

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  8. The impact of cine EPID image acquisition frame rate on markerless soft-tissue tracking

    International Nuclear Information System (INIS)

    Yip, Stephen; Rottmann, Joerg; Berbeco, Ross

    2014-01-01

    Purpose: Although reduction of the cine electronic portal imaging device (EPID) acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor autotracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87 Hz with an amorphous silicon portal imager (AS1000, Varian Medical Systems, Palo Alto, CA). The maximum frame rate of 12.87 Hz is imposed by the EPID. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for autotracking. The difference between the programmed and autotracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at 11 field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise are correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the autotracking errors increased at frame rates lower than 4.29 Hz. Above 4.29 Hz, changes in errors were negligible withδ < 1.60 mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R = 0.94) and patient studies (R = 0.72). Moderate to poor correlation was found between image noise and tracking error with R −0.58 and −0.19 for both studies, respectively. Conclusions: Cine EPID

  9. Fluoroscopic dose reduction by acquisition frame rate reduction and image processing

    International Nuclear Information System (INIS)

    Fritz, S.L.; Mirvis, S.E.; Pals, S.O.

    1986-01-01

    A new design for fluoroscopic exposure reduction incorporates pulsed x-ray exposure, progressive scan video acquisition at frame rates below 30 Hz, interlaced video display at 30 Hz, and a video rate image processing. To evaluate this design, a variety of phantom systems have been developed to measure the impact of low frame rate pulsed digital fluoroscopy on the performance of several clinical tasks (e.g., catheter placement). The authors are currently using these phantoms with a digital fluoroscopy system using continuous x-ray, interlaced video acquisition and variable acquisition frame rate. The design of their target digital fluoroscopic system, sample image sequences, and the results of some preliminary phantom studies are reported

  10. Cheetah: A high frame rate, high resolution SWIR image camera

    Science.gov (United States)

    Neys, Joel; Bentell, Jonas; O'Grady, Matt; Vermeiren, Jan; Colin, Thierry; Hooylaerts, Peter; Grietens, Bob

    2008-10-01

    A high resolution, high frame rate InGaAs based image sensor and associated camera has been developed. The sensor and the camera are capable of recording and delivering more than 1700 full 640x512pixel frames per second. The FPA utilizes a low lag CTIA current integrator in each pixel, enabling integration times shorter than one microsecond. On-chip logics allows for four different sub windows to be read out simultaneously at even higher rates. The spectral sensitivity of the FPA is situated in the SWIR range [0.9-1.7 μm] and can be further extended into the Visible and NIR range. The Cheetah camera has max 16 GB of on-board memory to store the acquired images and transfer the data over a Gigabit Ethernet connection to the PC. The camera is also equipped with a full CameralinkTM interface to directly stream the data to a frame grabber or dedicated image processing unit. The Cheetah camera is completely under software control.

  11. Compact Beamformer Design with High Frame Rate for Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Jun Luo

    2014-04-01

    Full Text Available In medical field, two-dimension ultrasound images are widely used in clinical diagnosis. Beamformer is critical in determining the complexity and performance of an ultrasound imaging system. Different from traditional means implemented with separated chips, a compact beamformer with 64 effective channels in a single moderate Field Programmable Gate Array has been presented in this paper. The compactness is acquired by employing receive synthetic aperture, harmonic imaging, time sharing and linear interpolation. Besides that, multi-beams method is used to improve the frame rate of the ultrasound imaging system. Online dynamic configuration is employed to expand system’s flexibility to two kinds of transducers with multi-scanning modes. The design is verified on a prototype scanner board. Simulation results have shown that on-chip memories can be saved and the frame rate can be improved on the case of 64 effective channels which will meet the requirement of real-time application.

  12. High Frame Rate Synthetic Aperture 3D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Holbek, Simon; Stuart, Matthias Bo

    2016-01-01

    , current volumetric ultrasonic flow methods are limited to one velocity component or restricted to a reduced field of view (FOV), e.g. fixed imaging planes, in exchange for higher temporal resolutions. To solve these problems, a previously proposed accurate 2-D high frame rate vector flow imaging (VFI...

  13. In-Vivo Synthetic Aperture and Plane Wave High Frame Rate Cardiac Imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Jensen, Jonas; Brandt, Andreas Hjelm

    2014-01-01

    A comparison of synthetic aperture imaging using spherical and plane waves with low number of emission events is presented. For both wave types, a 90 degree sector is insonified using 15 emission events giving a frame rate of 200 frames per second. Field II simulations of point targets show simil.......43 for spherical and 0.70 for plane waves. All measures are well within FDA limits for cardiac imaging. In-vivo images of the heart of a healthy 28-year old volunteer are shown....

  14. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    Energy Technology Data Exchange (ETDEWEB)

    Yip, S; Rottmann, J; Berbeco, R [Brigham and Women' s Hospital, Boston, MA (United States)

    2014-06-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  15. SU-E-J-112: The Impact of Cine EPID Image Acquisition Frame Rate On Markerless Soft-Tissue Tracking

    International Nuclear Information System (INIS)

    Yip, S; Rottmann, J; Berbeco, R

    2014-01-01

    Purpose: Although reduction of the cine EPID acquisition frame rate through multiple frame averaging may reduce hardware memory burden and decrease image noise, it can hinder the continuity of soft-tissue motion leading to poor auto-tracking results. The impact of motion blurring and image noise on the tracking performance was investigated. Methods: Phantom and patient images were acquired at a frame rate of 12.87Hz on an AS1000 portal imager. Low frame rate images were obtained by continuous frame averaging. A previously validated tracking algorithm was employed for auto-tracking. The difference between the programmed and auto-tracked positions of a Las Vegas phantom moving in the superior-inferior direction defined the tracking error (δ). Motion blurring was assessed by measuring the area change of the circle with the greatest depth. Additionally, lung tumors on 1747 frames acquired at eleven field angles from four radiotherapy patients are manually and automatically tracked with varying frame averaging. δ was defined by the position difference of the two tracking methods. Image noise was defined as the standard deviation of the background intensity. Motion blurring and image noise were correlated with δ using Pearson correlation coefficient (R). Results: For both phantom and patient studies, the auto-tracking errors increased at frame rates lower than 4.29Hz. Above 4.29Hz, changes in errors were negligible with δ<1.60mm. Motion blurring and image noise were observed to increase and decrease with frame averaging, respectively. Motion blurring and tracking errors were significantly correlated for the phantom (R=0.94) and patient studies (R=0.72). Moderate to poor correlation was found between image noise and tracking error with R -0.58 and -0.19 for both studies, respectively. Conclusion: An image acquisition frame rate of at least 4.29Hz is recommended for cine EPID tracking. Motion blurring in images with frame rates below 4.39Hz can substantially reduce the

  16. Novel driver method to improve ordinary CCD frame rate for high-speed imaging diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Tong-Ding, E-mail: snuohui@126.com; Li, Bin-Kang; Yang, Shao-Hua; Guo, Ming-An; Yan, Ming

    2016-06-21

    The use of ordinary Charge-coupled-Device (CCD) imagers for the analysis of fast physical phenomenon is restricted because of the low-speed performance resulting from their long output times. Even though the form of Intensified-CCD (ICCD), coupled with a gated image intensifier, has extended their use for high speed imaging, the deficiency remains to be solved that ICDD could record only one image in a single shot. This paper presents a novel driver method designed to significantly improve the ordinary interline CCD burst frame rate for high-speed photography. This method is based on the use of vertical registers as storage, so that a small number of additional frames comprised of reduced-spatial-resolution images obtained via a specific sampling operation can be buffered. Hence, the interval time of the received series of images is related to the exposure and vertical transfer times only and, thus, the burst frame rate can be increased significantly. A prototype camera based on this method is designed as part of this study, exhibiting a burst rate of up to 250,000 frames per second (fps) and a capacity to record three continuous images. This device exhibits a speed enhancement of approximately 16,000 times compared with the conventional speed, with a spatial resolution reduction of only 1/4.

  17. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Bechsgaard, Thor

    2016-01-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis vie...

  18. High-frame-rate digital radiographic videography

    Science.gov (United States)

    King, Nicholas S. P.; Cverna, Frank H.; Albright, Kevin L.; Jaramillo, Steven A.; Yates, George J.; McDonald, Thomas E.; Flynn, Michael J.; Tashman, Scott

    1994-10-01

    High speed x-ray imaging can be an important tool for observing internal processes in a wide range of applications. In this paper we describe preliminary implementation of a system having the eventual goal of observing the internal dynamics of bone and joint reactions during loading. Two Los Alamos National Laboratory (LANL) gated and image intensified camera systems were used to record images from an x-ray image convertor tube to demonstrate the potential of high frame-rate digital radiographic videography in the analysis of bone and joint dynamics of the human body. Preliminary experiments were done at LANL to test the systems. Initial high frame-rate imaging (from 500 to 1000 frames/s) of a swinging pendulum mounted to the face of an X-ray image convertor tube demonstrated high contrast response and baseline sensitivity. The systems were then evaluated at the Motion Analysis Laboratory of Henry Ford Health Systems Bone and Joint Center. Imaging of a 9 inch acrylic disk with embedded lead markers rotating at approximately 1000 RPM, demonstrated the system response to a high velocity/high contrast target. By gating the P-20 phosphor image from the X-ray image convertor with a second image intensifier (II) and using a 100 microsecond wide optical gate through the second II, enough prompt light decay from the x-ray image convertor phosphor had taken place to achieve reduction of most of the motion blurring. Measurement of the marker velocity was made by using video frames acquired at 500 frames/s. The data obtained from both experiments successfully demonstrated the feasibility of the technique. Several key areas for improvement are discussed along with salient test results and experiment details.

  19. Improving the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states using a noiseless amplifier

    International Nuclear Information System (INIS)

    Wang, Tianyi; Yu, Song; Zhang, Yi-Chen; Gu, Wanyi; Guo, Hong

    2014-01-01

    By employing a nondeterministic noiseless linear amplifier, we propose to increase the maximum transmission distance of continuous-variable quantum key distribution with noisy coherent states. With the covariance matrix transformation, the expression of secret key rate under reverse reconciliation is derived against collective entangling cloner attacks. We show that the noiseless linear amplifier can compensate the detrimental effect of the preparation noise with an enhancement of the maximum transmission distance and the noise resistance. - Highlights: • Noiseless amplifier is applied in noisy coherent state quantum key distribution. • Negative effect of preparation noise is compensated by noiseless amplification. • Maximum transmission distance and noise resistance are both enhanced

  20. Monolithic array of 32 SPAD pixels for single-photon imaging at high frame rates

    International Nuclear Information System (INIS)

    Tisa, Simone; Guerrieri, Fabrizio; Zappa, Franco

    2009-01-01

    We present a single-chip monolithic array of 32 Single-Photon Avalanche Diodes (SPAD) and associated electronics for imaging at high frame rates and high sensitivity. Photodetectors, front-end circuitry and control electronics used to manage the array are monolithically integrated on the same chip in a standard 0.35 μm CMOS high-voltage technology. The array is composed of 32 'smart' pixels working in photon counting mode and functioning in a parallel fashion. Every cell comprises of an integrated SPAD photodetector, a novel quenching circuit named as Variable Load Quenching Circuit (VLQC), counting electronics and a buffer memory. Proper ancillary electronics that perform the arbitration of photon counts between two consecutive frames is integrated as well. Thanks to the presence of in-pixel memory registers, the inter-frame dead time between subsequent frames is limited to few nanoseconds. Since integration and download are performed simultaneously and the array can be addressed like a standard digital memory, the achievable maximum frame rate is very high in the order of hundreds of thousands of frame/s.

  1. Multiresolution Motion Estimation for Low-Rate Video Frame Interpolation

    Directory of Open Access Journals (Sweden)

    Hezerul Abdul Karim

    2004-09-01

    Full Text Available Interpolation of video frames with the purpose of increasing the frame rate requires the estimation of motion in the image so as to interpolate pixels along the path of the objects. In this paper, the specific challenges of low-rate video frame interpolation are illustrated by choosing one well-performing algorithm for high-frame-rate interpolation (Castango 1996 and applying it to low frame rates. The degradation of performance is illustrated by comparing the original algorithm, the algorithm adapted to low frame rate, and simple averaging. To overcome the particular challenges of low-frame-rate interpolation, two algorithms based on multiresolution motion estimation are developed and compared on objective and subjective basis and shown to provide an elegant solution to the specific challenges of low-frame-rate video interpolation.

  2. High frame rate synthetic aperture vector flow imaging for transthoracic echocardiography

    Science.gov (United States)

    Villagómez-Hoyos, Carlos A.; Stuart, Matthias B.; Bechsgaard, Thor; Nielsen, Michael Bachmann; Jensen, Jørgen Arendt

    2016-04-01

    This work presents the first in vivo results of 2-D high frame rate vector velocity imaging for transthoracic cardiac imaging. Measurements are made on a healthy volunteer using the SARUS experimental ultrasound scanner connected to an intercostal phased-array probe. Two parasternal long-axis view (PLAX) are obtained, one centred at the aortic valve and another centred at the left ventricle. The acquisition sequence was composed of 3 diverging waves for high frame rate synthetic aperture flow imaging. For verification a phantom measurement is performed on a transverse straight 5 mm diameter vessel at a depth of 100 mm in a tissue-mimicking phantom. A flow pump produced a 2 ml/s constant flow with a peak velocity of 0.2 m/s. The average estimated flow angle in the ROI was 86.22° +/- 6.66° with a true flow angle of 90°. A relative velocity bias of -39% with a standard deviation of 13% was found. In-vivo acquisitions show complex flow patterns in the heart. In the aortic valve view, blood is seen exiting the left ventricle cavity through the aortic valve into the aorta during the systolic phase of the cardiac cycle. In the left ventricle view, blood flow is seen entering the left ventricle cavity through the mitral valve and splitting in two ways when approximating the left ventricle wall. The work presents 2-D velocity estimates on the heart from a non-invasive transthoracic scan. The ability of the method detecting flow regardless of the beam angle could potentially reveal a more complete view of the flow patterns presented on the heart.

  3. Frame Rate and Human Vision

    Science.gov (United States)

    Watson, Andrew B.

    2012-01-01

    To enhance the quality of the theatre experience, the film industry is interested in achieving higher frame rates for capture and display. In this talk I will describe the basic spatio-temporal sensitivities of human vision, and how they respond to the time sequence of static images that is fundamental to cinematic presentation.

  4. High-frame-rate Imaging of a Carotid Bifurcation using a Low-complexity Velocity Estimation Approach

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Villagómez Hoyos, Carlos Armando; Ewertsen, Caroline

    2017-01-01

    In this paper, a 2-D vector flow imaging (VFI) method developed by combining synthetic aperture sequential beamforming and directional transverse oscillation is used to image a carotid bifurcation. Ninety-six beamformed lines are sent from the probe to the host system for each VFI frame, enabling...... the possibility of wireless transmission. The velocity is estimated using a relatively inexpensive 2-D phase-shift approach, and real-time performance can be achieved in mobile devices. However, high-frame-rate velocities can be obtained by sending the data to a cluster of computers. The objective of this study...... is to demonstrate the scalability of the method’s performance according to the needs of the user and the processing capabilities of the host system. In vivo measurements of a carotid bifurcation of a 54-year-old volunteer were conducted using a linear array transducer connected to the SARUS scanner. The velocities...

  5. Noiseless Linear Amplifiers in Entanglement-Based Continuous-Variable Quantum Key Distribution

    Directory of Open Access Journals (Sweden)

    Yichen Zhang

    2015-06-01

    Full Text Available We propose a method to improve the performance of two entanglement-based continuous-variable quantum key distribution protocols using noiseless linear amplifiers. The two entanglement-based schemes consist of an entanglement distribution protocol with an untrusted source and an entanglement swapping protocol with an untrusted relay. Simulation results show that the noiseless linear amplifiers can improve the performance of these two protocols, in terms of maximal transmission distances, when we consider small amounts of entanglement, as typical in realistic setups.

  6. Application of high-frame-rate neutron radiography to fluid measurement

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Hibiki, Takashi

    1997-01-01

    To apply Neutron radiography (NR) technique to multiphase flow research, high frame-rate NR was developed by assembling up-to-date technologies for neutron source, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and no need for triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at the recording speeds of 250, 500 and 1000 frames/s. The qualities of those consecutive images were good enough to observe the flow pattern and behavior. It was demonstrated also that some characteristics of two-phase flow could be measured from those images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, rising velocity of bubbles, and wave height and interfacial area in annular flow could be obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction could be performed. For this purpose, a quantification method, i.e. Σ-scaling method, was proposed based upon the consideration on the effect of scattered neutrons. This method was tested against known void profiles and compared with existing measurement methods and a correlation for void fraction. It was confirmed that this new technique has significant advantages both in visualizing and measuring high-speed fluid phenomena. (J.P.N.)

  7. Low-Frequency Pulsed Current Versus Kilohertz-Frequency Alternating Current: A Scoping Literature Review.

    Science.gov (United States)

    Vaz, Marco Aurélio; Frasson, Viviane Bortoluzzi

    2018-04-01

    To compare the effectiveness of low-frequency pulsed current versus kilohertz-frequency alternating current in terms of evoked force, discomfort level, current intensity, and muscle fatigability; to discuss the physiological mechanisms of each neuromuscular electrical stimulation type; and to determine if kilohertz-frequency alternating current is better than low-frequency pulsed current for clinical treatment. Articles were obtained from PubMed, Scopus, Cochrane Central Register of Controlled Trials, CINAHL, MEDLINE, and SPORTSDiscus databases using the terms Russian current or kilohertz current or alternating current or pulsed current or Aussie current and torque or discomfort or fatigue or current intensity, and through citation tracking up to July 2017. Two independent reviewers selected studies comparing the use of the 2 neuromuscular electrical stimulation currents. Studies describing maximal current intensity tolerated and the main effects of the 2 different current types on discomfort, muscle force, and fatigability were independently reviewed. Data were systematized according to (1) methodology; (2) electrical current characteristics; and (3) outcomes on discomfort level, evoked force, current intensity, and muscle fatigability. The search revealed 15 articles comparing the 2 current types. Kilohertz-frequency alternated current generated equal or less force, similar discomfort, similar current intensity for maximal tolerated neuromuscular electrical stimulation, and more fatigue compared with low-frequency pulsed current. Similar submaximal levels of evoked force revealed higher discomfort and current intensity for kilohertz-frequency alternated current compared with low-frequency pulsed current. Available evidence does not support the idea that kilohertz-frequency alternated current is better than low-frequency pulsed current for strength training and rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier

  8. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    Science.gov (United States)

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  9. High Frame-Rate Blood Vector Velocity Imaging Using Plane Waves: Simulations and Preliminary Experiments

    DEFF Research Database (Denmark)

    Udesen, Jesper; Gran, Fredrik; Hansen, Kristoffer Lindskov

    2008-01-01

    ) The ultrasound is not focused during the transmissions of the ultrasound signals; 2) A 13-bit Barker code is transmitted simultaneously from each transducer element; and 3) The 2-D vector velocity of the blood is estimated using 2-D cross-correlation. A parameter study was performed using the Field II program......, and performance of the method was investigated when a virtual blood vessel was scanned by a linear array transducer. An improved parameter set for the method was identified from the parameter study, and a flow rig measurement was performed using the same improved setup as in the simulations. Finally, the common...... carotid artery of a healthy male was scanned with a scan sequence that satisfies the limits set by the Food and Drug Administration. Vector velocity images were obtained with a frame-rate of 100 Hz where 40 speckle images are used for each vector velocity image. It was found that the blood flow...

  10. Heralded noiseless amplification for single-photon entangled state with polarization feature

    Science.gov (United States)

    Wang, Dan-Dan; Jin, Yu-Yu; Qin, Sheng-Xian; Zu, Hao; Zhou, Lan; Zhong, Wei; Sheng, Yu-Bo

    2018-03-01

    Heralded noiseless amplification is a promising method to overcome the transmission photon loss in practical noisy quantum channel and can effectively lengthen the quantum communication distance. Single-photon entanglement is an important resource in current quantum communications. Here, we construct two single-photon-assisted heralded noiseless amplification protocols for the single-photon two-mode entangled state and single-photon three-mode W state, respectively, where the single-photon qubit has an arbitrary unknown polarization feature. After the amplification, the fidelity of the single-photon entangled state can be increased, while the polarization feature of the single-photon qubit can be well remained. Both the two protocols only require the linear optical elements, so that they can be realized under current experimental condition. Our protocols may be useful in current and future quantum information processing.

  11. Quantum Illumination with Noiseless Linear Amplifier

    International Nuclear Information System (INIS)

    Zhang Sheng-Li; Wang -Kun; Guo Jian-Sheng; Shi Jian-Hong

    2015-01-01

    Quantum illumination, that is, quantum target detection, is to detect the potential target with two-mode quantum entangled state. For a given transmitted energy, the quantum illumination can achieve a target-detection probability of error much lower than the illumination scheme without entanglement. We investigate the usefulness of noiseless linear amplification (NLA) for quantum illumination. Our result shows that NLA can help to substantially reduce the number of quantum entangled states collected for joint measurement of multi-copy quantum state. Our analysis on the NLA-assisted scheme could help to develop more efficient schemes for quantum illumination. (paper)

  12. Noiseless Steganography The Key to Covert Communications

    CERN Document Server

    Desoky, Abdelrahman

    2012-01-01

    Among the features that make Noiseless Steganography: The Key to Covert Communications a first of its kind: The first to comprehensively cover Linguistic Steganography The first to comprehensively cover Graph Steganography The first to comprehensively cover Game Steganography Although the goal of steganography is to prevent adversaries from suspecting the existence of covert communications, most books on the subject present outdated steganography approaches that are detectable by human and/or machine examinations. These approaches often fail because they camouflage data as a detectable noise b

  13. Design of large-format X-ray framing image tube

    International Nuclear Information System (INIS)

    Zong Fangke; Yang Qinlao; Gu Li; Li Xiang; Zhang Jingjin

    2012-01-01

    An implementation method of large-format framing image tube is proposed. An electrostatic focusing image tube with large input photocathode and small output image is designed. Coupling with common small-format microchannel plate (MCP) gated framing unit, image gating and enhancement can be realized. Compared to the tube with large-format MCP, this kind of framing tube avoids the high manufacturing cost of lager-format MCP and overcomes the transmission voltage loss and gain uniformity caused by long micro strips. The framing image tube has an effective input working diameter of 100 mm, an output image diameter of 40 mm, and a magnification of 0.4. The centre spatial resolution is 14.4 lp/mm, the marginal spatial resolution is 11.2 lp/mm, and the the geometric distortion is less than 15%. The framing characteristics is determined by the MCP framing unit. This method is an effective way for expanding the work area of framing image tubes. (authors)

  14. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    International Nuclear Information System (INIS)

    Poulsen, Per Rugaard; Jonassen, Johnny; Jensen, Carsten; Schmidt, Mai Lykkegaard

    2015-01-01

    Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used for real-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without simultaneous radiation of the phantom with a 6 MV beam delivered perpendicular to the kV beam with 300 and 600 monitor units per minute (MU/min). An in-house built device triggered readout of zero, one, or multiple unexposed frames between the kV exposures. The unexposed frames contained part of the MV scatter, consequently reducing the amount of MV scatter accumulated in the exposed frames. The image quality with and without unexposed frame readout was quantified as the contrast-to-noise ratio (CNR) of the gold marker and air cavity for a range of imaging frequencies from 1 to 15 Hz. To gain more insight into the observed CNR changes, the image lag of the kV imager was measured and used as input in a simple model that describes the CNR with unexposed frame readout in terms of the contrast, kV noise, and MV noise measured without readout of unexposed frames. Results: Without readout of unexposed kV frames, the quality of intratreatment kV images decreased dramatically with reduced kV frequencies due to MV scatter. The gold marker was only visible for imaging frequencies ≥3 Hz at 300 MU/min and ≥5 Hz for 600 MU/min. Visibility of the air cavity required even higher imaging frequencies. Readout of multiple unexposed frames ensured visibility of both structures at all imaging frequencies and a CNR that was independent of the kV frame rate. The image lag was 12.2%, 2

  15. Very high frame rate volumetric integration of depth images on mobile devices.

    Science.gov (United States)

    Kähler, Olaf; Adrian Prisacariu, Victor; Yuheng Ren, Carl; Sun, Xin; Torr, Philip; Murray, David

    2015-11-01

    Volumetric methods provide efficient, flexible and simple ways of integrating multiple depth images into a full 3D model. They provide dense and photorealistic 3D reconstructions, and parallelised implementations on GPUs achieve real-time performance on modern graphics hardware. To run such methods on mobile devices, providing users with freedom of movement and instantaneous reconstruction feedback, remains challenging however. In this paper we present a range of modifications to existing volumetric integration methods based on voxel block hashing, considerably improving their performance and making them applicable to tablet computer applications. We present (i) optimisations for the basic data structure, and its allocation and integration; (ii) a highly optimised raycasting pipeline; and (iii) extensions to the camera tracker to incorporate IMU data. In total, our system thus achieves frame rates up 47 Hz on a Nvidia Shield Tablet and 910 Hz on a Nvidia GTX Titan XGPU, or even beyond 1.1 kHz without visualisation.

  16. High-frame-rate imaging of biological samples with optoacoustic micro-tomography

    Science.gov (United States)

    Deán-Ben, X. Luís.; López-Schier, Hernán.; Razansky, Daniel

    2018-02-01

    Optical microscopy remains a major workhorse in biological discovery despite the fact that light scattering limits its applicability to depths of ˜ 1 mm in scattering tissues. Optoacoustic imaging has been shown to overcome this barrier by resolving optical absorption with microscopic resolution in significantly deeper regions. Yet, the time domain is paramount for the observation of biological dynamics in living systems that exhibit fast motion. Commonly, acquisition of microscopy data involves raster scanning across the imaged volume, which significantly limits temporal resolution in 3D. To overcome these limitations, we have devised a fast optoacoustic micro-tomography (OMT) approach based on simultaneous acquisition of 3D image data with a high-density hemispherical ultrasound array having effective detection bandwidth around 25 MHz. We performed experiments by imaging tissue-mimicking phantoms and zebrafish larvae, demonstrating that OMT can provide nearly cellular resolution and imaging speed of 100 volumetric frames per second. As opposed to other optical microscopy techniques, OMT is a hybrid method that resolves optical absorption contrast acoustically using unfocused light excitation. Thus, no penetration barriers are imposed by light scattering in deep tissues, suggesting it as a powerful approach for multi-scale functional and molecular imaging applications.

  17. High-frame rate imaging of two-phase flow in a thin rectangular channel using fast neutrons.

    Science.gov (United States)

    Zboray, R; Mor, I; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2014-08-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 ms exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and mean bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Low energy electron microscopy imaging using Medipix2 detector

    International Nuclear Information System (INIS)

    Sikharulidze, I.; Gastel, R. van; Schramm, S.; Abrahams, J.P.; Poelsema, B.; Tromp, R.M.; Molen, S.J. van der

    2011-01-01

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  19. Low energy electron microscopy imaging using Medipix2 detector

    Energy Technology Data Exchange (ETDEWEB)

    Sikharulidze, I., E-mail: irakli@chem.leidenuniv.nl [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Gastel, R. van [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Schramm, S. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); Abrahams, J.P. [Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300RA Leiden (Netherlands); Poelsema, B. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Tromp, R.M. [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands); IBM Research Division, T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598 (United States); Molen, S.J. van der [Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300RA Leiden (Netherlands)

    2011-05-15

    Low Energy Electron Microscopy (LEEM) and Photo-Emission Electron Microscopy (PEEM) predominantly use a combination of microchannel plate (MCP), phosphor screen and optical camera to record images formed by 10-20 keV electrons. We have tested the performance of a LEEM/PEEM instrument with a Medipix2 hybrid pixel detector using an Ir(1 1 1) sample with graphene flakes grown on its surface. We find that Medipix2 offers a number of advantages over the MCP. The adjustable threshold settings allow Medipix2 to operate as a noiseless detector, offering an improved signal-to-noise ratio for the same amount of signal compared to the MCP. At the same magnification Medipix2 images exhibit superior resolution and can handle significantly higher electron current densities than an MCP, offering the prospect of substantially higher frame rates in LEEM imaging. These factors make Medipix2 an excellent candidate to become the detector of choice for LEEM/PEEM applications.

  20. Near-noiseless amplification of light by a phase-sensitive fibre ...

    Indian Academy of Sciences (India)

    PRAMANA c Indian Academy of Sciences. Vol. 56, Nos 2 & 3. — journal of. Feb. & Mar. 2001 physics pp. 281–285. Near-noiseless amplification of light by a phase- ... optic lines, is a type of linear phase-insensitive amplifier (PIA) [1,2]. .... isation controllers at each port are adjusted to equally excite both axes of the PM fibre.

  1. Development of high-frame rate neutron radiography and quantitative measurement method for multiphase flow research

    International Nuclear Information System (INIS)

    Mishima, K.; Hibiki, T.

    1998-01-01

    Neutron radiography (NR) is one of the radiographic techniques which makes use of the difference in attenuation characteristics of neutrons in materials. Fluid measurement using the NR technique is a non-intrusive method which enables visualization of dynamic images of multiphase flow of opaque fluids and/or in a metallic duct. To apply the NR technique to multiphase flow research, high frame-rate NR was developed by combining up-to-date technologies for neutron sources, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and there is no need for a triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at recording speeds of 250, 500 and 1000 frames/s. The qualities of the consequent images were sufficient to observe the flow pattern and behavior. It was also demonstrated that some characteristics of two-phase flow could be measured from these images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, bubble rise velocity, and wave height and interfacial area in annular flow were obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction were performed. It was confirmed that this new technique may have significant advantages both in visualizing and measuring high-speed fluid phenomena when other methods, such as an optical method and X-ray radiography, cannot be applied. (author)

  2. CASA-Mot technology: how results are affected by the frame rate and counting chamber.

    Science.gov (United States)

    Bompart, Daznia; García-Molina, Almudena; Valverde, Anthony; Caldeira, Carina; Yániz, Jesús; Núñez de Murga, Manuel; Soler, Carles

    2018-04-04

    For over 30 years, CASA-Mot technology has been used for kinematic analysis of sperm motility in different mammalian species, but insufficient attention has been paid to the technical limitations of commercial computer-aided sperm analysis (CASA) systems. Counting chamber type and frame rate are two of the most important aspects to be taken into account. Counting chambers can be disposable or reusable, with different depths. In human semen analysis, reusable chambers with a depth of 10µm are the most frequently used, whereas for most farm animal species it is more common to use disposable chambers with a depth of 20µm . The frame rate was previously limited by the hardware, although changes in the number of images collected could lead to significant variations in some kinematic parameters, mainly in curvilinear velocity (VCL). A frame rate of 60 frames s-1 is widely considered to be the minimum necessary for satisfactory results. However, the frame rate is species specific and must be defined in each experimental condition. In conclusion, we show that the optimal combination of frame rate and counting chamber type and depth should be defined for each species and experimental condition in order to obtain reliable results.

  3. Accurate Angle Estimator for High-Frame-rate 2-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Lindskov Hansen, Kristoffer

    2016-01-01

    This paper presents a novel approach for estimating 2-D flow angles using a high-frame-rate ultrasound method. The angle estimator features high accuracy and low standard deviation (SD) over the full 360° range. The method is validated on Field II simulations and phantom measurements using...

  4. High frame rate imaging based photometry

    DEFF Research Database (Denmark)

    Harpsøe, Kennet Bomann West; Jørgensen, U. G.; Andersen, M. I.

    2012-01-01

    in extremely crowded fields significantly by alleviating crowding. Alleviating crowding is a prerequisite for observing gravitational microlensing in main sequence stars towards the galactic bulge. However, the photometric stability of this device has not been assessed. The EMCCD has sources of noise not found...... in conventional CCDs, and new methods for handling these must be developed. We aim to investigate how the normal photometric reduction steps from conventional CCDs should be adjusted to be applicable to EMCCD data. One complication is that a bias frame cannot be obtained conventionally, as the output from...

  5. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals.

    Science.gov (United States)

    Pelot, N A; Behrend, C E; Grill, W M

    2017-08-01

    There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics' vBloc ® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed 're-excitation', arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle

  6. Four-frame gated optical imager with 120-ps resolution

    International Nuclear Information System (INIS)

    Young, P.E.; Hares, J.D.; Kilkenny, J.D.; Phillion, D.W.; Campbell, E.M.

    1988-04-01

    In this paper we describe the operation and applications of a framing camera capable of four separate two-dimensional images with each frame having a 120-ps gate width. Fast gating of a single frame is accomplished by using a wafer image intensifier tube in which the cathode is capacitively coupled to an external electrode placed outside of the photocathode of the tube. This electrode is then pulsed relative to the microchannel plate by a narrow (120 ps), high-voltage pulse. Multiple frames are obtained by using multiple gated tubes which share a single bias supply and pulser with relative gate times selected by the cable lengths between the tubes and the pulser. A beamsplitter system has been constructed which produces a separate image for each tube from a single scene. Applications of the framing camera to inertial confinement fusion experiments are discussed

  7. Direct current contamination of kilohertz frequency alternating current waveforms.

    Science.gov (United States)

    Franke, Manfred; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-07-30

    Kilohertz frequency alternating current (KHFAC) waveforms are being evaluated in a variety of physiological settings because of their potential to modulate neural activity uniquely when compared to frequencies in the sub-kilohertz range. However, the use of waveforms in this frequency range presents some unique challenges regarding the generator output. In this study we explored the possibility of undesirable contamination of the KHFAC waveforms by direct current (DC). We evaluated current- and voltage-controlled KHFAC waveform generators in configurations that included a capacitive coupling between generator and electrode, a resistive coupling and combinations of capacitive with inductive coupling. Our results demonstrate that both voltage- and current-controlled signal generators can unintentionally add DC-contamination to a KHFAC signal, and that capacitive coupling is not always sufficient to eliminate this contamination. We furthermore demonstrated that high value inductors, placed in parallel with the electrode, can be effective in eliminating DC-contamination irrespective of the type of stimulator, reducing the DC contamination to less than 1 μA. This study highlights the importance of carefully designing the electronic setup used in KHFAC studies and suggests specific testing that should be performed and reported in all studies that assess the neural response to KHFAC waveforms. Published by Elsevier B.V.

  8. Improved frame-based estimation of head motion in PET brain imaging

    International Nuclear Information System (INIS)

    Mukherjee, J. M.; Lindsay, C.; King, M. A.; Licho, R.; Mukherjee, A.; Olivier, P.; Shao, L.

    2016-01-01

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  9. Improved frame-based estimation of head motion in PET brain imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, J. M., E-mail: joyeeta.mitra@umassmed.edu; Lindsay, C.; King, M. A.; Licho, R. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Mukherjee, A. [Aware, Inc., Bedford, Massachusetts 01730 (United States); Olivier, P. [Philips Medical Systems, Cleveland, Ohio 44143 (United States); Shao, L. [ViewRay, Oakwood Village, Ohio 44146 (United States)

    2016-05-15

    Purpose: Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. Methods: The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. Results: The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is

  10. Photon counting arrays for AO wavefront sensors

    CERN Document Server

    Vallerga, J; McPhate, J; Mikulec, Bettina; Clark, Allan G; Siegmund, O; CERN. Geneva

    2005-01-01

    Future wavefront sensors for AO on large telescopes will require a large number of pixels and must operate at high frame rates. Unfortunately for CCDs, there is a readout noise penalty for operating faster, and this noise can add up rather quickly when considering the number of pixels required for the extended shape of a sodium laser guide star observed with a large telescope. Imaging photon counting detectors have zero readout noise and many pixels, but have suffered in the past with low QE at the longer wavelengths (>500 nm). Recent developments in GaAs photocathode technology, CMOS ASIC readouts and FPGA processing electronics have resulted in noiseless WFS detector designs that are competitive with silicon array detectors, though at ~40% the QE of CCDs. We review noiseless array detectors and compare their centroiding performance with CCDs using the best available characteristics of each. We show that for sub-aperture binning of 6x6 and greater that noiseless detectors have a smaller centroid error at flu...

  11. Optical flow estimation on image sequences with differently exposed frames

    Science.gov (United States)

    Bengtsson, Tomas; McKelvey, Tomas; Lindström, Konstantin

    2015-09-01

    Optical flow (OF) methods are used to estimate dense motion information between consecutive frames in image sequences. In addition to the specific OF estimation method itself, the quality of the input image sequence is of crucial importance to the quality of the resulting flow estimates. For instance, lack of texture in image frames caused by saturation of the camera sensor during exposure can significantly deteriorate the performance. An approach to avoid this negative effect is to use different camera settings when capturing the individual frames. We provide a framework for OF estimation on such sequences that contain differently exposed frames. Information from multiple frames are combined into a total cost functional such that the lack of an active data term for saturated image areas is avoided. Experimental results demonstrate that using alternate camera settings to capture the full dynamic range of an underlying scene can clearly improve the quality of flow estimates. When saturation of image data is significant, the proposed methods show superior performance in terms of lower endpoint errors of the flow vectors compared to a set of baseline methods. Furthermore, we provide some qualitative examples of how and when our method should be used.

  12. Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals

    Science.gov (United States)

    Pelot, N. A.; Behrend, C. E.; Grill, W. M.

    2017-08-01

    Objective. There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics’ vBloc® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. Approach. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. Main results. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed ‘re-excitation’, arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Significance. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our

  13. Laryngeal High-Speed Videoendoscopy: Sensitivity of Objective Parameters towards Recording Frame Rate

    Directory of Open Access Journals (Sweden)

    Anne Schützenberger

    2016-01-01

    Full Text Available The current use of laryngeal high-speed videoendoscopy in clinic settings involves subjective visual assessment of vocal fold vibratory characteristics. However, objective quantification of vocal fold vibrations for evidence-based diagnosis and therapy is desired, and objective parameters assessing laryngeal dynamics have therefore been suggested. This study investigated the sensitivity of the objective parameters and their dependence on recording frame rate. A total of 300 endoscopic high-speed videos with recording frame rates between 1000 and 15 000 fps were analyzed for a vocally healthy female subject during sustained phonation. Twenty parameters, representing laryngeal dynamics, were computed. Four different parameter characteristics were found: parameters showing no change with increasing frame rate; parameters changing up to a certain frame rate, but then remaining constant; parameters remaining constant within a particular range of recording frame rates; and parameters changing with nearly every frame rate. The results suggest that (1 parameter values are influenced by recording frame rates and different parameters have varying sensitivities to recording frame rate; (2 normative values should be determined based on recording frame rates; and (3 the typically used recording frame rate of 4000 fps seems to be too low to distinguish accurately certain characteristics of the human phonation process in detail.

  14. Optimized and secure technique for multiplexing QR code images of single characters: application to noiseless messages retrieval

    International Nuclear Information System (INIS)

    Trejos, Sorayda; Barrera, John Fredy; Torroba, Roberto

    2015-01-01

    We present for the first time an optical encrypting–decrypting protocol for recovering messages without speckle noise. This is a digital holographic technique using a 2f scheme to process QR codes entries. In the procedure, letters used to compose eventual messages are individually converted into a QR code, and then each QR code is divided into portions. Through a holographic technique, we store each processed portion. After filtering and repositioning, we add all processed data to create a single pack, thus simplifying the handling and recovery of multiple QR code images, representing the first multiplexing procedure applied to processed QR codes. All QR codes are recovered in a single step and in the same plane, showing neither cross-talk nor noise problems as in other methods. Experiments have been conducted using an interferometric configuration and comparisons between unprocessed and recovered QR codes have been performed, showing differences between them due to the involved processing. Recovered QR codes can be successfully scanned, thanks to their noise tolerance. Finally, the appropriate sequence in the scanning of the recovered QR codes brings a noiseless retrieved message. Additionally, to procure maximum security, the multiplexed pack could be multiplied by a digital diffuser as to encrypt it. The encrypted pack is easily decoded by multiplying the multiplexing with the complex conjugate of the diffuser. As it is a digital operation, no noise is added. Therefore, this technique is threefold robust, involving multiplexing, encryption, and the need of a sequence to retrieve the outcome. (paper)

  15. Optimized and secure technique for multiplexing QR code images of single characters: application to noiseless messages retrieval

    Science.gov (United States)

    Trejos, Sorayda; Fredy Barrera, John; Torroba, Roberto

    2015-08-01

    We present for the first time an optical encrypting-decrypting protocol for recovering messages without speckle noise. This is a digital holographic technique using a 2f scheme to process QR codes entries. In the procedure, letters used to compose eventual messages are individually converted into a QR code, and then each QR code is divided into portions. Through a holographic technique, we store each processed portion. After filtering and repositioning, we add all processed data to create a single pack, thus simplifying the handling and recovery of multiple QR code images, representing the first multiplexing procedure applied to processed QR codes. All QR codes are recovered in a single step and in the same plane, showing neither cross-talk nor noise problems as in other methods. Experiments have been conducted using an interferometric configuration and comparisons between unprocessed and recovered QR codes have been performed, showing differences between them due to the involved processing. Recovered QR codes can be successfully scanned, thanks to their noise tolerance. Finally, the appropriate sequence in the scanning of the recovered QR codes brings a noiseless retrieved message. Additionally, to procure maximum security, the multiplexed pack could be multiplied by a digital diffuser as to encrypt it. The encrypted pack is easily decoded by multiplying the multiplexing with the complex conjugate of the diffuser. As it is a digital operation, no noise is added. Therefore, this technique is threefold robust, involving multiplexing, encryption, and the need of a sequence to retrieve the outcome.

  16. Video-rate optical flow corrected intraoperative functional fluorescence imaging

    NARCIS (Netherlands)

    Koch, Maximilian; Glatz, Juergen; Ermolayev, Vladimir; de Vries, Elisabeth G. E.; van Dam, Gooitzen M.; Englmeier, Karl-Hans; Ntziachristos, Vasilis

    Intraoperative fluorescence molecular imaging based on targeted fluorescence agents is an emerging approach to improve surgical and endoscopic imaging and guidance. Short exposure times per frame and implementation at video rates are necessary to provide continuous feedback to the physician and

  17. Comparison of 16-frame and 8-frame gated SPET imaging for determination of left ventricular volumes and ejection fraction

    International Nuclear Information System (INIS)

    Navare, Sachin M.; Liu, Yi-Hwa; Wackers, Frans J.T.

    2003-01-01

    Electrocardiographic (ECG) gated single-photon emission tomography (SPET) allows for simultaneous assessment of myocardial perfusion and left ventricular (LV) function. Presently 8-frame per cardiac cycle ECG gating of SPET images is standard. The aim of this study was to compare the effect of 8-frame and 16-frame gated SPET on measurements of LV volumes and to evaluate the effects of the presence of myocardial perfusion defects and of radiotracer dose administered on the calculation of LV volumes. A total of 86 patients underwent technetium-99m SPET myocardial perfusion imaging using 16-frame per cardiac cycle acquisition. Eight-frame gated SPET images were generated by summation of contiguous frames. Left ventricular end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) were calculated from the 16-frame and 8-frame data sets. The patients were divided into groups according to the administered dose of the radiotracer and the size of the perfusion defect. Results. Sixteen frame per cardiac cycle acquisition resulted in significantly larger EDV (122±72 ml vs 115±68 ml, P<0.0001), smaller ESV (64±58.6 ml vs 67.6±59.5 ml, P<0.0001), and higher LVEF (55.3%±18% vs 49%±17.4%, P<0.0001) as compared to 8-frame SPET imaging. This effect was seen regardless of whether a high or a low dose was administered and whether or not significant perfusion defects were present. This study shows that EDV, ESV and LVEF determined by 16-frame gated SPET are significantly different from those determined by 8-frame gated SPET. The radiotracer dose and perfusion defects do not affect estimation of LV parameters by 16-frame gated SPET. (orig.)

  18. Joint variable frame rate and length analysis for speech recognition under adverse conditions

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Kraljevski, Ivan

    2014-01-01

    This paper presents a method that combines variable frame length and rate analysis for speech recognition in noisy environments, together with an investigation of the effect of different frame lengths on speech recognition performance. The method adopts frame selection using an a posteriori signal......-to-noise (SNR) ratio weighted energy distance and increases the length of the selected frames, according to the number of non-selected preceding frames. It assigns a higher frame rate and a normal frame length to a rapidly changing and high SNR region of a speech signal, and a lower frame rate and an increased...... frame length to a steady or low SNR region. The speech recognition results show that the proposed variable frame rate and length method outperforms fixed frame rate and length analysis, as well as standalone variable frame rate analysis in terms of noise-robustness....

  19. Video-rate or high-precision: a flexible range imaging camera

    Science.gov (United States)

    Dorrington, Adrian A.; Cree, Michael J.; Carnegie, Dale A.; Payne, Andrew D.; Conroy, Richard M.; Godbaz, John P.; Jongenelen, Adrian P. P.

    2008-02-01

    A range imaging camera produces an output similar to a digital photograph, but every pixel in the image contains distance information as well as intensity. This is useful for measuring the shape, size and location of objects in a scene, hence is well suited to certain machine vision applications. Previously we demonstrated a heterodyne range imaging system operating in a relatively high resolution (512-by-512) pixels and high precision (0.4 mm best case) configuration, but with a slow measurement rate (one every 10 s). Although this high precision range imaging is useful for some applications, the low acquisition speed is limiting in many situations. The system's frame rate and length of acquisition is fully configurable in software, which means the measurement rate can be increased by compromising precision and image resolution. In this paper we demonstrate the flexibility of our range imaging system by showing examples of high precision ranging at slow acquisition speeds and video-rate ranging with reduced ranging precision and image resolution. We also show that the heterodyne approach and the use of more than four samples per beat cycle provides better linearity than the traditional homodyne quadrature detection approach. Finally, we comment on practical issues of frame rate and beat signal frequency selection.

  20. High-speed three-frame image recording system using colored flash units and low-cost video equipment

    Science.gov (United States)

    Racca, Roberto G.; Scotten, Larry N.

    1995-05-01

    This article describes a method that allows the digital recording of sequences of three black and white images at rates of several thousand frames per second using a system consisting of an ordinary CCD camcorder, three flash units with color filters, a PC-based frame grabber board and some additional electronics. The maximum framing rate is determined by the duration of the flashtube emission, and for common photographic flash units lasting about 20 microsecond(s) it can exceed 10,000 frames per second in actual use. The subject under study is strobe- illuminated using a red, a green and a blue flash unit controlled by a special sequencer, and the three images are captured by a color CCD camera on a single video field. Color is used as the distinguishing parameter that allows the overlaid exposures to be resolved. The video output for that particular field will contain three individual scenes, one for each primary color component, which potentially can be resolved with no crosstalk between them. The output is electronically decoded into the primary color channels, frame grabbed and stored into digital memory, yielding three time-resolved images of the subject. A synchronization pulse provided by the flash sequencer triggers the frame grabbing so that the correct video field is acquired. A scheme involving the use of videotape as intermediate storage allows the frame grabbing to be performed using a monochrome video digitizer. Ideally each flash- illuminated scene would be confined to one color channel, but in practice various factors, both optical and electronic, affect color separation. Correction equations have been derived that counteract these effects in the digitized images and minimize 'ghosting' between frames. Once the appropriate coefficients have been established through a calibration procedure that needs to be performed only once for a given configuration of the equipment, the correction process is carried out transparently in software every time a

  1. Effect of a television digital noise reduction device on fluoroscopic image quality and dose rate

    International Nuclear Information System (INIS)

    Jaffe, C.C.; Orphanoudakis, S.C.; Ablow, R.C.

    1982-01-01

    In conventional fluoroscopy, the current, and therefore the dose rate, is usually determined by the level at which the radiologist visualizes a just tolerable amount of photon ''mottle'' on the video monitor. In this study, digital processing of the analogue video image reduced noise and generated a television image at half the usual exposure rate. The technique uses frame delay to compare an incoming frame with the preceding output frame. A first-order recursive filter implemented under a motion-detection scheme operates on the image of a point-by-point basis. This effective motion detection algorithm permits noise suppression without creating noticeable lag in moving structures. Eight radiologists evaluated images of vesicoureteral reflux in the pig for noise, contrast, resolution, and general image quality on a five-point preferential scale. They rated the digitally processed fluoroscopy images equivalent in diagnostic value to unprocessed images

  2. Effects of the frame acquisition rate on the sensitivity of gastro-oesophageal reflux scintigraphy

    Science.gov (United States)

    Codreanu, I; Chamroonrat, W; Edwards, K

    2013-01-01

    Objective: To compare the sensitivity of gastro-oesophageal reflux (GOR) scintigraphy at 5-s and 60-s frame acquisition rates. Methods: GOR scintigraphy of 50 subjects (1 month–20 years old, mean 42 months) were analysed concurrently using 5-s and 60-s acquisition frames. Reflux episodes were graded as low if activity was detected in the distal half of the oesophagus and high if activity was detected in its upper half or in the oral cavity. For comparison purposes, detected GOR in any number of 5-s frames corresponding to one 60-s frame was counted as one episode. Results: A total of 679 episodes of GOR to the upper oesophagus were counted using a 5-s acquisition technique. Only 183 of such episodes were detected on 60-s acquisition images. To the lower oesophagus, a total of 1749 GOR episodes were detected using a 5-s acquisition technique and only 1045 episodes using 60-s acquisition frames (these also included the high-level GOR on 5-s frames counted as low level on 60-s acquisition frames). 10 patients had high-level GOR episodes that were detected only using a 5-s acquisition technique, leading to a different diagnosis in these patients. No correlation between the number of reflux episodes and the gastric emptying rates was noted. Conclusion: The 5-s frame acquisition technique is more sensitive than the 60-s frame acquisition technique for detecting both high- and low-level GOR. Advances in knowledge: Brief GOR episodes with a relatively low number of radioactive counts are frequently indistinguishable from intense background activity on 60-s acquisition frames. PMID:23520226

  3. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    OpenAIRE

    Soichiro Tsujino; Takashi Tomizaki

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinn...

  4. Robotically-adjustable microstereotactic frames for image-guided neurosurgery

    Science.gov (United States)

    Kratchman, Louis B.; Fitzpatrick, J. Michael

    2013-03-01

    Stereotactic frames are a standard tool for neurosurgical targeting, but are uncomfortable for patients and obstruct the surgical field. Microstereotactic frames are more comfortable for patients, provide better access to the surgical site, and have grown in popularity as an alternative to traditional stereotactic devices. However, clinically available microstereotactic frames require either lengthy manufacturing delays or expensive image guidance systems. We introduce a robotically-adjusted, disposable microstereotactic frame for deep brain stimulation surgery that eliminates the drawbacks of existing microstereotactic frames. Our frame can be automatically adjusted in the operating room using a preoperative plan in less than five minutes. A validation study on phantoms shows that our approach provides a target positioning error of 0.14 mm, which exceeds the required accuracy for deep brain stimulation surgery.

  5. Image registration based on virtual frame sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Ng, W.S. [Nanyang Technological University, Computer Integrated Medical Intervention Laboratory, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Shi, D. (Nanyang Technological University, School of Computer Engineering, Singapore, Singpore); Wee, S.B. [Tan Tock Seng Hospital, Department of General Surgery, Singapore (Singapore)

    2007-08-15

    This paper is to propose a new framework for medical image registration with large nonrigid deformations, which still remains one of the biggest challenges for image fusion and further analysis in many medical applications. Registration problem is formulated as to recover a deformation process with the known initial state and final state. To deal with large nonlinear deformations, virtual frames are proposed to be inserted to model the deformation process. A time parameter is introduced and the deformation between consecutive frames is described with a linear affine transformation. Experiments are conducted with simple geometric deformation as well as complex deformations presented in MRI and ultrasound images. All the deformations are characterized with nonlinearity. The positive results demonstrated the effectiveness of this algorithm. The framework proposed in this paper is feasible to register medical images with large nonlinear deformations and is especially useful for sequential images. (orig.)

  6. Nondeterministic noiseless amplification via non-symplectic phase space transformations

    International Nuclear Information System (INIS)

    Walk, Nathan; Lund, Austin P; Ralph, Timothy C

    2013-01-01

    We analyse the action of an ideal noiseless linear amplifier operator, g a-hat † a-hat, using the Wigner function phase space representation. In this setting we are able to clarify the gain g for which a physical output is produced when this operator is acted upon inputs other than coherent states. We derive compact closed form expressions for the action of N local amplifiers, with potentially different gains, on arbitrary N-mode Gaussian states and provide several examples of the utility of this formalism for determining important quantities including amplification and the strength and purity of the distilled entanglement, and for optimizing the use of the amplification in quantum information protocols. (paper)

  7. Distant Measurement of Plethysmographic Signal in Various Lighting Conditions Using Configurable Frame-Rate Camera

    Directory of Open Access Journals (Sweden)

    Przybyło Jaromir

    2016-12-01

    Full Text Available Videoplethysmography is currently recognized as a promising noninvasive heart rate measurement method advantageous for ubiquitous monitoring of humans in natural living conditions. Although the method is considered for application in several areas including telemedicine, sports and assisted living, its dependence on lighting conditions and camera performance is still not investigated enough. In this paper we report on research of various image acquisition aspects including the lighting spectrum, frame rate and compression. In the experimental part, we recorded five video sequences in various lighting conditions (fluorescent artificial light, dim daylight, infrared light, incandescent light bulb using a programmable frame rate camera and a pulse oximeter as the reference. For a video sequence-based heart rate measurement we implemented a pulse detection algorithm based on the power spectral density, estimated using Welch’s technique. The results showed that lighting conditions and selected video camera settings including compression and the sampling frequency influence the heart rate detection accuracy. The average heart rate error also varies from 0.35 beats per minute (bpm for fluorescent light to 6.6 bpm for dim daylight.

  8. A framed, 16-image Kirkpatrick-Baez x-ray microscope

    Science.gov (United States)

    Marshall, F. J.; Bahr, R. E.; Goncharov, V. N.; Glebov, V. Yu.; Peng, B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.

    2017-09-01

    A 16-image Kirkpatrick-Baez (KB)-type x-ray microscope consisting of compact KB mirrors [F. J. Marshall, Rev. Sci. Instrum. 83, 10E518 (2012)] has been assembled for the first time with mirrors aligned to allow it to be coupled to a high-speed framing camera. The high-speed framing camera has four independently gated strips whose emission sampling interval is ˜30 ps. Images are arranged four to a strip with ˜60-ps temporal spacing between frames on a strip. By spacing the timing of the strips, a frame spacing of ˜15 ps is achieved. A framed resolution of ˜6-μm is achieved with this combination in a 400-μm region of laser-plasma x-ray emission in the 2- to 8-keV energy range. A principal use of the microscope is to measure the evolution of the implosion stagnation region of cryogenic DT target implosions on the University of Rochester's OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The unprecedented time and spatial resolutions achieved with this framed, multi-image KB microscope have made it possible to accurately determine the cryogenic implosion core emission size and shape at the peak of stagnation. These core size measurements, taken in combination with those of ion temperature, neutron-production temporal width, and neutron yield allow for inference of core pressures, currently exceeding 50 Gbar in OMEGA cryogenic target implosions [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)].

  9. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function.

    Science.gov (United States)

    Coolen, Bram F; Abdurrachim, Desiree; Motaal, Abdallah G; Nicolay, Klaas; Prompers, Jeanine J; Strijkers, Gustav J

    2013-03-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered at will to increase the frame rate because of gradient hardware, spatial resolution, and signal-to-noise limitations. To overcome these limitations associated with electrocardiography-triggered Cine MRI, in this paper, we introduce a retrospectively triggered Cine MRI protocol capable of producing high-resolution high frame rate Cine MRI of the mouse heart for addressing left ventricular diastolic function. Simulations were performed to investigate the influence of MRI sequence parameters and the k-space filling trajectory in relation to the desired number of frames per cardiac cycle. An optimized protocol was applied in vivo and compared with electrocardiography-triggered Cine for which a high-frame rate could only be achieved by several interleaved acquisitions. Retrospective high frame rate Cine MRI proved superior to the interleaved electrocardiography-triggered protocols. High spatial-resolution Cine movies with frames rates up to 80 frames per cardiac cycle were obtained in 25 min. Analysis of left ventricular filling rate curves allowed accurate determination of early and late filling rates and revealed subtle impairments in left ventricular diastolic function of diabetic mice in comparison with nondiabetic mice. Copyright © 2012 Wiley Periodicals, Inc.

  10. The impact of verbal framing on brain activity evoked by emotional images.

    Science.gov (United States)

    Kisley, Michael A; Campbell, Alana M; Larson, Jenna M; Naftz, Andrea E; Regnier, Jesse T; Davalos, Deana B

    2011-12-01

    Emotional stimuli generally command more brain processing resources than non-emotional stimuli, but the magnitude of this effect is subject to voluntary control. Cognitive reappraisal represents one type of emotion regulation that can be voluntarily employed to modulate responses to emotional stimuli. Here, the late positive potential (LPP), a specific event-related brain potential (ERP) component, was measured in response to neutral, positive and negative images while participants performed an evaluative categorization task. One experimental group adopted a "negative frame" in which images were categorized as negative or not. The other adopted a "positive frame" in which the exact same images were categorized as positive or not. Behavioral performance confirmed compliance with random group assignment, and peak LPP amplitude to negative images was affected by group membership: brain responses to negative images were significantly reduced in the "positive frame" group. This suggests that adopting a more positive appraisal frame can modulate brain activity elicited by negative stimuli in the environment.

  11. Challenges associated with nerve conduction block using kilohertz electrical stimulation

    Science.gov (United States)

    Patel, Yogi A.; Butera, Robert J.

    2018-06-01

    Neuromodulation therapies, which electrically stimulate parts of the nervous system, have traditionally attempted to activate neurons or axons to restore function or alleviate disease symptoms. In stark contrast to this approach is inhibiting neural activity to relieve disease symptoms and/or restore homeostasis. One potential approach is kilohertz electrical stimulation (KES) of peripheral nerves—which enables a rapid, reversible, and localized block of conduction. This review highlights the existing scientific and clinical utility of KES and discusses the technical and physiological challenges that must be addressed for successful translation of KES nerve conduction block therapies.

  12. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    International Nuclear Information System (INIS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-01-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l 1 -regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method. (paper)

  13. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction.

    Science.gov (United States)

    Motaal, Abdallah G; Coolen, Bram F; Abdurrachim, Desiree; Castro, Rui M; Prompers, Jeanine J; Florack, Luc M J; Nicolay, Klaas; Strijkers, Gustav J

    2013-04-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensing reconstruction. Key to our approach is that we exploit the stochastic nature of the retrospective triggering acquisition scheme to produce an undersampled and random k-t space filling that allows for compressed sensing reconstruction and acceleration. As a standard, a self-gated FLASH sequence with a total acquisition time of 10 min was used to produce single-slice Cine movies of seven mouse hearts with 90 frames per cardiac cycle. Two times (2×) and three times (3×) k-t space undersampled Cine movies were produced from 2.5- and 1.5-min data acquisitions, respectively. The accelerated 90-frame Cine movies of mouse hearts were successfully reconstructed with a compressed sensing algorithm. The movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters, i.e. end-systolic and end-diastolic lumen surface areas and early-to-late filling rate ratio as a parameter to evaluate diastolic function, derived from the standard and accelerated Cine movies, were nearly identical. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Characterization of a 512x512-pixel 8-output full-frame CCD for high-speed imaging

    Science.gov (United States)

    Graeve, Thorsten; Dereniak, Eustace L.

    1993-01-01

    The characterization of a 512 by 512 pixel, eight-output full frame CCD manufactured by English Electric Valve under part number CCD13 is discussed. This device is a high- resolution Silicon-based array designed for visible imaging applications at readout periods as low as two milliseconds. The characterization of the device includes mean-variance analysis to determine read noise and dynamic range, as well as charge transfer efficiency, MTF, and quantum efficiency measurements. Dark current and non-uniformity issues on a pixel-to-pixel basis and between individual outputs are also examined. The characterization of the device is restricted by hardware limitations to a one MHz pixel rate, corresponding to a 40 ms readout time. However, subsections of the device have been operated at up to an equivalent 100 frames per second. To maximize the frame rate, the CCD is illuminated by a synchronized strobe flash in between frame readouts. The effects of the strobe illumination on the imagery obtained from the device is discussed.

  15. The effects of frame rate and resolution on users playing first person shooter games

    Science.gov (United States)

    Claypool, Mark; Claypool, Kajal; Damaa, Feissal

    2006-01-01

    The rates and resolutions for frames rendered in a computer game directly impact the player performance, influencing both the overall game playability and the game's enjoyability. Insights into the effects of frame rates and resolutions can guide users in their choice for game settings and new hardware purchases, and inform system designers in their development of new hardware, especially for embedded devices that often must make tradeoffs between resolution and frame rate. While there have been studies detailing the effects of frame rate and resolution on streaming video and other multimedia applications, to the best of our knowledge, there have been no studies quantifying the effects of frame rate and resolution on user performance for computer games. This paper presents results of a carefully designed user study that measures the impact of frame rate and frame resolution on user performance in a first person shooter game. Contrary to previous results for streaming video, frame rate has a marked impact on both player performance and game enjoyment while resolution has little impact on performance and some impact on enjoyment.

  16. Automatic Thresholding for Frame-Repositioning Using External Tracking in PET Brain Imaging

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Keller, Sune; Sibomana, Merence

    2010-01-01

    Motion correction (MC) in positron emission tomography (PET) brain imaging become of higher importance with increasing scanner resolution. Several motion correction methods have been suggested and so far the Polaris Vicra tracking system has been the preferred one for motion registration. We...... present an automated algorithm for dividing PET acquisitions into subframes based on the registered head motion to correct for intra-frame motion with the frame repositioning MC method. The method is tested on real patient data (five 11C-SB studies and five 11C-PIB studies) and compared with an image...... based registration method (AIR). Quantitative evaluation was done using a correlation measure. The study shows that MC improves the correlation of the PET images and that AIR performed slightly better than the Polaris Vicra. We found significant intra-frame motion of 1-5 mm in 9 frames...

  17. Sparsity- and continuity-promoting seismic image recovery with curvelet frames

    NARCIS (Netherlands)

    Herrmann, Felix J.; Moghaddam, Peyman; Stolk, C.C.

    2008-01-01

    A nonlinear singularity-preserving solution to seismic image recovery with sparseness and continuity constraints is proposed. We observe that curvelets, as a directional frame expansion, lead to sparsity of seismic images and exhibit invariance under the normal operator of the linearized imaging

  18. Improvement of Quality of Reconstructed Images in Multi-Frame Fresnel Digital Holography

    International Nuclear Information System (INIS)

    Xiao-Wei, Lu; Jing-Zhen, Li; Hong-Yi, Chen

    2010-01-01

    A modified reconstruction algorithm to improve the quality of reconstructed images of multi-frame Fresnel digital holography is presented. When the reference beams are plane or spherical waves with azimuth encoding, by introducing two spherical wave factors, images can be reconstructed with only one time Fourier transform. In numerical simulation, this algorithm could simplify the reconstruction process and improve the signal-to-noise ratio of the reconstructed images. In single-frame reconstruction experiments, the accurate reconstructed image is obtained with this simplified algorithm

  19. Initial Demonstration of 9-MHz Framing Camera Rates on the FAST UV Drive Laser Pulse Trains

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Edstrom Jr., D. [Fermilab; Ruan, J. [Fermilab

    2016-10-09

    We report the configuration of a Hamamatsu C5680 streak camera as a framing camera to record transverse spatial information of green-component laser micropulses at 3- and 9-MHz rates for the first time. The latter is near the time scale of the ~7.5-MHz revolution frequency of the Integrable Optics Test Accelerator (IOTA) ring and its expected synchroton radiation source temporal structure. The 2-D images are recorded with a Gig-E readout CCD camera. We also report a first proof of principle with an OTR source using the linac streak camera in a semi-framing mode.

  20. Objective assessment of the impact of frame rate on video quality

    DEFF Research Database (Denmark)

    Ukhanova, Ann; Korhonen, Jari; Forchhammer, Søren

    2012-01-01

    In this paper, we present a novel objective quality metric that takes the impact of frame rate into account. The proposed metric uses PSNR, frame rate and a content dependent parameter that can easily be obtained from spatial and temporal activity indices. The results have been validated on data ...

  1. Demo : an embedded vision system for high frame rate visual servoing

    NARCIS (Netherlands)

    Ye, Z.; He, Y.; Pieters, R.S.; Mesman, B.; Corporaal, H.; Jonker, P.P.

    2011-01-01

    The frame rate of commercial off-the-shelf industrial cameras is breaking the threshold of 1000 frames-per-second, the sample rate required in high performance motion control systems. On the one hand, it enables computer vision as a cost-effective feedback source; On the other hand, it imposes

  2. High frame rate retrospectively triggered Cine MRI for assessment of murine diastolic function

    NARCIS (Netherlands)

    Coolen, Bram F.; Abdurrachim, Desiree; Motaal, Abdallah G.; Nicolay, Klaas; Prompers, Jeanine J.; Strijkers, Gustav J.

    2013-01-01

    To assess left ventricular (LV) diastolic function in mice with Cine MRI, a high frame rate (>60 frames per cardiac cycle) is required. For conventional electrocardiography-triggered Cine MRI, the frame rate is inversely proportional to the pulse repetition time (TR). However, TR cannot be lowered

  3. A three-frame digital image correlation (DIC) method for the measurement of small displacements and strains

    International Nuclear Information System (INIS)

    Cofaru, C; Philips, W; Van Paepegem, W

    2012-01-01

    Digital image correlation (DIC) has become a well-established approach for the calculation of full-field displacement and strains within the field of experimental mechanics. Since their introduction, DIC methods have been relying on only two images to measure the displacements and strains that materials undergo under load. It can be foreseen that the use of additional image information for the calculus of displacements and strains, although computationally more expensive, can positively impact DIC method accuracy under both ideal and challenging experimental conditions. Such accuracy improvements are especially important when measuring very small deformations, which still constitutes a great challenge: small displacements and strains translate into equally small digital image intensity changes on the material’s surface, which are affected by the digitization processes of the imaging hardware and by other image acquisition effects such as image noise. This paper proposes a new three-frame Newton–Raphson DIC method and evaluates it from the standpoints of accuracy and speed. The method models the deformations that are to be measured under the assumption that the deformation occurs at approximately the same rate between each two consecutive images in the three image sequences that are employed. The aim is to investigate how the use of image data from more than two images impacts accuracy and what is the effect on the computational speed. The proposed method is compared with the classic two-frame Newton–Raphson method in three experiments. Two experiments rely on numerically deformed images that simulate heterogeneous deformations. The third experiment uses images from a real deformation experiment. Results indicate that although it is computationally more demanding, the three-frame method significantly improves displacement and strain accuracy and is less sensitive to image noise. (paper)

  4. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    Energy Technology Data Exchange (ETDEWEB)

    McCowan, P. M., E-mail: pmccowan@cancercare.mb.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada and Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); McCurdy, B. M. C. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada); Medical Physics Department, CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, Manitoba R3E 0V9 (Canada); Department of Radiology, University of Manitoba, 820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9 (Canada)

    2016-01-15

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, less EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose (<20% prescription dose) and high dose regions (>80% prescription dose) was calculated for each frame averaged

  5. Frame average optimization of cine-mode EPID images used for routine clinical in vivo patient dose verification of VMAT deliveries

    International Nuclear Information System (INIS)

    McCowan, P. M.; McCurdy, B. M. C.

    2016-01-01

    Purpose: The in vivo 3D dose delivered to a patient during volumetric modulated arc therapy (VMAT) delivery can be calculated using electronic portal imaging device (EPID) images. These images must be acquired in cine-mode (i.e., “movie” mode) in order to capture the time-dependent delivery information. The angle subtended by each cine-mode EPID image during an arc can be changed via the frame averaging number selected within the image acquisition software. A large frame average number will decrease the EPID’s angular resolution and will result in a decrease in the accuracy of the dose information contained within each image. Alternatively, less EPID images acquired per delivery will decrease the overall 3D patient dose calculation time, which is appealing for large-scale clinical implementation. Therefore, the purpose of this study was to determine the optimal frame average value per EPID image, defined as the highest frame averaging that can be used without an appreciable loss in 3D dose reconstruction accuracy for VMAT treatments. Methods: Six different VMAT plans and six different SBRT-VMAT plans were delivered to an anthropomorphic phantom. Delivery was carried out on a Varian 2300ix model linear accelerator (Linac) equipped with an aS1000 EPID running at a frame acquisition rate of 7.5 Hz. An additional PC was set up at the Linac console area, equipped with specialized frame-grabber hardware and software packages allowing continuous acquisition of all EPID frames during delivery. Frames were averaged into “frame-averaged” EPID images using MATLAB. Each frame-averaged data set was used to calculate the in vivo dose to the patient and then compared to the single EPID frame in vivo dose calculation (the single frame calculation represents the highest possible angular resolution per EPID image). A mean percentage dose difference of low dose ( 80% prescription dose) was calculated for each frame averaged scenario for each plan. The authors defined their

  6. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims.

    Science.gov (United States)

    Barnes, Ralph M; Tobin, Stephanie J; Johnston, Heather M; MacKenzie, Noah; Taglang, Chelsea M

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  7. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    Directory of Open Access Journals (Sweden)

    Ralph M. Barnes

    2016-11-01

    Full Text Available A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive and numeric format (percentage, natural frequency on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2 and 730 undergraduate college students (Experiments 1, 3, and 4 indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect.

  8. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    Science.gov (United States)

    Barnes, Ralph M.; Tobin, Stephanie J.; Johnston, Heather M.; MacKenzie, Noah; Taglang, Chelsea M.

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent measure in Experiment 5. Results from a diverse sample of 188 non-institutionalized U.S. adults (Experiment 2) and 730 undergraduate college students (Experiments 1, 3, and 4) indicated that attitudes became more positive as the replication rate increased and attitudes were more positive when the replication information was framed positively. The results also indicate that the manner in which replication rate was framed had a greater impact on attitude than the replication rate itself. The large effect for frame was attenuated somewhat when information about replication was presented in the form of natural frequencies rather than percentages. A fifth study employing 662 undergraduate college students in a task in which choice served as the dependent measure confirmed the framing effect and replicated the replication rate effect in the positive frame condition, but provided no evidence that the use of natural frequencies diminished the effect. PMID:27920743

  9. Smear correction of highly variable, frame-transfer CCD images with application to polarimetry.

    Science.gov (United States)

    Iglesias, Francisco A; Feller, Alex; Nagaraju, Krishnappa

    2015-07-01

    Image smear, produced by the shutterless operation of frame-transfer CCD detectors, can be detrimental for many imaging applications. Existing algorithms used to numerically remove smear do not contemplate cases where intensity levels change considerably between consecutive frame exposures. In this report, we reformulate the smearing model to include specific variations of the sensor illumination. The corresponding desmearing expression and its noise properties are also presented and demonstrated in the context of fast imaging polarimetry.

  10. REFLECTANCE CALIBRATION SCHEME FOR AIRBORNE FRAME CAMERA IMAGES

    Directory of Open Access Journals (Sweden)

    U. Beisl

    2012-07-01

    Full Text Available The image quality of photogrammetric images is influenced by various effects from outside the camera. One effect is the scattered light from the atmosphere that lowers contrast in the images and creates a colour shift towards the blue. Another is the changing illumination during the day which results in changing image brightness within an image block. In addition, there is the so-called bidirectional reflectance of the ground (BRDF effects that is giving rise to a view and sun angle dependent brightness gradient in the image itself. To correct for the first two effects an atmospheric correction with reflectance calibration is chosen. The effects have been corrected successfully for ADS linescan sensor data by using a parametrization of the atmospheric quantities. Following Kaufman et al. the actual atmospheric condition is estimated by the brightness of a dark pixel taken from the image. The BRDF effects are corrected using a semi-empirical modelling of the brightness gradient. Both methods are now extended to frame cameras. Linescan sensors have a viewing geometry that is only dependent from the cross track view zenith angle. The difference for frame cameras now is to include the extra dimension of the view azimuth into the modelling. Since both the atmospheric correction and the BRDF correction require a model inversion with the help of image data, a different image sampling strategy is necessary which includes the azimuth angle dependence. For the atmospheric correction a sixth variable is added to the existing five variables visibility, view zenith angle, sun zenith angle, ground altitude, and flight altitude – thus multiplying the number of modelling input combinations for the offline-inversion. The parametrization has to reflect the view azimuth angle dependence. The BRDF model already contains the view azimuth dependence and is combined with a new sampling strategy.

  11. Ultra-fast framing camera tube

    Science.gov (United States)

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  12. Low-Complexity Variable Frame Rate Analysis for Speech Recognition and Voice Activity Detection

    DEFF Research Database (Denmark)

    Tan, Zheng-Hua; Lindberg, Børge

    2010-01-01

    present a low-complexity and effective frame selection approach based on a posteriori signal-to-noise ratio (SNR) weighted energy distance: The use of an energy distance, instead of e.g. a standard cepstral distance, makes the approach computationally efficient and enables fine granularity search......Frame based speech processing inherently assumes a stationary behavior of speech signals in a short period of time. Over a long time, the characteristics of the signals can change significantly and frames are not equally important, underscoring the need for frame selection. In this paper, we......, and the use of a posteriori SNR weighting emphasizes the reliable regions in noisy speech signals. It is experimentally found that the approach is able to assign a higher frame rate to fast changing events such as consonants, a lower frame rate to steady regions like vowels and no frames to silence, even...

  13. Frames as visual links between paintings and the museum environment: An analysis of statistical image properties

    Directory of Open Access Journals (Sweden)

    Christoph eRedies

    2013-11-01

    Full Text Available Frames provide a visual link between artworks and their surround. We asked how image properties change as an observer zooms out from viewing a painting alone, to viewing the painting with its frame and, finally, the framed painting in its museum environment (museum scene. To address this question, we determined three higher-order image properties that are based on histograms of oriented luminance gradients. First, complexity was measured as the sum of the strengths of all gradients in the image. Second, we determined the self-similarity of histograms of the orientated gradients at different levels of spatial analysis. Third, we analyzed how much gradient strength varied across orientations (anisotropy. Results were obtained for three art museums that exhibited paintings from three major periods of Western art. In all three museums, the mean complexity of the frames was higher than that of the paintings or the museum scenes. Frames thus provide a barrier of complexity between the paintings and their exterior. By contrast, self-similarity and anisotropy values of images of framed paintings were intermediate between the images of the paintings and the museum scenes, i.e., the frames provided a transition between the paintings and their surround. We also observed differences between the three museums that may reflect modified frame usage in different art periods. For example, frames in the museum for 20th century art tended to be smaller and less complex than in the two other two museums that exhibit paintings from earlier art periods (13th-18th century and 19th century, respectively. Finally, we found that the three properties did not depend on the type of reproduction of the paintings (photographs in museums, scans from books or images from the Google Art Project. To the best of our knowledge, this study is the first to investigate the relation between frames and paintings by measuring physically defined, higher-order image properties.

  14. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    Directory of Open Access Journals (Sweden)

    Dongming Li

    2017-04-01

    Full Text Available An adaptive optics (AO system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  15. Establishment of frame image in dynamic function renal studies

    International Nuclear Information System (INIS)

    Guedes, Germano P.; Brunetto, Sergio Q.

    1996-01-01

    Statistical procedures applied to a set of images of renal function study are described to define a region of interest (ROI) on the kidneys's contours. The kidneys geometry is considered to adapt to the emitting area in every frames

  16. Variable Frame Rate and Length Analysis for Data Compression in Distributed Speech Recognition

    DEFF Research Database (Denmark)

    Kraljevski, Ivan; Tan, Zheng-Hua

    2014-01-01

    This paper addresses the issue of data compression in distributed speech recognition on the basis of a variable frame rate and length analysis method. The method first conducts frame selection by using a posteriori signal-to-noise ratio weighted energy distance to find the right time resolution...... length for steady regions. The method is applied to scalable source coding in distributed speech recognition where the target bitrate is met by adjusting the frame rate. Speech recognition results show that the proposed approach outperforms other compression methods in terms of recognition accuracy...... for noisy speech while achieving higher compression rates....

  17. Improved quality of intrafraction kilovoltage images by triggered readout of unexposed frames

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Jonassen, Johnny; Schmidt, Mai Lykkegaard

    2015-01-01

    of unexposed kV frames as a means to improve the kV image quality in a series of experiments and a theoretical model of the observed image quality improvements. Methods: A series of fluoroscopic images were acquired of a solid water phantom with an embedded gold marker and an air cavity with and without...... absolute error of 2.0% for the gold marker. Conclusions: A device that triggers readout of unexposed frames during kV fluoroscopy was built and shown to greatly improve the quality of intratreatment kV images. A simple theoretical model successfully described the CNR improvements with the device.......Purpose: The gantry-mounted kilovoltage (kV) imager of modern linear accelerators can be used forreal-time tumor localization during radiation treatment delivery. However, the kV image quality often suffers from cross-scatter from the megavoltage (MV) treatment beam. This study investigates readout...

  18. Space-time encoding for high frame rate ultrasound imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanssis; Jensen, Jørgen Arendt

    2002-01-01

    dynamically focused in both transmit and receive with only two firings. This reduces the problem of motion artifacts. The method has been tested with extensive simulations using Field II. Resolution and SNR are compared with uncoded STA imaging and conventional phased-array imaging. The range resolution...... remains the same for coded STA imaging with four emissions and is slightly degraded for STA imaging with two emissions due to the −55 dB cross-talk between the signals. The additional proposed temporal encoding adds more than 15 dB on the SNR gain, yielding a SNR at the same order as in phased-array...

  19. Multi-Frame Rate Based Multiple-Model Training for Robust Speaker Identification of Disguised Voice

    DEFF Research Database (Denmark)

    Prasad, Swati; Tan, Zheng-Hua; Prasad, Ramjee

    2013-01-01

    Speaker identification systems are prone to attack when voice disguise is adopted by the user. To address this issue,our paper studies the effect of using different frame rates on the accuracy of the speaker identification system for disguised voice.In addition, a multi-frame rate based multiple......-model training method is proposed. The experimental results show the superior performance of the proposed method compared to the commonly used single frame rate method for three types of disguised voice taken from the CHAINS corpus....

  20. 100-ps framing-camera tube

    International Nuclear Information System (INIS)

    Kalibjian, R.

    1978-01-01

    The optoelectronic framing-camera tube described is capable of recording two-dimensional image frames with high spatial resolution in the <100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits. The resulting dissected electron line images from the slits are restored into framed images by a restorer deflector operating synchronously with the dissector deflector. The number of framed images on the tube's viewing screen equals the number of dissecting slits in the tube. Performance has been demonstrated in a prototype tube by recording 135-ps-duration framed images of 2.5-mm patterns at the cathode. The limitation in the framing speed is in the external drivers for the deflectors and not in the tube design characteristics. Faster frame speeds in the <100-ps range can be obtained by use of faster deflection drivers

  1. Regional wall thickening in gated myocardial perfusion SPECT in a Japanese population: effect of sex, radiotracer, rotation angles and frame rates

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, Nasima; Nakajima, Kenichi; Okuda, Koichi; Matsuo, Shinro; Yoneyama, Tatsuya; Taki, Junichi; Kinuya, Seigo [Kanazawa University Hospital, Department of Nuclear Medicine, Kanazawa, Ishikawa (Japan)

    2008-09-15

    Gated single-photon emission computed tomography (SPECT) imaging of myocardium by {sup 99m}Tc and {sup 201}Tl is used extensively to measure quantitative cardiac functional parameters. However, factors affecting normal values for myocardial functional parameters and population-specific standards have not yet been established. The aim of the study was to determine the effect of sex, radiotracer, rotation angles and frame rates on resting myocardial wall thickening (WT) and to develop a Japanese standard of normal values for WT. Data from a total of 202 patients with low possibility of having cardiac problems were collected from nine hospitals throughout Japan. Patients were divided into five groups according to study protocol, and WT was evaluated according to the 17-segment and four-region (basal, mid and apical regions and the apex) polar map distribution. WT was generally higher in women than in men irrespective of the use of radiotracers, rotation angles or frame rates, and the difference was highly significant in the mid and apical regions. In any protocol used, resting myocardial thickening in the apex was higher than in the mid and apical regions, and thickening was lowest in the basal region, suggesting heterogeneous regional myocardial thickening (%) in normal subjects. Different rotation angles showed no significant change on WT, but different frame rates and tracers showed significant WT change in both sexes. Percent thickening of the myocardium was significantly higher in imaging by {sup 99m}Tc-labelled tracers than in {sup 201}Tl. Sex, radiotracers and frame rates had a significant effect on myocardial thickening, and the importance of population-specific standards should be emphasized. A normal database can serve as a standard for gated SPECT evaluation of myocardial thickening in a Japanese population and might be applicable to Asian populations having a similar physique. (orig.)

  2. Artificial frame filling using adaptive neural fuzzy inference system for particle image velocimetry dataset

    Science.gov (United States)

    Akdemir, Bayram; Doǧan, Sercan; Aksoy, Muharrem H.; Canli, Eyüp; Özgören, Muammer

    2015-03-01

    Liquid behaviors are very important for many areas especially for Mechanical Engineering. Fast camera is a way to observe and search the liquid behaviors. Camera traces the dust or colored markers travelling in the liquid and takes many pictures in a second as possible as. Every image has large data structure due to resolution. For fast liquid velocity, there is not easy to evaluate or make a fluent frame after the taken images. Artificial intelligence has much popularity in science to solve the nonlinear problems. Adaptive neural fuzzy inference system is a common artificial intelligence in literature. Any particle velocity in a liquid has two dimension speed and its derivatives. Adaptive Neural Fuzzy Inference System has been used to create an artificial frame between previous and post frames as offline. Adaptive neural fuzzy inference system uses velocities and vorticities to create a crossing point vector between previous and post points. In this study, Adaptive Neural Fuzzy Inference System has been used to fill virtual frames among the real frames in order to improve image continuity. So this evaluation makes the images much understandable at chaotic or vorticity points. After executed adaptive neural fuzzy inference system, the image dataset increase two times and has a sequence as virtual and real, respectively. The obtained success is evaluated using R2 testing and mean squared error. R2 testing has a statistical importance about similarity and 0.82, 0.81, 0.85 and 0.8 were obtained for velocities and derivatives, respectively.

  3. Rate-adaptive BCH codes for distributed source coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Larsen, Knud J.; Forchhammer, Søren

    2013-01-01

    This paper considers Bose-Chaudhuri-Hocquenghem (BCH) codes for distributed source coding. A feedback channel is employed to adapt the rate of the code during the decoding process. The focus is on codes with short block lengths for independently coding a binary source X and decoding it given its...... strategies for improving the reliability of the decoded result are analyzed, and methods for estimating the performance are proposed. In the analysis, noiseless feedback and noiseless communication are assumed. Simulation results show that rate-adaptive BCH codes achieve better performance than low...... correlated side information Y. The proposed codes have been analyzed in a high-correlation scenario, where the marginal probability of each symbol, Xi in X, given Y is highly skewed (unbalanced). Rate-adaptive BCH codes are presented and applied to distributed source coding. Adaptive and fixed checking...

  4. Age differences in treatment decision making for breast cancer in a sample of healthy women: the effects of body image and risk framing.

    Science.gov (United States)

    Romanek, Kathleen M; McCaul, Kevin D; Sandgren, Ann K

    2005-07-01

    To examine the effects of age, body image, and risk framing on treatment decision making for breast cancer using a healthy population. An experimental 2 (younger women, older women) X 2 (survival, mortality frame) between-groups design. Midwestern university. Two groups of healthy women: 56 women ages 18-24 from undergraduate psychology courses and 60 women ages 35-60 from the university community. Healthy women imagined that they had been diagnosed with breast cancer and received information regarding lumpectomy versus mastectomy and recurrence rates. Participants indicated whether they would choose lumpectomy or mastectomy and why. Age, framing condition, treatment choice, body image, and reasons for treatment decision. The difference in treatment selection between younger and older women was mediated by concern for appearance. No main effect for risk framing was found; however, older women were somewhat less likely to select lumpectomy when given a mortality frame. Age, mediated by body image, influences treatment selection of lumpectomy versus mastectomy. Framing has no direct effect on treatment decisions, but younger and older women may be affected by risk information differently. Nurses should provide women who recently have been diagnosed with breast cancer with age-appropriate information regarding treatment alternatives to ensure women's active participation in the decision-making process. Women who have different levels of investment in body image also may have different concerns about treatment, and healthcare professionals should be alert to and empathetic of such concerns.

  5. X-ray framing cameras for > 5 keV imaging

    International Nuclear Information System (INIS)

    Landen, O.L.; Bell, P.M.; Costa, R.; Kalantar, D.H.; Bradley, D.K.

    1995-01-01

    Recent and proposed improvements in spatial resolution, temporal resolution, contrast, and detection efficiency for x-ray framing cameras are discussed in light of present and future laser-plasma diagnostic needs. In particular, improvements in image contrast above hard x-ray background levels is demonstrated by using high aspect ratio tapered pinholes

  6. Optical loop framing

    International Nuclear Information System (INIS)

    Kalibjian, R.; Chong, Y.P.; Prono, D.S.; Cavagnolo, H.R.

    1984-06-01

    The ATA provides an electron beam pulse of 70-ns duration at a 1-Hz rate. Our present optical diagnostics technique involve the imaging of the visible light generated by the beam incident onto the plant of a thin sheet of material. It has already been demonstrated that the light generated has a sufficiently fast temporal reponse in performing beam diagnostics. Notwithstanding possible beam emittance degradation due to scattering in the thin sheet, the observation of beam spatial profiles with relatively high efficiencies has provided data complementary to that obtained from beam wall current monitors and from various x-ray probes and other electrical probes. The optical image sensor consists of a gated, intensified television system. The gate pulse of the image intensifier can be appropriately delayed to give frames that are time-positioned from the head to the tail of the beam with a minimum gate time of 5-ns. The spatial correlation of the time frames from pulse to pulse is very good for a stable electron beam; however, when instabilities do occur, it is difficult to properly assess the spatial composition of the head and the tail of the beam on a pulse-to-pulse basis. Multiple gating within a pulse duration becomes desirable but cannot be performed because the recycle time (20-ms) of the TV system is much longer than the beam pulse. For this reason we have developed an optical-loop framing technique that will allow the recording of two frames within one pulse duration with our present gated/intensified TV system

  7. Robust super-resolution by fusion of interpolated frames for color and grayscale images

    Directory of Open Access Journals (Sweden)

    Barry eKarch

    2015-04-01

    Full Text Available Multi-frame super-resolution (SR processing seeks to overcome undersampling issues that can lead to undesirable aliasing artifacts. The key to effective multi-frame SR is accurate subpixel inter-frame registration. This accurate registration is challenging when the motion does not obey a simple global translational model and may include local motion. SR processing is further complicated when the camera uses a division-of-focal-plane (DoFP sensor, such as the Bayer color filter array. Various aspects of these SR challenges have been previously investigated. Fast SR algorithms tend to have difficulty accommodating complex motion and DoFP sensors. Furthermore, methods that can tolerate these complexities tend to be iterative in nature and may not be amenable to real-time processing. In this paper, we present a new fast approach for performing SR in the presence of these challenging imaging conditions. We refer to the new approach as Fusion of Interpolated Frames (FIF SR. The FIF SR method decouples the demosaicing, interpolation, and restoration steps to simplify the algorithm. Frames are first individually demosaiced and interpolated to the desired resolution. Next, FIF uses a novel weighted sum of the interpolated frames to fuse them into an improved resolution estimate. Finally, restoration is applied to deconvolve the modeled system PSF. The proposed FIF approach has a lower computational complexity than most iterative methods, making it a candidate for real-time implementation. We provide a detailed description of the FIF SR method and show experimental results using synthetic and real datasets in both constrained and complex imaging scenarios. The experiments include airborne grayscale imagery and Bayer color array images with affine background motion plus local motion.

  8. Application of high-frame-rate neutron radiography to steam explosion research

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Hibiki, T.; Yamamoto, A.; Sugimoto, J.; Moriyama, K.

    1999-01-01

    To understand the behavior of dispersed molten metal particles dropped into water during the premixing process of steam explosion, experiments were performed by using heated stainless-steel particles simulating dispersed molten metal particles. High-frame-rate neutron radiography was successfully employed for visualization and void fraction measurement. Visualization was conducted by dropping heated stainless-steel particle into heavy water filled in a rectangular tank with the particle diameter (6, 9, and 12 mm) and temperature (600 deg. C, 700 deg. C, 800 deg. C, and 1000 deg. C) as parameters. Steam generation due to direct contact of heated particle and heavy water was successfully visualized by the high-frame-rate neutron radiography at the recording speed of 500 frames/s. From void fraction measurement it was revealed that the amount of generated steam was in proportion to the particle size and temperature. It is suggested that the ambient liquid might be superheated by the particle-liquid contact

  9. Frames and counter-frames giving meaning to dementia: a framing analysis of media content.

    Science.gov (United States)

    Van Gorp, Baldwin; Vercruysse, Tom

    2012-04-01

    Media tend to reinforce the stigmatization of dementia as one of the most dreaded diseases in western society, which may have repercussions on the quality of life of those with the illness. The persons with dementia, but also those around them become imbued with the idea that life comes to an end as soon as the diagnosis is pronounced. The aim of this paper is to understand the dominant images related to dementia by means of an inductive framing analysis. The sample is composed of newspaper articles from six Belgian newspapers (2008-2010) and a convenience sample of popular images of the condition in movies, documentaries, literature and health care communications. The results demonstrate that the most dominant frame postulates that a human being is composed of two distinct parts: a material body and an immaterial mind. If this frame is used, the person with dementia ends up with no identity, which is in opposition to the Western ideals of personal self-fulfilment and individualism. For each dominant frame an alternative counter-frame is defined. It is concluded that the relative absence of counter-frames confirms the negative image of dementia. The inventory might be a help for caregivers and other professionals who want to evaluate their communication strategy. It is discussed that a more resolute use of counter-frames in communication about dementia might mitigate the stigma that surrounds dementia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Extremely low-frame-rate digital fluoroscopy in catheter ablation of atrial fibrillation: A comparison of 2 versus 4 frame rate.

    Science.gov (United States)

    Lee, Ji Hyun; Kim, Jun; Kim, Minsu; Hwang, Jongmin; Hwang, You Mi; Kang, Joon-Won; Nam, Gi-Byoung; Choi, Kee-Joon; Kim, You-Ho

    2017-06-01

    Despite the technological advance in 3-dimensional (3D) mapping, radiation exposure during catheter ablation of atrial fibrillation (AF) continues to be a major concern in both patients and physicians. Previous studies reported substantial radiation exposure (7369-8690 cGy cm) during AF catheter ablation with fluoroscopic settings of 7.5 frames per second (FPS) under 3D mapping system guidance. We evaluated the efficacy and safety of a low-frame-rate fluoroscopy protocol for catheter ablation for AF.Retrospective analysis of data on 133 patients who underwent AF catheter ablation with 3-D electro-anatomic mapping at our institute from January 2014 to May 2015 was performed. Since January 2014, fluoroscopy frame rate of 4-FPS was implemented at our institute, which was further decreased to 2-FPS in September 2014. We compared the radiation exposure quantified as dose area product (DAP) and effective dose (ED) between the 4-FPS (n = 57) and 2-FPS (n = 76) groups.The 4-FPS group showed higher median DAP (599.9 cGy cm; interquartile range [IR], 371.4-1337.5 cGy cm vs. 392.0 cGy cm; IR, 289.7-591.4 cGy cm; P FPS group. No major procedure-related complications such as cardiac tamponade were observed in either group. Over follow-up durations of 331 ± 197 days, atrial tachyarrhythmia recurred in 20 patients (35.1%) in the 4-FPS group and in 27 patients (35.5%) in the 2-FPS group (P = .96). Kaplan-Meier survival analysis revealed no significant different between the 2 groups (log rank, P = .25).In conclusion, both the 4-FPS and 2-FPS settings were feasible and emitted a relatively low level of radiation compared with that historically reported for DAP in a conventional fluoroscopy setting.

  11. Band registration of tuneable frame format hyperspectral UAV imagers in complex scenes

    Science.gov (United States)

    Honkavaara, Eija; Rosnell, Tomi; Oliveira, Raquel; Tommaselli, Antonio

    2017-12-01

    A recent revolution in miniaturised sensor technology has provided markets with novel hyperspectral imagers operating in the frame format principle. In the case of unmanned aerial vehicle (UAV) based remote sensing, the frame format technology is highly attractive in comparison to the commonly utilised pushbroom scanning technology, because it offers better stability and the possibility to capture stereoscopic data sets, bringing an opportunity for 3D hyperspectral object reconstruction. Tuneable filters are one of the approaches for capturing multi- or hyperspectral frame images. The individual bands are not aligned when operating a sensor based on tuneable filters from a mobile platform, such as UAV, because the full spectrum recording is carried out in the time-sequential principle. The objective of this investigation was to study the aspects of band registration of an imager based on tuneable filters and to develop a rigorous and efficient approach for band registration in complex 3D scenes, such as forests. The method first determines the orientations of selected reference bands and reconstructs the 3D scene using structure-from-motion and dense image matching technologies. The bands, without orientation, are then matched to the oriented bands accounting the 3D scene to provide exterior orientations, and afterwards, hyperspectral orthomosaics, or hyperspectral point clouds, are calculated. The uncertainty aspects of the novel approach were studied. An empirical assessment was carried out in a forested environment using hyperspectral images captured with a hyperspectral 2D frame format camera, based on a tuneable Fabry-Pérot interferometer (FPI) on board a multicopter and supported by a high spatial resolution consumer colour camera. A theoretical assessment showed that the method was capable of providing band registration accuracy better than 0.5-pixel size. The empirical assessment proved the performance and showed that, with the novel method, most parts of

  12. Development and Performance of Bechtel Nevada's Nine-Frame Camera System

    International Nuclear Information System (INIS)

    S. A. Baker; M. J. Griffith; J. L. Tybo

    2002-01-01

    Bechtel Nevada, Los Alamos Operations, has developed a high-speed, nine-frame camera system that records a sequence from a changing or dynamic scene. The system incorporates an electrostatic image tube with custom gating and deflection electrodes. The framing tube is shuttered with high-speed gating electronics, yielding frame rates of up to 5MHz. Dynamic scenes are lens-coupled to the camera, which contains a single photocathode gated on and off to control each exposure time. Deflection plates and drive electronics move the frames to different locations on the framing tube output. A single charge-coupled device (CCD) camera then records the phosphor image of all nine frames. This paper discusses setup techniques to optimize system performance. It examines two alternate philosophies for system configuration and respective performance results. We also present performance metrics for system evaluation, experimental results, and applications to four-frame cameras

  13. Rate-adaptive BCH coding for Slepian-Wolf coding of highly correlated sources

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Salmistraro, Matteo; Larsen, Knud J.

    2012-01-01

    This paper considers using BCH codes for distributed source coding using feedback. The focus is on coding using short block lengths for a binary source, X, having a high correlation between each symbol to be coded and a side information, Y, such that the marginal probability of each symbol, Xi in X......, given Y is highly skewed. In the analysis, noiseless feedback and noiseless communication are assumed. A rate-adaptive BCH code is presented and applied to distributed source coding. Simulation results for a fixed error probability show that rate-adaptive BCH achieves better performance than LDPCA (Low......-Density Parity-Check Accumulate) codes for high correlation between source symbols and the side information....

  14. Background suppression of infrared small target image based on inter-frame registration

    Science.gov (United States)

    Ye, Xiubo; Xue, Bindang

    2018-04-01

    We propose a multi-frame background suppression method for remote infrared small target detection. Inter-frame information is necessary when the heavy background clutters make it difficult to distinguish real targets and false alarms. A registration procedure based on points matching in image patches is used to compensate the local deformation of background. Then the target can be separated by background subtraction. Experiments show our method serves as an effective preliminary of target detection.

  15. High-Order Model and Dynamic Filtering for Frame Rate Up-Conversion.

    Science.gov (United States)

    Bao, Wenbo; Zhang, Xiaoyun; Chen, Li; Ding, Lianghui; Gao, Zhiyong

    2018-08-01

    This paper proposes a novel frame rate up-conversion method through high-order model and dynamic filtering (HOMDF) for video pixels. Unlike the constant brightness and linear motion assumptions in traditional methods, the intensity and position of the video pixels are both modeled with high-order polynomials in terms of time. Then, the key problem of our method is to estimate the polynomial coefficients that represent the pixel's intensity variation, velocity, and acceleration. We propose to solve it with two energy objectives: one minimizes the auto-regressive prediction error of intensity variation by its past samples, and the other minimizes video frame's reconstruction error along the motion trajectory. To efficiently address the optimization problem for these coefficients, we propose the dynamic filtering solution inspired by video's temporal coherence. The optimal estimation of these coefficients is reformulated into a dynamic fusion of the prior estimate from pixel's temporal predecessor and the maximum likelihood estimate from current new observation. Finally, frame rate up-conversion is implemented using motion-compensated interpolation by pixel-wise intensity variation and motion trajectory. Benefited from the advanced model and dynamic filtering, the interpolated frame has much better visual quality. Extensive experiments on the natural and synthesized videos demonstrate the superiority of HOMDF over the state-of-the-art methods in both subjective and objective comparisons.

  16. Wide-field time-correlated single photon counting (TCSPC) microscopy with time resolution below the frame exposure time

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M. [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Petrášek, Zdeněk [Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, D-82152 Martinsried (Germany); Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)

    2015-07-01

    Fast frame rate CMOS cameras in combination with photon counting intensifiers can be used for fluorescence imaging with single photon sensitivity at kHz frame rates. We show here how the phosphor decay of the image intensifier can be exploited for accurate timing of photon arrival well below the camera exposure time. This is achieved by taking ratios of the intensity of the photon events in two subsequent frames, and effectively allows wide-field TCSPC. This technique was used for measuring decays of ruthenium compound Ru(dpp) with lifetimes as low as 1 μs with 18.5 μs frame exposure time, including in living HeLa cells, using around 0.1 μW excitation power. We speculate that by using an image intensifier with a faster phosphor decay to match a higher camera frame rate, photon arrival time measurements on the nanosecond time scale could well be possible.

  17. TEKNIK ESTIMASI GERAK PENCARIAN PENUH DENGAN AKURASI SETENGAH PIKSEL UNTUK FRAME RATE UP CONVERSION VIDEO

    Directory of Open Access Journals (Sweden)

    ary satya prabhawa

    2014-10-01

    Full Text Available ABSTRAK Saat ini Teknologi video digital banyak digunakan pada aplikasi hiburan, contohnya adalah TV Digital dengan format HD. Dengan frame rate tinggi, pengkodean video akan menghasil laju bit lebih tinggi yaitu sampai 15 – 30 fps. Permasalahannya adalah kapasitas saluran transmisi memiliki kapasitas terbatas. Solusinya adalah menurunkan laju bit dengan menurunkan jumlah frame video ke penerima. Skema ini dikenal dengan Frame Rate Up-Conversion (FRUC video, dimana frame yang di encoder akan direkonstruksi kembali di decoder dengan membangkitkan frame intermediate (FI. FI dibangkitkan dengan teknik Motion Compensation Interpolation (MCI. Terkait dengan metode FRUC, penelitian ini mengajukan skema MCI unidirectional dengan pencarian gerak akurasi setengah piksel. Pada skema ini, sebuah motion vector (MV kandidat akan dicari di frame referensi, proses estimasi gerak dilakukan dengan menambah piksel sisipan diantara piksel eksisting. Sasarannya adalah meningkatkan akurasi MV kandidat. Hasil simulasi menunjukkan bahwa metode yang diajukan lebih baik sampai sebesar masing – masing 3,21 dB dan 3,11 dB pada wilayah pencarian 7 dan 15 piksel dibandingkan dengan metode frame repetition untuk sekuen video foreman dan hall monitor.

  18. Stroboscopic image capture: Reducing the dose per frame by a factor of 30 does not prevent beam-induced specimen movement in paraffin

    International Nuclear Information System (INIS)

    Typke, Dieter; Gilpin, Christopher J.; Downing, Kenneth H.; Glaeser, Robert M.

    2007-01-01

    Beam-induced specimen movement may be the major factor that limits the quality of high-resolution images of organic specimens. One of the possible measures to improve the situation that was proposed by Henderson and Glaeser [Ultramicroscopy 16 (1985) 139-150], which we refer to here as 'stroboscopic image capture', is to divide the normal exposure into many successive frames, thus reducing the amount of electron exposure-and possibly the amount of beam-induced movement-per frame. The frames would then be aligned and summed. We have performed preliminary experiments on stroboscopic imaging using a 200-kV electron microscope that was equipped with a high dynamic range Charge-coupled device (CCD) camera for image recording and a liquid N 2 -cooled cryoholder. Single-layer paraffin crystals on carbon film were used as a test specimen. The ratio F(g)/F(0) of paraffin reflections, calculated from the images, serves as our criterion for the image quality. In the series that were evaluated, no significant improvement of the F image (g)/F image (0) ratio was found, even though the electron exposure per frame was reduced by a factor of 30. A frame-to-frame analysis of image distortions showed that considerable beam-induced movement had still occurred during each frame. In addition, the paraffin crystal lattice was observed to move relative to the supporting carbon film, a fact that cannot be explained as being an electron-optical effect caused by specimen charging. We conclude that a significant further reduction of the dose per frame (than was possible with this CCD detector) will be needed in order to test whether the frame-to-frame changes ultimately become small enough for stroboscopic image capture to show its potential

  19. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.

    Science.gov (United States)

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-10-17

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Image fusion and denoising using fractional-order gradient information

    DEFF Research Database (Denmark)

    Mei, Jin-Jin; Dong, Yiqiu; Huang, Ting-Zhu

    Image fusion and denoising are significant in image processing because of the availability of multi-sensor and the presence of the noise. The first-order and second-order gradient information have been effectively applied to deal with fusing the noiseless source images. In this paper, due to the adv...... show that the proposed method outperforms the conventional total variation in methods for simultaneously fusing and denoising....

  1. Accelerated Computing in Magnetic Resonance Imaging: Real-Time Imaging Using Nonlinear Inverse Reconstruction

    Directory of Open Access Journals (Sweden)

    Sebastian Schaetz

    2017-01-01

    Full Text Available Purpose. To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs in magnetic resonance imaging (MRI and to exemplarily report on our experience with a highly accelerated implementation of the nonlinear inversion (NLINV algorithm for dynamic MRI with high frame rates. Methods. The NLINV algorithm is optimized and ported to run on a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results. The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion. Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs, it is possible to achieve online image reconstruction with high frame rates.

  2. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Science.gov (United States)

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-05-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography.

  3. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.

  4. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  5. Video frame processor

    International Nuclear Information System (INIS)

    Joshi, V.M.; Agashe, Alok; Bairi, B.R.

    1993-01-01

    This report provides technical description regarding the Video Frame Processor (VFP) developed at Bhabha Atomic Research Centre. The instrument provides capture of video images available in CCIR format. Two memory planes each with a capacity of 512 x 512 x 8 bit data enable storage of two video image frames. The stored image can be processed on-line and on-line image subtraction can also be carried out for image comparisons. The VFP is a PC Add-on board and is I/O mapped within the host IBM PC/AT compatible computer. (author). 9 refs., 4 figs., 19 photographs

  6. Throughput Estimation Method in Burst ACK Scheme for Optimizing Frame Size and Burst Frame Number Appropriate to SNR-Related Error Rate

    Science.gov (United States)

    Ohteru, Shoko; Kishine, Keiji

    The Burst ACK scheme enhances effective throughput by reducing ACK overhead when a transmitter sends sequentially multiple data frames to a destination. IEEE 802.11e is one such example. The size of the data frame body and the number of burst data frames are important burst transmission parameters that affect throughput. The larger the burst transmission parameters are, the better the throughput under error-free conditions becomes. However, large data frame could reduce throughput under error-prone conditions caused by signal-to-noise ratio (SNR) deterioration. If the throughput can be calculated from the burst transmission parameters and error rate, the appropriate ranges of the burst transmission parameters could be narrowed down, and the necessary buffer size for storing transmit data or received data temporarily could be estimated. In this paper, we present a method that features a simple algorithm for estimating the effective throughput from the burst transmission parameters and error rate. The calculated throughput values agree well with the measured ones for actual wireless boards based on the IEEE 802.11-based original MAC protocol. We also calculate throughput values for larger values of the burst transmission parameters outside the assignable values of the wireless boards and find the appropriate values of the burst transmission parameters.

  7. Filtering SVM frame-by-frame binary classification in a detection framework

    NARCIS (Netherlands)

    Betancourt Arango, A.; Morerio, P.; Marcenaro, L.; Rauterberg, G.W.M.; Regazzoni, C.S.

    2015-01-01

    Classifying frames, or parts of them, is a common way of carrying out detection tasks in computer vision. However, frame by frame classification suffers from sudden significant variations in image texture, colour and luminosity, resulting in noise in the extracted features and consequently in the

  8. Frame by Frame II: A Filmography of the African American Image, 1978-1994.

    Science.gov (United States)

    Klotman, Phyllis R.; Gibson, Gloria J.

    A reference guide on African American film professionals, this book is a companion volume to the earlier "Frame by Frame I." It focuses on giving credit to African Americans who have contributed their talents to a film industry that has scarcely recognized their contributions, building on the aforementioned "Frame by Frame I,"…

  9. Complex pulsing schemes for high frame rate imaging

    DEFF Research Database (Denmark)

    Misaridis, Thanassis; Fink, Mathias; Jensen, Jørgen Arendt

    2002-01-01

    up to a pulse train. The acoustically generated high time-bandwidth (TB) product waveforms can be compressed by using a filter bank of matched filters one for every beam direction. Matched filtering compresses the pulse train to a single pulse at the scatterer position plus a number of spike axial...... with linear frequency modulation along the transducer elements, that cover the 70% fractional bandwidth of the 7 MHz transducer. The resulted images (after beamforming and matched filtering) show an axial resolution at the same order as in conventional pulse excitation and axial sidelobes down to -45 d...

  10. MHz rate X-Ray imaging with GaAs:Cr sensors using the LPD detector system

    Science.gov (United States)

    Veale, M. C.; Booker, P.; Cline, B.; Coughlan, J.; Hart, M.; Nicholls, T.; Schneider, A.; Seller, P.; Pape, I.; Sawhney, K.; Lozinskaya, A. D.; Novikov, V. A.; Tolbanov, O. P.; Tyazhev, A.; Zarubin, A. N.

    2017-02-01

    The STFC Rutherford Appleton Laboratory (U.K.) and Tomsk State University (Russia) have been working together to develop and characterise detector systems based on chromium-compensated gallium arsenide (GaAs:Cr) semiconductor material for high frame rate X-ray imaging. Previous work has demonstrated the spectroscopic performance of the material and its resistance to damage induced by high fluxes of X-rays. In this paper, recent results from experiments at the Diamond Light Source Synchrotron have demonstrated X-ray imaging with GaAs:Cr sensors at a frame rate of 3.7 MHz using the Large Pixel Detector (LPD) ASIC, developed by STFC for the European XFEL. Measurements have been made using a monochromatic 20 keV X-ray beam delivered in a single hybrid pulse with an instantenous flux of up to ~ 1 × 1010 photons s-1 mm-2. The response of 500 μm GaAs:Cr sensors is compared to that of the standard 500 μm thick LPD Si sensors.

  11. An application specific integrated circuit and data acquisition system for digital X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beuville, E.; Cederstroem, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J. [Lawrence Berkeley National Lab., CA (United States)

    1998-04-01

    We have developed an application specific integrated circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications. (orig.). 11 refs.

  12. An application specific integrated circuit and data acquisition system for digital X-ray imaging

    International Nuclear Information System (INIS)

    Beuville, E.; Cederstroem, B.; Danielsson, M.; Luo, L.; Nygren, D.; Oltman, E.; Vestlund, J.

    1998-01-01

    We have developed an application specific integrated circuit (ASIC) and data acquisition system for digital X-ray imaging. The chip consists of 16 parallel channels, each containing preamplifier, shaper, comparator and a 16 bit counter. We have demonstrated noiseless single-photon counting over a threshold of 7.2 keV using Silicon detectors and are presently capable of maximum counting rates of 2 MHz per channel. The ASIC is controlled by a personal computer through a commercial PCI card, which is also used for data acquisition. The content of the 16 bit counters are loaded into a shift register and transferred to the PC at any time at a rate of 20 MHz. The system is non-complicated, low cost and high performance and is optimised for digital X-ray imaging applications. (orig.)

  13. Motion compensated frame interpolation with a symmetric optical flow constraint

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau; Roholm, Lars; Bruhn, Andrés

    2012-01-01

    We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function such that ......We consider the problem of interpolating frames in an image sequence. For this purpose accurate motion estimation can be very helpful. We propose to move the motion estimation from the surrounding frames directly to the unknown frame by parametrizing the optical flow objective function...... methods. The proposed reparametrization is generic and can be applied to almost every existing algorithm. In this paper we illustrate its advantages by considering the classic TV-L1 optical flow algorithm as a prototype. We demonstrate that this widely used method can produce results that are competitive...... with current state-of-the-art methods. Finally we show that the scheme can be implemented on graphics hardware such that it be- comes possible to double the frame rate of 640 × 480 video footage at 30 fps, i.e. to perform frame doubling in realtime....

  14. High image quality sub 100 picosecond gated framing camera development

    International Nuclear Information System (INIS)

    Price, R.H.; Wiedwald, J.D.

    1983-01-01

    A major challenge for laser fusion is the study of the symmetry and hydrodynamic stability of imploding fuel capsules. Framed x-radiographs of 10-100 ps duration, excellent image quality, minimum geometrical distortion (< 1%), dynamic range greater than 1000, and more than 200 x 200 pixels are required for this application. Recent progress on a gated proximity focused intensifier which meets these requirements is presented

  15. Seismic Load Rating Procedure for Welded Steel Frames Oligo-cyclic Fatigue

    International Nuclear Information System (INIS)

    Ratiu, Mircea D.; Moisidis, Nicolae T.

    2004-01-01

    A dynamic load rating approach for seismic qualification of cold-formed steel welded frames is presented. Allowable seismic loads are developed from cyclic and monotonic tests of standard cold-formed steel components commonly used for piping and electrical raceway supports. The method permits simplified qualification of all connections of frame components through a single load comparison. Test input consists of rotation/cycles-to-failure data and monotonic moment/rotation data. Cyclic data are statistically evaluated to determine an acceptable maximum seismic rotation for the connection. The allowable seismic load is determined from the corresponding static rotation. Application to seismic qualification procedures is discussed. (authors)

  16. Measuring radiation environment in LHC or anywhere else, on your computer screen with Medipix

    Energy Technology Data Exchange (ETDEWEB)

    Heijne, Erik H.M., E-mail: erik.heijne@cern.ch [CERN, CH1211 Geneva23 (Switzerland); Institute of Experimental and Applied Physics, Czech Technical University in Prague (Czech Republic); Ballabriga Sune, Rafael; Campbell, Michael [CERN, CH1211 Geneva23 (Switzerland); Leroy, Claude [Université de Montréal (Canada); Llopart, Xavier [CERN, CH1211 Geneva23 (Switzerland); Martin, Jean-Pierre [Université de Montréal (Canada); Pospisil, Stanislav; Solc, Jaroslav [Institute of Experimental and Applied Physics, Czech Technical University in Prague (Czech Republic); Soueid, Paul [Université de Montréal (Canada); Suk, Michal [Institute of Experimental and Applied Physics, Czech Technical University in Prague (Czech Republic); Tlustos, Lukas [CERN, CH1211 Geneva23 (Switzerland); Turecek, Daniel; Vykydal, Zdenek [Institute of Experimental and Applied Physics, Czech Technical University in Prague (Czech Republic); Wong, Winnie [CERN, CH1211 Geneva23 (Switzerland)

    2013-01-21

    The Medipix family of chips use on-pixel pulse processing front-ends, digitization and counters to produce images of radiation. The devices have been derived from developments for the Large Hadron Collider (LHC) physics experiments at CERN. With the miniaturization of the associated readout system a new method of dosimetry becomes accessible, where single radiation quanta are detected and imaged. Several examples of dose measurements at highly differing dose rates are presented here: monitoring of background radiation on earth, in a flying airplane and in the ATLAS experiment at LHC. During proton collision runs as well as during the stops of the accelerator the dose can be measured, including characterization of different types of radiation. Thanks to the noiseless method of quantum imaging dosimetry, a large dynamic range can be achieved, employing only this single device. The dose rate extends from recording only a few quanta in hours, up to hundreds of quanta recorded in a fraction of a ms. With complementary methods for the analysis of the exposed image frames, one can cover 14 orders of magnitude.

  17. Frame sequences analysis technique of linear objects movement

    Science.gov (United States)

    Oshchepkova, V. Y.; Berg, I. A.; Shchepkin, D. V.; Kopylova, G. V.

    2017-12-01

    Obtaining data by noninvasive methods are often needed in many fields of science and engineering. This is achieved through video recording in various frame rate and light spectra. In doing so quantitative analysis of movement of the objects being studied becomes an important component of the research. This work discusses analysis of motion of linear objects on the two-dimensional plane. The complexity of this problem increases when the frame contains numerous objects whose images may overlap. This study uses a sequence containing 30 frames at the resolution of 62 × 62 pixels and frame rate of 2 Hz. It was required to determine the average velocity of objects motion. This velocity was found as an average velocity for 8-12 objects with the error of 15%. After processing dependencies of the average velocity vs. control parameters were found. The processing was performed in the software environment GMimPro with the subsequent approximation of the data obtained using the Hill equation.

  18. Videopanorama Frame Rate Requirements Derived from Visual Discrimination of Deceleration During Simulated Aircraft Landing

    Science.gov (United States)

    Furnstenau, Norbert; Ellis, Stephen R.

    2015-01-01

    In order to determine the required visual frame rate (FR) for minimizing prediction errors with out-the-window video displays at remote/virtual airport towers, thirteen active air traffic controllers viewed high dynamic fidelity simulations of landing aircraft and decided whether aircraft would stop as if to be able to make a turnoff or whether a runway excursion would be expected. The viewing conditions and simulation dynamics replicated visual rates and environments of transport aircraft landing at small commercial airports. The required frame rate was estimated using Bayes inference on prediction errors by linear FRextrapolation of event probabilities conditional on predictions (stop, no-stop). Furthermore estimates were obtained from exponential model fits to the parametric and non-parametric perceptual discriminabilities d' and A (average area under ROC-curves) as dependent on FR. Decision errors are biased towards preference of overshoot and appear due to illusionary increase in speed at low frames rates. Both Bayes and A - extrapolations yield a framerate requirement of 35 game scores the model based d'(FR)-extrapolation exhibits the best agreement and indicates even higher FRmin > 40 Hz for minimizing decision errors. Definitive recommendations require further experiments with FR > 30 Hz.

  19. High frame-rate neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Bossi, R.H.; Robinson, A.H.; Barton, J.P.

    1981-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames/second. Synchronization has provided high-speed-motion neutron radiographs for evaluation of the firing cycle of 7.62 mm munition rounds within a steel rifle barrel. The system has also been used to demonstrate the ability to produce neutron radiographic movies of two-phase flow. The equipment uses the Oregon State University TRIGA reactor capable of pulsing to 3000 MW peak power, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16 mm high speed movie camera. The peak neutron flux incident at the object position is approximately 4 x 10 11 n/cm 2 s with a pulse, full width at half maximum, of 9 ms. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on the image quality. Modulation transfer function analysis has been used to assist in the evaluation of the system performance

  20. High frame-rate neutron radiography of dynamic events

    International Nuclear Information System (INIS)

    Bossi, R.H.; Robinson, A.H.; Barton, J.P.

    1983-01-01

    A system has been developed to perform neutron radiographic analysis of dynamic events having a duration of several milliseconds. The system has been operated in the range of 2000 to 10,000 frames/second. Synchronization has provided high-speed-motion neutron radiographs for evaluation of the firing cycle of 7.62 mm munition rounds within a steel rifle barrel. The system has also been used to demonstrate the ability to produce neutron radiographic movies of two phase flow. The equipment uses the Oregon State University TRIGA reactor capable of pulsing to 3000 MW peak power, a neutron beam collimator, a scintillator neutron conversion screen coupled to an image intensifier, and a 16 mm high speed movie camera. The peak neutron flux incident at the object position is approximately 4 x 10 11 n/cm 2 s with a pulse, full width at half maximum, of 9 ms. Special studies have been performed on the scintillator conversion screens and on the effects of statistical limitations on the image quality. Modulation transfer function analysis has been used to assist in the evaluation of the system performance. (Auth.)

  1. Efficient Photometry In-Frame Calibration (EPIC) Gaussian Corrections for Automated Background Normalization of Rate-Tracked Satellite Imagery

    Science.gov (United States)

    Griesbach, J.; Wetterer, C.; Sydney, P.; Gerber, J.

    Photometric processing of non-resolved Electro-Optical (EO) images has commonly required the use of dark and flat calibration frames that are obtained to correct for charge coupled device (CCD) dark (thermal) noise and CCD quantum efficiency/optical path vignetting effects respectively. It is necessary to account/calibrate for these effects so that the brightness of objects of interest (e.g. stars or resident space objects (RSOs)) may be measured in a consistent manner across the CCD field of view. Detected objects typically require further calibration using aperture photometry to compensate for sky background (shot noise). For this, annuluses are measured around each detected object whose contained pixels are used to estimate an average background level that is subtracted from the detected pixel measurements. In a new photometric calibration software tool developed for AFRL/RD, called Efficient Photometry In-Frame Calibration (EPIC), an automated background normalization technique is proposed that eliminates the requirement to capture dark and flat calibration images. The proposed technique simultaneously corrects for dark noise, shot noise, and CCD quantum efficiency/optical path vignetting effects. With this, a constant detection threshold may be applied for constant false alarm rate (CFAR) object detection without the need for aperture photometry corrections. The detected pixels may be simply summed (without further correction) for an accurate instrumental magnitude estimate. The noise distribution associated with each pixel is assumed to be sampled from a Poisson distribution. Since Poisson distributed data closely resembles Gaussian data for parameterized means greater than 10, the data may be corrected by applying bias subtraction and standard-deviation division. EPIC performs automated background normalization on rate-tracked satellite images using the following technique. A deck of approximately 50-100 images is combined by performing an independent median

  2. Temporal framing and the hidden-zero effect: rate-dependent outcomes on delay discounting.

    Science.gov (United States)

    Naudé, Gideon P; Kaplan, Brent A; Reed, Derek D; Henley, Amy J; DiGennaro Reed, Florence D

    2018-05-01

    Recent research suggests that presenting time intervals as units (e.g., days) or as specific dates, can modulate the degree to which humans discount delayed outcomes. Another framing effect involves explicitly stating that choosing a smaller-sooner reward is mutually exclusive to receiving a larger-later reward, thus presenting choices as an extended sequence. In Experiment 1, participants (N = 201) recruited from Amazon Mechanical Turk completed the Monetary Choice Questionnaire in a 2 (delay framing) by 2 (zero framing) design. Regression suggested a main effect of delay, but not zero, framing after accounting for other demographic variables and manipulations. We observed a rate-dependent effect for the date-framing group, such that those with initially steep discounting exhibited greater sensitivity to the manipulation than those with initially shallow discounting. Subsequent analyses suggest these effects cannot be explained by regression to the mean. Experiment 2 addressed the possibility that the null effect of zero framing was due to within-subject exposure to the hidden- and explicit-zero conditions. A new Amazon Mechanical Turk sample completed the Monetary Choice Questionnaire in either hidden- or explicit-zero formats. Analyses revealed a main effect of reward magnitude, but not zero framing, suggesting potential limitations to the generality of the hidden-zero effect. © 2018 Society for the Experimental Analysis of Behavior.

  3. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging.

    Science.gov (United States)

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R

    2017-11-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.

  4. Fast Plane Wave Imaging

    DEFF Research Database (Denmark)

    Jensen, Jonas

    This PhD project investigates and further develops methods for ultrasound plane wave imaging and blood flow estimation with the objective of overcoming some of the major limitations in conventional ultrasound systems, which are related to low frame rates and only estimation of velocities along...... the ultrasound beam. The first part of the contribution investigates the compromise between frame rate and plane wave image quality including the influence of grating lobes from a λ-pitch transducer. A method for optimizing the image quality is suggested, and it is shown that the frame rate can be increased...... healthy volunteers. Complex flow patterns were measured in an anthropomorphic flow phantom and showed good agreement with the velocity field simulated using computational fluid dynamics. The last part of the contribution investigates two clinical applications. Plane wave imaging was used for slow velocity...

  5. An analysis of radiation dose reduction in paediatric interventional cardiology by altering frame rate and use of the anti-scatter grid

    International Nuclear Information System (INIS)

    McFadden, S L; Hughes, C M; Winder, Robert J; Mooney, R B

    2013-01-01

    The purpose of this work is to investigate removal of the anti-scatter grid and alteration of the frame rate in paediatric interventional cardiology (IC) and assess the impact on radiation dose and image quality. Phantom based experimental studies were performed in a dedicated cardiac catheterisation suite to investigate variations in radiation dose and image quality, with various changes in imaging parameters. Phantom based experimental studies employing these variations in technique identified that radiation dose reductions of 28%–49% can be made to the patient with minimal loss of image quality in smaller sized patients. At present, there is no standard technique for carrying out paediatric IC in the UK or Ireland, resulting in the potential for a wide variation in radiation dose. Dose reductions to patients can be achieved with slight alterations to the imaging equipment with minimal compromise to the image quality. These simple modifications can be easily implemented in clinical practice in IC centres. (paper)

  6. Framing-camera tube developed for sub-100-ps range

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    A new framing-camera tube, developed by Electronics Engineering, is capable of recording two-dimensional image frames with high spatial resolution in the sub-100-ps range. Framing is performed by streaking a two-dimensional electron image across narrow slits; the resulting electron-line images from the slits are restored into a framed image by a restorer deflector operating synchronously with the dissector deflector. We have demonstrated its performance in a prototype tube by recording 125-ps-duration framed images of 2.5-mm patterns. The limitation in the framing speed is in the external electronic drivers for the deflectors and not in the tube design characteristics. Shorter frame durations (below 100 ps) can be obtained by use of faster deflection drivers

  7. The effect of frame rate on the ability of experienced gait analysts to identify characteristics of gait from closed circuit television footage.

    Science.gov (United States)

    Birch, Ivan; Vernon, Wesley; Burrow, Gordon; Walker, Jeremy

    2014-03-01

    Forensic gait analysis is increasingly being used as part of criminal investigations. A major issue is the quality of the closed circuit television (CCTV) footage used, particularly the frame rate which can vary from 25 frames per second to one frame every 4s. To date, no study has investigated the effect of frame rate on forensic gait analysis. A single subject was fitted with an ankle foot orthosis and recorded walking at 25 frames per second. 3D motion data were also collected, providing an absolute assessment of the gait characteristics. The CCTV footage was then edited to produce a set of eight additional pieces of footage, at various frame rates. Practitioners with knowledge of forensic gait analysis were recruited and instructed to record their observations regarding the characteristics of the subject's gait from the footage. They were sequentially sent web links to the nine pieces of footage, lowest frame rate first, and a simple observation recording form, over a period of 8 months. A sample-based Pearson product-moment correlation analysis of the results demonstrated a significant positive relationship between frame rate and scores (r=0.868, p=0.002). The results of this study show that frame rate affects the ability of experienced practitioners to identify characteristics of gait captured on CCTV footage. Every effort should therefore be made to ensure that CCTV footage likely to be used in criminal proceedings is captured at as high a frame rate as possible. © 2013.

  8. Measuring body layer vibration of vocal folds by high-frame-rate ultrasound synchronized with a modified electroglottograph.

    Science.gov (United States)

    Tang, Shanshan; Zhang, Yuanyuan; Qin, Xulei; Wang, Supin; Wan, Mingxi

    2013-07-01

    The body-cover concept suggests that the vibration of body layer is an indispensable component of vocal fold vibration. To quantify this vibration, a synchronized system composed of a high-frame-rate ultrasound and a modified electroglottograph (EGG) was employed in this paper to simultaneously image the body layer vibration and record the vocal fold vibration phase information during natural phonations. After data acquisition, the displacements of in vivo body layer vibrations were measured from the ultrasonic radio frequency data, and the temporal reconstruction method was used to enhance the measurement accuracy. Results showed that the modified EGG, the waveform and characteristic points of which were identical to the conventional EGG, resolved the position conflict between the ultrasound transducer and EGG electrodes. The location and range of the vibrating body layer in the estimated displacement image were more clear and discernible than in the ultrasonic B-mode image. Quantitative analysis for vibration features of the body layer demonstrated that the body layer moved as a unit in the superior-inferior direction during the phonation of normal chest registers.

  9. SU-F-J-96: Comparison of Frame-Based and Mutual Information Registration Techniques for CT and MR Image Sets

    Energy Technology Data Exchange (ETDEWEB)

    Popple, R; Bredel, M; Brezovich, I; Dobelbower, M; Fisher, W; Fiveash, J; Guthrie, B; Riley, K; Wu, X [The University of Alabama at Birmingham, Birmingham, AL (United States)

    2016-06-15

    Purpose: To compare the accuracy of CT-MR registration using a mutual information method with registration using a frame-based localizer box. Methods: Ten patients having the Leksell head frame and scanned with a modality specific localizer box were imported into the treatment planning system. The fiducial rods of the localizer box were contoured on both the MR and CT scans. The skull was contoured on the CT images. The MR and CT images were registered by two methods. The frame-based method used the transformation that minimized the mean square distance of the centroids of the contours of the fiducial rods from a mathematical model of the localizer. The mutual information method used automated image registration tools in the TPS and was restricted to a volume-of-interest defined by the skull contours with a 5 mm margin. For each case, the two registrations were adjusted by two evaluation teams, each comprised of an experienced radiation oncologist and neurosurgeon, to optimize alignment in the region of the brainstem. The teams were blinded to the registration method. Results: The mean adjustment was 0.4 mm (range 0 to 2 mm) and 0.2 mm (range 0 to 1 mm) for the frame and mutual information methods, respectively. The median difference between the frame and mutual information registrations was 0.3 mm, but was not statistically significant using the Wilcoxon signed rank test (p=0.37). Conclusion: The difference between frame and mutual information registration techniques was neither statistically significant nor, for most applications, clinically important. These results suggest that mutual information is equivalent to frame-based image registration for radiosurgery. Work is ongoing to add additional evaluators and to assess the differences between evaluators.

  10. A video event trigger for high frame rate, high resolution video technology

    Science.gov (United States)

    Williams, Glenn L.

    1991-12-01

    When video replaces film the digitized video data accumulates very rapidly, leading to a difficult and costly data storage problem. One solution exists for cases when the video images represent continuously repetitive 'static scenes' containing negligible activity, occasionally interrupted by short events of interest. Minutes or hours of redundant video frames can be ignored, and not stored, until activity begins. A new, highly parallel digital state machine generates a digital trigger signal at the onset of a video event. High capacity random access memory storage coupled with newly available fuzzy logic devices permits the monitoring of a video image stream for long term or short term changes caused by spatial translation, dilation, appearance, disappearance, or color change in a video object. Pretrigger and post-trigger storage techniques are then adaptable for archiving the digital stream from only the significant video images.

  11. Achievable Performance of Zero-Delay Variable-Rate Coding in Rate-Constrained Networked Control Systems with Channel Delay

    DEFF Research Database (Denmark)

    Barforooshan, Mohsen; Østergaard, Jan; Stavrou, Fotios

    2017-01-01

    This paper presents an upper bound on the minimum data rate required to achieve a prescribed closed-loop performance level in networked control systems (NCSs). The considered feedback loop includes a linear time-invariant (LTI) plant with single measurement output and single control input. Moreover......, in this NCS, a causal but otherwise unconstrained feedback system carries out zero-delay variable-rate coding, and control. Between the encoder and decoder, data is exchanged over a rate-limited noiseless digital channel with a known constant time delay. Here we propose a linear source-coding scheme...

  12. Theoretical analysis of an ideal noiseless linear amplifier for Einstein–Podolsky–Rosen entanglement distillation

    International Nuclear Information System (INIS)

    Bernu, J; Armstrong, S; Symul, T; Lam, P K; Ralph, T C

    2014-01-01

    We study the operational regime of a noiseless linear amplifier (NLA) based on quantum scissors that can nondeterministically amplify the one photon component of a quantum state with weak excitation. It has been shown that an arbitrarily large quantum state can be amplified by first splitting it into weak excitation states using a network of beamsplitters. The output states of the network can then be coherently recombined. In this paper, we analyse the performance of such a device for distilling entanglement after transmission through a lossy quantum channel, and look at two measures to determine the efficacy of the NLA. The measures used are the amount of entanglement achievable and the final purity of the output amplified entangled state. We study the performances of both a single and a two-element NLA for amplifying weakly excited states. Practically, we show that it may be advantageous to work with a limited number of stages. (paper)

  13. Ceres Photometry and Albedo from Dawn Framing Camera Images

    Science.gov (United States)

    Schröder, S. E.; Mottola, S.; Keller, H. U.; Li, J.-Y.; Matz, K.-D.; Otto, K.; Roatsch, T.; Stephan, K.; Raymond, C. A.; Russell, C. T.

    2015-10-01

    The Dawn spacecraft is in orbit around dwarf planet Ceres. The onboard Framing Camera (FC) [1] is mapping the surface through a clear filter and 7 narrow-band filters at various observational geometries. Generally, Ceres' appearance in these images is affected by shadows and shading, effects which become stronger for larger solar phase angles, obscuring the intrinsic reflective properties of the surface. By means of photometric modeling we attempt to remove these effects and reconstruct the surface albedo over the full visible wavelength range. Knowledge of the albedo distribution will contribute to our understanding of the physical nature and composition of the surface.

  14. A neuroimaging investigation of attribute framing and individual differences

    Science.gov (United States)

    Murch, Kevin B.

    2014-01-01

    Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. PMID:23988759

  15. SU-E-J-58: Comparison of Conformal Tracking Methods Using Initial, Adaptive and Preceding Image Frames for Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Teo, P; Guo, K; Alayoubi, N; Kehler, K; Pistorius, S [CancerCare Manitoba, Winnipeg, MB (Canada)

    2015-06-15

    Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions of a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for

  16. SU-E-J-58: Comparison of Conformal Tracking Methods Using Initial, Adaptive and Preceding Image Frames for Image Registration

    International Nuclear Information System (INIS)

    Teo, P; Guo, K; Alayoubi, N; Kehler, K; Pistorius, S

    2015-01-01

    Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions of a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for

  17. A Big Data Analytics Pipeline for the Analysis of TESS Full Frame Images

    Science.gov (United States)

    Wampler-Doty, Matthew; Pierce Doty, John

    2015-12-01

    We present a novel method for producing a catalogue of extra-solar planets and transients using the full frame image data from TESS. Our method involves (1) creating a fast Monte Carlo simulation of the TESS science instruments, (2) using the simulation to create a labeled dataset consisting of exoplanets with various orbital durations as well as transients (such as tidal disruption events), (3) using supervised machine learning to find optimal matched filters, Support Vector Machines (SVMs) and statistical classifiers (i.e. naïve Bayes and Markov Random Fields) to detect astronomical objects of interest and (4) “Big Data” analysis to produce a catalogue based on the TESS data. We will apply the resulting methods to all stars in the full frame images. We hope that by providing libraries that conform to industry standards of Free Open Source Software we may invite researchers from the astronomical community as well as the wider data-analytics community to contribute to our effort.

  18. Accelerated high-frame-rate mouse heart cine-MRI using compressed sensing reconstruction

    NARCIS (Netherlands)

    Motaal, Abdallah G.; Coolen, Bram F.; Abdurrachim, Desiree; Castro, Rui M.; Prompers, Jeanine J.; Florack, Luc M. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2013-01-01

    We introduce a new protocol to obtain very high-frame-rate cinematographic (Cine) MRI movies of the beating mouse heart within a reasonable measurement time. The method is based on a self-gated accelerated fast low-angle shot (FLASH) acquisition and compressed sensi ng reconstruction. Key to our

  19. Recursive Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Gammelmark, Kim; Jensen, Jørgen Arendt

    1999-01-01

    This paper presents a new imaging method, applicable for both 2D and 3D imaging. It is based on Synthetic Transmit Aperture Focusing, but unlike previous approaches a new frame is created after every pulse emission. The elements from a linear transducer array emit pulses one after another. The same...... transducer element is used after N-xmt emissions. For each emission the signals from the individual elements are beam-formed in parallel for all directions in the image. A new frame is created by adding the new RF lines to the RF lines from the previous frame. The RF data recorded at the previous emission...... with the same element are subtracted. This yields a new image after each pulse emission and can give a frame rate of e.g. 5000 images/sec. The paper gives a derivation of the recursive imaging technique and compares simulations for fast B-mode imaging with measurements. A low value of N-xmt is necessary...

  20. Mars Science Laboratory Frame Manager for Centralized Frame Tree Database and Target Pointing

    Science.gov (United States)

    Kim, Won S.; Leger, Chris; Peters, Stephen; Carsten, Joseph; Diaz-Calderon, Antonio

    2013-01-01

    The FM (Frame Manager) flight software module is responsible for maintaining the frame tree database containing coordinate transforms between frames. The frame tree is a proper tree structure of directed links, consisting of surface and rover subtrees. Actual frame transforms are updated by their owner. FM updates site and saved frames for the surface tree. As the rover drives to a new area, a new site frame with an incremented site index can be created. Several clients including ARM and RSM (Remote Sensing Mast) update their related rover frames that they own. Through the onboard centralized FM frame tree database, client modules can query transforms between any two frames. Important applications include target image pointing for RSM-mounted cameras and frame-referenced arm moves. The use of frame tree eliminates cumbersome, error-prone calculations of coordinate entries for commands and thus simplifies flight operations significantly.

  1. Inter frame motion estimation and its application to image sequence compression: an introduction

    International Nuclear Information System (INIS)

    Cremy, C.

    1996-01-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs

  2. Towards Kilo-Hertz 6-DoF Visual Tracking Using an Egocentric Cluster of Rolling Shutter Cameras.

    Science.gov (United States)

    Bapat, Akash; Dunn, Enrique; Frahm, Jan-Michael

    2016-11-01

    To maintain a reliable registration of the virtual world with the real world, augmented reality (AR) applications require highly accurate, low-latency tracking of the device. In this paper, we propose a novel method for performing this fast 6-DOF head pose tracking using a cluster of rolling shutter cameras. The key idea is that a rolling shutter camera works by capturing the rows of an image in rapid succession, essentially acting as a high-frequency 1D image sensor. By integrating multiple rolling shutter cameras on the AR device, our tracker is able to perform 6-DOF markerless tracking in a static indoor environment with minimal latency. Compared to state-of-the-art tracking systems, this tracking approach performs at significantly higher frequency, and it works in generalized environments. To demonstrate the feasibility of our system, we present thorough evaluations on synthetically generated data with tracking frequencies reaching 56.7 kHz. We further validate the method's accuracy on real-world images collected from a prototype of our tracking system against ground truth data using standard commodity GoPro cameras capturing at 120 Hz frame rate.

  3. Multivariate wavelet frames

    CERN Document Server

    Skopina, Maria; Protasov, Vladimir

    2016-01-01

    This book presents a systematic study of multivariate wavelet frames with matrix dilation, in particular, orthogonal and bi-orthogonal bases, which are a special case of frames. Further, it provides algorithmic methods for the construction of dual and tight wavelet frames with a desirable approximation order, namely compactly supported wavelet frames, which are commonly required by engineers. It particularly focuses on methods of constructing them. Wavelet bases and frames are actively used in numerous applications such as audio and graphic signal processing, compression and transmission of information. They are especially useful in image recovery from incomplete observed data due to the redundancy of frame systems. The construction of multivariate wavelet frames, especially bases, with desirable properties remains a challenging problem as although a general scheme of construction is well known, its practical implementation in the multidimensional setting is difficult. Another important feature of wavelet is ...

  4. Toward a unified view of radiological imaging systems. Part II: Noisy images

    International Nuclear Information System (INIS)

    Wagner, R.F.

    1977-01-01

    ''The imaging process is fundamentally a sampling process.'' This philosophy of Otto Schade, utilizing the concepts of sample number and sampling aperture, is applied to a systems analysis of radiographic imaging, including some aspects of vision. It leads to a simple modification of the Rose statistical model; this results in excellent fits to the Blackwell data on the detectability of disks as a function of contrast and size. It gives a straightforward prescription for calculating a signal-to-noise ratio, which is applicable to the detection of low-contrast detail in screen--film imaging, including the effects of magnification. The model lies between the optimistic extreme of the Rose model and the pessimistic extreme of the Morgan model. For high-contrast detail, the rules for the evaluation of noiseless images are recovered

  5. A neuroimaging investigation of attribute framing and individual differences.

    Science.gov (United States)

    Murch, Kevin B; Krawczyk, Daniel C

    2014-10-01

    Functional magnetic resonance imaging was used to evaluate the neural basis of framing effects. We tested the reflexive and reflective systems model of social cognition as it relates to framing. We also examined the relationships among frame susceptibility, intelligence and personality measures. Participants evaluated whether personal attributes applied to themselves from multiple perspectives and in positive and negative frames. Participants rated whether each statement was descriptive or not and endorsed positive frames more than negative frames. Individual differences on frame decisions enabled us to form high and low frame susceptibility groups. Endorsement of frame-consistent attributes was associated with personality factors, cognitive reflection and intelligence. Reflexive brain regions were associated with positive frames while reflective areas were associated with negative frames. Region of Interest analyses showed that frame-inconsistent responses were associated with increased activation within reflective cognitive control regions including the left dorsolateral prefrontal cortex (PFC), dorsomedial PFC and left ventrolateral PFC. Frame-consistent responses were associated with increased activation in the right orbitofrontal cortex. These results demonstrate that individual differences in frame susceptibility influence personal attribute evaluations. Overall, this study clarifies the neural correlates of the reflective and reflexive systems of social cognition as applied to decisions about social attributions. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. High frame-rate TCSPC-FLIM using a novel SPAD-based image sensor

    NARCIS (Netherlands)

    Gersbach, M.; Trimananda, R.; Maruyama, Y.; Fishburn, M.; Cahrbon, E. et al

    2010-01-01

    Imaging techniques based on time-correlated single photon counting (TCSPC), such as fluorescence lifetime imaging microscopy (FLIM), rely on fast single-photon detectors as well as timing electronics in the form of time-to-digital or time-to-analog converters. Conventional systems rely on

  7. Multimodal news framing effects

    NARCIS (Netherlands)

    Powell, T.E.

    2017-01-01

    Visuals in news media play a vital role in framing citizens’ political preferences. Yet, compared to the written word, visual images are undervalued in political communication research. Using framing theory, this thesis redresses the balance by studying the combined, or multimodal, effects of visual

  8. Video-rate resonant scanning multiphoton microscopy: An emerging technique for intravital imaging of the tumor microenvironment.

    Science.gov (United States)

    Kirkpatrick, Nathaniel D; Chung, Euiheon; Cook, Daniel C; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L; Padera, Timothy P; Fukumura, Dai; Jain, Rakesh K

    2012-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates-only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment.

  9. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  10. Complementary frame reconstruction: a low-biased dynamic PET technique for low count density data in projection space

    International Nuclear Information System (INIS)

    Hong, Inki; Cho, Sanghee; Michel, Christian J; Casey, Michael E; Schaefferkoetter, Joshua D

    2014-01-01

    A new data handling method is presented for improving the image noise distribution and reducing bias when reconstructing very short frames from low count dynamic PET acquisition. The new method termed ‘Complementary Frame Reconstruction’ (CFR) involves the indirect formation of a count-limited emission image in a short frame through subtraction of two frames with longer acquisition time, where the short time frame data is excluded from the second long frame data before the reconstruction. This approach can be regarded as an alternative to the AML algorithm recently proposed by Nuyts et al, as a method to reduce the bias for the maximum likelihood expectation maximization (MLEM) reconstruction of count limited data. CFR uses long scan emission data to stabilize the reconstruction and avoids modification of algorithms such as MLEM. The subtraction between two long frame images, naturally allows negative voxel values and significantly reduces bias introduced in the final image. Simulations based on phantom and clinical data were used to evaluate the accuracy of the reconstructed images to represent the true activity distribution. Applicability to determine the arterial input function in human and small animal studies is also explored. In situations with limited count rate, e.g. pediatric applications, gated abdominal, cardiac studies, etc., or when using limited doses of short-lived isotopes such as 15 O-water, the proposed method will likely be preferred over independent frame reconstruction to address bias and noise issues. (paper)

  11. Real time three-dimensional space video rate sensors for millimeter waves imaging based very inexpensive plasma LED lamps

    Science.gov (United States)

    Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S.; Rozban, Daniel; Abramovich, Amir

    2014-10-01

    In recent years, much effort has been invested to develop inexpensive but sensitive Millimeter Wave (MMW) detectors that can be used in focal plane arrays (FPAs), in order to implement real time MMW imaging. Real time MMW imaging systems are required for many varied applications in many fields as homeland security, medicine, communications, military products and space technology. It is mainly because this radiation has high penetration and good navigability through dust storm, fog, heavy rain, dielectric materials, biological tissue, and diverse materials. Moreover, the atmospheric attenuation in this range of the spectrum is relatively low and the scattering is also low compared to NIR and VIS. The lack of inexpensive room temperature imaging systems makes it difficult to provide a suitable MMW system for many of the above applications. In last few years we advanced in research and development of sensors using very inexpensive (30-50 cents) Glow Discharge Detector (GDD) plasma indicator lamps as MMW detectors. This paper presents three kinds of GDD sensor based lamp Focal Plane Arrays (FPA). Those three kinds of cameras are different in the number of detectors, scanning operation, and detection method. The 1st and 2nd generations are 8 × 8 pixel array and an 18 × 2 mono-rail scanner array respectively, both of them for direct detection and limited to fixed imaging. The last designed sensor is a multiplexing frame rate of 16x16 GDD FPA. It permits real time video rate imaging of 30 frames/ sec and comprehensive 3D MMW imaging. The principle of detection in this sensor is a frequency modulated continuous wave (FMCW) system while each of the 16 GDD pixel lines is sampled simultaneously. Direct detection is also possible and can be done with a friendly user interface. This FPA sensor is built over 256 commercial GDD lamps with 3 mm diameter International Light, Inc., Peabody, MA model 527 Ne indicator lamps as pixel detectors. All three sensors are fully supported

  12. High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2015-01-01

    imaging refractometry without moving parts is presented. DFB dye lasers are low-cost and highly sensitive refractive index sensors. The unique multi-wavelength DFB laser structure presented here comprises several areas with different grating periods. Imaging in two dimensions of space is enabled...... by analyzing laser light from all areas in parallel with an imaging spectrometer. With this multi-resonance imaging refractometry method, the spatial position in one direction is identified from the horizontal, i.e., spectral position of the multiple laser lines which is obtained from the spectrometer charged...

  13. What's in a Frame?

    DEFF Research Database (Denmark)

    Holmgreen, Lise-Lotte

    Maintaining a good image and reputation in the eyes of stakeholders is vital to the organisation. Thus, in its corporate communication and discourse the organisation will seek to present or frame itself as favourably as possible while observing regulations stipulating accuracy and precision...... an organisation, and hence in shaping the image projected to the public. Framing is here understood as the selection of ‘some aspects of perceived reality … [making] them more salient in the communication text, in such a way as to promote a particular problem definition, causal interpretation, moral evaluation...

  14. An Algorithm-Independent Analysis of the Quality of Images Produced Using Multi-Frame Blind Deconvolution Algorithms--Conference Proceedings (Postprint)

    National Research Council Canada - National Science Library

    Matson, Charles; Haji, Alim

    2007-01-01

    Multi-frame blind deconvolution (MFBD) algorithms can be used to generate a deblurred image of an object from a sequence of short-exposure and atmospherically-blurred images of the object by jointly estimating the common object...

  15. Rate of alignment and communication using quantum systems in the absence of a shared frame of reference

    Science.gov (United States)

    Skotiniotis, Michael

    Quantum information theory is concerned with the storage, transmission, and manipulation of information that is represented in the degrees of freedom of quantum systems. These degrees of freedom are described relative to an external frame of reference. The lack of a requisite frame of reference imposes restrictions on the types of states quantum systems can be prepared in and the type of operations that can be performed on quantum systems. This thesis is concerned with the communication between two parties that lack a shared frame of reference. Specifically, I introduce a protocol whereby the parties can align their respective frames of reference, and a protocol for communicating quantum information in a reference frame independent manner. Using the accessible information to quantify the success of a reference frame alignment protocol I propose a new measure—the alignment rate—for quantifying the ability of a quantum state to stand in place of a classical frame of reference. I show that for the case where Alice and Bob lack a shared frame of reference associated with the groups G = U(1) and G = ZM (the finite cyclic group of M elements), the alignment rate is equal to the regularized, linearized G-asymmetry. The latter is a unique measure of the frameness of a quantum state and my result provides an operational interpretation of the G-asymmetry that was thus far lacking. In addition, I show that the alignment rate for finite cyclic groups of more than three elements is super-additive under the tensor product of two distinct pure quantum states. The latter is, to my knowledge, the first instance of a regularized quantity that exhibits super-additivity. In addition, I propose a reference-frame-independent protocol for communicating quantum information in the absence of a shared frame of reference associated with a general finite group G. The protocol transmits m logical qudits using r + m physical qudits prepared in a specific state that is reference-frame

  16. Happiness and Arousal: Framing Happiness as Arousing Results in Lower Happiness Ratings for Older Adults

    Directory of Open Access Journals (Sweden)

    Par eBjalkebring

    2015-06-01

    Full Text Available Older adults have been shown to describe their happiness as lower in arousal when compared to younger adults. In addition, older adults prefer low arousal positive emotions over high arousal positive emotions in their daily lives. We experimentally investigated whether or not changing a few words in the description of happiness could influence a person’s rating of their happiness. We randomly assigned 193 participants, aged 22-92 years, to one of three conditions (high arousal, low arousal, or control. In line with previous findings, we found that older participants rated their happiness lower when framed as high in arousal (i.e., ecstatic, to be bursting with positive emotions and rated their happiness higher when framed as low in arousal (i.e., satisfied, to have a life filled with positive emotions. Younger adults remained uninfluenced by the manipulation. Our study demonstrates that arousal is essential to understanding ratings of happiness, and gives support to the notion that there are age differences in the preference for arousal.

  17. Comparison and experimental validation of two potential resonant viscosity sensors in the kilohertz range

    International Nuclear Information System (INIS)

    Lemaire, Etienne; Caillard, Benjamin; Dufour, Isabelle; Heinisch, Martin; Jakoby, Bernhard

    2013-01-01

    Oscillating microstructures are well established and find application in many fields. These include force sensors, e.g. AFM micro-cantilevers or accelerometers based on resonant suspended plates. This contribution presents two vibrating mechanical structures acting as force sensors in liquid media in order to measure hydrodynamic interactions. Rectangular cross section microcantilevers as well as circular cross section wires are investigated. Each structure features specific benefits, which are discussed in detail. Furthermore, their mechanical parameters and their deflection in liquids are characterized. Finally, an inverse analytical model is applied to calculate the complex viscosity near the resonant frequency for both types of structures. With this approach it is possible to determine rheological parameters in the kilohertz range in situ within a few seconds. The monitoring of the complex viscosity of yogurt during the fermentation process is used as a proof of concept to qualify at least one of the two sensors in opaque mixtures. (paper)

  18. Comparison and experimental validation of two potential resonant viscosity sensors in the kilohertz range

    Energy Technology Data Exchange (ETDEWEB)

    Lemaire, Etienne; Caillard, Benjamin; Dufour, Isabelle [Univ. Bordeaux, IMS, UMR 5218, F-33400 Talence (France); Heinisch, Martin; Jakoby, Bernhard [Institute for Microelectronics and Microsensors, Johannes Kepler University, Linz (Austria)

    2013-08-15

    Oscillating microstructures are well established and find application in many fields. These include force sensors, e.g. AFM micro-cantilevers or accelerometers based on resonant suspended plates. This contribution presents two vibrating mechanical structures acting as force sensors in liquid media in order to measure hydrodynamic interactions. Rectangular cross section microcantilevers as well as circular cross section wires are investigated. Each structure features specific benefits, which are discussed in detail. Furthermore, their mechanical parameters and their deflection in liquids are characterized. Finally, an inverse analytical model is applied to calculate the complex viscosity near the resonant frequency for both types of structures. With this approach it is possible to determine rheological parameters in the kilohertz range in situ within a few seconds. The monitoring of the complex viscosity of yogurt during the fermentation process is used as a proof of concept to qualify at least one of the two sensors in opaque mixtures. (paper)

  19. Comparison and experimental validation of two potential resonant viscosity sensors in the kilohertz range

    Science.gov (United States)

    Lemaire, Etienne; Heinisch, Martin; Caillard, Benjamin; Jakoby, Bernhard; Dufour, Isabelle

    2013-08-01

    Oscillating microstructures are well established and find application in many fields. These include force sensors, e.g. AFM micro-cantilevers or accelerometers based on resonant suspended plates. This contribution presents two vibrating mechanical structures acting as force sensors in liquid media in order to measure hydrodynamic interactions. Rectangular cross section microcantilevers as well as circular cross section wires are investigated. Each structure features specific benefits, which are discussed in detail. Furthermore, their mechanical parameters and their deflection in liquids are characterized. Finally, an inverse analytical model is applied to calculate the complex viscosity near the resonant frequency for both types of structures. With this approach it is possible to determine rheological parameters in the kilohertz range in situ within a few seconds. The monitoring of the complex viscosity of yogurt during the fermentation process is used as a proof of concept to qualify at least one of the two sensors in opaque mixtures.

  20. A trillion frames per second: the techniques and applications of light-in-flight photography.

    Science.gov (United States)

    Faccio, Daniele; Velten, Andreas

    2018-06-14

    Cameras capable of capturing videos at a trillion frames per second allow to freeze light in motion, a very counterintuitive capability when related to our everyday experience in which light appears to travel instantaneously. By combining this capability with computational imaging techniques, new imaging opportunities emerge such as three dimensional imaging of scenes that are hidden behind a corner, the study of relativistic distortion effects, imaging through diffusive media and imaging of ultrafast optical processes such as laser ablation, supercontinuum and plasma generation. We provide an overview of the main techniques that have been developed for ultra-high speed photography with a particular focus on `light in flight' imaging, i.e. applications where the key element is the imaging of light itself at frame rates that allow to freeze it's motion and therefore extract information that would otherwise be blurred out and lost. . © 2018 IOP Publishing Ltd.

  1. Ultrasound imaging using coded signals

    DEFF Research Database (Denmark)

    Misaridis, Athanasios

    Modulated (or coded) excitation signals can potentially improve the quality and increase the frame rate in medical ultrasound scanners. The aim of this dissertation is to investigate systematically the applicability of modulated signals in medical ultrasound imaging and to suggest appropriate...... methods for coded imaging, with the goal of making better anatomic and flow images and three-dimensional images. On the first stage, it investigates techniques for doing high-resolution coded imaging with improved signal-to-noise ratio compared to conventional imaging. Subsequently it investigates how...... coded excitation can be used for increasing the frame rate. The work includes both simulated results using Field II, and experimental results based on measurements on phantoms as well as clinical images. Initially a mathematical foundation of signal modulation is given. Pulse compression based...

  2. Predicting the Strength of Online News Frames

    Directory of Open Access Journals (Sweden)

    Hrvoje Jakopović

    2017-10-01

    Full Text Available Framing theory is one of the most significant approaches to understanding media and their potential impact on publics. Leaving aside that fact, the author finds that publicity effects seem to be dispersed and difficult to catch for public relations. This article employs a specific research design, which could be applied to public relations practice, namely with a view to observing correlations between specific media frames and individual frames. The approach is based on the typology of news frames. The author attributes negative, positive and neutral determinants to the types of frames in his empirical research. Online news regarding three transport organizations and the accompanying user comments (identified as negative, positive and neutral are analysed by means of the method of content and sentiment analysis. The author recognizes user comments and reviews as individual frames that take part in the creation of online image. Furthermore, he identifies the types of media frames as well as individual frames manifested as image, and undertakes correlation research in order to establish their prediction potential. The results expose the most frequently used types of media frames concerning the transport domain. The media are keen to report through the attribution of responsibility frame, and after that, through the economic frame and the conflict frame, but, on the other hand, they tend to neglect the human interest frame and the morality frame. The results show that specific types of news frames enable better prediction of user reactions. The economic frame and the human interest frame therefore represent the most predictable types of frame.

  3. Quantitation of stress echocardiography by tissue Doppler and strain rate imaging: a dream come true?

    Science.gov (United States)

    Galderisi, Maurizio; Mele, Donato; Marino, Paolo Nicola

    2005-01-01

    Tissue Doppler (TD) is an ultrasound tool providing a quantitative agreement of left ventricular regional myocardial function in different modalities. Spectral pulsed wave (PW) TD, performed online during the examination, measures instantaneous myocardial velocities. By means of color TD, velocity images are digitally stored for subsequent off-line analysis and mean myocardial velocities are measured. An implementation of color TD includes strain rate imaging (SRI), based on post-processing conversion of regional velocities in local myocardial deformation rate (strain rate) and percent deformation (strain). These three modalities have been applied to stress echocardiography for quantitative evaluation of regional left ventricular function and detection of ischemia and viability. They present advantages and limitations. PWTD does not permit the simultaneous assessment of multiple walls and therefore is not compatible with clinical stress echocardiography while it could be used in a laboratory setting. Color TD provides a spatial map of velocity throughout the myocardium but its results are strongly affected by the frame rate. Both color TD and PWTD are also influenced by overall cardiac motion and tethering from adjacent segments and require reference velocity values for interpretation of regional left ventricular function. High frame rate (i.e. > 150 ms) post-processing-derived SRI can potentially overcome these limitations, since measurements of myocardial deformation have not any significant apex-to-base gradient. Preliminary studies have shown encouraging results about the ability of SRI to detect ischemia and viability, in terms of both strain rate changes and/or evidence of post-systolic thickening. SRI is, however, Doppler-dependent and time-consuming. Further technical refinements are needed to improve its application and introduce new ultrasound modalities to overcome the limitations of the Doppler-derived deformation analysis.

  4. Framing effects in medical situations: distinctions of attribute, goal and risky choice frames.

    Science.gov (United States)

    Peng, Jiaxi; Jiang, Yuan; Miao, Danmin; Li, Rui; Xiao, Wei

    2013-06-01

    To verify whether three different framing effects (risky choice, attribute and goal) exist in simulated medical situations and to analyse any differences. Medical decision-making problems were established, relating to medical skill evaluation, patient compliance and a selection of treatment options. All problems were described in positive and negative frame conditions. Significantly more positive evaluations were made if the doctor's medical records were described as 'of 100 patients, 70 patients became better' compared with those described as 'of 100 patients, 30 patients didn't become better'. Doctor's advice described in a negative frame resulted in significantly more decisions to comply, compared with advice described in a positive frame. Treatment options described in terms of survival rates resulted in significantly more adventurous choices compared with options described in terms of mortality rates. Decision-making reversal appeared in the risky choice and attribute frames, but not the goal frame. Framing effects were shown to exist in simulated medical situations, but there were significant differences among the three kinds of such effects.

  5. Can older adults resist the positivity effect in neural responding? The impact of verbal framing on event-related brain potentials elicited by emotional images.

    Science.gov (United States)

    Rehmert, Andrea E; Kisley, Michael A

    2013-10-01

    Older adults have demonstrated an avoidance of negative information, presumably with a goal of greater emotional satisfaction. Understanding whether avoidance of negative information is a voluntary, motivated choice or an involuntary, automatic response will be important to differentiate, as decision making often involves emotional factors. With the use of an emotional framing event-related potential (ERP) paradigm, the present study investigated whether older adults could alter neural responses to negative stimuli through verbal reframing of evaluative response options. The late positive potential (LPP) response of 50 older adults and 50 younger adults was recorded while participants categorized emotional images in one of two framing conditions: positive ("more or less positive") or negative ("more or less negative"). It was hypothesized that older adults would be able to overcome a presumed tendency to down-regulate neural responding to negative stimuli in the negative framing condition, thus leading to larger LPP wave amplitudes to negative images. A similar effect was predicted for younger adults, but for positively valenced images, such that LPP responses would be increased in the positive framing condition compared with the negative framing condition. Overall, younger adults' LPP wave amplitudes were modulated by framing condition, including a reduction in the negativity bias in the positive frame. Older adults' neural responses were not significantly modulated, even though task-related behavior supported the notion that older adults were able to successfully adopt the negative framing condition.

  6. Can Older Adults Resist the Positivity Effect in Neural Responding: The Impact of Verbal Framing on Event-Related Brain Potentials Elicited by Emotional Images

    Science.gov (United States)

    Rehmert, Andrea E.; Kisley, Michael A.

    2014-01-01

    Older adults have demonstrated an avoidance of negative information presumably with a goal of greater emotional satisfaction. Understanding whether avoidance of negative information is a voluntary, motivated choice, or an involuntary, automatic response will be important to differentiate, as decision-making often involves emotional factors. With the use of an emotional framing event-related potential (ERP) paradigm, the present study investigated whether older adults could alter neural responses to negative stimuli through verbal reframing of evaluative response options. The late-positive potential (LPP) response of 50 older adults and 50 younger adults was recorded while participants categorized emotional images in one of two framing conditions: positive (“more or less positive”) or negative (“more or less negative”). It was hypothesized that older adults would be able to overcome a presumed tendency to down-regulate neural responding to negative stimuli in the negative framing condition thus leading to larger LPP wave amplitudes to negative images. A similar effect was predicted for younger adults but for positively valenced images such that LPP responses would be increased in the positive framing condition compared to the negative framing condition. Overall, younger adults' LPP wave amplitudes were modulated by framing condition, including a reduction in the negativity bias in the positive frame. Older adults' neural responses were not significantly modulated even though task-related behavior supported the notion that older adults were able to successfully adopt the negative framing condition. PMID:23731435

  7. Design and Implementation of a Novel Compatible Encoding Scheme in the Time Domain for Image Sensor Communication

    Directory of Open Access Journals (Sweden)

    Trang Nguyen

    2016-05-01

    Full Text Available This paper presents a modulation scheme in the time domain based on On-Off-Keying and proposes various compatible supports for different types of image sensors. The content of this article is a sub-proposal to the IEEE 802.15.7r1 Task Group (TG7r1 aimed at Optical Wireless Communication (OWC using an image sensor as the receiver. The compatibility support is indispensable for Image Sensor Communications (ISC because the rolling shutter image sensors currently available have different frame rates, shutter speeds, sampling rates, and resolutions. However, focusing on unidirectional communications (i.e., data broadcasting, beacons, an asynchronous communication prototype is also discussed in the paper. Due to the physical limitations associated with typical image sensors (including low and varying frame rates, long exposures, and low shutter speeds, the link speed performance is critically considered. Based on the practical measurement of camera response to modulated light, an operating frequency range is suggested along with the similar system architecture, decoding procedure, and algorithms. A significant feature of our novel data frame structure is that it can support both typical frame rate cameras (in the oversampling mode as well as very low frame rate cameras (in the error detection mode for a camera whose frame rate is lower than the transmission packet rate. A high frame rate camera, i.e., no less than 20 fps, is supported in an oversampling mode in which a majority voting scheme for decoding data is applied. A low frame rate camera, i.e., when the frame rate drops to less than 20 fps at some certain time, is supported by an error detection mode in which any missing data sub-packet is detected in decoding and later corrected by external code. Numerical results and valuable analysis are also included to indicate the capability of the proposed schemes.

  8. Single-event transient imaging with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor.

    Science.gov (United States)

    Mochizuki, Futa; Kagawa, Keiichiro; Okihara, Shin-ichiro; Seo, Min-Woong; Zhang, Bo; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2016-02-22

    In the work described in this paper, an image reproduction scheme with an ultra-high-speed temporally compressive multi-aperture CMOS image sensor was demonstrated. The sensor captures an object by compressing a sequence of images with focal-plane temporally random-coded shutters, followed by reconstruction of time-resolved images. Because signals are modulated pixel-by-pixel during capturing, the maximum frame rate is defined only by the charge transfer speed and can thus be higher than those of conventional ultra-high-speed cameras. The frame rate and optical efficiency of the multi-aperture scheme are discussed. To demonstrate the proposed imaging method, a 5×3 multi-aperture image sensor was fabricated. The average rising and falling times of the shutters were 1.53 ns and 1.69 ns, respectively. The maximum skew among the shutters was 3 ns. The sensor observed plasma emission by compressing it to 15 frames, and a series of 32 images at 200 Mfps was reconstructed. In the experiment, by correcting disparities and considering temporal pixel responses, artifacts in the reconstructed images were reduced. An improvement in PSNR from 25.8 dB to 30.8 dB was confirmed in simulations.

  9. Frame-less image-guided intracranial and extracranial radiosurgery using the Cyberknife robotic system

    International Nuclear Information System (INIS)

    Gibbs, I.C.

    2006-01-01

    The Cyberknife TM is an image-guided robotic radiosurgery system. The image guidance system includes a kilo-voltage X-ray imaging source and amorphous silica detectors. The radiation delivery device is a mobile X-band linear accelerator mounted onto a robotic arm. Through a highly complex interplay between the image guidance system, an automated couch, and the high-speed linear accelerator, near real-time tracking of the target is achieved. The Cyberknife TM gained Federal Drug Administration clearance in the United States in 2001 for treatment of tumors 'anywhere in the body where radiation treatment is indicated'. Because the Cyberknife TM system does not rely on rigid fixation of a stereotactic frame, tumors outside of the intracranial compartment, even those tumors that move with respiration can be treated with a similar degree of ease as intracranial targets. A description of the Cyberknife TM technology and a review of some of the current intracranial and extracranial applications are detailed herein. (author)

  10. Robust Manhattan Frame Estimation From a Single RGB-D Image

    KAUST Repository

    Bernard Ghanem; Heilbron, Fabian Caba; Niebles, Juan Carlos; Thabet, Ali Kassem

    2015-01-01

    This paper proposes a new framework for estimating the Manhattan Frame (MF) of an indoor scene from a single RGB-D image. Our technique formulates this problem as the estimation of a rotation matrix that best aligns the normals of the captured scene to a canonical world axes. By introducing sparsity constraints, our method can simultaneously estimate the scene MF, the surfaces in the scene that are best aligned to one of three coordinate axes, and the outlier surfaces that do not align with any of the axes. To test our approach, we contribute a new set of annotations to determine ground truth MFs in each image of the popular NYUv2 dataset. We use this new benchmark to experimentally demonstrate that our method is more accurate, faster, more reliable and more robust than the methods used in the literature. We further motivate our technique by showing how it can be used to address the RGB-D SLAM problem in indoor scenes by incorporating it into and improving the performance of a popular RGB-D SLAM method.

  11. Robust Manhattan Frame Estimation From a Single RGB-D Image

    KAUST Repository

    Bernard Ghanem

    2015-06-02

    This paper proposes a new framework for estimating the Manhattan Frame (MF) of an indoor scene from a single RGB-D image. Our technique formulates this problem as the estimation of a rotation matrix that best aligns the normals of the captured scene to a canonical world axes. By introducing sparsity constraints, our method can simultaneously estimate the scene MF, the surfaces in the scene that are best aligned to one of three coordinate axes, and the outlier surfaces that do not align with any of the axes. To test our approach, we contribute a new set of annotations to determine ground truth MFs in each image of the popular NYUv2 dataset. We use this new benchmark to experimentally demonstrate that our method is more accurate, faster, more reliable and more robust than the methods used in the literature. We further motivate our technique by showing how it can be used to address the RGB-D SLAM problem in indoor scenes by incorporating it into and improving the performance of a popular RGB-D SLAM method.

  12. Analysis of the image of pion-emitting sources in the source center-of-mass frame

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yanyu; Feng, Qichun; Huo, Lei; Zhang, Jingbo; Liu, Jianli; Tang, Guixin [Harbin Institute of Technology, Department of Physics, Harbin, Heilongjiang (China); Zhang, Weining [Harbin Institute of Technology, Department of Physics, Harbin, Heilongjiang (China); Dalian University of Technology, School of Physics and Optoelectronic Technology, Dalian, Liaoning (China)

    2017-08-15

    In this paper, we try a method to extract the image of pion-emitting source function in the center-of-mass frame of the source (CMFS). We choose identical pion pairs according to the difference of their energy and use these pion pairs to build the correlation function. The purpose is to reduce the effect of ΔEΔt, thus the corresponding imaging result can tend to the real source function. We examine the effect of this method by comparing its results with real source functions extracted from models directly. (orig.)

  13. Algebraically approximate and noisy realization of discrete-time systems and digital images

    CERN Document Server

    Hasegawa, Yasumichi

    2009-01-01

    This monograph deals with approximation and noise cancellation of dynamical systems which include linear and nonlinear input/output relationships. It also deal with approximation and noise cancellation of two dimensional arrays. It will be of special interest to researchers, engineers and graduate students who have specialized in filtering theory and system theory and digital images. This monograph is composed of two parts. Part I and Part II will deal with approximation and noise cancellation of dynamical systems or digital images respectively. From noiseless or noisy data, reduction will be

  14. A 20 Mfps high frame-depth CMOS burst-mode imager with low power in-pixel NMOS-only passive amplifier

    Science.gov (United States)

    Wu, L.; San Segundo Bello, D.; Coppejans, P.; Craninckx, J.; Wambacq, P.; Borremans, J.

    2017-02-01

    This paper presents a 20 Mfps 32 × 84 pixels CMOS burst-mode imager featuring high frame depth with a passive in-pixel amplifier. Compared to the CCD alternatives, CMOS burst-mode imagers are attractive for their low power consumption and integration of circuitry such as ADCs. Due to storage capacitor size and its noise limitations, CMOS burst-mode imagers usually suffer from a lower frame depth than CCD implementations. In order to capture fast transitions over a longer time span, an in-pixel CDS technique has been adopted to reduce the required memory cells for each frame by half. Moreover, integrated with in-pixel CDS, an in-pixel NMOS-only passive amplifier alleviates the kTC noise requirements of the memory bank allowing the usage of smaller capacitors. Specifically, a dense 108-cell MOS memory bank (10fF/cell) has been implemented inside a 30μm pitch pixel, with an area of 25 × 30μm2 occupied by the memory bank. There is an improvement of about 4x in terms of frame depth per pixel area by applying in-pixel CDS and amplification. With the amplifier's gain of 3.3, an FD input-referred RMS noise of 1mV is achieved at 20 Mfps operation. While the amplification is done without burning DC current, including the pixel source follower biasing, the full pixel consumes 10μA at 3.3V supply voltage at full speed. The chip has been fabricated in imec's 130nm CMOS CIS technology.

  15. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second

    Science.gov (United States)

    Zuo, Chao; Tao, Tianyang; Feng, Shijie; Huang, Lei; Asundi, Anand; Chen, Qian

    2018-03-01

    Fringe projection profilometry is a well-established technique for optical 3D shape measurement. However, in many applications, it is desirable to make 3D measurements at very high speed, especially with fast moving or shape changing objects. In this work, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry (μFTP), which can realize an acquisition rate up to 10,000 3D frame per second (fps). The high measurement speed is achieved by the number of patterns reduction as well as high-speed fringe projection hardware. In order to capture 3D information in such a short period of time, we focus on the improvement of the phase recovery, phase unwrapping, and error compensation algorithms, allowing to reconstruct an accurate, unambiguous, and distortion-free 3D point cloud with every two projected patterns. We also develop a high-frame-rate fringe projection hardware by pairing a high-speed camera and a DLP projector, enabling binary pattern switching and precisely synchronized image capture at a frame rate up to 20,000 fps. Based on this system, we demonstrate high-quality textured 3D imaging of 4 transient scenes: vibrating cantilevers, rotating fan blades, flying bullet, and bursting balloon, which were previously difficult or even unable to be captured with conventional approaches.

  16. Framing violence: the effect of survey context and question framing on reported rates of partner violence

    OpenAIRE

    Regan, Katherine V.

    2008-01-01

    In this dissertation, I investigated two explanations for the variability in levels of partner violence found by large community surveys. In Study 1, I examined the effect of how questions about partner violence are introduced (question framing: conflict, violence-in-relationships, or attacks) on reports of partner violence. Although there was not a reliable effect of question framing, the pattern of findings was consistent across 3 of 4 analyses. Counter to predictions, an attacks question f...

  17. Frames and semi-frames

    International Nuclear Information System (INIS)

    Antoine, Jean-Pierre; Balazs, Peter

    2011-01-01

    Loosely speaking, a semi-frame is a generalized frame for which one of the frame bounds is absent. More precisely, given a total sequence in a Hilbert space, we speak of an upper (resp. lower) semi-frame if only the upper (resp. lower) frame bound is valid. Equivalently, for an upper semi-frame, the frame operator is bounded, but has an unbounded inverse, whereas a lower semi-frame has an unbounded frame operator, with a bounded inverse. We study mostly upper semi-frames, both in the continuous and discrete case, and give some remarks for the dual situation. In particular, we show that reconstruction is still possible in certain cases.

  18. HEPS-BPIX, a single photon counting pixel detector with a high frame rate for the HEPS project

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei, E-mail: weiw@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Zhang, Jie; Ning, Zhe; Lu, Yunpeng; Fan, Lei; Li, Huaishen; Jiang, Xiaoshan; Lan, Allan K.; Ouyang, Qun; Wang, Zheng; Zhu, Kejun; Chen, Yuanbo [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Liu, Peng [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2016-11-01

    China's next generation light source, named the High Energy Photon Source (HEPS), is currently under construction. HEPS-BPIX (HEPS-Beijing PIXel) is a dedicated pixel readout chip that operates in single photon counting mode for X-ray applications in HEPS. Designed using CMOS 0.13 µm technology, the chip contains a matrix of 104×72 pixels. Each pixel measures 150 µm×150 µm and has a counting depth of 20 bits. A bump-bonded prototyping detector module with a 300-µm thick silicon sensor was tested in the beamline of Beijing Synchrotron Radiation Facility. A fast stream of X-ray images was demonstrated, and a frame rate of 1.2 kHz was proven, with a negligible dead time. The test results showed an equivalent noise charge of 115 e{sup −} rms after bump bonding and a threshold dispersion of 55 e{sup −} rms after calibration.

  19. Frames and operator theory in analysis and signal processing

    CERN Document Server

    Larson, David R; Nashed, Zuhair; Nguyen, Minh Chuong; Papadakis, Manos

    2008-01-01

    This volume contains articles based on talks presented at the Special Session Frames and Operator Theory in Analysis and Signal Processing, held in San Antonio, Texas, in January of 2006. Recently, the field of frames has undergone tremendous advancement. Most of the work in this field is focused on the design and construction of more versatile frames and frames tailored towards specific applications, e.g., finite dimensional uniform frames for cellular communication. In addition, frames are now becoming a hot topic in mathematical research as a part of many engineering applications, e.g., matching pursuits and greedy algorithms for image and signal processing. Topics covered in this book include: Application of several branches of analysis (e.g., PDEs; Fourier, wavelet, and harmonic analysis; transform techniques; data representations) to industrial and engineering problems, specifically image and signal processing. Theoretical and applied aspects of frames and wavelets. Pure aspects of operator theory empha...

  20. Framing a Bank

    DEFF Research Database (Denmark)

    Holmgreen, Lise-Lotte

    2012-01-01

    Danish bank, Danske Bank, during the 2008 financial crisis and hence in shaping its image projected to the public. Through the study of a number of semantic frames adopted by the Danish print press and those adopted by the Bank, this article will argue for the constructions of the press putting...... considerable strain on the Bank and its image, leading it to reconsider its previous strategy of denial of responsibility...

  1. Strategy of image-information-guided dose rate adjustment in digital X-ray television

    International Nuclear Information System (INIS)

    Sliva, K.

    1992-01-01

    The experiments were so designed and carried out that it was even possible for extremely overexposed or underexposed displays to be ascertained within the framework of this study. They were based on observations in phantoms suitable to simulate situations encountered in actual practice. These permitted variations in patient volume (using different water volumes) just as well as the creation of any desired organ constellation (by insertion of bone material, etc.). It is one requirement of this experimental procedure that the X-ray unit used can be operated without automatic dose rate adjustment. A computer equipped with Frame-Grabber card may serve as an image memory. (orig.) [de

  2. High speed fluorescence imaging with compressed ultrafast photography

    Science.gov (United States)

    Thompson, J. V.; Mason, J. D.; Beier, H. T.; Bixler, J. N.

    2017-02-01

    Fluorescent lifetime imaging is an optical technique that facilitates imaging molecular interactions and cellular functions. Because the excited lifetime of a fluorophore is sensitive to its local microenvironment,1, 2 measurement of fluorescent lifetimes can be used to accurately detect regional changes in temperature, pH, and ion concentration. However, typical state of the art fluorescent lifetime methods are severely limited when it comes to acquisition time (on the order of seconds to minutes) and video rate imaging. Here we show that compressed ultrafast photography (CUP) can be used in conjunction with fluorescent lifetime imaging to overcome these acquisition rate limitations. Frame rates up to one hundred billion frames per second have been demonstrated with compressed ultrafast photography using a streak camera.3 These rates are achieved by encoding time in the spatial direction with a pseudo-random binary pattern. The time domain information is then reconstructed using a compressed sensing algorithm, resulting in a cube of data (x,y,t) for each readout image. Thus, application of compressed ultrafast photography will allow us to acquire an entire fluorescent lifetime image with a single laser pulse. Using a streak camera with a high-speed CMOS camera, acquisition rates of 100 frames per second can be achieved, which will significantly enhance our ability to quantitatively measure complex biological events with high spatial and temporal resolution. In particular, we will demonstrate the ability of this technique to do single-shot fluorescent lifetime imaging of cells and microspheres.

  3. Images of Edge Turbulence in NSTX

    International Nuclear Information System (INIS)

    Zweben, S.J.; Bush, C.E.; Maqueda, R.; Munsat, T.; Stotler, D.; Lowrance, J.; Mastracola, V.; Renda, G.

    2004-01-01

    The 2-D structure of edge plasma turbulence has been measured in the National Spherical Torus Experiment (NSTX) by viewing the emission of the Da spectral line of deuterium. Images have been made at framing rates of up to 250,000 frames/sec using an ultra-high speed CCD camera developed by Princeton Scientific Instruments. A sequence of images showing the transition between L-mode and H-mode states is shown

  4. Improving Lucky Imaging Photometry

    DEFF Research Database (Denmark)

    Skottfelt, Jesper Mirsa

    optics systems can be used to mitigate the e ects of the atmospheric turbulence, but these systems are very complicated and expensive and therefore not cost-e ective for smaller telescopes. Another solution for this problem is the use of high frame-rate imaging. At very short exposure times ( 10 ms...... resolution. Even using longer exposure times ( 100 ms) this method can be used to mitigate the e ect of image motion created by atmospheric turbulence. The Lucky Imaging technique makes use of the fact that there is some probability that the wavefront on some of these snapshots has traverse the atmosphere...... almost unperturbed. If only these snapshots are stacked, it is possible to achieve very high spatial resolution. Due to the readout noise it is not feasible to use conventional CCDs for high frame-rate imaging, unless bright sources are observed. In an electron multiplying CCD, or EMCCD, the signal...

  5. A frame simulator for data produced by 'multi-accumulation' readout detectors

    Science.gov (United States)

    Bonoli, Carlotta; Bortoletto, Favio; Giro, Enrico; Corcione, Leonardo; Ligori, Sebastiano; Nicastro, Luciano

    2010-07-01

    A simulator of data frames produced by 'multi-accumulation' readout detectors has been developed during the feasibility study for the NIS spectrograph, part of the European Euclid mission. The software can emulate various readout strategies, allowing to compare the efficiency of different sampling techniques. Special care is given to two crucial aspects: the minimization of the noise and the effects produced by cosmic hits. The resulting readout noise is analyzed as a function of the background sources, detector native characteristics and readout strategy, while the image deterioration by cosmic rays covers the simulation of hits and their correction efficiency varying the readout modalities. Simulated "multi-accumulation" frames, typical of multiplexer based detectors, are an ideal tool for testing the efficiency of cosmic ray rejection techniques. In the present case cosmic rays are added to each raw frame conforming to the rates and energy expected in the operational L2 region and in the chosen exposure time. Procedures efficiency for cosmic ray identification and correction can also be easily tested in terms of memory occupancy and telemetry rates.

  6. Sparse Representations-Based Super-Resolution of Key-Frames Extracted from Frames-Sequences Generated by a Visual Sensor Network

    Directory of Open Access Journals (Sweden)

    Muhammad Sajjad

    2014-02-01

    Full Text Available Visual sensor networks (VSNs usually generate a low-resolution (LR frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP. This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  7. Sparse representations-based super-resolution of key-frames extracted from frames-sequences generated by a visual sensor network.

    Science.gov (United States)

    Sajjad, Muhammad; Mehmood, Irfan; Baik, Sung Wook

    2014-02-21

    Visual sensor networks (VSNs) usually generate a low-resolution (LR) frame-sequence due to energy and processing constraints. These LR-frames are not very appropriate for use in certain surveillance applications. It is very important to enhance the resolution of the captured LR-frames using resolution enhancement schemes. In this paper, an effective framework for a super-resolution (SR) scheme is proposed that enhances the resolution of LR key-frames extracted from frame-sequences captured by visual-sensors. In a VSN, a visual processing hub (VPH) collects a huge amount of visual data from camera sensors. In the proposed framework, at the VPH, key-frames are extracted using our recent key-frame extraction technique and are streamed to the base station (BS) after compression. A novel effective SR scheme is applied at BS to produce a high-resolution (HR) output from the received key-frames. The proposed SR scheme uses optimized orthogonal matching pursuit (OOMP) for sparse-representation recovery in SR. OOMP does better in terms of detecting true sparsity than orthogonal matching pursuit (OMP). This property of the OOMP helps produce a HR image which is closer to the original image. The K-SVD dictionary learning procedure is incorporated for dictionary learning. Batch-OMP improves the dictionary learning process by removing the limitation in handling a large set of observed signals. Experimental results validate the effectiveness of the proposed scheme and show its superiority over other state-of-the-art schemes.

  8. Processing Infrared Images For Fire Management Applications

    Science.gov (United States)

    Warren, John R.; Pratt, William K.

    1981-12-01

    The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.

  9. Framing the ultimatum game: gender differences and autonomic responses.

    Science.gov (United States)

    Sarlo, Michela; Lotto, Lorella; Palomba, Daniela; Scozzari, Simona; Rumiati, Rino

    2013-01-01

    The present study aimed at investigating whether the way offers are framed in the Ultimatum Game (UG) affects behavioral and autonomic responses in men and women. The "I give you" and "I take" expressions were used as gain and loss frames, respectively. Skin conductance and heart rate were recorded as indices of autonomic activation in response to unfair, mid-value, and fair offers. Acceptance rates were higher in men than in women under the gain frame. Moreover, men showed higher acceptance rates under the gain than under the loss frame with mid-value offers, whereas women's choices were not affected by frame. On the physiological level, men produced differential autonomic response patterns during decision-making when offers were presented under gain and loss framing. The "I take" frame, by acting as a loss frame, elicited in men the characteristic defensive response pattern that is evoked by aversive stimulation, in which increases in skin conductance are coupled with increases in heart rate. On the other hand, the "I give you" frame, by acting as a gain frame, elicited in men increases in skin conductance associated with prevailing heart rate deceleratory responses, reflecting a state of enhanced attention and orienting. In contrast, women's autonomic reactivity was not affected by frame, consistent with behavioral results. Phasic changes in heart rate were crucial in revealing differential functional significance of skin conductance responses under different frames in men, thus questioning the assumption that this autonomic measure can be used as an index of negative emotional arousal in the UG.

  10. Ultrafast Ultrasound Imaging With Cascaded Dual-Polarity Waves.

    Science.gov (United States)

    Zhang, Yang; Guo, Yuexin; Lee, Wei-Ning

    2018-04-01

    Ultrafast ultrasound imaging using plane or diverging waves, instead of focused beams, has advanced greatly the development of novel ultrasound imaging methods for evaluating tissue functions beyond anatomical information. However, the sonographic signal-to-noise ratio (SNR) of ultrafast imaging remains limited due to the lack of transmission focusing, and thus insufficient acoustic energy delivery. We hereby propose a new ultrafast ultrasound imaging methodology with cascaded dual-polarity waves (CDWs), which consists of a pulse train with positive and negative polarities. A new coding scheme and a corresponding linear decoding process were thereby designed to obtain the recovered signals with increased amplitude, thus increasing the SNR without sacrificing the frame rate. The newly designed CDW ultrafast ultrasound imaging technique achieved higher quality B-mode images than coherent plane-wave compounding (CPWC) and multiplane wave (MW) imaging in a calibration phantom, ex vivo pork belly, and in vivo human back muscle. CDW imaging shows a significant improvement in the SNR (10.71 dB versus CPWC and 7.62 dB versus MW), penetration depth (36.94% versus CPWC and 35.14% versus MW), and contrast ratio in deep regions (5.97 dB versus CPWC and 5.05 dB versus MW) without compromising other image quality metrics, such as spatial resolution and frame rate. The enhanced image qualities and ultrafast frame rates offered by CDW imaging beget great potential for various novel imaging applications.

  11. Analisis Framing dalam Riset Public Relations

    Directory of Open Access Journals (Sweden)

    NARAYANA MAHENDRA PRASTYA

    2016-12-01

    Full Text Available This paper aims to give description about how to use frame analysis in Public Relations (PR research. The author use two framing models: Entman and Pan & Kosicki. The object is organization official statement about particular issue. Frame analysis method rarely used in Public Relations research. This methods commonly use in journalism study, to analyse the news in media. Meanwhile, the key word of framing is the social construction of reality. Organization can make social construction of realty in their official statement. In acacemic term, frame analysis in PR research is useful to know how organization positioned themselves in particular situation. Other benefit is use to evaluat whether the organization frame is conformable with the public opinion or agenda setting media or not. In practical term, frame analysis give benefit for PR practitioner to create the message that can be undserstood by public, also give positive image for organization.

  12. Depth estimation of features in video frames with improved feature matching technique using Kinect sensor

    Science.gov (United States)

    Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun

    2012-10-01

    Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.

  13. Using a Graphics Turing Test to Evaluate the Effect of Frame Rate and Motion Blur on Telepresence of Animated Objects

    DEFF Research Database (Denmark)

    Borg, Mathias; Johansen, Stine Schmieg; Krog, Kim Srirat

    2013-01-01

    A limited Graphics Turing Test is used to determine the frame rate that is required to achieve telepresence of an animated object. For low object velocities of 2.25 and 4.5 degrees of visual angle per second at 60 frames per second a rotating object with no added motion blur is able to pass the t...

  14. Impact of analyzing fewer image frames per segment during offline volumetric radiofrequency based intravascular ultrasound measurements of target lesions prior to percutaneous coronary interventions

    NARCIS (Netherlands)

    Huisman, J.; Hartmann, M.; Hartmann, M.; Mintz, G.S.; van Houwelingen, G.K.; Stoel, M.G.; de Man, F.H.; Louwerenburg, H.; von Birgelen, Clemens

    2012-01-01

    In the present study, we evaluated the impact of a 50% reduction in number of image frames (every second frame) on the analysis time and variability of offline volumetric radiofrequency-based intravascular ultrasound (RF-IVUS) measurements in target lesions prior to percutaneous coronary

  15. Feature Tracking for High Speed AFM Imaging of Biopolymers.

    Science.gov (United States)

    Hartman, Brett; Andersson, Sean B

    2018-03-31

    The scanning speed of atomic force microscopes continues to advance with some current commercial microscopes achieving on the order of one frame per second and at least one reaching 10 frames per second. Despite the success of these instruments, even higher frame rates are needed with scan ranges larger than are currently achievable. Moreover, there is a significant installed base of slower instruments that would benefit from algorithmic approaches to increasing their frame rate without requiring significant hardware modifications. In this paper, we present an experimental demonstration of high speed scanning on an existing, non-high speed instrument, through the use of a feedback-based, feature-tracking algorithm that reduces imaging time by focusing on features of interest to reduce the total imaging area. Experiments on both circular and square gratings, as well as silicon steps and DNA strands show a reduction in imaging time by a factor of 3-12 over raster scanning, depending on the parameters chosen.

  16. Frame by frame stop motion non-traditional approaches to stop motion animation

    CERN Document Server

    Gasek, Tom

    2011-01-01

    In a world that is dominated by computer images, alternative stop motion techniques like pixilation, time-lapse photography and down-shooting techniques combined with new technologies offer a new, tangible and exciting approach to animation. With over 25 years professional experience, industry veteran, Tom Gasek presents a comprehensive guide to stop motion animation without the focus on puppetry or model animation. With tips, tricks and hands-on exercises, Frame by Frame will help both experienced and novice filmmakers get the most effective results from this underutilized branch of animation

  17. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.

    Science.gov (United States)

    Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M

    2011-02-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.

  18. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging

    International Nuclear Information System (INIS)

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Pernot, Mathieu; Tanter, Mickael; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan

    2015-01-01

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable.Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients.The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz −1 cm −1 ). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in

  19. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography.

    Science.gov (United States)

    Saito, Y; Mishima, K; Matsubayashi, M

    2004-10-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile.

  20. Void fraction and velocity measurement of simulated bubble in a rotating disc using high frame rate neutron radiography

    International Nuclear Information System (INIS)

    Saito, Y.; Mishima, K.; Matsubayashi, M.

    2004-01-01

    To evaluate measurement error of local void fraction and velocity field in a gas-molten metal two-phase flow by high-frame-rate neutron radiography, experiments using a rotating stainless-steel disc, which has several holes of various diameters and depths simulating gas bubbles, were performed. Measured instantaneous void fraction and velocity field of the simulated bubbles were compared with the calculated values based on the rotating speed, the diameter and the depth of the holes as parameters and the measurement error was evaluated. The rotating speed was varied from 0 to 350 rpm (tangential velocity of the simulated bubbles from 0 to 1.5 m/s). The effect of shutter speed of the imaging system on the measurement error was also investigated. It was revealed from the Lagrangian time-averaged void fraction profile that the measurement error of the instantaneous void fraction depends mainly on the light-decay characteristics of the fluorescent converter. The measurement error of the instantaneous local void fraction of simulated bubbles is estimated to be 20%. In the present imaging system, the light-decay characteristics of the fluorescent converter affect the measurement remarkably, and so should be taken into account in estimating the measurement error of the local void fraction profile

  1. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    International Nuclear Information System (INIS)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-01-01

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery

  2. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  3. High-Frame-Rate Power Doppler Ultrasound Is More Sensitive than Conventional Power Doppler in Detecting Rheumatic Vascularisation

    NARCIS (Netherlands)

    M. van der Ven (Myrthe); J.J. Luime (Jolanda); van der Velden, L.L. (Levinia L.); J.G. Bosch (Hans); J.M.W. Hazes (Mieke); H.J. Vos (Rik)

    2016-01-01

    textabstractEarly recognition of joint inflammation will increase treatment efficacy in rheumatoid arthritis (RA). Yet, conventional power Doppler (PD) ultrasound might not be sufficiently sensitive to detect minor inflammation. We investigated the sensitivity of high-frame rate Doppler, combined

  4. Linear perspective and framing in the vista paradox

    DEFF Research Database (Denmark)

    Costa, Marco; Bonetti, Leonardo

    2017-01-01

    The vista paradox is the illusion in which an object seen through a frame appears to shrink in apparent size as the observer approaches the frame. In four studies, we tested the effect of framing and fixating on the target object. The first two studies assessed the vista paradox in a large scale...... inserted within five frames differing in size. In the fourth study linear perspective was added to the images. The results showed that both frame size and linear perspective cues were critical factors for the vista paradox illusion....

  5. An enhanced fractal image denoising algorithm

    International Nuclear Information System (INIS)

    Lu Jian; Ye Zhongxing; Zou Yuru; Ye Ruisong

    2008-01-01

    In recent years, there has been a significant development in image denoising using fractal-based method. This paper presents an enhanced fractal predictive denoising algorithm for denoising the images corrupted by an additive white Gaussian noise (AWGN) by using quadratic gray-level function. Meanwhile, a quantization method for the fractal gray-level coefficients of the quadratic function is proposed to strictly guarantee the contractivity requirement of the enhanced fractal coding, and in terms of the quality of the fractal representation measured by PSNR, the enhanced fractal image coding using quadratic gray-level function generally performs better than the standard fractal coding using linear gray-level function. Based on this enhanced fractal coding, the enhanced fractal image denoising is implemented by estimating the fractal gray-level coefficients of the quadratic function of the noiseless image from its noisy observation. Experimental results show that, compared with other standard fractal-based image denoising schemes using linear gray-level function, the enhanced fractal denoising algorithm can improve the quality of the restored image efficiently

  6. Recursive ultrasound imaging

    DEFF Research Database (Denmark)

    2000-01-01

    A method and an apparatus for recursive ultrasound imaging is presented. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created at every pulse emission. In receive, parallel beam forming is implemented. The beam formed RF data is added to the previously...... created RF lines. To keep the level of the signal, the RF data obtained previously, when emitting with the same element is subtracted from the RF lines. Up to 5000 frames/sec can be achieved for a tissue depth of 15 cm with a speed of sound of c = 1540 m/s. The high frame rate makes continuous imaging...... data possible, which can significantly enhance flow imaging. A point spread function 2° wide at -6 dB and grating lobes of $m(F) -50 dB is obtained with a 64 elements phased array with a central frequency ƒ¿0? = 3 MHz using a sparse transmit aperture using only 10 elements (N¿xmt? = 10) during pulse...

  7. Cnn Based Retinal Image Upscaling Using Zero Component Analysis

    Science.gov (United States)

    Nasonov, A.; Chesnakov, K.; Krylov, A.

    2017-05-01

    The aim of the paper is to obtain high quality of image upscaling for noisy images that are typical in medical image processing. A new training scenario for convolutional neural network based image upscaling method is proposed. Its main idea is a novel dataset preparation method for deep learning. The dataset contains pairs of noisy low-resolution images and corresponding noiseless highresolution images. To achieve better results at edges and textured areas, Zero Component Analysis is applied to these images. The upscaling results are compared with other state-of-the-art methods like DCCI, SI-3 and SRCNN on noisy medical ophthalmological images. Objective evaluation of the results confirms high quality of the proposed method. Visual analysis shows that fine details and structures like blood vessels are preserved, noise level is reduced and no artifacts or non-existing details are added. These properties are essential in retinal diagnosis establishment, so the proposed algorithm is recommended to be used in real medical applications.

  8. COMPARISON OF BACKGROUND SUBTRACTION, SOBEL, ADAPTIVE MOTION DETECTION, FRAME DIFFERENCES, AND ACCUMULATIVE DIFFERENCES IMAGES ON MOTION DETECTION

    Directory of Open Access Journals (Sweden)

    Dara Incam Ramadhan

    2018-02-01

    Full Text Available Nowadays, digital image processing is not only used to recognize motionless objects, but also used to recognize motions objects on video. One use of moving object recognition on video is to detect motion, which implementation can be used on security cameras. Various methods used to detect motion have been developed so that in this research compared some motion detection methods, namely Background Substraction, Adaptive Motion Detection, Sobel, Frame Differences and Accumulative Differences Images (ADI. Each method has a different level of accuracy. In the background substraction method, the result obtained 86.1% accuracy in the room and 88.3% outdoors. In the sobel method the result of motion detection depends on the lighting conditions of the room being supervised. When the room is in bright condition, the accuracy of the system decreases and when the room is dark, the accuracy of the system increases with an accuracy of 80%. In the adaptive motion detection method, motion can be detected with a condition in camera visibility there is no object that is easy to move. In the frame difference method, testing on RBG image using average computation with threshold of 35 gives the best value. In the ADI method, the result of accuracy in motion detection reached 95.12%.

  9. Imaging with a 90 frames/s microbolometer focal plane array and high-power terahertz free electron laser

    International Nuclear Information System (INIS)

    Dem'yanenko, M. A.; Esaev, D. G.; Knyazev, B. A.; Vinokurov, N. A.; Kulipanov, G. N.

    2008-01-01

    An uncooled microbolometer focal plane array (FPA) has been developed and used for imaging of objects illuminated by monochromatic coherent radiation of a free electron laser tunable in the range of 1.25-2.5 THz. A sensitivity threshold of 1.3x10 -3 W/cm 2 was obtained for the FPA with a homemade absolute interferometric power meter. Videos up to 90 frames/s were recorded in both transmission and reflection/scattering modes. When objects were illuminated by laser radiation scattered by a rough metal surface, speckled images were observed. Good quality terahertz images were achieved through the fast rotation of the scatterer

  10. Plane-Wave Imaging Challenge in Medical Ultrasound

    DEFF Research Database (Denmark)

    Liebgott, Herve; Molares, Alfonso Rodriguez; Jensen, Jørgen Arendt

    2016-01-01

    for this effect, but comparing the different methods is difficult due to the lack of appropriate tools. PICMUS, the Plane-Wave Imaging Challenge in Medical Ultrasound aims to provide these tools. This paper describes the PICMUS challenge, its motivation, implementation, and metrics.......Plane-Wave imaging enables very high frame rates, up to several thousand frames per second. Unfortunately the lack of transmit focusing leads to reduced image quality, both in terms of resolution and contrast. Recently, numerous beamforming techniques have been proposed to compensate...

  11. Focus on image sensors

    NARCIS (Netherlands)

    Jos Gunsing; Daniël Telgen; Johan van Althuis; Jaap van de Loosdrecht; Mark Stappers; Peter Klijn

    2013-01-01

    Robots need sensors to operate properly. Using a single image sensor, various aspects of a robot operating in its environment can be measured or monitored. Over the past few years, image sensors have improved a lot: frame rate and resolution have increased, while prices have fallen. As a result,

  12. Quantitative rotating frame relaxometry methods in MRI.

    Science.gov (United States)

    Gilani, Irtiza Ali; Sepponen, Raimo

    2016-06-01

    Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Sheep head frame validation for CT and MRI studies

    Directory of Open Access Journals (Sweden)

    marco trovatelli

    2017-05-01

    Full Text Available Abstract   Introductions Aim of EDEN 2020 project’s Milestone 5 is the development of a steerable catheter for CED system in glioblastoma therapy. The VET group is involved in realization and validation of the proper animal model. Materials and methods In this part of the study two fresh sheep’s head from the local slaughter were used. The heads were located into an ad hoc Frame system based on anatomical measures and CT images, producted by Renishaw plc partner in this project. The frame was adapted and every components were checked for the ex vivo validation tests. CT imaging was taken in Lodi at Università degli studi di Milano, Facoltà di Medicina Veterinaria, with CT scanner and MRI imaging was taken in La Cittadina, Cremona Results System validation was approved by the ex vivo trial. The frame system doesn’t compromise the imaging acquisition in MRI and CT systems. Every system components are functional to their aims. Discussion The Frame system is adapted to the sheep head. It is composed by elements able to lock the head during the imaging acquisition. Frame system is characterized by a support base helpings the animals to keep the head straight forward during imaging time, under general anesthesia. The design of these device support the airways anatomy, avoiding damaging or obstruction of airflows during anesthesia period. The role of elements like mouth bar and ovine head pins is to lock the head in a stable position during imaging acquisition; fixing is guaranteed by V shape head pins, that are arranged against the zygomatic arches. Lateral compression forces to the cranium, and the V shape pins avoid the vertical shifting of the head and any kind of rotations. (fig. 1

  14. Full-frame, high-speed 3D shape and deformation measurements using stereo-digital image correlation and a single color high-speed camera

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2017-08-01

    Full-frame, high-speed 3D shape and deformation measurement using stereo-digital image correlation (stereo-DIC) technique and a single high-speed color camera is proposed. With the aid of a skillfully designed pseudo stereo-imaging apparatus, color images of a test object surface, composed of blue and red channel images from two different optical paths, are recorded by a high-speed color CMOS camera. The recorded color images can be separated into red and blue channel sub-images using a simple but effective color crosstalk correction method. These separated blue and red channel sub-images are processed by regular stereo-DIC method to retrieve full-field 3D shape and deformation on the test object surface. Compared with existing two-camera high-speed stereo-DIC or four-mirror-adapter-assisted singe-camera high-speed stereo-DIC, the proposed single-camera high-speed stereo-DIC technique offers prominent advantages of full-frame measurements using a single high-speed camera but without sacrificing its spatial resolution. Two real experiments, including shape measurement of a curved surface and vibration measurement of a Chinese double-side drum, demonstrated the effectiveness and accuracy of the proposed technique.

  15. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    Science.gov (United States)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  16. An analysis of motion correction for 99Tcm DMSA renal imaging in paediatrics

    International Nuclear Information System (INIS)

    Meadows, A.; Hogg, P.

    2007-01-01

    Movement artefact during paediatric 99 Tc m DMSA renal imaging can reduce image quality and therefore render images non-diagnostic. This research assessed software used for the correction of movement artefact in children. The software comprised a count rate dependent dynamic acquisition with a 256 x 256 pixel frame-shift motion correction algorithm. A Williams' phantom was used to generate data during dynamic (experimental) and static (control) image acquisitions. During image acquisition, the Williams' phantom was moved to simulate seven typical paediatric patient movements; acquisitions also considered no movement (Gold Standard). Seven image data sets with motion artefact were corrected using the frame-shift software. The corrected, uncorrected, and static images were rated for quality by suitably qualified and experienced nuclear medicine professionals. The images were scored using an image quality assessment instrument, based on a Likert rating scale. Inferential statistics were applied to these data. The image quality ratings demonstrated a statistically significant (P 99 Tc m DMSA renal scans

  17. Towards a poetics of the cinematographic frame

    Directory of Open Access Journals (Sweden)

    Des O'Rawe

    2011-05-01

    Full Text Available In delineating a poetics of the cinematographic frame, this essay presents a typology of framing styles, and demonstrates ways in which filmmakers use the frame as an expressive resource—and ways in which the frame uses them. The examples discussed are modernist in orientation, and each has a particular association with a city—its history, architecture, and cultural character. Although it is common practice to refer to various—especially, modernist—framing situations as instances of deframing, the essay also enquires into the problematic nature of this term, suggesting alternative visual and cinematographic contexts more amenable to the deconstructive implications of this term. As the boundaries between cinema and the other arts continue to converge and relations between frame, image, and screen become more complex, this essay offers a reassessment of some first principles of film language, especially the aesthetic integrity of the cinematographic frame.

  18. Is 16-frame really superior to 8-frame gated SPECT for the assessment of left ventricular volumes and ejection fraction? Comparison of two simultaneously acquired gated SPECT studies

    International Nuclear Information System (INIS)

    Montelatici, Giulia; Sciagra, Roberto; Passeri, Alessandro; Dona, Manjola; Pupi, Alberto

    2008-01-01

    Conflicting data exist about the difference between 8- and 16-frame gated single-photon emission computed tomography (SPECT) left ventricular volumes and ejection fraction (EF); moreover, the influence of framing on detection of stress-induced functional changes is unknown. In 133 patients, two separate gated SPECT studies, one with 8 and one with 16 frames, were simultaneously acquired during a single gantry orbit using dedicated software. In 33 of 133 patients, two additional studies (with 8 and 16 frames, respectively) were acquired using arrhythmia rejection. Left ventricular EF and volumes were calculated using the QGS software. Stress-induced ischemia was identified on summed perfusion images. Arrhythmia-rejection did not influence volumes and EF independently of framing rate. Using data without arrhythmia-rejection, there was a significant difference in volumes and EF between 8 and 16 frames both in resting and post-stress gated SPECT. However, the difference was small: 2.6% for resting and 2.8% for post-stress EF. Both using 8 and 16 frames, there were significantly larger volumes and lower EF in patients with than without stress-induced ischemia. A stress-induced decrease >5 EF units was observed in 26 of 133 patients using 8 and in 23 of 133 using 16 frames, respectively, with finding agreement in 19 patients. Comparing two simultaneously acquired studies, the use of 16 instead of 8 frames has minor and predictable influence on functional data. Furthermore, there are no differences in the detection of stress-induced functional changes. The advantage of 16 over 8 frames in the daily clinical practice appears questionable. (orig.)

  19. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  20. Dragging of inertial frames inside the rotating neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades, E-mail: chandrachur.chakraborty@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  1. Full-frame, programmable hyperspectral imager

    Science.gov (United States)

    Love, Steven P.; Graff, David L.

    2017-07-25

    A programmable, many-band spectral imager based on addressable spatial light modulators (ASLMs), such as micro-mirror-, micro-shutter- or liquid-crystal arrays, is described. Capable of collecting at once, without scanning, a complete two-dimensional spatial image with ASLM spectral processing applied simultaneously to the entire image, the invention employs optical assemblies wherein light from all image points is forced to impinge at the same angle onto the dispersing element, eliminating interplay between spatial position and wavelength. This is achieved, as examples, using telecentric optics to image light at the required constant angle, or with micro-optical array structures, such as micro-lens- or capillary arrays, that aim the light on a pixel-by-pixel basis. Light of a given wavelength then emerges from the disperser at the same angle for all image points, is collected at a unique location for simultaneous manipulation by the ASLM, then recombined with other wavelengths to form a final spectrally-processed image.

  2. The study of error for analysis in dynamic image from the error of count rates in Nal (Tl) scintillation camera

    International Nuclear Information System (INIS)

    Oh, Joo Young; Kang, Chun Goo; Kim, Jung Yul; Oh, Ki Baek; Kim, Jae Sam; Park, Hoon Hee

    2013-01-01

    This study is aimed to evaluate the effect of T 1/2 upon count rates in the analysis of dynamic scan using NaI (Tl) scintillation camera, and suggest a new quality control method with this effects. We producted a point source with '9 9m TcO 4 - of 18.5 to 185 MBq in the 2 mL syringes, and acquired 30 frames of dynamic images with 10 to 60 seconds each using Infinia gamma camera (GE, USA). In the second experiment, 90 frames of dynamic images were acquired from 74 MBq point source by 5 gamma cameras (Infinia 2, Forte 2, Argus 1). There were not significant differences in average count rates of the sources with 18.5 to 92.5 MBq in the analysis of 10 to 60 seconds/frame with 10 seconds interval in the first experiment (p>0.05). But there were significantly low average count rates with the sources over 111 MBq activity at 60 seconds/frame (p<0.01). According to the second analysis results of linear regression by count rates of 5 gamma cameras those were acquired during 90 minutes, counting efficiency of fourth gamma camera was most low as 0.0064%, and gradient and coefficient of variation was high as 0.0042 and 0.229 each. We could not find abnormal fluctuation in χ 2 test with count rates (p>0.02), and we could find the homogeneity of variance in Levene's F-test among the gamma cameras (p>0.05). At the correlation analysis, there was only correlation between counting efficiency and gradient as significant negative correlation (r=-0.90, p<0.05). Lastly, according to the results of calculation of T 1/2 error from change of gradient with -0.25% to +0.25%, if T 1/2 is relatively long, or gradient is high, the error increase relationally. When estimate the value of 4th camera which has highest gradient from the above mentioned result, we could not see T 1/2 error within 60 minutes at that value. In conclusion, it is necessary for the scintillation gamma camera in medical field to manage hard for the quality of radiation measurement. Especially, we found a

  3. On-board processing of video image sequences

    DEFF Research Database (Denmark)

    Andersen, Jakob Dahl; Chanrion, Olivier Arnaud; Forchhammer, Søren

    2008-01-01

    and evaluated. On-board there are six video cameras each capturing images of 1024times1024 pixels of 12 bpp at a frame rate of 15 fps, thus totalling 1080 Mbits/s. In comparison the average downlink data rate for these images is projected to be 50 kbit/s. This calls for efficient on-board processing to select...

  4. Framing (implicitly) matters

    DEFF Research Database (Denmark)

    Anderson, Joel; Antalikova, Radka

    2014-01-01

    Denmark is currently experiencing the highest immigration rate in its modern history. Population surveys indicate that negative public attitudes toward immigrants actually stem from attitudes toward their (perceived) Islamic affiliation. We used a framing paradigm to investigate the explicit...... and implicit attitudes of Christian and Atheist Danes toward targets framed as Muslims or as immigrants. The results showed that explicit and implicit attitudes were more negative when the target was framed as a Muslim, rather than as an immigrant. Interestingly, implicit attitudes were qualified...... by the participants’ religion. Specifically, analyses revealed that Christians demonstrated more negative implicit attitudes toward immigrants than Muslims. Conversely, Atheists demonstrated more negative implicit attitudes toward Muslims than Atheists. These results suggest a complex relationship between religion...

  5. MR-guided data framing for PET motion correction in simultaneous MR–PET: A preliminary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, M.G., E-mail: m.ullisch@fz-juelich.de [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany); Scheins, J.; Weirich, C.; Rota Kops, E.; Celik, A.; Tellmann, L.; Stöcker, T.; Herzog, H.; Shah, N.J. [Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich GmbH (Germany)

    2013-02-21

    Head motion can significantly degrade image quality of static and dynamic Positron Emission Tomography (PET) of the human brain. One method to regain acceptable image quality in the presence of motion is to include the correction for motion in the reconstruction process. When applying motion correction, the PET data can be segmented into discrete parts of similar head position, referred to as frames. This framing of the data can reduce the computational overhead necessary for motion correction during the reconstruction process by reducing the number of discrete head positions which have to be accounted for. Here a framing algorithm is presented which minimises residual motion in the framed data, while taking full advantage of the additional information provided by Magnetic Resonance Imaging (MRI) in a simultaneous MR–PET acquisition. In the work presented here information on motion is derived from EPI sequences acquired simultaneously with the PET data. A comparison to images reconstructed with regular framing show a more clearly delineated cortex due to increased contrast between grey matter and white matter. This improvement in image quality is achieved as well as a reduction in the number of frames, thereby reducing the reconstruction time. Preliminary data indicates an efficient reduction of residual intra-frame motion compared to regular framing.

  6. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    Directory of Open Access Journals (Sweden)

    Keunyeol Park

    2018-02-01

    Full Text Available This paper presents a single-bit CMOS image sensor (CIS that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB on an 8-bit ADC basis at a 50 MHz sampling frequency.

  7. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    Science.gov (United States)

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  8. Geometric accuracy of 3D coordinates of the Leksell stereotactic skull frame in 1.5 Tesla- and 3.0 Tesla-magnetic resonance imaging: a comparison of three different fixation screw materials

    Science.gov (United States)

    Nakazawa, Hisato; Mori, Yoshimasa; Yamamuro, Osamu; Komori, Masataka; Shibamoto, Yuta; Uchiyama, Yukio; Tsugawa, Takahiko; Hagiwara, Masahiro

    2014-01-01

    We assessed the geometric distortion of 1.5-Tesla (T) and 3.0-T magnetic resonance (MR) images with the Leksell skull frame system using three types of cranial quick fixation screws (QFSs) of different materials—aluminum, aluminum with tungsten tip, and titanium—for skull frame fixation. Two kinds of acrylic phantoms were placed on a Leksell skull frame using the three types of screws, and were scanned with computed tomography (CT), 1.5-T MR imaging and 3.0-T MR imaging. The 3D coordinates for both strengths of MR imaging were compared with those for CT. The deviations of the measured coordinates at selected points (x = 50, 100 and 150; y = 50, 100 and 150) were indicated on different axial planes (z = 50, 75, 100, 125 and 150). The errors of coordinates with QFSs of aluminum, tungsten-tipped aluminum, and titanium were 2.0 mm in most positions. The geometric accuracy of the Leksell skull frame system with 1.5-T MR imaging was high and valid for clinical use. However, the geometric errors with 3.0-T MR imaging were larger than those of 1.5-T MR imaging and were acceptable only with aluminum QFSs, and then only around the central region. PMID:25034732

  9. Uniaxial Compression of Cellular Materials at a 10-1 s-1 Strain Rate Simultaneously with Synchrotron X-ray Computed Tomographic Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Brian M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-01

    The topic is presented as a series of slides. Motivation for the work included the following: X-ray tomography is a fantastic technique for characterizing a material’s starting structure as well as for non-destructive, in situ experiments to investigate material response; 3D X-ray tomography is needed to fully characterize the morphology of cellular materials; and synchrotron micro-CT can capture 3D images without pausing experiment. Among the conclusions reached are these: High-rate radiographic and tomographic imaging (0.25 s 3D frame rate) using synchrotron CT can capture full 3D images of hyper-elastic materials at a 10-2 strain rate; dynamic true in situ uniaxial loading can be accurately captured; the three stages of compression can be imaged: bending, buckling, and breaking; implementation of linear modeling is completed; meshes have been imported into LANL modeling codes--testing and validation is underway and direct comparison and validation between in situ data and modeled mechanical response is possible.

  10. Nanoimprinted distributed feedback dye laser sensor for real-time imaging of small molecule diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2014-01-01

    Label-free imaging is a promising tool for the study of biological processes such as cell adhesion and small molecule signaling processes. In order to image in two dimensions of space current solutions require motorized stages which results in low imaging frame rates. Here, a highly sensitive...... distributed feedback (DFB) dye laser sensor for real-time label-free imaging without any moving parts enabling a frame rate of 12 Hz is presented. The presence of molecules on the laser surface results in a wavelength shift which is used as sensor signal. The unique DFB laser structure comprises several areas...

  11. Dissecting the risky-choice framing effect

    Directory of Open Access Journals (Sweden)

    Ellen Peters

    2008-08-01

    Full Text Available Using five variants of the Asian Disease Problem, we dissected the risky-choice framing effect by requiring each participant to provide preference ratings for the full decision problem and also to provide attractiveness ratings for each of the component parts, i.e., the sure-thing option and the risky option. Consistent with previous research, more risky choices were made by respondents receiving negatively framed versions of the decision problems than by those receiving positively framed versions. However, different processes were evident for those scoring high and low on numeracy. Whereas the choices of the less numerate showed a large effect of frame above and beyond any influence of their evaluations of the separate options, the choices of the highly numerate were almost completely accounted for by their attractiveness ratings of the separate options. These results are consistent with an increased tendency of the highly numerate to integrate complex numeric information in the construction of their preferences and a tendency for the less numerate to respond more superficially to non-numeric sources of information.

  12. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    Science.gov (United States)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  13. Polarimetric Imaging using Two Photoelastic Modulators

    Science.gov (United States)

    Wang, Yu; Cunningham, Thomas; Diner, David; Davis, Edgar; Sun, Chao; Hancock, Bruce; Gutt, Gary; Zan, Jason; Raouf, Nasrat

    2009-01-01

    A method of polarimetric imaging, now undergoing development, involves the use of two photoelastic modulators in series, driven at equal amplitude but at different frequencies. The net effect on a beam of light is to cause (1) the direction of its polarization to rotate at the average of two excitation frequencies and (2) the amplitude of its polarization to be modulated at the beat frequency (the difference between the two excitation frequencies). The resulting modulated optical light beam is made to pass through a polarizing filter and is detected at the beat frequency, which can be chosen to equal the frame rate of an electronic camera or the rate of sampling the outputs of photodetectors in an array. The method was conceived to satisfy a need to perform highly accurate polarimetric imaging, without cross-talk between polarization channels, at frame rates of the order of tens of hertz. The use of electro-optical modulators is necessitated by a need to obtain accuracy greater than that attainable by use of static polarizing filters over separate fixed detectors. For imaging, photoelastic modulators are preferable to such other electrio-optical modulators as Kerr cells and Pockels cells in that photoelastic modulators operate at lower voltages, have greater angular acceptances, and are easier to use. Prior to the conception of the present method, polarimetric imaging at frame rates of tens of hertz using photoelastic modulators was not possible because the resonance frequencies of photoelastic modulators usually lie in the range from about 20 to about 100 kHz.

  14. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    Science.gov (United States)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  15. Measuring the quality of a quantum reference frame: The relative entropy of frameness

    International Nuclear Information System (INIS)

    Gour, Gilad; Marvian, Iman; Spekkens, Robert W.

    2009-01-01

    In the absence of a reference frame for transformations associated with group G, any quantum state that is noninvariant under the action of G may serve as a token of the missing reference frame. We here present a measure of the quality of such a token: the relative entropy of frameness. This is defined as the relative entropy distance between the state of interest and the nearest G-invariant state. Unlike the relative entropy of entanglement, this quantity is straightforward to calculate, and we find it to be precisely equal to the G-asymmetry, a measure of frameness introduced by Vaccaro et al. It is shown to provide an upper bound on the mutual information between the group element encoded into the token and the group element that may be extracted from it by measurement. In this sense, it quantifies the extent to which the token successfully simulates a full reference frame. We also show that despite a suggestive analogy from entanglement theory, the regularized relative entropy of frameness is zero and therefore does not quantify the rate of interconversion between the token and some standard form of quantum reference frame. Finally, we show how these investigations yield an approach to bounding the relative entropy of entanglement.

  16. Framing the frame

    Directory of Open Access Journals (Sweden)

    Todd McElroy

    2007-08-01

    Full Text Available We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the typical findings was observed whereas when the goal was to maintain, no framing effect was found. When we examined the decisions of the entire population, we did not observe a framing effect. In Study 2, we provided participants with a similar decision task except in this situation the goal was ambiguous, allowing us to observe participants' self-imposed goals and how they influenced choice preferences. The findings from Study 2 demonstrated individual variability in imposed goal and provided a conceptual replication of Study 1. %need keywords

  17. Framing Service, Benefit, and Credibility Through Images and Texts: A Content Analysis of Online Promotional Messages of Korean Medical Tourism Industry.

    Science.gov (United States)

    Jun, Jungmi

    2016-07-01

    This study examines how the Korean medical tourism industry frames its service, benefit, and credibility issues through texts and images of online brochures. The results of content analysis suggest that the Korean medical tourism industry attempts to frame their medical/health services as "excellence in surgeries and cancer care" and "advanced health technology and facilities." However, the use of cost-saving appeals was limited, which can be seen as a strategy to avoid consumers' association of lower cost with lower quality services, and to stress safety and credibility.

  18. Framing the frame

    OpenAIRE

    Todd McElroy; John J. Seta

    2007-01-01

    We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the ty...

  19. Super-resolution processing for pulsed neutron imaging system using a high-speed camera

    International Nuclear Information System (INIS)

    Ishizuka, Ken; Kai, Tetsuya; Shinohara, Takenao; Segawa, Mariko; Mochiki, Koichi

    2015-01-01

    Super-resolution and center-of-gravity processing improve the resolution of neutron-transmitted images. These processing methods calculate the center-of-gravity pixel or sub-pixel of the neutron point converted into light by a scintillator. The conventional neutron-transmitted image is acquired using a high-speed camera by integrating many frames when a transmitted image with one frame is not provided. It succeeds in acquiring the transmitted image and calculating a spectrum by integrating frames of the same energy. However, because a high frame rate is required for neutron resonance absorption imaging, the number of pixels of the transmitted image decreases, and the resolution decreases to the limit of the camera performance. Therefore, we attempt to improve the resolution by integrating the frames after applying super-resolution or center-of-gravity processing. The processed results indicate that center-of-gravity processing can be effective in pulsed-neutron imaging with a high-speed camera. In addition, the results show that super-resolution processing is effective indirectly. A project to develop a real-time image data processing system has begun, and this system will be used at J-PARC in JAEA. (author)

  20. Fast image acquisition and processing on a TV camera-based portal imaging system

    International Nuclear Information System (INIS)

    Baier, K.; Meyer, J.

    2005-01-01

    The present paper describes the fast acquisition and processing of portal images directly from a TV camera-based portal imaging device (Siemens Beamview Plus trademark). This approach employs not only hard- and software included in the standard package installed by the manufacturer (in particular the frame grabber card and the Matrox(tm) Intellicam interpreter software), but also a software tool developed in-house for further processing and analysis of the images. The technical details are presented, including the source code for the Matrox trademark interpreter script that enables the image capturing process. With this method it is possible to obtain raw images directly from the frame grabber card at an acquisition rate of 15 images per second. The original configuration by the manufacturer allows the acquisition of only a few images over the course of a treatment session. The approach has a wide range of applications, such as quality assurance (QA) of the radiation beam, real-time imaging, real-time verification of intensity-modulated radiation therapy (IMRT) fields, and generation of movies of the radiation field (fluoroscopy mode). (orig.)

  1. Career Compromises: Framings and Their Implications.

    Science.gov (United States)

    Gati, Itamar; Houminer, Daphna; Aviram, Tamar

    1998-01-01

    Career compromise was investigated in three framings (alternatives, aspect importance, within-aspect preference). Young adults and school counselors rated hypothetical stories. Results of four studies with different designs (Average N=106) supported the hypothesis. The alternatives framing was associated with greater compromise and decision…

  2. Preventing skin injury during MR imaging for gamma knife surgery. Necessity and verification of insulated posts for fixation of leksell G-frame

    International Nuclear Information System (INIS)

    Kenai, Hiroyuki; Yamashita, Masanori; Yamada, Akira; Asano, Tomoshige; Wakabayashi, Yukihiro; Nagatomi, Hirofumi

    2011-01-01

    At our institution, several patients developed swelling or, in some cases, severe skin injury (exempli gratia (e.g.) ulcer) at the sites of contact with frame fixation pins, during an early period after introduction of Gamma Knife surgery (GKS). We confirmed that the skin injury was caused by heating of the skin tissue around a quick fixation screw (QFS) during MR imaging sequences with high specific absorption ratios (SARs), and noted for the first time that insulation of QFSs from the posts could prevent heat generation and skin injury. Therefore, we developed a novel insulated fixation post (IFP). The use of the IFP is the only practical means for ensuring safety. Here, we review our cases of skin injury, along with experimental results. We also describe the results of our verification study regarding the reliability of the IFP. To determine the degree of heating of the skin tissue around QFSs, which were suspected to be the causes of skin injury, MR imaging sequences used for patients who developed skin injury were reviewed and reproduced using a pumpkin and a melon as dummies with the 1.5-tesla apparatus. The strength of the IFP was also evaluated by fixing an aluminum pipe with IFPs and QFSs and applying impact. In addition, with patients, we compared the degree of displacement of coordinates using IFP versus conventional post made of aluminum alloy for frame fixation. In almost all cases of skin injury, 3D-time-of-flight (TOF) MR angiograpy with magnetization transfer contrast (MTC) pulse had been performed. In our experiments using the same MR imaging sequence, SARs were always high, with a whole body SAR (one-eighth of head SAR) exceeding 0.3 W/kg, and the temperature of the skin tissue around QFSs increased to about 55 deg C on average. Frame fixation with the IFPs did not induce heat generation during MR imaging for GKS in any sequences and did not cause skin injury. The strength and fixation accuracy of the IFP was comparable to those of the

  3. All-passive pixel super-resolution of time-stretch imaging

    Science.gov (United States)

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-03-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2-5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing.

  4. The neural bases of framing effects in social dilemmas

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Ramsøy, Thomas; Skov, Martin

    intraparietal cortex, and temporopolar cortex. Our findings provide the first insight into the mechanisms underlying framing of behavior in social dilemmas, indicating increased engagement of the hippocampus and neocortical areas involved in memory, social reasoning and mentalizing when subjects make decisions......Human behavior in social dilemmas is strongly framed by the social context, but the mechanisms underlying this framing effect remains poorly understood. To identify the behavioral and neural responses mediating framing of social interactions, subjects underwent functional Magnetic Resonance Imaging...... while playing a Prisoners Dilemma game. In separate neuroimaging sessions, the game was either framed as a cooperation game or a competition game. Social decisions where subjects were affected by the frame engaged the hippocampal formation, precuneus, dorsomedial prefrontal cortex and lateral temporal...

  5. The Neural Bases of Framing Effects in Social Dilemmas

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Ramsøy, Thomas; Skov, Martin

    2015-01-01

    intraparietal cortex, and temporopolar cortex. Our findings provide the first insight into the mechanisms underlying framing of behavior in social dilemmas, indicating increased engagement of the hippocampus and neocortical areas involved in memory, social reasoning and mentalizing when subjects make decisions......Human behavior in social dilemmas is strongly framed by the social context, but the mechanisms underlying this framing effect remains poorly understood. To identify the behavioral and neural responses mediating framing of social interactions, subjects underwent functional Magnetic Resonance Imaging...... while playing a Prisoners Dilemma game. In separate neuroimaging sessions, the game was either framed as a cooperation game or a competition game. Social decisions where subjects were affected by the frame engaged the hippocampal formation, precuneus, dorsomedial prefrontal cortex and lateral temporal...

  6. IMAGE ACQUISITION CONSTRAINTS FOR PANORAMIC FRAME CAMERA IMAGING

    Directory of Open Access Journals (Sweden)

    H. Kauhanen

    2012-07-01

    Full Text Available The paper describes an approach to quantify the amount of projective error produced by an offset of projection centres in a panoramic imaging workflow. We have limited this research to such panoramic workflows in which several sub-images using planar image sensor are taken and then stitched together as a large panoramic image mosaic. The aim is to simulate how large the offset can be before it introduces significant error to the dataset. The method uses geometrical analysis to calculate the error in various cases. Constraints for shooting distance, focal length and the depth of the area of interest are taken into account. Considering these constraints, it is possible to safely use even poorly calibrated panoramic camera rig with noticeable offset in projection centre locations. The aim is to create datasets suited for photogrammetric reconstruction. Similar constraints can be used also for finding recommended areas from the image planes for automatic feature matching and thus improve stitching of sub-images into full panoramic mosaics. The results are mainly designed to be used with long focal length cameras where the offset of projection centre of sub-images can seem to be significant but on the other hand the shooting distance is also long. We show that in such situations the error introduced by the offset of the projection centres results only in negligible error when stitching a metric panorama. Even if the main use of the results is with cameras of long focal length, they are feasible for all focal lengths.

  7. EXCALIBUR: a small-pixel photon counting area detector for coherent X-ray diffraction - Front-end design, fabrication and characterisation

    Science.gov (United States)

    Marchal, J.; Horswell, I.; Willis, B.; Plackett, R.; Gimenez, E. N.; Spiers, J.; Ballard, D.; Booker, P.; Thompson, J. A.; Gibbons, P.; Burge, S. R.; Nicholls, T.; Lipp, J.; Tartoni, N.

    2013-03-01

    Coherent X-ray diffraction experiments on synchrotron X-ray beamlines require detectors with high spatial resolution and large detection area. The read-out chip developed by the MEDIPIX3 collaboration offers a small pixel size of 55 microns resulting in a very high spatial resolution when coupled to a direct X-ray conversion segmented silicon sensor. MEDIPIX3 assemblies present also the advantages of hybrid pixel detectors working in single photon counting mode: noiseless imaging, large dynamic range, extremely high frame rate. The EXCALIBUR detector is under development for the X-ray Coherence and Imaging Beamline I13 of the Diamond Light Source. This new detector consists of three modules, each with 16 MEDIPIX3 chips which can be read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-out chips and provides a continuous active detection region within a module. Each module includes 1 million solder bumps connecting the 55 microns pixels of the silicon sensor to the 55 microns pixels of the 16 MEDIPIX3 read-out chips. The detection area of the 3-module EXCALIBUR detector is 115 mm × 100 mm with a small 6.8 mm wide inactive region between modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain the very high frame-rate capability. The standard suite of EPICS control software is used to operate the detector and to integrate it with the Diamond Light Source beamline software environment. This article describes the design, fabrication and characterisation of the MEDIPIX3-based modules composing the EXCALIBUR detector.

  8. EXCALIBUR: a small-pixel photon counting area detector for coherent X-ray diffraction - Front-end design, fabrication and characterisation

    International Nuclear Information System (INIS)

    Marchal, J; Horswell, I; Willis, B; Plackett, R; Gimenez, E N; Spiers, J; Thompson, J A; Gibbons, P; Tartoni, N; Ballard, D; Booker, P; Burge, S R; Nicholls, T; Lipp, J

    2013-01-01

    Coherent X-ray diffraction experiments on synchrotron X-ray beamlines require detectors with high spatial resolution and large detection area. The read-out chip developed by the MEDIPIX3 collaboration offers a small pixel size of 55 microns resulting in a very high spatial resolution when coupled to a direct X-ray conversion segmented silicon sensor. MEDIPIX3 assemblies present also the advantages of hybrid pixel detectors working in single photon counting mode: noiseless imaging, large dynamic range, extremely high frame rate. The EXCALIBUR detector is under development for the X-ray Coherence and Imaging Beamline I13 of the Diamond Light Source. This new detector consists of three modules, each with 16 MEDIPIX3 chips which can be read-out at 100 frames per second in continuous mode or 1000 frames per second in burst mode. In each module, the sensor is a large single silicon die covering 2 rows of 8 individual MEDIPIX3 read-out chips and provides a continuous active detection region within a module. Each module includes 1 million solder bumps connecting the 55 microns pixels of the silicon sensor to the 55 microns pixels of the 16 MEDIPIX3 read-out chips. The detection area of the 3-module EXCALIBUR detector is 115 mm × 100 mm with a small 6.8 mm wide inactive region between modules. Each detector module is connected to 2 FPGA read-out boards via a flexi-rigid circuit to allow a fully parallel read-out of the 16 MEDIPIX3 chips. The 6 FPGA read-out boards used in the EXCALIBUR detector are interfaced to 6 computing nodes via 10Gbit/s fibre-optic links to maintain the very high frame-rate capability. The standard suite of EPICS control software is used to operate the detector and to integrate it with the Diamond Light Source beamline software environment. This article describes the design, fabrication and characterisation of the MEDIPIX3-based modules composing the EXCALIBUR detector.

  9. Inter frame motion estimation and its application to image sequence compression: an introduction; Estimacion del movimiento Interframe y su aplicacion a la compresion de secuencias de imagenes: una introduccion

    Energy Technology Data Exchange (ETDEWEB)

    Cremy, C

    1996-12-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of inter frame estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author)

  10. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...

  11. Development of a visible framing camera diagnostic for the study of current initiation in z-pinch plasmas

    International Nuclear Information System (INIS)

    Muron, D.J.; Hurst, M.J.; Derzon, M.S.

    1996-01-01

    The authors assembled and tested a visible framing camera system to take 5 ns FWHM images of the early time emission from a z-pinch plasma. This diagnostic was used in conjunction with a visible streak camera allowing early time emissions measurements to diagnose current initiation. Individual frames from gated image intensifiers were proximity coupled to charge injection device (CID) cameras and read out at video rate and 8-bit resolution. A mirror was used to view the pinch from a 90-degree angle. The authors observed the destruction of the mirror surface, due to the high surface heating, and the subsequent reduction in signal reflected from the mirror. Images were obtained that showed early time ejecta and a nonuniform emission from the target. This initial test of the equipment highlighted problems with this measurement. They observed non-uniformities in early time emission. This is believed to be due to either spatially varying current density or heating of the foam. Images were obtained that showed early time ejecta from the target. The results and suggestions for improvement are discussed in the text

  12. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  13. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    Science.gov (United States)

    Koch, A.; Hart, M.; Nicholls, T.; Angelsen, C.; Coughlan, J.; French, M.; Hauf, S.; Kuster, M.; Sztuk-Dambietz, J.; Turcato, M.; Carini, G. A.; Chollet, M.; Herrmann, S. C.; Lemke, H. T.; Nelson, S.; Song, S.; Weaver, M.; Zhu, D.; Meents, A.; Fischer, P.

    2013-11-01

    A MHz frame rate X-ray area detector (LPD — Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 μm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASIC's preamplifier provides relatively low noise at high speed which results in a high dynamic range of 105 photons over an energy range of 5-20 keV. Small scale prototypes of 32 × 256 pixels (LPD 2-Tile detector) and 256 × 256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 104 at 12 keV with a readout noise equivalent to < 1 photon rms in its most sensitive mode.

  14. Nonstop lose-less data acquisition and storing method for plasma motion images

    International Nuclear Information System (INIS)

    Nakanishi, Hideya; Ohsuna, Masaki; Kojima, Mamoru; Nonomura, Miki; Nagayama, Yoshio; Kawahata, Kazuo; Imazu, Setsuo; Okumura, Haruhiko

    2007-01-01

    Plasma diagnostic data analysis often requires the original raw data as they are, in other words, at the same frame rate and resolution of the CCD camera sensor. As a non-interlace VGA camera typically generates over 70 MB/s video stream, usual frame grabber cards apply the lossy compression encoder, such as mpeg-1/-2 or mpeg-4, to drastically lessen the bit rate. In this study, a new approach, which makes it possible to acquire and store such the wideband video stream without any quality reduction, has been successfully achieved. Simultaneously, the real-time video streaming is even possible at the original frame rate. For minimising the exclusive access time in every data storing, it has adopted the directory structure to hold every frame files separately, instead of one long consecutive file. The popular 'zip' archive method improves the portability of data files, however, the JPEG-LS image compression is applied inside by replacing its intrinsic deflate/inflate algorithm that has less performances for image data. (author)

  15. Real-Time Detection of Sporadic Meteors in the Intensified TV Imaging Systems.

    Science.gov (United States)

    Vítek, Stanislav; Nasyrova, Maria

    2017-12-29

    The automatic observation of the night sky through wide-angle video systems with the aim of detecting meteor and fireballs is currently among routine astronomical observations. The observation is usually done in multi-station or network mode, so it is possible to estimate the direction and the speed of the body flight. The high velocity of the meteorite flying through the atmosphere determines the important features of the camera systems, namely the high frame rate. Thanks to high frame rates, such imaging systems produce a large amount of data, of which only a small fragment has scientific potential. This paper focuses on methods for the real-time detection of fast moving objects in the video sequences recorded by intensified TV systems with frame rates of about 60 frames per second. The goal of our effort is to remove all unnecessary data during the daytime and make free hard-drive capacity for the next observation. The processing of data from the MAIA (Meteor Automatic Imager and Analyzer) system is demonstrated in the paper.

  16. Underwater image mosaicking and visual odometry

    Science.gov (United States)

    Sadjadi, Firooz; Tangirala, Sekhar; Sorber, Scott

    2017-05-01

    This paper summarizes the results of studies in underwater odometery using a video camera for estimating the velocity of an unmanned underwater vehicle (UUV). Underwater vehicles are usually equipped with sonar and Inertial Measurement Unit (IMU) - an integrated sensor package that combines multiple accelerometers and gyros to produce a three dimensional measurement of both specific force and angular rate with respect to an inertial reference frame for navigation. In this study, we investigate the use of odometry information obtainable from a video camera mounted on a UUV to extract vehicle velocity relative to the ocean floor. A key challenge with this process is the seemingly bland (i.e. featureless) nature of video data obtained underwater which could make conventional approaches to image-based motion estimation difficult. To address this problem, we perform image enhancement, followed by frame to frame image transformation, registration and mosaicking/stitching. With this approach the velocity components associated with the moving sensor (vehicle) are readily obtained from (i) the components of the transform matrix at each frame; (ii) information about the height of the vehicle above the seabed; and (iii) the sensor resolution. Preliminary results are presented.

  17. Frames for exact inversion of the rank order coder.

    Science.gov (United States)

    Masmoudi, Khaled; Antonini, Marc; Kornprobst, Pierre

    2012-02-01

    Our goal is to revisit rank order coding by proposing an original exact decoding procedure for it. Rank order coding was proposed by Thorpe et al. who stated that the order in which the retina cells are activated encodes for the visual stimulus. Based on this idea, the authors proposed in [1] a rank order coder/decoder associated to a retinal model. Though, it appeared that the decoding procedure employed yields reconstruction errors that limit the model bit-cost/quality performances when used as an image codec. The attempts made in the literature to overcome this issue are time consuming and alter the coding procedure, or are lacking mathematical support and feasibility for standard size images. Here we solve this problem in an original fashion by using the frames theory, where a frame of a vector space designates an extension for the notion of basis. Our contribution is twofold. First, we prove that the analyzing filter bank considered is a frame, and then we define the corresponding dual frame that is necessary for the exact image reconstruction. Second, to deal with the problem of memory overhead, we design a recursive out-of-core blockwise algorithm for the computation of this dual frame. Our work provides a mathematical formalism for the retinal model under study and defines a simple and exact reverse transform for it with over than 265 dB of increase in the peak signal-to-noise ratio quality compared to [1]. Furthermore, the framework presented here can be extended to several models of the visual cortical areas using redundant representations.

  18. Dispositional optimism, self-framing and medical decision-making.

    Science.gov (United States)

    Zhao, Xu; Huang, Chunlei; Li, Xuesong; Zhao, Xin; Peng, Jiaxi

    2015-03-01

    Self-framing is an important but underinvestigated area in risk communication and behavioural decision-making, especially in medical settings. The present study aimed to investigate the relationship among dispositional optimism, self-frame and decision-making. Participants (N = 500) responded to the Life Orientation Test-Revised and self-framing test of medical decision-making problem. The participants whose scores were higher than the middle value were regarded as highly optimistic individuals. The rest were regarded as low optimistic individuals. The results showed that compared to the high dispositional optimism group, participants from the low dispositional optimism group showed a greater tendency to use negative vocabulary to construct their self-frame, and tended to choose the radiation therapy with high treatment survival rate, but low 5-year survival rate. Based on the current findings, it can be concluded that self-framing effect still exists in medical situation and individual differences in dispositional optimism can influence the processing of information in a framed decision task, as well as risky decision-making. © 2014 International Union of Psychological Science.

  19. Another frame, another game? : Explaining framing effects in economic games

    NARCIS (Netherlands)

    Gerlach, Philipp; Jaeger, B.; Hopfensitz, A.; Lori, E.

    2016-01-01

    Small changes in the framing of games (i.e., the way in which the game situation is described to participants) can have large effects on players' choices. For example, referring to a prisoner's dilemma game as the "Community Game" as opposed to the "Wall Street Game" can double the cooperation rate

  20. Some relationship between G-frames and frames

    Directory of Open Access Journals (Sweden)

    Mehdi Rashidi-Kouchi

    2015-06-01

    Full Text Available In this paper we proved that every g-Riesz basis for Hilbert space $H$ with respect to $K$ by adding a condition is a Riesz basis for Hilbert $B(K$-module $B(H,K$. This is an extension of [A. Askarizadeh,M. A. Dehghan, {em G-frames as special frames}, Turk. J. Math., 35, (2011 1-11]. Also, we derived similar results for g-orthonormal and orthogonal bases. Some relationships between dual frame, dual g-frame and exact frame and exact g-frame are presented too.

  1. SU-F-I-77: Radiation Dose in Cardiac Catheterization Procedures: Impact of a Systematic Reduction in Pulsed Fluoroscopy Frame Rate

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, C; Dixon, S [Beaumont Hospital, Royal Oak, MI (United States)

    2016-06-15

    Purpose: To evaluate whether one small systematic reduction in fluoroscopy frame rate has a significant effect on the total air kerma and/or dose area product for diagnostic and interventional cardiac catheterization procedures. Methods: The default fluoroscopy frame rate (FFR) was lowered from 15 to 10 fps in 5 Siemens™ Axiom Artis cardiac catheterization labs (CCL) on July 1, 2013. A total of 7212 consecutive diagnostic and interventional CCL procedures were divided into two study groups: 3602 procedures from 10/1/12 –6/30/13 with FFR of 15 fps; and 3610 procedures 7/1/13 – 3/31/14 at 10 fps. For each procedure, total air kerma (TAK), fluoroscopy skin dose (FSD), total/fluoroscopy dose area products (TAD, FAD), and total fluoroscopy time (FT) were recorded. Patient specific data collected for each procedure included: BSA, sex, height, weight, interventional versus diagnostic; and elective versus emergent. Results: For pre to post change in FFR, each categorical variable was compared using Pearson’s Chi-square test, Odds ratios and 95% confidence intervals. No statistically significant difference in BSA, height, weight, number of interventional versus diagnostic, elective versus emergent procedures was found between the two study groups. Decreasing the default FFR from 15 fps to 10 fps in the two study groups significantly reduced TAK from 1305 to 1061 mGy (p<0.0001), FSD from 627 to 454 mGy (p<0.0001), TAD from 8681 to 6991 uGy × m{sup 2}(p<0.0001), and FAD from 4493 to 3297 uGy × m{sup 2}(p<0.0001). No statistically significant difference in FT was noted. Clinical image quality was not analyzed, and reports of noticeable effects were minimal. From July 1, 2013 to date, the default FFR has remained 10 fps. Conclusion: Reducing the FFR from 15 to 10 fps significantly reduced total air kerma and dose area product which may decrease risk for potential radiation-induced skin injuries and improve patient outcomes.

  2. Single-Frame Cinema. Three Dimensional Computer-Generated Imaging.

    Science.gov (United States)

    Cheetham, Edward Joseph, II

    This master's thesis provides a description of the proposed art form called single-frame cinema, which is a category of computer imagery that takes the temporal polarities of photography and cinema and unites them into a single visual vignette of time. Following introductory comments, individual chapters discuss (1) the essential physical…

  3. Message framing and defensive processing: a cultural examination.

    Science.gov (United States)

    Ko, Deborah M; Kim, Heejung S

    2010-01-01

    Past research has shown that health messages on safer sexual practices that focus on relational consequences are more persuasive than messages that focus on personal consequences. However, we theorize that it is defensiveness against personal risk framing that threatens the self among people from more individualistic cultures. Two studies tested this idea. Study 1 showed that European Americans were less persuaded by personal framing than by relational framing but that this pattern was not found for Asian Americans, who are more collectivistic. Study 2 showed that these defensive patterns were eliminated among European American participants when a person's self-image was affirmed. These results suggest defensive processes as the mechanism behind the differences in message framing effectiveness and motivate a closer look at cultural patterns.

  4. High-speed particle tracking in microscopy using SPAD image sensors

    Science.gov (United States)

    Gyongy, Istvan; Davies, Amy; Miguelez Crespo, Allende; Green, Andrew; Dutton, Neale A. W.; Duncan, Rory R.; Rickman, Colin; Henderson, Robert K.; Dalgarno, Paul A.

    2018-02-01

    Single photon avalanche diodes (SPADs) are used in a wide range of applications, from fluorescence lifetime imaging microscopy (FLIM) to time-of-flight (ToF) 3D imaging. SPAD arrays are becoming increasingly established, combining the unique properties of SPADs with widefield camera configurations. Traditionally, the photosensitive area (fill factor) of SPAD arrays has been limited by the in-pixel digital electronics. However, recent designs have demonstrated that by replacing the complex digital pixel logic with simple binary pixels and external frame summation, the fill factor can be increased considerably. A significant advantage of such binary SPAD arrays is the high frame rates offered by the sensors (>100kFPS), which opens up new possibilities for capturing ultra-fast temporal dynamics in, for example, life science cellular imaging. In this work we consider the use of novel binary SPAD arrays in high-speed particle tracking in microscopy. We demonstrate the tracking of fluorescent microspheres undergoing Brownian motion, and in intra-cellular vesicle dynamics, at high frame rates. We thereby show how binary SPAD arrays can offer an important advance in live cell imaging in such fields as intercellular communication, cell trafficking and cell signaling.

  5. Technical requirements for Na¹⁸F PET bone imaging of patients being treated using a Taylor spatial frame.

    Science.gov (United States)

    Hatherly, Robert; Brolin, Fredrik; Oldner, Åsa; Sundin, Anders; Lundblad, Henrik; Maguire, Gerald Q; Jonsson, Cathrine; Jacobsson, Hans; Noz, Marilyn E

    2014-03-01

    Diagnosis of new bone growth in patients with compound tibia fractures or deformities treated using a Taylor spatial frame is difficult with conventional radiography because the frame obstructs the images and creates artifacts. The use of Na(18)F PET studies may help to eliminate this difficulty. Patients were positioned on the pallet of a clinical PET/CT scanner and made as comfortable as possible with their legs immobilized. One bed position covering the site of the fracture, including the Taylor spatial frame, was chosen for the study. A topogram was performed, as well as diagnostic and attenuation correction CT. The patients were given 2 MBq of Na(18)F per kilogram of body weight. A 45-min list-mode acquisition was performed starting at the time of injection, followed by a 5-min static acquisition 60 min after injection. The patients were examined 6 wk after the Taylor spatial frame had been applied and again at 3 mo to assess new bone growth. A list-mode reconstruction sequence of 1 × 1,800 and 1 × 2,700 s, as well as the 5-min static scan, allowed visualization of regional bone turnover. With Na(18)F PET/CT, it was possible to confirm regional bone turnover as a means of visualizing bone remodeling without the interference of artifacts from the Taylor spatial frame. Furthermore, dynamic list-mode acquisition allowed different sequences to be performed, enabling, for example, visualization of tracer transport from blood to the fracture site.

  6. Imaging Asteroid 4 Vesta Using the Framing Camera

    Science.gov (United States)

    Keller, H. Uwe; Nathues, Andreas; Coradini, Angioletta; Jaumann, Ralf; Jorda, Laurent; Li, Jian-Yang; Mittlefehldt, David W.; Mottola, Stefano; Raymond, C. A.; Schroeder, Stefan E.

    2011-01-01

    The Framing Camera (FC) onboard the Dawn spacecraft serves a dual purpose. Next to its central role as a prime science instrument it is also used for the complex navigation of the ion drive spacecraft. The CCD detector with 1024 by 1024 pixels provides the stability for a multiyear mission and its high requirements of photometric accuracy over the wavelength band from 400 to 1000 nm covered by 7 band-pass filters. Vesta will be observed from 3 orbit stages with image scales of 227, 63, and 17 m/px, respectively. The mapping of Vesta s surface with medium resolution will be only completed during the exit phase when the north pole will be illuminated. A detailed pointing strategy will cover the surface at least twice at similar phase angles to provide stereo views for reconstruction of the topography. During approach the phase function of Vesta was determined over a range of angles not accessible from earth. This is the first step in deriving the photometric function of the surface. Combining the topography based on stereo tie points with the photometry in an iterative procedure will disclose details of the surface morphology at considerably smaller scales than the pixel scale. The 7 color filters are well positioned to provide information on the spectral slope in the visible, the depth of the strong pyroxene absorption band, and their variability over the surface. Cross calibration with the VIR spectrometer that extends into the near IR will provide detailed maps of Vesta s surface mineralogy and physical properties. Georeferencing all these observation will result in a coherent and unique data set. During Dawn s approach and capture FC has already demonstrated its performance. The strong variation observed by the Hubble Space Telescope can now be correlated with surface units and features. We will report on results obtained from images taken during survey mode covering the whole illuminated surface. Vesta is a planet-like differentiated body, but its surface

  7. Handedness differences in information framing.

    Science.gov (United States)

    Jasper, John D; Fournier, Candice; Christman, Stephen D

    2014-02-01

    Previous research has shown that strength of handedness predicts differences in sensory illusions, Stroop interference, episodic memory, and beliefs about body image. Recent evidence also suggests handedness differences in the susceptibility to common decision biases such as anchoring and sunk cost. The present paper extends this line of work to attribute framing effects. Sixty-three undergraduates were asked to advise a friend concerning the use of a safe allergy medication during pregnancy. A third of the participants received negatively-framed information concerning the fetal risk of the drug (1-3% chance of having a malformed child); another third received positively-framed information (97-99% chance of having a normal child); and the final third received no counseling information and served as the control. Results indicated that, as predicted, inconsistent (mixed)-handers were more responsive than consistent (strong)-handers to information changes and readily update their beliefs. Although not significant, the data also suggested that only inconsistent handers were affected by information framing. Theoretical implications as well as ongoing work in holistic versus analytic processing, contextual sensitivity, and brain asymmetry will be discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Uncertainty quantification of cinematic imaging for development of predictive simulations of turbulent combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Matthew; Debusschere, Bert J.; Najm, Habib N.; Sargsyan, Khachik; Frank, Jonathan H.

    2010-09-01

    Recent advances in high frame rate complementary metal-oxide-semiconductor (CMOS) cameras coupled with high repetition rate lasers have enabled laser-based imaging measurements of the temporal evolution of turbulent reacting flows. This measurement capability provides new opportunities for understanding the dynamics of turbulence-chemistry interactions, which is necessary for developing predictive simulations of turbulent combustion. However, quantitative imaging measurements using high frame rate CMOS cameras require careful characterization of the their noise, non-linear response, and variations in this response from pixel to pixel. We develop a noise model and calibration tools to mitigate these problems and to enable quantitative use of CMOS cameras. We have demonstrated proof of principle for image de-noising using both wavelet methods and Bayesian inference. The results offer new approaches for quantitative interpretation of imaging measurements from noisy data acquired with non-linear detectors. These approaches are potentially useful in many areas of scientific research that rely on quantitative imaging measurements.

  9. Images of climate change in the news: Visual framing of a global environmental issue

    Science.gov (United States)

    Rebich Hespanha, S.; Rice, R. E.; Montello, D. R.; Retzloff, S.; Tien, S.

    2012-12-01

    News media play a powerful role in disseminating and framing information and shaping public opinion on environmental issues. Choices of text and images that are made by the creators and distributors of news media not only influence public perception about which issues are important, but also surreptitiously lead consumers of these media to perceive certain aspects or perspectives on an issue while neglecting to consider others. Our research was motivated by a desire to obtain comprehensive quantitative and qualitative understanding of the types of information - both textual and visual -- that have been provided to the U.S. public over the past several decades through news reports about climate change. As part of this project, we documented and examined 118 themes in 19 categories presented in 350 randomly-selected visual images from U.S. news coverage of global climate change between 1969 and late 2009. This study examines how the use of imagery in print news positions climate change within public and private arenas and how it emphasizes particular geographic, political, scientific, technological, sociological, and ideological aspects of the issue.

  10. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges.

    Science.gov (United States)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  11. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges

    Science.gov (United States)

    Melnikov, Alexander; Chen, Liangjie; Ramirez Venegas, Diego; Sivagurunathan, Koneswaran; Sun, Qiming; Mandelis, Andreas; Rodriguez, Ignacio Rojas

    2018-04-01

    Single-Frequency Thermal Wave Radar Imaging (SF-TWRI) was introduced and used to obtain quantitative thickness images of coatings on an aluminum block and on polyetherketone, and to image blind subsurface holes in a steel block. In SF-TWR, the starting and ending frequencies of a linear frequency modulation sweep are chosen to coincide. Using the highest available camera frame rate, SF-TWRI leads to a higher number of sampled points along the modulation waveform than conventional lock-in thermography imaging because it is not limited by conventional undersampling at high frequencies due to camera frame-rate limitations. This property leads to large reduction in measurement time, better quality of images, and higher signal-noise-ratio across wide frequency ranges. For quantitative thin-coating imaging applications, a two-layer photothermal model with lumped parameters was used to reconstruct the layer thickness from multi-frequency SF-TWR images. SF-TWRI represents a next-generation thermography method with superior features for imaging important classes of thin layers, materials, and components that require high-frequency thermal-wave probing well above today's available infrared camera technology frame rates.

  12. On transforms between Gabor frames and wavelet frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2013-01-01

    We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....

  13. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    Science.gov (United States)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  14. Graphics processing unit accelerated intensity-based optical coherence tomography angiography using differential frames with real-time motion correction.

    Science.gov (United States)

    Watanabe, Yuuki; Takahashi, Yuhei; Numazawa, Hiroshi

    2014-02-01

    We demonstrate intensity-based optical coherence tomography (OCT) angiography using the squared difference of two sequential frames with bulk-tissue-motion (BTM) correction. This motion correction was performed by minimization of the sum of the pixel values using axial- and lateral-pixel-shifted structural OCT images. We extract the BTM-corrected image from a total of 25 calculated OCT angiographic images. Image processing was accelerated by a graphics processing unit (GPU) with many stream processors to optimize the parallel processing procedure. The GPU processing rate was faster than that of a line scan camera (46.9 kHz). Our OCT system provides the means of displaying structural OCT images and BTM-corrected OCT angiographic images in real time.

  15. Imaging a seizure model in zebrafish with structured illumination light sheet microscopy

    Science.gov (United States)

    Liu, Yang; Dale, Savannah; Ball, Rebecca; VanLeuven, Ariel J.; Baraban, Scott; Sornborger, Andrew; Lauderdale, James D.; Kner, Peter

    2018-02-01

    Zebrafish are a promising vertebrate model for elucidating how neural circuits generate behavior under normal and pathological conditions. The Baraban group first demonstrated that zebrafish larvae are valuable for investigating seizure events and can be used as a model for epilepsy in humans. Because of their small size and transparency, zebrafish embryos are ideal for imaging seizure activity using calcium indicators. Light-sheet microscopy is well suited to capturing neural activity in zebrafish because it is capable of optical sectioning, high frame rates, and low excitation intensities. We describe work in our lab to use light-sheet microscopy for high-speed long-time imaging of neural activity in wildtype and mutant zebrafish to better understand the connectivity and activity of inhibitory neural networks when GABAergic signaling is altered in vivo. We show that, with light-sheet microscopy, neural activity can be recorded at 23 frames per second in twocolors for over 10 minutes allowing us to capture rare seizure events in mutants. We have further implemented structured illumination to increase resolution and contrast in the vertical and axial directions during high-speed imaging at an effective frame rate of over 7 frames per second.

  16. A 1,000 Frames/s Programmable Vision Chip with Variable Resolution and Row-Pixel-Mixed Parallel Image Processors

    Directory of Open Access Journals (Sweden)

    Nanjian Wu

    2009-07-01

    Full Text Available A programmable vision chip with variable resolution and row-pixel-mixed parallel image processors is presented. The chip consists of a CMOS sensor array, with row-parallel 6-bit Algorithmic ADCs, row-parallel gray-scale image processors, pixel-parallel SIMD Processing Element (PE array, and instruction controller. The resolution of the image in the chip is variable: high resolution for a focused area and low resolution for general view. It implements gray-scale and binary mathematical morphology algorithms in series to carry out low-level and mid-level image processing and sends out features of the image for various applications. It can perform image processing at over 1,000 frames/s (fps. A prototype chip with 64 × 64 pixels resolution and 6-bit gray-scale image is fabricated in 0.18 mm Standard CMOS process. The area size of chip is 1.5 mm × 3.5 mm. Each pixel size is 9.5 μm × 9.5 μm and each processing element size is 23 μm × 29 μm. The experiment results demonstrate that the chip can perform low-level and mid-level image processing and it can be applied in the real-time vision applications, such as high speed target tracking.

  17. Dynamical sampling and frame representations with bounded operators

    DEFF Research Database (Denmark)

    Christensen, Ole; Hasannasab, Marzieh; Rashidi, Ehsan

    2017-01-01

    The purpose of this paper is to study frames for a Hilbert space H, having the form {Tnφ}n=0∞ for some φ∈H and an operator T:H→H. We characterize the frames that have such a representation for a bounded operator T, and discuss the properties of this operator. In particular, we prove that the image...... chain of T has finite length N in the overcomplete case; furthermore {Tnφ}n=0∞ has the very particular property that {Tnφ}n=0N−1∪{Tnφ}n=N+ℓ∞ is a frame for H for all ℓ∈N0. We also prove that frames of the form {Tnφ}n=0∞ are sensitive to the ordering of the elements and to norm...

  18. High-Frequency Dynamic Nuclear Polarization in the Nuclear Rotating Frame

    DEFF Research Database (Denmark)

    Farrar, C. T.; Hall, D. A.; Gerfen, G. J.

    2000-01-01

    A proton dynamic nuclear polarization (DNP) NMR signal enhancement (ϵ) close to thermal equilibrium, ϵ = 0.89, has been obtained at high field (B0 = 5 T, νepr = 139.5 GHz) using 15 mM trityl radical in a 40:60 water/glycerol frozen solution at 11 K. The electron-nuclear polarization transfer...... is performed in the nuclear rotating frame with microwave irradiation during a nuclear spin-lock pulse. The growth of the signal enhancement is governed by the rotating frame nuclear spin–lattice relaxation time (T1ρ), which is four orders of magnitude shorter than the nuclear spin–lattice relaxation time (T1n......). Due to the rapid polarization transfer in the nuclear rotating frame the experiment can be recycled at a rate of 1/T1ρ and is not limited by the much slower lab frame nuclear spin–lattice relaxation rate (1/T1n). The increased repetition rate allowed in the nuclear rotating frame provides an effective...

  19. FRAMING EFFECTS ON PHYSICIANS' JUDGMENT AND DECISION MAKING.

    Science.gov (United States)

    Bui, Thanh C; Krieger, Heather A; Blumenthal-Barby, Jennifer S

    2015-10-01

    This study aimed to assess physicians' susceptibility to framing effects in clinical judgment and decision making. A survey was administered online to 159 general internists in the United States. Participants were randomized into two groups, in which clinical scenarios varied in their framings: frequency vs percentage, with cost information vs without, female patient vs male patient, and mortality vs survival. Results showed that physicians' recommendations for patients in hypothetical scenarios were significantly different when the predicted probability of the outcomes was presented in frequency versus percentage form and when it was presented in mortality rate vs survival rate of the same magnitude. Physicians' recommendations were not different for other framing effects.

  20. Volumetric real-time imaging using a CMUT ring array.

    Science.gov (United States)

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  1. Evaluation of onboard hyperspectral-image compression techniques for a parallel push-broom sensor

    Energy Technology Data Exchange (ETDEWEB)

    Briles, S.

    1996-04-01

    A single hyperspectral imaging sensor can produce frames with spatially-continuous rows of differing, but adjacent, spectral wavelength. If the frame sample-rate of the sensor is such that subsequent hyperspectral frames are spatially shifted by one row, then the sensor can be thought of as a parallel (in wavelength) push-broom sensor. An examination of data compression techniques for such a sensor is presented. The compression techniques are intended to be implemented onboard a space-based platform and to have implementation speeds that match the date rate of the sensor. Data partitions examined extend from individually operating on a single hyperspectral frame to operating on a data cube comprising the two spatial axes and the spectral axis. Compression algorithms investigated utilize JPEG-based image compression, wavelet-based compression and differential pulse code modulation. Algorithm performance is quantitatively presented in terms of root-mean-squared error and root-mean-squared correlation coefficient error. Implementation issues are considered in algorithm development.

  2. Dynamic Raman imaging system with high spatial and temporal resolution

    Science.gov (United States)

    Wang, Lei; Dai, Yinzhen; He, Hao; Lv, Ruiqi; Zong, Cheng; Ren, Bin

    2017-09-01

    There is an increasing need to study dynamic changing systems with significantly high spatial and temporal resolutions. In this work, we integrated point-scanning, line-scanning, and wide-field Raman imaging techniques into a single system. By using an Electron Multiplying CCD (EMCCD) with a high gain and high frame rate, we significantly reduced the time required for wide-field imaging, making it possible to monitor the electrochemical reactions in situ. The highest frame rate of EMCDD was ˜50 fps, and the Raman images for a specific Raman peak can be obtained by passing the signal from the sample through the Liquid Crystal Tunable Filter. The spatial resolutions of scanning imaging and wide-field imaging with a 100× objective (NA = 0.9) are 0.5 × 0.5 μm2 and 0.36 × 0.36 μm2, respectively. The system was used to study the surface plasmon resonance of Au nanorods, the surface-enhanced Raman scattering signal distribution for Au Nanoparticle aggregates, and dynamic Raman imaging of an electrochemical reacting system.

  3. Reframing national image: A methodological framework

    Directory of Open Access Journals (Sweden)

    Xiufang Li (Leah

    2009-10-01

    Full Text Available The article addresses the role of national images in international relations and develops a methodological framework for its study. It concludes that national image study should comprise private frames associated with perceived images of other nations, and public frames referring to projected media images of other nations by drawing on framing theory. It suggests that in-depth interview with intermediate elites can be employed to explore private frames, and the inductive or the deductive approaches to public frames. There is recognition that inquiry is conducted in the shadow of a dynamic world politics and within a historical context, and public diplomacy can be used to build national reputation. To examine the associations between public and private frames of a given country will prepare the ways for the identification of alternative frames and framing devices that may result in variation in public opinion, contributing to national image building in the state under study, and promote understanding and relationships between countries.

  4. Variable Rate, Adaptive Transform Tree Coding Of Images

    Science.gov (United States)

    Pearlman, William A.

    1988-10-01

    A tree code, asymptotically optimal for stationary Gaussian sources and squared error distortion [2], is used to encode transforms of image sub-blocks. The variance spectrum of each sub-block is estimated and specified uniquely by a set of one-dimensional auto-regressive parameters. The expected distortion is set to a constant for each block and the rate is allowed to vary to meet the given level of distortion. Since the spectrum and rate are different for every block, the code tree differs for every block. Coding simulations for target block distortion of 15 and average block rate of 0.99 bits per pel (bpp) show that very good results can be obtained at high search intensities at the expense of high computational complexity. The results at the higher search intensities outperform a parallel simulation with quantization replacing tree coding. Comparative coding simulations also show that the reproduced image with variable block rate and average rate of 0.99 bpp has 2.5 dB less distortion than a similarly reproduced image with a constant block rate equal to 1.0 bpp.

  5. Analysis of dark current images of a CMOS camera during gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Náfrádi, Gábor, E-mail: nafradi@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Czifrus, Szabolcs, E-mail: czifrus@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Kocsis, Gábor, E-mail: kocsis.gabor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Pór, Gábor, E-mail: por@reak.bme.hu [INT, BME, EURATOM Association, H-1111 Budapest (Hungary); Szepesi, Tamás, E-mail: szepesi.tamas@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary); Zoletnik, Sándor, E-mail: zoletnik.sandor@wigner.mta.hu [Wigner RCP, RMI, EURATOM Association, POB 49, 1525 Budapest (Hungary)

    2013-12-15

    Highlights: • Radiation tolerance of a fast framing CMOS camera EDICAM examined. • We estimate the expected gamma dose and spectrum of EDICAM with MCNP. • We irradiate EDICAM by 23.5 Gy in 70 min in a fission rector. • Dose rate normalised average brightness of frames grows linearly with the dose. • Dose normalised average brightness of frames follows the dose rate time evolution. -- Abstract: We report on the behaviour of the dark current images of the Event Detection Intelligent Camera (EDICAM) when placed into an irradiation field of gamma rays. EDICAM is an intelligent fast framing CMOS camera operating in the visible spectral range, which is designed for the video diagnostic system of the Wendelstein 7-X (W7-X) stellarator. Monte Carlo calculations were carried out in order to estimate the expected gamma spectrum and dose for an entire year of operation in W7-X. EDICAM was irradiated in a pure gamma field in the Training Reactor of BME with a dose of approximately 23.5 Gy in 1.16 h. During the irradiation, numerous frame series were taken with the camera with exposure times 20 μs, 50 μs, 100 μs, 1 ms, 10 ms, 100 ms. EDICAM withstood the irradiation, but suffered some dynamic range degradation. The behaviour of the dark current images during irradiation is described in detail. We found that the average brightness of dark current images depends on the total ionising dose that the camera is exposed to and the dose rate as well as on the applied exposure times.

  6. Experimental study on composite solid propellant material burning rate using algorithm MATLAB

    Directory of Open Access Journals (Sweden)

    Thunaipragasam Selvakumaran

    2016-01-01

    Full Text Available In rocketry application, now-a-days instead of monopropellants slowly composite propellants are introduced. Burning rate of a solid state composite propellant depends on many factors like oxidizer-binder ratio, oxidizer particle size and distribution, particle size and its distribution, pressure, temperature, etc. Several researchers had taken the mass varied composite propellant. In that, the ammonium perchlorate mainly varied from 85 to 90%. This paper deals with the oxidizer rich propellant by allowing small variation of fuel cum binder ranging from 2%, 4%, 6%, and 8% by mass. Since the percent of the binder is very less compared to the oxidizer, the mixture remains in a powder form. The powder samples are used to make a pressed pellet. Experiments were conducted in closed window bomb set-up at pressures of 2, 3.5, and 7 MN/m2. The burning rates are calculated from the combustion photography (images taken by a high-speed camera. These images were processed frame by frame in MATLAB, detecting the edges in the images of the frames. The burning rate is obtained as the slope of the linear fit from MATLAB and observed that the burn rate increases with the mass variation of constituents present in solid state composite propellant. The result indicates a remarkable increase in burn rate of 26.66%, 20%, 16.66%, and 3.33% for Mix 1, 2, 3, 4 compared with Mix 5 at 7 MN/m2. The percentage variations in burn rate between Mix 1 and Mix 5 at 2, 3.5, and 7 MN/m2 are 25.833%, 32.322%, and 26.185%, respectively.

  7. Fast regional readout CMOS Image Sensor for dynamic MLC tracking

    Science.gov (United States)

    Zin, H.; Harris, E.; Osmond, J.; Evans, P.

    2014-03-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  8. Fast regional readout CMOS image sensor for dynamic MLC tracking

    International Nuclear Information System (INIS)

    Zin, H; Harris, E; Osmond, J; Evans, P

    2014-01-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ∼400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  9. Research on the underwater target imaging based on the streak tube laser lidar

    Science.gov (United States)

    Cui, Zihao; Tian, Zhaoshuo; Zhang, Yanchao; Bi, Zongjie; Yang, Gang; Gu, Erdan

    2018-03-01

    A high frame rate streak tube imaging lidar (STIL) for real-time 3D imaging of underwater targets is presented in this paper. The system uses 532nm pulse laser as the light source, the maximum repetition rate is 120Hz, and the pulse width is 8ns. LabVIEW platform is used in the system, the system control, synchronous image acquisition, 3D data processing and display are realized through PC. 3D imaging experiment of underwater target is carried out in a flume with attenuation coefficient of 0.2, and the images of different depth and different material targets are obtained, the imaging frame rate is 100Hz, and the maximum detection depth is 31m. For an underwater target with a distance of 22m, the high resolution 3D image real-time acquisition is realized with range resolution of 1cm and space resolution of 0.3cm, the spatial relationship of the targets can be clearly identified by the image. The experimental results show that STIL has a good application prospect in underwater terrain detection, underwater search and rescue, and other fields.

  10. Framing Pemberitaan Citra Politik Capres 2014 di Harian Solopos

    Directory of Open Access Journals (Sweden)

    Puji Widi Astutik

    2016-03-01

    Full Text Available The article tries to find out the construction of the image formation in the daily Solopos 2014 candidates. Basic theoretically in this paper uses descriptive analysis method with a form of text analysis models Zhongdang Pan and Gerald M. Kosicki through four units of analysis, syntax, script, thematic, and Rhetorical. Framing analysis is used to see how the image formation through the political news in the Daily Solopos 2014 candidates. Through this analysis can be found that the construction of a shadow image (mirror image performed on the outlook for both candidates figure formed by the track record of each kandindat. Joko Widodo figure in the frame with the figure of the fight for the people and work for the people, while the figure Prabowo has a bad track record as it is considered to participate in the abduction tragedy in which 98 activists at that time as a military Prabowo.

  11. Physics of Non-Inertial Reference Frames

    International Nuclear Information System (INIS)

    Kamalov, Timur F.

    2010-01-01

    Physics of non-inertial reference frames is a generalizing of Newton's laws to any reference frames. It is the system of general axioms for classical and quantum mechanics. The first, Kinematics Principle reads: the kinematic state of a body free of forces conserves and equal in absolute value to an invariant of the observer's reference frame. The second, Dynamics Principle extended Newton's second law to non-inertial reference frames and also contains additional variables there are higher derivatives of coordinates. Dynamics Principle reads: a force induces a change in the kinematic state of the body and is proportional to the rate of its change. It is mean that if the kinematic invariant of the reference frame is n-th derivative with respect the time, then the dynamics of a body being affected by the force F is described by the 2n-th differential equation. The third, Statics Principle reads: the sum of all forces acting a body at rest is equal to zero.

  12. Effective or ineffective: attribute framing and the human papillomavirus (HPV) vaccine.

    Science.gov (United States)

    Bigman, Cabral A; Cappella, Joseph N; Hornik, Robert C

    2010-12-01

    To experimentally test whether presenting logically equivalent, but differently valenced effectiveness information (i.e. attribute framing) affects perceived effectiveness of the human papillomavirus (HPV) vaccine, vaccine-related intentions and policy opinions. A survey-based experiment (N=334) was fielded in August and September 2007 as part of a larger ongoing web-enabled monthly survey, the Annenberg National Health Communication Survey. Participants were randomly assigned to read a short passage about the HPV vaccine that framed vaccine effectiveness information in one of five ways. Afterward, they rated the vaccine and related opinion questions. Main statistical methods included ANOVA and t-tests. On average, respondents exposed to positive framing (70% effective) rated the HPV vaccine as more effective and were more supportive of vaccine mandate policy than those exposed to the negative frame (30% ineffective) or the control frame. Mixed valence frames showed some evidence for order effects; phrasing that ended by emphasizing vaccine ineffectiveness showed similar vaccine ratings to the negative frame. The experiment finds that logically equivalent information about vaccine effectiveness not only influences perceived effectiveness, but can in some cases influence support for policies mandating vaccine use. These framing effects should be considered when designing messages. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Effective or ineffective: Attribute framing and the human papillomavirus (HPV) vaccine

    Science.gov (United States)

    Bigman, Cabral A.; Cappella, Joseph N.; Hornik, Robert C.

    2010-01-01

    Objectives To experimentally test whether presenting logically equivalent, but differently valenced effectiveness information (i.e. attribute framing) affects perceived effectiveness of the human papillomavirus (HPV) vaccine, vaccine related intentions and policy opinions. Method A survey-based experiment (N= 334) was fielded in August and September 2007 as part of a larger ongoing web-enabled monthly survey, the Annenberg National Health Communication Survey. Participants were randomly assigned to read a short passage about the HPV vaccine that framed vaccine effectiveness information in one of five ways. Afterward, they rated the vaccine and related opinion questions. Main statistical methods included ANOVA and t-tests. Results On average, respondents exposed to positive framing (70% effective) rated the HPV vaccine as more effective and were more supportive of vaccine mandate policy than those exposed to the negative frame (30% ineffective) or the control frame. Mixed valence frames showed some evidence for order effects; phrasing that ended by emphasizing vaccine ineffectiveness showed similar vaccine ratings to the negative frame. Conclusions The experiment finds that logically equivalent information about vaccine effectiveness not only influences perceived effectiveness, but can in some cases influence support for policies mandating vaccine use. Practice implications These framing effects should be considered when designing messages. PMID:20851560

  14. Vision communications based on LED array and imaging sensor

    Science.gov (United States)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  15. Noise and sensitivity of x-ray framing cameras at Nike (abstract)

    Science.gov (United States)

    Pawley, C. J.; Deniz, A. V.; Lehecka, T.

    1999-01-01

    X-ray framing cameras are the most widely used tool for radiographing density distributions in laser and Z-pinch driven experiments. The x-ray framing cameras that were developed specifically for experiments on the Nike laser system are described. One of these cameras has been coupled to a CCD camera and was tested for resolution and image noise using both electrons and x rays. The largest source of noise in the images was found to be due to low quantum detection efficiency of x-ray photons.

  16. Geiger-mode APD camera system for single-photon 3D LADAR imaging

    Science.gov (United States)

    Entwistle, Mark; Itzler, Mark A.; Chen, Jim; Owens, Mark; Patel, Ketan; Jiang, Xudong; Slomkowski, Krystyna; Rangwala, Sabbir

    2012-06-01

    The unparalleled sensitivity of 3D LADAR imaging sensors based on single photon detection provides substantial benefits for imaging at long stand-off distances and minimizing laser pulse energy requirements. To obtain 3D LADAR images with single photon sensitivity, we have demonstrated focal plane arrays (FPAs) based on InGaAsP Geiger-mode avalanche photodiodes (GmAPDs) optimized for use at either 1.06 μm or 1.55 μm. These state-of-the-art FPAs exhibit excellent pixel-level performance and the capability for 100% pixel yield on a 32 x 32 format. To realize the full potential of these FPAs, we have recently developed an integrated camera system providing turnkey operation based on FPGA control. This system implementation enables the extremely high frame-rate capability of the GmAPD FPA, and frame rates in excess of 250 kHz (for 0.4 μs range gates) can be accommodated using an industry-standard CameraLink interface in full configuration. Real-time data streaming for continuous acquisition of 2 μs range gate point cloud data with 13-bit time-stamp resolution at 186 kHz frame rates has been established using multiple solid-state storage drives. Range gate durations spanning 4 ns to 10 μs provide broad operational flexibility. The camera also provides real-time signal processing in the form of multi-frame gray-scale contrast images and single-frame time-stamp histograms, and automated bias control has been implemented to maintain a constant photon detection efficiency in the presence of ambient temperature changes. A comprehensive graphical user interface has been developed to provide complete camera control using a simple serial command set, and this command set supports highly flexible end-user customization.

  17. Attribute Framing and Goal Framing Effects in Health Decisions.

    Science.gov (United States)

    Krishnamurthy, Parthasarathy; Carter, Patrick; Blair, Edward

    2001-07-01

    Levin, Schneider, and Gaeth (LSG, 1998) have distinguished among three types of framing-risky choice, attribute, and goal framing-to reconcile conflicting findings in the literature. In the research reported here, we focus on attribute and goal framing. LSG propose that positive frames should be more effective than negative frames in the context of attribute framing, and negative frames should be more effective than positive frames in the context of goal framing. We test this framework by manipulating frame valence (positive vs negative) and frame type (attribute vs goal) in a unified context with common procedures. We also argue that the nature of effects in a goal-framing context may depend on the extent to which the research topic has "intrinsic self-relevance" to the population. In the context of medical decision making, we operationalize low intrinsic self-relevance by using student subjects and high intrinsic self-relevance by using patients. As expected, we find complete support for the LSG framework under low intrinsic self-relevance and modified support for the LSG framework under high intrinsic self-relevance. Overall, our research appears to confirm and extend the LSG framework. Copyright 2001 Academic Press.

  18. High speed global shutter image sensors for professional applications

    Science.gov (United States)

    Wu, Xu; Meynants, Guy

    2015-04-01

    Global shutter imagers expand the use to miscellaneous applications, such as machine vision, 3D imaging, medical imaging, space etc. to eliminate motion artifacts in rolling shutter imagers. A low noise global shutter pixel requires more than one non-light sensitive memory to reduce the read noise. But larger memory area reduces the fill-factor of the pixels. Modern micro-lenses technology can compensate this fill-factor loss. Backside illumination (BSI) is another popular technique to improve the pixel fill-factor. But some pixel architecture may not reach sufficient shutter efficiency with backside illumination. Non-light sensitive memory elements make the fabrication with BSI possible. Machine vision like fast inspection system, medical imaging like 3D medical or scientific applications always ask for high frame rate global shutter image sensors. Thanks to the CMOS technology, fast Analog-to-digital converters (ADCs) can be integrated on chip. Dual correlated double sampling (CDS) on chip ADC with high interface digital data rate reduces the read noise and makes more on-chip operation control. As a result, a global shutter imager with digital interface is a very popular solution for applications with high performance and high frame rate requirements. In this paper we will review the global shutter architectures developed in CMOSIS, discuss their optimization process and compare their performances after fabrication.

  19. Sub-piexl methods for improving vector quality in echo PIV flow, imaging technology.

    Science.gov (United States)

    Niu, Lili; Wang, Jing; Qian, Ming; Zheng, Hairong

    2009-01-01

    Developments of many cardiovascular problems have been shown to have a close relationship with arterial flow conditions. An ultrasound-based particle image velocimetry technique(Echo PIV) was recently developed to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. To improve the measurement accuracy, sub-pixel calculation method was adopted in this paper to maximize the ultrasound RF signal and B mode image correlation accuracy and increase the image spatial resolution. This algorithm is employed in processing both computer-generated particle image patterns and the B-mode images of microbubbles in rotating flows obtained by a high frame rate (up to 1000 frames per second) ultrasound imaging system. The results show the correlation of particle patterns and individual flow vector quality are improved and the overall flow mappings are also improved significantly. This would help the Echo PIV system to provide better multi-component velocity accuracy.

  20. Analysis of images from videocameras in the Frascati Tokamak Upgrade tokamak

    International Nuclear Information System (INIS)

    De Angelis, R.; Migliori, S.; Borioni, S.; Bracco, G.; Pierattini, S.; Perozziello, A.

    2004-01-01

    The plasma edge interaction in FTU tokamak is monitored by wide angle videocameras. Data are acquired as movies or single frames at a rate of 50 frames/s. The images show interesting features of the plasma such as the presence of Marfes or runaways and give useful information on the status of large parts of the vacuum vessel and toroidal limiter. Due to the large number of data available visual inspection of the movies is often insufficient to correlate the images to the experimental findings. This article illustrates a number of applications developed in order to correlate the images with plasma signals and to search the image database for specific features relevant to the discharge

  1. Solid-state framing camera with multiple time frames

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  2. Talking frames : the assessment, use, and impact of message frames in conversational perspective

    NARCIS (Netherlands)

    Buiten, van M.

    2007-01-01

    Choice behavior is susceptible to slight changes in the representation and formulation of messages (e.g., Tversky & Kahneman, 1981), thus violating the normative requirement of "description invariance". Even logically equivalent message frames (e.g., "80% success rate of a new product launch" vs.

  3. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology.

    Science.gov (United States)

    Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J S; Kraus, Martin F; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E; Fujimoto, James G

    2013-07-01

    We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated.

  4. Smart-phone based computational microscopy using multi-frame contact imaging on a fiber-optic array.

    Science.gov (United States)

    Navruz, Isa; Coskun, Ahmet F; Wong, Justin; Mohammad, Saqib; Tseng, Derek; Nagi, Richie; Phillips, Stephen; Ozcan, Aydogan

    2013-10-21

    We demonstrate a cellphone based contact microscopy platform, termed Contact Scope, which can image highly dense or connected samples in transmission mode. Weighing approximately 76 grams, this portable and compact microscope is installed on the existing camera unit of a cellphone using an opto-mechanical add-on, where planar samples of interest are placed in contact with the top facet of a tapered fiber-optic array. This glass-based tapered fiber array has ~9 fold higher density of fiber optic cables on its top facet compared to the bottom one and is illuminated by an incoherent light source, e.g., a simple light-emitting-diode (LED). The transmitted light pattern through the object is then sampled by this array of fiber optic cables, delivering a transmission image of the sample onto the other side of the taper, with ~3× magnification in each direction. This magnified image of the object, located at the bottom facet of the fiber array, is then projected onto the CMOS image sensor of the cellphone using two lenses. While keeping the sample and the cellphone camera at a fixed position, the fiber-optic array is then manually rotated with discrete angular increments of e.g., 1-2 degrees. At each angular position of the fiber-optic array, contact images are captured using the cellphone camera, creating a sequence of transmission images for the same sample. These multi-frame images are digitally fused together based on a shift-and-add algorithm through a custom-developed Android application running on the smart-phone, providing the final microscopic image of the sample, visualized through the screen of the phone. This final computation step improves the resolution and also removes spatial artefacts that arise due to non-uniform sampling of the transmission intensity at the fiber optic array surface. We validated the performance of this cellphone based Contact Scope by imaging resolution test charts and blood smears.

  5. Simultaneous orthogonal plane imaging.

    Science.gov (United States)

    Mickevicius, Nikolai J; Paulson, Eric S

    2017-11-01

    Intrafraction motion can result in a smearing of planned external beam radiation therapy dose distributions, resulting in an uncertainty in dose actually deposited in tissue. The purpose of this paper is to present a pulse sequence that is capable of imaging a moving target at a high frame rate in two orthogonal planes simultaneously for MR-guided radiotherapy. By balancing the zero gradient moment on all axes, slices in two orthogonal planes may be spatially encoded simultaneously. The orthogonal slice groups may be acquired with equal or nonequal echo times. A Cartesian spoiled gradient echo simultaneous orthogonal plane imaging (SOPI) sequence was tested in phantom and in vivo. Multiplexed SOPI acquisitions were performed in which two parallel slices were imaged along two orthogonal axes simultaneously. An autocalibrating phase-constrained 2D-SENSE-GRAPPA (generalized autocalibrating partially parallel acquisition) algorithm was implemented to reconstruct the multiplexed data. SOPI images without intraslice motion artifacts were reconstructed at a maximum frame rate of 8.16 Hz. The 2D-SENSE-GRAPPA reconstruction separated the parallel slices aliased along each orthogonal axis. The high spatiotemporal resolution provided by SOPI has the potential to be beneficial for intrafraction motion management during MR-guided radiation therapy or other MRI-guided interventions. Magn Reson Med 78:1700-1710, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. Nonmonotonic belief state frames and reasoning frames

    NARCIS (Netherlands)

    Engelfriet, J.; Herre, H.; Treur, J.

    1995-01-01

    In this paper five levels of specification of nonmonotonic reasoning are distinguished. The notions of semantical frame, belief state frame and reasoning frame are introduced and used as a semantical basis for the first three levels. Moreover, the semantical connections between the levels are

  7. The finite section method and problems in frame theory

    DEFF Research Database (Denmark)

    Christensen, Ole; Strohmer, T.

    2005-01-01

    solves related computational problems in frame theory. In the case of a frame which is localized w.r.t. an orthonormal basis we are able to estimate the rate of approximation. The results are applied to the reproducing kernel frame appearing in the theory for shift-invariant spaces generated by a Riesz......The finite section method is a convenient tool for approximation of the inverse of certain operators using finite-dimensional matrix techniques. In this paper we demonstrate that the method is very useful in frame theory: it leads to an efficient approximation of the inverse frame operator and also...

  8. Earth - South America (first frame of Earth Spin Movie)

    Science.gov (United States)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  9. Iodine filter imaging system for subtraction angiography using synchrotron radiation

    Science.gov (United States)

    Umetani, K.; Ueda, K.; Takeda, T.; Itai, Y.; Akisada, M.; Nakajima, T.

    1993-11-01

    A new type of real-time imaging system was developed for transvenous coronary angiography. A combination of an iodine filter and a single energy broad-bandwidth X-ray produces two-energy images for the iodine K-edge subtraction technique. X-ray images are sequentially converted to visible images by an X-ray image intensifier. By synchronizing the timing of the movement of the iodine filter into and out of the X-ray beam, two output images of the image intensifier are focused side by side on the photoconductive layer of a camera tube by an oscillating mirror. Both images are read out by electron beam scanning of a 1050-scanning-line video camera within a camera frame time of 66.7 ms. One hundred ninety two pairs of iodine-filtered and non-iodine-filtered images are stored in the frame memory at a rate of 15 pairs/s. In vivo subtracted images of coronary arteries in dogs were obtained in the form of motion pictures.

  10. Camac interface for digitally recording infrared camera images

    International Nuclear Information System (INIS)

    Dyer, G.R.

    1986-01-01

    An instrument has been built to store the digital signals from a modified imaging infrared scanner directly in a digital memory. This procedure avoids the signal-to-noise degradation and dynamic range limitations associated with successive analog-to-digital and digital-to-analog conversions and the analog recording method normally used to store data from the scanner. This technique also allows digital data processing methods to be applied directly to recorded data and permits processing and image reconstruction to be done using either a mainframe or a microcomputer. If a suitable computer and CAMAC-based data collection system are already available, digital storage of up to 12 scanner images can be implemented for less than $1750 in materials cost. Each image is stored as a frame of 60 x 80 eight-bit pixels, with an acquisition rate of one frame every 16.7 ms. The number of frames stored is limited only by the available memory. Initially, data processing for this equipment was done on a VAX 11-780, but images may also be displayed on the screen of a microcomputer. Software for setting the displayed gray scale, generating contour plots and false-color displays, and subtracting one image from another (e.g., background suppression) has been developed for IBM-compatible personal computers

  11. Adaptive wavelet tight frame construction for accelerating MRI reconstruction

    Directory of Open Access Journals (Sweden)

    Genjiao Zhou

    2017-09-01

    Full Text Available The sparsity regularization approach, which assumes that the image of interest is likely to have sparse representation in some transform domain, has been an active research area in image processing and medical image reconstruction. Although various sparsifying transforms have been used in medical image reconstruction such as wavelet, contourlet, and total variation (TV etc., the efficiency of these transforms typically rely on the special structure of the underlying image. A better way to address this issue is to develop an overcomplete dictionary from the input data in order to get a better sparsifying transform for the underlying image. However, the general overcomplete dictionaries do not satisfy the so-called perfect reconstruction property which ensures that the given signal can be perfectly represented by its canonical coefficients in a manner similar to orthonormal bases, resulting in time consuming in the iterative image reconstruction. This work is to develop an adaptive wavelet tight frame method for magnetic resonance image reconstruction. The proposed scheme incorporates the adaptive wavelet tight frame approach into the magnetic resonance image reconstruction by solving a l0-regularized minimization problem. Numerical results show that the proposed approach provides significant time savings as compared to the over-complete dictionary based methods with comparable performance in terms of both peak signal-to-noise ratio and subjective visual quality.

  12. POINT CLOUD DERIVED FROMVIDEO FRAMES: ACCURACY ASSESSMENT IN RELATION TO TERRESTRIAL LASER SCANNINGAND DIGITAL CAMERA DATA

    Directory of Open Access Journals (Sweden)

    P. Delis

    2017-02-01

    Full Text Available The use of image sequences in the form of video frames recorded on data storage is very useful in especially when working with large and complex structures. Two cameras were used in this study: Sony NEX-5N (for the test object and Sony NEX-VG10 E (for the historic building. In both cases, a Sony α f = 16 mm fixed focus wide-angle lens was used. Single frames with sufficient overlap were selected from the video sequence using an equation for automatic frame selection. In order to improve the quality of the generated point clouds, each video frame underwent histogram equalization and image sharpening. Point clouds were generated from the video frames using the SGM-like image matching algorithm. The accuracy assessment was based on two reference point clouds: the first from terrestrial laser scanning and the second generated based on images acquired using a high resolution camera, the NIKON D800. The performed research has shown, that highest accuracies are obtained for point clouds generated from video frames, for which a high pass filtration and histogram equalization had been performed. Studies have shown that to obtain a point cloud density comparable to TLS, an overlap between subsequent video frames must be 85 % or more. Based on the point cloud generated from video data, a parametric 3D model can be generated. This type of the 3D model can be used in HBIM construction.

  13. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    Science.gov (United States)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  14. Hyperspectral imaging system for disease scanning on banana plants

    Science.gov (United States)

    Ochoa, Daniel; Cevallos, Juan; Vargas, German; Criollo, Ronald; Romero, Dennis; Castro, Rodrigo; Bayona, Oswaldo

    2016-05-01

    Black Sigatoka (BS) is a banana plant disease caused by the fungus Mycosphaerella fijiensis. BS symptoms can be observed at late infection stages. By that time, BS has probably spread to other plants. In this paper, we present our current work on building an hyper-spectral (HS) imaging system aimed at in-vivo detection of BS pre-symptomatic responses in banana leaves. The proposed imaging system comprises a motorized stage, a high-sensitivity VIS-NIR camera and an optical spectrograph. To capture images of the banana leaf, the stage's speed and camera's frame rate must be computed to reduce motion blur and to obtain the same resolution along both spatial dimensions of the resulting HS cube. Our continuous leaf scanning approach allows imaging leaves of arbitrary length with minimum frame loss. Once the images are captured, a denoising step is performed to improve HS image quality and spectral profile extraction.

  15. Evaluations of the new LiF-scintillator and optional brightness enhancement films for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Iikura, H., E-mail: Iikura.hiroshi@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan); Tsutsui, N. [Chichibu Fuji Co., Ltd., Ogano, Chichibu, Saitama 368-0193 (Japan); Nakamura, T.; Katagiri, M.; Kureta, M. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan); Kubo, J. [Nissan Motor Co., Ltd., Atsugi, Kanagawa 243-0126 (Japan); Matsubayashi, M. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2011-09-21

    Japan Atomic Energy Agency has developed the neutron scintillator jointly with Chichibu Fuji Co., Ltd. In this study, we evaluated the new ZnS(Ag):Al/{sup 6}Li scintillator developed for neutron imaging. It was confirmed that the brightness increased by about double while maintaining equal performance for the spatial resolution as compared with a conventional scintillator. High frame-rate imaging using a high-speed video camera system and this new scintillator made it possible to image beyond 10 000 frames per second while still having enough brightness. This technique allowed us to obtain a high-frame-rate visualization of oil flow in a running car engine. Furthermore, we devised a technique to increase the light intensity of reception for a camera by adding brightness enhancement films on the output surface of the scintillator. It was confirmed that the spatial resolution degraded more than double, but the brightness increased by about three times.

  16. The Effects of Framing Grades on Student Learning and Preferences

    Science.gov (United States)

    Bies-Hernandez, Nicole J.

    2012-01-01

    Two experiments examined whether framing effects, in terms of losses and gains, can be extended to student learning and grading preferences. In Experiment 1, participants rated psychology course syllabi to investigate preferences for differently framed grading systems: a loss versus gain grading system. The results showed a clear framing effect…

  17. Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images

    Science.gov (United States)

    Schröder, S. E.; Mottola, S.; Carsenty, U.; Ciarniello, M.; Jaumann, R.; Li, J.-Y.; Longobardo, A.; Palmer, E.; Pieters, C.; Preusker, F.; Raymond, C. A.; Russell, C. T.

    2017-05-01

    We present a global spectrophotometric characterization of the Ceres surface using Dawn Framing Camera (FC) images. We identify the photometric model that yields the best results for photometrically correcting images. Corrected FC images acquired on approach to Ceres were assembled into global maps of albedo and color. Generally, albedo and color variations on Ceres are muted. The albedo map is dominated by a large, circular feature in Vendimia Planitia, known from HST images (Li et al., 2006), and dotted by smaller bright features mostly associated with fresh-looking craters. The dominant color variation over the surface is represented by the presence of "blue" material in and around such craters, which has a negative spectral slope over the visible wavelength range when compared to average terrain. We also mapped variations of the phase curve by employing an exponential photometric model, a technique previously applied to asteroid Vesta (Schröder et al., 2013b). The surface of Ceres scatters light differently from Vesta in the sense that the ejecta of several fresh-looking craters may be physically smooth rather than rough. High albedo, blue color, and physical smoothness all appear to be indicators of youth. The blue color may result from the desiccation of ejected material that is similar to the phyllosilicates/water ice mixtures in the experiments of Poch et al. (2016). The physical smoothness of some blue terrains would be consistent with an initially liquid condition, perhaps as a consequence of impact melting of subsurface water ice. We find red terrain (positive spectral slope) near Ernutet crater, where De Sanctis et al. (2017) detected organic material. The spectrophotometric properties of the large Vendimia Planitia feature suggest it is a palimpsest, consistent with the Marchi et al. (2016) impact basin hypothesis. The central bright area in Occator crater, Cerealia Facula, is the brightest on Ceres with an average visual normal albedo of about 0.6 at

  18. Quality control in the recycling stream of PVC from window frames by hyperspectral imaging

    Science.gov (United States)

    Luciani, Valentina; Serranti, Silvia; Bonifazi, Giuseppe; Di Maio, Francesco; Rem, Peter

    2013-05-01

    Polyvinyl chloride (PVC) is one of the most commonly used thermoplastic materials in respect to the worldwide polymer consumption. PVC is mainly used in the building and construction sector, products such as pipes, window frames, cable insulation, floors, coverings, roofing sheets, etc. are realised utilising this material. In recent years, the problem of PVC waste disposal gained increasing importance in the public discussion. The quantity of used PVC items entering the waste stream is gradually increased as progressively greater numbers of PVC products approach to the end of their useful economic lives. The quality of the recycled PVC depends on the characteristics of the recycling process and the quality of the input waste. Not all PVC-containing waste streams have the same economic value. A transparent relation between value and composition is required to decide if the recycling process is cost effective for a particular waste stream. An objective and reliable quality control technique is needed in the recycling industry for the monitoring of both recycled flow streams and final products in the plant. In this work hyperspectral imaging technique in the near infrared (NIR) range (1000-1700 nm) was applied to identify unwanted plastic contaminants and rubber present in PVC coming from windows frame waste in order to assess a quality control procedure during its recycling process. Results showed as PVC, PE and rubber can be identified adopting the NIR-HSI approach.

  19. A multi-frequency electrical impedance tomography system for real-time 2D and 3D imaging

    Science.gov (United States)

    Yang, Yunjie; Jia, Jiabin

    2017-08-01

    This paper presents the design and evaluation of a configurable, fast multi-frequency Electrical Impedance Tomography (mfEIT) system for real-time 2D and 3D imaging, particularly for biomedical imaging. The system integrates 32 electrode interfaces and the current frequency ranges from 10 kHz to 1 MHz. The system incorporates the following novel features. First, a fully adjustable multi-frequency current source with current monitoring function is designed. Second, a flexible switching scheme is developed for arbitrary sensing configuration and a semi-parallel data acquisition architecture is implemented for high-frame-rate data acquisition. Furthermore, multi-frequency digital quadrature demodulation is accomplished in a high-capacity Field Programmable Gate Array. At last, a 3D imaging software, visual tomography, is developed for real-time 2D and 3D image reconstruction, data analysis, and visualization. The mfEIT system is systematically tested and evaluated from the aspects of signal to noise ratio (SNR), frame rate, and 2D and 3D multi-frequency phantom imaging. The highest SNR is 82.82 dB on a 16-electrode sensor. The frame rate is up to 546 fps at serial mode and 1014 fps at semi-parallel mode. The evaluation results indicate that the presented mfEIT system is a powerful tool for real-time 2D and 3D imaging.

  20. SPAD array chips with full frame readout for crystal characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Peter; Blanco, Roberto; Sacco, Ilaria; Ritzert, Michael [Heidelberg University (Germany); Weyers, Sascha [Fraunhofer Institute for Microelectronic Circuits and Systems (Germany)

    2015-05-18

    We present single photon sensitive 2D camera chips containing 88x88 avalanche photo diodes which can be read out in full frame mode with up to 400.000 frames per second. The sensors have an imaging area of ~5mm x 5mm covered by square pixels of ~56µm x 56µm with a ~55% fill factor in the latest chip generation. The chips contain a self triggering logic with selectable (column) multiplicities of up to >=4 hits within an adjustable coincidence time window. The photon accumulation time window is programmable as well. First prototypes have demonstrated low dark count rates of <50kHz/mm2 (SPAD area) at 10 degree C for 10% masked pixels. One chip version contains an automated readout of the photon cluster position. The readout of the detailed photon distribution for single events allows the characterization of light sharing, optical crosstalk etc., in crystals or crystal arrays as they are used in PET instrumentation. This knowledge could lead to improvements in spatial or temporal resolution.

  1. The rapid secondary electron imaging system of the proton beam writer at CIBA

    International Nuclear Information System (INIS)

    Udalagama, C.N.B.; Bettiol, A.A.; Kan, J.A. van; Teo, E.J.; Watt, F.

    2007-01-01

    The recent years have witnessed a proliferation of research involving proton beam (p-beam) writing. This has prompted investigations into means of optimizing the process of p-beam writing so as to make it less time consuming and more efficient. One such avenue is the improvement of the pre-writing preparatory procedures that involves beam focusing and sample alignment which is centred on acquiring images of a resolution standard or sample. The conventional mode of imaging used up to now has utilized conventional nuclear microprobe signals that are of a pulsed nature and are inherently slow. In this work, we report the new imaging system that has been introduced, which uses proton induced secondary electrons. This in conjunction with software developed in-house that uses a National Instruments DAQ card with hardware triggering, facilitates large data transfer rates enabling rapid imaging. Frame rates as much as 10 frames/s have been achieved at an imaging resolution of 512 x 512 pixels

  2. Automating proliferation rate estimation from Ki-67 histology images

    Science.gov (United States)

    Al-Lahham, Heba Z.; Alomari, Raja S.; Hiary, Hazem; Chaudhary, Vipin

    2012-03-01

    Breast cancer is the second cause of women death and the most diagnosed female cancer in the US. Proliferation rate estimation (PRE) is one of the prognostic indicators that guide the treatment protocols and it is clinically performed from Ki-67 histopathology images. Automating PRE substantially increases the efficiency of the pathologists. Moreover, presenting a deterministic and reproducible proliferation rate value is crucial to reduce inter-observer variability. To that end, we propose a fully automated CAD system for PRE from the Ki-67 histopathology images. This CAD system is based on a model of three steps: image pre-processing, image clustering, and nuclei segmentation and counting that are finally followed by PRE. The first step is based on customized color modification and color-space transformation. Then, image pixels are clustered by K-Means depending on the features extracted from the images derived from the first step. Finally, nuclei are segmented and counted using global thresholding, mathematical morphology and connected component analysis. Our experimental results on fifty Ki-67-stained histopathology images show a significant agreement between our CAD's automated PRE and the gold standard's one, where the latter is an average between two observers' estimates. The Paired T-Test, for the automated and manual estimates, shows ρ = 0.86, 0.45, 0.8 for the brown nuclei count, blue nuclei count, and proliferation rate, respectively. Thus, our proposed CAD system is as reliable as the pathologist estimating the proliferation rate. Yet, its estimate is reproducible.

  3. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.

    Science.gov (United States)

    Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M

    2016-03-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  4. A prospective interrupted time series study of interventions to improve the quality, rating, framing and structure of goal-setting in community-based brain injury rehabilitation.

    Science.gov (United States)

    Hassett, Leanne; Simpson, Grahame; Cotter, Rachel; Whiting, Diane; Hodgkinson, Adeline; Martin, Diane

    2015-04-01

    To investigate whether the introduction of an electronic goals system followed by staff training improved the quality, rating, framing and structure of goals written by a community-based brain injury rehabilitation team. Interrupted time series design. Two interventions were introduced six months apart. The first intervention comprised the introduction of an electronic goals system. The second intervention comprised a staff goal training workshop. An audit protocol was devised to evaluate the goals. A random selection of goal statements from the 12 months prior to the interventions (Time 1 baseline) were compared with all goal statements written after the introduction of the electronic goals system (Time 2) and staff training (Time 3). All goals were de-identified for client and time-period, and randomly ordered. A total of 745 goals (Time 1 n = 242; Time 2 n = 283; Time 3 n = 220) were evaluated. Compared with baseline, the introduction of the electronic goals system alone significantly increased goal rating, framing and structure (χ(2) tests 144.7, 18.9, 48.1, respectively, p goal quality, which was only a trend at Time 2, was statistically significant at Time 3 (χ(2) 15.0, p ≤ 001). The training also led to a further significant increase in the framing and structuring of goals over the electronic goals system (χ(2) 11.5, 12.5, respectively, p ≤ 0.001). An electronic goals system combined with staff training improved the quality, rating, framing and structure of goal statements. © The Author(s) 2014.

  5. Media Framing

    DEFF Research Database (Denmark)

    Pedersen, Rasmus T.

    2017-01-01

    The concept of media framing refers to the way in which the news media organize and provide meaning to a news story by emphasizing some parts of reality and disregarding other parts. These patterns of emphasis and exclusion in news coverage create frames that can have considerable effects on news...... consumers’ perceptions and attitudes regarding the given issue or event. This entry briefly elaborates on the concept of media framing, presents key types of media frames, and introduces the research on media framing effects....

  6. 100ps UV/x-ray framing camera

    International Nuclear Information System (INIS)

    Eagles, R.T.; Freeman, N.J.; Allison, J.M.; Sibbett, W.; Sleat, W.E.; Walker, D.R.

    1988-01-01

    The requirement for a sensitive two-dimensional imaging diagnostic with picosecond time resolution, particularly in the study of laser-produced plasmas, has previously been discussed. A temporal sequence of framed images would provide useful supplementary information to that provided by time resolved streak images across a spectral region of interest from visible to x-ray. To fulfill this requirement the Picoframe camera system has been developed. Results pertaining to the operation of a camera having S20 photocathode sensitivity are reviewed and the characteristics of an UV/x-ray sensitive version of the Picoframe system are presented

  7. Framing effects over time: comparing affective and cognitive news frames

    NARCIS (Netherlands)

    Lecheler, S.; Matthes, J.

    2012-01-01

    A growing number of scholars examine the duration of framing effects. However, duration is likely to differ from frame to frame, depending on how strong a frame is. This strength is likely to be enhanced by adding emotional components to a frame. By means of an experimental survey design (n = 111),

  8. Framing futures: visualizing on social-ecological systems change

    NARCIS (Netherlands)

    Vervoort, J.M.

    2011-01-01

    An appreciation of the complexity and uncertainty that characterizes linked human and natural systems - or social-ecological systems - has proliferated throughout the sciences in recent decades. However, dominant societal images, mental models and discourses frame the complexity of

  9. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography.

    Science.gov (United States)

    Sidky, Emil Y; Kraemer, David N; Roth, Erin G; Ullberg, Christer; Reiser, Ingrid S; Pan, Xiaochuan

    2014-10-03

    One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.

  10. Supplier-induced demand as strategic framing

    OpenAIRE

    De Jaegher, K.J.M.

    2010-01-01

    This paper develops a model of supplier-induced demand as strategic framing where the patient has reference-dependent references, and the physician can persuade the patient to buy a treatment by affecting the patient’s reference point. In the main result, the patient is assumed to have a constant rate of risk aversion (lovingness) in the gain (loss) region. Two scenarios are treated. In the cure scenario, the physician wants to frame the patient’s decision problem such that he prefers to buy ...

  11. Interference-free ultrasound imaging during HIFU therapy, using software tools

    Science.gov (United States)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  12. Optional Frame Selection Algorithm for Adaptive Symmetric Service of Augmented Reality Big Data on Smart Devices

    Directory of Open Access Journals (Sweden)

    HwiRim Byun

    2016-05-01

    Full Text Available Following recent technological advances in diverse mobile devices, including smartphones, tablets and smartwatches, in-depth studies aimed at improving the quality of augmented reality (AR are currently ongoing. Smartphones feature the essential elements of AR implementation, such as a camera, a processor and a display in a single device. As a result, additional hardware expansion for AR implementation has become unnecessary, popularizing AR technology at the user level. In the early stages, low-level AR technology was used mainly in limited fields, including simple road guides and marker-based recognition. Due to advances in AR technology, the range of usage has expanded as diverse technologies and purposes are combined. Users’ expectations of AR technology have also increased with this trend, and a high quality of service (QoS, with high-resolution, high-quality images, is now available. However, there are limitations in terms of processing speed and graphic treatment with smart devices, which, due to their small size, have inferior performance compared to the desktop environment when processing data for the implementation of high-resolution, high-quality images. This paper proposes an optional frame-selection algorithm (OFSA, which eliminates the unnecessary work involved with redundant frames during rendering for adaptive symmetric service of augmented reality big data on smart devices. Moreover, the memory read-write delay of the internally-operating OFSA, is minimized by adding an adaptive operation function. It is possible to provide adaptive common AR images at an improved frame rate in heterogeneous smart devices with different levels of performance.

  13. Digital optical tomography system for dynamic breast imaging

    Science.gov (United States)

    Flexman, Molly L.; Khalil, Michael A.; Al Abdi, Rabah; Kim, Hyun K.; Fong, Christopher J.; Desperito, Elise; Hershman, Dawn L.; Barbour, Randall L.; Hielscher, Andreas H.

    2011-07-01

    Diffuse optical tomography has shown promising results as a tool for breast cancer screening and monitoring response to chemotherapy. Dynamic imaging of the transient response of the breast to an external stimulus, such as pressure or a respiratory maneuver, can provide additional information that can be used to detect tumors. We present a new digital continuous-wave optical tomography system designed to simultaneously image both breasts at fast frame rates and with a large number of sources and detectors. The system uses a master-slave digital signal processor-based detection architecture to achieve a dynamic range of 160 dB and a frame rate of 1.7 Hz with 32 sources, 64 detectors, and 4 wavelengths per breast. Included is a preliminary study of one healthy patient and two breast cancer patients showing the ability to identify an invasive carcinoma based on the hemodynamic response to a breath hold.

  14. Riesz frames and approximation of the frame coefficients

    DEFF Research Database (Denmark)

    Casazza, P.; Christensen, Ole

    1998-01-01

    A frame is a fmaily {f i } i=1 ∞ of elements in a Hilbert space with the property that every element in can be written as a (infinite) linear combination of the frame elements. Frame theory describes how one can choose the corresponding coefficients, which are called frame coefficients. From...... the mathematical point of view this is gratifying, but for applications it is a problem that the calculation requires inversion of an operator on . The projection method is introduced in order to avoid this problem. The basic idea is to consider finite subfamilies {f i } i=1 n of the frame and the orthogonal...... projection Pn onto its span. For has a representation as a linear combination of fi, i=1,2,..., n and the corresponding coefficients can be calculated using finite dimensional methods. We find conditions implying that those coefficients converge to the correct frame coefficients as n→∞, in which case we have...

  15. Full-frame compression of discrete wavelet and cosine transforms

    Science.gov (United States)

    Lo, Shih-Chung B.; Li, Huai; Krasner, Brian; Freedman, Matthew T.; Mun, Seong K.

    1995-04-01

    At the foreground of computerized radiology and the filmless hospital are the possibilities for easy image retrieval, efficient storage, and rapid image communication. This paper represents the authors' continuous efforts in compression research on full-frame discrete wavelet (FFDWT) and full-frame discrete cosine transforms (FFDCT) for medical image compression. Prior to the coding, it is important to evaluate the global entropy in the decomposed space. It is because of the minimum entropy, that a maximum compression efficiency can be achieved. In this study, each image was split into the top three most significant bit (MSB) and the remaining remapped least significant bit (RLSB) images. The 3MSB image was compressed by an error-free contour coding and received an average of 0.1 bit/pixel. The RLSB image was either transformed to a multi-channel wavelet or the cosine transform domain for entropy evaluation. Ten x-ray chest radiographs and ten mammograms were randomly selected from our clinical database and were used for the study. Our results indicated that the coding scheme in the FFDCT domain performed better than in FFDWT domain for high-resolution digital chest radiographs and mammograms. From this study, we found that decomposition efficiency in the DCT domain for relatively smooth images is higher than that in the DWT. However, both schemes worked just as well for low resolution digital images. We also found that the image characteristics of the `Lena' image commonly used in the compression literature are very different from those of radiological images. The compression outcome of the radiological images can not be extrapolated from the compression result based on the `Lena.'

  16. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Roesch, Johannes; Baier, Kurt; Sweeney, Reinhart A; Flentje, Michael

    2012-01-01

    To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS) for brain metastases. Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71) or single-layer (n = 27) thermoplastic masks. Pre-treatment set-up errors (n = 98) were evaluated with cone-beam CT (CBCT) based image-guidance (IG) and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64). Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume) safety margins (SM) were simulated. Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector) and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p<0.01), respectively. Simulation of RS without image-guidance reduced target coverage and conformity to 75% ± 19% and 60% ± 25% of planned values. Each 3D set-up error of 1 mm decreased target coverage and dose conformity by 6% and 10% on average, respectively, with a large inter-patient variability. Pre-treatment correction of translations only but not rotations did not affect target coverage and conformity. Post-treatment errors reduced target coverage by >5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate

  17. Frames of exponentials:lower frame bounds for finite subfamilies, and approximation of the inverse frame operator

    DEFF Research Database (Denmark)

    Christensen, Ole; Lindner, Alexander M

    2001-01-01

    We give lower frame bounds for finite subfamilies of a frame of exponentials {e(i lambdak(.))}k is an element ofZ in L-2(-pi,pi). We also present a method for approximation of the inverse frame operator corresponding to {e(i lambdak(.))}k is an element ofZ, where knowledge of the frame bounds for...

  18. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    International Nuclear Information System (INIS)

    Tanter, M.

    2015-01-01

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  19. WE-B-210-02: The Advent of Ultrafast Imaging in Biomedical Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tanter, M. [Laboratoire Ondes et Acoustique (France)

    2015-06-15

    In the last fifteen years, the introduction of plane or diverging wave transmissions rather than line by line scanning focused beams has broken the conventional barriers of ultrasound imaging. By using such large field of view transmissions, the frame rate reaches the theoretical limit of physics dictated by the ultrasound speed and an ultrasonic map can be provided typically in tens of micro-seconds (several thousands of frames per second). Interestingly, this leap in frame rate is not only a technological breakthrough but it permits the advent of completely new ultrasound imaging modes, including shear wave elastography, electromechanical wave imaging, ultrafast doppler, ultrafast contrast imaging, and even functional ultrasound imaging of brain activity (fUltrasound) introducing Ultrasound as an emerging full-fledged neuroimaging modality. At ultrafast frame rates, it becomes possible to track in real time the transient vibrations – known as shear waves – propagating through organs. Such “human body seismology” provides quantitative maps of local tissue stiffness whose added value for diagnosis has been recently demonstrated in many fields of radiology (breast, prostate and liver cancer, cardiovascular imaging, …). Today, Supersonic Imagine company is commercializing the first clinical ultrafast ultrasound scanner, Aixplorer with real time Shear Wave Elastography. This is the first example of an ultrafast Ultrasound approach surpassing the research phase and now widely spread in the clinical medical ultrasound community with an installed base of more than 1000 Aixplorer systems in 54 countries worldwide. For blood flow imaging, ultrafast Doppler permits high-precision characterization of complex vascular and cardiac flows. It also gives ultrasound the ability to detect very subtle blood flow in very small vessels. In the brain, such ultrasensitive Doppler paves the way for fUltrasound (functional ultrasound imaging) of brain activity with unprecedented

  20. Digital Intraoral Imaging Re-Exposure Rates of Dental Students.

    Science.gov (United States)

    Senior, Anthea; Winand, Curtis; Ganatra, Seema; Lai, Hollis; Alsulfyani, Noura; Pachêco-Pereira, Camila

    2018-01-01

    A guiding principle of radiation safety is ensuring that radiation dosage is as low as possible while yielding the necessary diagnostic information. Intraoral images taken with conventional dental film have a higher re-exposure rate when taken by dental students compared to experienced staff. The aim of this study was to examine the prevalence of and reasons for re-exposure of digital intraoral images taken by third- and fourth-year dental students in a dental school clinic. At one dental school in Canada, the total number of intraoral images taken by third- and fourth-year dental students, re-exposures, and error descriptions were extracted from patient clinical records for an eight-month period (September 2015 to April 2016). The data were categorized to distinguish between digital images taken with solid-state sensors or photostimulable phosphor plates (PSP). The results showed that 9,397 intraoral images were made, and 1,064 required re-exposure. The most common error requiring re-exposure for bitewing images was an error in placement of the receptor too far mesially or distally (29% for sensors and 18% for PSP). The most common error requiring re-exposure for periapical images was inadequate capture of the periapical area (37% for sensors and 6% for PSP). A retake rate of 11% was calculated, and the common technique errors causing image deficiencies were identified. Educational intervention can now be specifically designed to reduce the retake rate and radiation dose for future patients.

  1. Speckle Imaging of Binary Stars with Large-Format CCDs

    Science.gov (United States)

    Horch, E.; Ninkov, Z.; Slawson, R. W.; van Altena, W. F.; Meyer, R. D.; Girard, T. M.

    1997-12-01

    In the past, bare (unintensified) CCDs have not been widely used in speckle imaging for two main reasons: 1) the readout rate of most scientific-grade CCDs is too slow to be able to observe at the high frame rates necessary to capture speckle patterns efficiently, and 2) the read noise of CCDs limits the detectability of fainter objects where it becomes difficult to distinguish between speckles and noise peaks in the image. These facts have led to the current supremacy of intensified imaging systems (such as intensified-CCDs) in this field, which can typically be read out at video rates or faster. We have developed a new approach that uses a large format CCD not only to detect the incident photons but also to record many speckle patterns before the chip is read out. This approach effectively uses the large area of the CCD as a physical ``memory cache'' of previous speckle data frames. The method is described, and binary star observations from the University of Toronto Southern Observatory 60-cm telescope and the Wisconsin-Indiana-Yale-NOAO (WIYN) 3.5-m telescope are presented. Plans for future observing and instrumentation improvements are also outlined.

  2. A novel simultaneous streak and framing camera without principle errors

    Science.gov (United States)

    Jingzhen, L.; Fengshan, S.; Ningwen, L.; Xiangdong, G.; Bin, H.; Qingyang, W.; Hongyi, C.; Yi, C.; Xiaowei, L.

    2018-02-01

    A novel simultaneous streak and framing camera with continuous access, the perfect information of which is far more important for the exact interpretation and precise evaluation of many detonation events and shockwave phenomena, has been developed. The camera with the maximum imaging frequency of 2 × 106 fps and the maximum scanning velocity of 16.3 mm/μs has fine imaging properties which are the eigen resolution of over 40 lp/mm in the temporal direction and over 60 lp/mm in the spatial direction and the framing frequency principle error of zero for framing record, and the maximum time resolving power of 8 ns and the scanning velocity nonuniformity of 0.136%~-0.277% for streak record. The test data have verified the performance of the camera quantitatively. This camera, simultaneously gained frames and streak with parallax-free and identical time base, is characterized by the plane optical system at oblique incidence different from space system, the innovative camera obscura without principle errors, and the high velocity motor driven beryllium-like rotating mirror, made of high strength aluminum alloy with cellular lateral structure. Experiments demonstrate that the camera is very useful and reliable to take high quality pictures of the detonation events.

  3. Denoising time-resolved microscopy image sequences with singular value thresholding

    Energy Technology Data Exchange (ETDEWEB)

    Furnival, Tom, E-mail: tjof2@cam.ac.uk; Leary, Rowan K., E-mail: rkl26@cam.ac.uk; Midgley, Paul A., E-mail: pam33@cam.ac.uk

    2017-07-15

    Time-resolved imaging in microscopy is important for the direct observation of a range of dynamic processes in both the physical and life sciences. However, the image sequences are often corrupted by noise, either as a result of high frame rates or a need to limit the radiation dose received by the sample. Here we exploit both spatial and temporal correlations using low-rank matrix recovery methods to denoise microscopy image sequences. We also make use of an unbiased risk estimator to address the issue of how much thresholding to apply in a robust and automated manner. The performance of the technique is demonstrated using simulated image sequences, as well as experimental scanning transmission electron microscopy data, where surface adatom motion and nanoparticle structural dynamics are recovered at rates of up to 32 frames per second. - Highlights: • Correlations in space and time are harnessed to denoise microscopy image sequences. • A robust estimator provides automated selection of the denoising parameter. • Motion tracking and automated noise estimation provides a versatile algorithm. • Application to time-resolved STEM enables study of atomic and nanoparticle dynamics.

  4. High-contrast imaging in the cloud with klipReduce and Findr

    Science.gov (United States)

    Haug-Baltzell, Asher; Males, Jared R.; Morzinski, Katie M.; Wu, Ya-Lin; Merchant, Nirav; Lyons, Eric; Close, Laird M.

    2016-08-01

    Astronomical data sets are growing ever larger, and the area of high contrast imaging of exoplanets is no exception. With the advent of fast, low-noise detectors operating at 10 to 1000 Hz, huge numbers of images can be taken during a single hours-long observation. High frame rates offer several advantages, such as improved registration, frame selection, and improved speckle calibration. However, advanced image processing algorithms are computationally challenging to apply. Here we describe a parallelized, cloud-based data reduction system developed for the Magellan Adaptive Optics VisAO camera, which is capable of rapidly exploring tens of thousands of parameter sets affecting the Karhunen-Loève image processing (KLIP) algorithm to produce high-quality direct images of exoplanets. We demonstrate these capabilities with a visible wavelength high contrast data set of a hydrogen-accreting brown dwarf companion.

  5. Prime tight frames

    DEFF Research Database (Denmark)

    Lemvig, Jakob; Miller, Christopher; Okoudjou, Kasso A.

    2014-01-01

    to suggest effective analysis and synthesis computation strategies for such frames. Finally, we describe all prime frames constructed from the spectral tetris method, and, as a byproduct, we obtain a characterization of when the spectral tetris construction works for redundancies below two.......We introduce a class of finite tight frames called prime tight frames and prove some of their elementary properties. In particular, we show that any finite tight frame can be written as a union of prime tight frames. We then characterize all prime harmonic tight frames and use thischaracterization...

  6. Implementation of a Low Frame-Rate Protocol and Noise-Reduction Technology to Minimize Radiation Dose in Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Maccagni, Davide; Candilio, Luciano; Latib, Azeem; Godino, Cosmo; Chieffo, Alaide; Montorfano, Matteo; Colombo, Antonio; Azzalini, Lorenzo

    2018-05-01

    Limiting radiation exposure is necessary in radiological procedures. This study evaluates the impact of a radiological low frame-rate protocol in a standard angiographic system and the implementation of a noise-reduction technology (NRT) on patient radiation exposure during transcatheter aortic valve replacement (TAVR). Transfemoral TAVR procedures performed between February 2016 and February 2017 were analyzed according to two angiographic systems, Standard and NRT, and further divided in four subgroups: (1) Standard 15 frames per second (fps) with 15 fps for both fluoroscopy and cine acquisitions; (2) Standard 7.5 fps with 7.5 fps for both fluoroscopy and cine acquisitions; (3) NRT 15 fps with 15 fps for both fluoroscopy and cine acquisitions; and (4) NRT 7.5 fps with 15 fps for fluoroscopy and 7.5 fps for cine acquisitions. Study endpoints were kerma area product (KAP) and cumulative air kerma at interventional reference point (AK at IRP). Significant differences were found in KAP (153 Gy·cm² [IQR, 95-234 Gy·cm²] vs 78.3 Gy·cm² [IQR, 54.4-103.5 Gy·cm²]; Pfps and Standard 7.5 fps groups (184 Gy·cm² [IQR, 128-262 Gy·cm²] vs 106.8 Gy·cm² [IQR, 76.87-181 Gy·cm²] [P<.01] and 0.973 Gy [IQR, 0.642-1.786 Gy] vs 0.64 Gy [IQR, 0.489-0.933 Gy] [P<.01], respectively). The present study suggests that the low frame-rate protocol in Standard system and NRT implementation allows a marked reduction of patient radiation exposure in TAVR procedures.

  7. Quantum frames

    Science.gov (United States)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  8. A comparison framework for temporal image reconstructions in electrical impedance tomography

    International Nuclear Information System (INIS)

    Gagnon, Hervé; Adler, Andy; Grychtol, Bartłomiej

    2015-01-01

    Electrical impedance tomography (EIT) provides low-resolution images of internal conductivity distributions, but is able to achieve relatively high temporal resolutions. Most EIT image reconstruction algorithms do not explicitly account for the temporal constraints on the measurements or physiological processes under investigation. Instead, algorithms typically assume both that the conductivity distribution does not change during the acquisition of each EIT data frame, and that frames can be reconstructed independently, without consideration of the correlation between images. A failure to account for these temporal effects will result in aliasing-related artefacts in images. Several methods have been proposed to compensate for these effects, including interpolation of raw data, and reconstruction algorithms using Kalman and temporal filtering. However, no systematic work has been performed to understand the severity of the temporal artefacts nor the extent to which algorithms can account for them. We seek to address this need by developing a temporal comparison framework and figures of merit to assess the ability of reconstruction algorithms to account for temporal effects. Using this approach, we compare combinations of three reconstruction algorithms using three EIT data frame types: perfect, realistic and interpolated. The results show that, without accounting for temporal effects, artefacts are present in images for dynamic conductivity contrasts at frequencies 10–20 times slower than the frame rate. The proposed methods show some improvements in reducing these artefacts. (paper)

  9. A monolithic 640 × 512 CMOS imager with high-NIR sensitivity

    Science.gov (United States)

    Lauxtermann, Stefan; Fisher, John; McDougal, Michael

    2014-06-01

    In this paper we present first results from a backside illuminated CMOS image sensor that we fabricated on high resistivity silicon. Compared to conventional CMOS imagers, a thicker photosensitive membrane can be depleted when using silicon with low background doping concentration while maintaining low dark current and good MTF performance. The benefits of such a fully depleted silicon sensor are high quantum efficiency over a wide spectral range and a fast photo detector response. Combining these characteristics with the circuit complexity and manufacturing maturity available from a modern, mixed signal CMOS technology leads to a new type of sensor, with an unprecedented performance spectrum in a monolithic device. Our fully depleted, backside illuminated CMOS sensor was designed to operate at integration times down to 100nsec and frame rates up to 1000Hz. Noise in Integrate While Read (IWR) snapshot shutter operation for these conditions was simulated to be below 10e- at room temperature. 2×2 binning with a 4× increase in sensitivity and a maximum frame rate of 4000 Hz is supported. For application in hyperspectral imaging systems the full well capacity in each row can individually be programmed between 10ke-, 60ke- and 500ke-. On test structures we measured a room temperature dark current of 360pA/cm2 at a reverse bias of 3.3V. A peak quantum efficiency of 80% was measured with a single layer AR coating on the backside. Test images captured with the 50μm thick VGA imager between 30Hz and 90Hz frame rate show a strong response at NIR wavelengths.

  10. Frame scaling function sets and frame wavelet sets in Rd

    International Nuclear Information System (INIS)

    Liu Zhanwei; Hu Guoen; Wu Guochang

    2009-01-01

    In this paper, we classify frame wavelet sets and frame scaling function sets in higher dimensions. Firstly, we obtain a necessary condition for a set to be the frame wavelet sets. Then, we present a necessary and sufficient condition for a set to be a frame scaling function set. We give a property of frame scaling function sets, too. Some corresponding examples are given to prove our theory in each section.

  11. Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery

    Directory of Open Access Journals (Sweden)

    Guckenberger Matthias

    2012-04-01

    Full Text Available Abstract Background To investigate geometric and dosimetric accuracy of frame-less image-guided radiosurgery (IG-RS for brain metastases. Methods and materials Single fraction IG-RS was practiced in 72 patients with 98 brain metastases. Patient positioning and immobilization used either double- (n = 71 or single-layer (n = 27 thermoplastic masks. Pre-treatment set-up errors (n = 98 were evaluated with cone-beam CT (CBCT based image-guidance (IG and were corrected in six degrees of freedom without an action level. CBCT imaging after treatment measured intra-fractional errors (n = 64. Pre- and post-treatment errors were simulated in the treatment planning system and target coverage and dose conformity were evaluated. Three scenarios of 0 mm, 1 mm and 2 mm GTV-to-PTV (gross tumor volume, planning target volume safety margins (SM were simulated. Results Errors prior to IG were 3.9 mm ± 1.7 mm (3D vector and the maximum rotational error was 1.7° ± 0.8° on average. The post-treatment 3D error was 0.9 mm ± 0.6 mm. No differences between double- and single-layer masks were observed. Intra-fractional errors were significantly correlated with the total treatment time with 0.7mm±0.5mm and 1.2mm±0.7mm for treatment times ≤23 minutes and >23 minutes (p5% in 14% of the patients. A 1 mm safety margin fully compensated intra-fractional patient motion. Conclusions IG-RS with online correction of translational errors achieves high geometric and dosimetric accuracy. Intra-fractional errors decrease target coverage and conformity unless compensated with appropriate safety margins.

  12. Conditions for reliable time-resolved dosimetry of electronic portal imaging devices for fixed-gantry IMRT and VMAT

    International Nuclear Information System (INIS)

    Yeo, Inhwan Jason; Patyal, Baldev; Mandapaka, Anant; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh

    2013-01-01

    Purpose: The continuous scanning mode of electronic portal imaging devices (EPID) that offers time-resolved information has been newly explored for verifying dynamic radiation deliveries. This study seeks to determine operating conditions (dose rate stability and time resolution) under which that mode can be used accurately for the time-resolved dosimetry of intensity-modulated radiation therapy (IMRT) beams.Methods: The authors have designed the following test beams with variable beam holdoffs and dose rate regulations: a 10 × 10 cm open beam to serve as a reference beam; a sliding window (SW) beam utilizing the motion of a pair of multileaf collimator (MLC) leaves outside the 10 × 10 cm jaw; a step and shoot (SS) beam to move the pair in step; a volumetric modulated arc therapy (VMAT) beam. The beams were designed in such a way that they all produce the same open beam output of 10 × 10 cm. Time-resolved ion chamber measurements at isocenter and time-resolved and integrating EPID measurements were performed for all beams. The time-resolved EPID measurements were evaluated through comparison with the ion chamber and integrating EPID measurements, as the latter are accepted procedures. For two-dimensional, time-resolved evaluation, a VMAT beam with an infield MLC travel was designed. Time-resolved EPID measurements and Monte Carlo calculations of such EPID dose images for this beam were performed and intercompared.Results: For IMRT beams (SW and SS), the authors found disagreement greater than 2%, caused by frame missing of the time-resolved mode. However, frame missing disappeared, yielding agreement better than 2%, when the dose rate of irradiation (and thus the frame acquisition rates) reached a stable and planned rate as the dose of irradiation was raised past certain thresholds (a minimum 12 s of irradiation per shoot used for SS IMRT). For VMAT, the authors found that dose rate does not affect the frame acquisition rate, thereby causing no frame missing

  13. Synthetic aperture design for increased SAR image rate

    Science.gov (United States)

    Bielek, Timothy P [Albuquerque, NM; Thompson, Douglas G [Albuqerque, NM; Walker, Bruce C [Albuquerque, NM

    2009-03-03

    High resolution SAR images of a target scene at near video rates can be produced by using overlapped, but nevertheless, full-size synthetic apertures. The SAR images, which respectively correspond to the apertures, can be analyzed in sequence to permit detection of movement in the target scene.

  14. Cramer-Rao Lower Bound for Support-Constrained and Pixel-Based Multi-Frame Blind Deconvolution (Postprint)

    National Research Council Canada - National Science Library

    Matson, Charles; Haji, Aiim

    2006-01-01

    Multi-frame blind deconvolution (MFBD) algorithms can be used to reconstruct a single high-resolution image of an object from one or more measurement frames of that are blurred and noisy realizations of that object...

  15. Multi-frame super-resolution with quality self-assessment for retinal fundus videos.

    Science.gov (United States)

    Köhler, Thomas; Brost, Alexander; Mogalle, Katja; Zhang, Qianyi; Köhler, Christiane; Michelson, Georg; Hornegger, Joachim; Tornow, Ralf P

    2014-01-01

    This paper proposes a novel super-resolution framework to reconstruct high-resolution fundus images from multiple low-resolution video frames in retinal fundus imaging. Natural eye movements during an examination are used as a cue for super-resolution in a robust maximum a-posteriori scheme. In order to compensate heterogeneous illumination on the fundus, we integrate retrospective illumination correction for photometric registration to the underlying imaging model. Our method utilizes quality self-assessment to provide objective quality scores for reconstructed images as well as to select regularization parameters automatically. In our evaluation on real data acquired from six human subjects with a low-cost video camera, the proposed method achieved considerable enhancements of low-resolution frames and improved noise and sharpness characteristics by 74%. In terms of image analysis, we demonstrate the importance of our method for the improvement of automatic blood vessel segmentation as an example application, where the sensitivity was increased by 13% using super-resolution reconstruction.

  16. Fast Calcium Imaging with Optical Sectioning via HiLo Microscopy.

    Science.gov (United States)

    Lauterbach, Marcel A; Ronzitti, Emiliano; Sternberg, Jenna R; Wyart, Claire; Emiliani, Valentina

    2015-01-01

    Imaging intracellular calcium concentration via reporters that change their fluorescence properties upon binding of calcium, referred to as calcium imaging, has revolutionized our way to probe neuronal activity non-invasively. To reach neurons densely located deep in the tissue, optical sectioning at high rate of acquisition is necessary but difficult to achieve in a cost effective manner. Here we implement an accessible solution relying on HiLo microscopy to provide robust optical sectioning with a high frame rate in vivo. We show that large calcium signals can be recorded from dense neuronal populations at high acquisition rates. We quantify the optical sectioning capabilities and demonstrate the benefits of HiLo microscopy compared to wide-field microscopy for calcium imaging and 3D reconstruction. We apply HiLo microscopy to functional calcium imaging at 100 frames per second deep in biological tissues. This approach enables us to discriminate neuronal activity of motor neurons from different depths in the spinal cord of zebrafish embryos. We observe distinct time courses of calcium signals in somata and axons. We show that our method enables to remove large fluctuations of the background fluorescence. All together our setup can be implemented to provide efficient optical sectioning in vivo at low cost on a wide range of existing microscopes.

  17. Riesz Frames and Approximation of the Frame Coefficients

    DEFF Research Database (Denmark)

    Christensen, Ole

    1996-01-01

    A frame is a familyof elements in a Hilbert space with the propertythat every element in the Hilbert space can be written as a (infinite)linear combination of the frame elements. Frame theory describes howone can choose the corresponding coefficients, which are calledframe coefficients. From...... the mathematical point of view this isgratifying, but for applications it is a problem that the calculationrequires inversion of an operator on the Hilbert space.The projection method is introduced in order to avoid this problem.The basic idea is to consider finite subfamiliesof the frame and the orthogonal...... projection onto its span. Forfin QTR H,P_nf has a representation as a linear combinationof f_i,i=1,2,..,n, and the corresponding coefficients can be calculatedusing finite dimensional methods. We find conditions implying that thosecoefficients converge to the correct frame coefficients as n goes...

  18. NO PLIF imaging in the CUBRC 48-inch shock tunnel

    Science.gov (United States)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D. V.; Lempert, W. R.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; Danehy, P. M.

    2012-12-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.

  19. NO PLIF imaging in the CUBRC 48-inch shock tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D.V.; Lempert, W.R. [The Ohio State University, Departments of Mechanical and Aerospace Engineering, Columbus, OH (United States); Miller, J.D.; Meyer, T.R. [Iowa State University, Department of Mechanical Engineering, Ames, IA (United States); Parker, R.; Wadham, T.; Holden, M. [CUBRC, Buffalo, NY (United States); Danehy, P.M. [NASA Langley Research Center, Hampton, VA (United States)

    2012-12-15

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single {proportional_to}10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs. (orig.)

  20. Identification of speech transients using variable frame rate analysis and wavelet packets.

    Science.gov (United States)

    Rasetshwane, Daniel M; Boston, J Robert; Li, Ching-Chung

    2006-01-01

    Speech transients are important cues for identifying and discriminating speech sounds. Yoo et al. and Tantibundhit et al. were successful in identifying speech transients and, emphasizing them, improving the intelligibility of speech in noise. However, their methods are computationally intensive and unsuitable for real-time applications. This paper presents a method to identify and emphasize speech transients that combines subband decomposition by the wavelet packet transform with variable frame rate (VFR) analysis and unvoiced consonant detection. The VFR analysis is applied to each wavelet packet to define a transitivity function that describes the extent to which the wavelet coefficients of that packet are changing. Unvoiced consonant detection is used to identify unvoiced consonant intervals and the transitivity function is amplified during these intervals. The wavelet coefficients are multiplied by the transitivity function for that packet, amplifying the coefficients localized at times when they are changing and attenuating coefficients at times when they are steady. Inverse transform of the modified wavelet packet coefficients produces a signal corresponding to speech transients similar to the transients identified by Yoo et al. and Tantibundhit et al. A preliminary implementation of the algorithm runs more efficiently.

  1. Synthetic aperture flow imaging using dual stage beamforming

    DEFF Research Database (Denmark)

    Li, Ye; Jensen, Jørgen Arendt

    2013-01-01

    A method for synthetic aperture flow imaging using dual stage beamforming has been developed. The main motivation is to increase the frame rate and still maintain a beamforming quality sufficient for flow estimation that is possible to implement in a commercial scanner. This method can generate...

  2. NO PLIF Imaging in the CUBRC 48 Inch Shock Tunnel

    Science.gov (United States)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton J.; Lempert W.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; hide

    2011-01-01

    Nitric Oxide Planar Laser-Induced Fluorescence (NO PLIF) imaging is demonstrated at a 10 kHz repetition rate in the Calspan-University at Buffalo Research Center s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single approx.10-millisecond duration run of the ground test facility. This represents over an order of magnitude improvement in data rate from previous PLIF-based diagnostic approaches. Comparison with a preliminary CFD simulation shows good overall qualitative agreement between the prediction of the mean NO density field and the observed PLIF image intensity, averaged over forty individual images obtained during several facility runs.

  3. Regional rates of myocardial fatty acid metabolism: comparison with coronary angiography and ventriculography.

    Science.gov (United States)

    Schad, N; Wagner, R K; Hallermeier, J; Daus, H J; Vattimo, A; Bertelli, P

    1990-01-01

    In 50 patients, 1 mCi 123I phenylpentadecanoic acid (IPPA) was injected at peak ergometric stress and 1500 frames were acquired (1 frame/s) with a high count rate gamma camera. Parametric images of rates of decrease and increase for different time intervals after stress were compared with coronary angiography and LV ventriculography, separately evaluating the 3 main coronary territories: 18/150 territories supplied by normal coronaries presented rather homogeneous regional clearing rates, whereas a gradual decrease in clearing rates towards the end of the territory (frequently with peripheral defects) was seen in all 87/150 territories with significant coronary narrowing. In local correspondence to clearing defects, initial IPPA accumulations could be observed with later onset of clearing between 10 and 25 min. 44/150 territories presented abnormal clearing rates, mostly with a patchy pattern, with normal coronary anatomy, but all except one had LV dysfunction and a clinical diagnosis of cardiomyopathy, diabetes mellitus or hypertensive disease. Twenty four of the 41 patients with CAD had, in correspondence to a prior myocardial infarction, minimum or missing metabolic activity frequently in circumscribed zones, partly separated by bridges of still viable tissue with preserved but reduced clearing rates.

  4. Novel Fingertip Image-Based Heart Rate Detection Methods for a Smartphone

    Directory of Open Access Journals (Sweden)

    Rifat Zaman

    2017-02-01

    Full Text Available We hypothesize that our fingertip image-based heart rate detection methods using smartphone reliably detect the heart rhythm and rate of subjects. We propose fingertip curve line movement-based and fingertip image intensity-based detection methods, which both use the movement of successive fingertip images obtained from smartphone cameras. To investigate the performance of the proposed methods, heart rhythm and rate of the proposed methods are compared to those of the conventional method, which is based on average image pixel intensity. Using a smartphone, we collected 120 s pulsatile time series data from each recruited subject. The results show that the proposed fingertip curve line movement-based method detects heart rate with a maximum deviation of 0.0832 Hz and 0.124 Hz using time- and frequency-domain based estimation, respectively, compared to the conventional method. Moreover, another proposed fingertip image intensity-based method detects heart rate with a maximum deviation of 0.125 Hz and 0.03 Hz using time- and frequency-based estimation, respectively.

  5. Body frames and frame singularities for three-atom systems

    International Nuclear Information System (INIS)

    Littlejohn, R.G.; Mitchell, K.A.; Aquilanti, V.; Cavalli, S.

    1998-01-01

    The subject of body frames and their singularities for three-particle systems is important not only for large-amplitude rovibrational coupling in molecular spectroscopy, but also for reactive scattering calculations. This paper presents a geometrical analysis of the meaning of body frame conventions and their singularities in three-particle systems. Special attention is devoted to the principal axis frame, a certain version of the Eckart frame, and the topological inevitability of frame singularities. The emphasis is on a geometrical picture, which is intended as a preliminary study for the more difficult case of four-particle systems, where one must work in higher-dimensional spaces. The analysis makes extensive use of kinematic rotations. copyright 1998 The American Physical Society

  6. The effect of serial data collection on the accuracy of electrical impedance tomography images

    International Nuclear Information System (INIS)

    Yerworth, Rebecca; Bayford, Richard

    2013-01-01

    There has been a surge of interest in using electrical impedance tomography (EIT) for monitoring regional lung ventilation, however, EIT is an ill-conditioned problem, and errors/noise in the boundary voltages can have an undesirable effect on the quality of the final image. Most EIT systems in clinical usage use serial data collection hence data used to create a single image will have been collected at different times. This paper presents a study of the resulting image distortion, and proposes a method for correcting this lag in situations where the frame rate is insufficient to prevent significant image degradation. Significant correlation between the standard deviation of the time dependent reciprocity error and time delay dL e between the reciprocal electrode combinations was found for both adult and neonate data. This was reduced when the data was corrected for dL e . Original and corrected data was reconstructed with the GREIT algorithm and visible differences were found for the neonate data. Ideally EIT systems should be run at a frame rate of at least 50 times the frequency of the dominant and interesting physiological signals. Where this is not practical, the intra-frame system timings should be determined and lag corrected for. (paper)

  7. Temporary persistence of conduction block after prolonged kilohertz frequency alternating current on rat sciatic nerve

    Science.gov (United States)

    Bhadra, Narendra; Foldes, Emily; Vrabec, Tina; Kilgore, Kevin; Bhadra, Niloy

    2018-02-01

    Objective. Application of kilohertz frequency alternating current (KHFAC) waveforms can result in nerve conduction block that is induced in less than a second. Conduction recovers within seconds when KHFAC is applied for about 5-10 min. This study investigated the effect of repeated and prolonged application of KHFAC on rat sciatic nerve with bipolar platinum electrodes. Approach. Varying durations of KHFAC at signal amplitudes for conduction block with intervals of no stimulus were studied. Nerve conduction was monitored by recording peak Gastrocnemius muscle force utilizing stimulation electrodes proximal (PS) and distal (DS) to a blocking electrode. The PS signal traveled through the block zone on the nerve, while the DS went directly to the motor end-plate junction. The PS/DS force ratio provided a measure of conduction patency of the nerve in the block zone. Main results. Conduction recovery times were found to be significantly affected by the cumulative duration of KHFAC application. Peak stimulated muscle force returned to pre-block levels immediately after cessation of KHFAC delivery when it was applied for less than about 15 min. They fell significantly but recovered to near pre-block levels for cumulative stimulus of 50  ±  20 min, for the tested On/Off times and frequencies. Conduction recovered in two phases, an initial fast one (60-80% recovery), followed by a slower phase. No permanent conduction block was seen at the end of the observation period during any experiment. Significance. This carry-over block effect may be exploited to provide continuous conduction block in peripheral nerves without continuous application of KHFAC.

  8. Optical design considerations when imaging the fundus with an adaptive optics correction

    Science.gov (United States)

    Wang, Weiwei; Campbell, Melanie C. W.; Kisilak, Marsha L.; Boyd, Shelley R.

    2008-06-01

    Adaptive Optics (AO) technology has been used in confocal scanning laser ophthalmoscopes (CSLO) which are analogous to confocal scanning laser microscopes (CSLM) with advantages of real-time imaging, increased image contrast, a resistance to image degradation by scattered light, and improved optical sectioning. With AO, the instrumenteye system can have low enough aberrations for the optical quality to be limited primarily by diffraction. Diffraction-limited, high resolution imaging would be beneficial in the understanding and early detection of eye diseases such as diabetic retinopathy. However, to maintain diffraction-limited imaging, sufficient pixel sampling over the field of view is required, resulting in the need for increased data acquisition rates for larger fields. Imaging over smaller fields may be a disadvantage with clinical subjects because of fixation instability and the need to examine larger areas of the retina. Reduction in field size also reduces the amount of light sampled per pixel, increasing photon noise. For these reasons, we considered an instrument design with a larger field of view. When choosing scanners to be used in an AOCSLO, the ideal frame rate should be above the flicker fusion rate for the human observer and would also allow user control of targets projected onto the retina. In our AOCSLO design, we have studied the tradeoffs between field size, frame rate and factors affecting resolution. We will outline optical approaches to overcome some of these tradeoffs and still allow detection of the earliest changes in the fundus in diabetic retinopathy.

  9. Frame on frames: an annotated bibliography

    International Nuclear Information System (INIS)

    Wright, T.; Tsao, H.J.

    1983-01-01

    The success or failure of any sample survey of a finite population is largely dependent upon the condition and adequacy of the list or frame from which the probability sample is selected. Much of the published survey sampling related work has focused on the measurement of sampling errors and, more recently, on nonsampling errors to a lesser extent. Recent studies on data quality for various types of data collection systems have revealed that the extent of the nonsampling errors far exceeds that of the sampling errors in many cases. While much of this nonsampling error, which is difficult to measure, can be attributed to poor frames, relatively little effort or theoretical work has focused on this contribution to total error. The objective of this paper is to present an annotated bibliography on frames with the hope that it will bring together, for experimenters, a number of suggestions for action when sampling from imperfect frames and that more attention will be given to this area of survey methods research

  10. Health warnings promote healthier dietary decision making: Effects of positive versus negative message framing and graphic versus text-based warnings.

    Science.gov (United States)

    Rosenblatt, Daniel H; Bode, Stefan; Dixon, Helen; Murawski, Carsten; Summerell, Patrick; Ng, Alyssa; Wakefield, Melanie

    2018-08-01

    Food product health warnings have been proposed as a potential obesity prevention strategy. This study examined the effects of text-only and text-and-graphic, negatively and positively framed health warnings on dietary choice behavior. In a 2 × 5 mixed experimental design, 96 participants completed a dietary self-control task. After providing health and taste ratings of snack foods, participants completed a baseline measure of dietary self-control, operationalized as participants' frequency of choosing healthy but not tasty items and rejecting unhealthy yet tasty items to consume at the end of the experiment. Participants were then randomly assigned to one of five health warning groups and presented with 10 health warnings of a given form: text-based, negative framing; graphic, negative framing; text, positive framing; graphic, positive framing; or a no warning control. Participants then completed a second dietary decision making session to determine whether health warnings influenced dietary self-control. Linear mixed effects modeling revealed a significant interaction between health warning group and decision stage (pre- and post-health warning presentation) on dietary self-control. Negatively framed graphic health warnings promoted greater dietary self-control than other health warnings. Negatively framed text health warnings and positively framed graphic health warnings promoted greater dietary self-control than positively framed text health warnings and control images, which did not increase dietary self-control. Overall, HWs primed healthier dietary decision making behavior, with negatively framed graphic HWs being most effective. Health warnings have potential to become an important element of obesity prevention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Ultrafast gated intensifier design for laser fusion x-ray framing applications

    International Nuclear Information System (INIS)

    Price, R.H.; Wiedwald, J.D.; Kalibjian, R.; Thomas, S.W.; Cook, W.M.

    1983-01-01

    A major challenge for laser fusion is the study of the symmetry and the hydrodynamic stability of imploding fuel capsules. Streaked x-radiography, in one space and one time dimension, does not provide sufficient information. Two (spatial) dimensional frames of 10 to 100 ps duration are required with good image quality, minimum geometrical distortion (approximately 1%), dynamic range greater than 1000 and greater than 200 x 200 pixels. A gated transmission line imager (TLI) can meet these requirements with frame times between 30 and 100 ps. An instrument of this type is now being developed. Progress on this instrument including theory of operation, ultrafast pulse generation and propagation, component integration, and high resolution phosphor screen development are presented

  12. Technique for producing cardiac radionuclide motion images

    International Nuclear Information System (INIS)

    Reese, I.C.; Mishkin, F.S.

    1975-01-01

    Sequential frames of different portions of the cardiac cycle are gated into a minicomputer by using an EKG signal recorded onto digital tape simultaneously with imaging information. Serial display of these frames on the computer oscilloscope or projection of 35-mm half frames of these images provides a cardiac motion image with information content adequate for qualitatively assessing cardiac motion. (U.S.)

  13. Performance evaluation of compounding and directional beamforming techniques for carotid strain imaging using plane wave transmissions

    DEFF Research Database (Denmark)

    Hansen, Hendrik H.G.; Stuart, Matthias Bo; Villagómez Hoyos, Carlos Armando

    2014-01-01

    Carotid strain imaging in 3D is not possible with conventional focused imaging, because the frame rate is too low. Plane wave ultrasound provides sufficiently high frame rates, albeit at t he cost of image quality, especially in the off - axis direction due to the lack of focusing . Multiple...... techniques have been developed to cope with the low off - axis image quality when performing 2D (and in future 3D) motion estimation: cross correlation with directional beamforming (with or without RF (coherent) compounding) and displacement compounding. This study compares the precision of these techniques...... with RF compounding and 2D displacement compounding with θ = ~20 ° per formed equally and best with a relative root - mean - squared error of ~2% with respect to the analytical solution . The mean and standard deviation of the estimated motion direction for 2D displacement compounding with θ = 20 ° was 0...

  14. Development of a THz spectroscopic imaging system

    International Nuclear Information System (INIS)

    Usami, M; Iwamoto, T; Fukasawa, R; Tani, M; Watanabe, M; Sakai, K

    2002-01-01

    We have developed a real-time THz imaging system based on the two-dimensional (2D) electro-optic (EO) sampling technique. Employing the 2D EO-sampling technique, we can obtain THz images using a CCD camera at a video rate of up to 30 frames per second. A spatial resolution of 1.4 mm was achieved. This resolution was reasonably close to the theoretical limit determined by diffraction. We observed not only static objects but also moving ones. To acquire spectroscopic information, time-domain images were collected. By processing these images on a computer, we can obtain spectroscopic images. Spectroscopy for silicon wafers was demonstrated

  15. Design and performance of PEP dc-power systems

    International Nuclear Information System (INIS)

    Jackson, T.

    1981-03-01

    The PEP Magnet Power Supply System represents a significant departure from previous technology with the goal of improved performance at lower cost. In nineteen of the magnet families around the ring, Chopper power supplies are used. The many choppers are powered from two 2 MW dc supplies, and control the average power to the various magnet loads by pulse-width modulation at a 2 kilohertz repetition rate. Each chopper utilizes SCR's for switching, and stores sufficient capacitive energy for turn-off on command. Most of the energy is recirculated, resulting in high-efficiency. The two kilohertz chopping rate allows a one kilohertz unity-gain bandwidth in the current-regulator loop, and this wide bandwidth, coupled with low drift components in the error-detection system, provides a high-performance system. The PEP system has also shown that the chopper system is economical compared to standard multi-pulse controlled-rectifier

  16. Magneto-optical system for high speed real time imaging

    Science.gov (United States)

    Baziljevich, M.; Barness, D.; Sinvani, M.; Perel, E.; Shaulov, A.; Yeshurun, Y.

    2012-08-01

    A new magneto-optical system has been developed to expand the range of high speed real time magneto-optical imaging. A special source for the external magnetic field has also been designed, using a pump solenoid to rapidly excite the field coil. Together with careful modifications of the cryostat, to reduce eddy currents, ramping rates reaching 3000 T/s have been achieved. Using a powerful laser as the light source, a custom designed optical assembly, and a high speed digital camera, real time imaging rates up to 30 000 frames per seconds have been demonstrated.

  17. Brain potentials associated with the outcome processing in framing effects.

    Science.gov (United States)

    Ma, Qingguo; Feng, Yandong; Xu, Qing; Bian, Jun; Tang, Huixian

    2012-10-24

    Framing effect is a cognitive bias referring to the phenomenon that people respond differently to different but objectively equivalent descriptions of the same problem. By measuring event-related potentials, the present study aimed to investigate the neural mechanisms underlying the framing effect, especially how the negative and positive frames influence the outcome processing in our brain. Participants were presented directly with outcomes framed either positively in terms of lives saved or negatively in terms of lives lost in large and small group conditions, and were asked to rate the favorableness of each of them. The behavioral results showed that the framing effect occurred in both group size conditions, with more favorable evaluations associated with positive framing. Compared with outcomes in positive framing condition, a significant feedback-related negativity (FRN) effect was elicited by outcomes in negative framing condition, even though the outcomes in different conditions were objectively equivalent. The results are explained in terms of the associative model of attribute framing effect which states that attribute framing effect occurs as a result of a valence-based associative processing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Research on the algorithm of infrared target detection based on the frame difference and background subtraction method

    Science.gov (United States)

    Liu, Yun; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Hui, Mei; Liu, Xiaohua; Wu, Yijian

    2015-09-01

    As an important branch of infrared imaging technology, infrared target tracking and detection has a very important scientific value and a wide range of applications in both military and civilian areas. For the infrared image which is characterized by low SNR and serious disturbance of background noise, an innovative and effective target detection algorithm is proposed in this paper, according to the correlation of moving target frame-to-frame and the irrelevance of noise in sequential images based on OpenCV. Firstly, since the temporal differencing and background subtraction are very complementary, we use a combined detection method of frame difference and background subtraction which is based on adaptive background updating. Results indicate that it is simple and can extract the foreground moving target from the video sequence stably. For the background updating mechanism continuously updating each pixel, we can detect the infrared moving target more accurately. It paves the way for eventually realizing real-time infrared target detection and tracking, when transplanting the algorithms on OpenCV to the DSP platform. Afterwards, we use the optimal thresholding arithmetic to segment image. It transforms the gray images to black-white images in order to provide a better condition for the image sequences detection. Finally, according to the relevance of moving objects between different frames and mathematical morphology processing, we can eliminate noise, decrease the area, and smooth region boundaries. Experimental results proves that our algorithm precisely achieve the purpose of rapid detection of small infrared target.

  19. Counterexamples to the B-spline Conjecture for Gabor Frames

    DEFF Research Database (Denmark)

    Lemvig, Jakob; Nielsen, Kamilla Haahr

    2016-01-01

    The frame set conjecture for B-splines Bn, n≥2, states that the frame set is the maximal set that avoids the known obstructions. We show that any hyperbola of the form ab=r, where r is a rational number smaller than one and a and b denote the sampling and modulation rates, respectively, has infin...

  20. Predictive 3D search algorithm for multi-frame motion estimation

    NARCIS (Netherlands)

    Lim, Hong Yin; Kassim, A.A.; With, de P.H.N.

    2008-01-01

    Multi-frame motion estimation introduced in recent video standards such as H.264/AVC, helps to improve the rate-distortion performance and hence the video quality. This, however, comes at the expense of having a much higher computational complexity. In multi-frame motion estimation, there exists

  1. Real-time Implementation of Synthetic Aperture Vector Flow Imaging on a Consumer-level Tablet

    DEFF Research Database (Denmark)

    di Ianni, Tommaso; Kjeldsen, Thomas Kim; Villagómez Hoyos, Carlos Armando

    2017-01-01

    In this work, a 2-D vector flow imaging (VFI) method based on synthetic aperture sequential beamforming (SASB) and directional transverse oscillation is implemented on a commercially available tablet. The SASB technique divides the beamforming process in two parts, whereby the required data rate ......’s built-in GPU (Nvidia Tegra K1) through the OpenGL ES 3.1 API. Real-time performance was achieved with rates up to 26 VFI frames per second (38 ms/frame) for concurrent processing and Wi-Fi transmission....

  2. Innovative approach for in-vivo ablation validation on multimodal images

    Science.gov (United States)

    Shahin, O.; Karagkounis, G.; Carnegie, D.; Schlaefer, A.; Boctor, E.

    2014-03-01

    Radiofrequency ablation (RFA) is an important therapeutic procedure for small hepatic tumors. To make sure that the target tumor is effectively treated, RFA monitoring is essential. While several imaging modalities can observe the ablation procedure, it is not clear how ablated lesions on the images correspond to actual necroses. This uncertainty contributes to the high local recurrence rates (up to 55%) after radiofrequency ablative therapy. This study investigates a novel approach to correlate images of ablated lesions with actual necroses. We mapped both intraoperative images of the lesion and a slice through the actual necrosis in a common reference frame. An electromagnetic tracking system was used to accurately match lesion slices from different imaging modalities. To minimize the liver deformation effect, the tracking reference frame was defined inside the tissue by anchoring an electromagnetic sensor adjacent to the lesion. A validation test was performed using a phantom and proved that the end-to-end accuracy of the approach was within 2mm. In an in-vivo experiment, intraoperative magnetic resonance imaging (MRI) and ultrasound (US) ablation images were correlated to gross and histopathology. The results indicate that the proposed method can accurately correlate invivo ablations on different modalities. Ultimately, this will improve the interpretation of the ablation monitoring and reduce the recurrence rates associated with RFA.

  3. High throughput imaging cytometer with acoustic focussing.

    Science.gov (United States)

    Zmijan, Robert; Jonnalagadda, Umesh S; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn; Glynne-Jones, Peter

    2015-10-31

    We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.

  4. Stereotactic biopsy of cerebellar lesions: straight versus oblique frame positioning.

    Science.gov (United States)

    Quick-Weller, Johanna; Brawanski, Nina; Dinc, Nazife; Behmanesh, Bedjahn; Kammerer, Sara; Dubinski, Daniel; Seifert, Volker; Marquardt, Gerhard; Weise, Lutz

    2017-10-26

    Biospies of brain lesions with unknown entity are an everyday procedure among many neurosurgical departments. Biopsies can be performed frame-guided or frameless. However, cerebellar lesions are a special entity with a more complex approach. All biopsies in this study were performed stereotactically frame guided. Therefore, only biopsies of cerebellar lesions were included in this study. We compared whether the frame was attached straight versus oblique and we focused on diagnostic yield and complication rate. We evaluated 20 patients who underwent the procedure between 2009 and 2017. Median age was 56.5 years. 12 (60%) Patients showed a left sided lesion, 6 (30%) showed a lesion in the right cerebellum and 2 (10%) patients showed a midline lesion. The stereotactic frame was mounted oblique in 12 (60%) patients and straight in 8 (40%) patients. Postoperative CT scan showed small, clinically silent blood collection in two (10%) of the patients, one (5%) patient showed haemorrhage, which caused a hydrocephalus. He received an external ventricular drain. In both patients with small haemorrhage the frame was positioned straight, while in the patient who showed a larger haemorrhage the frame was mounted oblique. In all patients a final histopathological diagnosis was established. Cerebellar lesions of unknown entity can be accessed transcerebellar either with the stereotactic frame mounted straight or oblique. Also for cerebellar lesions the procedure shows a high diagnostic yield with a low rate of severe complications, which need further treatment.

  5. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    Science.gov (United States)

    Kamanli, Mehmet; Unal, Alptug

    2017-10-01

    After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  6. Finding and Improving the Key-Frames of Long Video Sequences for Face Recognition

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2010-01-01

    Face recognition systems are very sensitive to the quality and resolution of their input face images. This makes such systems unreliable when working with long surveillance video sequences without employing some selection and enhancement algorithms. On the other hand, processing all the frames...... of such video sequences by any enhancement or even face recognition algorithm is demanding. Thus, there is a need for a mechanism to summarize the input video sequence to a set of key-frames and then applying an enhancement algorithm to this subset. This paper presents a system doing exactly this. The system...... uses face quality assessment to select the key-frames and a hybrid super-resolution to enhance the face image quality. The suggested system that employs a linear associator face recognizer to evaluate the enhanced results has been tested on real surveillance video sequences and the experimental results...

  7. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    Science.gov (United States)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  8. Approximately dual frames in Hilbert spaces and applications to Gabor frames

    OpenAIRE

    Christensen, Ole; Laugesen, Richard S.

    2011-01-01

    Approximately dual frames are studied in the Hilbert space setting. Approximate duals are easier to construct than classical dual frames, and can be tailored to yield almost perfect reconstruction. Bounds on the deviation from perfect reconstruction are obtained for approximately dual frames constructed via perturbation theory. An alternative bound is derived for the rich class of Gabor frames, by using the Walnut representation of the frame operator to estimate the deviation from equality in...

  9. Comparison between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual Processing.

    Science.gov (United States)

    Farabet, Clément; Paz, Rafael; Pérez-Carrasco, Jose; Zamarreño-Ramos, Carlos; Linares-Barranco, Alejandro; Lecun, Yann; Culurciello, Eugenio; Serrano-Gotarredona, Teresa; Linares-Barranco, Bernabe

    2012-01-01

    Most scene segmentation and categorization architectures for the extraction of features in images and patches make exhaustive use of 2D convolution operations for template matching, template search, and denoising. Convolutional Neural Networks (ConvNets) are one example of such architectures that can implement general-purpose bio-inspired vision systems. In standard digital computers 2D convolutions are usually expensive in terms of resource consumption and impose severe limitations for efficient real-time applications. Nevertheless, neuro-cortex inspired solutions, like dedicated Frame-Based or Frame-Free Spiking ConvNet Convolution Processors, are advancing real-time visual processing. These two approaches share the neural inspiration, but each of them solves the problem in different ways. Frame-Based ConvNets process frame by frame video information in a very robust and fast way that requires to use and share the available hardware resources (such as: multipliers, adders). Hardware resources are fixed- and time-multiplexed by fetching data in and out. Thus memory bandwidth and size is important for good performance. On the other hand, spike-based convolution processors are a frame-free alternative that is able to perform convolution of a spike-based source of visual information with very low latency, which makes ideal for very high-speed applications. However, hardware resources need to be available all the time and cannot be time-multiplexed. Thus, hardware should be modular, reconfigurable, and expansible. Hardware implementations in both VLSI custom integrated circuits (digital and analog) and FPGA have been already used to demonstrate the performance of these systems. In this paper we present a comparison study of these two neuro-inspired solutions. A brief description of both systems is presented and also discussions about their differences, pros and cons.

  10. Framing the frame: How task goals determine the likelihood and direction of framing effects

    OpenAIRE

    Todd McElroy; John J. Seta

    2007-01-01

    We examined how the goal of a decision task influences the perceived positive, negative valence of the alternatives and thereby the likelihood and direction of framing effects. In Study 1 we manipulated the goal to increase, decrease or maintain the commodity in question and found that when the goal of the task was to increase the commodity, a framing effect consistent with those typically observed in the literature was found. When the goal was to decrease, a framing effect opposite to the ty...

  11. A liquid-crystal-on-silicon color sequential display using frame buffer pixel circuits

    Science.gov (United States)

    Lee, Sangrok

    Next generation liquid-crystal-on-silicon (LCOS) high definition (HD) televisions and image projection displays will need to be low-cost and high quality to compete with existing systems based on digital micromirror devices (DMDs), plasma displays, and direct view liquid crystal displays. In this thesis, a novel frame buffer pixel architecture that buffers data for the next image frame while displaying the current frame, offers such a competitive solution is presented. The primary goal of the thesis is to demonstrate the LCOS microdisplay architecture for high quality image projection displays and at potentially low cost. The thesis covers four main research areas: new frame buffer pixel circuits to improve the LCOS performance, backplane architecture design and testing, liquid crystal modes for the LCOS microdisplay, and system integration and demonstration. The design requirements for the LCOS backplane with a 64 x 32 pixel array are addressed and measured electrical characteristics matches to computer simulation results. Various liquid crystal (LC) modes applicable for LCOS microdisplays and their physical properties are discussed. One- and two-dimensional director simulations are performed for the selected LC modes. Test liquid crystal cells with the selected LC modes are made and their electro-optic effects are characterized. The 64 x 32 LCOS microdisplays fabricated with the best LC mode are optically tested with interface circuitry. The characteristics of the LCOS microdisplays are summarized with the successful demonstration.

  12. Reactions to framing of cessation messages: insights from dual-smoker couples.

    Science.gov (United States)

    Lipkus, Isaac M; Ranby, Krista W; Lewis, Megan A; Toll, Benjamin

    2013-12-01

    Couples in which both members smoke (dual-smoker couples) have not been the explicit target of cessation interventions. Quit rates are lower and relapse rates are higher among individuals in dual-smoker couples. A potentially effective strategy to motivate dual-smoker couples to quit is to convey messages that highlight how the positive outcomes of quitting (gain frame) or the negative outcomes of continued smoking (loss frame) affect the couple rather than the individual smoker. We explored whether dual-smoker couples' smoking behaviors (e.g., amount smoked) and desire to quit would differ as a function of message frame (gain vs. loss) or outcome focus (individual vs. couple). Dual-smoker couples (N = 40) completed a baseline survey and were then randomized to review gain- or loss-framed messages that varied whether the outcomes influenced the individual or the couple. Main outcomes were desire to quit after reading messages and smoking behaviors at a 1-month follow-up. Couple-focused messages produced the strongest desire to quit and decreased amount of cigarettes smoked at follow-up. The latter effect was mediated by desire to quit. Loss-framed messages produced inconsistent effects on desire to quit. There were no significant interactions between outcome focus and message framing. Findings suggest that messages emphasizing how smoking affects both partners can motivate cessation among dual-smoker couples. Contrary to findings showing that gain-framed messages motivate cessation targeting individual smokers, results suggest that loss-framed messages may be more persuasive than gain-framed messages when the target of the outcome involves significant others.

  13. Clinical applications of a high speed matrix ionization chamber portal imaging system

    International Nuclear Information System (INIS)

    Herk, M. van; Gilhuijs, K.; Dalen, A. van; Ven, P. van de; Fencl, W.

    1995-01-01

    A main disadvantage of the present matrix ionization chamber system for electronic portal imaging is its relatively slow image acquisition of 6 s at full resolution. We have solved this problem by modifying the read-out electronics in two ways: First, faster high voltage switches are applied which work with a higher voltage; Second, faster read-out amplifiers are applied which have reduced cross-talk. With these improvements circuit noise is no longer dominant at typical radiotherapy dose rates. Because the quantum noise level in the matrix ionization chamber system is purely determined by signal integration in the liquid medium, the image scan can now be reduced to as short as 0.55 s with little loss of image quality. However, there is some loss of resolution at readout speed faster than 1.5 s due to speed limitations of the read-out amplifiers. One of the applications of the new device is double exposures for larynx fields. At a reduced dose rate of 125 MU/min, only about 5 MUs are required for a single frame on a 4 MV ABB Dynaray accelerator. Other applications which benefit from the reduced image scan time are time lapse movies. Typically 15 frames per field are made during one fraction. The movies offer both information on patient motion and improved image quality by averaging the frames. Finally, on-line analysis of the images can be performed more easily and has been included in the software package. In can be concluded that the higher speed of the new matrix ionization chamber system is an important improvement for several clinical applications

  14. Increasing the Dynamic Range of Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando; Stuart, Matthias Bo; Jensen, Jørgen Arendt

    2014-01-01

    images. The emissions for the two imaging modes are interleaved 1-to-1 ratio, providing a high frame rate equal to the effective pulse repetition frequency of each imaging mode. The direction of the flow is estimated, and the velocity is then determined in that direction. This method Works for all angles...... standard deviations are 1.59% and 6.12%, respectively. The presented method can improve the estimates by synthesizing a lower pulse repetition frequency, thereby increasing the dynamic range of the vector velocity imaging....

  15. Behaviour of Strengthened RC Frames with Eccentric Steel Braced Frames

    Directory of Open Access Journals (Sweden)

    Kamanli Mehmet

    2017-01-01

    Full Text Available After devastating earthquakes in recent years, strengthening of reinforced concrete buildings became an important research topic. Reinforced concrete buildings can be strengthened by steel braced frames. These steel braced frames may be made of concentrically or eccentrically indicated in Turkish Earthquake Code 2007. In this study pushover analysis of the 1/3 scaled 1 reinforced concrete frame and 1/3 scaled 4 strengthened reinforced concrete frames with internal eccentric steel braced frames were conducted by SAP2000 program. According to the results of the analyses conducted, load-displacement curves of the specimens were compared and evaluated. Adding eccentric steel braces to the bare frame decreased the story drift, and significantly increased strength, stiffness and energy dissipation capacity. In this strengthening method lateral load carrying capacity, stiffness and dissipated energy of the structure can be increased.

  16. Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography

    Science.gov (United States)

    Sidky, Emil Y.; Kraemer, David N.; Roth, Erin G.; Ullberg, Christer; Reiser, Ingrid S.; Pan, Xiaochuan

    2014-01-01

    Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data. PMID:25685824

  17. SINGLE FRAME SUPER RESOLUTION OF NONCOOPERATIVE IRIS IMAGES

    Directory of Open Access Journals (Sweden)

    Anand Deshpande

    2016-11-01

    Full Text Available Image super-resolution, a process to enhance image resolution, has important applications in biometrics, satellite imaging, high definition television, medical imaging, etc. The long range captured iris identification systems often suffer from low resolution and meager focus of the captured iris images. These degrade the iris recognition performance. This paper proposes enhanced iterated back projection (EIBP method to super resolute the long range captured iris polar images. The performance of proposed method is tested and analyzed on CASIA long range iris database by comparing peak signal to noise ratio (PSNR and structural similarity index (SSIM with state-of-the-art super resolution (SR algorithms. It is further analyzed by increasing the up-sampling factor. Performance analysis shows that the proposed method is superior to state-of-the-art algorithms, the peak signal-to-noise ratio improved about 0.1-1.5 dB. The results demonstrate that the proposed method is well suited to super resolve the iris polar images captured at a long distance

  18. Short dynamic FDG-PET imaging protocol for patients with lung cancer

    International Nuclear Information System (INIS)

    Torizuka, Tatsuo; Nobezawa, Shuji; Kanno, Toshihiko; Ouchi, Yasuomi; Momiki, Shigeru; Kasamatsu, Norio; Yoshikawa, Etsuji; Futatsubashi, Masami; Okada, Hiroyuki

    2000-01-01

    This positron emission tomography (PET) study was designed to compare 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) kinetic parameters of tumours derived from imaging frames of 0-60 min post FDG injection with those derived from shorter imaging frames of 0-30 min. Dynamic FDG-PET scans were performed on 20 patients with primary lung cancers for 1 h after intravenous injection of FDG. Images were reconstructed with attenuation correction using transmission images obtained with a germanium-68 ring source immediately before FDG injection. A region of interest (ROI) was placed on the plane of the maximal tumour FDG uptake. Arterial input function was estimated from an ROI defined in the left atrium. Based on the standard three-compartment metabolic model, we calculated the rate constants (K 1 -k 3 ) and influx constant K i = K 1 k 3 /(k 2 +k 3 ) using the imaging frames for 60 min and 30 min post FDG injection. The standardized uptake value (SUV) of tumour was measured using the imaging frame of 50-60 min post injection. High correlations were observed between kinetic parameters (K 1 , k 2 , k 3 and K i ) derived from imaging frames of 0-60 min and 0-30 min [0.231±0.114 vs 0.260±0.174 (r=0.958), 1.149±1.038 vs 1.565±2.027 (r=0.968), 0.259±0.154 vs 0.311±0.194 (r=0.886) and 0.044±0.022 vs 0.048±0.023 (r=0.961), respectively, P i showed an excellent agreement between the two methods (y=-0.0041+0.09831x). Mean SUV of the lung cancers was 6.58±2.85. It is concluded that the briefer 30-min acquisition may yield essentially the same results as the standard 60-min imaging protocol, thus offering a time saving in dynamic PET studies in which the model parameters are desired. (orig.)

  19. Biologically aggressive regions within glioblastoma identified by spin-lock contrast T1 relaxation in the rotating frame (T1ρ MRI

    Directory of Open Access Journals (Sweden)

    Ramon Francisco Barajas, Jr., MD

    2017-12-01

    Full Text Available Spin-lattice relaxation in the rotating frame magnetic resonance imaging allows for the quantitative assessment of spin-lock contrast within tissues. We describe the utility of spin-lattice relaxation in the rotating frame metrics in characterizing glioblastoma biological heterogeneity. A 84-year-old man presented to our institution with a right frontal temporal mass. Prior tissue sampling from a peripheral nonenhancing lesion was nondiagnostic. Stereotactic image-guided tissue sampling of the nonenhancing T2-fluid-attenuated inversion recovery hyperintense region involving the anterior cingulate gyrus with elevated spin-lattice relaxation in the rotating frame metrics provided a pathologic diagnosis of glioblastoma. This case illustrates the utility of spin-lattice relaxation in the rotating frame magnetic resonance imaging in identifying biologically aggressive regions within glioblastoma.

  20. Fast ultrasonic imaging in a liquid filled pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1985-10-01

    A new method is described for the imaging of the interior of a liquid filled metallic pipe using acoustical techniques. The experimental system incorporates an array of 20 acoustical transducers and is capable of capturing the images of moving bubbles at a frame rate in excess of 300/s. The transducers are mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echoes reflected from vapor bubbles in the interior are detected, digitized and processed by a computer to generate an image. The high rate of speed was achieved by the use of newly developed software and electronic circuitry. This approach has eliminated most of the spurious echo signals which degraded the performance of previous imaging systems. The capability of the method is illustrated by imaging actual vapor bubbles in rapid sequence in the pipe. 13 refs

  1. High Speed Frame Synchronization and Viterbi Decoding

    DEFF Research Database (Denmark)

    Paaske, Erik; Justesen, Jørn; Larsen, Knud J.

    1996-01-01

    The purpose of Phase 1 of the study is to describe the system structure and algorithms in sufficient detail to allow drawing the high level architecture of units containing frame synchronization and Viterbi decoding. The systems we consider are high data rate space communication systems. Also...... components. Node synchronization performed within a Viterbi decoder is discussed, and algorithms for frame synchronization are described and analyzed. We present a list of system configurations that we find potentially useful. Further, the high level architecture of units that contain frame synchronization...... and various other functions needed in a complete system is presented. Two such units are described, one for placement before the Viterbi decoder and another for placement after the decoder. The high level architectures of three possible implementations of Viterbi decoders are described: The first...

  2. Frames and outer frames for Hilbert C^*-modules

    OpenAIRE

    Arambašić, Ljiljana; Bakić, Damir

    2015-01-01

    The goal of the present paper is to extend the theory of frames for countably generated Hilbert $C^*$-modules over arbitrary $C^*$-algebras. In investigating the non-unital case we introduce the concept of outer frame as a sequence in the multiplier module $M(X)$ that has the standard frame property when applied to elements of the ambient module $X$. Given a Hilbert $\\A$-module $X$, we prove that there is a bijective correspondence of the set of all adjointable surjections from the generalize...

  3. Relativistic treatment of Raman free-electro laser in beam frame

    International Nuclear Information System (INIS)

    Korbacheh, A.; Maraghechi, B.; Aghahosseni, H.

    2004-01-01

    A relativistic theory for Raman backscattering in the beam frame of electrons is used to find the growth rate of free- electron laser in Raman regime. The electromagnetic effects of the space-charge wave are taken into account by using the electrostatic approximation in the beam frame. The wiggler effects on the linear dispersion relations of the space- charge wave and radiation are included in the analysis. A numerical computation is conducted to compare the growth rate of the excited waves with nonrelativistic treatment

  4. Imaging spectroscopy using embedded diffractive optical arrays

    Science.gov (United States)

    Hinnrichs, Michele; Hinnrichs, Bradford

    2017-09-01

    Pacific Advanced Technology (PAT) has developed an infrared hyperspectral camera based on diffractive optic arrays. This approach to hyperspectral imaging has been demonstrated in all three infrared bands SWIR, MWIR and LWIR. The hyperspectral optical system has been integrated into the cold-shield of the sensor enabling the small size and weight of this infrared hyperspectral sensor. This new and innovative approach to an infrared hyperspectral imaging spectrometer uses micro-optics that are made up of an area array of diffractive optical elements where each element is tuned to image a different spectral region on a common focal plane array. The lenslet array is embedded in the cold-shield of the sensor and actuated with a miniature piezo-electric motor. This approach enables rapid infrared spectral imaging with multiple spectral images collected and processed simultaneously each frame of the camera. This paper will present our optical mechanical design approach which results in an infrared hyper-spectral imaging system that is small enough for a payload on a small satellite, mini-UAV, commercial quadcopter or man portable. Also, an application of how this spectral imaging technology can easily be used to quantify the mass and volume flow rates of hydrocarbon gases. The diffractive optical elements used in the lenslet array are blazed gratings where each lenslet is tuned for a different spectral bandpass. The lenslets are configured in an area array placed a few millimeters above the focal plane and embedded in the cold-shield to reduce the background signal normally associated with the optics. The detector array is divided into sub-images covered by each lenslet. We have developed various systems using a different number of lenslets in the area array. Depending on the size of the focal plane and the diameter of the lenslet array will determine the number of simultaneous different spectral images collected each frame of the camera. A 2 x 2 lenslet array will image

  5. Fast ultrasonic imaging in a liquid filled pipe

    International Nuclear Information System (INIS)

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1986-01-01

    A new method is described for the imaging of the interior of a liquid filled metallic pipe using acoustical techniques. The experimental system incorporates an array of 20 acoustical transducers and is capable of capturing the images of moving bubbles at a frame rate in excess of 300/s. The transducers are mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echoes reflected from vapor bubbles in the interior are detected, digitized and processed by a computer to generate an image. The high rate of speed was achieved by the use of newly developed software and electronic circuitry. This approach has eliminated most of the spurious echo signals which degraded the performance of previous imaging systems. The capability of the method is illustrated by imaging actual vapor bubbles in rapid sequence in the pipe. The described imaging system is used to examine reactor cooling systems

  6. Regional rates of myocardial fatty acid metabolism: Comparison with coronary angiography and ventriculography

    International Nuclear Information System (INIS)

    Schad, N.; Vattimo, A.; Bertelli, P.

    1990-01-01

    In 50 patients, 1 mCi 123 I phenylpentadecanoic acid (IPPA) was injected at peak ergometric stress and 1500 frames were acquired (1 frame/s) with a high count rate gamma camera. Parametric images of rates of decrease and increase for different time intervals after stress were compared with coronary angiography and LV ventriculography, separately evaluating the 3 main coronary territories: 18/150 territories supplied by normal coronaries presented rather homogeneous regional clearing rates, whereas a gradual decrease in clearing rates towards the end of the territory (frequently with peripheral defects) was seen in all 87/150 territories with significant coronary narrowing. In local correspondence to clearing defects, initial IPPA accumulations could be observed with later onset of clearing between 10 and 25 min. In all 44/150 territories presented abnormal clearing rates, mostly with a patchy pattern, with normal coronary anatomy, but all except one had LV dysfunction and a clinical diagnosis of cardiomyopathy, diabetes mellitus or hypertensive disease. Twenty four of the 41 patients with CAD had, in correspondence to a prior myocardial infarction, minimum or missing metabolic activity frequently in circumscribed zones, partly separated by bridges of still viable tissue with preserved but reduced clearing rates. (orig.)

  7. Singular value decomposition analysis of a photoacoustic imaging system and 3D imaging at 0.7 FPS.

    Science.gov (United States)

    Roumeliotis, Michael B; Stodilka, Robert Z; Anastasio, Mark A; Ng, Eldon; Carson, Jeffrey J L

    2011-07-04

    Photoacoustic imaging is a non-ionizing imaging modality that provides contrast consistent with optical imaging techniques while the resolution and penetration depth is similar to ultrasound techniques. In a previous publication [Opt. Express 18, 11406 (2010)], a technique was introduced to experimentally acquire the imaging operator for a photoacoustic imaging system. While this was an important foundation for future work, we have recently improved the experimental procedure allowing for a more densely populated imaging operator to be acquired. Subsets of the imaging operator were produced by varying the transducer count as well as the measurement space temporal sampling rate. Examination of the matrix rank and the effect of contributing object space singular vectors to image reconstruction were performed. For a PAI system collecting only limited data projections, matrix rank increased linearly with transducer count and measurement space temporal sampling rate. Image reconstruction using a regularized pseudoinverse of the imaging operator was performed on photoacoustic signals from a point source, line source, and an array of point sources derived from the imaging operator. As expected, image quality increased for each object with increasing transducer count and measurement space temporal sampling rate. Using the same approach, but on experimentally sampled photoacoustic signals from a moving point-like source, acquisition, data transfer, reconstruction and image display took 1.4 s using one laser pulse per 3D frame. With relatively simple hardware improvements to data transfer and computation speed, our current imaging results imply that acquisition and display of 3D photoacoustic images at laser repetition rates of 10Hz is easily achieved.

  8. On frame multiresolution analysis

    DEFF Research Database (Denmark)

    Christensen, Ole

    2003-01-01

    We use the freedom in frame multiresolution analysis to construct tight wavelet frames (even in the case where the refinable function does not generate a tight frame). In cases where a frame multiresolution does not lead to a construction of a wavelet frame we show how one can nevertheless...

  9. Applications Of Binary Image Analysis Techniques

    Science.gov (United States)

    Tropf, H.; Enderle, E.; Kammerer, H. P.

    1983-10-01

    After discussing the conditions where binary image analysis techniques can be used, three new applications of the fast binary image analysis system S.A.M. (Sensorsystem for Automation and Measurement) are reported: (1) The human view direction is measured at TV frame rate while the subject's head is free movable. (2) Industrial parts hanging on a moving conveyor are classified prior to spray painting by robot. (3) In automotive wheel assembly, the eccentricity of the wheel is minimized by turning the tyre relative to the rim in order to balance the eccentricity of the components.

  10. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    Science.gov (United States)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  11. Fast Fourier single-pixel imaging via binary illumination.

    Science.gov (United States)

    Zhang, Zibang; Wang, Xueying; Zheng, Guoan; Zhong, Jingang

    2017-09-20

    Fourier single-pixel imaging (FSI) employs Fourier basis patterns for encoding spatial information and is capable of reconstructing high-quality two-dimensional and three-dimensional images. Fourier-domain sparsity in natural scenes allows FSI to recover sharp images from undersampled data. The original FSI demonstration, however, requires grayscale Fourier basis patterns for illumination. This requirement imposes a limitation on the imaging speed as digital micro-mirror devices (DMDs) generate grayscale patterns at a low refreshing rate. In this paper, we report a new strategy to increase the speed of FSI by two orders of magnitude. In this strategy, we binarize the Fourier basis patterns based on upsampling and error diffusion dithering. We demonstrate a 20,000 Hz projection rate using a DMD and capture 256-by-256-pixel dynamic scenes at a speed of 10 frames per second. The reported technique substantially accelerates image acquisition speed of FSI. It may find broad imaging applications at wavebands that are not accessible using conventional two-dimensional image sensors.

  12. Image registration of naval IR images

    Science.gov (United States)

    Rodland, Arne J.

    1996-06-01

    In a real world application an image from a stabilized sensor on a moving platform will not be 100 percent stabilized. There will always be a small unknown error in the stabilization due to factors such as dynamic deformations in the structure between sensor and reference Inertial Navigation Unit, servo inaccuracies, etc. For a high resolution imaging sensor this stabilization error causes the image to move several pixels in unknown direction between frames. TO be able to detect and track small moving objects from such a sensor, this unknown movement of the sensor image must be estimated. An algorithm that searches for land contours in the image has been evaluated. The algorithm searches for high contrast points distributed over the whole image. As long as moving objects in the scene only cover a small area of the scene, most of the points are located on solid ground. By matching the list of points from frame to frame, the movement of the image due to stabilization errors can be estimated and compensated. The point list is searched for points with diverging movement from the estimated stabilization error. These points are then assumed to be located on moving objects. Points assumed to be located on moving objects are gradually exchanged with new points located in the same area. Most of the processing is performed on the list of points and not on the complete image. The algorithm is therefore very fast and well suited for real time implementation. The algorithm has been tested on images from an experimental IR scanner. Stabilization errors were added artificially to the image such that the output from the algorithm could be compared with the artificially added stabilization errors.

  13. Frontal eye fields involved in shifting frame of reference within working memory for scenes

    DEFF Research Database (Denmark)

    Wallentin, Mikkel; Roepstorff, Andreas; Burgess, Neil

    2008-01-01

    Working memory (WM) evoked by linguistic cues for allocentric spatial and egocentric spatial aspects of a visual scene was investigated by correlating fMRI BOLD signal (or "activation") with performance on a spatial-relations task. Subjects indicated the relative positions of a person or object...... (referenced by the personal pronouns "he/she/it") in a previously-shown image relative to either themselves (egocentric reference frame) or shifted to a reference frame anchored in another person or object in the image (allocentric reference frame), e.g. "Was he in front of you/her?" Good performers had both...... shorter response time and more correct responses than poor performers in both tasks. These behavioural variables were entered into a principal component analysis. The first component reflected generalised performance level. We found that the frontal eye fields (FEF), bilaterally, had a higher BOLD...

  14. Frame-Based Immobilization and Targeting for Stereotactic Body Radiation Therapy

    International Nuclear Information System (INIS)

    Murray, Bryan C.; Forster, Kenneth; Timmerman, Robert

    2007-01-01

    Frame-based stereotactic body radiation therapy (SBRT), such as that conducted with Elekta's Stereotactic Body Frame, can provide an extra measure of precision in the delivery of radiation to extracranial targets, and facilitates secure patient immobilization. In this paper, we review the steps involved in optimal use of an extra-cranial immobilization device for SBRT treatments. Our approach to using frame-based SBRT consists of 4 steps: patient immobilization, tumor and organ motion control, treatment/planning correlation, and daily targeting with pretreatment quality assurance. Patient immobilization was achieved with the Vac-Loc bag, which uses styrofoam beads to conform to the patient's shape comfortably within the body frame. Organ and motion control was assessed under fluoroscopy and controlled via a frame-mounted abdominal pressure plate. The compression screw was tightened until the diaphragmatic excursion range was < 1 cm. Treatment planning was performed using the Philips Pinnacle 6.2b system. In this treatment process, a 20 to 30 noncoplanar beam arrangement was initially selected and an inverse beam weight optimization algorithm was applied. Those beams with low beam weights were removed, leaving a manageable number of beams for treatment delivery. After planning, daily targeting using computed tomography (CT) to verify x-, y-, and z-coordinates of the treatment isocenter were used as a measure of quality assurance. We found our daily setup variation typically averaged < 5 mm in all directions, which is comparable to other published studies on Stereotactic Body Frame. Treatment time ranged from 30 to 45 minutes. Results demonstrate that patients have experienced high rates of local control with acceptable rates of severe side effects-by virtue of the tightly constrained treatment fields. The body frame facilitated comfortable patient positioning and quality assurance checks of the tumor, in relation to another set of independent set of coordinates

  15. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies

    International Nuclear Information System (INIS)

    Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Lin, Kun-Ju; Huang, Chin-Chang; Hsu, Wen-Chun; Yen, Tzu-Chen; Kung, Mei-Ping

    2012-01-01

    18 F-Florbetapir (AV-45/Amyvid) is a novel positron emission tomography (PET) tracer for imaging plaque pathology in Alzheimer's disease (AD), while PET images of fluorodeoxyglucose (FDG) for cerebral glucose metabolism can provide complementary information to amyloid plaque images for diagnosis of AD. The goal of this preliminary study was to investigate the perfusion-like property of relative cerebral blood flow estimates (R 1 ) and summed early-phase AV-45 images [perfusion AV-45 (pAV-45)] and optimize the early time frame for pAV-45. Dynamic AV-45 PET scans (0-180 min) were performed in seven subjects. pAV-45, late-phase AV-45, and FDG images were spatially normalized to the Montreal Neurological Institute template aided by individual MRI images, and the corresponding standardized uptake value ratio (SUVR) was computed. The R 1 images were derived from a simplified reference tissue model. Correlations between regional and voxelwise R 1 and the corresponding FDG images were calculated. An optimization of time frames of pAV-45 was conducted in terms of correlation to FDG images. The optimal early time frame was validated in a separate cohort. The regional distribution in the R 1 images correlated well (R = 0.91) to that of the FDG within subjects. Consistently high correlation was noted across a long range of time frames. The maximal correlation of pAV-45 to FDG SUVR of R = 0.95 was observed at the time frame of 1-6 min, while the peak correlation of R = 0.99 happened at 0-2 min between pAV-45 and R 1 . A similar result was achieved in the validation cohort. Preliminary results showed that the distribution patterns of R 1 and pAV-45 images are highly correlated with normalized FDG images, and the initial 5-min early time frame of 1-6 min is potentially useful in providing complementary FDG-like information to the amyloid plaque density by late-phase AV-45 images. (orig.)

  16. Framed School--Frame Factors, Frames and the Dynamics of Social Interaction in School

    Science.gov (United States)

    Persson, Anders

    2015-01-01

    This paper aims to show how the Goffman frame perspective can be used in an analysis of school and education and how it can be combined, in such analysis, with the frame factor perspective. The latter emphasizes factors that are determined outside the teaching process, while the former stresses how actors organize their experiences and define…

  17. Nanosecond framing photography for laser-produced interstreaming plasmas

    International Nuclear Information System (INIS)

    McLean, E.A.; Ripin, B.H.; Stamper, J.A.; Manka, C.K.; Peyser, T.A.

    1988-01-01

    Using a fast-gated (120 psec-5 nsec) microchannel-plate optical camera (gated optical imager), framing photographs have been taken of the rapidly streaming laser plasma (∼ 5 x 10 7 cm/sec) passing through a vacuum or a background gas, with and without a magnetic field. Observations of Large-Larmor-Radius Interchange Instabilities are presented

  18. Video-rate resonant scanning multiphoton microscopy

    Science.gov (United States)

    Kirkpatrick, Nathaniel D.; Chung, Euiheon; Cook, Daniel C.; Han, Xiaoxing; Gruionu, Gabriel; Liao, Shan; Munn, Lance L.; Padera, Timothy P.; Fukumura, Dai; Jain, Rakesh K.

    2013-01-01

    The abnormal tumor microenvironment fuels tumor progression, metastasis, immune suppression, and treatment resistance. Over last several decades, developments in and applications of intravital microscopy have provided unprecedented insights into the dynamics of the tumor microenvironment. In particular, intravital multiphoton microscopy has revealed the abnormal structure and function of tumor-associated blood and lymphatic vessels, the role of aberrant tumor matrix in drug delivery, invasion and metastasis of tumor cells, the dynamics of immune cell trafficking to and within tumors, and gene expression in tumors. However, traditional multiphoton microscopy suffers from inherently slow imaging rates—only a few frames per second, thus unable to capture more rapid events such as blood flow, lymphatic flow, and cell movement within vessels. Here, we report the development and implementation of a video-rate multiphoton microscope (VR-MPLSM) based on resonant galvanometer mirror scanning that is capable of recording at 30 frames per second and acquiring intravital multispectral images. We show that the design of the system can be readily implemented and is adaptable to various experimental models. As examples, we demonstrate the utility of the system to directly measure flow within tumors, capture metastatic cancer cells moving within the brain vasculature and cells in lymphatic vessels, and image acute responses to changes in a vascular network. VR-MPLSM thus has the potential to further advance intravital imaging and provide new insight into the biology of the tumor microenvironment. PMID:24353926

  19. Performance of the JPEG Estimated Spectrum Adaptive Postfilter (JPEG-ESAP) for Low Bit Rates

    Science.gov (United States)

    Linares, Irving (Inventor)

    2016-01-01

    Frequency-based, pixel-adaptive filtering using the JPEG-ESAP algorithm for low bit rate JPEG formatted color images may allow for more compressed images while maintaining equivalent quality at a smaller file size or bitrate. For RGB, an image is decomposed into three color bands--red, green, and blue. The JPEG-ESAP algorithm is then applied to each band (e.g., once for red, once for green, and once for blue) and the output of each application of the algorithm is rebuilt as a single color image. The ESAP algorithm may be repeatedly applied to MPEG-2 video frames to reduce their bit rate by a factor of 2 or 3, while maintaining equivalent video quality, both perceptually, and objectively, as recorded in the computed PSNR values.

  20. "Mathematicians Would Say It This Way": An Investigation of Teachers' Framings of Mathematicians

    Science.gov (United States)

    Cirillo, Michelle; Herbel-Eisenmann, Beth

    2011-01-01

    Although popular media often provides negative images of mathematicians, we contend that mathematics classroom practices can also contribute to students' images of mathematicians. In this study, we examined eight mathematics teachers' framings of mathematicians in their classrooms. Here, we analyze classroom observations to explore some of the…

  1. Dosimetric impact of a frame-based strategy in stereotactic radiotherapy of lung tumors

    International Nuclear Information System (INIS)

    Waldeland, Einar; Ramberg, Christina; Arnesen, Marius Roethe; Helland, Aaslaug; Brustugun, Odd Terje; Malinen, Eirik

    2012-01-01

    Introduction. Technological innovations have taken stereotactic body radiotherapy (SBRT) from frame-based strategies to image-guided strategies. In this study, cone beam computed tomography (CBCT) images acquired prior to SBRT of patients with lung tumors was used to study the dosimetric impact of a pure frame-based strategy. Material and methods. Thirty patients with inoperable lung tumors were retrospectively analyzed. All patients had received CBCT-guided SBRT with 3 fractions of 15 Gy to the planning target volume (PTV) margin including immobilization in a stereotactic body frame (SBF). Using the set-up corrections from the co-registration of the CBCT with the planning CT, all individual dose plans were recalculated with an isocenter position equal to the initial set-up position. Dose Volume Histogram (DVH) parameters of the recalculated dose plans were then analyzed. Results. The simulated plans showed that 88% of all fractions resulted in minimum 14.5 Gy to the internal target volume (ITV). For the simulated summed treatment (3 fractions per patient), 83% of the patients would minimum receive the prescription dose (45 Gy) to 100% of the ITV and all except one would receive the prescription dose to more than 90% of the ITV. Conclusions. SBRT including SBF, but without image guidance, results in appropriate dose coverage in most cases, using the current margins. With image guidance, margins for SBRT of lung tumors could possibly be reduced

  2. Real-Time Imaging System for the OpenPET

    Science.gov (United States)

    Tashima, Hideaki; Yoshida, Eiji; Kinouchi, Shoko; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Suga, Mikio; Haneishi, Hideaki; Yamaya, Taiga

    2012-02-01

    The OpenPET and its real-time imaging capability have great potential for real-time tumor tracking in medical procedures such as biopsy and radiation therapy. For the real-time imaging system, we intend to use the one-pass list-mode dynamic row-action maximum likelihood algorithm (DRAMA) and implement it using general-purpose computing on graphics processing units (GPGPU) techniques. However, it is difficult to make consistent reconstructions in real-time because the amount of list-mode data acquired in PET scans may be large depending on the level of radioactivity, and the reconstruction speed depends on the amount of the list-mode data. In this study, we developed a system to control the data used in the reconstruction step while retaining quantitative performance. In the proposed system, the data transfer control system limits the event counts to be used in the reconstruction step according to the reconstruction speed, and the reconstructed images are properly intensified by using the ratio of the used counts to the total counts. We implemented the system on a small OpenPET prototype system and evaluated the performance in terms of the real-time tracking ability by displaying reconstructed images in which the intensity was compensated. The intensity of the displayed images correlated properly with the original count rate and a frame rate of 2 frames per second was achieved with average delay time of 2.1 s.

  3. Neural substrates of framing effects in social contexts: A meta-analytical approach.

    Science.gov (United States)

    Wang, X T; Rao, Li-Lin; Zheng, Hongming

    2017-06-01

    We hypothesize that framing effects (risk-averse in the positive frame and risk-seeking in the negative frame) are likely to occur when ambiguous social contexts result in ambiguous or ambivalent risk preferences, leading the decision-maker to search for more subtle cues, such as verbal framing. In a functional magnetic resonance imaging (fMRI) study, we examined framing effects in both unambiguous homogeneous group and more ambiguous heterogeneous group contexts. We began by conducting a meta-analysis and identified three regions of interest: the right inferior frontal gyrus, the left anterior cingulate (ACC)/ventromedial prefrontal cortex (vmPFC), and the left amygdala. Our own fMRI data were collected while the participants made choices between a sure option and a gamble framed in terms of the number of lives to either save or die. The framing effect was evident in a heterogeneous context with a mixture of kin and strangers, but disappeared in a homogeneous group of either all kin-members or all strangers. The fMRI results revealed a greater activation in the right middle/inferior frontal gyrus under the negative than the positive framing, and less ACC/vmPFC deactivation under positive framing in the heterogamous/ambiguous context. The activation of the amygdala was correlated with greater risk-seeking preference in homogeneous kinship contexts.

  4. Image splitting and remapping method for radiological image compression

    Science.gov (United States)

    Lo, Shih-Chung B.; Shen, Ellen L.; Mun, Seong K.

    1990-07-01

    A new decomposition method using image splitting and gray-level remapping has been proposed for image compression, particularly for images with high contrast resolution. The effects of this method are especially evident in our radiological image compression study. In our experiments, we tested the impact of this decomposition method on image compression by employing it with two coding techniques on a set of clinically used CT images and several laser film digitized chest radiographs. One of the compression techniques used was full-frame bit-allocation in the discrete cosine transform domain, which has been proven to be an effective technique for radiological image compression. The other compression technique used was vector quantization with pruned tree-structured encoding, which through recent research has also been found to produce a low mean-square-error and a high compression ratio. The parameters we used in this study were mean-square-error and the bit rate required for the compressed file. In addition to these parameters, the difference between the original and reconstructed images will be presented so that the specific artifacts generated by both techniques can be discerned by visual perception.

  5. Network-based H.264/AVC whole frame loss visibility model and frame dropping methods.

    Science.gov (United States)

    Chang, Yueh-Lun; Lin, Ting-Lan; Cosman, Pamela C

    2012-08-01

    We examine the visual effect of whole frame loss by different decoders. Whole frame losses are introduced in H.264/AVC compressed videos which are then decoded by two different decoders with different common concealment effects: frame copy and frame interpolation. The videos are seen by human observers who respond to each glitch they spot. We found that about 39% of whole frame losses of B frames are not observed by any of the subjects, and over 58% of the B frame losses are observed by 20% or fewer of the subjects. Using simple predictive features which can be calculated inside a network node with no access to the original video and no pixel level reconstruction of the frame, we developed models which can predict the visibility of whole B frame losses. The models are then used in a router to predict the visual impact of a frame loss and perform intelligent frame dropping to relieve network congestion. Dropping frames based on their visual scores proves superior to random dropping of B frames.

  6. Framing Failures in Wood-Frame Hip Roofs under Extreme Wind Loads

    Directory of Open Access Journals (Sweden)

    Sarah A. Stevenson

    2018-02-01

    Full Text Available Wood-frame residential roof failures are among the most common and expensive types of wind damage. Hip roofs are commonly understood to be more resilient during extreme wind in relation to gable roofs. However, inspection of damage survey data from recent tornadoes has revealed a previously unstudied failure mode in which hip roofs suffer partial failure of the framing structure. In the current study, evidence of partial framing failures and statistics of their occurrence are explored and discussed, while the common roof design and construction practice are reviewed. Two-dimensional finite element models are developed to estimate the element-level load effects on hip roof trusses and stick-frame components. The likelihood of failure in each member is defined based on relative demand-to-capacity ratios. Trussed and stick-frame structures are compared to assess the relative performance of the two types of construction. The present analyses verify the common understanding that toenailed roof-to-wall connections are likely to be the most vulnerable elements in the structure of a wood-frame hip roof. However, the results also indicate that certain framing members and connections display significant vulnerability under the same wind uplift, and the possibility of framing failure is not to be discounted. Furthermore, in the case where the roof-to-wall connection uses hurricane straps, certain framing members and joints become the likely points of failure initiation. The analysis results and damage survey observations are used to expand the understanding of wood-frame residential roof failures, as they relate to the Enhanced Fujita Scale and provide assessment of potential gaps in residential design codes.

  7. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    Science.gov (United States)

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  8. When message-frame fits salient cultural-frame, messages feel more persuasive

    OpenAIRE

    Uskul, Ayse K.; Oyserman, Daphna

    2010-01-01

    The present study examines the persuasive effects of tailored health messages comparing those tailored to match (versus not match) both chronic cultural frame and momentarily salient cultural frame. Evidence from two studies (Study 1: n = 72 European Americans; Study 2: n = 48 Asian Americans) supports the hypothesis that message persuasiveness increases when chronic cultural frame, health message tailoring and momentarily salient cultural frame all match. The hypothesis was tested using a me...

  9. Motion analysis for duplicate frame removal in wireless capsule endoscope

    Science.gov (United States)

    Lee, Hyun-Gyu; Choi, Min-Kook; Lee, Sang-Chul

    2011-03-01

    Wireless capsule endoscopy (WCE) has been intensively researched recently due to its convenience for diagnosis and extended detection coverage of some diseases. Typically, a full recording covering entire human digestive system requires about 8 to 12 hours for a patient carrying a capsule endoscope and a portable image receiver/recorder unit, which produces 120,000 image frames on average. In spite of the benefits of close examination, WCE based test has a barrier for quick diagnosis such that a trained diagnostician must examine a huge amount of images for close investigation, normally over 2 hours. The main purpose of our work is to present a novel machine vision approach to reduce diagnosis time by automatically detecting duplicated recordings caused by backward camera movement, typically containing redundant information, in small intestine. The developed technique could be integrated with a visualization tool which supports intelligent inspection method, such as automatic play speed control. Our experimental result shows high accuracy of the technique by detecting 989 duplicate image frames out of 10,000, equivalently to 9.9% data reduction, in a WCE video from a real human subject. With some selected parameters, we achieved the correct detection ratio of 92.85% and the false detection ratio of 13.57%.

  10. Grating scattering BRDF and imaging performances: A test survey performed in the frame of the flex mission

    Science.gov (United States)

    Harnisch, Bernd; Deep, Atul; Vink, Ramon; Coatantiec, Claude

    2017-11-01

    Key components in optical spectrometers are the gratings. Their influence on the overall infield straylight of the spectrometer depends not only on the technology used for grating fabrication but also on the potential existence of ghost images caused by irregularities of the grating constant. For the straylight analysis of spectrometer no general Bidirectional Reflectance Distribution Function (BRDF) model of gratings exist, as it does for optically smooth surfaces. These models are needed for the determination of spectrometer straylight background and for the calculation of spectrometer out of band rejection performances. Within the frame of the Fluorescence Earth Explorer mission (FLEX), gratings manufactured using different technologies have been investigated in terms of straylight background and imaging performance in the used diffraction order. The gratings which have been investigated cover a lithographically written grating, a volume Bragg grating, two holographic gratings and an off-the-shelf ruled grating. In this paper we present a survey of the measured bidirectional reflectance/transmittance distribution function and the determination of an equivalent surface micro-roughness of the gratings, describing the scattering of the grating around the diffraction order. This is specifically needed for the straylight modeling of the spectrometer.

  11. Physiotherapy managers' perceptions of their leadership effectiveness: a multi-frame analysis.

    Science.gov (United States)

    McGowan, Emer; Walsh, Cathal; Stokes, Emma

    2017-09-01

    The purpose of this study was to investigate the leadership frames of physiotherapy managers in Ireland. To be effective leaders in today's challenging healthcare environment physiotherapy managers must employ a comprehensive, adaptable and balanced leadership style. This was a purposive, cross-sectional study. Physiotherapy managers were surveyed using the Bolman and Deal Leadership Orientations Instrument. The survey was administered to members of the Chartered Physiotherapists in Management employment group (n=73) of the Irish Society of Chartered Physiotherapists via email. Forty-five physiotherapy managers responded to the survey to give a response rate of 62%. The human resource frame was the most frequently used (61%) and the political frame was the least (9%). The majority of respondents reported using only one or no frames at all (65%). When asked about their effectiveness as a manager 33% of respondents (n=14) gave themselves the top rating of 5, whereas 19% of respondents (n=8) gave themselves the top rating for their leadership effectiveness. There was a statistically significant trend between the number of leadership frames a physiotherapy manager used and their perceived effectiveness as a manager (T JT =380, z=1.975, p=0.048) and as a leader (T JT =431, z=3.245, p=0.001). The physiotherapy managers' use of the human resource frame demonstrates that they see the building of relationships as key to effective leadership. Development of physiotherapy managers' underused skills through appropriate leadership development training may enhance their leadership skill set and make them more confident as leaders. Copyright © 2016 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  12. Framing breastfeeding and formula-feeding messages in popular U.S. magazines.

    Science.gov (United States)

    Frerichs, Leah; Andsager, Julie L; Campo, Shelly; Aquilino, Mary; Stewart Dyer, Carolyn

    2006-01-01

    Media framing of infant feeding has the ability to influence knowledge and views of the barriers, benefits, and solutions inherent in breastfeeding or formula-feeding. This study examined how seven popular U.S. parenting, general women's, and African American magazines framed breastfeeding and formula-feeding messages to determine whether a sense-making approach was used and the extent to which visual images portrayed feeding practices. Analysis included 615 articles published from 1997 to 2003 that referred to infant feeding. Text and images were analyzed. The magazines provided more information on breastfeeding than formula feeding. Parenting magazines included more advice than barriers or benefits. African American magazines presented more breastfeeding benefits, and general women's magazines contained the least infant-feeding information. Messages were focused on individualized breastfeeding barriers and advice, seldom covered social and environmental issues, and placed much of the responsibility of infant feeding on the mother, while the role of social and partner support was diminished. Bottle-feeding images were nearly as common as breastfeeding images. Findings can be used by public health practitioners to increase the likelihood of reaching certain target audiences through popular magazines.

  13. Evaluation of Image-Guided Positioning for Frameless Intracranial Radiosurgery

    International Nuclear Information System (INIS)

    Lamba, Michael; Breneman, John C.; Warnick, Ronald E.

    2009-01-01

    Purpose: The standard for target alignment and immobilization in intracranial radiosurgery is frame-based alignment and rigid immobilization using a stereotactic head ring. Recent improvements in image-guidance systems have introduced the possibility of image-guided radiosurgery with nonrigid immobilization. We present data on the alignment accuracy and patient stability of a frameless image-guided system. Methods and Materials: Isocenter alignment errors were measured for in vitro studies in an anthropomorphic phantom for both frame-based stereotactic and frameless image-guided alignment. Subsequently, in vivo studies assessed differences between frame-based and image-guided alignment in patients who underwent frame-based intracranial radiosurgery. Finally, intratreatment target stability was determined by image-guided alignment performed before and after image-guided mask immobilized radiosurgery. Results: In vitro hidden target localization errors were comparable for the framed (0.7 ± 0.5 mm) and image-guided (0.6 ± 0.2 mm) techniques. The in vivo differences in alignment were 0.9 ± 0.5 mm (anteroposterior), -0.2 ± 0.4 mm (superoinferior), and 0.3 ± 0.5 mm (lateral). For in vivo stability tests, the mean distance differed between the pre- and post-treatment positions with mask-immobilized radiosurgery by 0.5 ± 0.3 mm. Conclusion: Frame-based and image-guided alignment accuracy in vitro was comparable for the system tested. In vivo tests showed a consistent trend in the difference of alignment in the anteroposterior direction, possibly due to torque to the ring and mounting system with frame-based localization. The mask system as used appeared adequate for patient immobilization.

  14. A Novel, Automatic Quality Control Scheme for Real Time Image Transmission

    Directory of Open Access Journals (Sweden)

    S. Ramachandran

    2002-01-01

    Full Text Available A novel scheme to compute energy on-the-fly and thereby control the quality of the image frames dynamically is presented along with its FPGA implementation. This scheme is suitable for incorporation in image compression systems such as video encoders. In this new scheme, processing is automatically stopped when the desired quality is achieved for the image being processed by using a concept called pruning. Pruning also increases the processing speed by a factor of more than two when compared to the conventional method of processing without pruning. An MPEG-2 encoder implemented using this scheme is capable of processing good quality monochrome and color images of sizes up to 1024 × 768 pixels at the rate of 42 and 28 frames per second, respectively, with a compression ratio of over 17:1. The encoder is also capable of working in the fixed pruning level mode with user programmable features.

  15. Correlation of early-phase {sup 18}F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Lin, Kun-Ju [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Chang Gung University, Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, Taipei (China); Huang, Chin-Chang; Hsu, Wen-Chun [Chang Gung Memorial Hospital, Department of Neurology, Taipei (China); Yen, Tzu-Chen [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Kung, Mei-Ping [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Chang Gung University, Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, Taipei (China); University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States)

    2012-04-15

    {sup 18}F-Florbetapir (AV-45/Amyvid) is a novel positron emission tomography (PET) tracer for imaging plaque pathology in Alzheimer's disease (AD), while PET images of fluorodeoxyglucose (FDG) for cerebral glucose metabolism can provide complementary information to amyloid plaque images for diagnosis of AD. The goal of this preliminary study was to investigate the perfusion-like property of relative cerebral blood flow estimates (R{sub 1}) and summed early-phase AV-45 images [perfusion AV-45 (pAV-45)] and optimize the early time frame for pAV-45. Dynamic AV-45 PET scans (0-180 min) were performed in seven subjects. pAV-45, late-phase AV-45, and FDG images were spatially normalized to the Montreal Neurological Institute template aided by individual MRI images, and the corresponding standardized uptake value ratio (SUVR) was computed. The R{sub 1} images were derived from a simplified reference tissue model. Correlations between regional and voxelwise R{sub 1} and the corresponding FDG images were calculated. An optimization of time frames of pAV-45 was conducted in terms of correlation to FDG images. The optimal early time frame was validated in a separate cohort. The regional distribution in the R{sub 1} images correlated well (R = 0.91) to that of the FDG within subjects. Consistently high correlation was noted across a long range of time frames. The maximal correlation of pAV-45 to FDG SUVR of R = 0.95 was observed at the time frame of 1-6 min, while the peak correlation of R = 0.99 happened at 0-2 min between pAV-45 and R{sub 1}. A similar result was achieved in the validation cohort. Preliminary results showed that the distribution patterns of R{sub 1} and pAV-45 images are highly correlated with normalized FDG images, and the initial 5-min early time frame of 1-6 min is potentially useful in providing complementary FDG-like information to the amyloid plaque density by late-phase AV-45 images. (orig.)

  16. Value Framing: A Prelude to Software Problem Framing

    NARCIS (Netherlands)

    Wieringa, Roelf J.; Gordijn, Jaap; van Eck, Pascal; Cox, K.; Hall, J.G.; Rapanotti, L.

    2004-01-01

    Software problem framing is a way to find specifications for software. Software problem frames can be used to structure the environment of a software system (the machine) and specify desired software properties in such a way that we can show that software with these properties will help achieve the

  17. Oughts and ideals: Framing people with migration background in TV news

    Directory of Open Access Journals (Sweden)

    Denise Sommer

    2010-10-01

    Full Text Available Based on the framing concept the paper explores the context and structure of TV news coverage about minority groups. A sample of 285 TV news reports on people with migration background in Germany is analyzed for its implicit plot structures and particular political goal expressions. Cluster analysis reveals four news frames: Crime, Migration Policy, Cultural Proximity, and Terrorism Risk, indicating that the public image of people with migration background in Germany remains negative and implicitly biased. This becomes evident by the large amount of risk communication about potential terrorist attacks and the prevailing expression of absolute goals compared to gradual ones. Theoretically and methodically, integrating the framing concept and specific types of goals promises deeper insight into the current discourse on integration issues.

  18. Molecular frame and recoil frame angular distributions in dissociative photoionization of small molecules

    International Nuclear Information System (INIS)

    Lucchese, R R; Carey, R; Elkharrat, C; Houver, J C; Dowek, D

    2008-01-01

    Photoelectron angular distributions in the dipole approximation can be written with respect to several different reference frames. A brief review of the molecular frame and recoil frame are given. Experimentally, one approach for obtaining such angular distributions is through angle-resolved coincidence measurements of dissociative ionization. If the system dissociates into two heavy fragments, then the recoil frame angular distribution can be measured. Computed molecular frame and recoil frame photoelectron angular distributions are compared to experimental data for the Cl 2p ionization of CH 3 Cl.

  19. New characterizations of fusion frames (frames of subspaces)

    Indian Academy of Sciences (India)

    Theory (College Park, MD, 2003) Contemp. Math. 345, Amer. Math. Soc. (RI: Provi- dence) (2004) 87–113. [4] Casazza P G and Kutyniok G, Robustness of Fusion Frames under Erasures of sub- spaces and of Local Frame Vectors, Radon transforms, geometry, and wavelets (LA: New Orleans) (2006) Contemp. Math., Amer.

  20. Mammographic image reject rate analysis and cause – A National Maltese Study

    International Nuclear Information System (INIS)

    Mercieca, N.; Portelli, J.L.; Jadva-Patel, H.

    2017-01-01

    Mammography is used as a first-line investigation in the detection of breast cancer and imaging is required to be of optimal quality and achieved without adverse effects on the health of individuals. Repeated images come at a cost in terms of radiation dose, discomfort to clients and unnecessary financial burdens. No studies investigating mammography quality in Malta had been previously undertaken. Hence, this research aimed to investigate whether mammography is being performed at an acceptable level, through the investigation of reject rates. Quantitative methodology was used to collect data from eight participating mammography units, which were utilising screen film (SFM), computed radiography (CR) and direct digital mammography (DDM). Data relating to the total number of images performed, rejects and causes was prospectively collected over two weeks, resulting in a sample of 2291 images. All units were also asked to answer a questionnaire which provided other data that could be used for analysis. The national mammography reject rate was found to be 2.62%; within the 3% acceptable range. Individual rates' analysis revealed unacceptably high or low reject rates in some units. Positioning was the main reject cause. No significant difference in rejection was found between different types of mammography units or radiographers' experience. Alternatively, radiographers' qualifications, employment conditions and use of rejection criteria were proven to affect reject rates. Whilst on a national level, images are being rejected at an acceptable rate, individual units revealed suboptimal rates; at the cost of extra radiation, added discomfort and financial burden. - Highlights: • The national reject rate complied with the European Guidelines. • Reject rates in different units were found to vary. • Positioning was the commonest cause for repeats. • The equipment used and radiographers' experience did not affect reject rates. • Qualifications

  1. Quantitative image fusion in infrared radiometry

    Science.gov (United States)

    Romm, Iliya; Cukurel, Beni

    2018-05-01

    Towards high-accuracy infrared radiance estimates, measurement practices and processing techniques aimed to achieve quantitative image fusion using a set of multi-exposure images of a static scene are reviewed. The conventional non-uniformity correction technique is extended, as the original is incompatible with quantitative fusion. Recognizing the inherent limitations of even the extended non-uniformity correction, an alternative measurement methodology, which relies on estimates of the detector bias using self-calibration, is developed. Combining data from multi-exposure images, two novel image fusion techniques that ultimately provide high tonal fidelity of a photoquantity are considered: ‘subtract-then-fuse’, which conducts image subtraction in the camera output domain and partially negates the bias frame contribution common to both the dark and scene frames; and ‘fuse-then-subtract’, which reconstructs the bias frame explicitly and conducts image fusion independently for the dark and the scene frames, followed by subtraction in the photoquantity domain. The performances of the different techniques are evaluated for various synthetic and experimental data, identifying the factors contributing to potential degradation of the image quality. The findings reflect the superiority of the ‘fuse-then-subtract’ approach, conducting image fusion via per-pixel nonlinear weighted least squares optimization.

  2. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  3. Smart CMOS image sensor for lightning detection and imaging.

    Science.gov (United States)

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  4. Framing Gangnam Style

    Directory of Open Access Journals (Sweden)

    Hyunsun Catherine Yoon

    2017-08-01

    Full Text Available This paper examines the way in which news about Gangnam Style was framed in the Korean press. First released on 15th July 2012, it became the first video to pass two billion views on YouTube. 400 news articles between July 2012 and March 2013 from two South Korean newspapers - Chosun Ilbo and Hankyoreh were analyzed using the frame analysis method in five categories: industry/economy, globalization, cultural interest, criticism, and competition. The right-left opinion cleavage is important because news frames interact with official discourses, audience frames and prior knowledge which consequently mediate effects on public opinion, policy debates, social movement and individual interpretations. Whilst the existing literature on Gangnam Style took rather holistic approach, this study aimed to fill the lacuna, considering this phenomenon as a dynamic process, by segmenting different stages - recognition, spread, peak and continuation. Both newspapers acknowledged Gangnam Style was an epochal event but their perspectives and news frames were different; globalization frame was most frequently used in Chosun Ilbo whereas cultural interest frame was most often used in Hankyoreh. Although more critical approaches were found in Hankyoreh, reflecting the right-left opinion cleavage, both papers lacked in critical appraisal and analysis of Gangnam Style’s reception in a broader context of the new Korean Wave.

  5. Optimum image compression rate maintaining diagnostic image quality of digital intraoral radiographs

    International Nuclear Information System (INIS)

    Song, Ju Seop; Koh, Kwang Joon

    2000-01-01

    The aims of the present study are to determine the optimum compression rate in terms of file size reduction and diagnostic quality of the images after compression and evaluate the transmission speed of original or each compressed images. The material consisted of 24 extracted human premolars and molars. The occlusal surfaces and proximal surfaces of the teeth had a clinical disease spectrum that ranged from sound to varying degrees of fissure discoloration and cavitation. The images from Digora system were exported in TIFF and the images from conventional intraoral film were scanned and digitalized in TIFF by Nikon SF-200 scanner(Nikon, Japan). And six compression factors were chosen and applied on the basis of the results from a pilot study. The total number of images to be assessed were 336. Three radiologists assessed the occlusal and proximal surfaces of the teeth with 5-rank scale. Finally diagnosed as either sound or carious lesion by one expert oral pathologist. And sensitivity and specificity and kappa value for diagnostic agreement was calculated. Also the area (Az) values under the ROC curve were calculated and paired t-test and oneway ANOVA test was performed. Thereafter, transmission time of the image files of the each compression level were compared with that of the original image files. No significant difference was found between original and the corresponding images up to 7% (1:14) compression ratio for both the occlusal and proximal caries (p<0.05). JPEG3 (1:14) image files are transmitted fast more than 10 times, maintained diagnostic information in image, compared with original image files. 1:14 compressed image file may be used instead of the original image and reduce storage needs and transmission time.

  6. High-speed two-frame gated camera for parameters measurement of Dragon-Ⅰ LIA

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Wang Yuan; Zhang Kaizhi; Shi Jinshui; Deng Jianjun; Li Jin

    2012-01-01

    The time-resolved measurement system which can work at very high speed is necessary in electron beam parameter diagnosis for Dragon-Ⅰ linear induction accelerator (LIA). A two-frame gated camera system has been developed and put into operation. The camera system adopts the optical principle of splitting the imaging light beam into two parts in the imaging space of a lens with long focus length. It includes lens coupled gated image intensifier, CCD camera, high speed shutter trigger device based on large scale field programmable gate array. The minimum exposure time for each image is about 3 ns, and the interval time between two images can be adjusted with a step of about 0.5 ns. The exposure time and the interval time can be independently adjusted and can reach about 1 s. The camera system features good linearity, good response uniformity, equivalent background illumination (EBI) as low as about 5 electrons per pixel per second, large adjustment range of sensitivity, and excel- lent flexibility and adaptability in applications. The camera system can capture two frame images at one time with the image size of 1024 x 1024. It meets the requirements of measurement for Dragon-Ⅰ LIA. (authors)

  7. Frames for undergraduates

    CERN Document Server

    Han, Deguang; Larson, David; Weber, Eric

    2007-01-01

    Frames for Undergraduates is an undergraduate-level introduction to the theory of frames in a Hilbert space. This book can serve as a text for a special-topics course in frame theory, but it could also be used to teach a second semester of linear algebra, using frames as an application of the theoretical concepts. It can also provide a complete and helpful resource for students doing undergraduate research projects using frames. The early chapters contain the topics from linear algebra that students need to know in order to read the rest of the book. The later chapters are devoted to advanced topics, which allow students with more experience to study more intricate types of frames. Toward that end, a Student Presentation section gives detailed proofs of fairly technical results with the intention that a student could work out these proofs independently and prepare a presentation to a class or research group. The authors have also presented some stories in the Anecdotes section about how this material has moti...

  8. Changing quantum reference frames

    OpenAIRE

    Palmer, Matthew C.; Girelli, Florian; Bartlett, Stephen D.

    2013-01-01

    We consider the process of changing reference frames in the case where the reference frames are quantum systems. We find that, as part of this process, decoherence is necessarily induced on any quantum system described relative to these frames. We explore this process with examples involving reference frames for phase and orientation. Quantifying the effect of changing quantum reference frames serves as a first step in developing a relativity principle for theories in which all objects includ...

  9. Plane wave fast color flow mode imaging

    DEFF Research Database (Denmark)

    Bolic, Ibrahim; Udesen, Jesper; Gran, Fredrik

    2006-01-01

    A new Plane wave fast color flow imaging method (PWM) has been investigated, and performance evaluation of the PWM based on experimental measurements has been made. The results show that it is possible to obtain a CFM image using only 8 echo-pulse emissions for beam to flow angles between 45...... degrees and 75 degrees. Compared to the conventional ultrasound imaging the frame rate is similar to 30 - 60 times higher. The bias, B-est of the velocity profile estimate, based on 8 pulse-echo emissions, is between 3.3% and 6.1% for beam to flow angles between 45 degrees and 75 degrees, and the standard...

  10. Nuclear image display controller

    International Nuclear Information System (INIS)

    Roth, D.A.

    1985-01-01

    In a nuclear imaging system the digitized x and y coordinates of gamma ray photon emission events address memory locations corresponding to the coordinates. The respective locations are incremented each time they are addressed so at the end of a selected time or event count period the locations contain digital values or raw data corresponding to the intensity of pixels comprising an image frame. The raw data for a frame is coupled to one input of an arithmetic logic unit (ALU) whose output is coupled to a display controller memory. The output of the controller memory is coupled to another ALU input with a feedback bus and is also coupled to a further signal processing circuit which includes means for converting processed data to analog video signals for television display. The ALU is selectively controlled to let raw image data pass through to the display controllor memory or alternately to add (or subtract) raw data for the last image frame developed to the raw data for preceding frames held in the display controller to thereby produce the visual effect on the television screen of an isotope flowing through anatomy

  11. The Word Outside and the Pictures in Our Heads: Contingent Framing Effects of Labels on Health Policy Preferences by Political Ideology.

    Science.gov (United States)

    Roh, Sungjong; Niederdeppe, Jeff

    2016-09-01

    This study uses data from systematic Web image search results and two randomized survey experiments to analyze how frames commonly used in public debates about health issues, operationalized here as alternative word choices, influence public support for health policy reforms. In Study 1, analyses of Bing (N = 1,719), Google (N = 1,872), and Yahoo Images (N = 1,657) search results suggest that the images returned from the search query "sugar-sweetened beverage" are more likely to evoke health-related concepts than images returned from a search query about "soda." In contrast, "soda" search queries were more likely to incorporate brand-related concepts than "sugar-sweetened beverage" search queries. In Study 2, participants (N = 206) in a controlled Web experiment rated their support for policies to reduce consumption of these drinks. As expected, strong liberals had more support for policies designed to reduce the consumption of these drinks when the policies referenced "soda" compared to "sugar-sweetened beverage." To the contrary, items describing these drinks as "soda" produced lower policy support than items describing them as "sugar-sweetened beverage" among strong conservatives. In Study 3, participants (N = 1,000) in a national telephone survey experiment rated their support for a similar set of policies. Results conceptually replicated the previous Web-based experiment, such that strong liberals reported greater support for a penny-per-ounce taxation when labeled "soda" versus "sugar-sweetened beverages." In both Studies 2 and 3, more respondents referred to brand-related concepts in response to questions about "sugar-sweetened beverages" compared to "soda." We conclude with a discussion of theoretical and methodological implications for studying framing effects of labels.

  12. Application of ultra-fast high-resolution gated-image intensifiers to laser fusion studies

    International Nuclear Information System (INIS)

    Lieber, A.J.; Benjamin, R.F.; Sutphin, H.D.; McCall, G.H.

    1975-01-01

    Gated-image intensifiers for fast framing have found high utility in laser-target interaction studies. X-ray pinhole camera photographs which can record asymmetries of laser-target interactions have been instrumental in further system design. High-resolution high-speed x-ray images of laser irradiated targets are formed using pinhole optics and electronically amplified by proximity focused channelplate intensifiers before being recorded on film. Spectral resolution is obtained by filtering. In these applications shutter duration is determined by source duration. Electronic gating serves to reduce background thereby enhancing signal-to-noise ratio. Cameras are used to view the self light of the interaction but may also be used for shadowgraphs. Sources for shadowgraphs may be sequenced to obtain a series of pictures with effective rates of 10 10 frame/s. Multiple aperatures have been used to obtain stereo x-ray views, yielding three dimensional information about the interactions. (author)

  13. On Framing

    DEFF Research Database (Denmark)

    Peder Pedersen, Claus

    2018-01-01

    On framing as artistic and conceptual tool in the works of Claudia Carbone. Contribution to exhibition at the Aarhus School of Architecture.......On framing as artistic and conceptual tool in the works of Claudia Carbone. Contribution to exhibition at the Aarhus School of Architecture....

  14. Minimum Variance Beamforming for High Frame-Rate Ultrasound Imaging

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Gran, Fredrik; Jensen, Jørgen Arendt

    2007-01-01

    , a 7 MHz, 128-element, phased array transducer with lambda/2-spacing was used. Data is obtained using a single element as the transmitting aperture and all 128 elements as the receiving aperture. A full SA sequence consisting of 128 emissions was simulated by gliding the active transmitting element...... weights for each frequency sub-band. As opposed to the conventional, Delay and Sum (DS) beamformer, this approach is dependent on the specific data. The performance of the proposed MV beamformer is tested on simulated synthetic aperture (SA) ultrasound data, obtained using Field II. For the simulations...... across the array. Data for 13 point targets and a circular cyst with a radius of 5 mm were simulated. The performance of the MV beamformer is compared to DS using boxcar weights and Hanning weights, and is quantified by the Full Width at Half Maximum (FWHM) and the peak-side-lobe level (PSL). Single...

  15. Framing the conversation: use of PRECIS-2 ratings to advance understanding of pragmatic trial design domains.

    Science.gov (United States)

    Lipman, Paula Darby; Loudon, Kirsty; Dluzak, Leanora; Moloney, Rachael; Messner, Donna; Stoney, Catherine M

    2017-11-10

    There continues to be debate about what constitutes a pragmatic trial and how it is distinguished from more traditional explanatory trials. The NIH Pragmatic Trials Collaborative Project, which includes five trials and a coordinating unit, has adopted the Pragmatic-Explanatory Continuum Indicator Summary (PRECIS-2) instrument. The purpose of the study was to collect PRECIS-2 ratings at two points in time to assess whether the tool was sensitive to change in trial design, and to explore with investigators the rationale for rating shifts. A mixed-methods design included sequential collection and analysis of quantitative data (PRECIS-2 ratings) and qualitative data. Ratings were collected at two annual, in-person project meetings, and subsequent interviews conducted with investigators were recorded, transcribed, and coded using NVivo 11 Pro for Windows. Rating shifts were coded as either (1) actual change (reflects a change in procedure or protocol), (2) primarily a rating shift reflecting rater variability, or (3) themes that reflect important concepts about the tool and/or pragmatic trial design. Based on PRECIS-2 ratings, each trial was highly pragmatic at the planning phase and remained so 1 year later in the early phases of trial implementation. Over half of the 45 paired ratings for the nine PRECIS-2 domains indicated a rating change from Time 1 to Time 2 (N = 24, 53%). Of the 24 rating changes, only three represented a true change in the design of the trial. Analysis of rationales for rating shifts identified critical themes associated with the tool or pragmatic trial design more generally. Each trial contributed one or more relevant comments, with Eligibility, Flexibility of Adherence, and Follow-up each accounting for more than one. PRECIS-2 has proved useful for "framing the conversation" about trial design among members of the Pragmatic Trials Collaborative Project. Our findings suggest that design elements assessed by the PRECIS-2 tool may represent

  16. Photoacoustic Imaging in Oxygen Detection

    Directory of Open Access Journals (Sweden)

    Fei Cao

    2017-12-01

    Full Text Available Oxygen level, including blood oxygen saturation (sO2 and tissue oxygen partial pressure (pO2, are crucial physiological parameters in life science. This paper reviews the importance of these two parameters and the detection methods for them, focusing on the application of photoacoustic imaging in this scenario. sO2 is traditionally detected with optical spectra-based methods, and has recently been proven uniquely efficient by using photoacoustic methods. pO2, on the other hand, is typically detected by PET, MRI, or pure optical approaches, yet with limited spatial resolution, imaging frame rate, or penetration depth. Great potential has also been demonstrated by employing photoacoustic imaging to overcome the existing limitations of the aforementioned techniques.

  17. Technical Note: Modification of the standard gain correction algorithm to compensate for the number of used reference flat frames in detector performance studies

    International Nuclear Information System (INIS)

    Konstantinidis, Anastasios C.; Olivo, Alessandro; Speller, Robert D.

    2011-01-01

    Purpose: The x-ray performance evaluation of digital x-ray detectors is based on the calculation of the modulation transfer function (MTF), the noise power spectrum (NPS), and the resultant detective quantum efficiency (DQE). The flat images used for the extraction of the NPS should not contain any fixed pattern noise (FPN) to avoid contamination from nonstochastic processes. The ''gold standard'' method used for the reduction of the FPN (i.e., the different gain between pixels) in linear x-ray detectors is based on normalization with an average reference flat-field. However, the noise in the corrected image depends on the number of flat frames used for the average flat image. The aim of this study is to modify the standard gain correction algorithm to make it independent on the used reference flat frames. Methods: Many publications suggest the use of 10-16 reference flat frames, while other studies use higher numbers (e.g., 48 frames) to reduce the propagated noise from the average flat image. This study quantifies experimentally the effect of the number of used reference flat frames on the NPS and DQE values and appropriately modifies the gain correction algorithm to compensate for this effect. Results: It is shown that using the suggested gain correction algorithm a minimum number of reference flat frames (i.e., down to one frame) can be used to eliminate the FPN from the raw flat image. This saves computer memory and time during the x-ray performance evaluation. Conclusions: The authors show that the method presented in the study (a) leads to the maximum DQE value that one would have by using the conventional method and very large number of frames and (b) has been compared to an independent gain correction method based on the subtraction of flat-field images, leading to identical DQE values. They believe this provides robust validation of the proposed method.

  18. Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Lindskov; Udesen, Jesper; Gran, Fredrik

    2008-01-01

    Conventional ultrasound methods for acquiring color flow images of the blood motion are restricted by a relatively low frame rate and angle dependent velocity estimates. The Plane Wave Excitation (PWE) method has been proposed to solve these limitations. The frame rate can be increased, and the 2-D...... vector velocity of the blood motion can be estimated. The transmitted pulse is not focused, and a full speckle image of the blood can be acquired for each emission. A 13 bit Barker code is transmitted simultaneously from each transducer element. The 2-D vector velocity of the blood is found using 2-D...... speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present...

  19. Real-time terahertz imaging through self-mixing in a quantum-cascade laser

    Energy Technology Data Exchange (ETDEWEB)

    Wienold, M., E-mail: martin.wienold@dlr.de; Rothbart, N.; Hübers, H.-W. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin (Germany); Department of Physics, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Hagelschuer, T. [Institute of Optical Sensor Systems, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin (Germany); Schrottke, L.; Biermann, K.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2016-07-04

    We report on a fast self-mixing approach for real-time, coherent terahertz imaging based on a quantum-cascade laser and a scanning mirror. Due to a fast deflection of the terahertz beam, images with frame rates up to several Hz are obtained, eventually limited by the mechanical inertia of the employed scanning mirror. A phase modulation technique allows for the separation of the amplitude and phase information without the necessity of parameter fitting routines. We further demonstrate the potential for transmission imaging.

  20. Microsoft Kinect Visual and Depth Sensors for Breathing and Heart Rate Analysis

    Directory of Open Access Journals (Sweden)

    Aleš Procházka

    2016-06-01

    Full Text Available This paper is devoted to a new method of using Microsoft (MS Kinect sensors for non-contact monitoring of breathing and heart rate estimation to detect possible medical and neurological disorders. Video sequences of facial features and thorax movements are recorded by MS Kinect image, depth and infrared sensors to enable their time analysis in selected regions of interest. The proposed methodology includes the use of computational methods and functional transforms for data selection, as well as their denoising, spectral analysis and visualization, in order to determine specific biomedical features. The results that were obtained verify the correspondence between the evaluation of the breathing frequency that was obtained from the image and infrared data of the mouth area and from the thorax movement that was recorded by the depth sensor. Spectral analysis of the time evolution of the mouth area video frames was also used for heart rate estimation. Results estimated from the image and infrared data of the mouth area were compared with those obtained by contact measurements by Garmin sensors (www.garmin.com. The study proves that simple image and depth sensors can be used to efficiently record biomedical multidimensional data with sufficient accuracy to detect selected biomedical features using specific methods of computational intelligence. The achieved accuracy for non-contact detection of breathing rate was 0.26% and the accuracy of heart rate estimation was 1.47% for the infrared sensor. The following results show how video frames with depth data can be used to differentiate different kinds of breathing. The proposed method enables us to obtain and analyse data for diagnostic purposes in the home environment or during physical activities, enabling efficient human–machine interaction.

  1. Framing theory

    NARCIS (Netherlands)

    de Vreese, C.H.; Lecheler, S.; Mazzoleni, G.; Barnhurst, K.G.; Ikeda, K.; Maia, R.C.M.; Wessler, H.

    2016-01-01

    Political issues can be viewed from different perspectives and they can be defined differently in the news media by emphasizing some aspects and leaving others aside. This is at the core of news framing theory. Framing originates within sociology and psychology and has become one of the most used

  2. Framing politics

    NARCIS (Netherlands)

    Lecheler, S.K.

    2010-01-01

    This dissertation supplies a number of research findings that add to a theory of news framing effects, and also to the understanding of the role media effects play in political communication. We show that researchers must think more about what actually constitutes a framing effect, and that a

  3. Serialising languages: Satellite-framed, verb-framed or neither ...

    African Journals Online (AJOL)

    The diversity in the coding of the core schema of motion, i.e., Path, has led to a traditional typology of languages into verb-framed and satellite-framed languages. In the former Path is encoded in verbs and in the latter it is encoded in non-verb elements that function as sisters to co-event expressing verbs such as manner ...

  4. Warped Discrete Cosine Transform-Based Low Bit-Rate Block Coding Using Image Downsampling

    Directory of Open Access Journals (Sweden)

    Ertürk Sarp

    2007-01-01

    Full Text Available This paper presents warped discrete cosine transform (WDCT-based low bit-rate block coding using image downsampling. While WDCT aims to improve the performance of conventional DCT by frequency warping, the WDCT has only been applicable to high bit-rate coding applications because of the overhead required to define the parameters of the warping filter. Recently, low bit-rate block coding based on image downsampling prior to block coding followed by upsampling after the decoding process is proposed to improve the compression performance for low bit-rate block coders. This paper demonstrates that a superior performance can be achieved if WDCT is used in conjunction with image downsampling-based block coding for low bit-rate applications.

  5. Expandable image compression system: A modular approach

    International Nuclear Information System (INIS)

    Ho, B.K.T.; Lo, S.C.; Huang, H.K.

    1986-01-01

    The full-frame bit-allocation algorithm for radiological image compression can achieve an acceptable compression ratio as high as 30:1. It involves two stages of operation: a two-dimensional discrete cosine transform and pixel quantization in the transformed space with pixel depth kept accountable by a bit-allocation table. The cosine transform hardware design took an expandable modular approach based on the VME bus system with a maximum data transfer rate of 48 Mbytes/sec and a microprocessor (Motorola 68000 family). The modules are cascadable and microprogrammable to perform 1,024-point butterfly operations. A total of 18 stages would be required for transforming a 1,000 x 1,000 image. Multiplicative constants and addressing sequences are to be software loaded into the parameter buffers of each stage prior to streaming data through the processor stages. The compression rate for 1K x 1K images is expected to be faster than one image per sec

  6. The influence of head frame distortions on stereotactic localization and targeting

    Energy Technology Data Exchange (ETDEWEB)

    Treuer, H; Hunsche, S; Hoevels, M; Luyken, K; Maarouf, M; Voges, J; Sturm, V [Department of Stereotaxy and Functional Neurosurgery, University of Cologne, 50924 Cologne (Germany)

    2004-09-07

    A strong attachment of a stereotactic head frame to the patient's skull may cause distortions of the head frame. The aim of this work was to identify possible distortions of the head frame, to measure the degree of distortion occurring in clinical practice and to investigate its influence on stereotactic localization and targeting. A model to describe and quantify the distortion of the Riechert-Mundinger (RM) head frame was developed. Distortions were classified as (a) bending and (b) changes from the circular ring shape. Ring shape changes were derived from stereotactic CT scans and frame bending was determined from intraoperative stereotactic x-ray images of patients with implanted {sup 125}I-seeds acting as landmarks. From the examined patient data frame bending was determined to be 0.74 mm {+-} 0.32 mm and 1.30 mm in maximum. If a CT-localizer with a top ring is used, frame bending has no influence on stereotactic CT-localization. In stereotactic x-ray localization, frame bending leads to an overestimation of the z-coordinate by 0.37 mm {+-} 0.16 mm on average and by 0.65 mm in maximum. The accuracy of patient positioning in radiosurgery is not affected by frame bending. But in stereotactic surgery with an RM aiming bow trajectory displacements are expected. These displacements were estimated to be 0.36 mm {+-} 0.16 mm (max. 0.74 mm) at the target point and 0.65 mm {+-} 0.30 mm (max. 1.31 mm) at the entry point level. Changes from the circular ring shape are small and do not compromise the accuracy of stereotactic targeting and localization. The accuracy of CT-localization was found to be close to the resolution limit due to voxel size. Our findings for frame bending of the RM frame could be validated by statistical analysis and by comparison with an independent patient examination. The results depend on the stereotactic system and details of the localizers and instruments and also reflect our clinical practice. Therefore, a generalization is not possible

  7. Enhancement system of nighttime infrared video image and visible video image

    Science.gov (United States)

    Wang, Yue; Piao, Yan

    2016-11-01

    Visibility of Nighttime video image has a great significance for military and medicine areas, but nighttime video image has so poor quality that we can't recognize the target and background. Thus we enhance the nighttime video image by fuse infrared video image and visible video image. According to the characteristics of infrared and visible images, we proposed improved sift algorithm andαβ weighted algorithm to fuse heterologous nighttime images. We would deduced a transfer matrix from improved sift algorithm. The transfer matrix would rapid register heterologous nighttime images. And theαβ weighted algorithm can be applied in any scene. In the video image fusion system, we used the transfer matrix to register every frame and then used αβ weighted method to fuse every frame, which reached the time requirement soft video. The fused video image not only retains the clear target information of infrared video image, but also retains the detail and color information of visible video image and the fused video image can fluency play.

  8. Replication Rate, Framing, and Format Affect Attitudes and Decisions about Science Claims

    OpenAIRE

    Barnes, Ralph M.; Tobin, Stephanie J.; Johnston, Heather M.; MacKenzie, Noah; Taglang, Chelsea M.

    2016-01-01

    A series of five experiments examined how the evaluation of a scientific finding was influenced by information about the number of studies that had successfully replicated the initial finding. The experiments also tested the impact of frame (negative, positive) and numeric format (percentage, natural frequency) on the evaluation of scientific findings. In Experiments 1 through 4, an attitude difference score served as the dependent measure, while a measure of choice served as the dependent me...

  9. Image registration in gastric emptying studies

    International Nuclear Information System (INIS)

    Shuter, B.; Cooper, R.G.

    1998-01-01

    Full text: We have previously shown that image registration, based upon a two-dimensional cross-correlation (CC) of logarithmic Laplacian images (LLI), corrected motion in biliary studies in up to 90% of cases with minimal artifact. We have now applied the same technique to gastric emptying studies (GES). GES were acquired on an LFOV gamma camera over a two-hour period as 20-26 pairs of anterior-posterior frames (30 second duration and 64 x 64 matrix) for both solid and liquid components. All images were manually registered so that the solid contents of the stomach lay within an operator-drawn ROI. The anterior images of the solid component for 30 randomly selected patients were subjected to further image registration using CC of LLI, CC of raw images (Rl) (a common approach to image registration) and CC of Laplacian images (Ll). All images were aligned to the third image of the study, on which an ROI was drawn to outline the stomach. The number of images in which stomach counts appeared outside this ROI were tallied, in the original and all re-registered studies. Maximum displacements in X/Y position between images of studies registered by the LLI and Rl methods were also computed to directly compare positional accuracy. Stomachs partially exceeded the limits of the ROI in 27, 9, 53 and 54 frames (total of 710) in the original, LLI, Rl and Ll studies respectively. There were 4, 1, 6 and 7 studies with misregistered stomachs on more than 2 frames. Frames in seven Rl studies differed from the LLI studies in ) X/Y position by 3 pixels or more. Cross-correlation using LLI was the only method which improved upon the original manual registration. The Rl and Ll methods increased the number of misregistered frames. We conclude that in gastric emptying studies, as in biliary studies, object tracking by CC of LLI is the method of choice for image registration

  10. Sparse Matrices in Frame Theory

    DEFF Research Database (Denmark)

    Lemvig, Jakob; Krahmer, Felix; Kutyniok, Gitta

    2014-01-01

    Frame theory is closely intertwined with signal processing through a canon of methodologies for the analysis of signals using (redundant) linear measurements. The canonical dual frame associated with a frame provides a means for reconstruction by a least squares approach, but other dual frames...... yield alternative reconstruction procedures. The novel paradigm of sparsity has recently entered the area of frame theory in various ways. Of those different sparsity perspectives, we will focus on the situations where frames and (not necessarily canonical) dual frames can be written as sparse matrices...

  11. Framing car fuel efficiency : linearity heuristic for fuel consumption and fuel-efficiency ratings

    NARCIS (Netherlands)

    Schouten, T.M.; Bolderdijk, J.W.; Steg, L.

    2014-01-01

    People are sensitive to the way information on fuel efficiency is conveyed. When the fuel efficiency of cars is framed in terms of fuel per distance (FPD; e.g. l/100 km), instead of distance per units of fuel (DPF; e.g. km/l), people have a more accurate perception of potential fuel savings. People

  12. Denoising in Wavelet Packet Domain via Approximation Coefficients

    Directory of Open Access Journals (Sweden)

    Zahra Vahabi

    2012-01-01

    Full Text Available In this paper we propose a new approach in the wavelet domain for image denoising. In recent researches wavelet transform has introduced a time-Frequency transform for computing wavelet coefficient and eliminating noise. Some coefficients have effected smaller than the other's from noise, so they can be use reconstruct images with other subbands. We have developed Approximation image to estimate better denoised image. Naturally noiseless subimage introduced image with lower noise. Beside denoising we obtain a bigger compression rate. Increasing image contrast is another advantage of this method. Experimental results demonstrate that our approach compares favorably to more typical methods of denoising and compression in wavelet domain.100 images of LIVE Dataset were tested, comparing signal to noise ratios (SNR,soft thresholding was %1.12 better than hard thresholding, POAC was %1.94 better than soft thresholding and POAC with wavelet packet was %1.48 better than POAC.

  13. Framing Effects on End-of-Life Preferences Among Latino Elders.

    Science.gov (United States)

    Vélez Ortiz, Daniel; Martinez, Rubén O; Espino, David V

    2015-01-01

    This study compared how the presentation of end-of-life (EOL) choices influences responses by Latino and White older adults relative to resuscitation preferences. The authors apply prospect theory, which deals with decision making based on how choices are framed. Participants were presented with differently ordered questions framing a resuscitation scenario and asked to rate their preferences. Results show that Latino participants were significantly influenced by the framing order of treatment options with regard to resuscitation while Whites were not. Health professionals need to be aware that the ways they present EOL options are likely to affect the choices of Latino older adults. Further research is needed with Latino subgroups.

  14. When message-frame fits salient cultural-frame, messages feel more persuasive.

    Science.gov (United States)

    Uskul, Ayse K; Oyserman, Daphna

    2010-03-01

    The present study examines the persuasive effects of tailored health messages comparing those tailored to match (versus not match) both chronic cultural frame and momentarily salient cultural frame. Evidence from two studies (Study 1: n = 72 European Americans; Study 2: n = 48 Asian Americans) supports the hypothesis that message persuasiveness increases when chronic cultural frame, health message tailoring and momentarily salient cultural frame all match. The hypothesis was tested using a message about health risks of caffeine consumption among individuals prescreened to be regular caffeine consumers. After being primed for individualism, European Americans who read a health message that focused on the personal self were more likely to accept the message-they found it more persuasive, believed they were more at risk and engaged in more message-congruent behaviour. These effects were also found among Asian Americans who were primed for collectivism and who read a health message that focused on relational obligations. The findings point to the importance of investigating the role of situational cues in persuasive effects of health messages and suggest that matching content to primed frame consistent with the chronic frame may be a way to know what to match messages to.

  15. Tailored synthesis of nanostructures by laser irradiation of a precursor microdroplet stream in open-air

    Science.gov (United States)

    Palanco, S.; Marino, S.; Gabás, M.; Ayala, L.; Ramos-Barrado, J. R.

    2014-12-01

    A method to synthesize multicomponent nanostructures in open-air is presented. A microdroplet precursor target is irradiated with a nanosecond laser pulse to induce plasma. At low droplet dispensing rates, the precursor and solvent are fully atomized without debris to produce nanoparticles and nanofilaments during plasma cooling. More complex structures like nanolayers or nanofoams can be synthetised at kilohertz droplet dispensing rates as additional droplets in the vicinity of the target droplet are subjected to the laser-induced plasma and its associated shockwave. Examples of both low- and fast-rate mechanisms are presented for Mn-Fe bi-metal oxide nanoparticles and zinc oxide nanoparticles, nanofilaments and nanofoams. Real-time diagnostics were carried out with time-resolved imaging, atomic emission spectroscopy, light scattering and shadowgraphy. In addition to overcoming some of the difficulties associated with pulsed-laser deposition (PLD), the use of a liquid precursor whose composition can be tailored on a droplet-to-droplet basis opens a number of possibilities.A method to synthesize multicomponent nanostructures in open-air is presented. A microdroplet precursor target is irradiated with a nanosecond laser pulse to induce plasma. At low droplet dispensing rates, the precursor and solvent are fully atomized without debris to produce nanoparticles and nanofilaments during plasma cooling. More complex structures like nanolayers or nanofoams can be synthetised at kilohertz droplet dispensing rates as additional droplets in the vicinity of the target droplet are subjected to the laser-induced plasma and its associated shockwave. Examples of both low- and fast-rate mechanisms are presented for Mn-Fe bi-metal oxide nanoparticles and zinc oxide nanoparticles, nanofilaments and nanofoams. Real-time diagnostics were carried out with time-resolved imaging, atomic emission spectroscopy, light scattering and shadowgraphy. In addition to overcoming some of the

  16. Inter frame motion estimation and its application to image sequence compression: an introduction; Estimacion del movimiento interframe y su aplicacion en la compresion de secuencias de imagenes: una introduccion

    Energy Technology Data Exchange (ETDEWEB)

    Cremy, C

    1996-07-01

    With the constant development of new communication technologies like, digital TV, teleconference, and the development of image analysis applications, there is a growing volume of data to manage. Compression techniques are required for the transmission and storage of these data. Dealing with original images would require the use of expansive high bandwidth communication devices and huge storage media. Image sequence compression can be achieved by means of interframe estimation that consists in retrieving redundant information relative to zones where there is little motion between two frames. This paper is an introduction to some motion estimation techniques like gradient techniques, pel-recursive, block-matching, and its application to image sequence compression. (Author) 17 refs.

  17. Gun muzzle flash detection using a single photon avalanche diode array in 0.18µm CMOS technology

    Science.gov (United States)

    Savuskan, Vitali; Jakobson, Claudio; Merhav, Tomer; Shoham, Avi; Brouk, Igor; Nemirovsky, Yael

    2015-05-01

    In this study, a CMOS Single Photon Avalanche Diode (SPAD) 2D array is used to record and sample muzzle flash events in the visible spectrum, from representative weapons. SPADs detect the emission peaks of alkali salts, potassium or sodium, with spectral emission lines around 769nm and 589nm, respectively. The alkali salts are included in the gunpowder to suppress secondary flashes ignited during the muzzle flash event. The SPADs possess two crucial properties for muzzle flash imaging: (i) very high photon detection sensitivity, (ii) a unique ability to convert the optical signal to a digital signal at the source pixel, thus practically eliminating readout noise. The sole noise sources are the ones prior to the readout circuitry (optical signal distribution, avalanche initiation distribution and nonphotonic generation). This enables high sampling frequencies in the kilohertz range without significant SNR degradation, in contrast to regular CMOS image sensors. This research will demonstrate the SPAD's ability to accurately sample and reconstruct the temporal behavior of the muzzle flash in the visible wavelength, in the presence of sunlight. The reconstructed signal is clearly distinguishable from background clutter, through exploitation of flash temporal characteristics and signal processing, which will be reported. The frame rate of ~16 KHz was chosen as an optimum between SNR degradation and temporal profile recognition accuracy. In contrast to a single SPAD, the 2D array allows for multiple events to be processed simultaneously. Moreover, a significant field of view is covered, enabling comprehensive surveillance and imaging.

  18. Einstein and Jordan frames reconciled: A frame-invariant approach to scalar-tensor cosmology

    International Nuclear Information System (INIS)

    Catena, Riccardo; Pietroni, Massimo; Scarabello, Luca

    2007-01-01

    Scalar-tensor theories of gravity can be formulated in different frames, most notably, the Einstein and the Jordan one. While some debate still persists in the literature on the physical status of the different frames, a frame transformation in scalar-tensor theories amounts to a local redefinition of the metric, and then should not affect physical results. We analyze the issue in a cosmological context. In particular, we define all the relevant observables (redshift, distances, cross sections, ...) in terms of frame-independent quantities. Then, we give a frame-independent formulation of the Boltzmann equation, and outline its use in relevant examples such as particle freeze-out and the evolution of the cosmic microwave background photon distribution function. Finally, we derive the gravitational equations for the frame-independent quantities at first order in perturbation theory. From a practical point of view, the present approach allows the simultaneous implementation of the good aspects of the two frames in a clear and straightforward way

  19. column frame for design of reinforced concrete sway frames

    African Journals Online (AJOL)

    adminstrator

    design of slender reinforced concrete columns in sway frames according .... concrete,. Ac = gross cross-sectional area of the columns. Step 3: Effective Buckling Length Factors. The effective buckling length factors of columns in a sway frame shall be computed by .... shall have adequate resistance to failure in a sway mode ...

  20. Video retrieval by still-image analysis with ImageMiner

    Science.gov (United States)

    Kreyss, Jutta; Roeper, M.; Alshuth, Peter; Hermes, Thorsten; Herzog, Otthein

    1997-01-01

    The large amount of available multimedia information (e.g. videos, audio, images) requires efficient and effective annotation and retrieval methods. As videos start playing a more important role in the frame of multimedia, we want to make these available for content-based retrieval. The ImageMiner-System, which was developed at the University of Bremen in the AI group, is designed for content-based retrieval of single images by a new combination of techniques and methods from computer vision and artificial intelligence. In our approach to make videos available for retrieval in a large database of videos and images there are two necessary steps: First, the detection and extraction of shots from a video, which is done by a histogram based method and second, the construction of the separate frames in a shot to one still single images. This is performed by a mosaicing-technique. The resulting mosaiced image gives a one image visualization of the shot and can be analyzed by the ImageMiner-System. ImageMiner has been tested on several domains, (e.g. landscape images, technical drawings), which cover a wide range of applications.