Aslam, Shahid; Jones, Hollis H.
2011-01-01
Care must always be taken when performing noise measurements on high-Tc superconducting materials to ensure that the results are not from the measurement system itself. One situation likely to occur is with low noise transformers. One of the least understood devices, it provides voltage gain for low impedance inputs (< 100 ), e.g., YBaCuO and GdBaCuO thin films, with comparatively lower noise levels than other devices for instance field effect and bipolar junction transistors. An essential point made in this paper is that because of the complex relationships between the transformer ports, input impedance variance alters the transformer s transfer function in particular, the low frequency cutoff shift. The transfer of external and intrinsic transformer noise to the output along with optimization and precautions are treated; all the while, we will cohesively connect the transfer function shift, the load impedance, and the actual noise at the transformer output.
Noise properties of Hilbert transform evaluation
International Nuclear Information System (INIS)
Pavliček, Pavel; Svak, Vojtěch
2015-01-01
The Hilbert transform is a standard method for the calculation of the envelope and phase of a modulated signal in optical measurement methods. Usually, the intensity of light is converted into an electric signal at a detector. Therefore the actual spatially or temporally sampled signal is always affected by noise. Because the noise values of individual samples are independent, the noise can be considered as white. If the envelope and phase are calculated from the noised signal, they will also be affected by the noise. We calculate the variance and spectral density of both the envelope noise and the phase noise. We determine which parameters influence the variance and spectral density of both the envelope noise and the phase noise. Finally, we determine the influence of the noise on the measurement uncertainty in white-light interferometry and fringe-pattern analysis. (paper)
Comparative analysis of chosen transforms in the context of de-noising harmonic signals
Directory of Open Access Journals (Sweden)
Artur Zacniewski
2015-09-01
Full Text Available In the article, comparison of popular transforms used i.a. in denoising harmonical signals was presented. The division of signals submitted to mathematical analysis was shown and chosen transforms such as Short Time Fourier Transform, Wigner-Ville Distribution, Wavelet Transform and Discrete Cosine Transform were presented. Harmonic signal with white noise added was submitted for research. During research, the parameters of noise were changed to analyze the effects of using particular transform on noised signal. The importance of right choice for transform and its parameters (different for particular kind of transform was shown. Small changes in parameters or different functions used in transform can lead to considerably different results.[b]Keywords[/b]: denoising of harmonical signals, wavelet transform, discrete cosine transform, DCT
Noise properties of Hilbert transform evaluation
Czech Academy of Sciences Publication Activity Database
Pavlíček, Pavel; Svak, V.
2015-01-01
Roč. 26, č. 8 (2015), s. 085207 ISSN 0957-0233 R&D Projects: GA ČR GA13-12301S Institutional support: RVO:68378271 Keywords : Hilbert transform * noise * measurement uncertainty * white -light interferometry * fringe-pattern analysis Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.492, year: 2015
Analysis and removing noise from speech using wavelet transform
Tomala, Karel; Voznak, Miroslav; Partila, Pavol; Rezac, Filip; Safarik, Jakub
2013-05-01
The paper discusses the use of Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) wavelet in removing noise from voice samples and evaluation of its impact on speech quality. One significant part of Quality of Service (QoS) in communication technology is the speech quality assessment. However, this part is seriously overlooked as telecommunication providers often focus on increasing network capacity, expansion of services offered and their enforcement in the market. Among the fundamental factors affecting the transmission properties of the communication chain is noise, either at the transmitter or the receiver side. A wavelet transform (WT) is a modern tool for signal processing. One of the most significant areas in which wavelet transforms are used is applications designed to suppress noise in signals. To remove noise from the voice sample in our experiment, we used the reference segment of the voice which was distorted by Gaussian white noise. An evaluation of the impact on speech quality was carried out by an intrusive objective algorithm Perceptual Evaluation of Speech Quality (PESQ). DWT and SWT transformation was applied to voice samples that were devalued by Gaussian white noise. Afterwards, we determined the effectiveness of DWT and SWT by means of objective algorithm PESQ. The decisive criterion for determining the quality of a voice sample once the noise had been removed was Mean Opinion Score (MOS) which we obtained in PESQ. The contribution of this work lies in the evaluation of efficiency of wavelet transformation to suppress noise in voice samples.
International Nuclear Information System (INIS)
Laude, Vincent
2002-01-01
The problem of noise analysis in measuring the group delay introduced by a dispersive optical element by use of white-light interferometric cross correlation is investigated. Two noise types, detection noise and position noise, are specifically analyzed. Detection noise is shown to be highly sensitive to the spectral content of the white-light source at the frequency considered and to the temporal acquisition window. Position noise, which arises from the finite accuracy of the measurement of the scanning mirror's position, can severely damage the estimation of the group delay. Such is shown to be the case for fast Fourier transform-based estimation algorithms. A new algorithm that is insensitive to scanning delay errors is proposed, and subfemtosecond accuracy is obtained without any postprocessing
Capò Sànchez, J.; Huallpa, E.; Farina, P.; Padovese, L. R.; Goldenstein, H.
2011-10-01
Magnetic Barkhausen noise (MBN) was used to characterize the progress of austenite to martensite phase transformation while cooling steel specimens, using a conventional Barkhausen noise emission setup stimulated by an alternating magnetic field. The phase transformation was also followed by electrical resistivity measurements and by optical and scanning electron microscopy. MBN measurements on a AISI D2 tool steel austenitized at 1473 K and cooled to liquid nitrogen temperature presented a clear change near 225 K during cooling, corresponding to the MS (martensite start) temperature, as confirmed by resistivity measurements. Analysis of the resulting signals suggested a novel experimental technique that measures spontaneous magnetic emission during transformation, in the absence of any external field. Spontaneous magnetic noise emission measurements were registered in situ while cooling an initially austenitic sample in liquid nitrogen, showing that local microstructural changes, corresponding to an avalanche or "burst" phenomena, could be detected. This spontaneous magnetic emission (SME) can thus be considered a new experimental tool for the study of martensite transformations in ferrous alloys, at the same level as acoustic emission.
A power transformer as a source of noise.
Zawieska, Wiktor Marek
2007-01-01
This article presents selected results of analyses and simulations carried out as part of research performed at the Central Institute of Labor Protection - the National Research Institute (CIOP-PIB) in connection with the development of a system for active reduction of noise emitted by high power electricity transformers. This analysis covers the transformer as a source of noise as well as a mathematical description of the phenomenon of radiation of vibroacoustic energy through a transformer enclosure modeled as a vibrating rectangular plate. Also described is an acoustic model of the transformer in the form of an array of loudspeakers.
Audible Noise Measurement and Analysis of the Main Power Apparatus in UHV GIS Substations
Directory of Open Access Journals (Sweden)
Zhou Nian Guang
2016-01-01
Full Text Available Investigation of audible noise characteristics of the main power apparatus in UHV GIS substations provides essential statistics for the noise prediction and control. Noise pressure level, spectrum and attenuation characteristics of the main transformers and high voltage (HV reactors are measured and analyzed in this paper. The result shows that the main transformer and HV reactor have identical A-weighted equivalent sound pressure level. The medium- and low-frequency noises are the primary components in the spectral. More attention should be paid to the low-frequency bands in the noise control process. The noise of cooling fan has a large influence on that of the main transformer. Without the consideration of corona noise, the average A-weighted sound pressure level shows an overall decreasing trend with the increase of the propagation distance. Obvious interference phenomenon of the noises at 100 and 200Hz exists in the noise propagation process.
Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi
2018-06-01
The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.
Directory of Open Access Journals (Sweden)
Rogelio Ramos
2017-01-01
Full Text Available The present work discusses the problem of induced external electrical noise as well as its removal from the electrical potential obtained from Scanning Vibrating Electrode Technique (SVET in the pitting corrosion process of aluminum alloy A96061 in 3.5% NaCl. An accessible and efficient solution of this problem is presented with the use of virtual instrumentation (VI, embedded systems, and the discrete wavelet transform (DWT. The DWT is a computational algorithm for digital processing that allows obtaining electrical noise with Signal to Noise Ratio (SNR superior to those obtained with Lock-In Amplifier equipment. The results show that DWT and the threshold method are efficient and powerful alternatives to carry out electrical measurements of potential signals from localized corrosion processes measured by SVET.
Noise measurements on proximity effect bridges
International Nuclear Information System (INIS)
Decker, S.K.; Mercereau, J.E.
1975-01-01
Audio frequency noise density measurements were performed on weakly superconducting proximity effect bridges on using a cooled transformer and room temperature low noise preamplifier. The noise temperature of the measuring system is approximately 4 0 K for a 0.9 Ω resistor. Noise density was measured as a function of bias current and temperature for the bridges. Excess noise above that expected from Johnson noise for a resistor equal to the dynamic resistance of the bridges was observed in the region near the critical current of the device. At high currents compared to the critical current, the noise density closely approaches that given by Johnson noise
Electrocardiogram de-noising based on forward wavelet transform ...
Indian Academy of Sciences (India)
Ratio (SNR) and Mean Square Error (MSE) computations showed that our proposed ... This technique permits to cancel noises and retain the informa- tion of the ... Wavelet analysis is used for transforming the signal under investigation into joined temporal and ... introduced the BWT in our proposed ECG de-noising system.
Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data
Dahl, Milo D.; Sharpe, Jacob A.
2014-01-01
A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.
Lifetime measurement of prompt neutrons using the neutronic noise analysis
International Nuclear Information System (INIS)
Ortiz Servin, J.J.
1992-01-01
The purpose of this work is to estimate the life of the prompt neutrons, i, of a nuclear reactor utilizing the neutron noise analysis. This technique carry to development of mathematical model that is valid for lower powers reactor. The equation resulting convey to the observation about power spectrum behaviour respect to the frecquency. In this case, the reactor in study is the Triga Mark III of Nuclear Center of Mexico that it was provided of fission chambers for register the neutron fluxes. These fluxes was digitized and storage in computer disc as signals dependents of time, for later apply the Fourier Transformation and obtain the spectras. The spectras measured to different reactor powers were adjusted to the development equation before, using the method of square minimum and so estimate the parameter i. The analysis of results throw a value of 22.73 +/- 0.92 μs. On the other hand, the calculate value to the resolve the kinetic equation of reactor defer in lower than 4 % about the estimate. Of this, it concludes that the model utilized is trusty with a good mistake margin, moreover of that the technique of Neutron Noise analysis demonstrate be competitive (Author)
Wormeester, Herbert; Sasse, A.G.B.M.; van Silfhout, Arend
1988-01-01
One of the main problems in the analysis of measured spectra is how to reduce the influence of noise in data processing. We show a deconvolution, a differentiation and a Fourier Transform algorithm that can be run on a small computer (64 K RAM) and suffer less from noise than commonly used routines.
Parameter optimization in the regularized kernel minimum noise fraction transformation
DEFF Research Database (Denmark)
Nielsen, Allan Aasbjerg; Vestergaard, Jacob Schack
2012-01-01
Based on the original, linear minimum noise fraction (MNF) transformation and kernel principal component analysis, a kernel version of the MNF transformation was recently introduced. Inspired by we here give a simple method for finding optimal parameters in a regularized version of kernel MNF...... analysis. We consider the model signal-to-noise ratio (SNR) as a function of the kernel parameters and the regularization parameter. In 2-4 steps of increasingly refined grid searches we find the parameters that maximize the model SNR. An example based on data from the DLR 3K camera system is given....
Seismic Linear Noise Attenuation with Use of Radial Transform
Szymańska-Małysa, Żaneta
2018-03-01
One of the goals of seismic data processing is to attenuate the recorded noise in order to enable correct interpretation of the image. Radial transform has been used as a very effective tool in the attenuation of various types of linear noise, both numerical and real (such as ground roll, direct waves, head waves, guided waves etc). The result of transformation from offset - time (X - T) domain into apparent velocity - time (R - T) domain is frequency separation between reflections and linear events. In this article synthetic and real seismic shot gathers were examined. One example was targeted at far offset area of dataset where reflections and noise had similar apparent velocities and frequency bands. Another example was a result of elastic modelling where linear artefacts were produced. Bandpass filtering and scaling operation executed in radial domain attenuated all discussed types of linear noise very effectively. After noise reduction all further processing steps reveal better results, especially velocity analysis, migration and stacking. In all presented cases signal-to-noise ratio was significantly increased and reflections covered previously by noise were revealed. Power spectra of filtered seismic records preserved real dynamics of reflections.
Research on the application of active sound barriers for the transformer noise abatement
Directory of Open Access Journals (Sweden)
Hu Sheng
2016-01-01
Full Text Available Sound barriers are a type of measure most commonly used in the noise abatement of transformers. In the noise abatement project of substations, the design of sound barriers is restrained by the portal frames which are used to hold up outgoing lines from the main transformers, which impacts the noise reduction effect. If active sound barriers are utilized in these places, the noise diffraction of sound barriers can be effectively reduced. At a 110kV Substation, an experiment using a 15-channel active sound barrier has been carried out. The result of the experiment shows that the mean noise reduction value (MNRV of the noise measuring points at the substation boundary are 1.5 dB (A. The effect of the active noise control system is impacted by the layout of the active noise control system, the acoustic environment on site and the spectral characteristic of the target area.
Noise figure of amplified dispersive Fourier transformation
International Nuclear Information System (INIS)
Goda, Keisuke; Jalali, Bahram
2010-01-01
Amplified dispersive Fourier transformation (ADFT) is a powerful tool for fast real-time spectroscopy as it overcomes the limitations of traditional optical spectrometers. ADFT maps the spectrum of an optical pulse into a temporal waveform using group-velocity dispersion and simultaneously amplifies it in the optical domain. It greatly simplifies spectroscopy by replacing the diffraction grating and detector array in the conventional spectrometer with a dispersive fiber and single-pixel photodetector, enabling ultrafast real-time spectroscopic measurements. Following our earlier work on the theory of ADFT, here we study the effect of noise on ADFT. We derive the noise figure of ADFT and discuss its dependence on various parameters.
Noise Measurement and Frequency Analysis of Commercially Available Noisy Toys
Directory of Open Access Journals (Sweden)
Shohreh Jalaie
2005-06-01
Full Text Available Objective: Noise measurement and frequency analysis of commercially available noisy toys were the main purposes of the study. Materials and Methods: 181 noisy toys commonly found in toy stores in different zones of Tehran were selected and categorized into 10 groups. Noise measurement were done at 2, 25, and 50 cm from toys in dBA. The noisiest toy of each group was frequency analyzed in octave bands. Results: The highest and the lowest intensity levels belonged to the gun (mean=112 dBA and range of 100-127 dBA and to the rattle-box (mean=84 dBA and range of 74-95 dBA, respectively. Noise intensity levels significantly decreased with increasing distance except for two toys. Noise frequency analysis indicated energy in effective hearing frequencies. Most of the toys energies were in the middle and high frequency region. Conclusion: As intensity level of the toys is considerable, mostly more than 90 dBA, and also their energy exist in the middle and high frequency region, toys should be considered as a cause of the hearing impairment.
Development of electronic system for reactivity measurement and reactor noise analysis
International Nuclear Information System (INIS)
Strohl, Claude Emile; Soares, Adalberto Jose
1996-01-01
In nuclear power reactors, the neutron detector signal is dependent of the number of fissions and the reactor power level. The detector signal can be divided into two components; a DC component, proportional to the average value and an AC component, which is the fluctuating part superimposed to the DC component. The analysis of the fluctuating part of the signal is called noise analysis and allow us to investigate phenomena occurring within the reactor vessel, such as vibration of fuels elements and coolant density, temperature, pressure and flow changes. On the other hand, the measure of the static DC part allow us to measure the local power density. This paper describes the development of a personal computer based signal conditioning card that, together with a personal computer commercial data acquisition card, can be used for noise analysis measurements and reactivity measurements of signals coming from ionization chambers or SPD's. (author)
Fourier transform and controlling of flux in scalar hysteresis measurement
International Nuclear Information System (INIS)
Kuczmann, Miklos
2008-01-01
The paper deals with a possible realization of eliminating the effect of noise in scalar hysteresis measurements. The measured signals have been transformed into the frequency domain, and, after applying digital filter, the spectrums of the filtered signals have been transformed back to the time domain. The proposed technique results in an accurate noise-removal algorithm. The paper illustrates a fast controlling algorithm applying the inverse of the actually measured hysteresis loop, and another proportional one to measure distorted flux pattern. By developing the mentioned algorithms, it aims at the controlling of a more complicated phenomena, i.e. measuring the vector hysteresis characteristics
International Nuclear Information System (INIS)
Pan, X.; Metz, C.E.
1995-01-01
A general approach that the authors proposed elsewhere reveals the intrinsic relationship among methods for inversion of the 2-D exponential Radon transform described by Bellini et al., by Tretiak and Metz, by Hawkins et al., and by Inouye et al. Moreover, the approach provides an infinite class of linear methods for inverting the 2-D exponential Radon transform. In the work reported here, they systematically investigated the noise characteristics of the methods in this class, obtaining analytical forms for the autocovariance and the variance of the images reconstructed by use of various methods. The noise properties of a new quasi-optimal method were then compared theoretically to those of other methods of the class. The analysis demonstrates that the quasi-optimal method achieves smaller global variance in the reconstructed images than do the other methods of the class. Extensive numerical simulation studies confirm this prediction
Gas Measurement Using Static Fourier Transform Infrared Spectrometers.
Köhler, Michael H; Schardt, Michael; Rauscher, Markus S; Koch, Alexander W
2017-11-13
Online monitoring of gases in industrial processes is an ambitious task due to adverse conditions such as mechanical vibrations and temperature fluctuations. Whereas conventional Fourier transform infrared (FTIR) spectrometers use rather complex optical and mechanical designs to ensure stable operation, static FTIR spectrometers do not require moving parts and thus offer inherent stability at comparatively low costs. Therefore, we present a novel, compact gas measurement system using a static single-mirror Fourier transform spectrometer (sSMFTS). The system works in the mid-infrared range from 650 cm - 1 to 1250 cm - 1 and can be operated with a customized White cell, yielding optical path lengths of up to 120 cm for highly sensitive quantification of gas concentrations. To validate the system, we measure different concentrations of 1,1,1,2-Tetrafluoroethane (R134a) and perform a PLS regression analysis of the acquired infrared spectra. Thereby, the measured absorption spectra show good agreement with reference data. Since the system additionally permits measurement rates of up to 200 Hz and high signal-to-noise ratios, an application in process analysis appears promising.
Removing Eddy-current probe wobble noise from steam generator tubes testing using wavelet transform
International Nuclear Information System (INIS)
Lopez, Luiz Antonio Negro Martin; Ting, Daniel Kao Sun; Upadhyaya, Belle R.
2005-01-01
One of the most import nondestructive evaluation (NDE) applied to steam generator tubes inspection is the electromagnetic Eddy-Current testing (ECT). The signals generated in this NDE, in general, contain many noises which make difficult the interpretation and analysis of ECT signals. One of the noises present in the signals is the probe wobble noise, which is caused by the existing slack between the probe and the tube. In this work, Wavelet Transform (WT) is used in the probe wobble de-noising. WT is a relatively recent mathematical tool, which allows local analysis of non stationary signals such as ECT signals. This is a great advantage of WT when compared with other analysis tools such as Fourier Transform. However, using WT involves wavelets and coefficients selection as well as choosing the number of decomposition level needed. This work presents a probe wobble de-noising method when used in conjunction with the traditional ECT evaluation. Comparative results using several WT applied do Eddy-Current signals are presented in a reliable way, in other words, without loss of inherent defect information. A stainless steel tube, with 2 artificial defects generated by electro-erosion, was inspected by a ZETEC MIZ-17ET ECT equipment. The signals were de-noised through several different WT and the results are presented. The method offer good results and is a promising method because allows for the removal of Eddy-Current signals probe wobble effect without loss of essential signal information. (author)
International Roughness Index (IRI) measurement using Hilbert-Huang transform
Zhang, Wenjin; Wang, Ming L.
2018-03-01
International Roughness Index (IRI) is an important metric to measure condition of roadways. This index is usually used to justify the maintenance priority and scheduling for roadways. Various inspection methods and algorithms are used to assess this index through the use of road profiles. This study proposes to calculate IRI values using Hilbert-Huang Transform (HHT) algorithm. In particular, road profile data is provided using surface radar attached to a vehicle driving at highway speed. Hilbert-Huang transform (HHT) is used in this study because of its superior properties for nonstationary and nonlinear data. Empirical mode decomposition (EMD) processes the raw data into a set of intrinsic mode functions (IMFs), representing various dominating frequencies. These various frequencies represent noises from the body of the vehicle, sensor location, and the excitation induced by nature frequency of the vehicle, etc. IRI calculation can be achieved by eliminating noises that are not associated with the road profile including vehicle inertia effect. The resulting IRI values are compared favorably to the field IRI values, where the filtered IMFs captures the most characteristics of road profile while eliminating noises from the vehicle and the vehicle inertia effect. Therefore, HHT is an effect method for road profile analysis and for IRI measurement. Furthermore, the application of HHT method has the potential to eliminate the use of accelerometers attached to the vehicle as part of the displacement measurement used to offset the inertia effect.
Poisson noise removal with pyramidal multi-scale transforms
Woiselle, Arnaud; Starck, Jean-Luc; Fadili, Jalal M.
2013-09-01
In this paper, we introduce a method to stabilize the variance of decimated transforms using one or two variance stabilizing transforms (VST). These VSTs are applied to the 3-D Meyer wavelet pyramidal transform which is the core of the first generation 3D curvelets. This allows us to extend these 3-D curvelets to handle Poisson noise, that we apply to the denoising of a simulated cosmological volume.
Interpretation of incore noise measurements in BWR's
International Nuclear Information System (INIS)
Dam, H. van
1982-01-01
A survey is given of the main incentives for power reactor noise research and the differences and similarities of noise in power and zero power systems are touched on. The basic characteristics of the adjoint method in reactor noise theory are treated. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurement of the reactor transfer function, which is demonstrated by results from measurements on a BWR in the Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)
Signal Processing for MoC brake rattle noise of moving vehicles using prony analysis
Energy Technology Data Exchange (ETDEWEB)
Lee, Jae Cheol; Kwak, Yun Sang; Park, Jun Hong [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul (Korea, Republic of)
2015-08-15
To verify the possibility of generating rattling noise from a motor on caliper brake system, a test was conducted using a caliper excited with vibrations similar to that in a vehicle running on actual roads; this test was conducted using a quiet shaker installed in an anechoic room. After several hours of external excitation, the test assembly was loosened, and the frequency of rattling noise generation increased. A microphone was used to record the generated noise. The measured signals were analyzed by conventional spectrum analysis. Since the noise is generated as an impact response, the advantages of employing Prony analysis was discussed, and the results were compared to those obtained using conventional fast Fourier transforms. The accuracy of Prony analysis was through endurance tests on different brake systems.
Noise variation by compressive stress on the model core of power transformers
Energy Technology Data Exchange (ETDEWEB)
Mizokami, Masato, E-mail: mizokami.g76.masato@jp.nssmc.com; Kurosaki, Yousuke
2015-05-01
The reduction of audible noise generated by cores for power transformers has been required due to environmental concern. It is known that compressive stress in the rolling direction of electrical steel affects magnetostriction and it can result in an increase in noise level. In this research, the effect of compressive stress to noise was investigated on a 3-phase 3-limb model core. Compressive stress was applied in the rolling direction of the limbs from the outside of the core. It increased the sound pressure levels and the slope of the rise was about 2 dBA/MPa. Magnetostriction on single sheet samples was also measured under compressive stress and the harmonic components of the magnetostriction were compared with those of noise. It revealed that the variation in magnetostriction with compressive stress did not entirely correspond to that in noise. In one of the experiments, localized bending happened on one limb during compressing the core. While deformation of the core had not been intended, the noise was measured. The deformation increased the noise by more than 10 dBA and it occurred on most of the harmonic components. - Highlights: • Audible noise was measured on a model core to which compressive stress was applied. • The stress in the rolling direction of the steel causes a rise in noise level. • The slope of the rise in sound pressure level up to 2.5 MPa is about 2 dBA/MPa. • Variation in magnetostriction by stress does not entirely agree with that in noise. • Bend arisen in the core causes an extreme increase in noise.
Noise variation by compressive stress on the model core of power transformers
International Nuclear Information System (INIS)
Mizokami, Masato; Kurosaki, Yousuke
2015-01-01
The reduction of audible noise generated by cores for power transformers has been required due to environmental concern. It is known that compressive stress in the rolling direction of electrical steel affects magnetostriction and it can result in an increase in noise level. In this research, the effect of compressive stress to noise was investigated on a 3-phase 3-limb model core. Compressive stress was applied in the rolling direction of the limbs from the outside of the core. It increased the sound pressure levels and the slope of the rise was about 2 dBA/MPa. Magnetostriction on single sheet samples was also measured under compressive stress and the harmonic components of the magnetostriction were compared with those of noise. It revealed that the variation in magnetostriction with compressive stress did not entirely correspond to that in noise. In one of the experiments, localized bending happened on one limb during compressing the core. While deformation of the core had not been intended, the noise was measured. The deformation increased the noise by more than 10 dBA and it occurred on most of the harmonic components. - Highlights: • Audible noise was measured on a model core to which compressive stress was applied. • The stress in the rolling direction of the steel causes a rise in noise level. • The slope of the rise in sound pressure level up to 2.5 MPa is about 2 dBA/MPa. • Variation in magnetostriction by stress does not entirely agree with that in noise. • Bend arisen in the core causes an extreme increase in noise
NOASYS, a system for on-line noise analysis
International Nuclear Information System (INIS)
Massier, H.
1978-07-01
This report describes NOASYS, a versatile NOise Analysis SYStem for digital on-line signal processing. The system based on a minicomputer, was originally developed for the analysis of noise signals from nuclear reactors. NOASYS computes various statistical functions e.g. cross- und auto-correlation functions and power spectral densities resp., which may be used for reactor diagnosis and malfunction detection. The system processes up to 16 analog signals with a maximum sampling frequency of 100 kcps (1 channel). The processing of the sampled data is done by a number of software tasks, which may be called from a teletype or linked together for specific measuring programs. The standard configuration contains the often used processing routines e.g. Fast Fourier Transform, complex multiplication, summation etc. In addition NOASYS may be extended by users own tasks (in Assembler or Fortran) to fit for specific applications. (orig.) 891 HP [de
Low-noise, transformer-coupled resonant photodetector for squeezed state generation.
Chen, Chaoyong; Shi, Shaoping; Zheng, Yaohui
2017-10-01
In an actual setup of squeezed state generation, the stability of a squeezing factor is mainly limited by the performance of the servo-control system, which is mainly influenced by the shot noise and gain of a photodetector. We present a unique transformer-coupled LC resonant amplifier as a photodetector circuit to reduce the electronic noise and increase the gain of the photodetector. As a result, we obtain a low-noise, high gain photodetector with the gain of more than 1.8×10 5 V/A, and the input current noise of less than 4.7 pA/Hz. By adjusting the parameters of the transformer, the quality factor Q of the resonant circuit is close to 100 in the frequency range of more than 100 MHz, which meets the requirement for weak power detection in the application of squeezed state generation.
Interpretation of incore noise measurements in BWR's
International Nuclear Information System (INIS)
Dam, H. van
1983-01-01
A survey is given of the main incentives for power reactor noise research, and the differences and similarities of noise in power and zero power systems are shown. After a short outline of historical developments the basic characteristics of the adjoint method in reactor noise theory are dealt with. The detector adjoint functions describe the transfer functions between spatially distributed noise sources and a (neutron or gamma) detector. In particular, the spatial dependence of these functions explains the 'local' and 'global' effects in BWR noise measurements. By including thermal hydraulic feedback effects in the adjoint analysis, it is shown that the common idea of a dominant global effect at low frequencies, which should result in point kinetic behaviour, is erroneous. The same analysis provides a method for nonperturbing on-line measurements on a BWR in The Netherlands. In the final part of the paper some ideas are given for further research in the field of BWR noise. (author)
A wideband Noise-Canceling CMOS LNA exploiting a transformer
Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram
2006-01-01
Abstract — A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB,
A wideband Noise-Canceling CMOS LNA exploiting a transformer
Blaakmeer, S.C.; Klumperink, Eric A.M.; Leenaerts, Domine M.W.; Nauta, Bram
2006-01-01
A broadband LNA incorporating single-ended to differential conversion, has been successfully implemented using a noise-canceling technique and a single on-chip transformer. The LNA achieves a high voltage gain of 19dB, a wideband input match (2.5–4.0 GHz), and a Noise Figure of 4–5.4 dB, while
International Nuclear Information System (INIS)
Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.
1987-01-01
A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the 252 Cf-source-driven neutron noise analysis method. 8 refs
Directory of Open Access Journals (Sweden)
Raisah Hayati
2014-03-01
Full Text Available Detection of low signal and determination target locations is the basis and important in the system radar. Performance of radar can enhanced with enhancement signal-to-noise ratio in the receiver. In this research, will show a algorithm in radar signal processing, that is for extract the signal target in the place of noise. Discrete Cosine Transform (DCT and Discrete Wavelet Transform (DWT is the success full mathematic function in the signal processing in the last twenty years. In this research will simulate signal with DCT and DWT, analysis his performance in radar signal processing. DWT signal processing will analysis and compare with mother wavelet Haar, Daubechies-12, Coiflet-5 and Symlet-8. DCT signal processing will analysis and compare with same of window function with use in signal restrictions. Window function have influence signal resolution in domain frequency. Window function that use in this research Rectangular, Hamming, Hanning and Dolph-Chebyshev. The result of simulation and analysis Is: mother wavelet with DWT, wavelet Daubechies-12 and Symlet-8 give the best performance and mother wavelet Haar give bad performance. Wavelet Daubechies-12 give the biggest signal to noise ratio that is 32,0603 dB. Mother wavelet Symlet-8 give 32,6589 dB. Mother wavelet Haar give 14,6692 dB. Testing window function DCT, window Dolph-Chebyshev give the best performance, with give the best separation of signal. Analysis of signal reflection that accept of radar give the result that DWT is better performance than DCT in breaking of noise.
Measurements and analysis of neutron and gamma noise in BWR's
International Nuclear Information System (INIS)
Dam, H. van; Kleiss, E.B.J.
1985-01-01
Neutron and gamma sensitive collectrons (self-powered detectors) have been designed for incore noise measurements in BWRs. A so-called twin-type has been developed for measurements of two-phase flow characteristics and detailed axial velocity distributions. Construction aspects of the twin detectors are discussed. An analysis is presented of the response of both detector types to incore parametric fluctuations. This analysis is based on detector response functions which provide an insight into the 'field of view' of the two types. The results are supported by experimental verifications; it is shown that incore gamma detectors provide useful additional information about two-phase flow in a BWR. (author)
Downhole microseismic signal-to-noise ratio enhancement via strip matching shearlet transform
Li, Juan; Ji, Shuo; Li, Yue; Qian, Zhihong; Lu, Weili
2018-04-01
Shearlet transform has been proved effective in noise attenuation. However, because of the low magnitude and high frequency of downhole microseismic signals, the coefficient values of valid signals and noise are similar in the shearlet domain. As a result, it is hard to suppress the noise. In this paper, we present a novel signal-to-noise ratio enhancement scheme called strip matching shearlet transform. The method takes into account the directivity of microseismic events and shearlets. Through strip matching, the matching degree in direction between them has been promoted. Then the coefficient values of valid signals are much larger than those of the noise. Consequently, we can separate them well with the help of thresholding. The experimental results on both synthetic records and field data illustrate that our proposed method preserves the useful components and attenuates the noise well.
Measurement and analysis of self-noise in hybrid-driven underwater gliders
Directory of Open Access Journals (Sweden)
LIU Lu
2017-08-01
Full Text Available The Hybrid-driven Underwater Glider (HUG is a new type of submersible vehicle which combines the functions of traditional Autonomous Underwater Vehicles(AUVand Autonomous Underwater Gliders(AUG. In order to study its noise source distribution and basic self-noise characteristics, a self-noise acquisition system based on the HUG was designed and developed, and a noise analysis test carried out in a free-field pool. In August 2016, the sea trial of the Petrel II glider was conducted in the South China Sea, with observation data at a depth range of 1 000 m as the research object. The self-noise data of the glider platform under different working conditions was obtained through the step-by-step operation method. The experimental analysis and results show that the self-noise acquisition system is stable. The contribution of mechanical noise to self-noise is greatest when the glider works in the gliding mode, while the self-noise band above 500 Hz is closely related to the work of the buoyancy adjustment unit, and peaks at 1 kHz. According to the analysis of the basic characteristics of self-noise, this provides some guidance for the implementation of vibration and noise reduction.
Power reactor noise measurements in Hungary
International Nuclear Information System (INIS)
Pallagi, D.; Horanyi, S.; Hargitai, T.
1975-01-01
An outline is given of the history of reactor noise research in Hungary. A brief description is given of studies in the WWR-SM reactor, a modified version of the original WWR-S thermal reactor, for the detection of in-core simulated boiling by analysis of the noise of out-of-core ionization chambers. Coolant velocity measurements by transit time analysis of temperature fluctuations are described. (U.K.)
[De-noising and measurement of pulse wave velocity of the wavelet].
Liu, Baohua; Zhu, Honglian; Ren, Xiaohua
2011-02-01
Pulse wave velocity (PWV) is a vital index of the cardiovascular pathology, so that the accurate measurement of PWV can be of benefit for prevention and treatment of cardiovascular diseases. The noise in the measure system of pulse wave signal, rounding error and selection of the recording site all cause errors in the measure result. In this paper, with wavelet transformation to eliminate the noise and to raise the precision, and with the choice of the point whose slope was maximum as the recording site of the reconstructing pulse wave, the measuring system accuracy was improved.
Analysis of two dimensional signals via curvelet transform
Lech, W.; Wójcik, W.; Kotyra, A.; Popiel, P.; Duk, M.
2007-04-01
This paper describes an application of curvelet transform analysis problem of interferometric images. Comparing to two-dimensional wavelet transform, curvelet transform has higher time-frequency resolution. This article includes numerical experiments, which were executed on random interferometric image. In the result of nonlinear approximations, curvelet transform obtains matrix with smaller number of coefficients than is guaranteed by wavelet transform. Additionally, denoising simulations show that curvelet could be a very good tool to remove noise from images.
Energy Technology Data Exchange (ETDEWEB)
Kim, Sung Hee; Hong, Suk Yoon [Seoul National University, Seoul (Korea, Republic of); Song, Jee Hun [Chonnam National University, Gwangju (Korea, Republic of); Joo, Won Ho [Hyundai Heavy Industries Co. Ltd, Ulsan (Korea, Republic of)
2012-04-15
Noise from construction equipment affects not only surrounding residents, but also the operators of the machines. Noise that affects drivers must be evaluated during the preliminary design stage. This paper suggests an interior noise analysis procedure for construction equipment cabins. The analysis procedure, which can be used in the preliminary design stage, was investigated for airborne and structure borne noise. The total interior noise of a cabin was predicted from the airborne noise analysis and structure-borne noise analysis. The analysis procedure consists of four steps: modeling, vibration analysis, acoustic analysis and total interior noise analysis. A mesh model of a cabin for numerical analysis was made at the modeling step. At the vibration analysis step, the mesh model was verified and modal analysis and frequency response analysis are performed. At the acoustic analysis step, the vibration results from the vibration analysis step were used as initial values for radiated noise analysis and noise reduction analysis. Finally, the total cabin interior noise was predicted using the acoustic results from the acoustic analysis step. Each step was applied to a cabin of a middle-sized excavator and verified by comparison with measured data. The cabin interior noise of a middle-sized wheel loader and a large-sized forklift were predicted using the analysis procedure of the four steps and were compared with measured data. The interior noise analysis procedure of construction equipment cabins is expected to be used during the preliminary design stage.
International Nuclear Information System (INIS)
Kim, Sung Hee; Hong, Suk Yoon; Song, Jee Hun; Joo, Won Ho
2012-01-01
Noise from construction equipment affects not only surrounding residents, but also the operators of the machines. Noise that affects drivers must be evaluated during the preliminary design stage. This paper suggests an interior noise analysis procedure for construction equipment cabins. The analysis procedure, which can be used in the preliminary design stage, was investigated for airborne and structure borne noise. The total interior noise of a cabin was predicted from the airborne noise analysis and structure-borne noise analysis. The analysis procedure consists of four steps: modeling, vibration analysis, acoustic analysis and total interior noise analysis. A mesh model of a cabin for numerical analysis was made at the modeling step. At the vibration analysis step, the mesh model was verified and modal analysis and frequency response analysis are performed. At the acoustic analysis step, the vibration results from the vibration analysis step were used as initial values for radiated noise analysis and noise reduction analysis. Finally, the total cabin interior noise was predicted using the acoustic results from the acoustic analysis step. Each step was applied to a cabin of a middle-sized excavator and verified by comparison with measured data. The cabin interior noise of a middle-sized wheel loader and a large-sized forklift were predicted using the analysis procedure of the four steps and were compared with measured data. The interior noise analysis procedure of construction equipment cabins is expected to be used during the preliminary design stage
Study on ventilation and noise reduction in the main transformer room in indoor substation
Directory of Open Access Journals (Sweden)
Hu Sheng
2016-01-01
Full Text Available The noise emission should be considered in the ventilation and cooling design for the main transformer room of indoor substation. In this study, based on Soundplan software, effects of four common ventilation and cooling schemes on the cooling and sound insulation were compared. The research showed that the region with low noise requirement, the ventilation could be set on the outer wall or on the door of the main transformer room, while the region with high noise requirement, air inlet muffler or ventilation through the cable interlayer under the main transformer room must be used. All of the four kinds of ventilation schemes, ventilation through the cable interlayer is the best in cooling and noise reduction.
Reactor sensor surveillance using noise analysis
International Nuclear Information System (INIS)
Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.
1986-01-01
Reactor noise signals, as measured by neutron detectors and process sensors, contain information about the dynamics of the process and sensor characteristics. The extent of sensor characteristics that can be determined from such measurements depends on the sensor type, the property of the process noise exciting the sensor and its location. This paper addresses degradation monitoring of temperature and pressure sensors, analysis methods and results of application to operating pressurized water reactors. In addition, the use of noise analysis for monitoring of pressure sensing lines in nuclear power plants is discussed
The Analysis of Low Noise Protection Barriers Influence on Tram Traffic Noise Levels
Directory of Open Access Journals (Sweden)
Ahac Maja
2013-07-01
Full Text Available The paper describes the analysis of tram traffic noise situation in residential areas in the vicinity of Drzic Avenue, one of the major routes between the northern and southern part of the Croatian capital city Zagreb, and the effect of low barriers placed by the tracks on tram noise mitigation. In order to evaluate the effect of planned protection measure, noise models were produced and verified with short-term field measurements. Calculations were conducted by means of noise prediction software, using European interim noise prediction method and 3D model of analyzed area. Finally, the results of noise calculations for existing tram traffic situation and planned measure of protection are presented on noise maps.
Source-driven noise analysis measurements with neptunium metal reflected by high enriched uranium
International Nuclear Information System (INIS)
Valentine, Timothy E.; Mattingly, John K.
2003-01-01
Subcritical noise analysis measurements have been performed with neptunium ( 237 Np) sphere reflected by highly enriched uranium. These measurements were performed at the Los Alamos Critical Experiment Facility in December 2002 to provide an estimate of the subcriticality of 237 Np reflected by various amounts of high-enriched uranium. This paper provides a description of the measurements and presents some preliminary results of the analysis of the measurements. The measured and calculated spectral ratios differ by 15% whereas the 'interpreted' and calculated k eff values differ by approximately 1%. (author)
Statistical analysis of brake squeal noise
Oberst, S.; Lai, J. C. S.
2011-06-01
Despite substantial research efforts applied to the prediction of brake squeal noise since the early 20th century, the mechanisms behind its generation are still not fully understood. Squealing brakes are of significant concern to the automobile industry, mainly because of the costs associated with warranty claims. In order to remedy the problems inherent in designing quieter brakes and, therefore, to understand the mechanisms, a design of experiments study, using a noise dynamometer, was performed by a brake system manufacturer to determine the influence of geometrical parameters (namely, the number and location of slots) of brake pads on brake squeal noise. The experimental results were evaluated with a noise index and ranked for warm and cold brake stops. These data are analysed here using statistical descriptors based on population distributions, and a correlation analysis, to gain greater insight into the functional dependency between the time-averaged friction coefficient as the input and the peak sound pressure level data as the output quantity. The correlation analysis between the time-averaged friction coefficient and peak sound pressure data is performed by applying a semblance analysis and a joint recurrence quantification analysis. Linear measures are compared with complexity measures (nonlinear) based on statistics from the underlying joint recurrence plots. Results show that linear measures cannot be used to rank the noise performance of the four test pad configurations. On the other hand, the ranking of the noise performance of the test pad configurations based on the noise index agrees with that based on nonlinear measures: the higher the nonlinearity between the time-averaged friction coefficient and peak sound pressure, the worse the squeal. These results highlight the nonlinear character of brake squeal and indicate the potential of using nonlinear statistical analysis tools to analyse disc brake squeal.
International Nuclear Information System (INIS)
Yamamoto, Toshihiro; Sakurai, Kiyoshi; Tonoike, Kotaro; Miyoshi, Yoshinori
2001-01-01
Reactor noise analysis methods using Monte Carlo technique have been proposed and developed in the field of nuclear criticality safety. The Monte Carlo simulation for noise analysis can be made by simulating physical phenomena in the course of neutron transport in a nuclear fuel as practically as possible. MCNP-DSP was developed by T. Valentine of ORNL for this purpose and it is a modified version of MCNP-4A. The authors applied this code to frequency analysis measurements performed in light-water critical assembly TCA. Prompt neutron generation times for critical and subcritical cores were measured by doing the frequency analysis of detector signals. The Monte Carlo simulations for these experiments were carried out using MCNP-DSP, and prompt neutron generation times were calculated. (author)
Comparison of direct measurement methods for headset noise exposure in the workplace
Directory of Open Access Journals (Sweden)
Flora G Nassrallah
2016-01-01
Full Text Available The measurement of noise exposure from communication headsets poses a methodological challenge. Although several standards describe methods for general noise measurements in occupational settings, these are not directly applicable to noise assessments under communication headsets. For measurements under occluded ears, specialized methods have been specified by the International Standards Organization (ISO 11904 such as the microphone in a real ear and manikin techniques. Simpler methods have also been proposed in some national standards such as the use of general purpose artificial ears and simulators in conjunction with single number corrections to convert measurements to the equivalent diffuse field. However, little is known about the measurement agreement between these various methods and the acoustic manikin technique. Twelve experts positioned circum-aural, supra-aural and insert communication headsets on four different measurement setups (Type 1, Type 2, Type 3.3 artificial ears, and acoustic manikin. Fit-refit measurements of four audio communication signals were taken under quiet laboratory conditions. Data were transformed into equivalent diffuse-field sound levels using third-octave procedures. Results indicate that the Type 1 artificial ear is not suited for the measurement of sound exposure under communication headsets, while Type 2 and Type 3.3 artificial ears are in good agreement with the acoustic manikin technique. Single number corrections were found to introduce a large measurement uncertainty, making the use of the third-octave transformation preferable.
Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.
Stec, Bronisław; Susek, Waldemar
2018-05-06
Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.
Measures of the zero power nuclear reactor's kinetic parameters with application of noise analysis
International Nuclear Information System (INIS)
Martins, F.R.
1992-01-01
The purpose of this work was to establish an experimental technique based on noise analysis for measuring the ratio of kinetic parameters β/ Λ and the power of the Zero Power Nuclear Reactor IPEN-MB 01. A through study of the microscopic and macroscopic noise analysis techniques has been carried out. The Langevin technique and the point kinetic model were chosen to describe the stochastic phenomena that occur in the zero power reactor. Measurements have been made using two compensated ionization chambers localized in the water reflector at symmetric positions in order to minimize spatial effects on the neutron flux fluctuation. Power calibrations based on the low frequency plateau of the cross-power spectral density has also been carried out. (author)
Measurement of Noise in Supercapacitors
Szewczyk Arkadiusz
2017-01-01
A developed method and measurement setup for measurement of noise generated in a supercapacitor is presented. The requirements for noise data recording are considered and correlated with working modes of supercapacitors. An example of results of low-frequency noise measurements in commercially available supercapacitors are presented. The ability of flicker noise measurements suggests that they can be used to assess quality of tested supercapacitors.
Measurement of Noise in Supercapacitors
Directory of Open Access Journals (Sweden)
Szewczyk Arkadiusz
2017-12-01
Full Text Available A developed method and measurement setup for measurement of noise generated in a supercapacitor is presented. The requirements for noise data recording are considered and correlated with working modes of supercapacitors. An example of results of low-frequency noise measurements in commercially available supercapacitors are presented. The ability of flicker noise measurements suggests that they can be used to assess quality of tested supercapacitors.
An ultra low noise AC beam transformer for deceleration and diagnostics of low intensity beams
González, C
1999-01-01
The design of a broad band ultra-low noise ferrite loaded AC beam transformer is presented. It is designed for use in the CERN Antiproton Decelerator (AD), where beams of a few 107 charges must be decelerated from 3.5 GeV/c to 100 MeV/c. It is used in the RF beam-phase loop, and for intensity and bunch shape measurements during deceleration. When the beam is debunched for cooling on magnetic flat tops, the pick-up is used for measurements of intensity and momentum distribution by means of longitudinal Schottky scans. When used as Schottky pick-up, the signal to noise ratio should be better by about 40 dB than the existing stripline based longitudinal Schottky pick-up. The integrated design of pick-up and associated low-noise amplifier is presented. The achieved noise performance of a few from 1 to 3 MHz is obtained by attaching a low-noise, high-impedance silicon JFET (junction field effect transistor) amplifier to a high-Q resonant ferrite loaded cavity, and then eliminating the resonant response by low-nois...
Vibration Finite Element Analysis of SC10 Dry-type Transformer Core
Directory of Open Access Journals (Sweden)
Gao Sheng Wei
2014-06-01
Full Text Available As the popularization and application of dry-type power transformer, its work when the vibration noise problem widely concerned, on the basis of time-varying electromagnetic field and structural mechanics equation, this paper established a finite element analysis model of dry-type transformer, through the electromagnetic field – Structural mechanics field – sound field more than physical field coupling calculation analysis, obtained in no load and the vibration modes of the core under different load and frequency. According to the transformer vibration mechanism, compared with the experimental data, verified the accuracy of the calculation results, as the core of how to provide the theory foundation and to reduce the noise of the experiment.
International Nuclear Information System (INIS)
Stekelenburg, A.J.C.; Hagen, T.H.J.J. van der
1996-01-01
In this paper, the state of the art of the measurement of two-phase flow variables in a boiling water reactor (BWR) by analysis of in-core neutron detector noise signals is given. It is concluded that the neutronic processes involved in neutron noise are quite well understood, but that little is known about the density fluctuations in two-phase flow which are the main cause of the neutron noise. For this reason, the neutron noise measurements, like the well known two-detector velocity measurements, are still difficult to interpret. By analyzing neutron noise measurements in a natural circulation cooled BWR, it is illustrated that, once a theory on the density fluctuations is developed, two-phase flow can be monitored with a single in-core detector. (author). 70 refs, 4 figs
International Nuclear Information System (INIS)
Weissman, K.; McLoughlin, M.; Schott, R.; Tennese, G.; Daneryd, A.
1998-09-01
Vibroacoustic behaviour of a power transformer was characterized prior to employing active noise control (ANC) to control transformer noise. The effect of changes in temperature and loading conditions on the vibration pattern of the transformer tank received particular attention. The transformer quieting technology has been developed and implemented by QuietPower Systems of New York and Noise Cancellation Technologies Inc., of Maryland. Results of the study will be used to ensure that actuator placement is appropriate for each of the seasons experienced throughout the year, as well as to build boundary element and finite element models of the tank vibration and the associated radiated noise. Boundary element results show that the first four harmonics are the primary contributors to radiated noise. The finite element model used to examine the modal response of the tank structure showed high modal densities, even around the lower order harmonics (120 Hz). This can be interpreted to mean that statistical techniques normally associated with high frequency noise problems may be applicable here because of the high modal density. Results of the completed summer and winter measurements permit an evaluation of the effects of loading conditions, temperature and other environmental factors on transformer noise. Appendix B contains the results of numerical simulations on a 250 MVA transformer. 3 refs., 72 figs., 2 appendices
Wavelet transform for the evaluation of peak intensities in flow-injection analysis
Bos, M.; Hoogendam, E.
1992-01-01
The application of the wavelet transform in the determination of peak intensities in flow-injection analysis was studied with regard to its properties of minimizing the effects of noise and baseline drift. The results indicate that for white noise and a favourable peak shape a signal-to-noise ratio
Wavelett transform for the evaluation of peak intensities in flow-injection analysis
Bos, M.; Hoogendam, E.; Hoogendam, E.
1992-01-01
The application of the wavelet transform in the determination of peak intensities in flow-injection analysis was studied with regard to its properties of minimizing the effects of noise and baseline drift. The results indicate that for white noise and a favourable peak shape a signal-to-noise ratio
An effective approach to attenuate random noise based on compressive sensing and curvelet transform
International Nuclear Information System (INIS)
Liu, Wei; Cao, Siyuan; Zu, Shaohuan; Chen, Yangkang
2016-01-01
Random noise attenuation is an important step in seismic data processing. In this paper, we propose a novel denoising approach based on compressive sensing and the curvelet transform. We formulate the random noise attenuation problem as an L _1 norm regularized optimization problem. We propose to use the curvelet transform as the sparse transform in the optimization problem to regularize the sparse coefficients in order to separate signal and noise and to use the gradient projection for sparse reconstruction (GPSR) algorithm to solve the formulated optimization problem with an easy implementation and a fast convergence. We tested the performance of our proposed approach on both synthetic and field seismic data. Numerical results show that the proposed approach can effectively suppress the distortion near the edge of seismic events during the noise attenuation process and has high computational efficiency compared with the traditional curvelet thresholding and iterative soft thresholding based denoising methods. Besides, compared with f-x deconvolution, the proposed denoising method is capable of eliminating the random noise more effectively while preserving more useful signals. (paper)
Physics of the 252Cf-source-driven noise analysis measurement
International Nuclear Information System (INIS)
Valentine, T.E.; Mihalczo, J.T.; Perez, R.B.; Mattingly, J.K.
1997-01-01
The 252 Cf-source-driven noise analysis method is a versatile measurements tool that has been applied to measurements for initial loading of reactors, quality assurance of reactor fuel elements, fuel processing facilities, fuel reprocessing facilities, fuel storage facilities, zero-power testing of reactors, verification of calculational methods, process monitoring, characterization of storage vaults, and nuclear weapons identification. This method's broad range of application is due to the wide variety of time- and frequency domain signatures, each with unique properties, obtained from the measurement. The following parameters are obtained from this measurement: average detector count rates, detector multiplicities, detector autocorrelations, cross-correlation between detectors, detector autopower spectral densities, cross-power spectral densities between detectors, coherences, and ratios of spectral densities. All of these measured parameters can also be calculated using the MCNP-DSP Monte Carlo code. This paper presents a review of the time-domain signatures obtained from this measurement
Noise elimination algorithm for modal analysis
Energy Technology Data Exchange (ETDEWEB)
Bao, X. X., E-mail: baoxingxian@upc.edu.cn [Department of Naval Architecture and Ocean Engineering, China University of Petroleum (East China), Qingdao 266580 (China); Li, C. L. [Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Xiong, C. B. [The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China)
2015-07-27
Modal analysis is an ongoing interdisciplinary physical issue. Modal parameters estimation is applied to determine the dynamic characteristics of structures under vibration excitation. Modal analysis is more challenging for the measured vibration response signals are contaminated with noise. This study develops a mathematical algorithm of structured low rank approximation combined with the complex exponential method to estimate the modal parameters. Physical experiments using a steel cantilever beam with ten accelerometers mounted, excited by an impulse load, demonstrate that this method can significantly eliminate noise from measured signals and accurately identify the modal frequencies and damping ratios. This study provides a fundamental mechanism of noise elimination using structured low rank approximation in physical fields.
Receive-Noise Analysis of Capacitive Micromachined Ultrasonic Transducers.
Bozkurt, Ayhan; Yaralioglu, G Goksenin
2016-11-01
This paper presents an analysis of thermal (Johnson) noise received from the radiation medium by otherwise noiseless capacitive micromachined ultrasonic transducer (CMUT) membranes operating in their fundamental resonance mode. Determination of thermal noise received by multiple numbers of transducers or a transducer array requires the assessment of cross-coupling through the radiation medium, as well as the self-radiation impedance of the individual transducer. We show that the total thermal noise received by the cells of a CMUT has insignificant correlation, and is independent of the radiation impedance, but is only determined by the mass of each membrane and the electromechanical transformer ratio. The proof is based on the analytical derivations for a simple transducer with two cells, and extended to transducers with numerous cells using circuit simulators. We used a first-order model, which incorporates the fundamental resonance of the CMUT. Noise power is calculated by integrating over the entire spectrum; hence, the presented figures are an upper bound for the noise. The presented analyses are valid for a transimpedance amplifier in the receive path. We use the analysis results to calculate the minimum detectable pressure of a CMUT. We also provide an analysis based on the experimental data to show that output noise power is limited by and comparable to the theoretical upper limit.
Vibration measurement with nonlinear converter in the presence of noise
Mozuras, Almantas
2017-10-01
Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on
International Nuclear Information System (INIS)
Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.
1988-01-01
A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the /sup 252/Cf-source-driven neutron noise analysis method. The /sup 252/Cf-source-driven neutron noise analysis method for obtaining the subcritical neutron multiplication factor of a configuration of fissile material requires measurement of the frequency-dependent cross-power spectral density (CPSD), G/sub 23/(ω), between a pair of detectors (Nos. 2 and 3) located in or near the fissile material and CPSDs G/sub 12/(ω) and G/sub 13/(ω) between these same detectors and a source of neutrons emanating from an ionization chamber (No. 1) containing /sup 252/Cf, also positioned in or near the fissile material. The auto-power spectral density (APSD), G/sub 11/(ω), of the source is also required. A particular ratio of spectral densities, G/sub 12//sup */G/sub 13//G/sub 11/G/sub 23/ (/sup */ denotes complex conjugation), is then formed. This ratio is related to the subcritical neutron multiplication factor and is independent of detector efficiencies
Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.
2011-12-01
The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.
Treatment of electrochemical noise data by the Hilbert-Huang transform
International Nuclear Information System (INIS)
Rahier, A.
2009-01-01
Most of the classical approaches for treating electro-chemical noise (ECN) data suffer from the non-linear and non steady-state character of the delivered signal. Very often, the link between time and the local corrosion events supposedly responsible for ECN data signatures is lost during treatment, as is obvious when using the classical Fourier Transform (FT), followed by an analysis of the response in the frequency domain. In this particular case, the information directly related to the corrosion events is distributed into the full spectra, thereby preventing the operator to derive clear and precise conclusions. In 2005, we suggested an alternative data treatment based on the Hilbert-Huang transform (HHT). The latter keeps track of the time variable and copes with non-linear and non steady-state behaviours of the system under examination. In 2006, we demonstrated the applicability of the newly proposed data treatment in the case of ECN data collected under BWR (Boiling Water Reactor) conditions. In 2007, we collected additional ECN data and started a preliminary investigation of two mathematical restrictions that are susceptible to impair the interpretation of the results. We discovered a possible modification of the Hilbert transform allowing generating controlled phase shifts that are different from pi/2 as is always the case for the Hilbert transform
Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling
2018-01-01
We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.
Noise suppression in surface microseismic data by τ-p transform
Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth; Davidson, Michael
2013-01-01
Surface passive seismic methods are receiving increased attention for monitoring changes in reservoirs during the production of unconventional oil and gas. However, in passive seismic data the strong cultural and ambient noise (mainly surface-waves) decreases the effectiveness of these techniques. Hence, suppression of surface-waves is a critical step in surface microseismic monitoring. We apply a noise suppression technique, based on the τ — p transform, to a surface passive seismic dataset recorded over a Barnett Shale reservoir undergoing a hydraulic fracturing process. This technique not only improves the signal-to-noise ratios of added synthetic microseismic events, but it also preserves the event waveforms.
Oeftiger, U; Caspers, Fritz
1992-01-01
For the measurement of Beam Transfer Functions the signal-to-noise ratio is of great importance. In order to get a reasonable quality of the measured data one may apply averaging and smoothing. In the following another technique called time gating to improve the quality of the measurement will be described. By this technique the measurement data are Fourier transformed and then modified in time domain. Tune gating suppresses signal contributions that are correlated to a time interval when no interesting information is expected. Afterivards an inverse Fourier transform leads to data in frequency domain with an improved signal to noise ratio.
A noise reduction technique based on nonlinear kernel function for heart sound analysis.
Mondal, Ashok; Saxena, Ishan; Tang, Hong; Banerjee, Poulami
2017-02-13
The main difficulty encountered in interpretation of cardiac sound is interference of noise. The contaminated noise obscures the relevant information which are useful for recognition of heart diseases. The unwanted signals are produced mainly by lungs and surrounding environment. In this paper, a novel heart sound de-noising technique has been introduced based on a combined framework of wavelet packet transform (WPT) and singular value decomposition (SVD). The most informative node of wavelet tree is selected on the criteria of mutual information measurement. Next, the coefficient corresponding to the selected node is processed by SVD technique to suppress noisy component from heart sound signal. To justify the efficacy of the proposed technique, several experiments have been conducted with heart sound dataset, including normal and pathological cases at different signal to noise ratios. The significance of the method is validated by statistical analysis of the results. The biological information preserved in de-noised heart sound (HS) signal is evaluated by k-means clustering algorithm and Fit Factor calculation. The overall results show that proposed method is superior than the baseline methods.
Energy Technology Data Exchange (ETDEWEB)
Ripamonti, G.
1987-10-01
The optimum turn-ratio of transformers used for coupling large capacitance detectors to amplifiers is demonstrated to be dependent on the actual weighting function of the following shaper. As an example, the optimum finite cusp shaping with a flat top is considered. For this case, the optimum turn-ratio is found to be dependent on the flat top duration. As finite magnetizing inductance in real transformers produces diverging noise with unipolar shaping, flat-top tripolar zero-area shapers are also considered.
International Nuclear Information System (INIS)
Ormel, F.T.; Eecen, P.J.; Herman, S.A.
2003-10-01
The partners in the WISE project investigate whether application of the SODAR (sonic detection and ranging) measurement technique in wind energy experimental work is feasible as a replacement for cup anemometers, wind direction sensors and tall meteorological masts. In Work Package 2 of the WISE project extensive controlled experiments with the SODAR are performed. For example SODAR measurements are compared with measurements from nearby masts and different brands of SODARs are compared. Part of the work package is the measurement of vibration and noise on an offshore SODAR system. The results of these measurements are presented in this report. ECN performed measurements at an offshore location to investigate the influence of noise and vibrations on the performance of a MiniSODAR measurement system. The aim of the measurements is to quantify the effect of these external noise and vibrations disturbances on the MiniSODAR's performance. Measurements on an identical SODAR system onshore are carried out to compare the disturbances of offshore and onshore external conditions. The effect of background noise on SODAR operation has clearly been established in literature. Therefore, measurements have been performed only to establish the absolute sound pressure levels. This is done at the Measuring Platform Noordwijk (MPN) located in the North Sea, nine kilometres out of the coast at Noordwijk, The Netherlands, and at two locations onshore. At the MPN-platform, the SODAR has been moved from the middle deck to the upper deck to diminish the influence of the diesel generator needed for the electric powering of the island. Although the absolute sound pressure level became higher at the new location, this level became lower at the most important frequencies inside the SODAR, due to the use of absorbing foam. With regards to the sound pressure level the move improved the situation. The sound pressure levels measured offshore were 6 to 15 dB higher than for the two locations
An Analysis of FM Jamming and Noise Quality Measures
1993-12-01
equipment setup is shown in figure 6. For reasons of practicality and manageability , all equipment was chosen to be commercially available and of a fairly...bins based on the size of the parameter F. It computes a smoothed "Turner Noise Qaulity " similar to the noise quality measure employed by Daly in his...recý.orate for :nf-,aton Doe,A-,ým5 1o- A c-t•s. )2 15 efferso Oarts H,9gPay, Srte 1204. ArtOngton, VA 222024302 and to the Of"ce of Management and aucige
Pavement noise measurements in Poland
Zofka, Ewa; Zofka, Adam; Mechowski, Tomasz
2017-09-01
The objective of this study is to investigate the feasibility of the On-Board Sound Intensity (OBSI) system to measure tire-pavement noise in Poland. In general, sources of noise emitted by the modern vehicles are the propulsion noise, aerodynamic resistance and noise generated at the tire-pavement interface. In order to capture tire-pavement noise, the OBSI system uses a noise intensity probe installed in the close proximity of that interface. In this study, OBSI measurements were performed at different types of pavement surfaces such as stone mastic asphalt (SMA), regular asphalt concrete (HMA) as well as Portland cement concrete (PCC). The influence of several necessary OBSI measurement conditions were recognized as: testing speed, air temperature, tire pressure and tire type. The results of this study demonstrate that the OBSI system is a viable and robust tool that can be used for the quality evaluation of newly built asphalt pavements in Poland. It can be also applied to generate reliable input parameters for the noise propagation models that are used to assess the environmental impact of new and existing highway corridors.
El B'charri, Oussama; Latif, Rachid; Elmansouri, Khalifa; Abenaou, Abdenbi; Jenkal, Wissam
2017-02-07
Since the electrocardiogram (ECG) signal has a low frequency and a weak amplitude, it is sensitive to miscellaneous mixed noises, which may reduce the diagnostic accuracy and hinder the physician's correct decision on patients. The dual tree wavelet transform (DT-WT) is one of the most recent enhanced versions of discrete wavelet transform. However, threshold tuning on this method for noise removal from ECG signal has not been investigated yet. In this work, we shall provide a comprehensive study on the impact of the choice of threshold algorithm, threshold value, and the appropriate wavelet decomposition level to evaluate the ECG signal de-noising performance. A set of simulations is performed on both synthetic and real ECG signals to achieve the promised results. First, the synthetic ECG signal is used to observe the algorithm response. The evaluation results of synthetic ECG signal corrupted by various types of noise has showed that the modified unified threshold and wavelet hyperbolic threshold de-noising method is better in realistic and colored noises. The tuned threshold is then used on real ECG signals from the MIT-BIH database. The results has shown that the proposed method achieves higher performance than the ordinary dual tree wavelet transform into all kinds of noise removal from ECG signal. The simulation results indicate that the algorithm is robust for all kinds of noises with varying degrees of input noise, providing a high quality clean signal. Moreover, the algorithm is quite simple and can be used in real time ECG monitoring.
Stupin, Daniil D.; Koniakhin, Sergei V.; Verlov, Nikolay A.; Dubina, Michael V.
2017-05-01
The time-domain technique for impedance spectroscopy consists of computing the excitation voltage and current response Fourier images by fast or discrete Fourier transformation and calculating their relation. Here we propose an alternative method for excitation voltage and current response processing for deriving a system impedance spectrum based on a fast and flexible adaptive filtering method. We show the equivalence between the problem of adaptive filter learning and deriving the system impedance spectrum. To be specific, we express the impedance via the adaptive filter weight coefficients. The noise-canceling property of adaptive filtering is also justified. Using the RLC circuit as a model system, we experimentally show that adaptive filtering yields correct admittance spectra and elements ratings in the high-noise conditions when the Fourier-transform technique fails. Providing the additional sensitivity of impedance spectroscopy, adaptive filtering can be applied to otherwise impossible-to-interpret time-domain impedance data. The advantages of adaptive filtering are justified with practical living-cell impedance measurements.
Directory of Open Access Journals (Sweden)
Qaisar Javaid
2018-01-01
Full Text Available De-noising of the medical images is very difficult task. To improve the overall visual representation we need to apply a contrast enhancement techniques, this representation provide the physicians and clinicians a good and recovered diagnosis results. Various de-noising and contrast enhancements methods are develops. However, some of the methods are not good in providing the better results with accuracy and efficiency. In our paper we de-noise and enhance the medical images without any loss of information. We uses the curvelet transform in combination with ridglet transform along with CS (Cuckoo Search algorithm. The curvlet transform adapt and represents the sparse pixel informations with all edges. The edges play very important role in understanding of the images. Curvlet transform computes the edges very efficiently where the wavelets are failed. We used the CS to optimize the de-noising coefficients without loss of structural and morphological information. Our designed method would be accurate and efficient in de-noising the medical images. Our method attempts to remove the multiplicative and additive noises. Our proposed method is proved to be an efficient and reliable in removing all kind of noises from the medical images. Result indicates that our proposed approach is better than other approaches in removing impulse, Gaussian, and speckle noises.
Low noise constant current source for bias dependent noise measurements
International Nuclear Information System (INIS)
Talukdar, D.; Bose, Suvendu; Bardhan, K. K.; Chakraborty, R. K.
2011-01-01
A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 μA to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noise voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.
International Nuclear Information System (INIS)
Baug Tapas; Chandrasekhar Thyagarajan
2013-01-01
A lunar occultation (LO) technique in the near-infrared (NIR) provides angular resolution down to milliarcseconds for an occulted source, even with ground-based 1 m class telescopes. LO observations are limited to brighter objects because they require a high signal-to-noise ratio (S/N ∼40) for proper extraction of angular diameter values. Hence, methods to improve the S/N ratio by reducing noise using Fourier and wavelet transforms have been explored in this study. A sample of 54 NIR LO light curves observed with the IR camera at Mt Abu Observatory has been used. It is seen that both Fourier and wavelet methods have shown an improvement in S/N compared to the original data. However, the application of wavelet transforms causes a slight smoothing of the fringes and results in a higher value for angular diameter. Fourier transforms which reduce discrete noise frequencies do not distort the fringe. The Fourier transform method seems to be effective in improving the S/N, as well as improving the model fit, particularly in the fainter regime of our sample. These methods also provide a better model fit for brighter sources in some cases, though there may not be a significant improvement in S/N
Noise analysis of a digital radiography system
International Nuclear Information System (INIS)
Arnold, B.A.; Scheibe, P.O.
1984-01-01
The sources of noise in a digital video subtraction angiography system were identified and analyzed. Signal-to-noise ratios of digital radiography systems were measured using the digital image data recorded in the computer. The major sources of noise include quantum noise, TV camera electronic noise, quantization noise from the analog-to-digital converter, time jitter, structure noise in the image intensifier, and video recorder electronic noise. A new noise source was identified, which results from the interplay of fixed pattern noise and the lack of image registration. This type of noise may result from image-intensifier structure noise in combination with TV camera time jitter or recorder time jitter. A similar noise source is generated from the interplay of patient absorption inhomogeneities and patient motion or image re-registration. Signal-to-noise ratios were measured for a variety of experimental conditions using subtracted digital images. Image-intensifier structure noise was shown to be a dominant noise source in unsubtracted images at medium to high radiation exposure levels. A total-system signal-to-noise ratio (SNR) of 750:1 was measured for an input exposure of 1 mR/frame at the image intensifier input. The effect of scattered radiation on subtracted image SNR was found to be greater than previously reported. The detail SNR was found to vary approximately as one plus the scatter degradation factor. Quantization error noise with 8-bit image processors (signal-to-noise ratio of 890:1) was shown to be of increased importance after recent improvements in TV cameras. The results of the analysis are useful both in the design of future digital radiography systems and the selection of optimum clinical techniques
Improved virtual channel noise model for transform domain Wyner-Ziv video coding
DEFF Research Database (Denmark)
Huang, Xin; Forchhammer, Søren
2009-01-01
Distributed video coding (DVC) has been proposed as a new video coding paradigm to deal with lossy source coding using side information to exploit the statistics at the decoder to reduce computational demands at the encoder. A virtual channel noise model is utilized at the decoder to estimate...... the noise distribution between the side information frame and the original frame. This is one of the most important aspects influencing the coding performance of DVC. Noise models with different granularity have been proposed. In this paper, an improved noise model for transform domain Wyner-Ziv video...... coding is proposed, which utilizes cross-band correlation to estimate the Laplacian parameters more accurately. Experimental results show that the proposed noise model can improve the rate-distortion (RD) performance....
Data Quality Assurance for Supersonic Jet Noise Measurements
Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.
2010-01-01
The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.
Sensor response time monitoring using noise analysis
International Nuclear Information System (INIS)
Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.; Holbert, K.E.
1988-01-01
Random noise techniques in nuclear power plants have been developed for system surveillance and for analysis of reactor core dynamics. The noise signals also contain information about sensor dynamics, and this can be extracted using frequency, amplitude and time domain analyses. Even though noise analysis has been used for sensor response time testing in some nuclear power plants, an adequate validation of this method has never been carried out. This paper presents the results of limited work recently performed to examine the validity of the noise analysis for sensor response time testing in nuclear power plants. The conclusion is that noise analysis has the potential for detecting gross changes in sensor response but it cannot be used for reliable measurement of response time until more laboratory and field experience is accumulated. The method is more advantageous for testing pressure sensors than it is for temperature sensors. This is because: 1) for temperature sensors, a method called Loop Current Step Response test is available which is quantitatively more exact than noise analysis, 2) no method currently exists for on-line testing of pressure transmitters other than the Power-Interrupt test which is applicable only to force balance pressure transmitters, and 3) pressure sensor response time is affected by sensing line degradation which is inherently taken into account by testing with noise analysis. (author)
Noise Considerations in Resistance Bridges
DEFF Research Database (Denmark)
Diamond, Joseph M.
1963-01-01
A signal-to-noise analysis is made of the Wheatstone bridge, where the unknown and standard resistors may be at different temperatures, a situation which occurs in resistance thermometry. The limiting condition is assumed to be dissipation in the unknown resistor. It is shown that the ratio arms...... thermometry, where the noise in the unknown resistor will predominate strongly. An impedance step-up device (transformer or tuned circuit) is valuable in raising the bridge signal and noise level above the noise of the first amplifier tube. However, as the step-up ratio is increased, two counterfactors appear....... With certain assumptions about the noise and grid current of the first tube it is found that the equivalent temperature of a unity ratio (Mueller) bridge used for liquid helium measurements may be 400°K....
Analysis of Subway Interior Noise at Peak Commuter Time.
Lee, Donguk; Kim, Gibbeum; Han, Woojae
2017-07-01
Although mass transit systems are convenient and efficient for urban people, little attention has been paid to the potential hearing hazard from their noise. The purpose of the current study was to measure and analyze levels of subway interior noise at peak commuter times and to provide information about commuters' daily dose of noise exposure. To measure the subway interior noise, nine subway lines inside Seoul (i.e., lines 1-9) and six lines surrounding the capital city area (i.e., Central, Bundang, Sinbundang, Incheon, Gyeongui, and Gyeongchun) were chosen. The noise was measured and recorded by a sound level meter for two-hour periods in the morning and evening. 1) In the LZeq analysis, the average noise level of all 15 lines was 72.78 dB; the maximum and minimum noise levels were 78.34 and 62.46 dB, respectively. The average noise level of the nine lines inside Seoul was 73.45 dB, which was 1.68-dB louder than that of the six lines surrounding the capital city area. 2) Based on the LZeq analysis of 33 measured frequencies, 12.5 Hz was the highest frequency and 20,000 Hz was the lowest. 3) There was no remarkable difference in the level of subway interior noise between morning and evening peak commuter times. We concluded that the level of subway interior noise was not loud enough for commuters to incur noise-induced hearing loss. Regardless, environmental noise control efforts in the subway system might be needed for commuters who take a subway every day.
Application of the fourier and wavelet transforms in noise reduction of the out of the ordinary data
International Nuclear Information System (INIS)
Tafreshi, M. A.; Sadeghi, Y.
2006-01-01
In this article the noise reduction of the experimental data by the Fourier and the wavelet transforms has been investigated. Using both simulated and experimental data (from the plasma focus facility, Dena), the sensitive features of the application of the Fourier transform are visualized and discussed. Then, the main idea of the wavelet transform and the results of the noise reduction with this transform are presented. Due to this investigation, for the cases such as the current derivative of the Dena facility, where the reliability of the Fourier transform can be doubtful, the wavelet transform can be considered as a more accurate alternative approach
Edge enhancement and noise suppression for infrared image based on feature analysis
Jiang, Meng
2018-06-01
Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.
Improving the accuracy of smart devices to measure noise exposure.
Roberts, Benjamin; Kardous, Chucri; Neitzel, Richard
2016-11-01
Occupational noise exposure is one of the most frequent hazards present in the workplace; up to 22 million workers have potentially hazardous noise exposures in the U.S. As a result, noise-induced hearing loss is one of the most common occupational injuries in the U.S. Workers in manufacturing, construction, and the military are at the highest risk for hearing loss. Despite the large number of people exposed to high levels of noise at work, many occupations have not been adequately evaluated for noise exposure. The objective of this experiment was to investigate whether or not iOS smartphones and other smart devices (Apple iPhones and iPods) could be used as reliable instruments to measure noise exposures. For this experiment three different types of microphones were tested with a single model of iPod and three generations of iPhones: the internal microphones on the device, a low-end lapel microphone, and a high-end lapel microphone marketed as being compliant with the International Electrotechnical Commission's (IEC) standard for a Class 2-microphone. All possible combinations of microphones and noise measurement applications were tested in a controlled environment using several different levels of pink noise ranging from 60-100 dBA. Results were compared to simultaneous measurements made using a Type 1 sound level measurement system. Analysis of variance and Tukey's honest significant difference (HSD) test were used to determine if the results differed by microphone or noise measurement application. Levels measured with external microphones combined with certain noise measurement applications did not differ significantly from levels measured with the Type 1 sound measurement system. Results showed that it may be possible to use iOS smartphones and smart devices, with specific combinations of measurement applications and calibrated external microphones, to collect reliable, occupational noise exposure data under certain conditions and within the limitations of the
High temperature measurement by noise thermometry
International Nuclear Information System (INIS)
Decreton, M.C.
1982-06-01
Noise thermometry has received a lot of attention for measurements of temperatures in the high range around 1000-2000 deg. K. For these measurements, laboratory type experiments have been mostly performed. These have shown the interest of the technique when long term stability, high precision and insensibility to external conditions are concerned. This is particularly true for measurements in nuclear reactors where important drifts due to irradiation effects are experienced with other measurement techniques, as thermocouple for instance. Industrial noise thermometer experiments have not been performed extensively up to now. The subject of the present study is the development of a 1800 deg. K noise thermometer for nuclear applications. The measurement method is based on a generalized noise power approach. The rms noise voltage (Vsub(s)) and noise current (Isub(s)) are successively measured on the resistive sensor. The same quantities are also measured on a dummy short circuited probe (Vsub(d) and Isub(d)). The temperature is then deduced from these measured values by the following formula: cTsub(s) = (Vsub(s) 2 - Vsub(d) 2 )(Vsub(s)/Isub(s) - Vsub(d)/Isub(d)) - 1 , where c is a constant and Tsub(s) the absolute temperature of the sensor. This approach has the particular advantage of greatly reducing the sensibility to environmental perturbations on the leads and to the influence of amplifier noise sources. It also eliminates the necessity of resistance measurement and keeps the electronic circuits as simple as possible
Kalman filtering techniques for reducing variance of digital speckle displacement measurement noise
Institute of Scientific and Technical Information of China (English)
Donghui Li; Li Guo
2006-01-01
@@ Target dynamics are assumed to be known in measuring digital speckle displacement. Use is made of a simple measurement equation, where measurement noise represents the effect of disturbances introduced in measurement process. From these assumptions, Kalman filter can be designed to reduce variance of measurement noise. An optical and analysis system was set up, by which object motion with constant displacement and constant velocity is experimented with to verify validity of Kalman filtering techniques for reduction of measurement noise variance.
Measurement of the environmental noise at the Torseroed wind turbine site
International Nuclear Information System (INIS)
Fegeant, Olivier
2000-12-01
Further to complaints about the noise generated by a Micon 600 kW wind turbine, measurements of both noise immission and noise emission were performed at the Torseroed site. The measurements and analysis presented in this report were carried out by following the recommendations of the IEA documents for noise emission and immission measurements. It was found that the immission level, i.e. the wind turbine sound, at one of the nearest dwelling, namely Solglaentan, is 39 dB(A) for a wind speed of 8 m/s at hub height. Measurements carried out close to the turbine show that the sound power level of the turbine is 4.3 dB higher than the A-weighted level given by the supplier. Furthermore, the noise level increases more rapidly as a function of the wind speed than what is expected from the values furnished by the manufacturer. The measurements results also show that the background noise level is unusually low at Solglaentan
14 CFR 36.801 - Noise measurement.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal...
Transformers analysis, design, and measurement
Lopez-Fernandez, Xose M; Turowski, Janusz
2012-01-01
This book focuses on contemporary economic, design, diagnostics, and maintenance aspects of power, instrument, and high frequency transformers, which are critical to designers for a transformer stations. The text covers such topics as shell type and superconducting transformers as well as coreless PCB and planar transformers. It emphasizes challenges and strategies in transformer design and illustrates the importance of economics in transformers management by reviewing life cycle cost design and the use of decision methods to manage risk.
Vegh, János; Kiss, Sándor; Lipcsei, Sándor; Horvath, Csaba; Pos, István; Kiss, Gábor
2010-10-01
The paper deals with two recently developed, high-precision nuclear measurement systems installed at the VVER-440 units of the Hungarian Paks NPP. Both developments were motivated by the reactor power increase to 108%, and by the planned plant service time extension. The first part describes the RMR start-up reactivity measurement system with advanced services. High-precision picoampere meters were installed at each reactor unit and measured ionization chamber current signals are handled by a portable computer providing data acquisition and online reactivity calculation service. Detailed offline evaluation and analysis of reactor start-up measurements can be performed on the portable unit, too. The second part of the paper describes a new reactor noise diagnostics system using state-of-the-art data acquisition hardware and signal processing methods. Details of the new reactor noise measurement evaluation software are also outlined. Noise diagnostics at Paks NPP is a standard tool for core anomaly detection and for long-term noise trend monitoring. Regular application of these systems is illustrated by real plant data, e.g., results of standard reactivity measurements during a reactor startup session are given. Noise applications are also illustrated by real plant measurements; results of core anomaly detection are presented.
Li, Bicen; Xu, Pengmei; Hou, Lizhou; Wang, Caiqin
2017-10-01
Taking the advantages of high spectral resolution, high sensitivity and wide spectral coverage, space borne Fourier transform infrared spectrometer (FTS) plays more and more important role in atmospheric composition sounding. The combination of solar occultation and FTS technique improves the sensitivity of instrument. To achieve both high spectral resolution and high signal to noise ratio (SNR), reasonable allocation and optimization for instrument parameters are the foundation and difficulty. The solar occultation FTS (SOFTS) is a high spectral resolution (0.03 cm-1) FTS operating from 2.4 to 13.3 μm (750-4100cm-1), which will determine the altitude profile information of typical 10-100km for temperature, pressure, and the volume mixing ratios for several dozens of atmospheric compositions. As key performance of SOFTS, SNR is crucially important to high accuracy retrieval of atmospheric composition, which is required to be no less than 100:1 at the radiance of 5800K blackbody. Based on the study of various parameters and its interacting principle, according to interference theory and operation principle of time modulated FTS, a simulation model of FTS SNR has been built, which considers satellite orbit, spectral radiometric features of sun and atmospheric composition, optical system, interferometer and its control system, measurement duration, detector sensitivity, noise of detector and electronic system and so on. According to the testing results of SNR at the illuminating of 1000 blackbody, the on-orbit SNR performance of SOFTS is estimated, which can meet the mission requirement.
International Nuclear Information System (INIS)
Mihalczo, J.T.; Valentine, T.E.
1995-01-01
The development of MCNP-DSP, which allows direct calculation of the measured time and frequency analysis parameters from subcritical measurements using the 252 Cf-source-driven noise analysis method, permits the validation of calculational methods for criticality safety with in-plant subcritical measurements. In addition, a method of obtaining the bias in the calculations, which is essential to the criticality safety specialist, is illustrated using the results of measurements with 17.771-cm-diam, enriched (93.15), unreflected, and unmoderated uranium metal cylinders. For these uranium metal cylinders the bias obtained using MCNP-DSP and ENDF/B-V cross-section data increased with subcriticality. For a critical experiment [height (h) = 12.629 cm], it was -0.0061 ± 0.0003. For a 10.16-cm-high cylinder (k ∼ 0.93), it was 0.0060 ± 0.0016, and for a subcritical cylinder (h = 8.13 cm, k ∼ 0.85), the bias was -0.0137 ± 0.0037, more than a factor of 2 larger in magnitude. This method allows the nuclear criticality safety specialist to establish the bias in calculational methods for criticality safety from in-plant subcritical measurements by the 252 Cf-source-driven noise analysis method
Poisson–Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain
Lee, Sangyoon; Lee, Min Seok; Kang, Moon Gi
2018-01-01
The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson–Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson–Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods. PMID:29596335
Poisson-Gaussian Noise Analysis and Estimation for Low-Dose X-ray Images in the NSCT Domain.
Lee, Sangyoon; Lee, Min Seok; Kang, Moon Gi
2018-03-29
The noise distribution of images obtained by X-ray sensors in low-dosage situations can be analyzed using the Poisson and Gaussian mixture model. Multiscale conversion is one of the most popular noise reduction methods used in recent years. Estimation of the noise distribution of each subband in the multiscale domain is the most important factor in performing noise reduction, with non-subsampled contourlet transform (NSCT) representing an effective method for scale and direction decomposition. In this study, we use artificially generated noise to analyze and estimate the Poisson-Gaussian noise of low-dose X-ray images in the NSCT domain. The noise distribution of the subband coefficients is analyzed using the noiseless low-band coefficients and the variance of the noisy subband coefficients. The noise-after-transform also follows a Poisson-Gaussian distribution, and the relationship between the noise parameters of the subband and the full-band image is identified. We then analyze noise of actual images to validate the theoretical analysis. Comparison of the proposed noise estimation method with an existing noise reduction method confirms that the proposed method outperforms traditional methods.
Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements
International Nuclear Information System (INIS)
Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta
2015-01-01
A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping
Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements
Energy Technology Data Exchange (ETDEWEB)
Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta, E-mail: paulo.zannin@pesquisador.cnpq.br
2015-02-15
A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping.
Directory of Open Access Journals (Sweden)
Eduardo O. Cerqueira
2000-10-01
Full Text Available Instrumental data always present some noise. The analytical data information and instrumental noise generally has different frequencies. Thus is possible to remove the noise using a digital filter based on Fourier transform and inverse Fourier transform. This procedure enhance the signal/noise ratio and consecutively increase the detection limits on instrumental analysis. The basic principle of Fourier transform filter with modifications implemented to improve its performance is presented. A numerical example, as well as a real voltammetric example are showed to demonstrate the Fourier transform filter implementation. The programs to perform the Fourier transform filter, in Matlab and Visual Basic languages, are included as appendices
Residual stress measurements with barkhausen noise in power plant creep failure analysis
Energy Technology Data Exchange (ETDEWEB)
Karvonen, I. [CoMoTest Oy, Maentsaelae (Finland)] Suominen, L. [Stresstech Oy, Jyvaeskylae (Finland)
1998-12-31
Continuously developing power and process industry needs predictive maintenance inspection methods in order to prevent failures with correctly timed and properly specified measures. Materials` monitoring has traditionally been non-destructive inspection to detect growing cracks or other deficiencies. Recently, after the development of portable stress measurement systems, some advances has been reached. Based on stress anomalies due to creep, fatigue or corrosion, new applications have been found in the use of Barkhausen noise inspection. When the Barkhausen noise findings have been simultaneously confirmed with other stress measuring methods, a wider acceptance of the application of the method can be proposed. (orig.) 7 refs.
Residual stress measurements with barkhausen noise in power plant creep failure analysis
Energy Technology Data Exchange (ETDEWEB)
Karvonen, I. [CoMoTest Oy, Maentsaelae (Finland)] Suominen, L. [Stresstech Oy, Jyvaeskylae (Finland)
1997-12-31
Continuously developing power and process industry needs predictive maintenance inspection methods in order to prevent failures with correctly timed and properly specified measures. Materials` monitoring has traditionally been non-destructive inspection to detect growing cracks or other deficiencies. Recently, after the development of portable stress measurement systems, some advances has been reached. Based on stress anomalies due to creep, fatigue or corrosion, new applications have been found in the use of Barkhausen noise inspection. When the Barkhausen noise findings have been simultaneously confirmed with other stress measuring methods, a wider acceptance of the application of the method can be proposed. (orig.) 7 refs.
DEFF Research Database (Denmark)
Arana Aristi, Iván; Holbøll, Joachim; Nielsen, Arne Hejde
2009-01-01
This paper presents the analysis of online time-domain measurements on the primary and secondary side of a wind turbine transformer in an Offshore Wind Farm (OWF), during one switching operation realized in the collection grid. The frequency characteristics up to 10 kHz of the current and voltage...... signals of each phase were compared and the transformers admittance characteristic was estimated based on these measurements. Based on the results from the previous analysis, it was decided to acquire a Sweep Frequency Response Analyzer (SFRA) to realize detailed transformer measurements. First...... the results from the measurements in a small dry-type transformer under laboratory conditions are presented, and finally the results from a large transformer measured in a in an industrial setting are shown....
Measurement and analysis of the noise radiated by low Mach numbers centrifugal blowers
Yeager, D. M.; Lauchle, G. C.
1987-11-01
The broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices is investigated. An interdisciplinary approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller which was placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. New frequency-domain expressions for the correlation area and dipole source strength per unit area on a surface immersed in turbulence were developed which can be used to characterize the noise generation process over a rigid surface immersed in turbulence. An investigation of the noise radiated from the single, isolated airfoil (impeller blade) was performed using modern correlation and spectral analysis techniques.
Measurement and Analysis of the Noise Radiated by Low Mach Number Centrifugal Blowers.
Yeager, David Marvin
An investigation was performed of the broad band, aerodynamically generated noise in low tip-speed Mach number, centrifugal air moving devices. An interdisciplinary experimental approach was taken which involved investigation of the aerodynamic and acoustic fields, and their mutual relationship. The noise generation process was studied using two experimental vehicles: (1) a scale model of a homologous family of centrifugal blowers typical of those used to cool computer and business equipment, and (2) a single blade from a centrifugal blower impeller placed in a known, controllable flow field. The radiation characteristics of the model blower were investigated by measuring the acoustic intensity distribution near the blower inlet and comparing it with the intensity near the inlet to an axial flow fan. Results showed that the centrifugal blower is a distributed, random noise source, unlike an axial fan which exhibited the effects of a coherent, interacting source distribution. Aerodynamic studies of the flow field in the inlet and at the discharge to the rotating impeller were used to assess the mean flow distribution through the impeller blade channels and to identify regions of excessive turbulence near the rotating blade row. Both circumferential and spanwise mean flow nonuniformities were identified along with a region of increased turbulence just downstream of the scroll cutoff. The fluid incidence angle, normally taken as an indicator of blower performance, was estimated from mean flow data as deviating considerably from an ideal impeller design. An investigation of the noise radiated from the single, isolated airfoil was performed using modern correlation and spectral analysis techniques. Radiation from the single blade in flow was characterized using newly developed expressions for the correlation area and the dipole source strength per unit area, and from the relationship between the blade surface pressure and the incident turbulent flow field. Results
Ocean Ambient Noise Measurement and Theory
Carey, William M
2011-01-01
This book develops the theory of ocean ambient noise mechanisms and measurements, and also describes general noise characteristics and computational methods. It concisely summarizes the vast ambient noise literature using theory combined with key representative results. The air-sea boundary interaction zone is described in terms of non-dimensional variables requisite for future experiments. Noise field coherency, rare directional measurements, and unique basin scale computations and methods are presented. The use of satellite measurements in these basin scale models is demonstrated. Finally, this book provides a series of appendices giving in-depth mathematical treatments. With its complete and careful discussions of both theory and experimental results, this book will be of the greatest interest to graduate students and active researchers working in fields related to ambient noise in the ocean.
Measurements techniques for transportation noise
International Nuclear Information System (INIS)
Brambilla, G.
2001-01-01
The noise from transport systems (roads, railways and aircraft) are increasing more and more both in space and in time and, therefore, they are still the major factor responsible for environmental noise pollution. The population exposed to transport noise is also increasing, and the corresponding health effects on people (i.e. annoyance and sleep disturbance) become more severe. Due to this current situation international and national legislation has been issued and implemented to reduce the harmful effects of such noise. This paper describes the techniques prescribed by recent Italian legislation to measure road, railway and aircraft noise. (author)
DEFF Research Database (Denmark)
Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas
2017-01-01
In this paper, semi-empirical engineering models for the three main wind turbine aerodynamic noise sources, namely, turbulent inflow, trailing edge and stall noise, are introduced. They are implemented into the in-house aeroelastic code HAWC2 commonly used for wind turbine load calculations...... and design. The results of the combined aeroelastic and aeroacoustic model are compared with field noise measurements of a 500kW wind turbine. Model and experimental data are in fairly good agreement in terms of noise levels and directivity. The combined model allows separating the various noise sources...... and highlights a number of mechanisms that are difficult to differentiate when only the overall noise from a wind turbine is measured....
Spin noise measurement with diamagnetic atoms
International Nuclear Information System (INIS)
Takeuchi, M.; Ichihara, S.; Takano, T.; Kumakura, M.; Takahashi, Y.
2007-01-01
We report the measurement of the atomic spin noise of the diamagnetic atom ytterbium (Yb). Yb has various merits for utilizing the quantum nature of the atomic spin ensemble compared with the paramagnetic atoms used in all previous experiments. From the magnitude of the noise level and dependence on the detuning, we concluded that we succeeded in the measurement of 171 Yb atomic spin noise in an atomic beam
Adaptive Noise Model for Transform Domain Wyner-Ziv Video using Clustering of DCT Blocks
DEFF Research Database (Denmark)
Luong, Huynh Van; Huang, Xin; Forchhammer, Søren
2011-01-01
The noise model is one of the most important aspects influencing the coding performance of Distributed Video Coding. This paper proposes a novel noise model for Transform Domain Wyner-Ziv (TDWZ) video coding by using clustering of DCT blocks. The clustering algorithm takes advantage of the residual...... modelling. Furthermore, the proposed cluster level noise model is adaptively combined with a coefficient level noise model in this paper to robustly improve coding performance of TDWZ video codec up to 1.24 dB (by Bjøntegaard metric) compared to the DISCOVER TDWZ video codec....... information of all frequency bands, iteratively classifies blocks into different categories and estimates the noise parameter in each category. The experimental results show that the coding performance of the proposed cluster level noise model is competitive with state-ofthe- art coefficient level noise...
Wittchen, Andreas; the LPF Collaboration
2017-05-01
LISA Pathfinder is a technology demonstration mission for the space-based gravitational wave observatory, LISA. It demonstrated that the performance requirements for the interferometric measurement of two test masses in free fall can be met. An important part of the data analysis is to identify the limiting noise sources. [1] This measurement is performed with heterodyne interferometry. The performance of this optical metrology system (OMS) at high frequencies is limited by sensing noise. One such noise source is Relative Intensity Noise (RIN). RIN is a property of the laser, and the photodiode current generated by the interferometer signal contains frequency dependant RIN. From this electric signal the phasemeter calculates the phase change and laser power, and the coupling of RIN into the measurement signal depends on the noise frequency. RIN at DC, at the heterodyne frequency and at two times the heterodyne frequency couples into the phase. Another important noise at high frequencies is path length noise. To reduce the impact this noise is suppressed with a control loop. Path length noise not suppressed will couple directly into the length measurement. The subtraction techniques of both noise sources depend on the phase difference between the reference signal and the measurement signal, and thus on the test mass position. During normal operations we position the test mass at the interferometric zero, which is optimal for noise subtraction purposes. This paper will show results from an in-flight experiment where the test mass position was changed to make the position dependant noise visible.
Noise thermometry - a new temperature measuring method
International Nuclear Information System (INIS)
Brixy, H.; Hecker, R.; Rittinghaus, K.F.
1975-01-01
The thermal Johnson-Niquist noise is the basis of noise thermometry. This temperature measuring method is, e.g., of interest insofar as the noise thermometer gives absolute values as a primary thermometer and is in principle extensively independent of environmental influences and material properties. The resistance values of the measuring probe are about 10 Ohm to a few kOhm. The demands of electronics are high, the self-noise of the measuring apparatus must be as small as possible; a comparative measuring method is advantageous. 1 to 2,500 K are given as a possible temperature range. An accuracy of 0.1% could be achieved in laboratory measurements. Temperature measurements to be used in operation in a few nuclear reactors are mentioned. (HP/LH) [de
Noise and vibration analysis system
International Nuclear Information System (INIS)
Johnsen, J.R.; Williams, R.L.
1985-01-01
The analysis of noise and vibration data from an operating nuclear plant can provide valuable information that can identify and characterize abnormal conditions. Existing plant monitoring equipment, such as loose parts monitoring systems (LPMS) and neutron flux detectors, may be capable of gathering noise data, but may lack the analytical capability to extract useful meanings hidden in the noise. By analyzing neutron noise signals, the structural motion and integrity of core components can be assessed. Computer analysis makes trending of frequency spectra within a fuel cycle and from one cycle to another a practical means of core internals monitoring. The Babcock and Wilcox Noise and Vibration Analysis System (NVAS) is a powerful, compact system that can automatically perform complex data analysis. The system can acquire, process, and store data, then produce report-quality plots of the important parameter. Software to perform neutron noise analysis and loose parts analysis operates on the same hardware package. Since the system is compact, inexpensive, and easy to operate, it allows utilities to perform more frequency analyses without incurring high costs and provides immediate results
Noise source analysis of nuclear ship Mutsu plant using multivariate autoregressive model
International Nuclear Information System (INIS)
Hayashi, K.; Shimazaki, J.; Shinohara, Y.
1996-01-01
The present study is concerned with the noise sources in N.S. Mutsu reactor plant. The noise experiments on the Mutsu plant were performed in order to investigate the plant dynamics and the effect of sea condition and and ship motion on the plant. The reactor noise signals as well as the ship motion signals were analyzed by a multivariable autoregressive (MAR) modeling method to clarify the noise sources in the reactor plant. It was confirmed from the analysis results that most of the plant variables were affected mainly by a horizontal component of the ship motion, that is the sway, through vibrations of the plant structures. Furthermore, the effect of ship motion on the reactor power was evaluated through the analysis of wave components extracted by a geometrical transform method. It was concluded that the amplitude of the reactor power oscillation was about 0.15% in normal sea condition, which was small enough for safe operation of the reactor plant. (authors)
Measurement and control of occupational noise
International Nuclear Information System (INIS)
Elammari, Muftah Faraj
2007-01-01
High level of environmental and occupational noise remain a problem all over the world. As problems and complaints increased dramatically by the end of the 19th and beginning of the 20th centuries focusing on the problem was intensified. In this thesis occupational noise levels at different places were measured and compared with the international permissible levels using the integrating sound level meter (Quest 2800). The calibration of the instrument was carried out before and after each measurement using the acoustic calibrator (Quest CA-12B calibrator). The method which was followed was measuring the sound pressure level of the different noise sources over a broad frequency band covering the audible frequency range using the (octave band filter, model OB-100), disregrading variation with time. Since the human ear is most sensitive in the 2-5 khz range of frequencies and least sensitive at extremely high and low frequencies the instrument was adjusted on the A weighting net work which varies with frequencies in a very similar way as that of the human ear. From the obtained results, some noise levels which were recorded were within the permissible levels i.e. below 90 dba and some noise levels were higher than the permissible limit as in janzour textile factory (95 dba), The welding workshop (120 dba), Benghazi Macaroni factory (100 dba), and near the air blowers at Zletin cement factory, Benghazi cement factory (97-10-dba) in these cases suggestions were made to minimize the problem. Concerning the noise control, four methods of noise control were tested, these methods were: reducing noise by sound absorbing material at Sirt local broadcasting radio, reducing noise by keeping a distance from the noise source, at the Boilers hall at REWDC, reducing noise by enclosures, at the compressors room at Zletin cement factory, and finally reducing noise by performing regular maintenance at Garabolli photo development centre. The percentage of noise reduction was 21%, 12
BWR noise spectra and application of noise analysis to FBR
International Nuclear Information System (INIS)
Nomura, T.
1975-01-01
Work related to noise analysis, in Tokyo Shibaura Electric Co. Ltd. (Toshiba) and Nippon Atomic Industry Group Co. Ltd. (NAIG) for the past several years is reviewed. After considering the Japan-United States Seminar on Reactor Noise Analysis in 1968, other subjects discussed were boiling water reactor noise analysis and work in relation to FBR. Parts of these are related to each other. For example, boiling detection and temperature fluctuations are problems pertinent to both fields. As the main problems in zero-power-reactor noise are now basically understood, only a brief description of the experiments involving the advanced two detector method is made. Focus is rather placed on the area of power plant noise. (author)
Measurement time and statistics for a noise thermometer with a synthetic-noise reference
White, D. R.; Benz, S. P.; Labenski, J. R.; Nam, S. W.; Qu, J. F.; Rogalla, H.; Tew, W. L.
2008-08-01
This paper describes methods for reducing the statistical uncertainty in measurements made by noise thermometers using digital cross-correlators and, in particular, for thermometers using pseudo-random noise for the reference signal. First, a discrete-frequency expression for the correlation bandwidth for conventional noise thermometers is derived. It is shown how an alternative frequency-domain computation can be used to eliminate the spectral response of the correlator and increase the correlation bandwidth. The corresponding expressions for the uncertainty in the measurement of pseudo-random noise in the presence of uncorrelated thermal noise are then derived. The measurement uncertainty in this case is less than that for true thermal-noise measurements. For pseudo-random sources generating a frequency comb, an additional small reduction in uncertainty is possible, but at the cost of increasing the thermometer's sensitivity to non-linearity errors. A procedure is described for allocating integration times to further reduce the total uncertainty in temperature measurements. Finally, an important systematic error arising from the calculation of ratios of statistical variables is described.
Understanding the amplitudes of noise correlation measurements
Tsai, Victor C.
2011-01-01
Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.
The forgotten effect of the finite measurement time on various noise analysis techniques
Energy Technology Data Exchange (ETDEWEB)
Wallerbos, E.J.M.; Hoogenboom, J.E
1998-06-01
The conventional noise analysis expressions for functions like the auto- and cross-correlation function, the variance to mean ratio, and the Rossi-{alpha} formula, diverge when the reactor is critical. This problem arises because one pole of the zero-power reactor transfer function is zero. However, in a finite measurement time, a zero frequency cannot be measured and the divergence will not be found experimentally. New expressions for the expectation values of the experimental quantities of various pulse counting techniques are derived which also take into account the dead time of the detector. These expressions do not suffer from divergence at critical. A Feynman-{alpha} experiment is simulated in two, neutronically different systems. The use of the conventional equations for the analysis of the experiments is seen to lead to a bias in the inferred reactivity value.
Squeezed noise in precision force measurements
International Nuclear Information System (INIS)
Bocko, M.F.; Bordoni, F.; Fuligni, F.; Johnson, W.W.
1986-01-01
The effort to build gravitational radiation antennae with sensitivity sufficient to detect bursts of radiation from supernovae in the Virgo cluster of galaxies has caused a consideration of the fundamental limits for the detection of weak forces. The existing Weber bar detectors will be eventually limited, by the phase insensitive transducers now used, to noise temperatures no better than that of the first amplifier which follows the transducer. Even for a quantum limited amplifier this may not give the sensitivity required to definitively detect gravitational radiation. In a 'back action evasion' measurement a specific phase sensitive transducer would be used. It is believed that by the technique of measuring one of the two antenna phases it is possible to reach an effective noise temperature for the measured phase which is far below the amplifier noise temperature. This is at the expense of an infinite noise temperature in the unmeasured antenna phase and is thus described as squeezing the noise. The authors outline the theoretical model for the behavior of such systems and present data from several experiments which demonstrate the main features of a back action evasion measurement. (Auth.)
Analysis of the Chirplet Transform-Based Algorithm for Radar Detection of Accelerated Targets
Galushko, V. G.; Vavriv, D. M.
2017-06-01
Purpose: Efficiency analysis of an optimal algorithm of chirp signal processing based on the chirplet transform as applied to detection of radar targets in uniformly accelerated motion. Design/methodology/approach: Standard methods of the optimal filtration theory are used to investigate the ambiguity function of chirp signals. Findings: An analytical expression has been derived for the ambiguity function of chirp signals that is analyzed with respect to detection of radar targets moving at a constant acceleration. Sidelobe level and characteristic width of the ambiguity function with respect to the coordinates frequency and rate of its change have been estimated. The gain in the signal-to-noise ratio has been assessed that is provided by the algorithm under consideration as compared with application of the standard Fourier transform to detection of chirp signals against a “white” noise background. It is shown that already with a comparatively small (processing channels (elementary filters with respect to the frequency change rate) the gain in the signal-tonoise ratio exceeds 10 dB. A block diagram of implementation of the algorithm under consideration is suggested on the basis of a multichannel weighted Fourier transform. Recommendations as for selection of the detection algorithm parameters have been developed. Conclusions: The obtained results testify to efficiency of application of the algorithm under consideration to detection of radar targets moving at a constant acceleration. Nevertheless, it seems expedient to perform computer simulations of its operability with account for the noise impact along with trial measurements in real conditions.
Neutron noise analysis for malfunction diagnosis at sodium cooled reactors
International Nuclear Information System (INIS)
Hoppe, P.
1978-09-01
For the investigation of the potential use of neutron noise analysis at sodium cooled power reactors, measurements have been performed at the KNK I reactor over a period of 18 month under different operational conditions. The signal fluctuations of the following tranducers have been recorded: In-core and Ex-core neutron detectors, temperature-, flow-, pressure-, vibration- and acoustic sensors. These extensive measurements have been analyzed in the frequency range from 0,001 Hz to 1000 Hz with all currently known methods for the identification of noise sources. The following results have been found: - Neutron noise for f 20 Hz the white detection noise prevails. In the region from 1 Hz to 20 Hz the vibrations of core components contribute to neutron noise. - Neutron noise is influenced by the state of the plant. - The contributions to neutron noise due to the fluctuations of coolant flow and inlet temperature are small compared to those produced by the movements of the control rod initiated by the reactor control system. The quantitatively unidentifiable amount of reactivity fluctuations (0,6 time-dependent thermal bowing of the core. With respect to these results and by calculation of the neutron noise patterns to be expected for the SNR 300, the following possible applications for neutron noise analysis have been found: By means of neutron noise analysis only reactivity fluctuations can be identified and supervised which are produced by time dependent changes of the core geometry. Furthermore neutron noise analysis is well suited for a sensitive detection of control rod vibrations and of local sodium boiling. Finally it can be used for the surveillance of the proper functioning of the reactor control system and of the control rod drive mechanism. (orig./HP) 891 HP [de
Transformers: analysis, design, and measurement
National Research Council Canada - National Science Library
López-Fernández, Xose M; Ertan, H. Bülent; Turowski, J
2013-01-01
"This book focuses on contemporary economic, design, diagnostics, and maintenance aspects of power, instrument, and high frequency transformers, which are critical to designers for a transformer stations...
RB reactor noise analysis; Analiza sumova reaktora RB
Energy Technology Data Exchange (ETDEWEB)
Petrovic, M; Velickovic, Lj; Markovic, V; Jovanovic, S [Institut za nuklearne nauke Boris Kidric, Vinca, Beograd (Yugoslavia)
1964-07-01
Statistical fluctuations of reactivity represent reactor noise. Analysis of reactor noise enables determining a series of reactor kinetic parameters. Fluctuations of power was measured by ionization chamber placed next to the tank of the RB reactor. The signal was digitized by an analog-digital converter. After calculation of the mean power, 3000 data obtained by sampling were analysed.
Measuring of noise emitted by moving vehicles
Directory of Open Access Journals (Sweden)
Skrúcaný Tomáš
2017-01-01
Full Text Available The article aims to measure the intensity of the exterior noise of a vehicle in motion. It provides the results of the measurements of the external noise of selected vehicles in motion and the impact of selected factors on the sound level of driving. There are done two measurements in the paper. Results from the first one are comparing noise level of 9 passenger cars according to the Directive 71/157/EEC. The second one shows the road surface influence on the exterior noise of moving vehicle where the sound level was measured by a road whose surface was made of slightly degraded concrete, and at a different place of the same road, where the surface was renovated by applying asphalt mix onto it.
Analysis of noise lines in the Virgo C7 data
International Nuclear Information System (INIS)
Acernese, F; Amico, P; Alshourbagy, M
2007-01-01
The paper presents a description of the work of detection and identification of frequency lines in the Virgo dark fringe data from run C7. A number of methods are highlighted by which noise frequency lines are detected by data analysis and measurements in the laboratory. In this paper we give a description of the list of noise line candidates provided by the pulsar search analysis, the investigation of 10 Hz (and harmonics) noise, violin modes, noise from the end station buildings' air conditioners, sidebands in calibration lines and aliasing in the 4 kHz reconstructed data
Analysis of noise lines in the Virgo C7 data
Energy Technology Data Exchange (ETDEWEB)
Acernese, F [INFN, Sezione di Napoli and/or Universita di Napoli ' Federico II' Complesso Universitario di Monte S Angelo, and/or Universita di Salerno, Fisciano (Italy); Amico, P [INFN, Sezione di Perugia and/or Universita di Perugia, Perugia (Italy); Alshourbagy, M [INFN, Sezione di Pisa and/or Universita di Pisa, Pisa (Italy)] (and others)
2007-10-07
The paper presents a description of the work of detection and identification of frequency lines in the Virgo dark fringe data from run C7. A number of methods are highlighted by which noise frequency lines are detected by data analysis and measurements in the laboratory. In this paper we give a description of the list of noise line candidates provided by the pulsar search analysis, the investigation of 10 Hz (and harmonics) noise, violin modes, noise from the end station buildings' air conditioners, sidebands in calibration lines and aliasing in the 4 kHz reconstructed data.
Pilot study of methods and equipment for in-home noise level measurements.
Neitzel, Richard L; Heikkinen, Maire S A; Williams, Christopher C; Viet, Susan Marie; Dellarco, Michael
2015-01-15
Knowledge of the auditory and non-auditory effects of noise has increased dramatically over the past decade, but indoor noise exposure measurement methods have not advanced appreciably, despite the introduction of applicable new technologies. This study evaluated various conventional and smart devices for exposure assessment in the National Children's Study. Three devices were tested: a sound level meter (SLM), a dosimeter, and a smart device with a noise measurement application installed. Instrument performance was evaluated in a series of semi-controlled tests in office environments over 96-hour periods, followed by measurements made continuously in two rooms (a child's bedroom and a most used room) in nine participating homes over a 7-day period with subsequent computation of a range of noise metrics. The SLMs and dosimeters yielded similar A-weighted average noise levels. Levels measured by the smart devices often differed substantially (showing both positive and negative bias, depending on the metric) from those measured via SLM and dosimeter, and demonstrated attenuation in some frequency bands in spectral analysis compared to SLM results. Virtually all measurements exceeded the Environmental Protection Agency's 45 dBA day-night limit for indoor residential exposures. The measurement protocol developed here can be employed in homes, demonstrates the possibility of measuring long-term noise exposures in homes with technologies beyond traditional SLMs, and highlights potential pitfalls associated with measurements made by smart devices.
Study on statistical analysis of nonlinear and nonstationary reactor noises
International Nuclear Information System (INIS)
Hayashi, Koji
1993-03-01
For the purpose of identification of nonlinear mechanism and diagnosis of nuclear reactor systems, analysis methods for nonlinear reactor noise have been studied. By adding newly developed approximate response function to GMDH, a conventional nonlinear identification method, a useful method for nonlinear spectral analysis and identification of nonlinear mechanism has been established. Measurement experiment and analysis were performed on the reactor power oscillation observed in the NSRR installed at the JAERI and the cause of the instability was clarified. Furthermore, the analysis and data recording methods for nonstationary noise have been studied. By improving the time resolution of instantaneous autoregressive spectrum, a method for monitoring and diagnosis of operational status of nuclear reactor has been established. A preprocessing system for recording of nonstationary reactor noise was developed and its usability was demonstrated through a measurement experiment. (author) 139 refs
To the analysis of reactor noise in boiling water reactors
International Nuclear Information System (INIS)
Seifritz, W.
1972-01-01
The paper contains some basic thoughts on the problem of neutron flux oscillations in power reactors. The advantages of self-powered detectors and their function are explained. In addition, noise measurements of the boiling water reactors at Lingen and Holden are described, and the possibilities of an employment of vanadium detectors for the analysis of reactor noise are discussed. The final pages of the paper contain a complete list of the author's publications in the field of reactor noise analysis. (RW/AK) [de
Transforming growth factor β1 inhibition protects from noise-induced hearing loss
Directory of Open Access Journals (Sweden)
Silvia eMurillo-Cuesta
2015-03-01
Full Text Available Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor ß (TGF-ß is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-ß as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss, we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-ß1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-ß1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-ß1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage.
Optimizing BAO measurements with non-linear transformations of the Lyman-α forest
Energy Technology Data Exchange (ETDEWEB)
Wang, Xinkang; Font-Ribera, Andreu; Seljak, Uroš, E-mail: xinkang.wang@berkeley.edu, E-mail: afont@lbl.gov, E-mail: useljak@berkeley.edu [Department of Physics, University of California, South Hall Rd, Berkeley (United States)
2015-04-01
We explore the effect of applying a non-linear transformation to the Lyman-α forest transmitted flux F=e{sup −τ} and the ability of analytic models to predict the resulting clustering amplitude. Both the large-scale bias of the transformed field (signal) and the amplitude of small scale fluctuations (noise) can be arbitrarily modified, but we were unable to find a transformation that increases significantly the signal-to-noise ratio on large scales using Taylor expansion up to the third order. In particular, however, we achieve a 33% improvement in signal to noise for Gaussianized field in transverse direction. On the other hand, we explore an analytic model for the large-scale biasing of the Lyα forest, and present an extension of this model to describe the biasing of the transformed fields. Using hydrodynamic simulations we show that the model works best to describe the biasing with respect to velocity gradients, but is less successful in predicting the biasing with respect to large-scale density fluctuations, especially for very nonlinear transformations.
Energy Technology Data Exchange (ETDEWEB)
Shiohata, K.; Nemoto, K.; Nagawa, Y.; Sakamoto, S.; Kobayashi, T.; Ito, M.; Koharagi, H. [Hitachi, Ltd, Tokyo (Japan)
1998-11-01
In this analysis method, electromagnetic force calculated by 2-dimensional analysis is transformed into external force for 3-dimensional structural-vibration analysis. And a modeling procedure for a vibrating structure is developed. Further, a space-modal-resonance criteria which relates electromagnetic force to structural-vibration or noise is introduced. In the structural-vibration analysis, the finite element method is used; and in the noise analysis, the boundary element method is used. Finally, vibration and noise of an induction motor are calculated using this criteria. Consequently, high-accuracy modeling is achieved and noise the calculated by the simulation almost coincides with that obtained by experiments. And it is clarified that the-space-modal resonance criteria is effective in numerical simulation. 11 refs., 9 figs., 3 tabs.
Measuring Tyre Rolling Noise at the Contact Patch
Kozak, P.; Matuszkova, R.; Radimsky, M.; Kudrna, J.
2017-06-01
This paper deals with noise generated by road traffic. A focus is concentrated solely on one of its sources related to tyre/road interaction referred as rolling noise. The paper states brief overview of various approaches and methods used to measure this particular source of road traffic noise. On the basis of literature reviews, a unique device has been designed. Development of the measuring device and possibilities of its usage are described in detail in this paper. Obtained results of noise measurements can then be used to design measures that increase safety and a lead to better comfort on the road.
Measurement of low-frequency noise in rooms
DEFF Research Database (Denmark)
Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin
2006-01-01
Measurement of low-frequency noise in rooms is problematic due to standing wave patterns. The spatial variation in the sound pressure level can typically be as much as 20-30 dB. For assessment of annoyance from low-frequency noise in dwellings, it is important to measure a level close...... rooms. The sound pressure level was measured 1) in three-dimensional corners and 2) according to current Swedish and Danish measurement methods. Furthermore, the entire sound pressure distributions were measured by scanning. The Swedish and Danish measurement methods include a corner measurement...... to the highest level present in a room, rather than a room average level. In order to ensure representative noise measurements, different positions were investigated based on theoretical considerations and observations from numerical room simulations. In addition measurements were performed in three different...
Inference from the futures: ranking the noise cancelling accuracy of realized measures
DEFF Research Database (Denmark)
Mirone, Giorgio
We consider the log-linear relationship between futures contracts and their underlying assets and show that in the classical Brownian semi-martingale (BSM) framework the two series must, by no-arbitrage, have the same integrated variance. We then introduce the concept of noise cancelling...... measures in the presence of noise. Moreover, a thorough simulation analysis is employed to evaluate the estimators' sensitivity to different price and noise processes, and sampling frequencies....
Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.
2016-10-01
The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.
Flow measurements using noise signals of axially displaced thermocouples
Energy Technology Data Exchange (ETDEWEB)
Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))
1990-01-01
Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).
Borer, J
1977-01-01
Runs 800, 813, 842 and physics runs from 18.1.77 to 21.5.77, Development of a new set-up for working line measurements including a Fast Fourier Transform Spectrum Analyser and using weak beam excitiation with broad-band noise
International Nuclear Information System (INIS)
Kwok, Sau Fa
2012-01-01
A Langevin equation with multiplicative white noise and its corresponding Fokker–Planck equation are considered in this work. From the Fokker–Planck equation a transformation into the Wiener process is provided for different orders of prescription in discretization rule for the stochastic integrals. A few applications are also discussed. - Highlights: ► Fokker–Planck equation corresponding to the Langevin equation with mul- tiplicative white noise is presented. ► Transformation of diffusion processes into the Wiener process in different prescriptions is provided. ► The prescription parameter is associated with the growth rate for a Gompertz-type model.
Transform domain Wyner-Ziv video coding with refinement of noise residue and side information
DEFF Research Database (Denmark)
Huang, Xin; Forchhammer, Søren
2010-01-01
are successively updating the estimated noise residue for noise modeling and side information frame quality during decoding. Experimental results show that the proposed decoder can improve the Rate- Distortion (RD) performance of a state-of-the-art Wyner Ziv video codec for the set of test sequences.......Distributed Video Coding (DVC) is a video coding paradigm which mainly exploits the source statistics at the decoder based on the availability of side information at the decoder. This paper considers feedback channel based Transform Domain Wyner-Ziv (TDWZ) DVC. The coding efficiency of TDWZ video...... coding does not match that of conventional video coding yet, mainly due to the quality of side information and inaccurate noise estimation. In this context, a novel TDWZ video decoder with noise residue refinement (NRR) and side information refinement (SIR) is proposed. The proposed refinement schemes...
Analysis and evaluation of soundscapes in public parks through interviews and measurement of noise.
Szeremeta, Bani; Zannin, Paulo Henrique Trombetta
2009-12-01
The purpose of this work was to investigate the sound environment of public parks using a soundscape study model that analyzes not only noise but also all the types of sound of a given area, as well as other environmental factors. To this end, acoustic measurements were made in the parks under study and interviews were held with their frequent visitors. Noise measurements were conducted in 55 points, and a total of 335 people were interviewed in the 4 parks studied. The parks selected for this study are located in areas very close to streets with intense vehicle flow, raising the hypothesis that this proximity impairs the acoustic comfort of their visitors. The findings confirm the strong influence of traffic noise on the soundscapes of the parks. Noise measurements showed that in all parks, between 50 and 100% of the points evaluated displayed sound levels above 55dB(A), the level established by Curitiba's Municipal Law 10625 as the limit permitted for green areas during daytime. Other conditions in the parks' environments were also identified, which interfere jointly in the soundscape and in its perception, such as spatial factors of each park, the urban setting of its surroundings, and the sounds originating inside the parks.
Development of Active Noise Control System for Quieting Transformer Noise
Energy Technology Data Exchange (ETDEWEB)
Lee, Bok Kyu; Song, Seik Young; Choi, Huo Yul [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yun, Dae Hea; Lee, Hyuk Jae [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)
1997-12-31
The passive noise control technique made use of sound-absorbing or soundproofing materials, so it required a large area and high cost for installation and had a drawback of poor performance at low frequency. Compared to this, the Active Noise Control attenuates noise sound pressure by using secondary source which has same performance ay low-frequency. Furthermore, it is able to save space and expenses. - research on adaptive algorithms - evaluation of global attenuation of the control - computer simulation - real-time Active Noise Control System Hardware Implementation - ANC system setting in the noisy area.
Vibration and noise analysis in nuclear power plants
International Nuclear Information System (INIS)
1974-12-01
Results of the investigations on noise and vibration analysis are presented as a follow-up study of the work published in ''On-load Surveillance of Nuclear Power Plant Components by Noise and Vibration Analysis'' EUR 5036 e. The state of the art in on-load surveillance techniques of light water reactors is given by extending the preceding studies to investigations of boiling water reactors and by summarizing the latest results of pressurized water reactors, the basis being experimental and theoretical work performed by the different organizations involved in preparing this report. Finally, some developments with respect to measurement and identification methods are discussed
Field-Deployable Acoustic Digital Systems for Noise Measurement
Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.
2000-01-01
Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.
Spectral data de-noising using semi-classical signal analysis: application to localized MRS
Laleg-Kirati, Taous-Meriem
2016-09-05
In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these \\'shaped like\\' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.
Spectral data de-noising using semi-classical signal analysis: application to localized MRS
Laleg-Kirati, Taous-Meriem; Zhang, Jiayu; Achten, Eric; Serrai, Hacene
2016-01-01
In this paper, we propose a new post-processing technique called semi-classical signal analysis (SCSA) for MRS data de-noising. Similar to Fourier transformation, SCSA decomposes the input real positive MR spectrum into a set of linear combinations of squared eigenfunctions equivalently represented by localized functions with shape derived from the potential function of the Schrodinger operator. In this manner, the MRS spectral peaks represented as a sum of these 'shaped like' functions are efficiently separated from noise and accurately analyzed. The performance of the method is tested by analyzing simulated and real MRS data. The results obtained demonstrate that the SCSA method is highly efficient in localized MRS data de-noising and allows for an accurate data quantification.
Source modelling of train noise - Literature review and some initial measurements
Energy Technology Data Exchange (ETDEWEB)
Zhang Xuetao; Jonasson, Hans; Holmberg, Kjell
2000-07-01
A literature review of source modelling of railway noise is reported. Measurements on a special test rig at Surahammar and on the new railway line between Arlanda and Stockholm City are reported and analyzed. In the analysis the train is modelled as a number of point sources with or without directivity and each source is combined with analytical sound propagation theory to predict the sound propagation pattern best fitting the measured data. Wheel/rail rolling noise is considered to be the most important noise source. The rolling noise can be modelled as an array of moving point sources, which have a dipole-like horizontal directivity and some kind of vertical directivity. In general it is necessary to distribute the point sources on several heights. Based on our model analysis the source heights for the rolling noise should be below the wheel axles and the most important height is about a quarter of wheel diameter above the railheads. When train speeds are greater than 250 km/h aerodynamic noise will become important and even dominant. It may be important for low frequency components only if the train speed is less than 220 km/h. Little data are available for these cases. It is believed that aerodynamic noise has dipole-like directivity. Its spectrum depends on many factors: speed, railway system, type of train, bogies, wheels, pantograph, presence of barriers and even weather conditions. Other sources such as fans, engine, transmission and carriage bodies are at most second order noise sources, but for trains with a diesel locomotive engine the engine noise will be dominant if train speeds are less than about 100 km/h. The Nord 2000 comprehensive model for sound propagation outdoors, together with the source model that is based on the understandings above, can suitably handle the problems of railway noise propagation in one-third octave bands although there are still problems left to be solved.
Application of a Beamforming Technique to the Measurement of Airfoil Leading Edge Noise
Directory of Open Access Journals (Sweden)
Thomas Geyer
2012-01-01
Full Text Available The present paper describes the use of microphone array technology and beamforming algorithms for the measurement and analysis of noise generated by the interaction of a turbulent flow with the leading edge of an airfoil. Experiments were performed using a setup in an aeroacoustic wind tunnel, where the turbulent inflow is provided by different grids. In order to exactly localize the aeroacoustic noise sources and, moreover, to separate airfoil leading edge noise from grid-generated noise, the selected deconvolution beamforming algorithm is extended to be used on a fully three-dimensional source region. The result of this extended beamforming are three-dimensional mappings of noise source locations. Besides acoustic measurements, the investigation of airfoil leading edge noise requires the measurement of parameters describing the incident turbulence, such as the intensity and a characteristic length scale or time scale. The method used for the determination of these parameters in the present study is explained in detail. To demonstrate the applicability of the extended beamforming algorithm and the experimental setup as a whole, the noise generated at the leading edge of airfoils made of porous materials was measured and compared to that generated at the leading edge of a common nonporous airfoil.
Investigation and measures to noise on spectroscopic measurement system in JT-60U
International Nuclear Information System (INIS)
Nagaya, Susumu; Kubo, Hirotaka; Sugie, Tatsuo; Onizawa, Masami; Kawai, Isao; Nakata, Hisao.
1997-11-01
Breakdown of a negative-ion-based neutral beam injection (N-NBI) has caused noise trouble to several systems. The control circuit of a spectroscopic measurement system had not well worked because of the noise. The noise has been measured by an optical-fiber isolation system during operation of JT-60U. The amplitude and the frequency were 15-18 V and 15 MHz respectively. The transmission noise has been reduced by putting ferrite cores to all cables connecting with the control circuits. As a result, the trouble with the spectroscopic measurement system has completely been solved. Adding condensers and resistors to the circuit was not effective to reduce the noise. (author)
Yesterday's noise - today's signal
International Nuclear Information System (INIS)
Serdula, K.J.
1978-01-01
Plant performance can be improved by noise analysis. This paper describes noise characteristics, imposed noise and response functions, a case history of cost benefits derived from application of noise analysis techniques, areas for application of noise analysis techniques with special reference to the Gentilly-1 nuclear generating station, and the validity of noise measurement results. (E.C.B.)
Furuya, Yasubumi; Tamoto, Shizuka; Kubota, Takeshi; Okazaki, Teiko; Hagood, Nesbitt W.; Spearing, S. Mark
2002-07-01
The possibility to detect the phase transformation with martensites by heating or cooling as well as stress-loading in ferromagnetic shape memory Fe-30at percent Pd alloy thin foil by using magnetic Markhausen noise sensor was studied. MBHN is caused by the irregular interactions between magnetic domain and thermally activated martensite twins during magnetization. In general, the envelope of the MBHN voltage versus time signals in Fe-29at percent Pd ribbon showed two peaks during magnetization, where secondary peak at intermediate state of magnetization process decreased with increasing temperature, while the MBHN envelopes in pure iron did not change with increasing temperature. The variety of MBHN due to the phase transformation was apt to arise at higher frequency part of spectrum during intermediate state of magnetization process and it decreased with disappearance of martensite twins. Besides, MBHN increased monotonically with increasing loading stress and then, it decreased with unloading, however MBHN showed large hysteresis between loading and unloading passes. Based on the experimental results from MBHN measurements for both thermoelastic and stress-induced martensite phase transformations in Fe-30at percent Pd ribbon samples, MBHN method seems a useful technique to non-destructive evaluation of martensite phase transformation of ferromagnetic shape memory alloy.
Measurement noise of a point autofocus surface topography instrument
DEFF Research Database (Denmark)
Feng, Xiaobing; Quagliotti, Danilo; Maculotti, Giacomo
Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment.......Optical instruments for areal topography measurement can be especially sensitive to noise when scanning is required. Such noise has different sources, including those internally generated and external sources from the environment....
RF Shot Noise Measurements in Au Atomic-scale Junctions
Chen, Ruoyu
Conduction electrons are responsible for many physical or chemical phenomena in condensed matter systems, and their behavior can be directly studied by electronic transport measurements. In conventional transport measurements, conductance or resistance is usually the focus. Such a measurement can be as simple as a quick two terminal DC check by a multi-meter, or a more sophisticated lock-in measurement of multiple higher harmonic signals synchronized to different frequencies. Conductance carries direct information about the quasi-particle density of states and the local electronic distributions, which are usually Fermi-Dirac distribution. Conductance is modified or dominated by scattering from defacts or interfaces, and could also reflect the spin-spin exchange interactions or inelastic couplings with phonons and photons. Naturally one can ask the question: is there anything else we can measure electronically, which carries extra information that a conductance measurement does not provide? One answer to this question is the electronic noise. While the conductance reflects the average charge conduction ability of a system, noise describes how the physical quantities fluctuate around their average values. Some of the fluctuations carry information about their physical origins. This thesis will focus on one particular type of the electronic noise shot noise, but other types of noise will also be introduced and discussed. We choose to measure the radio frequency component of shot noise, combining with a modulated lock-in detection technique, which provides a method to largely get rid of other unwanted low-frequency noise signals. Au atomic-scale junctions are the systems we studied here. Au is relatively well understood and will not generate too many complications, so it's ideal as the first platform for us to understand both shot noise itself and our RF technique. On the other hand, the atomic scale raises fundamental questions about electronic transport and local
Measurement and analysis of the neutron noise of the pool research reactor at IPEN
International Nuclear Information System (INIS)
Simoes, Graciete Pedro
1979-01-01
Variations in the neutron density or power of a nuclear reactor (the neutron noise) operating at nominally constant power are generally random and can only be described in terms of statistical parameters. Random variations in the power of a power reactor are produced by one or more driving functions. In this work the neutron noise of the pool reactor IEAR-1 (2 MW nominal power) has been studied using two compensated ionization chambers ( Westinghouse VJL6377) and related to three possible-driving functions, namely vibration of the control bar and reactor support bridge and the temperature of the water entering the core. The CIC detectors were located in rigid tubes in turn positively located in the reactor lattice plate. Conventional accelerometers were used. Temperature measurements were made with a NiCr/Ni thermocouple (wire diam ∼ 0.2mm) located 10 mm above the top of a fuel element. Although the correlation between the measured neutron signals was high ( > 0,4) for frequencies in the range 0 to 10 Hz no resonances were identified in the neutron noise. A significant correlation (> 0,4) between the control bar acceleration and the neutron flux was obtained in the frequency range 0 to 10 Hz. The measured correlation between the neutron noise and both the bridge vibration and the reactor water inlet temperature was insignificant. (author)
Noise characteristics analysis of short wave infrared InGaAs focal plane arrays
Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei
2017-09-01
The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.
Synchrosqueezing-based Transform and its Application in Seismic Data Analysis
Directory of Open Access Journals (Sweden)
Saman Gholtashi
2015-10-01
Full Text Available Seismic waves are non-stationary due to its propagation through the earth. Time-frequency transforms are suitable tools for analyzing non-stationary seismic signals. Spectral decomposition can reveal the non-stationary characteristics which cannot be easily observed in the time or frequency representation alone. Various types of spectral decomposition methods have been introduced by some researchers. Conventional spectral decompositions have some restrictions such as Heisenberg uncertainty principle and cross-terms which limit their applications in signal analysis. In this paper, synchrosqueezingbased transforms were used to overcome the mentioned restrictions; also, as an application of this new high resolution time-frequency analysis method, it was applied to random noise removal and the detection of low-frequency shadows in seismic data. The efficiency of this method is evaluated by applying it to both synthetic and real seismic data. The results show that the mentioned transform is a proper tool for seismic data processing and interpretation.
Application of autoregressive moving average model in reactor noise analysis
International Nuclear Information System (INIS)
Tran Dinh Tri
1993-01-01
The application of an autoregressive (AR) model to estimating noise measurements has achieved many successes in reactor noise analysis in the last ten years. The physical processes that take place in the nuclear reactor, however, are described by an autoregressive moving average (ARMA) model rather than by an AR model. Consequently more correct results could be obtained by applying the ARMA model instead of the AR model to reactor noise analysis. In this paper the system of the generalised Yule-Walker equations is derived from the equation of an ARMA model, then a method for its solution is given. Numerical results show the applications of the method proposed. (author)
Measuring transformers in energy measurement technology
International Nuclear Information System (INIS)
Vock, E.
2009-01-01
This article takes a look at the use of measurement transformers in energy measurement installations in the light of electricity market liberalisation. Such equipment is quoted as being long living and capital-intensive. Increasing requirements on the installation of measurement equipment between partners in a liberalised market are examined. The requirements placed by electricity market legislation on the systems for the various grid voltage levels are discussed. Both current and voltage measurement transformers are looked at and the requirements placed on their accuracy are discussed in detail.
Noise Analysis studies with neural networks
International Nuclear Information System (INIS)
Seker, S.; Ciftcioglu, O.
1996-01-01
Noise analysis studies with neural network are aimed. Stochastic signals at the input of the network are used to obtain an algorithmic multivariate stochastic signal modeling. To this end, lattice modeling of a stochastic signal is performed to obtain backward residual noise sources which are uncorrelated among themselves. There are applied together with an additional input to the network to obtain an algorithmic model which is used for signal detection for early failure in plant monitoring. The additional input provides the information to the network to minimize the difference between the signal and the network's one-step-ahead prediction. A stochastic algorithm is used for training where the errors reflecting the measurement error during the training are also modelled so that fast and consistent convergence of network's weights is obtained. The lattice structure coupled to neural network investigated with measured signals from an actual power plant. (authors)
Mobile Communication Devices, Ambient Noise, and Acoustic Voice Measures.
Maryn, Youri; Ysenbaert, Femke; Zarowski, Andrzej; Vanspauwen, Robby
2017-03-01
The ability to move with mobile communication devices (MCDs; ie, smartphones and tablet computers) may induce differences in microphone-to-mouth positioning and use in noise-packed environments, and thus influence reliability of acoustic voice measurements. This study investigated differences in various acoustic voice measures between six recording equipments in backgrounds with low and increasing noise levels. One chain of continuous speech and sustained vowel from 50 subjects with voice disorders (all separated by silence intervals) was radiated and re-recorded in an anechoic chamber with five MCDs and one high-quality recording system. These recordings were acquired in one condition without ambient noise and in four conditions with increased ambient noise. A total of 10 acoustic voice markers were obtained in the program Praat. Differences between MCDs and noise condition were assessed with Friedman repeated-measures test and posthoc Wilcoxon signed-rank tests, both for related samples, after Bonferroni correction. (1) Except median fundamental frequency and seven nonsignificant differences, MCD samples have significantly higher acoustic markers than clinical reference samples in minimal environmental noise. (2) Except median fundamental frequency, jitter local, and jitter rap, all acoustic measures on samples recorded with the reference system experienced significant influence from room noise levels. Fundamental frequency is resistant to recording system, environmental noise, and their combination. All other measures, however, were impacted by both recording system and noise condition, and especially by their combination, often already in the reference/baseline condition without added ambient noise. Caution is therefore warranted regarding implementation of MCDs as clinical recording tools, particularly when applied for treatment outcomes assessments. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Neurally based measurement and evaluation of environmental noise
Soeta, Yoshiharu
2015-01-01
This book deals with methods of measurement and evaluation of environmental noise based on an auditory neural and brain-oriented model. The model consists of the autocorrelation function (ACF) and the interaural cross-correlation function (IACF) mechanisms for signals arriving at the two ear entrances. Even when the sound pressure level of a noise is only about 35 dBA, people may feel annoyed due to the aspects of sound quality. These aspects can be formulated by the factors extracted from the ACF and IACF. Several examples of measuring environmental noise—from outdoor noise such as that of aircraft, traffic, and trains, and indoor noise such as caused by floor impact, toilets, and air-conditioning—are demonstrated. According to the noise measurement and evaluation, applications for sound design are discussed. This book provides an excellent resource for students, researchers, and practitioners in a wide range of fields, such as the automotive, railway, and electronics industries, and soundscape, architec...
Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement
Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu
2017-02-01
Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.
International Nuclear Information System (INIS)
EDGEMON, G.L.
2003-01-01
Electrochemical noise has been used a t the Hanford Site for a number of years to monitor in real time for pitting corrosion and stress corrosion cracking (SCC) mechanisms in high level nuclear waste tanks. Currently the monitoring technique has only been implemented on three of the 177 underground storage tanks on the site. Widespread implementation of the technique has been held back for of a number of reasons, including issues around managing the large volume of data associated with electrochemical noise and the complexity of data analysis. Expert review of raw current and potential measurements is the primary form of data analysis currently used at the Hanford site. This paper demonstrates the application of an on-line data filtering and analysis technique that could allow data from field applications of electrochemical noise to be managed by exception, transforming electrochemical noise data into a process parameter and focusing data analysis efforts on the important data. Results of the analysis demonstrate a data compression rate of 95%; that is, only 5% of the data would require expert analysis if such a technique were implemented. It is also demonstrated that this technique is capable of identifying key periods where localized corrosion activity is apparent
Noise measurements of highway pavements in Texas.
2009-10-01
This report presents the results of noise testing performed on Texas pavements between May of 2006 and the : summer of 2008. Two field test methodologies were used: roadside noise measurement with SPL meters and onvehicle : sound intensity measuremen...
Temporal Noise Analysis of Charge-Domain Sampling Readout Circuits for CMOS Image Sensors
Directory of Open Access Journals (Sweden)
Xiaoliang Ge
2018-02-01
Full Text Available This paper presents a temporal noise analysis of charge-domain sampling readout circuits for Complementary Metal-Oxide Semiconductor (CMOS image sensors. In order to address the trade-off between the low input-referred noise and high dynamic range, a Gm-cell-based pixel together with a charge-domain correlated-double sampling (CDS technique has been proposed to provide a way to efficiently embed a tunable conversion gain along the read-out path. Such readout topology, however, operates in a non-stationery large-signal behavior, and the statistical properties of its temporal noise are a function of time. Conventional noise analysis methods for CMOS image sensors are based on steady-state signal models, and therefore cannot be readily applied for Gm-cell-based pixels. In this paper, we develop analysis models for both thermal noise and flicker noise in Gm-cell-based pixels by employing the time-domain linear analysis approach and the non-stationary noise analysis theory, which help to quantitatively evaluate the temporal noise characteristic of Gm-cell-based pixels. Both models were numerically computed in MATLAB using design parameters of a prototype chip, and compared with both simulation and experimental results. The good agreement between the theoretical and measurement results verifies the effectiveness of the proposed noise analysis models.
Road Traffic Noise Pollution Analysis for Cernavoda City
Manea, L.; Manea, A.; Florea, D.; Tarulescu, S.
2017-10-01
In the present paper was studied the noise pollution in Cernavodă city. The noise measurements were made for nine intersections from different city areas. Noise measurements were taken for three chosen routes with high population density, heavy traffic, commercial and residential buildings. Average, maximum and minimum values were collected and compared with standards. The impact of road traffic noise on the community depends on various factors such as road location and design, land use planning measures, building design, traffic composition, driver behaviour and the relief. In the study area 9 locations are identified to measure noise level. By using sound level meter noise levels are measured at different peak sessions i.e. morning, afternoon and evening. The presented values were collected for evening rush hour.
Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua
2016-07-01
On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.
Analysis of disabled HVDC transformer
International Nuclear Information System (INIS)
Hestad, Oeystein; Linhjell, Dag
2006-02-01
An examination of three windings from a disabled Hvdc transformer. The windings were dismantled at the company ABB Drammen. Test were taken and brought to Trondheim for further analysis. Of the three windings, two were strongly contaminated by copper sulphite while the last one recently had been replaced after a previous breakdown and only showed small signs of copper sulphite contamination. The following analyses have been conducted: visual observation of copper sulphite contamination on the conductors/paper, electron microscope analysis of the surface of selected bits of paper, measuring of the conducing ability by means of examining paper samples of varying degrees of contamination, and GC-AED and combustion analysis of the disabled transformer's oil and the oil from a 'healthy' transformer. The visual examination showed a strong contamination of the upper (hot) parts of the windings as well as two areas just below the middle of the windings. The contamination was especially strong under the buttons and between the conductors where the oil flow is reduced compared to the areas where the paper is in direct contact with free flow of oil. The degree of contamination on the paper proved to be directly correlated to the electric conducing ability through the paper and the amount of copper and sulphur measured in the electron microscope analysis. Copper sulphite grows through the paper, but the 'contamination' between the layers of paper is fastest through the gaps. When copper sulphite grows through the paper via the gaps, a current causes carbonisation of the paper in the area, and finally a short circuit between the windings. A comparison between the two oil samples that were analyzed by GC-AED and combustion analysis showed that the two oils probably were similar to begin with. The total amount of sulphur components in the oil from the disabled transformer has thus increased during the lifetime of the transformer. The new sulphur components have probably been
International Nuclear Information System (INIS)
Dassen, T.; Parchen, R.; Guidati, G.; Wagner, S.; Kang, S.; Khodak, A.E.
1998-01-01
In the ongoing JOULE-III project 'Development of Design Tools for Reduced Aerodynamic Noise Wind Turbines (DRAW)', prediction codes for inflow-turbulence (IT) noise and turbulent boundary layer trailing-edge (TE) noise, are developed and validated. It is shown that the differences in IT noise radiation between airfoils having a different shape, are correctly predicted. The first, preliminary comparison made between predicted and measured TE noise spectra yields satisfactory results. 17 refs
Applications of noise analysis to nuclear safety
International Nuclear Information System (INIS)
Aguilar Martinez, Omar
2000-01-01
Noise Analysis techniques (analysis of the fluctuation of physical parameters) have been successfully applied to the operational vigilance of the technical equipment that plays a decisive role in the production cycle of a very complex industry. Although fluctuation measurements in nuclear installations started almost at the start of the nuclear era (see works by Feynman and Rossi on the development of neutron methodology), only recently have neutron noise diagnostic applications begun to be a part of the standard procedures for the performance of some modern nuclear installations. Following the relevant technical advances made in information sciences and analogical electronics, measuring the fluctuation of physical parameters has become a very effective tool for detecting, guarding and following up possible defects in a nuclear system. As the processing techniques for the fluctuation of a nuclear reactor's physical-neutron parameters have evolved (temporal and frequency analysis, multi-parameter self -regression analysis, etc.), the applications of the theory of non-lineal dynamics and chaos theory have progressed by focusing on the problem from another perspective. This work reports on those nuclear applications of noise analysis that increase nuclear safety in all types of nuclear facilities and that have been carried out by the author over the last decade, such as: -Void Force Critical Set Applications (Zero Power Reactor Applications, Central Institute of Physical Research, Budapest, Hungary); -Research Reactor Applications (Triga Mark III Reactor, National Institute of Nuclear Research, ININ, Mexico); -Power Reactor Applications in a Nuclear Power Plant (First Circuit of Block II, Paks Nuclear Center, Hungary); -Second Loop applications in a Nuclear Power Plant (Block I Paks Nuclear Center, Hungary; Block II Kalinin Nuclear Center, Russia); -Shield System Applications for the Transport of Radioisotopes (Nuclear Technology Center, Havana, Cuba) New trends in
Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.
Berens, R J; Weigle, C G
1995-10-01
To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.
Analysis on h-harmonics and Dunkl transforms
2015-01-01
As a unique case in this Advanced Courses book series, the authors have jointly written this introduction to h-harmonics and Dunkl transforms. These are extensions of the ordinary spherical harmonics and Fourier transforms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The theory, originally introduced by C. Dunkl, has been expanded on by many authors over the last 20 years. These notes provide an overview of what has been developed so far. The first chapter gives a brief recount of the basics of ordinary spherical harmonics and the Fourier transform. The Dunkl operators, the intertwining operators between partial derivatives and the Dunkl operators are introduced and discussed in the second chapter. The next three chapters are devoted to analysis on the sphere, and the final two chapters to the Dunkl transform. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms. The need for background knowledge on reflection groups is kept to a...
Energy Technology Data Exchange (ETDEWEB)
Lee, Soyoung [Department of Radiation Oncology, University Hospitals Case and Medical Center, Cleveland, Ohio 44106 (United States); Yan, Guanghua; Bassett, Philip; Samant, Sanjiv, E-mail: samant@ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32608 (United States); Gopal, Arun [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States)
2016-09-15
Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanel of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two
Measurement of vibration mode shape by using Hilbert transform
International Nuclear Information System (INIS)
Kang, Min Sig
2001-01-01
This paper concerns on modal analysis of mechanical structures by using a continuous scanning laser Doppler vibrometer. In modal analysis the Hilbert transform based approach is superior to the Fourier transform based approach because of its fine accuracy and its flexible experimental settings. In this paper the Hilbert transform based approach is extended to measure area mode shape data of a structure by simply modifying the scanning pattern ranging the entire surface of the structure. The effectiveness of this proposed method is illustrated along with results of numerical simulation for a rectangular plate
Uncorrelated Noise in Turbulence Measurements
DEFF Research Database (Denmark)
Kristensen, Leif; Lenschow, D. H.
1985-01-01
of atmospheric variability. The authors assume that the measured signal is a representation of a variable that is continuous on the scale of interest in the atmosphere. Uncorrelated noise affects the autovariance function (or, equivalently, the structure function) only between zero and the first lag, while its...... effect is smeared across the entire power spectrum. For this reason, quantities such as variance dissipation may be more conveniently estimated from the structure function than from the spectrum. The modeling results are confirmed by artificially modifying a test time series with Poisson noise...
Debuncher Momentum Cooling Systems Signal to Noise Measurements
Energy Technology Data Exchange (ETDEWEB)
Pasquinelli, Ralph J.; /Fermilab
2001-12-18
The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.
Debuncher Momentum Cooling Systems Signal to Noise Measurements
International Nuclear Information System (INIS)
Pasquinelli, Ralph J.
2001-01-01
The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.
Cross-band noise model refinement for transform domain Wyner–Ziv video coding
DEFF Research Database (Denmark)
Huang, Xin; Forchhammer, Søren
2012-01-01
TDWZ video coding trails that of conventional video coding solutions, mainly due to the quality of side information, inaccurate noise modeling and loss in the final coding step. The major goal of this paper is to enhance the accuracy of the noise modeling, which is one of the most important aspects...... influencing the coding performance of DVC. A TDWZ video decoder with a novel cross-band based adaptive noise model is proposed, and a noise residue refinement scheme is introduced to successively update the estimated noise residue for noise modeling after each bit-plane. Experimental results show...... that the proposed noise model and noise residue refinement scheme can improve the rate-distortion (RD) performance of TDWZ video coding significantly. The quality of the side information modeling is also evaluated by a measure of the ideal code length....
Noise Analysis of Switched-Current Circuits
DEFF Research Database (Denmark)
Jørgensen, Ivan Harald Holger; Bogason, Gudmundur
1998-01-01
The understanding of noise in analog sampled data systems is vital for the design of high resolution circuitry. In this paper a general description of sampled and held noise is presented. The noise calculations are verified by measurements on an analog delay line implemented using switched...
International Nuclear Information System (INIS)
Valentine, T.E.; Mihalczo, J.T.
1993-01-01
The 252 Cf-source-driven noise analysis method has been used in measurements for subcritical configurations of fissile systems for a variety of applications. Measurements of 25 fissile systems have been performed with a wide variety of materials and configurations. This method has been applied to measurements for (1) initial fuel loading of reactors, (2) quality assurance of reactor fuel elements, (3) fuel preparation facilities, (4) fuel processing facilities, (5) fuel storage facilities, (6) zero-power testing of reactors, and (7) verification of calculational methods for assemblies with the neutron k 252 Cf source and commercially available detectors was feasible and to determine if the measurement could characterize the ability of the concrete to isolate the fissile material
Electrochemical corrosion potential and noise measurement in high temperature water
International Nuclear Information System (INIS)
Fong, Clinton; Chen, Yaw-Ming; Chu, Fang; Huang, Chia-Shen
2000-01-01
Hydrogen water chemistry (HWC) is one of the most important methods in boiling water reactor(BWR) system to mitigate and prevent stress corrosion cracking (SCC) problems of stainless steel components. Currently, the effectiveness of HWC in each BWR is mainly evaluated by the measurement of electrochemical corrosion potentials (ECP) and on-line monitoring of SCC behaviors of stainless steels. The objective of this work was to evaluate the characteristics and performance of commercially available high temperature reference electrodes. In addition, SCC monitoring technique based on electrochemical noise analysis (ECN) was also tested to examine its crack detection capability. The experimental work on electrochemical corrosion potential (ECP) measurements reveals that high temperature external Ag/AgCl reference electrode of highly dilute KCl electrolyte can adequately function in both NWC and HWC environments. The high dilution external Ag/AgCl electrode can work in conjunction with internal Ag/AgCl reference electrode, and Pt electrode to ensure the ECP measurement reliability. In simulated BWR environment, the electrochemical noise tests of SCC were carried out with both actively and passively loaded specimens of type 304 stainless steel with various electrode arrangements. From the coupling current and corrosion potential behaviors of the passive loading tests during immersion test, it is difficult to interpret the general state of stress corrosion cracking based on the analytical results of overall current and potential variations, local pulse patterns, statistical characteristics, or power spectral density of electrochemical noise signals. However, more positive SCC indication was observed in the power spectral density analysis. For aqueous environments of high solution impedance, successful application of electrochemical noise technique for SCC monitoring may require further improvement in specimen designs and analytical methods to enhance detection sensitivity
Measuring low-frequency noise indoors
DEFF Research Database (Denmark)
Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin
2008-01-01
that is exceeded in 10% of the volume of a room (L10) is proposed as a rational and objective target for a measurement method. In Sweden and Denmark rules exist for measuring low-frequency noise indoors. The performance of these procedures was investigated in three rooms. The results from the Swedish method were...
Noise in the Measurement of Light with Photomultipliers
Energy Technology Data Exchange (ETDEWEB)
Robben, F
1968-05-15
In order to be able to compare measurements derived from the anode current of a photomultiplier with measurement derived from photoelectron pulse counting, a systematic investigation of the properties of some photomultiplier tubes has been made. This has led to a correlation of the properties of a photomultiplier based on the quantum efficiency {eta}, the gain G, a photoelectron loss factor S and an effective dark rate D. In terms of these quantities the signal to noise ratio of an experimental measurement can be calculated, given the light flux and measurement technique. The fluctuations in a photomultiplier output are divided into two parts; Poisson fluctuations, and those due to excess noise. It is experimentally shown, from measurements on a 931A photomultiplier, that the excess noise exceeds the Poisson fluctuations only at very low frequencies, or long DC measurement times (> 10 s), for both pulse counting and anode current measurements. The Poisson fluctuations are found to be approximately the same for both pulse counting and anode current measurements, at both high light levels where the dark current, or dark pulses, are negligible, as well as at low light levels where the dark current is dominant. The excess noise is found to be somewhat greater in the case of anode current measurements. Thus both pulse counting and anode current measurement techniques have nearly identical noise properties, as far as the photomultiplier is concerned, and selection of either experimental technique depends primarily on the properties of the electronic equipment. By use of a synchronous detection technique, the variance of the pulse count was measured experimentally to an accuracy of {+-} 4 %, and was shown to be in agreement with that predicted by Poisson statistics.
International Nuclear Information System (INIS)
Okura, Yuki; Futamase, Toshifumi
2013-01-01
This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging, but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of ν ∼ 11.7.
Noise Analysis of Switched-Current Circuits
DEFF Research Database (Denmark)
Jørgensen, Ivan Harald Holger; Bogason, Gudmundur
1999-01-01
The understanding of noise in analog sampled data systems is vital for the design of high resolution circuitry in the discrete time domain. In this paper a general description of sampled and held noise is presened. The noise calculations are verified by measurements on an analog delay line implem...
Dai, Yu; Xue, Yuan; Zhang, Jianxun
2016-01-01
Impulsive noise caused by some random events has the main character of short rise-time and wide frequency spectrum range, so it has the potential to degrade the performance and reliability of the harmonic estimation. This paper focuses on the harmonic estimation procedure based on continuous wavelet transform (CWT) when the analyzed signal is corrupted by the impulsive noise. The digital CWT of both the time-varying sinusoidal signal and the impulsive noise are analyzed, and there are two cross ridges in the time-frequency plane of CWT, which are generated by the signal and the noise separately. In consideration of the amplitude of the noise and the number of the spike event, two inequalities are derived to provide limitations on the wavelet parameters. Based on the amplitude distribution of the noise, the optimal wavelet parameters determined by solving these inequalities are used to suppress the contamination of the noise, as well as increase the amplitude of the ridge corresponding to the signal, so the parameters of each harmonic component can be estimated accurately. The proposed procedure is applied to a numerical simulation and a bone vibration signal test giving satisfactory results of stationary and time-varying harmonic parameter estimation.
Study of the road traffic noise in Erzurum-Turkey
Directory of Open Access Journals (Sweden)
Mahir Gökdag
2012-12-01
Full Text Available Road traffic noise affects a large number of people, especially in urban areas and is generally a major source of complaints. This paper refers to a study of the problem of traffic noise on roads which have been transformed into streets in the city of Erzurum. Noise levels are measured and the impacts suffered by the community are documented. Manual noise measurements were made along 12 streets exploring sources of maximum noise levels. Noise from different types of vehicles driven in a realistic way in inner city traffic was measured. The results from the measurements showed that, of 750 measured events, approximately 5% of the vehicles exceeded 70 dB(A and less than 2% exceeded 80 dB(A maximum noise level. In summary, the result showed that the most important vehicle component as regards the maximum noise level in inner city traffic was a medium-weight vehicle. Among the higher noise levels measured (>80 dB(A this type of vehicle was dominant.
Analysis of broadband aerodynamic noise from VS45
Energy Technology Data Exchange (ETDEWEB)
Dundabin, P. [Renewable Energy Systems Ltd., Glasgow, Scotland (United Kingdom)
1997-12-31
This paper describes the analysis of acoustic data taken from the VS45 at Kaiser-Wilhelm-Koog. The aim was to investigate the dependence of aerodynamic noise on tip speed and angle of attack. In particular, the dependence of noise in individual third octave bands on these variable is examined. The analysis is divided into 3 sections: data selection, data checks and analysis of broadband nacelle noise; analysis of broadband aerodynamic noise and its sensitivity to tip speed and angle of attack. (LN)
Chen, Fei; Loizou, Philipos C
2010-12-01
The normalized covariance measure (NCM) has been shown previously to predict reliably the intelligibility of noise-suppressed speech containing non-linear distortions. This study analyzes a simplified NCM measure that requires only a small number of bands (not necessarily contiguous) and uses simple binary (1 or 0) weighting functions. The rationale behind the use of a small number of bands is to account for the fact that the spectral information contained in contiguous or nearby bands is correlated and redundant. The modified NCM measure was evaluated with speech intelligibility scores obtained by normal-hearing listeners in 72 noisy conditions involving noise-suppressed speech corrupted by four different types of maskers (car, babble, train, and street interferences). High correlation (r = 0.8) was obtained with the modified NCM measure even when only one band was used. Further analysis revealed a masker-specific pattern of correlations when only one band was used, and bands with low correlation signified the corresponding envelopes that have been severely distorted by the noise-suppression algorithm and/or the masker. Correlation improved to r = 0.84 when only two disjoint bands (centered at 325 and 1874 Hz) were used. Even further improvements in correlation (r = 0.85) were obtained when three or four lower-frequency (<700 Hz) bands were selected.
Measurement of luminance noise and chromaticity noise of LCDs with a colorimeter and a color camera
Roehrig, H.; Dallas, W. J.; Krupinski, E. A.; Redford, Gary R.
2007-09-01
This communication focuses on physical evaluation of image quality of displays for applications in medical imaging. In particular we were interested in luminance noise as well as chromaticity noise of LCDs. Luminance noise has been encountered in the study of monochrome LCDs for some time, but chromaticity noise is a new type of noise which has been encountered first when monochrome and color LCDs were compared in an ROC study. In this present study one color and one monochrome 3 M-pixel LCDs were studied. Both were DICOM calibrated with equal dynamic range. We used a Konica Minolta Chroma Meter CS-200 as well as a Foveon color camera to estimate luminance and chrominance variations of the displays. We also used a simulation experiment to estimate luminance noise. The measurements with the colorimeter were consistent. The measurements with the Foveon color camera were very preliminary as color cameras had never been used for image quality measurements. However they were extremely promising. The measurements with the colorimeter and the simulation results showed that the luminance and chromaticity noise of the color LCD were larger than that of the monochrome LCD. Under the condition that an adequate calibration method and image QA/QC program for color displays are available, we expect color LCDs may be ready for radiology in very near future.
Noise in NC-AFM measurements with significant tip–sample interaction
Directory of Open Access Journals (Sweden)
Jannis Lübbe
2016-12-01
Full Text Available The frequency shift noise in non-contact atomic force microscopy (NC-AFM imaging and spectroscopy consists of thermal noise and detection system noise with an additional contribution from amplitude noise if there are significant tip–sample interactions. The total noise power spectral density DΔf(fm is, however, not just the sum of these noise contributions. Instead its magnitude and spectral characteristics are determined by the strongly non-linear tip–sample interaction, by the coupling between the amplitude and tip–sample distance control loops of the NC-AFM system as well as by the characteristics of the phase locked loop (PLL detector used for frequency demodulation. Here, we measure DΔf(fm for various NC-AFM parameter settings representing realistic measurement conditions and compare experimental data to simulations based on a model of the NC-AFM system that includes the tip–sample interaction. The good agreement between predicted and measured noise spectra confirms that the model covers the relevant noise contributions and interactions. Results yield a general understanding of noise generation and propagation in the NC-AFM and provide a quantitative prediction of noise for given experimental parameters. We derive strategies for noise-optimised imaging and spectroscopy and outline a full optimisation procedure for the instrumentation and control loops.
Investigation into the Dependence of Noise Generated By Standing Cars on the Engine Power
Directory of Open Access Journals (Sweden)
Julius Gineika
2012-12-01
Full Text Available Ambient noise harms a number of citizens in Europe. The major sources of environmental noise are that generated by cars in streets, parking lots, railway lines and airports as well as noise from local sources (fans, transformers. According to the methodology for noise measurement, engine testing has been carried out. The conducted analysis has been focused on engine capacity and the distance between vehicles and equipment. Equivalent, maximum and minimum sound levels at different frequencies have been measured accepting that errors may range up to 2 %. Maximum sound level has been reached using the engine of 2000 cm3 petrol capacity. At a half-meter distance, the equivalent sound level reaches 89 dB(A, whereas the noise level decreases moving away from the car. The obtained results of tested cars disclose that according to engine capacity, the majority of the investigated cars are technically faulty and therefore significantly exceed noise levels.Article in Lithuanian
Analysis of noise on construction sites of high-rise buildings.
Barkokébas, Béda; Vasconcelos, Bianca M; Lago, Eliane Maria G; Alcoforador, Aline Fabiana P
2012-01-01
In the civil construction industry sector, it has been observed that the increasing use of machines has made tasks noisier and consequently caused hearing loss and had other adverse effects on workers. The objective of this study was to identify and assess the physical risks of noise present in activities undertaken in a construction company in order to propose control measures which will contribute to the management of health and safety within the company's organization. The methodology applied was based on verifying the characteristics of exposure to noise on construction sites, from an observation of sources which generated noise and making measurements of sound pressure levels emitted by these sources. The data was then analyzed and compared with the recommended performance levels established in control measures. As a result, it was found that some machines and equipment used in civil construction often generate noise above the acceptable levels and as such, in these cases, various control measures have been proposed. It is believed that the use of management techniques is the most effective way to assess risk and to implement the preventive and corrective actions proposed, and allows for the analysis of sound pressure levels on an ongoing basis.
International Nuclear Information System (INIS)
Li Tianduo; Xiao Gang; Di Yuming; Han Feng; Qiu Xiaoling
1999-01-01
The γ energy spectrum is expanded in allied energy-frequency space. By the different characterization of the evolution of wavelet transform modulus maxima across scales between energy spectrum and noise, the algorithm for removing the noise from γ energy spectrum by analyzing the evolution of the wavelet transform maxima across scales is presented. The results show, in contrast to the methods in energy space or in frequency space, the method has the advantages that the peak of energy spectrum can be indicated accurately and the energy spectrum can be reconstructed with a good approximation
Noise evaluation of a point autofocus surface topography measuring instrument
Maculotti, Giacomo; Feng, Xiaobing; Galetto, Maurizio; Leach, Richard
2018-06-01
In this work, the measurement noise of a point autofocus surface topography measuring instrument is evaluated, as the first step towards establishing a route to traceability for this type of instrument. The evaluation is based on the determination of the metrological characteristics for noise as outlined in draft ISO specification standards by using a calibrated optical flat. The static noise and repeatability of the autofocus sensor are evaluated. The influence of environmental disturbances on the measured surface topography and the built-in software to compensate for such influences are also investigated. The instrument was found to have a measurement noise of approximately 2 nm or, when expressed with the measurement bandwidth, 0.4 nm for a single-point measurement.
Hall, Cierra M; McAnany, J Jason
2017-07-01
This study evaluated the extent to which different types of luminance noise can be used to target selectively the inferred magnocellular (MC) and parvocellular (PC) visual pathways. Letter contrast sensitivity (CS) was measured for three visually normal subjects for letters of different size (0.8°-5.3°) under established paradigms intended to target the MC pathway (steady-pedestal paradigm) and PC pathway (pulsed-pedestal paradigm). Results obtained under these paradigms were compared to those obtained in asynchronous static noise (a field of unchanging luminance noise) and asynchronous dynamic noise (a field of randomly changing luminance noise). CS was measured for letters that were high- and low-pass filtered using a range of filter cutoffs to quantify the object frequency information (cycles per letter) mediating letter identification, which was used as an index of the pathway mediating CS. A follow-up experiment was performed to determine the range of letter duration over which MC and PC pathway CS can be targeted. Analysis of variance indicated that the object frequencies measured under the static noise and steady-pedestal paradigms did not differ significantly (p ≥ 0.065), but differed considerably from those measured under the dynamic noise (both p noise, and in dynamic noise. These data suggest that the spatiotemporal characteristics of noise can be manipulated to target the inferred MC (static noise) and PC (dynamic noise) pathways. The results also suggest that CS within these pathways can be measured at long stimulus durations, which has potential importance in the design of future clinical CS tests.
Noise Reduction in Breath Sound Files Using Wavelet Transform Based Filter
Syahputra, M. F.; Situmeang, S. I. G.; Rahmat, R. F.; Budiarto, R.
2017-04-01
The development of science and technology in the field of healthcare increasingly provides convenience in diagnosing respiratory system problem. Recording the breath sounds is one example of these developments. Breath sounds are recorded using a digital stethoscope, and then stored in a file with sound format. This breath sounds will be analyzed by health practitioners to diagnose the symptoms of disease or illness. However, the breath sounds is not free from interference signals. Therefore, noise filter or signal interference reduction system is required so that breath sounds component which contains information signal can be clarified. In this study, we designed a filter called a wavelet transform based filter. The filter that is designed in this study is using Daubechies wavelet with four wavelet transform coefficients. Based on the testing of the ten types of breath sounds data, the data is obtained in the largest SNRdB bronchial for 74.3685 decibels.
Measured Noise from Small Unmanned Aerial Vehicles
Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand
2016-01-01
Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.
Estimation of noise-free variance to measure heterogeneity.
Directory of Open Access Journals (Sweden)
Tilo Winkler
Full Text Available Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV(2. The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CV(r(2 for comparison with our estimate of noise-free or 'true' heterogeneity (CV(t(2. We found that CV(t(2 was only 5.4% higher than CV(r2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using (13NN-saline injection. The mean CV(t(2 was 0.10 (range: 0.03-0.30, while the mean CV(2 including noise was 0.24 (range: 0.10-0.59. CV(t(2 was in average 41.5% of the CV(2 measured including noise (range: 17.8-71.2%. The reproducibility of CV(t(2 was evaluated using three repeated PET scans from five subjects. Individual CV(t(2 were within 16% of each subject's mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CV(t(2 in PET scans, and may be useful for similar statistical problems in experimental data.
Palaniswamy, Sumithra; Duraisamy, Prakash; Alam, Mohammad Showkat; Yuan, Xiaohui
2012-04-01
Automatic speech processing systems are widely used in everyday life such as mobile communication, speech and speaker recognition, and for assisting the hearing impaired. In speech communication systems, the quality and intelligibility of speech is of utmost importance for ease and accuracy of information exchange. To obtain an intelligible speech signal and one that is more pleasant to listen, noise reduction is essential. In this paper a new Time Adaptive Discrete Bionic Wavelet Thresholding (TADBWT) scheme is proposed. The proposed technique uses Daubechies mother wavelet to achieve better enhancement of speech from additive non- stationary noises which occur in real life such as street noise and factory noise. Due to the integration of human auditory system model into the wavelet transform, bionic wavelet transform (BWT) has great potential for speech enhancement which may lead to a new path in speech processing. In the proposed technique, at first, discrete BWT is applied to noisy speech to derive TADBWT coefficients. Then the adaptive nature of the BWT is captured by introducing a time varying linear factor which updates the coefficients at each scale over time. This approach has shown better performance than the existing algorithms at lower input SNR due to modified soft level dependent thresholding on time adaptive coefficients. The objective and subjective test results confirmed the competency of the TADBWT technique. The effectiveness of the proposed technique is also evaluated for speaker recognition task under noisy environment. The recognition results show that the TADWT technique yields better performance when compared to alternate methods specifically at lower input SNR.
Subassembly faults diagnostic of an LMFBR type reactor by the measurement of temperature noise
International Nuclear Information System (INIS)
Kokorev, B.V.; Palkin, I.I.; Turchin, N.M.; Pallagi, D.; Horanyi, S.
1979-09-01
The subassembly faults detection possibility by temperature noise analysis of an LMFBR is described. The paper contains the results of diagnostical examinations obtained on electrically heated NaK test rigs. On the basis of these results the measurement of temperature noise RMS value seems to be a practicable method to detect local blockages in an early phase. (author)
Joint Neutron Noise Measurements on Metallic Reactor Caliban
International Nuclear Information System (INIS)
Chapelle, Amaury; Authier, Nicolas; Pierre, Casoli; Richard, Benoit; Myers, Will; Hutchinson, Jesson; Sood, Avneet; Rooney, Brian
2013-06-01
The aim of the experiments concerning neutron noise measurements presented in this article is to compare the measured parameters to the simulated ones. The results of these measurements must therefore be very accurate, with controlled uncertainties. To determine the relative contribution of uncertainties to the final result, a table presents the prompt multiplication obtained by a French Team and a U.S. team. The different sources of uncertainties are then explored, distinguishing them between three categories, those linked to the experimental configuration, to the detection process and finally to the analysis process. These experiments improve the safety task of reactivity control far from criticality, with static methods, and the knowledge of the behaviour of a subcritical reactor. (authors)
An examination of the parametric properties of four noise sensitivity measures
DEFF Research Database (Denmark)
van Kamp, Irene; Ellermeier, Wolfgang; Lopez-Barrio, Isabel
2006-01-01
Noise sensitivity (NS) is a personality trait with a strong influence on reactions to noise. Studies of reaction should include a standard measure of NS that is founded on a theoretically justified definition of NS, and examination of existing NS measures' parametric properties (internal consiste......, demographics and lifestyle). A standard NS measure should demonstrate high reliability, and should predict responses to noise. Discussion is welcomed and will focus on validation strategies and optimizing the study design.......Noise sensitivity (NS) is a personality trait with a strong influence on reactions to noise. Studies of reaction should include a standard measure of NS that is founded on a theoretically justified definition of NS, and examination of existing NS measures' parametric properties (internal...... consistency; stability; convergent and predictive validity). At each of 6 laboratory centres (Aalborg; London; Sydney; Dortmund; Madrid, Amsterdam), participants will complete four NS measures on each of two occasions. In one occasion, participants will complete a task while exposed to recorded aircraft noise...
Application of the neutron noise analysis technique in nuclear power plants
International Nuclear Information System (INIS)
Lescano, Victor H.; Wentzeis, Luis M.
1999-01-01
Using the neutron noise analysis in nuclear power plants, and without producing any perturbation in the normal operation of the plant, information of the vibration state of the reactor internals and the behavior of the operating conditions of the reactor primary circuit can be obtained. In Argentina, the neutron noise analysis technique is applied in customary way in the nuclear power plants Atucha I and Embalse. A database was constructed and vibration frequencies corresponding to different reactor internals were characterized. Reactor internals with particular mechanical vibrations have been detected and localized. In the framing of a cooperation project between Argentina and Germany, we participated in the measurements, analysis and modelisation, using the neutron noise technique, in the Obrigheim and Gundremmingen nuclear power plants. In the nuclear power plant Obrigheim (PWR, 350 M We), correlations between the signals measured from self-power neutron detectors and accelerometers located inside the reactor core, were made. In the nuclear power plant Gundremmingen (BWR, 1200 M We) we participated in the study of a particular mechanical vibration detected in one of the instrumentation tube. (author)
Study on Noise Prediction Model and Control Schemes for Substation
Gao, Yang; Liu, Songtao
2014-01-01
With the government's emphasis on environmental issues of power transmission and transformation project, noise pollution has become a prominent problem now. The noise from the working transformer, reactor, and other electrical equipment in the substation will bring negative effect to the ambient environment. This paper focuses on using acoustic software for the simulation and calculation method to control substation noise. According to the characteristics of the substation noise and the techniques of noise reduction, a substation's acoustic field model was established with the SoundPLAN software to predict the scope of substation noise. On this basis, 4 reasonable noise control schemes were advanced to provide some helpful references for noise control during the new substation's design and construction process. And the feasibility and application effect of these control schemes can be verified by using the method of simulation modeling. The simulation results show that the substation always has the problem of excessive noise at boundary under the conventional measures. The excess noise can be efficiently reduced by taking the corresponding noise reduction methods. PMID:24672356
Impact of non-white noises in pulse amplitude measurements: a time-domain approach
International Nuclear Information System (INIS)
Pullia, A.
1998-01-01
The contribution of the 1/f-noise to the spectral line broadening in pulse amplitude measurements is derived with a time-domain analysis. The known time-domain relationships which provide the contributions of the series and parallel white noises are generalised for the case of 1/f and other typical non-white noises, by using the fractional derivative of either the system impulse response (time-invariant linear filters) or its weight function folded (time-variant linear filters). It is shown that a time-domain approach is also effective to determine the contribution of Lorentzian noises. A simple rule suitable to derive numerically the fractional derivative is given, which permits to calculate the effect of non-white noises even when the filter impulse response is not known analytically but only in sampled form. (orig.)
Ricketts, Todd A; Hornsby, Benjamin W Y
2005-05-01
This brief report discusses the affect of digital noise reduction (DNR) processing on aided speech recognition and sound quality measures in 14 adults fitted with a commercial hearing aid. Measures of speech recognition and sound quality were obtained in two different speech-in-noise conditions (71 dBA speech, +6 dB SNR and 75 dBA speech, +1 dB SNR). The results revealed that the presence or absence of DNR processing did not impact speech recognition in noise (either positively or negatively). Paired comparisons of sound quality for the same speech in noise signals, however, revealed a strong preference for DNR processing. These data suggest that at least one implementation of DNR processing is capable of providing improved sound quality, for speech in noise, in the absence of improved speech recognition.
Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie
2016-06-01
High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show
Reactor noise analysis by statistical pattern recognition methods
International Nuclear Information System (INIS)
Howington, L.C.; Gonzalez, R.C.
1976-01-01
A multivariate statistical pattern recognition system for reactor noise analysis is presented. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, updating, and data compacting capabilities. System design emphasizes control of the false-alarm rate. Its abilities to learn normal patterns, to recognize deviations from these patterns, and to reduce the dimensionality of data with minimum error were evaluated by experiments at the Oak Ridge National Laboratory (ORNL) High-Flux Isotope Reactor. Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the pattern recognition system
Noise measurement on Preshower Si sensors
Evangelou, Ioannis; Barney, David; Bloch, Philippe; Elsha, Vladimir; Go, Apollo; Kloukinas, Kostas; Kokkas, Panagiotis; Manthos, Nikolaos; Peisert, Anna; Prouskas, C; Reynaud, Serge; Triantis, Frixos A; Tzoulis, Nikolaos; Zub, E
2002-01-01
Throughout the past couple of years when we were designing the Preshower silicon sensors we have noticed that some of them have strips with a noise higher than the average and not correlated to the leakage current. In order to investigate this effect we have developed a set-up for noise measurement on wafers and diced sensors that does not require bonding. The set-up is based on the DeltaStream chip coupled to a probe card with 32 pins at a pitch of 1.9 mm. All the digital electronics, including the analogue-to-digital converter and a microprocessor, is placed on a motherboard which communicates with a PC via an RS232 line. We have tested 45 sensors and found that some strips which have an above average noise, also have a higher relative current increase as a function of voltage, deltaI/(I deltaV), even though their leakage current is below 50 nA. We also observed that on these strips th e breakdown occurs within about 60 V from the onset of the noise. The source of this noise is not yet clear and the investi...
Rolling Bearing Fault Diagnosis Based on an Improved HTT Transform.
Pang, Bin; Tang, Guiji; Tian, Tian; Zhou, Chong
2018-04-14
When rolling bearing failure occurs, vibration signals generally contain different signal components, such as impulsive fault feature signals, background noise and harmonic interference signals. One of the most challenging aspects of rolling bearing fault diagnosis is how to inhibit noise and harmonic interference signals, while enhancing impulsive fault feature signals. This paper presents a novel bearing fault diagnosis method, namely an improved Hilbert time-time (IHTT) transform, by combining a Hilbert time-time (HTT) transform with principal component analysis (PCA). Firstly, the HTT transform was performed on vibration signals to derive a HTT transform matrix. Then, PCA was employed to de-noise the HTT transform matrix in order to improve the robustness of the HTT transform. Finally, the diagonal time series of the de-noised HTT transform matrix was extracted as the enhanced impulsive fault feature signal and the contained fault characteristic information was identified through further analyses of amplitude and envelope spectrums. Both simulated and experimental analyses validated the superiority of the presented method for detecting bearing failures.
International Nuclear Information System (INIS)
Espada, L.; Sanjurjo, M.; Urrejola, S.; Bouzada, F.; Rey, G.; Sanchez, A.
2003-01-01
Given its simplicity and low cost compared to other types of methodologies, the measurement and interpretation of Electrochemical Noise, is consolidating itself as one of the analysis methods most frequently used for the interpretation of corrosion. As the technique is still evolving, standard treatment methodologies for data retrieved in experiments do not exist yet. To date, statistical analysis and the Fourier analysis are commonly used in order to establish the parameters that may characterize the recording of potential and current electrochemical noise. This study introduces a new methodology based on wavelet analysis and presents its advantages with regards to the Fourier analysis in distinguishes periodical and non-periodical variations in the signal power in time and frequency, as opposed to the Fourier analysis that only considers the frequency. (Author) 15 refs
Report of the first United States conference on utility experience with neutron noise analysis
International Nuclear Information System (INIS)
Fry, D.N.; Horne, G.P.; Mayo, C.W.
1984-01-01
An informal meeting was held in Washington, D.C. on April 3 and 4, 1984, to discuss the current state of the art and experiences with neutron noise analysis in US pressurized water reactors (PWRs). The meeting was attended by 33 persons representing 11 utilities and 3 PWR reactor vendors as well as consultants, universities, and research laboratories. Presentations at the meeting covered several applications of neutron noise for diagnosing such things as vibrations induced by baffle jetting, detection of mechanical degradation of thermal shield supports, and electrical degradation of nuclear instrumentation channels. Twenty-one responses were obtained from a questionnaire circulated to all participants requesting their viewpoints and experiences regarding neutron noise analysis. The meeting participants concluded that a working group on neutron noise analysis should be formed to (1) establish a baseline library of neutron noise data, (2) provide a forum for communicating experiences with neutron noise surveillance, and (3) develop good practices and quality assurance procedures for neutron noise measurement and interpretation
Development and applications of reactor noise analysis at Ontario Hydro's CANDU reactors
International Nuclear Information System (INIS)
Gloeckler, O.; Tulett, M.V.
1995-01-01
In 1992 a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro's CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. The dynamic characteristics of critical plant components, instrumentation and processes are monitored on a regular basis. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes induced by moderator flow, (6) estimating the dynamics and response time of RTD (Resistance Temperature Detector) temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (10) detecting coolant boiling in fully instrumented fuel channels, (11) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as-needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the use of noise analysis technology. (author
Noise analysis of the Dodewaard boiling water reactor: characteristics and time history
International Nuclear Information System (INIS)
Veer, J.H.C. v.d.; Kema, N.V.
1982-01-01
Reactor noise measurements have been performed in the Dodewaard BWR since the eighth fuel cycle (1978). Analysis of the noise characteristics of the ex-core neutron detectors are reported. As a result characteristics of the global component of the boiling noise and the influence of oscillatory effects in reactor pressure control and steam flow rate are described. The influence of power feedback effects on the detection of global noise at low frequencies is given using point kinetic reactor theory. Results are reported on the behaviour of the neutron noise characteristics during one fuel cycle and on the behaviour from fuel cycle 8 to 11. (author)
Noise Reduction of Measurement Data using Linear Digital Filters
Directory of Open Access Journals (Sweden)
Hitzmann B.
2007-12-01
Full Text Available In this paper Butterworth, Chebyshev (Type I and II and Elliptic digital filters are designed for signal noise reduction. On-line data measurements of substrate concentration from E. coli fed-batch cultivation process are used. Application of the designed filters leads to a successful noise reduction of on-line glucose measurements. The digital filters presented here are simple, easy to implement and effective - the used filters allow for a smart compromise between signal information and noise corruption.
Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers
International Nuclear Information System (INIS)
Hashisaka, Masayuki; Ota, Tomoaki; Yamagishi, Masakazu; Fujisawa, Toshimasa; Muraki, Koji
2014-01-01
We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of a dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements
Analysis of a ferrofluid core differential transformer tilt measurement sensor
Energy Technology Data Exchange (ETDEWEB)
Medvegy, T.; Molnár, Á.; Molnár, G.; Gugolya, Z.
2017-04-15
In our work, we developed a ferrofluid core differential transformer sensor, which can be used to measure tilt and acceleration. The proposed sensor consisted of three coils, from which the primary was excited with an alternating current. In the space surrounded by the coils was a cell half-filled with ferrofluid, therefore in the horizontal state of the sensor the fluid distributes equally in the three sections of the cell surrounded by the three coils. Nevertheless when the cell is being tilted or accelerated (in the direction of the axis of the coils), there is a different amount of ferrofluid in the three sections. The voltage induced in the secondary coils strongly depends on the amount of ferrofluid found in the core surrounded by them, so the tilt or the acceleration of the cell becomes measurable. We constructed the sensor in several layouts. The linearly coiled sensor had an excellent resolution. Another version with a toroidal cell had almost perfect linearity and a virtually infinite measuring range. - Highlights: • A ferrofluid core differential transformer can be used to measure tilt. • The theoretical description of two different type of the sensor is introduced. • The measuring range, and the sensitivity depends on the dimensions of the sensor.
Analysis of separation test for automatic brake adjuster based on linear radon transformation
Luo, Zai; Jiang, Wensong; Guo, Bin; Fan, Weijun; Lu, Yi
2015-01-01
The linear Radon transformation is applied to extract inflection points for online test system under the noise conditions. The linear Radon transformation has a strong ability of anti-noise and anti-interference by fitting the online test curve in several parts, which makes it easy to handle consecutive inflection points. We applied the linear Radon transformation to the separation test system to solve the separating clearance of automatic brake adjuster. The experimental results show that the feature point extraction error of the gradient maximum optimal method is approximately equal to ±0.100, while the feature point extraction error of linear Radon transformation method can reach to ±0.010, which has a lower error than the former one. In addition, the linear Radon transformation is robust.
Multivariate statistical pattern recognition system for reactor noise analysis
International Nuclear Information System (INIS)
Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.
1976-01-01
A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system
Multivariate statistical pattern recognition system for reactor noise analysis
International Nuclear Information System (INIS)
Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.
1975-01-01
A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system. 19 references
Effects of measurement noise on modal parameter identification
International Nuclear Information System (INIS)
Dorvash, S; Pakzad, S N
2012-01-01
In the past decade, much research has been conducted on data-driven structural health monitoring (SHM) algorithms with use of sensor measurements. A fundamental step in this SHM application is to identify the dynamic characteristics of structures. Despite the significant efforts devoted to development and enhancement of the modal parameter identification algorithms, there are still substantial uncertainties in the results obtained in real-life deployments. One of the sources of uncertainties in the results is the existence of noise in the measurement data. Depending on the subsequent application of the system identification, the level of uncertainty in the results and, consequently, the level of noise contamination can be very important. As an effort towards understanding the effect of measurement noise on the modal identification, this paper presents parameters that quantify the effects of measurement noise on the modal identification process and determine their influence on the accuracy of results. The performance of these parameters is validated by a numerically simulated example. They are then used to investigate the accuracy of identified modal properties of the Golden Gate Bridge using ambient data collected by wireless sensors. The vibration monitoring tests of the Golden Gate Bridge provided two synchronized data sets collected by two different sensor types. The influence of the sensor noise level on the accuracy of results is investigated throughout this work and it is shown that high quality sensors provide more accurate results as the physical contribution of response in their measured data is significantly higher. Additionally, higher purity and consistency of modal parameters, identified by higher quality sensors, is observed in the results. (paper)
A method of background noise cancellation for SQUID applications
International Nuclear Information System (INIS)
He, D F; Yoshizawa, M
2003-01-01
When superconducting quantum inference devices (SQUIDs) operate in low-cost shielding or unshielded environments, the environmental background noise should be reduced to increase the signal-to-noise ratio. In this paper we present a background noise cancellation method based on a spectral subtraction algorithm. We first measure the background noise and estimate the noise spectrum using fast Fourier transform (FFT), then we subtract the spectrum of background noise from that of the observed noisy signal and the signal can be reconstructed by inverse FFT of the subtracted spectrum. With this method, the background noise, especially stationary inferences, can be suppressed well and the signal-to-noise ratio can be increased. Using high-T C radio-frequency SQUID gradiometer and magnetometer, we have measured the magnetic field produced by a watch, which was placed 35 cm under a SQUID. After noise cancellation, the signal-to-noise ratio could be greatly increased. We also used this method to eliminate the vibration noise of a cryocooler SQUID
Uncertainty In Measuring Noise Parameters Of a Communication Receiver
International Nuclear Information System (INIS)
Korcz, Karol; Palczynska, Beata; Spiralski, Ludwik
2005-01-01
The paper presents the method of assessing uncertainty in measuring the usable sensitivity Es of communication receiver. The influence of partial uncertainties of measuring the noise factor F and the energy pass band of the receiver Δf on the combined standard uncertainty level is analyzed. The method to assess the uncertainty in measuring the noise factor on the basis of the systematic component of uncertainty, assuming that the main source of measurement uncertainty is the hardware of the measuring system, is proposed. The assessment of uncertainty in measuring the pass band of the receiver is determined with the assumption that input quantities of the measurement equation are not correlated. They are successive, discrete values of the spectral power density of the noise on the output of receiver. The results of the analyses of particular uncertainties components of measuring the sensitivity, which were carried out for a typical communication receiver, are presented
Measurement of MOSFET LF Noise Under Large Signal RF Excitation
van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram
A new measurement technique is presented that allows measurement of MOSFET LF noise under large signal RF excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does not depend on the frequency of
Dumoulin, Romain
Despite the fact that noise-induced hearing loss remains the number one occupational disease in developed countries, individual noise exposure levels are still rarely known and infrequently tracked. Indeed, efforts to standardize noise exposure levels present disadvantages such as costly instrumentation and difficulties associated with on site implementation. Given their advanced technical capabilities and widespread daily usage, mobile phones could be used to measure noise levels and make noise monitoring more accessible. However, the use of mobile phones for measuring noise exposure is currently limited due to the lack of formal procedures for their calibration and challenges regarding the measurement procedure. Our research investigated the calibration of mobile phone-based solutions for measuring noise exposure using a mobile phone's built-in microphones and wearable external microphones. The proposed calibration approach integrated corrections that took into account microphone placement error. The corrections were of two types: frequency-dependent, using a digital filter and noise level-dependent, based on the difference between the C-weighted noise level minus A-weighted noise level of the noise measured by the phone. The electro-acoustical limitations and measurement calibration procedure of the mobile phone were investigated. The study also sought to quantify the effect of noise exposure characteristics on the accuracy of calibrated mobile phone measurements. Measurements were carried out in reverberant and semi-anechoic chambers with several mobiles phone units of the same model, two types of external devices (an earpiece and a headset with an in-line microphone) and an acoustical test fixture (ATF). The proposed calibration approach significantly improved the accuracy of the noise level measurements in diffuse and free fields, with better results in the diffuse field and with ATF positions causing little or no acoustic shadowing. Several sources of errors
A single-to-differential low-noise amplifier with low differential output imbalance
International Nuclear Information System (INIS)
Duan Lian; Ma Chengyan; He Xiaofeng; Ye Tianchun; Huang Wei; Jin Yuhua
2012-01-01
This paper presents a single-ended input differential output low-noise amplifier intended for GPS applications. We propose a method to reduce the gain/amplitude and phase imbalance of a differential output exploiting the inductive coupling of a transformer or center-tapped differential inductor. A detailed analysis of the theory of imbalance reduction, as well as a discussion on the principle of choosing the dimensions of a transformer, are given. An LNA has been implemented using TSMC 0.18 μm technology with ESD-protected. Measurement on board shows a voltage gain of 24.6 dB at 1.575 GHz and a noise figure of 3.2 dB. The gain imbalance is below 0.2 dB and phase imbalance is less than 2 degrees. The LNA consumes 5.2 mA from a 1.8 V supply. (semiconductor integrated circuits)
Evaluating noise abatement measures using strategic noise maps
Borst, H.C.; Miedema, H.M.E.; Laan, W.P.N. van der; Lohman, W.J.A.
2006-01-01
Noise annoyance due to transportation is widespread in industrialized countries and in urban areas in the developing countries. The European Noise Directive (END) requires an assessment of the noise situation as well as the formulation of action plans for the reduction of the number of people
International Nuclear Information System (INIS)
Dai, Xianglu; Xie, Huimin; Wang, Huaixi; Li, Chuanwei; Wu, Lifu; Liu, Zhanwei
2014-01-01
The geometric phase analysis (GPA) method based on the local high resolution discrete Fourier transform (LHR-DFT) for deformation measurement, defined as LHR-DFT GPA, is proposed to improve the measurement accuracy. In the general GPA method, the fundamental frequency of the image plays a crucial role. However, the fast Fourier transform, which is generally employed in the general GPA method, could make it difficult to locate the fundamental frequency accurately when the fundamental frequency is not located at an integer pixel position in the Fourier spectrum. This study focuses on this issue and presents a LHR-DFT algorithm that can locate the fundamental frequency with sub-pixel precision in a specific frequency region for the GPA method. An error analysis is offered and simulation is conducted to verify the effectiveness of the proposed method; both results show that the LHR-DFT algorithm can accurately locate the fundamental frequency and improve the measurement accuracy of the GPA method. Furthermore, typical tensile and bending tests are carried out and the experimental results verify the effectiveness of the proposed method. (paper)
Prediction of Landing Gear Noise Reduction and Comparison to Measurements
Lopes, Leonard V.
2010-01-01
Noise continues to be an ongoing problem for existing aircraft in flight and is projected to be a concern for next generation designs. During landing, when the engines are operating at reduced power, the noise from the airframe, of which landing gear noise is an important part, is equal to the engine noise. There are several methods of predicting landing gear noise, but none have been applied to predict the change in noise due to a change in landing gear design. The current effort uses the Landing Gear Model and Acoustic Prediction (LGMAP) code, developed at The Pennsylvania State University to predict the noise from landing gear. These predictions include the influence of noise reduction concepts on the landing gear noise. LGMAP is compared to wind tunnel experiments of a 6.3%-scale Boeing 777 main gear performed in the Quiet Flow Facility (QFF) at NASA Langley. The geometries tested in the QFF include the landing gear with and without a toboggan fairing and the door. It is shown that LGMAP is able to predict the noise directives and spectra from the model-scale test for the baseline configuration as accurately as current gear prediction methods. However, LGMAP is also able to predict the difference in noise caused by the toboggan fairing and by removing the landing gear door. LGMAP is also compared to far-field ground-based flush-mounted microphone measurements from the 2005 Quiet Technology Demonstrator 2 (QTD 2) flight test. These comparisons include a Boeing 777-300ER with and without a toboggan fairing that demonstrate that LGMAP can be applied to full-scale flyover measurements. LGMAP predictions of the noise generated by the nose gear on the main gear measurements are also shown.
Development of fault diagnostic technique using reactor noise analysis
International Nuclear Information System (INIS)
Park, Jin Ho; Kim, J. S.; Oh, I. S.; Ryu, J. S.; Joo, Y. S.; Choi, S.; Yoon, D. B.
1999-04-01
The ultimate goal of this project is to establish the analysis technique to diagnose the integrity of reactor internals using reactor noise. The reactor noise analyses techniques for the PWR and CANDU NPP(Nuclear Power Plants) were established by which the dynamic characteristics of reactor internals and SPND instrumentations could be identified, and the noise database corresponding to each plant(both Korean and foreign one) was constructed and compared. Also the change of dynamic characteristics of the Ulchin 1 and 2 reactor internals were simulated under presumed fault conditions. Additionally portable reactor noise analysis system was developed so that real time noise analysis could directly be able to be performed at plant site. The reactor noise analyses techniques developed and the database obtained from the fault simulation, can be used to establish a knowledge based expert system to diagnose the NPP's abnormal conditions. And the portable reactor noise analysis system may be utilized as a substitute for plant IVMS(Internal Vibration Monitoring System). (author)
Development of fault diagnostic technique using reactor noise analysis
Energy Technology Data Exchange (ETDEWEB)
Park, Jin Ho; Kim, J. S.; Oh, I. S.; Ryu, J. S.; Joo, Y. S.; Choi, S.; Yoon, D. B
1999-04-01
The ultimate goal of this project is to establish the analysis technique to diagnose the integrity of reactor internals using reactor noise. The reactor noise analyses techniques for the PWR and CANDU NPP(Nuclear Power Plants) were established by which the dynamic characteristics of reactor internals and SPND instrumentations could be identified, and the noise database corresponding to each plant(both Korean and foreign one) was constructed and compared. Also the change of dynamic characteristics of the Ulchin 1 and 2 reactor internals were simulated under presumed fault conditions. Additionally portable reactor noise analysis system was developed so that real time noise analysis could directly be able to be performed at plant site. The reactor noise analyses techniques developed and the database obtained from the fault simulation, can be used to establish a knowledge based expert system to diagnose the NPP's abnormal conditions. And the portable reactor noise analysis system may be utilized as a substitute for plant IVMS(Internal Vibration Monitoring System). (author)
Noise estimation for remote sensing image data analysis
Du, Qian
2004-01-01
Noise estimation does not receive much attention in remote sensing society. It may be because normally noise is not large enough to impair image analysis result. Noise estimation is also very challenging due to the randomness nature of the noise (for random noise) and the difficulty of separating the noise component from the signal in each specific location. We review and propose seven different types of methods to estimate noise variance and noise covariance matrix in a remotely sensed image. In the experiment, it is demonstrated that a good noise estimate can improve the performance of an algorithm via noise whitening if this algorithm assumes white noise.
Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi
2018-04-01
The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.
Analysis of impact noise induced by hitting of titanium head golf driver.
Kim, Young Ho; Kim, Young Chul; Lee, Jun Hee; An, Yong-Hwi; Park, Kyung Tae; Kang, Kyung Min; Kang, Yeon June
2014-11-01
The hitting of titanium head golf driver against golf ball creates a short duration, high frequency impact noise. We analyzed the spectra of these impact noises and evaluated the auditory hazards from exposure to the noises. Noises made by 10 titanium head golf drivers with five maximum hits were collected, and the spectra of the pure impact sounds were studied using a noise analysis program. The noise was measured at 1.7 m (position A) and 3.4 m (position B) from the hitting point in front of the hitter and at 3.4 m (position C) behind the hitting point. Average time duration was measured and auditory risk units (ARUs) at position A were calculated using the Auditory Hazard Assessment Algorithm for Humans. The average peak levels at position A were 119.9 dBA at the sound pressure level (SPL) peak and 100.0 dBA at the overall octave level. The average peak levels (SPL and overall octave level) at position B were 111.6 and 96.5 dBA, respectively, and at position C were 111.5 and 96.7 dBA, respectively. The average time duration and ARUs measured at position A were 120.6 ms and 194.9 units, respectively. Although impact noises made by titanium head golf drivers showed relatively low ARUs, individuals enjoying golf frequently may be susceptible to hearing loss due to the repeated exposure of this intense impact noise with short duration and high frequency. Unprotected exposure to impact noises should be limited to prevent cochleovestibular disorders.
Optimisation of digital noise filtering in the deconvolution of ultrafast kinetic data
International Nuclear Information System (INIS)
Banyasz, Akos; Dancs, Gabor; Keszei, Erno
2005-01-01
Ultrafast kinetic measurements in the sub-picosecond time range are always distorted by a convolution with the instrumental response function. To restore the undistorted signal, deconvolution of the measured data is needed, which can be done via inverse filtering, using Fourier transforms, if experimental noise can be successfully filtered. However, in the case of experimental data when no underlying physical model is available, no quantitative criteria are known to find an optimal noise filter which would remove excessive noise without distorting the signal itself. In this paper, we analyse the Fourier transforms used during deconvolution and describe a graphical method to find such optimal noise filters. Comparison of graphically found optima to those found by quantitative criteria in the case of known synthetic kinetic signals shows the reliability of the proposed method to get fairly good deconvolved kinetic curves. A few examples of deconvolution of real-life experimental curves with the graphical noise filter optimisation are also shown
Measurements of noise from rotary coal unloading operations
International Nuclear Information System (INIS)
Adams, T.S.; Bilello, M.A.
1991-01-01
In the licensing effort for a coal-fired power plant in the northeast United States, noise related to delivery and unloading of coal by train was identified as a significant concern to the nearby community. Specific issues included locomotive noise, the banging noises caused by railcar couplings during the start and stop cycles of the unloading operation, wheel squeal in the curves of the rail loop, and rotary coal unloader noises. This paper reports that a literature review provided adequate information on idling locomotive noise but very little on the other noise sources. Coupling impact noise was well documented for railcars actually being coupled at various speeds but not for coupled trains during start and stop operations. Wheel squeal was well documented by subway trains travelling at normal speeds, but nothing could be found for wheel squeal during very slow train movement as occurs during unloading. Similarly, adequate information was available for unenclosed rotary unloaders but not for enclosed unloaders. Consequently, actual noise measurements of a similar enclosed facility, and the associated train movements, were undertaken to obtain data more directly applicable to the planned facility
White noise calculus and Fock space
Obata, Nobuaki
1994-01-01
White Noise Calculus is a distribution theory on Gaussian space, proposed by T. Hida in 1975. This approach enables us to use pointwise defined creation and annihilation operators as well as the well-established theory of nuclear space.This self-contained monograph presents, for the first time, a systematic introduction to operator theory on fock space by means of white noise calculus. The goal is a comprehensive account of general expansion theory of Fock space operators and its applications. In particular,first order differential operators, Laplacians, rotation group, Fourier transform and their interrelations are discussed in detail w.r.t. harmonic analysis on Gaussian space. The mathematical formalism used here is based on distribution theory and functional analysis , prior knowledge of white noise calculus is not required.
International Nuclear Information System (INIS)
Furdea, A; Wilson, J D; Eswaran, H; Lowery, C L; Govindan, R B; Preissl, H
2009-01-01
We propose a multi-stage approach using Wavelet and Hilbert transforms to identify uterine contraction bursts in magnetomyogram (MMG) signals measured using a 151 magnetic sensor array. In the first stage, we decompose the MMG signals by wavelet analysis into multilevel approximate and detail coefficients. In each level, the signals are reconstructed using the detail coefficients followed by the computation of the Hilbert transform. The Hilbert amplitude of the reconstructed signals from different frequency bands (0.1–1 Hz) is summed up over all the sensors to increase the signal-to-noise ratio. Using a novel clustering technique, affinity propagation, the contractile bursts are distinguished from the noise level. The method is applied on simulated MMG data, using a simple stochastic model to determine its robustness and to seven MMG datasets
Development and applications of reactor noise analysis at Ontario Hydro`s CANDU reactors
Energy Technology Data Exchange (ETDEWEB)
Gloeckler, O [Ontario Hydro, Toronto, ON (Canada); Tulett, M V [Ontario Hydro, Pickering, ON (Canada). Pickering Generating Station
1996-12-31
In 1992 a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro`s CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. The dynamic characteristics of critical plant components, instrumentation and processes are monitored on a regular basis. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes induced by moderator flow, (6) estimating the dynamics and response time of RTD (Resistance Temperature Detector) temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (10) detecting coolant boiling in fully instrumented fuel channels, (11) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as-needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the use of noise analysis technology. (author
Reactor surveillance by noise analysis
International Nuclear Information System (INIS)
Ciftcioglu, Ozer
1988-01-01
A real-time noise analysis system is designed for the TRIGA reactor at Istanbul Technical University. By means of the noise techniques, reactor surveillance is performed together with failure diagnosis. The fast data processing is carried out by FFT in real-time so that malfunction or non-stationary operation of the reactor in long term can be identified by comparing the noise power spectra with the corresponding reference patterns while the decision making procedure is accomplished by the method of hypothesis testing. The system being computer based safety instrumentation involves CAMAC in conjunction with the RT-11 (PDP-11) single user dedicated environment. (author)
Vibration mode and vibration shape under excitation of a three phase model transformer core
Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi
2018-04-01
Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.
Measuring the Noise Caused by Tehran Metro
Directory of Open Access Journals (Sweden)
Majid Abbas Pour
1999-03-01
Full Text Available One of the most common and important sources of noise in the residential environments are vehicles such as airplanes and subways. Trafficking of vehicles in streets and highways, psychologically, have damaging impacts on people living close to such areas. The development and expansion of the trading and industrial units is another factor that causes more and more exposure to noise.We have aimed at measuring the noises caused by vibration of subways of the Line of Karaj-Tehran-Mehrshahr and its effect on its surrounding area.To study this effect we designed a mathematical model and put the information of this subway line in the mentioned model. Then we analyzed the findings.This model demonstrated that we can control the harsh noise of the subway by reducing the speed of the train to 60Km/h in some points and increase in other parts to 130Km/h.
Noise in position measurement by centroid calculation
International Nuclear Information System (INIS)
Volkov, P.
1996-01-01
The position of a particle trajectory in a gaseous (or semiconductor) detector can be measured by calculating the centroid of the induced charge on the cathode plane. The charge amplifiers attached to each cathode strip introduce noise which is added to the signal. This noise broadens the position resolution line. Our article gives an analytical tool to estimate the resolution broadening due to the noise per strip and the number of strips involved in the centroid calculation. It is shown that the position resolution increases faster than the square root of the number of strips involved. We also consider the consequence of added interstrip capacitors, intended to diminish the differential nonlinearity. It is shown that the position error increases slower than linearly with the interstrip capacities, due to the cancellation of correlated noise. The estimation we give, can be applied to calculations of position broadening other than the centroid finding. (orig.)
Compressed Sensing with Linear Correlation Between Signal and Measurement Noise
DEFF Research Database (Denmark)
Arildsen, Thomas; Larsen, Torben
2014-01-01
reconstruction algorithms, but is not known in existing literature. The proposed technique reduces reconstruction error considerably in the case of linearly correlated measurements and noise. Numerical experiments confirm the efficacy of the technique. The technique is demonstrated with application to low......Existing convex relaxation-based approaches to reconstruction in compressed sensing assume that noise in the measurements is independent of the signal of interest. We consider the case of noise being linearly correlated with the signal and introduce a simple technique for improving compressed...... sensing reconstruction from such measurements. The technique is based on a linear model of the correlation of additive noise with the signal. The modification of the reconstruction algorithm based on this model is very simple and has negligible additional computational cost compared to standard...
Cross correlation measurement of low frequency conductivity noise
Jain, Aditya Kumar; Nigudkar, Himanshu; Chakraborti, Himadri; Udupa, Aditi; Gupta, Kantimay Das
2018-04-01
In order to study the low frequency noise(1/f noise)an experimental technique based on cross correlation of two channels is presented. In this method the device under test (DUT)is connected to the two independently powered preamplifiers in parallel. The amplified signals from the two preamplifiers are fed to two channels of a digitizer. Subsequent data processing largelyeliminates the uncorrelated noise of the two channels. This method is tested for various commercial carbon/metal film resistors by measuring equilibrium thermal noise (4kBTR). The method is then modified to study the non-equilibrium low frequency noise of heterostructure samples using fiveprobe configuration. Five contact probes allow two parts of the sample to become two arms of a balanced bridge. This configuration helps in suppressing the effect of power supply fluctuations, bath temperature fluctuations and contact resistances.
Deaf Smith County noise analysis: Revision 2
International Nuclear Information System (INIS)
1985-11-01
An analysis of activities proposed for the three major phases of development of the proposed nuclear waste repository site in Deaf Smith County, Texas, was conducted to quantify the noise levels and the effect of noise resulting from these activities. The report provides additional details of the predictive noise level modeling conducted for the site characterization, repository construction, and repository operation phases. Equivalent day/night sound levels are presented for each phase as sound level contours. Sound levels from onsite and offsite activities are addressed including traffic on access routes, and railroad construction and operation. A description of the predictive models, the analysis methodologies, the noise source inventories, the model outputs, and the evaluation criteria are included. 35 refs., 6 figs., 2 tabs
Measurements of effective noise temperature in fused silica fiber violin modes
Energy Technology Data Exchange (ETDEWEB)
Bilenko, I.A.; Lourie, S.L
2002-11-25
The results of measurements of the effective noise temperature in fused silica fiber violin modes are presented. In these measurements the fibers were stressed and value of the effective noise temperature was obtained by direct observation of oscillations in the fundamental violin modes of several samples. Measured values indicate that effective noise temperature does not exceed the room temperature significantly. This result is important for the design of the advanced gravitational wave antennae.
Noise Measurements of the VAIIPR Fan
Mendoza, Jeff; Weir, Don
2012-01-01
This final report has been prepared by Honeywell Aerospace, Phoenix, Arizona, a unit of Honeywell International, Inc., documenting work performed during the period September 2004 through November 2005 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Revolutionary Aero-Space Engine Research (RASER) Program, Contract No. NAS3- 01136, Task Order 6, Noise Measurements of the VAIIPR Fan. The NASA Task Manager was Dr. Joe Grady, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. The NASA Contract Officer was Mr. Albert Spence, NASA Glenn Research Center, Mail Code 60-6, Cleveland, Ohio 44135. This report focuses on the evaluation of internal fan noise as generated from various inflow disturbances based on measurements made from a circumferential array of sensors located near the fan and sensors upstream of a serpentine inlet.
International Nuclear Information System (INIS)
Moon, Byung Soo; Hwang, In Koo; Chung, Chong Eun; Kwon, Kee Choon; David, E. H.; Kisner, R.A.
2004-06-01
In this report, we first proved that a random signal obtained by taking the sum of a set of signal frequency signals generates a continuous Markov process. We used this random signal to simulate the Johnson noise and verified that the Johnson noise thermometry can be used to improve the measurements of the reactor coolant temperature within an accuracy of below 0.14%. Secondly, by using this random signal we determined the optimal sampling rate when the frequency band of the Johnson noise signal is given. Also the results of our examination on how good the linearity of the Johnson noise is and how large the relative error of the temperature could become when the temperature increases are described. Thirdly, the results of our analysis on a set of the Johnson noise signal blocks taken from a simple electric circuit are described. We showed that the properties of the continuous Markov process are satisfied even when some channel noises are present. Finally, we describe the algorithm we devised to handle the problem of the time lag in the long-term average or the moving average in a transient state. The algorithm is based on the Haar wavelet and is to estimate the transient temperature that has much smaller time delay. We have shown that the algorithm can track the transient temperature successfully
Analysis of regularized inversion of data corrupted by white Gaussian noise
International Nuclear Information System (INIS)
Kekkonen, Hanne; Lassas, Matti; Siltanen, Samuli
2014-01-01
Tikhonov regularization is studied in the case of linear pseudodifferential operator as the forward map and additive white Gaussian noise as the measurement error. The measurement model for an unknown function u(x) is m(x) = Au(x) + δ ε (x), where δ > 0 is the noise magnitude. If ε was an L 2 -function, Tikhonov regularization gives an estimate T α (m) = u∈H r arg min { ||Au-m|| L 2 2 + α||u|| H r 2 } for u where α = α(δ) is the regularization parameter. Here penalization of the Sobolev norm ||u|| H r covers the cases of standard Tikhonov regularization (r = 0) and first derivative penalty (r = 1). Realizations of white Gaussian noise are almost never in L 2 , but do belong to H s with probability one if s < 0 is small enough. A modification of Tikhonov regularization theory is presented, covering the case of white Gaussian measurement noise. Furthermore, the convergence of regularized reconstructions to the correct solution as δ → 0 is proven in appropriate function spaces using microlocal analysis. The convergence of the related finite-dimensional problems to the infinite-dimensional problem is also analysed. (paper)
Integrating neural network technology and noise analysis
International Nuclear Information System (INIS)
Uhrig, R.E.; Oak Ridge National Lab., TN
1995-01-01
The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)
An excess noise measurement system for weak responsivity avalanche photodiodes
Qiao, Liang; Dimler, Simon J.; Baharuddin, Aina N. A. P.; Green, James E.; David, John P. R.
2018-06-01
A system for measuring, with reduced photocurrent, the excess noise associated with the gain in avalanche photodiodes (APDs), using a transimpedance amplifier front-end and based on phase-sensitive detection is described. The system can reliably measure the excess noise power of devices, even when the un-multiplied photocurrent is low (~10 nA). This is more than one order of magnitude better than previously reported systems and represents a significantly better noise signal to noise ratio. This improvement in performance has been achieved by increasing the value of the feedback resistor and reducing the op-amp bandwidth. The ability to characterise APD performance with such low photocurrents enables the use of low power light sources such as light emitting diode rather than lasers to investigate the APD noise performance.
Application of tuned sound enclosures to transformers
International Nuclear Information System (INIS)
Allan, K.N.; Ellingson, E.F.
1992-09-01
The objective of this program was to reduce the noise emitted from power transformers by using a close-fitting, integrally-mounted noise shell. The noise shell consists of a series of panels mounted to a framework, that is, in turn, supported by the tank by means of mounting brackets and neoprene isolators. The development work was directed specifically toward application to existing transformers, i.e. retrofit.This project is a follow-on to work done under project RP-579-1. That project developed the theory and applied it experimentally to an existing transformer. The results were somewhat disappointing, however, with an 8 dBA reduction achieved where 15 dBA was expected. This document reports the work performed covering the period from March 1, 1977, to December 31, 1978. A complete noise shell enclosure was installed on a transformer for Consumers Power Company (Jackson, Michigan). Costs projected on the basis of this installation and several business assumptions indicate an installed cost of 19.8% of a new, standard noise transformer. This is higher than originally expected, but lower than alternative noise control methods. It also has some features that should make it an even more attractive alternative. Material loss factor (generally termed damping) of the enclosure material was found to be a critical parameter. Addition of a damping treatment to the experimental shell increased the performance to the 15 dBA target reduction. Damping was also found to be critical on the demonstration unit. The plastic panels installed (loss factor 0.05) resulted in a noise reduction of 8.5 dBA, increasing to 11.6 dBA when acoustical foam was added inside the enclosure. Three panels were replaced with damped steel panels and an overall 16.5 dBA reduction is anticipated based on vibration measurements
Extracting Earth's Elastic Wave Response from Noise Measurements
Snieder, Roel; Larose, Eric
2013-05-01
Recent research has shown that noise can be turned from a nuisance into a useful seismic source. In seismology and other fields in science and engineering, the estimation of the system response from noise measurements has proven to be a powerful technique. To convey the essence of the method, we first treat the simplest case of a homogeneous medium to show how noise measurements can be used to estimate waves that propagate between sensors. We provide an overview of physics research—dating back more than 100 years—showing that random field fluctuations contain information about the system response. This principle has found extensive use in surface-wave seismology but can also be applied to the estimation of body waves. Because noise provides continuous illumination of the subsurface, the extracted response is ideally suited for time-lapse monitoring. We present examples of time-lapse monitoring as applied to the softening of soil after the 2011 Tohoku-oki earthquake, the detection of a precursor to a landslide, and temporal changes in the lunar soil.
Signal transforms in dynamic measurements
Layer, Edward
2015-01-01
This book is devoted to the analysis of measurement signals which requires specific mathematical operations like Convolution, Deconvolution, Laplace, Fourier, Hilbert, Wavelet or Z transform which are all presented in the present book. The different problems refer to the modulation of signals, filtration of disturbance as well as to the orthogonal signals and their use in digital form for the measurement of current, voltage, power and frequency are also widely discussed. All the topics covered in this book are presented in detail and illustrated by means of examples in MathCad and LabVIEW. This book provides a useful source for researchers, scientists and engineers who in their daily work are required to deal with problems of measurement and signal processing and can also be helpful to undergraduate students of electrical engineering.
International Nuclear Information System (INIS)
Bouwman, R; Broeders, M; Van Engen, R; Young, K; Lazzari, B; Ravaglia, V
2009-01-01
According to the European Guidelines for quality assured breast cancer screening and diagnosis, noise analysis is one of the measurements that needs to be performed as part of quality control procedures on digital mammography systems. However, the method recommended in the European Guidelines does not discriminate sufficiently between systems with and without additional noise besides quantum noise. This paper attempts to give an alternative and relatively simple method for noise analysis which can divide noise into electronic noise, structured noise and quantum noise. Quantum noise needs to be the dominant noise source in clinical images for optimal performance of a digital mammography system, and therefore the amount of electronic and structured noise should be minimal. For several digital mammography systems, the noise was separated into components based on the measured pixel value, standard deviation (SD) of the image and the detector entrance dose. The results showed that differences between systems exist. Our findings confirm that the proposed method is able to discriminate systems based on their noise performance and is able to detect possible quality problems. Therefore, we suggest to replace the current method for noise analysis as described in the European Guidelines by the alternative method described in this paper.
Time response measurements of pressure sensors using pink noise technique
International Nuclear Information System (INIS)
Pereira, Iraci Martinez; Santos, Roberto Carlos dos
2009-01-01
This work presents an experimental setup for Pink Noise method application on pressure transmitters' response times. The Pink Noise method consists on injecting artificial pressure noise into the pressure transmitter. The artificial pressure noise is generated using a current-to-pressure (I-to-P) converter, which is driven by a random noise signal generator. The output pressure transmitter noise is then analyzed using conventional Noise Analysis Technique. Noise signals may be interpreted using spectral techniques or empirical time series models. The frequency domain method consists of evaluating the Power Spectral Density (PSD) function. The information needed for time constant estimation can be obtained by fitting an all-pole transfer function to this power spectral density. (author)
Explicit signal to noise ratio in reproducing kernel Hilbert spaces
DEFF Research Database (Denmark)
Gomez-Chova, Luis; Nielsen, Allan Aasbjerg; Camps-Valls, Gustavo
2011-01-01
This paper introduces a nonlinear feature extraction method based on kernels for remote sensing data analysis. The proposed approach is based on the minimum noise fraction (MNF) transform, which maximizes the signal variance while also minimizing the estimated noise variance. We here propose...... an alternative kernel MNF (KMNF) in which the noise is explicitly estimated in the reproducing kernel Hilbert space. This enables KMNF dealing with non-linear relations between the noise and the signal features jointly. Results show that the proposed KMNF provides the most noise-free features when confronted...
Hauk, O; Keil, A; Elbert, T; Müller, M M
2002-01-30
We describe a methodology to apply current source density (CSD) and minimum norm (MN) estimation as pre-processing tools for time-series analysis of single trial EEG data. The performance of these methods is compared for the case of wavelet time-frequency analysis of simulated gamma-band activity. A reasonable comparison of CSD and MN on the single trial level requires regularization such that the corresponding transformed data sets have similar signal-to-noise ratios (SNRs). For region-of-interest approaches, it should be possible to optimize the SNR for single estimates rather than for the whole distributed solution. An effective implementation of the MN method is described. Simulated data sets were created by modulating the strengths of a radial and a tangential test dipole with wavelets in the frequency range of the gamma band, superimposed with simulated spatially uncorrelated noise. The MN and CSD transformed data sets as well as the average reference (AR) representation were subjected to wavelet frequency-domain analysis, and power spectra were mapped for relevant frequency bands. For both CSD and MN, the influence of noise can be sufficiently suppressed by regularization to yield meaningful information, but only MN represents both radial and tangential dipole sources appropriately as single peaks. Therefore, when relating wavelet power spectrum topographies to their neuronal generators, MN should be preferred.
Application of neutron noise analysis to a swimming pool research reactor
International Nuclear Information System (INIS)
Behringer, K.; Lescano, V.H.; Meier, F.; Phildius, J.; Winkler, H.
1982-01-01
This work is part of a programme of establishing practical applications of neutron noise techniques to a swimming pool research reactor and deals with two different items: (1) The identification of local boiling caused e.g. by a partial blockage of the coolant flow in a fuel element. Local boiling can easily lead to a burn-out situation. The onset of boiling can be detected by neutron noise analysis and a boiling detection system is presently under development. (2) The measurement of the time evolution of the reactivity induced by xenon after reactor shut-down by an on-line reactivity meter based on neutron noise analysis. From the data, the prompt neutron decay constant at delayed critical, the equilibrium xenon reactivity worth, and an estimate of the average steady-state power flux in the core before reactor shut-down were obtained. (author)
Surveillance of instruments by noise analysis
International Nuclear Information System (INIS)
Thie, J.A.
1981-01-01
Random fluctuations of neutron flux, temperature, and pressure in a reactor provide multifrequency excitation of the corresponding instrumentation chains. Mathematical descriptors suitable for characterizing the output, or noise, of the instrumentation are reviewed with a view toward using such noise in detecting instrument faults. Demonstrations of the feasibility of this approach in a number of reactors provide illustrative examples. Comparisons with traditional surveillance testing are made, and a number of advantages and some disadvantages of using noise analysis as a supplementary technique are pointed out
Rényi entropy measure of noise-aided information transmission in a binary channel.
Chapeau-Blondeau, François; Rousseau, David; Delahaies, Agnès
2010-05-01
This paper analyzes a binary channel by means of information measures based on the Rényi entropy. The analysis extends, and contains as a special case, the classic reference model of binary information transmission based on the Shannon entropy measure. The extended model is used to investigate further possibilities and properties of stochastic resonance or noise-aided information transmission. The results demonstrate that stochastic resonance occurs in the information channel and is registered by the Rényi entropy measures at any finite order, including the Shannon order. Furthermore, in definite conditions, when seeking the Rényi information measures that best exploit stochastic resonance, then nontrivial orders differing from the Shannon case usually emerge. In this way, through binary information transmission, stochastic resonance identifies optimal Rényi measures of information differing from the classic Shannon measure. A confrontation of the quantitative information measures with visual perception is also proposed in an experiment of noise-aided binary image transmission.
DEFF Research Database (Denmark)
Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian
2015-01-01
The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...... and trailing edge noise, recognized to be the two main sources of noise from wind turbines, this work contributes to a more detailed insight into noise from wind turbines. The study comprises analysis and interpretation of measurement data that were acquired during an experimental campaign involving a 2 MW...... wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush...
Directory of Open Access Journals (Sweden)
Fabio Scatolini
Full Text Available ABSTRACT OBJECTIVE To perform a quantitative analysis of the background noise at Congonhas Airport surroundings based on large sampling and measurements with no interruption. METHODS Measuring sites were chosen from 62 and 72 DNL (day-night-level noise contours, in urban sites compatible with residential use. Fifteen sites were monitored for at least 168 hours without interruption or seven consecutive days. Data compilation was based on cross-reference between noise measurements and air traffic control records, and results were validated by airport meteorological reports. Preliminary diagnoses were established using the standard NBR-13368. Background noise values were calculated based on the Sound Exposure Level (SEL. Statistic parameters were calculated in one-hour intervals. RESULTS Only four of the fifteen sites assessed presented aircraft operations as a clear cause for the noise annoyance. Even so, it is possible to detect background noise levels above regulation limits during periods of low airport activity or when it closes at night. CONCLUSIONS All the sites monitored showed background noise levels above regulation limits between 7:00 and 21:00. In the intervals between 6:00-6:59 and 21:00-22:59 the noise data, when analyzed with the current airport operational characteristics, still allow the development of additional mitigating measures.
Phase noise estimation and mitigation for DCT-based coherent optical OFDM systems.
Yang, Chuanchuan; Yang, Feng; Wang, Ziyu
2009-09-14
In this paper, as an attractive alternative to the conventional discrete Fourier transform (DFT) based orthogonal frequency division multiplexing (OFDM), discrete cosine transform (DCT) based OFDM which has certain advantages over its counterpart is studied for optical fiber communications. As is known, laser phase noise is a major impairment to the performance of coherent optical OFDM (CO-OFDM) systems. However, to our knowledge, detailed analysis of phase noise and the corresponding mitigation methods for DCT-based CO-OFDM systems have not been reported yet. To address these issues, we analyze the laser phase noise in the DCT-based CO-OFDM systems, and propose phase noise estimation and mitigation schemes. Numerical results show that the proposal is very effective in suppressing phase noise and could significantly improve the performance of DCT-based CO-OFDM systems.
Model based analysis of piezoelectric transformers.
Hemsel, T; Priya, S
2006-12-22
Piezoelectric transformers are increasingly getting popular in the electrical devices owing to several advantages such as small size, high efficiency, no electromagnetic noise and non-flammable. In addition to the conventional applications such as ballast for back light inverter in notebook computers, camera flash, and fuel ignition several new applications have emerged such as AC/DC converter, battery charger and automobile lighting. These new applications demand high power density and wide range of voltage gain. Currently, the transformer power density is limited to 40 W/cm(3) obtained at low voltage gain. The purpose of this study was to investigate a transformer design that has the potential of providing higher power density and wider range of voltage gain. The new transformer design utilizes radial mode both at the input and output port and has the unidirectional polarization in the ceramics. This design was found to provide 30 W power with an efficiency of 98% and 30 degrees C temperature rise from the room temperature. An electro-mechanical equivalent circuit model was developed to describe the characteristics of the piezoelectric transformer. The model was found to successfully predict the characteristics of the transformer. Excellent matching was found between the computed and experimental results. The results of this study will allow to deterministically design unipoled piezoelectric transformers with specified performance. It is expected that in near future the unipoled transformer will gain significant importance in various electrical components.
Transformational leadership in nursing: a concept analysis.
Fischer, Shelly A
2016-11-01
To analyse the concept of transformational leadership in the nursing context. Tasked with improving patient outcomes while decreasing the cost of care provision, nurses need strategies for implementing reform in health care and one promising strategy is transformational leadership. Exploration and greater understanding of transformational leadership and the potential it holds is integral to performance improvement and patient safety. Concept analysis using Walker and Avant's (2005) concept analysis method. PubMed, CINAHL and PsychINFO. This report draws on extant literature on transformational leadership, management, and nursing to effectively analyze the concept of transformational leadership in the nursing context. This report proposes a new operational definition for transformational leadership and identifies model cases and defining attributes that are specific to the nursing context. The influence of transformational leadership on organizational culture and patient outcomes is evident. Of particular interest is the finding that transformational leadership can be defined as a set of teachable competencies. However, the mechanism by which transformational leadership influences patient outcomes remains unclear. Transformational leadership in nursing has been associated with high-performing teams and improved patient care, but rarely has it been considered as a set of competencies that can be taught. Also, further research is warranted to strengthen empirical referents; this can be done by improving the operational definition, reducing ambiguity in key constructs and exploring the specific mechanisms by which transformational leadership influences healthcare outcomes to validate subscale measures. © 2016 John Wiley & Sons Ltd.
Neutron noise measurement technique in a coupled reactor
International Nuclear Information System (INIS)
Genoud, J.P.
1976-01-01
Describes work carried out on the swimming pool reactor at the Physikalisch-Technische Bundesanstalt at Braunschweig. The reactor has two multiplying zones, is light water moderated, with 90% enriched 235 U fuel. There is a D 2 0 reservoir between the two parts of the reactor. Signal/noise ratio obtained by means of ionisation chamber type neutron detectors of 10 -13 amp/u.f. sensitivity is of the order of 40 dB and band frequency 1.5 kHz. Spectral density of the interzone interaction energy was obtained by use of Fourier transforms, previously corrected by a Hanning window. (S.W.)
Objective measures of listening effort: effects of background noise and noise reduction.
Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin
2009-10-01
This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. To address this, the hypothesis tested here is that the positive effects of NR might be to reduce cognitive effort directed toward speech reception, making it available for other tasks. Normal-hearing individuals participated in 2 dual-task experiments, in which 1 task was to report sentences or words in noise set to various signal-to-noise ratios. Secondary tasks involved either holding words in short-term memory or responding in a complex visual reaction-time task. At low values of signal-to-noise ratio, although NR had no positive effect on speech reception thresholds, it led to better performance on the word-memory task and quicker responses in visual reaction times. Results from both dual tasks support the hypothesis that NR reduces listening effort and frees up cognitive resources for other tasks. Future hearing aid research should incorporate objective measurements of cognitive benefits.
Reactor noise analysis of experimental fast reactor 'JOYO'
International Nuclear Information System (INIS)
Ohtani, Hideji; Yamamoto, Hisashi
1980-01-01
As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)
Experiment and Simulation Analysis on Noise Attenuation of Al/MF Cylindrical Shells
Directory of Open Access Journals (Sweden)
Bin Li
2017-01-01
Full Text Available For the issue concerning internal noise reduction of Al-made cylindrical shell structure, the noise control method of laying melamine foam (MF layer is adopted for in-shell noise attenuation experiments of Al and Al/MF cylindrical shells and corresponding internal noise response spectrograms are obtained. Based on the Virtual.Lab acoustics software, a finite element model is established for the analysis of noise in the Al/MF cylinder shell and numerical simulation computation is conducted for the acoustic mode and in-shell acoustic response; the correctness of the finite element model is verified via comparison with measured data. On this basis, influence rules of different MF laying rate and different laying thickness on acoustic cavity resonance response within the low and medium frequency range of 100–400 Hz are studied. It is indicated that noise reduction increases with MF laying rate, but the amplification decreases along with the rising of MF laying rate; noise reduction per unit thickness decreases with the increase of laying thickness, while noise reduction per unit area increases.
Potential health effects of standing waves generated by low frequency noise
Directory of Open Access Journals (Sweden)
Stanislav Ziaran
2013-01-01
Full Text Available The main aim is to present the available updated knowledge regarding the potential health effects of standing waves generated by low frequency noise (LFN from an open window in a moving car where the negative effects of LFN induced by heating components and/or heating, ventilation and air-conditioning are assessed. Furthermore, the assessment of noise in chosen enclosed spaces, such as rooms, offices, and classrooms, or other LFN sources and their effect on the human being were investigated. These types of noise are responsible for disturbance during relaxation, sleep, mental work, education, and concentration, which may reflect negatively on the comfort and health of the population and on the mental state of people such as scientific staff and students. The assessment points out the most exposed areas, and analyzes the conditions of standing wave generation in these rooms caused by outdoor and/or indoor sources. Measurements were made for three different enclosed spaces (office, flat, and passenger car and sources (traffic specific noise at intersections, noise induced by pipe vibration, and aerodynamic noise and their operating conditions. For the detection of LFN, the A-weighted sound pressure level and vibration were measured and a fast Fourier transform analysis was used. The LFN sources are specified and the direct effects on the human are reported. Finally, this paper suggests the possibilities for the assessment of LFN and some possible measures that can be taken to prevent or reduce them.
1/f noise: diffusive systems and music
Energy Technology Data Exchange (ETDEWEB)
Voss, R.F.
1975-11-01
Measurements of the 1/f voltage noise in continuous metal films are reported. At room temperature, samples of pure metals and bismuth (with a carrier density smaller by 10/sup 5/) of similar volume had comparable noise. The results suggest that the noise arises from equilibrium temperature fluctuations modulating the resistance. Spatial correlation of the noise implied that the fluctuations obey a diffusion equation. The empirical inclusion of an explicit 1/f region and appropriate normalization lead to excellent agreement with the measured noise. If the fluctuations are assumed to be spatially correlated, the diffusion equation can yield an extended 1/f region in the power spectrum. The temperature response of a sample to delta and step function power inputs is shown to have the same shape as the autocorrelation function for uncorrelated and correlated temperature fluctuations, respectively. The spectrum obtained from the cosine transform of the measured step function response is in excellent agreement with the measured 1/f voltage noise spectrum. Spatially correlated equilibrium temperature fluctuations are not the dominant source of 1/f noise in semiconductors and metal films. However, the agreement between the low-frequency spectrum of fluctuations in the mean-square Johnson noise voltage and the resistance fluctuation spectrum measured in the presence of a current demonstrates that in these systems the 1/f noise is also due to equilibrium resistance fluctuations. Loudness fluctuations in music and speech and pitch fluctuations in music also show the 1/f behavior. 1/f noise sources, consequently, are demonstrated to be the natural choice for stochastic composition. 26 figures, 1 table. (auth)
Fourier series models through transformation | Omekara | Global ...
African Journals Online (AJOL)
As a result, the square transformation which outperforms the others is adopted. Consequently, each of the multiplicative and additive FSA models fitted to the transformed data are then subjected to a test for white noise based on spectral analysis. The result of this test shows that only the multiplicative model is adequate.
International Nuclear Information System (INIS)
Kim, Dong Won; Kwon, Dong Il
1999-01-01
Barkhausen noise method as a magnetic nondestructive test has the advantages for evaluating the properties of magnetic material more precisely and high-sensitively compared to other magnetic NDT methods. For a long time Barkhausen noise method was applied to measure the bulk magnetic properties of magnetic materials and recently to evaluate microstructure, stress analysis, fatigue, creep, and fracture characteristics as a NDT method. But so far Barkhausen noise method has been used as evaluating orientation of material properties rather qualitatively. For this reason, many NDT testing methods have seldom been applied to industrial plants and laboratories. In this study we make experiments on the variation of Barkhausen noise as microstructure, and quantify Barkhausen noise(rms voltage) via formula of velocity of magnetic domain walls using coercive force as retarding force of domain wall movement. As a result, we could evaluate the microstructure of magnetic materials and trends of fracture toughness quantitatively by measuring Barkhausen noise, therefore directly evaluate microstructure and fracture toughness by Barkhausen noise method as accurate in-situ nondestructive testing method.
International Nuclear Information System (INIS)
Hwang, S. M.; Yu, K. K.; Lee, Y. H.; Kang, C. S.; Kim, K.; Lee, S. J.
2013-01-01
For sensitive measurements of micro-Tesla nuclear magnetic resonance (μT-NMR) signal, a low-noise superconducting quantum interference device (SQUID) system is needed. We have fabricated a liquid He dewar for an SQUID having a large diameter for the pickup coil. The initial test of the SQUID system showed much higher low-frequency magnetic noise caused by the thermal magnetic noise of the aluminum plates used for the vapor-cooled thermal shield material. The frequency dependence of the noise spectrum showed that the noise increases with the decrease of frequency. This behavior could be explained from a two-layer model; one generating the thermal noise and the other one shielding the thermal noise by eddy-current shielding. And the eddy-current shielding effect is strongly dependent on the frequency through the skin-depth. To minimize the loop size for the fluctuating thermal noise current, we changed the thermal shield material into insulated thin Cu mesh. The magnetic noise of the SQUID system became flat down to 0.1 Hz with a white noise of 0.3 fT√ Hz, including the other noise contributions such as SQUID electronics and magnetically shielded room, etc, which is acceptable for low-noise μT-NMR experiments.
Noise in restaurants: levels and mathematical model.
To, Wai Ming; Chung, Andy
2014-01-01
Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.
Noise in restaurants: Levels and mathematical model
Directory of Open Access Journals (Sweden)
Wai Ming To
2014-01-01
Full Text Available Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (Leq,1-h was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.
Application of noise analysis to investigate core degradation process during PHEBUS-FPT1 test
International Nuclear Information System (INIS)
Oguma, Ritsuo
1997-01-01
Noise analysis has been performed for measurement data obtained during PHEBUS-FPT1 test. The purpose of the study is to evaluate the applicability of the noise analysis to the following problems: To get more knowledge about the physical processes going on during severe core conditions; To better understand the core melting process; To establish appropriate on-line shut-down data. Results of the study indicate that the noise analysis is quite promising as a tool for investigating physical processes during the experiment. Compared with conventional approach of evaluating the signal's mean value behaviour, the noise analysis can provide additional, more detailed information: It was found that the neutron flux signal is subjected to additional reactivity perturbations in conjunction with fuel melting and relocation. This can easily be detected by applying noise analysis for the neutron flux signal. It has been demonstrated that the method developed in the present study can provide more accurate estimates of the onset of fuel relocation than using temperature signals from thermocouples in the thermal shroud. Moreover, the result suggests a potential of the present method for tracking the whole process of relocation. The result of the data analysis suggests a possibility of sensor diagnostics which may be important for confirming the quality and reliability of the recorded data. Based on the results achieved it is believed that the combined use of noise analysis and thermocouple signals will provide reliable shut-down criteria for the experiment. 8 refs
Bhatia, Tripta
2018-02-01
Accurate quantitative analysis of image data requires that we distinguish between fluorescence intensity (true signal) and the noise inherent to its measurements to the extent possible. We image multilamellar membrane tubes and beads that grow from defects in the fluid lamellar phase of the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine dissolved in water and water-glycerol mixtures by using fluorescence confocal polarizing microscope. We quantify image noise and determine the noise statistics. Understanding the nature of image noise also helps in optimizing image processing to detect sub-optical features, which would otherwise remain hidden. We use an image-processing technique "optimum smoothening" to improve the signal-to-noise ratio of features of interest without smearing their structural details. A high SNR renders desired positional accuracy with which it is possible to resolve features of interest with width below optical resolution. Using optimum smoothening, the smallest and the largest core diameter detected is of width [Formula: see text] and [Formula: see text] nm, respectively, discussed in this paper. The image-processing and analysis techniques and the noise modeling discussed in this paper can be used for detailed morphological analysis of features down to sub-optical length scales that are obtained by any kind of fluorescence intensity imaging in the raster mode.
International Nuclear Information System (INIS)
Rodriguez V, Luis Alfonso; Lopez Q, Jose German
2001-01-01
The problems of acoustic noise are more and more preponderant in the measure in that the amount of equipment and industrial machinery is increased such as fans, transformers, compressors etc. the use of devices passive mechanics for the reduction of the noise is effective and very appreciated because its effects embrace a wide range of acoustic frequency. However, to low frequencies, such devices become too big and expensive besides that present a tendency to do not effective. The control of active noise, CAN, using the electronic generation anti-noise, constitutes an interesting solution to the problem because their operation principle allows achieving an appreciable reduction of the noise by means of the use of compact devices. The traditional techniques for the control of acoustic noise like barriers and silenced to attenuate it, are classified as passive and their works has been accepted as norm as for the treatment of problems of noise it refers. Such techniques are considered in general very effective in the attenuation of noise of wide band. However, for low frequency, the required passive structures are too big and expensive; also, their effectiveness diminishes flagrantly, that which makes them impractical in many applications. The active suppression is profiled like a practical alternative for the reduction of acoustic noise. The idea in the active treatment of the noise it contemplates the use of a device electro-acoustic, like a speaker for example that it cancels to the noise by the generation of sounds of Same width and of contrary phase (anti-noise). The cancellation phenomenon is carried out when the ant-noise combines acoustically with the noise, what is in the cancellation of both sounds. The effectiveness of the cancellation of the primary source of noise depends on the precision with which the width and the phase of the generated ant-noise are controlled. The active control of noise, ANC (activates noise control), it is being investigated for
The prediction of rotor rotational noise using measured fluctuating blade loads
Hosier, R. N.; Pegg, R. J.; Ramakrishnan, R.
1974-01-01
In tests conducted at the NASA Langley Research Center Helicopter Rotor Test Facility, simultaneous measurements of the high-frequency fluctuating aerodynamic blade loads and far-field radiated noise were made on a full-scale, nontranslating rotor system. After their characteristics were determined, the measured blade loads were used in an existing theory to predict the far-field rotational noise. A comparison of the calculated and measured rotational noise is presented with specific attention given to the effect of blade loading coefficients, chordwise loading distributions, blade loading phases, and observer azimuthal position on the predictions.
Bedload transport from spectral analysis of seismic noise near rivers
Hsu, L.; Finnegan, N. J.; Brodsky, E. E.
2010-12-01
Channel change in rivers is driven by bedload sediment transport. However, the nonlinear nature of sediment transport combined with the difficulty of making direct observations in rivers at flood hinder prediction of the timing and magnitude of bedload movement. Recent studies have shown that spectral analysis of seismic noise from seismometers near rivers illustrate a correlation between the relative amplitude of high frequency (>1 Hz) seismic noise and conditions for bedload transport, presumably from the energy transferred from clast collisions with the channel. However, a previous study in the Himalayas did not contain extensive bedload transport or discharge measurements, and the correspondence of seismic noise with proxy variables such as regional hydrologic and meteorologic data was not exact. A more complete understanding of the relationship between bedload transport and seismic noise would be valuable for extending the spatial and temporal extent of bedload data. To explore the direct relationship between bedload transport and seismic noise, we examine data from several seismic stations near the Trinity River in California, where the fluvial morphodynamics and bedload rating curves have been studied extensively. We compare the relative amplitude of the ambient seismic noise with records of water discharge and sediment transport. We also examine the noise at hourly, daily, and seasonal timescales to determine other possible sources of noise. We report the influence of variables such as local river slope, adjacent geology, anthropogenic noise, and distance from the river. The results illustrate the feasibility of using existing seismic arrays to sense radiated energy from processes of bedload transport. In addition, the results can be used to design future seismic array campaigns to optimize information about bedload transport. This technique provides great spatial and temporal coverage, and can be performed where direct bedload measurements are difficult or
Świątkowski, Michał; Wojtuś, Arkadiusz; Wielgoszewski, Grzegorz; Rudek, Maciej; Piasecki, Tomasz; Jóźwiak, Grzegorz; Gotszalk, Teodor
2018-04-01
Atomic force microscopy (AFM) is a widely used technology for the investigation and characterization of nanomaterials. Its functionality can be easily expanded by applying dedicated extension modules, which can measure the electrical conductivity or temperature of a sample. In this paper, we introduce a transformer ratio-arm bridge setup dedicated to AFM-based thermal imaging. One of the key features of the thermal module is the use of a low-power driving signal that prevents undesirable tip heating during resistance measurement, while the other is the sensor location in a ratio-arm transformer bridge working in the audio frequency range and ensuring galvanic isolation of the tip, enabling contact-mode scanning of electronic circuits. The proposed expansion module is compact and it can be integrated onto the AFM head close to the cantilever. The calibration process and the resolution of 11 mK of the proposed setup are shown.
Noise measurements in 4 wind turbine farms
International Nuclear Information System (INIS)
Van Zuylen, E.J.; Koerts, M.
1993-02-01
The title wind turbine arrays are situated in Herbayum (Newinco 23PI250), Callantsoog (Bouma 160/20), Noordoostpolder (Windmaster WM300), and Ulketocht (Newinco 500 kW). Measurements were carried out by means of the so-called Ecofys Correlating Noise Meter to determine the source level of the wind turbines. The resulting source level as a function of the wind speed is interpolated to a source level for a wind speed of 8 m/s at 10 m height, on the basis of which the noise contours can be calculated. The noise contours are determined to analyze the noise load for people living in the neighbourhood of the wind parks. The source levels are compared with values as indicated in certificates, which are granted on the basis of a so-called Restricted Quality Certificate (BKC, abbreviated in Dutch) or the new standard NNI 6096/2 for the above-mentioned wind turbines. In general the results of this study agree quite well with the certified values. 12 figs., 7 tabs., 6 refs
Arzhantsev, Sergey; Li, Xiang; Kauffman, John F
2011-02-01
We introduce a new method for analysis of X-ray fluorescence (XRF) spectra based on continuous wavelet transform filters, and the method is applied to the determination of toxic metals in pharmaceutical materials using hand-held XRF spectrometers. The method uses the continuous wavelet transform to filter the signal and noise components of the spectrum. We present a limit test that compares the wavelet domain signal-to-noise ratios at the energies of the elements of interest to an empirically determined signal-to-noise decision threshold. The limit test is advantageous because it does not require the user to measure calibration samples prior to measurement, though system suitability tests are still recommended. The limit test was evaluated in a collaborative study that involved five different hand-held XRF spectrometers used by multiple analysts in six separate laboratories across the United States. In total, more than 1200 measurements were performed. The detection limits estimated for arsenic, lead, mercury, and chromium were 8, 14, 20, and 150 μg/g, respectively.
Recent trends in the condition monitoring of transformers theory, implementation and analysis
Chakravorti, Sivaji; Chatterjee, Biswendu
2013-01-01
Recent Trends in the Condition Monitoring of Transformers reflects the current interest in replacing traditional techniques used in power transformer condition monitoring with non-invasive measures such as polarization/depolarization current measurement, recovery voltage measurement, frequency domain spectroscopy and frequency response analysis. The book stresses the importance of scrutinizing the condition of transformer insulation which may fail under present day conditions of intensive use with the resulting degradation of dielectric properties causing functional failure of the transformer.
Removal of Stationary Sinusoidal Noise from Random Vibration Signals.
Energy Technology Data Exchange (ETDEWEB)
Johnson, Brian; Cap, Jerome S.
2018-02-01
In random vibration environments, sinusoidal line noise may appear in the vibration signal and can affect analysis of the resulting data. We studied two methods which remove stationary sine tones from random noise: a matrix inversion algorithm and a chirp-z transform algorithm. In addition, we developed new methods to determine the frequency of the tonal noise. The results show that both of the removal methods can eliminate sine tones in prefabricated random vibration data when the sine-to-random ratio is at least 0.25. For smaller ratios down to 0.02 only the matrix inversion technique can remove the tones, but the metrics to evaluate its effectiveness also degrade. We also found that using fast Fourier transforms best identified the tonal noise, and determined that band-pass-filtering the signals prior to the process improved sine removal. When applied to actual vibration test data, the methods were not as effective at removing harmonic tones, which we believe to be a result of mixed-phase sinusoidal noise.
Predetermining acceptable noise limits of EXAFS spectra in the limit of stochastic noise
International Nuclear Information System (INIS)
Hu, Yung-Jin; Booth, Corwin H
2009-01-01
The effect of stochastic noise on Extended X-ray Absorption Fine Structure (EXAFS) data measurement, analysis, and fitting is discussed. Stochastic noise reduces the ability to uniquely fit a calculated model to measured EXAFS data. Such noise can be reduced by common methods that increase the signal-to-noise ratio; however, these methods are not always practical. Therefore, predetermined, quantitative knowledge of the level of acceptable stochastic noise when fitting for a particular model system is essential in maximizing the chances of a successful EXAFS experiment and minimizing wasted beamtime. This paper outlines a method to estimate, through simulation, the acceptable level of stochastic noise in EXAFS spectra that still allows a successful test of a proposed model compound.
Energy Technology Data Exchange (ETDEWEB)
Lee, Gwang-Se; Cheong, Cheolung, E-mail: ccheong@pusan.ac.kr [School of Mechanical Engineering, Pusan National University, Busan, 609-745, Rep. of Korea (Korea, Republic of)
2014-12-15
Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs), few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF) wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF) noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.
Directory of Open Access Journals (Sweden)
Gwang-Se Lee
2014-12-01
Full Text Available Despite increasing concern about low-frequency noise of modern large horizontal-axis wind turbines (HAWTs, few studies have focused on its origin or its prediction methods. In this paper, infra- and low-frequency (the ILF wind turbine noise are closely examined and an efficient method is developed for its prediction. Although most previous studies have assumed that the ILF noise consists primarily of blade passing frequency (BPF noise components, these tonal noise components are seldom identified in the measured noise spectrum, except for the case of downwind wind turbines. In reality, since modern HAWTs are very large, during rotation, a single blade of the turbine experiences inflow with variation in wind speed in time as well as in space, breaking periodic perturbations of the BPF. Consequently, this transforms acoustic contributions at the BPF harmonics into broadband noise components. In this study, the ILF noise of wind turbines is predicted by combining Lowson’s acoustic analogy with the stochastic wind model, which is employed to reproduce realistic wind speed conditions. In order to predict the effects of these wind conditions on pressure variation on the blade surface, unsteadiness in the incident wind speed is incorporated into the XFOIL code by varying incident flow velocities on each blade section, which depend on the azimuthal locations of the rotating blade. The calculated surface pressure distribution is subsequently used to predict acoustic pressure at an observing location by using Lowson’s analogy. These predictions are compared with measured data, which ensures that the present method can reproduce the broadband characteristics of the measured low-frequency noise spectrum. Further investigations are carried out to characterize the IFL noise in terms of pressure loading on blade surface, narrow-band noise spectrum and noise maps around the turbine.
Quantitative analysis of the anti-noise performance of an m-sequence in an electromagnetic method
Yuan, Zhe; Zhang, Yiming; Zheng, Qijia
2018-02-01
An electromagnetic method with a transmitted waveform coded by an m-sequence achieved better anti-noise performance compared to the conventional manner with a square-wave. The anti-noise performance of the m-sequence varied with multiple coding parameters; hence, a quantitative analysis of the anti-noise performance for m-sequences with different coding parameters was required to optimize them. This paper proposes the concept of an identification system, with the identified Earth impulse response obtained by measuring the system output with the input of the voltage response. A quantitative analysis of the anti-noise performance of the m-sequence was achieved by analyzing the amplitude-frequency response of the corresponding identification system. The effects of the coding parameters on the anti-noise performance are summarized by numerical simulation, and their optimization is further discussed in our conclusions; the validity of the conclusions is further verified by field experiment. The quantitative analysis method proposed in this paper provides a new insight into the anti-noise mechanism of the m-sequence, and could be used to evaluate the anti-noise performance of artificial sources in other time-domain exploration methods, such as the seismic method.
A model for measurement of noise in CCD digital-video cameras
International Nuclear Information System (INIS)
Irie, K; Woodhead, I M; McKinnon, A E; Unsworth, K
2008-01-01
This study presents a comprehensive measurement of CCD digital-video camera noise. Knowledge of noise detail within images or video streams allows for the development of more sophisticated algorithms for separating true image content from the noise generated in an image sensor. The robustness and performance of an image-processing algorithm is fundamentally limited by sensor noise. The individual noise sources present in CCD sensors are well understood, but there has been little literature on the development of a complete noise model for CCD digital-video cameras, incorporating the effects of quantization and demosaicing
Experience with a PC-based system for noise and DC signal analysis in PWRs
International Nuclear Information System (INIS)
Hashemian, H.M.
1996-01-01
A data acquisition system that was originally developed for noise diagnostics in PWRs was expanded to include DC signal analysis in addition to noise analysis. The system has been used in PWRs for reactor diagnostics, determination of root cause of process anomalies, instrument calibration verification, measurement of drop time of control and shutdown rods, testing of timing and sequencing of control rod drive mechanisms, emergency diesel generator monitoring, etc. These applications are reviewed in this paper. (author)
Structureborne noise measurements on a small twin-engine aircraft
Cole, J. E., III; Martini, K. F.
1988-01-01
Structureborne noise measurements performed on a twin-engine aircraft (Beechcraft Baron) are reported. There are two overall objectives of the test program. The first is to obtain data to support the development of analytical models of the wing and fuselage, while the second is to evaluate effects of structural parameters on cabin noise. Measurements performed include structural and acoustic responses to impact excitation, structural and acoustic loss factors, and modal parameters of the wing. Path alterations include added mass to simulate fuel, variations in torque of bolts joining wing and fuselage, and increased acoustic absorption. Conclusions drawn regarding these measurements are presented.
Measuring Variability in the Presence of Noise
Welsh, W. F.
Quantitative measurements of a variable signal in the presence of noise requires very careful attention to subtle affects which can easily bias the measurements. This is not limited to the low-count rate regime, nor is the bias error necessarily small. In this talk I will mention some of the dangers in applying standard techniques which are appropriate for high signal to noise data but fail in the cases where the S/N is low. I will discuss methods for correcting the bias in the these cases, both for periodic and non-periodic variability, and will introduce the concept of the ``filtered de-biased RMS''. I will also illustrate some common abuses of power spectrum interpretation. All of these points will be illustrated with examples from recent work on CV and AGN variability.
DEFF Research Database (Denmark)
Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas
2016-01-01
rotor noise model is presented. It includes the main sources of aeroacoustic noise from wind turbines: turbulent inflow, trailing edge and stall noise. The noise measured by one microphone located directly downstream of the wind turbine is compared to the model predictions at the microphone location....... A good qualitative agreement is found. When wind speed increases, the rotor noise model shows that at high frequencies the stall noise becomes dominant. It also shows that turbulent inflow noise is dominant at low frequencies for all wind speeds and that trailing edge noise is dominant at low wind speeds...
Analysis of noise emitted from diesel engines
Narayan, S.
2015-12-01
In this work combustion noise produced in diesel engines has been investigated. In order to reduce the exhaust emissions various injection parameters need to be studied and optimized. The noise has been investigated by mean of data obtained from cylinder pressure measurements using piezo electric transducers and microphones on a dual cylinder diesel engine test rig. The engine was run under various operating conditions varying various injection parameters to investigate the effects of noise emissions under various testing conditions.
Noise suppression and crosstalk analysis of on-chip magnetic film-type noise suppressor
Ma, Jingyan; Muroga, Sho; Endo, Yasushi; Hashi, Shuichiro; Naoe, Masayuki; Yokoyama, Hiroo; Hayashi, Yoshiaki; Ishiyama, Kazushi
2018-05-01
This paper discusses near field, conduction and crosstalk noise suppression of magnetic films with uniaxial anisotropy on transmission lines for a film-type noise suppressor in the GHz frequency range. The electromagnetic noise suppressions of magnetic films with different permeability and resistivity were measured and simulated with simple microstrip lines. The experimental and simulated results of Co-Zr-Nb and CoPd-CaF2 films agreed with each other. The results indicate that the higher permeability leads to a better near field shielding, and in the frequency range of 2-7 GHz, a higher conduction noise suppression. It also suggests that the higher resistivity results in a better crosstalk suppression in the frequency range below 2 GHz. These results can support the design guidelines of the magnetic film-type noise suppressor used in the next generation IC chip.
Robust shot-noise measurement for continuous-variable quantum key distribution
Kunz-Jacques, Sébastien; Jouguet, Paul
2015-02-01
We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.
Development of an electrometer/amplifier and filter set for analysis of reactor noise
International Nuclear Information System (INIS)
Strohl, Claude Emile
1996-01-01
In nuclear power reactors, the neutron detector signal is dependent on the number of fissions and the reactor power level. The detector signal can be divided into two components: a D C component, proportional to the average value and an A C component, which is the fluctuating part superimposed to the D C component. The analysis of the fluctuating part of the signal is called noise analysis and allow us to investigate phenomena occurring within the reactor vessel, such as vibrational of fuel elements and coolant density, temperature, pressure and flow changes. On the other hand, the measure of the static D C part allows us to measure the local power density. This work describes the development of a personal computer based signal conditioning card that, together with a personal computer commercial data acquisition card, can be used for noise analysis and reactivity measurements of signals coming from ionization chambers or SPD's. (author)
Using Smart Devices to Measure Intermittent Noise in the Workplace
Directory of Open Access Journals (Sweden)
Benjamin Roberts
2017-01-01
Full Text Available Purpose: To determine the accuracy of smart devices (iPods to measure intermittent noise and integrate a noise dose in the workplace. Materials and Methods: In experiment 1, four iPods were each paired with a Larson Davis Spark dosimeter and exposed to randomly fluctuating pink noise in a reverberant sound chamber. Descriptive statistics and the mean difference between the iPod and its paired dosimeter were calculated for the 1-s data logged measurements. The calculated time weighted average (TWA was also compared between the devices. In experiment 2, 15 maintenance workers and 14 office workers wore an iPod and dosimeter during their work-shift for a maximum of five workdays. A mixed effects linear regression model was used to control for repeated measures and to determine the effect of the device type on the projected 8-h TWA. Results: In experiment 1, a total of 315,306 1-s data logged measurements were made. The interquartile range of the mean difference fell within ±2.0 A-weighted decibels (dBA, which is the standard used by the American National Standards Institute to classify a type 2 sound level meter. The mean difference of the calculated TWA was within ±0.5 dBA except for one outlier. In experiment 2, the results of the mixed effects model found that, on average, iPods measured an 8-h TWA 1.7 dBA higher than their paired dosimeters. Conclusion: This study shows that iPods have the ability to make reasonably accurate noise measurements in the workplace, but they are not as accurate as traditional noise dosimeters.
On-line analysis of reactor noise using time-series analysis
International Nuclear Information System (INIS)
McGevna, V.G.
1981-10-01
A method to allow use of time series analysis for on-line noise analysis has been developed. On-line analysis of noise in nuclear power reactors has been limited primarily to spectral analysis and related frequency domain techniques. Time series analysis has many distinct advantages over spectral analysis in the automated processing of reactor noise. However, fitting an autoregressive-moving average (ARMA) model to time series data involves non-linear least squares estimation. Unless a high speed, general purpose computer is available, the calculations become too time consuming for on-line applications. To eliminate this problem, a special purpose algorithm was developed for fitting ARMA models. While it is based on a combination of steepest descent and Taylor series linearization, properties of the ARMA model are used so that the auto- and cross-correlation functions can be used to eliminate the need for estimating derivatives. The number of calculations, per iteration varies lineegardless of the mee 0.2% yield strength displayed anisotropy, with axial and circumferential values being greater than radial. For CF8-CPF8 and CF8M-CPF8M castings to meet current ASME Code S acid fuel cells
State of the art on reactor noise analysis
International Nuclear Information System (INIS)
Bernard, P.; Fry, D.; Stegemann, D.; Van Dam, H.
1986-01-01
This report is the result of the work of a task force sponsored by the NEA Committee on Reactor Physics (NEACRP) and is divided into six chapters: 1. Loose-Parts Detection and Acoustic Monitoring, 2. Thermal Hydraulics Surveillance, 3. Flow Measurements, 4. Vibration Monitoring, 5. Surveillance Systems and Evaluation Methods, and 6. System Dynamic Analysis. Each chapter summarizes the current situation in noise analysis techniques with emphasis on the following aspects: . physical quantities considered, . possible anomalies involved, . sensors used for the detection, and . conditions of applications. The remainder of each chapter discusses future trends and recommendations
Amiet, R. K.
1991-01-01
A unified theory for aerodynamics and noise of advanced turboprops is presented. The theory and a computer code developed for evaluation at the shielding benefits that might be expected by an aircraft wing in a wing-mounted propeller installation are presented. Several computed directivity patterns are presented to demonstrate the theory. Recently with the advent of the concept of using the wing of an aircraft for noise shielding, the case of diffraction by a surface in a flow has been given attention. The present analysis is based on the case of diffraction of no flow. By combining a Galilean and a Lorentz transform, the wave equation with a mean flow can be reduced to the ordinary equation. Allowance is also made in the analysis for the case of a swept wing. The same combination of Galilean and Lorentz transforms lead to a problem with no flow but a different sweep. The solution procedures for the cases of leading and trailing edges are basically the same. Two normalizations of the solution are given by the computer program. FORTRAN computer programs are presented with detailed documentation. The output from these programs compares favorably with the results of other investigators.
Temperature noise analysis and sodium boiling detection in the fuel failure mockup
International Nuclear Information System (INIS)
Sides, W.H. Jr.; Fry, D.N.; Leavell, W.H.; Mathis, M.V.; Saxe, R.F.
1976-01-01
Sodium temperature noise was measured at the exit of simulated, fast-reactor fuel subassemblies in the Fuel Failure Mockup (FFM) to determine the feasibility of using temperature noise monitors to detect flow blockages in fast reactors. Also, acoustic noise was measured to determine whether sodium boiling in the FFM could be detected acoustically and whether noncondensable gas entrained in the sodium coolant would affect the sensitivity of the acoustic noise detection system. Information from these studies would be applied to the design of safety systems for operating liquid-metal fast breeder reactors (LMFBRs). It was determined that the statistical properties of temperature noise are dependent on the shape of temperature profiles across the subassemblies, and that a blockage upstream of a thermocouple that increases the gradient of the profile near the blockage will also increase the temperature noise at the thermocouple. Amplitude probability analysis of temperature noise shows a skewed amplitude density function about the mean temperature that varies with the location of the thermocouple with respect to the blockage location. It was concluded that sodium boiling in the FFM could be detected acoustically. However, entrained noncondensable gas in the sodium coolant at void fractions greater than 0.4 percent attenuated the acoustic signals sufficiently that boiling was not detected. At a void fraction of 0.1 percent, boiling was indicated only by the two acoustic detectors closest to the boiling site
International Nuclear Information System (INIS)
Silva Junior, Silverio Ferreira da; Mansur, Tanius Rodrigues; Cruz, Julio Ricardo Barreto
2007-01-01
The knowledge about the stress state acting in structural elements has significant importance in the structural integrity evaluation of a specific component. The magnetic Barkhausen noise analysis can be used for this purpose. As a nondestructive testing method, it presents the advantage of not promote any changes in the tested component. In this paper, a study about the use of this new nondestructive test method for stress measurements is presented. The test system configuration and the reference standards used for this purpose, as well as the optimum test parameters determination are discussed. The experiments were carried out in ASTM A-36 steel, used for structural components manufacturing. A structure of this material was loaded and the resulting stresses were determined from strain gage measurements and Barkhausen noise analysis. The results obtained have showed a good sensitivity of the magnetic Barkhausen noise to stress changes occurred in the material. The main advantages and limitations of this test method for stress measurements are presented. (author)
Directory of Open Access Journals (Sweden)
Alex S Baldwin
Full Text Available The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system's input has on its output one can estimate the variance of this internal noise. By applying this simple "linear amplifier" model to the human visual system, one can entirely explain an observer's detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system's internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity. Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF. We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies.
Noise reduction in the beam current monitor
International Nuclear Information System (INIS)
Arai, Shigeaki.
1982-02-01
A simple noise reduction system using a pulse transformer and a pair of L C low pass filters has been introduced to the beam current monitor of a current transformer type at the INS electron linac. With this system, the pick-up noise has been reduced to be 1% of the noise without noise reduction. Signal deformation caused by this system is relatively small and the beam current pulse down to 20 mA is successfully monitored in the actual accelerator operation. (author)
International Nuclear Information System (INIS)
Glockler, O.; Cooke, D.F.; Czuppon, G.J.; Kapoor, K.K.
2000-01-01
Vibrations of core internals are regularly monitored in the CANDU nuclear generating stations of Ontario Power Generation (OPG) via the noise analysis of in-core flux detectors (ICFDs). Voltage signals of standard station instrumentation are recorded by portable multi-channel high-speed high-resolution data acquisition systems, then statistical parameters are derived from the multi-channel time series measurements. Reactor noise analysis is a non-intrusive statistical technique regularly used in system surveillance, diagnostics and in actual operational I and C problems. It utilizes the dynamic information carried by the small fluctuations (noise) of station signals measured around their mean values during steady-state operation. The present paper discusses specific results related to the flow-induced mechanical vibrations of detector tubes and fuel channels. (author)
Optimized suppression of coherent noise from seismic data using the Karhunen-Loeve transform
International Nuclear Information System (INIS)
Montagne, Raul; Vasconcelos, Giovani L.
2006-01-01
Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loeve transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle)
Directory of Open Access Journals (Sweden)
Magalas L.B.
2015-06-01
Full Text Available In this work, we present a novel Hilbert-twin method to compute an envelope and the logarithmic decrement, δ, from exponentially damped time-invariant harmonic strain signals embedded in noise. The results obtained from five computing methods: (1 the parametric OMI (Optimization in Multiple Intervals method, two interpolated discrete Fourier transform-based (IpDFT methods: (2 the Yoshida-Magalas (YM method and (3 the classic Yoshida (Y method, (4 the novel Hilbert-twin (H-twin method based on the Hilbert transform, and (5 the conventional Hilbert transform (HT method are analyzed and compared. The fundamental feature of the Hilbert-twin method is the efficient elimination of intrinsic asymmetrical oscillations of the envelope, aHT (t, obtained from the discrete Hilbert transform of analyzed signals. Excellent performance in estimation of the logarithmic decrement from the Hilbert-twin method is comparable to that of the OMI and YM for the low- and high-damping levels. The Hilbert-twin method proved to be robust and effective in computing the logarithmic decrement and the resonant frequency of exponentially damped free decaying signals embedded in experimental noise. The Hilbert-twin method is also appropriate to detect nonlinearities in mechanical loss measurements of metals and alloys.
Measurement and analysis of noise power spectrum of computerized tomography in images
International Nuclear Information System (INIS)
Castro Tejero, P.; Garayoa Roca, J.
2013-01-01
This paper examines the implementation of the spectrum of powers of the noise, NPS, as metric to characterize the noise, both in magnitude and in texture, for CT scans. The NPS found show that you for convolution filters that assume a greater softening in the reconstructed image, spectrum is concentrated in the low frequencies, while for filters sharp, the spectrum extends to high frequencies. In the analyzed cases, there is a low frequency component, largely due to the structure-borne noise, which can be a potential negative effect on the detectability of injuries. (Author)
Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun
2014-01-01
We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.
Ranking TEM cameras by their response to electron shot noise
International Nuclear Information System (INIS)
Grob, Patricia; Bean, Derek; Typke, Dieter; Li, Xueming; Nogales, Eva; Glaeser, Robert M.
2013-01-01
We demonstrate two ways in which the Fourier transforms of images that consist solely of randomly distributed electrons (shot noise) can be used to compare the relative performance of different electronic cameras. The principle is to determine how closely the Fourier transform of a given image does, or does not, approach that of an image produced by an ideal camera, i.e. one for which single-electron events are modeled as Kronecker delta functions located at the same pixels where the electrons were incident on the camera. Experimentally, the average width of the single-electron response is characterized by fitting a single Lorentzian function to the azimuthally averaged amplitude of the Fourier transform. The reciprocal of the spatial frequency at which the Lorentzian function falls to a value of 0.5 provides an estimate of the number of pixels at which the corresponding line-spread function falls to a value of 1/e. In addition, the excess noise due to stochastic variations in the magnitude of the response of the camera (for single-electron events) is characterized by the amount to which the appropriately normalized power spectrum does, or does not, exceed the total number of electrons in the image. These simple measurements provide an easy way to evaluate the relative performance of different cameras. To illustrate this point we present data for three different types of scintillator–coupled camera plus a silicon-pixel (direct detection) camera. - Highlights: ► Fourier amplitude spectra of noise are well fitted by a single Lorentzian. ► This measures how closely, or not, the response approaches the single-pixel ideal. ► Noise in the Fourier amplitudes is (1−π/4) times the shot noise power spectrum. ► Finite variance in the single-electron responses adds to the output noise. ► This excess noise may be equal to or greater than shot noise itself
Electrochemical noise measurements under pressurized water reactor conditions
International Nuclear Information System (INIS)
Van Nieuwenhove, R.
2000-01-01
Electrochemical potential noise measurements on sensitized stainless steel pressure tubes under pressurized water reactor (PWR) conditions were performed for the first time. Very short potential spikes, believed to be associated to crack initiation events, were detected when stressing the sample above the yield strength and increased in magnitude until the sample broke. Sudden increases of plastic deformation, as induced by an increased tube pressure, resulted in slower, high-amplitude potential transients, often accompanied by a reduction in noise level
Measurement of Acceptable Noise Level with Background Music.
Ahn, Hyun-Jung; Bahng, Junghwa; Lee, Jae Hee
2015-09-01
Acceptable noise level (ANL) is a measure of the maximum background noise level (BNL) that a person is willing to tolerate while following a target story. Although researchers have used various sources of target sound in ANL measures, a limited type of background noise has been used. Extending the previous study of Gordon-Hickey & Moore (2007), the current study determined the effect of music genre and tempo on ANLs as possible factors affecting ANLs. We also investigated the relationships between individual ANLs and the familiarity of music samples and between music ANLs and subjective preference. Forty-one participants were seperated into two groups according to their ANLs, 29 low-ANL listeners and 12 high-ANL listeners. Using Korean ANL material, the individual ANLs were measured based on the listeners' most comfortable listening level and BNL. The ANLs were measured in six conditions, with different music tempo (fast, slow) and genre (K-pop, pop, classical) in a counterbalanced order. Overall, ANLs did not differ by the tempo of background music, but music genre significantly affected individual ANLs. We observed relatively higher ANLs with K-pop music and relatively lower ANLs with classical music. This tendency was similar in both low-ANL and high-ANL groups. However, the subjective ratings of music familiarity and preference affected ANLs differently for low-ANL and high-ANL groups. In contrast to the low-ANL listeners, the ANLs of the high-ANL listeners were significantly affected by music familiarity and preference. The genre of background music affected ANLs obtained using background music. The degree of music familiarity and preference appears to be associated with individual susceptibility to background music only for listeners who are greatly annoyed by background noise (high-ANL listeners).
International Nuclear Information System (INIS)
Goo, Cheol-Soo; Kim, Bok-Ryul; Cho, Won-Seo
2001-01-01
range of 10 kHz to 30 MHz in accordance with the conducted emission measurement frequency based upon EPRI TR-102323-R1 and Reg. Guide 1.180. The transient due to lightning surge, relay contact, operation of inductive load, and abnormal open-close operation made discontinuous and intermittent conducted noise that was measured in the time domain using an oscilloscope during reactor power increase. The measured values and profiles for the conducted noise were similar to those gathered from NPPs in the United States, and transients including surge were not found during measuring. The review of the measurement results indicated that the maximum noise of the continuous conducted noise at the low frequency range of from 30 Hz to 50 kHz at the PCS was higher than that at the CPC. It was found that the low-frequency conducted noise consists of a 60-Hz power source frequency and its even and odd harmonic frequencies. The odd harmonic was more predominant than the even. The conducted limits, which are applicable to the Korean standard using the recursive least-squares analysis technique, were derived from measured data. The comparisons between the limit obtained and those of the U.S. Nuclear Regulatory Commission and the Electric Power Research Institute are shown in Figs. 1 and 2. (authors)
Measuring the background acoustic noise in the BN-600 steam generator
International Nuclear Information System (INIS)
Yugaj, V.S.; Zhukovets, V.N.; Ivannikov, V.I.; Vylomov, V.V.; Ryabinin, F.; Chernykh, P.G.; Flejsher, Yu.V.
1987-01-01
Acoustic noises in the lower chambers of evaporation and intermediate overheating moduli of the BN-600 reactor steam generator are measured. Bachground noises are registered in the whole range of frequencies studied, from 0.63 to 160 kHz. The comparison of noise spectra in evaporator and overheater has revealed a certain difference. However the general tendency is the reduction of the noise level at high frequencies > 8 kHz. The increase of the noise level at low steam content is observed only in a narrow of frequency range of 3-6 kHz
Automated measurement of CT noise in patient images with a novel structure coherence feature
International Nuclear Information System (INIS)
Chun, Minsoo; Kim, Jong Hyo; Choi, Young Hun
2015-01-01
While the assessment of CT noise constitutes an important task for the optimization of scan protocols in clinical routine, the majority of noise measurements in practice still rely on manual operation, hence limiting their efficiency and reliability. This study presents an algorithm for the automated measurement of CT noise in patient images with a novel structure coherence feature. The proposed algorithm consists of a four-step procedure including subcutaneous fat tissue selection, the calculation of structure coherence feature, the determination of homogeneous ROIs, and the estimation of the average noise level. In an evaluation with 94 CT scans (16 517 images) of pediatric and adult patients along with the participation of two radiologists, ROIs were placed on a homogeneous fat region at 99.46% accuracy, and the agreement of the automated noise measurements with the radiologists’ reference noise measurements (PCC = 0.86) was substantially higher than the within and between-rater agreements of noise measurements (PCC within = 0.75, PCC between = 0.70). In addition, the absolute noise level measurements matched closely the theoretical noise levels generated by a reduced-dose simulation technique. Our proposed algorithm has the potential to be used for examining the appropriateness of radiation dose and the image quality of CT protocols for research purposes as well as clinical routine. (paper)
Directory of Open Access Journals (Sweden)
F. Golbabaei
2007-09-01
Full Text Available Background and aims Overexposure to industrial noise pollution induce hearing loss workers. Occupational hearing loss may cause interference whit oral communication, so it may increase the risk of occupational accidents in workplace as well as affects whit social activities. This study was conducted on Lavan Island, are of oil extracting regions in the south of Iran. The object of this study was to evaluate noise pollution and determining the effect of noise enclosure on noise abatement. Methods The noise sources were recognized and noise pressure level was measured by CEL- 440. Noise dose of the exposed workers in high level noise area were measured by CEL 272. Results Major noise sources were gas turbines, diesel generators, compressors, fans and gas containing pips, noise contour map revealers that noise level were higher than the recommended national exposure limit. The results of workers noise dose show that their noise exposure were higher than the recommended value, (p<0.001. Finally, by using the results of noise frequency analysis of different noise sources, the noise pressure level of each sources was determined in terms of enclosing them. Conclusion By enclosing the noise sources, noise pressure levels can be lowered douse to acceptable levels but limitation of applying enclosure should be regarded.
Abdelrhman, Ahmed M.; Sei Kien, Yong; Salman Leong, M.; Meng Hee, Lim; Al-Obaidi, Salah M. Ali
2017-07-01
The vibration signals produced by rotating machinery contain useful information for condition monitoring and fault diagnosis. Fault severities assessment is a challenging task. Wavelet Transform (WT) as a multivariate analysis tool is able to compromise between the time and frequency information in the signals and served as a de-noising method. The CWT scaling function gives different resolutions to the discretely signals such as very fine resolution at lower scale but coarser resolution at a higher scale. However, the computational cost increased as it needs to produce different signal resolutions. DWT has better low computation cost as the dilation function allowed the signals to be decomposed through a tree of low and high pass filters and no further analysing the high-frequency components. In this paper, a method for bearing faults identification is presented by combing Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) with envelope analysis for bearing fault diagnosis. The experimental data was sampled by Case Western Reserve University. The analysis result showed that the proposed method is effective in bearing faults detection, identify the exact fault’s location and severity assessment especially for the inner race and outer race faults.
The systematic error of temperature noise correlation measurement method and self-calibration
International Nuclear Information System (INIS)
Tian Hong; Tong Yunxian
1993-04-01
The turbulent transport behavior of fluid noise and the nature of noise affect on the velocity measurement system have been studied. The systematic error of velocity measurement system is analyzed. A theoretical calibration method is proposed, which makes the velocity measurement of time-correlation as an absolute measurement method. The theoretical results are in good agreement with experiments
Magnetic field measurements near stand-alone transformer stations.
Kandel, Shaiela; Hareuveny, Ronen; Yitzhak, Nir-Mordechay; Ruppin, Raphael
2013-12-01
Extremely low-frequency (ELF) magnetic field (MF) measurements around and above three stand-alone 22/0.4-kV transformer stations have been performed. The low-voltage (LV) cables between the transformer and the LV switchgear were found to be the major source of strong ELF MFs of limited spatial extent. The strong fields measured above the transformer stations support the assessment method, to be used in future epidemiological studies, of classifying apartments located right above the transformer stations as highly exposed to MFs. The results of the MF measurements above the ground around the transformer stations provide a basis for the assessment of the option of implementing precautionary procedures.
Vibration Noise Modeling for Measurement While Drilling System Based on FOGs
Directory of Open Access Journals (Sweden)
Chunxi Zhang
2017-10-01
Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.
Vibration Noise Modeling for Measurement While Drilling System Based on FOGs.
Zhang, Chunxi; Wang, Lu; Gao, Shuang; Lin, Tie; Li, Xianmu
2017-10-17
Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors' noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn't white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.
Automated pattern recognition system for noise analysis
International Nuclear Information System (INIS)
Sides, W.H. Jr.; Piety, K.R.
1980-01-01
A pattern recognition system was developed at ORNL for on-line monitoring of noise signals from sensors in a nuclear power plant. The system continuousy measures the power spectral density (PSD) values of the signals and the statistical characteristics of the PSDs in unattended operation. Through statistical comparison of current with past PSDs (pattern recognition), the system detects changes in the noise signals. Because the noise signals contain information about the current operational condition of the plant, a change in these signals could indicate a change, either normal or abnormal, in the operational condition
Measurement of quantum noise in a single-electron transistor near the quantum limit
Xue, W. W.; Ji, Z.; Pan, Feng; Stettenheim, Joel; Blencowe, M. P.; Rimberg, A. J.
2009-09-01
Quantum measurement has challenged physicists for almost a century. Classically, there is no lower bound on the noise a measurement may add. Quantum mechanically, however, measuring a system necessarily perturbs it. When applied to electrical amplifiers, this means that improved sensitivity requires increased backaction that itself contributes noise. The result is a strict quantum limit on added amplifier noise. To approach this limit, a quantum-limited amplifier must possess an ideal balance between sensitivity and backaction; furthermore, its noise must dominate that of subsequent classical amplifiers. Here, we report the first complete and quantitative measurement of the quantum noise of a superconducting single-electron transistor (S-SET) near a double Cooper-pair resonance predicted to have the right combination of sensitivity and backaction. A simultaneous measurement of our S-SET's charge sensitivity indicates that it operates within a factor of 3.6 of the quantum limit, a fourfold improvement over the nearest comparable results.
Current applications of vibration monitoring and neutron noise analysis
International Nuclear Information System (INIS)
Damiano, B.; Kryter, R.C.
1990-02-01
Monitoring programs using vibration monitoring or neutron noise analysis have demonstrated the ability to detect and, in some cases, diagnose the nature of reactor vessel internals structural degradation. Detection of compromised mechanical integrity of reactor vessel internal components in its early stages allows corrective action to be taken before weakening or damage occurs. In addition to the economic benefits early detection and correction can provide, they can also help maintain plant safety. Information on the condition of reactor vessel internal components gained from a monitoring program supplements in-service inspection results and may be useful in justifying plant license extension. This report, which was prepared under the Nuclear Plant Aging Research Program sponsored by the US Nuclear Regulatory Commission, discusses the application of vibration monitoring and neutron noise analysis for monitoring light-water reactor vessel internals. The report begins by describing the effects of structural integrity loss on internals vibration and how measurable parameters can be used to detect and track the progress of degradation. This is followed by a description and comparison of vibration monitoring and neutron noise analysis, two methods for monitoring the mechanical integrity of reactor vessel internals condition monitoring programs in the United States, Federal Republic of Germany, and France, three countries having substantial commitments to nuclear power. The last section presents guidelines for US utilities wishing to establish reactor internals condition monitoring programs. 20 refs., 5 figs., 4 tabs
ARMA modelling of neutron stochastic processes with large measurement noise
International Nuclear Information System (INIS)
Zavaljevski, N.; Kostic, Lj.; Pesic, M.
1994-01-01
An autoregressive moving average (ARMA) model of the neutron fluctuations with large measurement noise is derived from langevin stochastic equations and validated using time series data obtained during prompt neutron decay constant measurements at the zero power reactor RB in Vinca. Model parameters are estimated using the maximum likelihood (ML) off-line algorithm and an adaptive pole estimation algorithm based on the recursive prediction error method (RPE). The results show that subcriticality can be determined from real data with high measurement noise using much shorter statistical sample than in standard methods. (author)
Residual phase noise measurements of the input section in a receiver
International Nuclear Information System (INIS)
Mavric, Uros; Chase, Brian; Fermilab
2007-01-01
If not designed properly, the input section of an analog down-converter can introduce phase noise that can prevail over other noise sources in the system. In the paper we present residual phase noise measurements of a simplified input section of a classical receiver that is composed of various commercially available mixers and driven by an LO amplifier
Measuring test mass acceleration noise in space-based gravitational wave astronomy
Congedo, Giuseppe
2015-03-01
The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.
Research on neutron noise analysis stochastic simulation method for α calculation
International Nuclear Information System (INIS)
Zhong Bin; Shen Huayun; She Ruogu; Zhu Shengdong; Xiao Gang
2014-01-01
The prompt decay constant α has significant application on the physical design and safety analysis in nuclear facilities. To overcome the difficulty of a value calculation with Monte-Carlo method, and improve the precision, a new method based on the neutron noise analysis technology was presented. This method employs the stochastic simulation and the theory of neutron noise analysis technology. Firstly, the evolution of stochastic neutron was simulated by discrete-events Monte-Carlo method based on the theory of generalized Semi-Markov process, then the neutron noise in detectors was solved from neutron signal. Secondly, the neutron noise analysis methods such as Rossia method, Feynman-α method, zero-probability method, and cross-correlation method were used to calculate a value. All of the parameters used in neutron noise analysis method were calculated based on auto-adaptive arithmetic. The a value from these methods accords with each other, the largest relative deviation is 7.9%, which proves the feasibility of a calculation method based on neutron noise analysis stochastic simulation. (authors)
Principal Components as a Data Reduction and Noise Reduction Technique
Imhoff, M. L.; Campbell, W. J.
1982-01-01
The potential of principal components as a pipeline data reduction technique for thematic mapper data was assessed and principal components analysis and its transformation as a noise reduction technique was examined. Two primary factors were considered: (1) how might data reduction and noise reduction using the principal components transformation affect the extraction of accurate spectral classifications; and (2) what are the real savings in terms of computer processing and storage costs of using reduced data over the full 7-band TM complement. An area in central Pennsylvania was chosen for a study area. The image data for the project were collected using the Earth Resources Laboratory's thematic mapper simulator (TMS) instrument.
Measurement of tonal-noise characteristics and periodic flow structure around NACA0018 airfoil
Energy Technology Data Exchange (ETDEWEB)
Nakano, T.; Fujisawa, N. [Niigata University, Department Mechanical Engineering, Niigata (Japan); Lee, S. [Inha University, Department Mechanical Engineering, Incheon (Korea)
2006-03-15
The characteristics of tonal noise and the variations of flow structure around NACA0018 airfoil in a uniform flow are studied by means of simultaneous measurement of noise and velocity field by particle-image velocimetry to understand the generation mechanism of tonal noise. Measurements are made on the noise characteristics, the phase-averaged velocity field with respect to the noise signal, and the cross-correlation contour of velocity fluctuations and noise signal. These experimental results indicate that the tonal noise is generated from the periodic vortex structure on the pressure surface of the airfoil near the trailing edge of the airfoil. It is found that the vortex structure is highly correlated with the noise signal, which indicates the presence of noise-source distribution on the pressure surface. The vorticity distribution on the pressure surface breaks down near the trailing edge of the airfoil and forms a staggered vortex street in the wake of the airfoil. (orig.)
Design of low noise class D amplifiers using an integrated filter
International Nuclear Information System (INIS)
Wang Haishi; Zhang Bo
2012-01-01
This paper investigates the noise sources in a single-ended class D amplifier (SECDA) and suggests corresponding ways to lower the noise. The total output noise could be expressed as a function of the gain and noises from different sources. According to the function, the bias voltage (V B ) is a primary noise source, especially for a SECDA with a large gain. A low noise SECDA is obtained by integrating a filter into the SECDA to lower the noise of the V B . The filter utilizes an active resister and an 80 pF capacitance to get a 3 Hz pole. A noise test and fast Fourier transform analysis show that the noise performance of this SECDA is the same as that of a SECDA with an external filter. (semiconductor integrated circuits)
Energy Technology Data Exchange (ETDEWEB)
Ramirez Escobar, A.; Lopez Cedillo, A.; Ortego Inigo, A.; Ortega Pascual, F.
2013-07-01
The NOISE application is an off-line tool developed by TECNATOM for Trillo, which simulates the power calculation circuit protection system and L-RELEB system function limitation. It is fed with real data of neutron flux with a frequency of 100 Hz and is designed for predictive analysis system alarms limitation as a result of the oscillations of neutron flux measurements. Addition is to be used as a tool for engineering support to adjust the effective value of the dead band surround filters preventing possible system alarms cause impact on the operation.
Ivanov, Eugene
2010-03-01
The quest to detect Gravitational Waves resulted in a number of important developments in the fields of oscillator frequency stabilization and precision noise measurements. This was due to the realization of similarities between the principles of high sensitivity measurements of weak mechanical forces and phase/amplitude fluctuations of microwave signals. In both cases interferometric carrier suppression and low-noise amplification of the residual noise sidebands were the main factors behind significant improvements in the resolution of spectral measurements. In particular, microwave frequency discriminators with almost thermal noise limited sensitivity were constructed leading to microwave oscillators with more than 25dB lower phase noise than the previous state-of-the-art. High power solid-state microwave amplifiers offered further opportunity of oscillator phase noise reduction due to the increased energy stored in the high-Q resonator of the frequency discriminator. High power microwave oscillators with the phase noise spectral density close to -160dBc/Hz at 1kHz Fourier frequency have been recently demonstrated. The principles of interferometric signal processing have been applied to the study of noise phenomena in microwave components which were considered to be ``noise free''. This resulted in the first experimental evidence of phase fluctuations in microwave circulators. More efficient use of signal power enabled construction of the ``power recycled'' interferometers with spectral resolution of -200dBc/Hz at 1kHz Fourier frequency. This has been lately superseded by an order of magnitude with a waveguide interferometer due to its higher power recycling factor. A number of opto-electronic measurement systems were developed to characterize the fidelity of frequency transfer from the optical to the microwave domain. This included a new type of a phase detector capable of measuring phase fluctuations of the weak microwave signals extracted from the demodulated
Analysis and Extension of the PCA Method, Estimating a Noise Curve from a Single Image
Directory of Open Access Journals (Sweden)
Miguel Colom
2016-12-01
Full Text Available In the article 'Image Noise Level Estimation by Principal Component Analysis', S. Pyatykh, J. Hesser, and L. Zheng propose a new method to estimate the variance of the noise in an image from the eigenvalues of the covariance matrix of the overlapping blocks of the noisy image. Instead of using all the patches of the noisy image, the authors propose an iterative strategy to adaptively choose the optimal set containing the patches with lowest variance. Although the method measures uniform Gaussian noise, it can be easily adapted to deal with signal-dependent noise, which is realistic with the Poisson noise model obtained by a CMOS or CCD device in a digital camera.
Noise Analysis of MAIA System and Possible Noise Suppression
Czech Academy of Sciences Publication Activity Database
Švihlík, J.; Fliegel, K.; Koten, Pavel; Vítek, S.; Páta, P.
2011-01-01
Roč. 20, č. 1 (2011), s. 110-117 ISSN 1210-2512. [International Conference on Telecommunications and Signal Processing /33./ - TSP 2010. Baden near Vienna, 17.08.2010-20.08.2010] Institutional research plan: CEZ:AV0Z10030501 Keywords : MAIA * meteor * noise analysis Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.739, year: 2011
Measuring proton beam thermal noises on the NAP-M storage ring
International Nuclear Information System (INIS)
Dement'ev, E.N.; Dikanskij, N.S.; Medvedko, A.S.; Parkhomchuk, V.V.; Pestrikov, D.V.
1980-01-01
The data on experimental investigation of thermal noises of an asimuthally homogeneous proton beam on the NAP-M storage ring are given. The noise spectra are measured at the 5th and 8th harmonics of the ciculation frequency using pick-up electrodes. The dependencies of the noise power on the proton current for noncooled and cooled beams are presented. It is shown that as a result of electron cooling the noise power decreases by two orders and in the 0.5-10 μA current range the noise power of the cooled beam does not depend on the proton current. The noise power of the noncooled beam linearly increases with the proton current. It is also shown that with the modulation growth the noise power increases. The conclusions are made that while analyzing noises of the continuous beam in the storage ring the changes of the noise spectra due to particle interaction in the beam should be taken into account
Phase unwrapping in digital holography based on non-subsampled contourlet transform
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-01-01
In the digital holographic measurement of complex surfaces, phase unwrapping is a critical step for accurate reconstruction. The phases of the complex amplitudes calculated from interferometric holograms are disturbed by speckle noise, thus reliable unwrapping results are difficult to be obtained. Most of existing unwrapping algorithms implement denoising operations first to obtain noise-free phases and then conduct phase unwrapping pixel by pixel. This approach is sensitive to spikes and prone to unreliable results in practice. In this paper, a robust unwrapping algorithm based on the non-subsampled contourlet transform (NSCT) is developed. The multiscale and directional decomposition of NSCT enhances the boundary between adjacent phase levels and henceforth the influence of local noise can be eliminated in the transform domain. The wrapped phase map is segmented into several regions corresponding to different phase levels. Finally, an unwrapped phase map is obtained by elevating the phases of a whole segment instead of individual pixels to avoid unwrapping errors caused by local spikes. This algorithm is suitable for dealing with complex and noisy wavefronts. Its universality and superiority in the digital holographic interferometry have been demonstrated by both numerical analysis and practical experiments.
International Nuclear Information System (INIS)
Ljunggren, S.
1997-01-01
The purpose of this guide is to provide a set of techniques and methods for the measurement and description of wind turbine noise immission, that is, wind turbine noise at receptor locations. These techniques and methods have been prepared so that they can be used by: manufacturers; developers; operators; planning authorities; research and development engineers, for the purpose of verification of compliance with noise immission limits and of noise propagation models. The measurement of noise immission from wind turbines is a complex acoustic task. This guideline cannot cover all possible problems that may be encountered on, for instance: determination of wind speed; measurements in cases of low signal-to-noise ratio; allowance for reflections from buildings. Thus, it is strongly recommended that the measurements described in this guide are always carried out by experienced acousticians. (au)
The assessment and evaluation of low-frequency noise near the region of infrasound
Directory of Open Access Journals (Sweden)
Stanislav Ziaran
2014-01-01
Full Text Available The main aim of this paper is to present recent knowledge about the assessment and evaluation of low-frequency sounds (noise and infrasound, close to the threshold of hearing, and identify their potential effect on human health and annoyance. Low-frequency noise generated by air flowing over a moving car with an open window was chosen as a typical scenario which can be subjectively assessed by people traveling by automobile. The principle of noise generated within the interior of the car and its effects on the comfort of the driver and passengers are analyzed at different velocities. An open window of a car at high velocity behaves as a source of specifically strong tonal low-frequency noise which is generally perceived as annoying. The interior noise generated by an open window of a passenger car was measured under different conditions: Driving on a highway and driving on a typical roadway. First, an octave-band analysis was used to assess the noise level and its impact on the driver′s comfort. Second, a fast Fourier transform (FFT analysis and one-third octave-band analysis were used for the detection of tonal low-frequency noise. Comparison between two different car makers was also done. Finally, the paper suggests some possibilities for scientifically assessing and evaluating low-frequency sounds in general, and some recommendations are introduced for scientific discussion, since sounds with strong low-frequency content (but not only strong engender greater annoyance than is predicted by an A-weighted sound pressure level.
Boundary layer measurements of the NACA0015 and implications for noise modeling
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, F.
2011-01-15
A NACA0015 airfoil section instrumented with an array of high frequency microphones flush-mounted beneath its surface was measured in the wind tunnel at LM Wind Power in Lunderskov. Various inflow speeds and angles of attack were investigated. In addition, a hot-wire device system was used to measure the velocity profiles and turbulence characteristics in the boundary layer near the trailing edge of the airfoil. The measured boundary layer data are presented in this report and compared with CFD results. A relative good agreement is observed, though a few discrepancies also appear. Comparisons of surface pressure fluctuations spectra are used to analyze and improve trailing edge noise modeling by the so-called TNO model. Finally, a pair of hot-wires were placed on each side of the trailing edge in order to measure the radiated trailing edge noise. However, there is no strong evidence that such noise could be measured in the higher frequency range. Nevertheless, low-frequency noise could be measured and related to the presence of the airfoil but its origin is unclear. (Author)
DeForest, Craig; Seaton, Daniel B.; Darnell, John A.
2017-08-01
I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO
Dynamic strain measurement system with fiber Bragg gratings and noise mitigation techniques
International Nuclear Information System (INIS)
Tosi, D; Olivero, M; Perrone, G
2009-01-01
A low-cost fiber Bragg grating (FBG) vibrometer specifically suited for structural monitoring and aimed at the detection of low-amplitude vibrations is presented. The optical system exploits an intensity modulation principle of operation, while signal processing techniques are used to complement the transducer to improve the performances: a recursive least-squares adaptive filter improves the noise power mitigation by 14 dB, and an efficient spectral estimator permits operating spectral analysis even under high noise conditions. With these methods, a strain sensitivity of 5.6 nε has been achieved in the ±60 µε range. Experimental assessment tests carried out in typical structural monitoring contexts have demonstrated that the developed sensor is well suited to measure mechanical perturbations of different structures
Noise Measurements of High Aspect Ratio Distributed Exhaust Systems
Bridges, James E.
2015-01-01
This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.
Wu, Kan; Shum, Ping
2010-01-01
The phase noise and intensity noise of a pulse train are theoretically analyzed in the demodulation measurement. The effect of pulse asymmetry is discussed for the first time using Fourier series. Experimentally, photodetectors with different bandwidth and incident power levels are compared to achieve minimum pulse distortion.
Improvement of electrocardiogram by empirical wavelet transform
Chanchang, Vikanda; Kumchaiseemak, Nakorn; Sutthiopad, Malee; Luengviriya, Chaiya
2017-09-01
Electrocardiogram (ECG) is a crucial tool in the detection of cardiac arrhythmia. It is also often used in a routine physical exam, especially, for elderly people. This graphical representation of electrical activity of heart is obtained by a measurement of voltage at the skin; therefore, the signal is always contaminated by noise from various sources. For a proper interpretation, the quality of the ECG should be improved by a noise reduction. In this article, we present a study of a noise filtration in the ECG by using an empirical wavelet transform (EWT). Unlike the traditional wavelet method, EWT is adaptive since the frequency spectrum of the ECG is taken into account in the construction of the wavelet basis. We show that the signal-to-noise ratio increases after the noise filtration for different noise artefacts.
Analysis of reactor noise; Analiza reaktorskih sumova
Energy Technology Data Exchange (ETDEWEB)
Velickovic, Lj [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)
1967-11-15
This paper describes the theoretical model for interpretation of experimental results, experimental method for study of reactor noise at the RB reactor, numerical treatment of experimental results by correlation technique for analysis of reactor noise. A computer code was written to obtain autocorrelation function and spectral density function. Experimental results obtained by oscillator technique, pulse technique, and autocorrelation method are presented and discussed.
Noise Pollution: Do We Need a Solution? An Analysis of Noise in a Cardiac Care Unit.
Ryan, Kevin M; Gagnon, Matthew; Hanna, Tyler; Mello, Brad; Fofana, Mustapha; Ciottone, Gregory; Molloy, Michael
2016-08-01
49.24% of alarms. The CCU cares for ill patients requiring constant monitoring. Despite advances in technology, measured noise levels for the hospital studied exceeded WHO standards of 40 dB and peaks of 45 dB, even during night hours when patients require rest. Further work is required to reduce noise levels and examine effects on patient satisfaction, clinical outcomes, and length of stay. Ryan KM , Gagnon M , Hanna T , Mello B , Fofana M , Ciottone G , Molloy M . Noise pollution: do we need a solution? An analysis of noise in a cardiac care unit. Prehosp Disaster Med. 2016;31(4):432-435.
A Comparison of seismic instrument noise coherence analysis techniques
Ringler, A.T.; Hutt, C.R.; Evans, J.R.; Sandoval, L.D.
2011-01-01
The self-noise of a seismic instrument is a fundamental characteristic used to evaluate the quality of the instrument. It is important to be able to measure this self-noise robustly, to understand how differences among test configurations affect the tests, and to understand how different processing techniques and isolation methods (from nonseismic sources) can contribute to differences in results. We compare two popular coherence methods used for calculating incoherent noise, which is widely used as an estimate of instrument self-noise (incoherent noise and self-noise are not strictly identical but in observatory practice are approximately equivalent; Holcomb, 1989; Sleeman et al., 2006). Beyond directly comparing these two coherence methods on similar models of seismometers, we compare how small changes in test conditions can contribute to incoherent-noise estimates. These conditions include timing errors, signal-to-noise ratio changes (ratios between background noise and instrument incoherent noise), relative sensor locations, misalignment errors, processing techniques, and different configurations of sensor types.
Directory of Open Access Journals (Sweden)
Ram Sewak SINGH
2017-12-01
Full Text Available Power spectral analysis of short-term heart rate variability (HRV can provide instant valuable information to understand the functioning of autonomic control over the cardiovascular system. In this study, an adaptive continuous Morlet wavelet transform (ACMWT method has been used to describe the time-frequency characteristics of the HRV using band power spectra and the median value of interquartile range. Adaptation of the method was based on the measurement of maximum energy concentration. The ACMWT has been validated on synthetic signals (i.e. stationary, non-stationary as slow varying and fast changing frequency with time modeled as closest to dynamic changes in HRV signals. This method has been also tested in the presence of additive white Gaussian noise (AWGN to show its robustness towards the noise. From the results of testing on synthetic signals, the ACMWT was found to be an enhanced energy concentration estimator for assessment of power spectral of short-term HRV time series compared to adaptive Stockwell transform (AST, adaptive modified Stockwell transform (AMST, standard continuous Morlet wavelet transform (CMWT and Stockwell transform (ST estimators at statistical significance level of 5%. Further, the ACMWT was applied to real HRV data from Fantasia and MIT-BIH databases, grouped as healthy young group (HYG, healthy elderly group (HEG, arrhythmia controlled medication group (ARCMG, and supraventricular tachycardia group (SVTG subjects. The global results demonstrate that spectral indices of low frequency power (LFp and high frequency power (HFp of HRV were decreased in HEG compared to HYG subjects (p<0.0001. While LFp and HFp indices were increased in ARCMG compared to HEG (p<0.00001. The LFp and HFp components of HRV obtained from SVTG were reduced compared to other group subjects (p<0.00001.
Automated system for noise-measurements on low-ohmic samples and magnetic sensors
Jonker, R.J.W.; Briaire, J.; Vandamme, L.K.J.
1999-01-01
An automated system for electronic noise measurements on metal films is presented. This new system, controlled by a personal computer which utilizes National Instruments' LabVIEW software, is designed to measure low frequency noise as a function of an externally imposed magnetic field and as a
Analysis of jet-airfoil interaction noise sources by using a microphone array technique
Fleury, Vincent; Davy, Renaud
2016-03-01
The paper is concerned with the characterization of jet noise sources and jet-airfoil interaction sources by using microphone array data. The measurements were carried-out in the anechoic open test section wind tunnel of Onera, Cepra19. The microphone array technique relies on the convected, Lighthill's and Ffowcs-Williams and Hawkings' acoustic analogy equation. The cross-spectrum of the source term of the analogy equation is sought. It is defined as the optimal solution to a minimal error equation using the measured microphone cross-spectra as reference. This inverse problem is ill-posed yet. A penalty term based on a localization operator is therefore added to improve the recovery of jet noise sources. The analysis of isolated jet noise data in subsonic regime shows the contribution of the conventional mixing noise source in the low frequency range, as expected, and of uniformly distributed, uncorrelated noise sources in the jet flow at higher frequencies. In underexpanded supersonic regime, a shock-associated noise source is clearly identified, too. An additional source is detected in the vicinity of the nozzle exit both in supersonic and subsonic regimes. In the presence of the airfoil, the distribution of the noise sources is deeply modified. In particular, a strong noise source is localized on the flap. For high Strouhal numbers, higher than about 2 (based on the jet mixing velocity and diameter), a significant contribution from the shear-layer near the flap is observed, too. Indications of acoustic reflections on the airfoil are also discerned.
International Nuclear Information System (INIS)
Green, James E; David, John P R; Tozer, Richard C
2012-01-01
This paper reports a novel and versatile system for measuring excess noise and multiplication in avalanche photodiodes (APDs), using a bipolar junction transistor based transimpedance amplifier front-end and based on phase-sensitive detection, which permits accurate measurement in the presence of a high dark current. The system can reliably measure the excess noise factor of devices with capacitance up to 5 nF. This system has been used to measure thin, large area Si pin APDs and the resulting data are in good agreement with measurements of the same devices obtained from a different noise measurement system which will be reported separately. (paper)
Neutron noise analysis of BWR using time series analysis
International Nuclear Information System (INIS)
Fukunishi, Kohyu
1976-01-01
The main purpose of this paper is to give more quantitative understanding of noise source in neutron flux and to provide a useful tool for the detection and diagnosis of reactor. The space dependent effects of distributed neutron flux signals at the axial direction of two different strings are investigated by the power contribution ratio among neutron fluxes and the incoherent noise spectra of neutron fluxes derived from autoregressive spectra. The signals are measured on the medium sized commercial BWR of 460 MWe in Japan. From the obtained results, local and global noise sources in neutron flux are discussed. This method is indicated to be a useful tool for detection and diagnosis of anomalous phenomena in BWR. (orig./RW) [de
Reducing Noise by Repetition: Introduction to Signal Averaging
Hassan, Umer; Anwar, Muhammad Sabieh
2010-01-01
This paper describes theory and experiments, taken from biophysics and physiological measurements, to illustrate the technique of signal averaging. In the process, students are introduced to the basic concepts of signal processing, such as digital filtering, Fourier transformation, baseline correction, pink and Gaussian noise, and the cross- and…
Measurement of the Low Frequency Noise of MOSFETs under Large Signal RF Excitation
van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram
2002-01-01
A measurement technique [1] is presented that allows measurement of MOSFET low frequency (LF) noise under large signal RF (Radio Frequency) excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does
Experimental Test of Entropic Noise-Disturbance Uncertainty Relations for Spin-1/2 Measurements.
Sulyok, Georg; Sponar, Stephan; Demirel, Bülent; Buscemi, Francesco; Hall, Michael J W; Ozawa, Masanao; Hasegawa, Yuji
2015-07-17
Information-theoretic definitions for noise and disturbance in quantum measurements were given in [Phys. Rev. Lett. 112, 050401 (2014)] and a state-independent noise-disturbance uncertainty relation was obtained. Here, we derive a tight noise-disturbance uncertainty relation for complementary qubit observables and carry out an experimental test. Successive projective measurements on the neutron's spin-1/2 system, together with a correction procedure which reduces the disturbance, are performed. Our experimental results saturate the tight noise-disturbance uncertainty relation for qubits when an optimal correction procedure is applied.
Analysis and application of Fourier transform spectroscopy in atmospheric remote sensing
Park, J. H.
1984-01-01
An analysis method for Fourier transform spectroscopy is summarized with applications to various types of distortion in atmospheric absorption spectra. This analysis method includes the fast Fourier transform method for simulating the interferometric spectrum and the nonlinear least-squares method for retrieving the information from a measured spectrum. It is shown that spectral distortions can be simulated quite well and that the correct information can be retrieved from a distorted spectrum by this analysis technique.
Quantum control with noisy fields: computational complexity versus sensitivity to noise
International Nuclear Information System (INIS)
Kallush, S; Khasin, M; Kosloff, R
2014-01-01
A closed quantum system is defined as completely controllable if an arbitrary unitary transformation can be executed using the available controls. In practice, control fields are a source of unavoidable noise, which has to be suppressed to retain controllability. Can one design control fields such that the effect of noise is negligible on the time-scale of the transformation? This question is intimately related to the fundamental problem of a connection between the computational complexity of the control problem and the sensitivity of the controlled system to noise. The present study considers a paradigm of control, where the Lie-algebraic structure of the control Hamiltonian is fixed, while the size of the system increases with the dimension of the Hilbert space representation of the algebra. We find two types of control tasks, easy and hard. Easy tasks are characterized by a small variance of the evolving state with respect to the operators of the control operators. They are relatively immune to noise and the control field is easy to find. Hard tasks have a large variance, are sensitive to noise and the control field is hard to find. The influence of noise increases with the size of the system, which is measured by the scaling factor N of the largest weight of the representation. For fixed time and control field the ability to control degrades as O(N) for easy tasks and as O(N 2 ) for hard tasks. As a consequence, even in the most favorable estimate, for large quantum systems, generic noise in the controls dominates for a typical class of target transformations, i.e. complete controllability is destroyed by noise. (paper)
Noise analysis for CCD-based ultraviolet and visible spectrophotometry.
Davenport, John J; Hodgkinson, Jane; Saffell, John R; Tatam, Ralph P
2015-09-20
We present the results of a detailed analysis of the noise behavior of two CCD spectrometers in common use, an AvaSpec-3648 CCD UV spectrometer and an Ocean Optics S2000 Vis spectrometer. Light sources used include a deuterium UV/Vis lamp and UV and visible LEDs. Common noise phenomena include source fluctuation noise, photoresponse nonuniformity, dark current noise, fixed pattern noise, and read noise. These were identified and characterized by varying light source, spectrometer settings, or temperature. A number of noise-limiting techniques are proposed, demonstrating a best-case spectroscopic noise equivalent absorbance of 3.5×10(-4) AU for the AvaSpec-3648 and 5.6×10(-4) AU for the Ocean Optics S2000 over a 30 s integration period. These techniques can be used on other CCD spectrometers to optimize performance.
Godet , Sylvain; Tournier , Éric; Llopis , Olivier; Cathelin , Andreia; Juyon , Julien
2009-01-01
4 pages; International audience; The design and realization of an ultra-low noise operational amplifier is presented. Its applications are integrated low-frequency noise measurements in electronic devices and on-chip phase-noise measurement circuit. This paper discusses the SiGe:C BiCMOS 0.25 µm design improvements used for low noise applications. The proposed three-stage operational amplifier uses parallel bipolar transistor connection as input differential pair for low noise behavior. This ...
Hati, Archita; Nelson, Craig W.; Pappas, David P.; Howe, David A.
2017-11-01
The cross-spectrum noise measurement technique enables enhanced resolution of spectral measurements. However, it has disadvantages, namely, increased complexity, inability of making real-time measurements, and bias due to the "cross-spectral collapse" (CSC) effect. The CSC can occur when the spectral density of a random process under investigation approaches the thermal noise of the power splitter. This effect can severely bias results due to a differential measurement between the investigated noise and the anti-correlated (phase-inverted) noise of the power splitter. In this paper, we report an accurate measurement of the phase noise of a thermally limited electronic oscillator operating at room temperature (300 K) without significant CSC bias. We mitigated the problem by cooling the power splitter to liquid helium temperature (4 K). We quantify errors of greater than 1 dB that occur when the thermal noise of the oscillator at room temperature is measured with the power splitter at temperatures above 77 K.
Bearing fault detection utilizing group delay and the Hilbert-Huang transform
International Nuclear Information System (INIS)
Jin, Shuai; Lee, Sang-Kwon
2017-01-01
Vibration signals measured from a mechanical system are useful to detect system faults. Signal processing has been used to extract fault information in bearing systems. However, a wide vibration signal frequency band often affects the ability to obtain the effective fault features. In addition, a few oscillation components are not useful at the entire frequency band in a vibration signal. By contrast, useful fatigue information can be embedded in the noise oscillation components. Thus, a method to estimate which frequency band contains fault information utilizing group delay was proposed in this paper. Group delay as a measure of phase distortion can indicate the phase structure relationship in the frequency domain between original (with noise) and denoising signals. We used the empirical mode decomposition of a Hilbert-Huang transform to sift the useful intrinsic mode functions based on the results of group delay after determining the valuable frequency band. Finally, envelope analysis and the energy distribution after the Hilbert transform were used to complete the fault diagnosis. The practical bearing fault data, which were divided into inner and outer race faults, were used to verify the efficiency and quality of the proposed method
Bearing fault detection utilizing group delay and the Hilbert-Huang transform
Energy Technology Data Exchange (ETDEWEB)
Jin, Shuai; Lee, Sang-Kwon [Inha University, Incheon (Korea, Republic of)
2017-03-15
Vibration signals measured from a mechanical system are useful to detect system faults. Signal processing has been used to extract fault information in bearing systems. However, a wide vibration signal frequency band often affects the ability to obtain the effective fault features. In addition, a few oscillation components are not useful at the entire frequency band in a vibration signal. By contrast, useful fatigue information can be embedded in the noise oscillation components. Thus, a method to estimate which frequency band contains fault information utilizing group delay was proposed in this paper. Group delay as a measure of phase distortion can indicate the phase structure relationship in the frequency domain between original (with noise) and denoising signals. We used the empirical mode decomposition of a Hilbert-Huang transform to sift the useful intrinsic mode functions based on the results of group delay after determining the valuable frequency band. Finally, envelope analysis and the energy distribution after the Hilbert transform were used to complete the fault diagnosis. The practical bearing fault data, which were divided into inner and outer race faults, were used to verify the efficiency and quality of the proposed method.
Fabrication and Characterisation of Low-noise Monolithic Mode-locked Lasers
DEFF Research Database (Denmark)
Larsson, David
2007-01-01
This thesis deals with the fabrication and characterisation of monolithic semiconductor mode-locked lasers for use in optical communication systems. Other foreseeable applications may be as sources in microwave photonics and optical sampling. The thesis also deals with the design and fabrication...... of intracavity monolithically integrated filters. The common dnominator among the diffrent parts of the thesis is how to achieve and measure the lowest possible noise. Achieving low noise has been pinpointed as one of the most important and difficult challenges for semiconductor mode-locked lasers. The main...... result of this thesis are a fabrication process of a monolithic and deeply etched distributed Bragg reflector and a characterisation system for measurement of quantum limitid timing noise at high repetition rates. The Bragg reflector is a key component in achieving transform limited pulses with low noise...
Methods for detection and characterization of signals in noisy data with the Hilbert-Huang transform
International Nuclear Information System (INIS)
Stroeer, Alexander; Cannizzo, John K.; Camp, Jordan B.; Gagarin, Nicolas
2009-01-01
The Hilbert-Huang transform is a novel, adaptive approach to time series analysis that does not make assumptions about the data form. Its adaptive, local character allows the decomposition of nonstationary signals with high time-frequency resolution but also renders it susceptible to degradation from noise. We show that complementing the Hilbert-Huang transform with techniques such as zero-phase filtering, kernel density estimation and Fourier analysis allows it to be used effectively to detect and characterize signals with low signal-to-noise ratios.
Noise measurement at wind power plants; Geraeuschmessung an Windenergieanlagen
Energy Technology Data Exchange (ETDEWEB)
Schoene, Ralph [Cirrus Research plc, Frankfurt am Main (Germany)
2012-09-15
Wind energy is a supporting pillar of the energy transition. For further expansion, it is important to reduce prejudices, for example by measurements as precise as possible and assessments of the often unobjectively discussed noise emissions. These measurements are based on instruments which can analyze and measure low-frequency sound.
Neutron noise measurements at the Delphi subcritical assembly
International Nuclear Information System (INIS)
Szieberth, M.; Klujber, G.; Kloosterman, J. L.; De Haas, D.
2012-01-01
The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)
Process sensors characterization based on noise analysis technique and artificial intelligence
International Nuclear Information System (INIS)
Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos
2005-01-01
The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)
Process sensors characterization based on noise analysis technique and artificial intelligence
Energy Technology Data Exchange (ETDEWEB)
Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rnavarro@ipen.br; sperillo@ipen.br; rcsantos@ipen.br
2005-07-01
The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)
Stephenson, James H.; Greenwood, Eric
2015-01-01
Blade-vortex interaction noise measurements are analyzed for an AS350B helicopter operated at 7000 ft elevation above sea level. Blade-vortex interaction (BVI) noise from four, 6 degree descent conditions are investigated with descents flown at 80 knot true and indicated airspeed, as well as 4400 and 3915 pound take-off weights. BVI noise is extracted from the acquired acoustic signals by way of a previously developed time-frequency analysis technique. The BVI extraction technique is shown to provide a better localization of BVI noise, compared to the standard Fourier transform integration method. Using this technique, it was discovered that large changes in BVI noise amplitude occurred due to changes in vehicle gross weight. Changes in BVI noise amplitude were too large to be due solely to changes in the vortex strength caused by varying vehicle weight. Instead, it is suggested that vehicle weight modifies the tip-path-plane angle of attack, as well as induced inflow, resulting in large variations of BVI noise. It was also shown that defining flight conditions by true airspeed, rather than indicated airspeed, provides more consistent BVI noise signals.
Using the coolant temperature noise for measuring the flow rate in the RBMK technological channels
International Nuclear Information System (INIS)
Selivanov, V.M.; Karlov, N.P.; Martynov, A.D.; Prostyakov, V.V.; Lysikov, B.V.; Kuznetsov, B.A.; Pallagi, D.; Khorani, Sh.; Khargitai, T.; Tezher, Sh.
1983-01-01
The problems are considered connected with the possibility of using thermometric correlation method to measure the coolant flow rate in the RBMK reactor technological channels. The main attention is paid to the study of the physical nature of the coolant temperature pulsations and to estimation of the effect of parameters of the primary thermaelectrical converter (TEC) on the results of measurements. In the process of reactor inspections made using the thermometric correlation flowmeter of a special design, the temperature noise distribution in the points of flow rate measurement is studied, the noise intensity and physical nature are determined, as well as the effect of different TEC parameters (TEC inertia and base distance between them) on the measurement accuracy. On the basis of the analysis of the effect on the results of the TEC thermal inertia measured value divergence, tausub(α) and transport time, tau sub(T), a conclusion is made on the necessity of choosing the base distance between TEC with tausub(T)>tausub(d)
Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise
International Nuclear Information System (INIS)
Nygaard, K.
1966-07-01
For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used
Optimal Linear Filters for Pulse Height Measurements in the Presence of Noise
Energy Technology Data Exchange (ETDEWEB)
Nygaard, K
1966-07-15
For measurements of nuclear pulse height spectra a linear filter is used between the pulse amplifier and the pulse height recorder so as to improve the signal/noise ratio. The problem of finding the optimal filter is investigated with emphasis on technical realizability. The maximum available signal/noise ratio is theoretically calculated on the basis of all the information which can be found in the output of the pulse amplifier, and on an assumed a priori knowledge of the pulse time of arrival. It is then shown that the maximum available signal/noise ratio can be obtained with practical measurements without any a priori knowledge of pulse time of arrival, and a general description of the optimal linear filter is given. The solution is unique, technically realizable, and based solely on data (noise power spectrum and pulse shape) which can be measured at the output terminals of the pulse amplifier used.
Transform analysis of generalized functions
Misra, O P
1986-01-01
Transform Analysis of Generalized Functions concentrates on finite parts of integrals, generalized functions and distributions. It gives a unified treatment of the distributional setting with transform analysis, i.e. Fourier, Laplace, Stieltjes, Mellin, Hankel and Bessel Series.Included are accounts of applications of the theory of integral transforms in a distributional setting to the solution of problems arising in mathematical physics. Information on distributional solutions of differential, partial differential equations and integral equations is conveniently collected here.The volume will
Applications of aero-acoustic analysis to wind turbine noise control
International Nuclear Information System (INIS)
Lowson, M.V.
1992-01-01
Wind turbine noise generation mechanisms are essentially equivalent to the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. Basic sources for the wind turbine noise radiation process are defined, and their significance assessed. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. (author)
Applications of aero-acoustic analysis to wind turbine noise control
International Nuclear Information System (INIS)
Lowson, M.
1993-01-01
Wind turbine noise generation mechanisms are essentially equivalent to the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. Basic sources for the wind turbine noise radiation process are defined, and their significance assessed. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. (author)
A new fractional wavelet transform
Dai, Hongzhe; Zheng, Zhibao; Wang, Wei
2017-03-01
The fractional Fourier transform (FRFT) is a potent tool to analyze the time-varying signal. However, it fails in locating the fractional Fourier domain (FRFD)-frequency contents which is required in some applications. A novel fractional wavelet transform (FRWT) is proposed to solve this problem. It displays the time and FRFD-frequency information jointly in the time-FRFD-frequency plane. The definition, basic properties, inverse transform and reproducing kernel of the proposed FRWT are considered. It has been shown that an FRWT with proper order corresponds to the classical wavelet transform (WT). The multiresolution analysis (MRA) associated with the developed FRWT, together with the construction of the orthogonal fractional wavelets are also presented. Three applications are discussed: the analysis of signal with time-varying frequency content, the FRFD spectrum estimation of signals that involving noise, and the construction of fractional Harr wavelet. Simulations verify the validity of the proposed FRWT.
Recent progress in safety-related applications of reactor noise analysis
International Nuclear Information System (INIS)
Hirota, Jitsuya; Shinohara, Yoshikuni; Saito, Keiichi
1982-01-01
Recent progress in safety-related applications of reactor noise analysis is reviewed, mainly referring to various papers presented at the Third Specialists' Meeting on Reactor Noise (SMORN-III) held in Tokyo in 1981. Advances in application of autoregressive model, coherence analysis and pattern recognition technique are significant since SMORN-II in 1977. Development of reactor diagnosis systems based on noise analysis is in progress. Practical experiences in the safety-related applications to power plants are being accumulated. Advances in quantitative monitoring of vibration of internal structures in PWR and diagnosis of core stability and control system characteristics in BWR are notable. Acoustic methods are also improved to detect sodium boiling in LMFBR. The Reactor Noise Analysis Benchmark Test performed by Japan in connection with SMORN-III is successful so that it is possible to proceed to the second stage of the benchmark test. (author)
Measurements of 1/f noise in A-Si:H pin diodes and thin-film-transistors
International Nuclear Information System (INIS)
Cho, Gyuseong; Drewery, J.S.; Fujieda, I.; Jing, T.; Kaplan, S.N.; Perez-Mendez, V.; Qureshi, S.; Wildermuth, D.; Street, R.A.
1990-05-01
We measured the equivalent noise charge of a-Si:H pin diodes (5 ∼ 45μm i-layer) with a pulse shaping time of 2.5 μsec under reverse biases up to 30 V/μm and analyzed it as a four component noise source. The frequency spectra of 1/f noise on the soft-breakdown region and of the Nyquist noise from contact resistance of diodes were measured. Using the conversion equations for a CR-RC shaper, we identified the contact resistance noise and the 1/f noise as the main noise sources in the low bias and high bias regions respectively. The 1/f noise of a-Si:H TFTs with channel length of 15 μm was measured to be the dominant component up to ∼100kHz for both saturation and linear regions. 15 refs., 7 figs
International Nuclear Information System (INIS)
Casas Cardoso, Maria del Carmen; Perez Diaz, Marlen; Casas Cardoso, Gladis; Lorenzo Ginori, Juan; Paz Viera, Juan Enrique; Roque Diaz, Reinaldo; Cardenas Barreras, Julian
2009-01-01
Diagnostic imaging of Nuclear Medicine (MN), is highly used in Oncology, as it constitutes a noninvasive technique that allows early detection of tumors and assessment of therapeutic response of patients under treatment. However, particularly planar scintigraphy images, can be prone to problems of detectability of small lesions, because they are contaminated with noise, a phenomenon which is accentuated by the inability to increase the dose of the radiopharmaceutical or time acquisition of images of the patient over 'certain levels'. The aim of this work is to improve the detectability of tumors of bone. We describe an algorithm for random noise reduction using the wavelet transform (TW). The quality of the resulting images are evaluated through quantitative metrics such as Signal to Noise Ratio (SNR), the Mean Square Error (NMSEA) and Structural Similarity Index (SSIM). It also includes a subjective assessment of image quality by expert criteria, using a variant of the methodology FROC (Free-Response ROC). It was found that some of the filters designed in the wavelet domain, significantly improve the quality of planar bone imaging in terms of increased signal to noise ratio without implying notable structural distortions, which facilitates clinical diagnosis. (author)
Su, Yung-Chao; Wu, Shin-Tza
2017-09-01
We study theoretically the teleportation of a controlled-phase (cz) gate through measurement-based quantum-information processing for continuous-variable systems. We examine the degree of entanglement in the output modes of the teleported cz-gate for two classes of resource states: the canonical cluster states that are constructed via direct implementations of two-mode squeezing operations and the linear-optical version of cluster states which are built from linear-optical networks of beam splitters and phase shifters. In order to reduce the excess noise arising from finite-squeezed resource states, teleportation through resource states with different multirail designs will be considered and the enhancement of entanglement in the teleported cz gates will be analyzed. For multirail cluster with an arbitrary number of rails, we obtain analytical expressions for the entanglement in the output modes and analyze in detail the results for both classes of resource states. At the same time, we also show that for uniformly squeezed clusters the multirail noise reduction can be optimized when the excess noise is allocated uniformly to the rails. To facilitate the analysis, we develop a trick with manipulations of quadrature operators that can reveal rather efficiently the measurement sequence and corrective operations needed for the measurement-based gate teleportation, which will also be explained in detail.
Directory of Open Access Journals (Sweden)
Vladimir A. Batura
2014-11-01
Full Text Available The efficiency of orthogonal transformations application in the frequency algorithms of the digital watermarking of still images is examined. Discrete Hadamard transform, discrete cosine transform and discrete Haar transform are selected. Their effectiveness is determined by the invisibility of embedded in digital image watermark and its resistance to the most common image processing operations: JPEG-compression, noising, changing of the brightness and image size, histogram equalization. The algorithm for digital watermarking and its embedding parameters remain unchanged at these orthogonal transformations. Imperceptibility of embedding is defined by the peak signal to noise ratio, watermark stability– by Pearson's correlation coefficient. Embedding is considered to be invisible, if the value of the peak signal to noise ratio is not less than 43 dB. Embedded watermark is considered to be resistant to a specific attack, if the Pearson’s correlation coefficient is not less than 0.5. Elham algorithm based on the image entropy is chosen for computing experiment. Computing experiment is carried out according to the following algorithm: embedding of a digital watermark in low-frequency area of the image (container by Elham algorithm, exposure to a harmful influence on the protected image (cover image, extraction of a digital watermark. These actions are followed by quality assessment of cover image and watermark on the basis of which efficiency of orthogonal transformation is defined. As a result of computing experiment it was determined that the choice of the specified orthogonal transformations at identical algorithm and parameters of embedding doesn't influence the degree of imperceptibility for a watermark. Efficiency of discrete Hadamard transform and discrete cosine transformation in relation to the attacks chosen for experiment was established based on the correlation indicators. Application of discrete Hadamard transform increases
Energy Technology Data Exchange (ETDEWEB)
Genuit, K. [HEAD acoustics, Herzogenrath-Kohlscheid (Germany); Poggenburg, J.
1998-12-31
The share of tyre noise in the total motor car noise has increased constantly in the past years. Today, legal regulations governing car noise and the car industry`s increasing demands on driving comfort are forcing car tyre producers to reduce tyre noise. This is made more difficult by the high and varied demands on tyres. The authors therefore suggest that rolling noise design should be given more attention supplementary to the current noise level measurements. This would result in a product-specific type of noise and also enhance the social acceptance of motor cars. The limits of conventional measuring techniques are pointed out, as are the possibilities of binaural measurement and analysis. Exemplary applications are listed, and an outlook to the future is attempted. [Deutsch] Der prozentuale Anteil der Reifen am Gesamtgeraeusch eines Fahrzeuges ist in der Vergangenheit stetig angestiegen. Bestehende gesetzliche Vorschriften fuer das Fahrzeug-Aussengeraeusch sowie hohe Ansprueche der Kunden, d.h. primaer der Automobilindustrie, zwingen die Reifenhersteller generell, das Rollgeraeusch zu reduzieren. Die an einen Fahrzeugreifen gestellten vielfaeltigen Anforderungen bedingen hierbei im allgemeinen einen hohen Aufwand. Im Beitrag wird daher fuer eine Vorgehensweise plaediert, die in Ergaenzung zum begrenzt aussagekraeftigen A-bewerteten Schalldruckpegel eine Gestaltung des Rollgeraeusches in den Mittelpunkt stellt. Hiermit kann nicht nur die Realisierung eines produktbezogenen Aussengeraeusches unterstuetzt werden, sondern es sichert darueber hinaus die gesellschaftliche Akzeptanz des Autos. Es werden die Grenzen konventioneller Messverfahren kurz aufgezeigt und die mittels binauraler Mess- und Analysetechnik bestehenden Moeglichkeiten dargestellt. Sinnvolle Vorgehensweisen werden anhand verschiedener Anwendungsbeispiele erlaeutert. Ein abschliessender Ausblick beschreibt das Potential zur Reduzierung der Belaestigungswirkung von Reifengeraeuschen durch
Validating criticality calculations for spent fuel with 252Cf-source-driven noise measurements
International Nuclear Information System (INIS)
Mihalczo, J.T.; Krass, A.W.; Valentine, T.E.
1992-01-01
The 252 Cf-Source-driven noise analysis method can be used for measuring the subcritical neutron multiplication factor k of arrays of spent light water reactor (LWR) fuel. This type of measurement provides a parameter that is directly related to the criticality state of arrays of LWR fuel. Measurements of this parameter can verify the criticality safety margins of spent LWR fuel configurations and thus could be a means of obtaining the information to justify burnup credit for spent LWR transportation/storage casks. The practicality of a measurement depends on the ability to install the hardware required to perform the measurement. Source chambers containing the 252 Cf at the required source intensity for this application have been constructed and have operated successfully for ∼10 years and can be fabricated to fit into control rod guide tubes of PWR fuel elements. Fission counters especially developed for spent-fuel measurements are available that would allow measurements of a special 3 x 3 spent fuel array and a typical burnup credit rail cask with spent fuel in unborated water. Adding a moderator around these fission counters would allow measurements with the typical burnup credit rail cask with borated water and the special 3 x 3 array with borated water. The recent work of Ficaro on modifying the KENO Va code to calculate by the Monte Carlo method the time sequences of pulses at two detectors near a fissile assembly from the fission chain multiplication process, initiated by a 252 Cf source in the assembly allows a direct computer calculation of the noise analysis data from this measurement method
Grosveld, Ferdinand W.
1990-01-01
The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.
Veisten, Knut; Smyrnova, Yuliya; Klæboe, Ronny; Hornikx, Maarten; Mosslemi, Marjan; Kang, Jian
2012-01-01
Economic unit values of soundscape/acoustic effects have been based on changes in the number of annoyed persons or on decibel changes. The normal procedure has been the application of these unit values to noise-attenuation measures affecting the noisier façade of a dwelling. Novel modular vegetation-based soundscape measures, so-called green walls, might be relevant for both noisy and quieter areas. Moreover, their benefits will comprise noise attenuation as well as non-acoustic amenity effects. One challenge is to integrate the results of some decades of non-acoustic research on the amenity value of urban greenery into design of the urban sound environment, and incorporate these non-acoustic properties in the overall economic assessment of noise control and overall sound environment improvement measures. Monetised unit values for green walls have been included in two alternative cases, or demonstration projects, of covering the entrances to blocks of flats with a green wall. Since these measures improve the noise environment on the quiet side of the dwellings and courtyards, not the most exposed façade, adjustment factors to the nominal quiet side decibel reductions to arrive at an estimate of the equivalent overall acoustic improvement have been applied. A cost-benefit analysis of the green wall case indicates that this measure is economically promising, when valuing the noise attenuation in the quieter area and adding the amenity/aesthetic value of the green wall. PMID:23202816
Directory of Open Access Journals (Sweden)
Jian Kang
2012-10-01
Full Text Available Economic unit values of soundscape/acoustic effects have been based on changes in the number of annoyed persons or on decibel changes. The normal procedure has been the application of these unit values to noise-attenuation measures affecting the noisier façade of a dwelling. Novel modular vegetation-based soundscape measures, so-called green walls, might be relevant for both noisy and quieter areas. Moreover, their benefits will comprise noise attenuation as well as non-acoustic amenity effects. One challenge is to integrate the results of some decades of non-acoustic research on the amenity value of urban greenery into design of the urban sound environment, and incorporate these non-acoustic properties in the overall economic assessment of noise control and overall sound environment improvement measures. Monetised unit values for green walls have been included in two alternative cases, or demonstration projects, of covering the entrances to blocks of flats with a green wall. Since these measures improve the noise environment on the quiet side of the dwellings and courtyards, not the most exposed façade, adjustment factors to the nominal quiet side decibel reductions to arrive at an estimate of the equivalent overall acoustic improvement have been applied. A cost-benefit analysis of the green wall case indicates that this measure is economically promising, when valuing the noise attenuation in the quieter area and adding the amenity/aesthetic value of the green wall.
Reactor noise analysis applications in NPP I and C systems
Energy Technology Data Exchange (ETDEWEB)
Gloeckler, O. [International Atomic Energy Agency, Wagramer Strosse 5, A-1400 Vienna, Austria Ontario Power Generation, 230 Westney Road South, Ajax, Ont. L1S 7R3 (Canada)
2006-07-01
Reactor noise analysis techniques are used in many NPPs on a routine basis as 'inspection tools' to get information on the dynamics of reactor processes and their instrumentation in a passive, non-intrusive way. The paper discusses some of the tasks and requirements an NPP has to take to implement and to use the full advantages of reactor noise analysis techniques. Typical signal noise analysis applications developed for the monitoring of the reactor shutdown system and control system instrumentation of the Candu units of Ontario Power Generation and Bruce Power are also presented. (authors)
MICROWAVE NOISE MEASUREMENT OF ELECTRON TEMPERATURES IN AFTERGLOW PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Leiby, Jr., C. C.; McBee, W. D.
1963-10-15
Transient electron temperatures in afterglow plasmas were determined for He (5 and 10 torr), Ne, and Ne plus or minus 5% Ar (2.4 and 24 torr) by combining measurements of plasma microwave noise power, and plasma reflectivity and absorptivity. Use of a low-noise parametric preamplifier permitted continuous detection during the afterglow of noise power at 5.5 Bc in a 1 Mc bandwidth. Electron temperature decays were a function of pressure and gas but were slower than predicted by electron energy loss mechanisms. The addition of argon altered the electron density decay in the neon afterglow but the electron temperature decay was not appreciably changed. Resonances in detected noise power vs time in the afterglow were observed for two of the three plasma waveguide geometries studied. These resonances correlate with observed resonances in absorptivity and occur over the same range of electron densities for a given geometry independent of gas type and pressure. (auth)
A Shearlet-based algorithm for quantum noise removal in low-dose CT images
Zhang, Aguan; Jiang, Huiqin; Ma, Ling; Liu, Yumin; Yang, Xiaopeng
2016-03-01
Low-dose CT (LDCT) scanning is a potential way to reduce the radiation exposure of X-ray in the population. It is necessary to improve the quality of low-dose CT images. In this paper, we propose an effective algorithm for quantum noise removal in LDCT images using shearlet transform. Because the quantum noise can be simulated by Poisson process, we first transform the quantum noise by using anscombe variance stabilizing transform (VST), producing an approximately Gaussian noise with unitary variance. Second, the non-noise shearlet coefficients are obtained by adaptive hard-threshold processing in shearlet domain. Third, we reconstruct the de-noised image using the inverse shearlet transform. Finally, an anscombe inverse transform is applied to the de-noised image, which can produce the improved image. The main contribution is to combine the anscombe VST with the shearlet transform. By this way, edge coefficients and noise coefficients can be separated from high frequency sub-bands effectively. A number of experiments are performed over some LDCT images by using the proposed method. Both quantitative and visual results show that the proposed method can effectively reduce the quantum noise while enhancing the subtle details. It has certain value in clinical application.
Hyperbolic white noise functional solutions of Wick-type stochastic compound KdV-Burgers equations
International Nuclear Information System (INIS)
Han Xiu; Xie Yingchao
2009-01-01
Variable coefficient and Wick-type stochastic compound KdV-Burgers equations are investigated. By using white noise analysis, Hermite transform and the hyperbolic function method, we obtain a number of Wick versions of hyperbolic white noise functional solutions and hyperbolic function solutions for Wick-type stochastic and variable coefficient compound KdV-Burgers equations, respectively.
Noise and LPI radar as part of counter-drone mitigation system measures
Zhang, Yan (Rockee); Huang, Yih-Ru; Thumann, Charles
2017-05-01
With the rapid proliferation of small unmanned aerial systems (UAS) in the national airspace, small operational drones are being sometimes considered as a security threat for critical infrastructures, such as sports stadiums, military facilities, and airports. There have been many civilian counter-drone solutions and products reported, including radar and electromagnetic counter measures. For the current electromagnetic solutions, they are usually limited to particular type of detection and counter-measure scheme, which is usually effective for the specific type of drones. Also, control and communication link technologies used in even RC drones nowadays are more sophisticated, making them more difficult to detect, decode and counter. Facing these challenges, our team proposes a "software-defined" solution based on noise and LPI radar. For the detection, wideband-noise radar has the resolution performance to discriminate possible micro-Doppler features of the drone versus biological scatterers. It also has the benefit of more adaptive to different types of drones, and covertly detecting for security application. For counter-measures, random noise can be combined with "random sweeping" jamming scheme, to achieve the optimal balance between peak power allowed and the effective jamming probabilities. Some theoretical analysis of the proposed solution is provided in this study, a design case study is developed, and initial laboratory experiments, as well as outdoor tests are conducted to validate the basic concepts and theories. The study demonstrates the basic feasibilities of the Drone Detection and Mitigation Radar (DDMR) concept, while there are still much work needs to be done for a complete and field-worthy technology development.
Assessing the effects of noise abatement measures on health risks: A case study in Istanbul
International Nuclear Information System (INIS)
Ongel, Aybike; Sezgin, Fatih
2016-01-01
In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed in the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.
Assessing the effects of noise abatement measures on health risks: A case study in Istanbul
Energy Technology Data Exchange (ETDEWEB)
Ongel, Aybike, E-mail: aybike.ongel@eng.bahcesehir.edu.tr [Bahcesehir University, Department of Civil Engineering, Istanbul 34353 (Turkey); Sezgin, Fatih, E-mail: fatih.sezgin@ibb.gov.tr [Istanbul Metropolitan Municipality, Environmental Protection Agency, Istanbul 34169 (Turkey)
2016-01-15
In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed in the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.
International Nuclear Information System (INIS)
Pan, Yue; Cai, Yimao; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru
2016-01-01
TaO_x-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO_x-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO_x RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO_x RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.
Towards a practical Johnson noise thermometer for long-term measurements in harsh environments
International Nuclear Information System (INIS)
Greenen, Adam; Pearce, Jonathan; Cruickshank, David; Bramley, Paul
2015-01-01
The impact of mechanical and chemical changes in conventional sensors such as thermocouples and resistance thermometers can be avoided by instead using temperature sensors based on fundamental thermometry. A prime example of this is Johnson noise thermometry, which is based on measurement of the fluctuations in the voltage of a resistor arising from thermal motion of charge carriers - i.e. the 'Johnson noise'. A Johnson noise thermometer never needs calibration and is insensitive to the condition of the sensor material. It is therefore ideally suited to long-term temperature measurements in harsh environments, such as nuclear reactor coolant circuits, in-pile measurements, nuclear waste management and storage, and severe accident monitoring. There have been a number of previous attempts to develop a Johnson noise thermometer for the nuclear industry, but none have reached commercial exploitation because of technical problems in practical implementation. The main challenge is to extract the tiny Johnson noise signal from ambient electrical noise influences, both from the internal amplification electronics, and from external electrical noise sources. Recent advances in electronics technology and digital signal processing techniques have opened up new possibilities for developing a viable, practical Johnson noise thermometer. We describe a project funded by the UK Technology Strategy Board (now Innovate UK) 'Developing the nuclear supply chain' call, currently underway, to develop a practical Johnson noise thermometer that makes use of innovative electronics for ultralow noise amplification and signal processing. The new electronics technology has the potential to help overcome the problems encountered with previous attempts at constructing a practical Johnson noise thermometer. An outline of the new developments is presented, together with an overview of the current status of the project. (authors)
Towards a practical Johnson noise thermometer for long-term measurements in harsh environments
Energy Technology Data Exchange (ETDEWEB)
Greenen, Adam; Pearce, Jonathan [National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, (United Kingdom); Cruickshank, David; Bramley, Paul [Metrosol Limited, Plum Park Estate, Watling Street, Paulerspury, Northamptonshire, NN12 6LQ, (United Kingdom)
2015-07-01
The impact of mechanical and chemical changes in conventional sensors such as thermocouples and resistance thermometers can be avoided by instead using temperature sensors based on fundamental thermometry. A prime example of this is Johnson noise thermometry, which is based on measurement of the fluctuations in the voltage of a resistor arising from thermal motion of charge carriers - i.e. the 'Johnson noise'. A Johnson noise thermometer never needs calibration and is insensitive to the condition of the sensor material. It is therefore ideally suited to long-term temperature measurements in harsh environments, such as nuclear reactor coolant circuits, in-pile measurements, nuclear waste management and storage, and severe accident monitoring. There have been a number of previous attempts to develop a Johnson noise thermometer for the nuclear industry, but none have reached commercial exploitation because of technical problems in practical implementation. The main challenge is to extract the tiny Johnson noise signal from ambient electrical noise influences, both from the internal amplification electronics, and from external electrical noise sources. Recent advances in electronics technology and digital signal processing techniques have opened up new possibilities for developing a viable, practical Johnson noise thermometer. We describe a project funded by the UK Technology Strategy Board (now Innovate UK) 'Developing the nuclear supply chain' call, currently underway, to develop a practical Johnson noise thermometer that makes use of innovative electronics for ultralow noise amplification and signal processing. The new electronics technology has the potential to help overcome the problems encountered with previous attempts at constructing a practical Johnson noise thermometer. An outline of the new developments is presented, together with an overview of the current status of the project. (authors)
Directory of Open Access Journals (Sweden)
V. A. Gorodnichev
2016-01-01
Full Text Available Laser gas analysers are the most promising for the rapid quantitative analysis of gaseous air pollution. A laser gas analysis problem is that there are instable results in reconstruction of gas mixture components concentration under real noise in the recorded laser signal. This necessitates using the special processing algorithms. When reconstructing the quantitative composition of multi-component gas mixtures from the multispectral laser measurements are efficiently used methods such as Tikhonov regularization, quasi-solution search, and finding of Bayesian estimators. These methods enable using the single measurement results to determine the quantitative composition of gas mixtures under measurement noise. In remote sensing the stationary gas formations or in laboratory analysis of the previously selected (when the gas mixture is stationary air samples the reconstruction procedures under measurement noise of gas concentrations in multicomponent mixtures can be much simpler. The paper considers a problem of multispectral laser analysis of stationary gas mixtures for which it is possible to conduct a series of measurements. With noise overshoots in the recorded laser signal (and, consequently, overshoots of gas concentrations determined by a single measurement must be used stable (robust estimation techniques for substantial reducing an impact of the overshoots on the estimate of required parameters. The paper proposes the Huber method to determine gas concentrations in multicomponent mixtures under signal overshoot. To estimate the value of Huber parameter and the efficiency of Huber's method to find the stable estimates of gas concentrations in multicomponent stationary mixtures from the laser measurements the mathematical modelling was conducted. Science & Education of the Bauman MSTU 108 The mathematical modelling results show that despite the considerable difference among the errors of the mixture gas components themselves a character of
Yoon, Yeomin; Noh, Suwoo; Jeong, Jiseong; Park, Kyihwan
2018-05-01
The topology image is constructed from the 2D matrix (XY directions) of heights Z captured from the force-feedback loop controller. For small height variations, nonlinear effects such as hysteresis or creep of the PZT-driven Z nano scanner can be neglected and its calibration is quite straightforward. For large height variations, the linear approximation of the PZT-driven Z nano scanner fail and nonlinear behaviors must be considered because this would cause inaccuracies in the measurement image. In order to avoid such inaccuracies, an additional strain gauge sensor is used to directly measure displacement of the PZT-driven Z nano scanner. However, this approach also has a disadvantage in its relatively low precision. In order to obtain high precision data with good linearity, we propose a method of overcoming the low precision problem of the strain gauge while its feature of good linearity is maintained. We expect that the topology image obtained from the strain gauge sensor showing significant noise at high frequencies. On the other hand, the topology image obtained from the controller output showing low noise at high frequencies. If the low and high frequency signals are separable from both topology images, the image can be constructed so that it is represented with high accuracy and low noise. In order to separate the low frequencies from high frequencies, a 2D Haar wavelet transform is used. Our proposed method use the 2D wavelet transform for obtaining good linearity from strain gauge sensor and good precision from controller output. The advantages of the proposed method are experimentally validated by using topology images. Copyright © 2018 Elsevier B.V. All rights reserved.
Simulation and stability analysis of supersonic impinging jet noise with microjet control
Hildebrand, Nathaniel; Nichols, Joseph W.
2014-11-01
A model for an ideally expanded 1.5 Mach turbulent jet impinging on a flat plate using unstructured high-fidelity large eddy simulations (LES) and hydrodynamic stability analysis is presented. Note the LES configuration conforms exactly to experiments performed at the STOVL supersonic jet facility of the Florida Center for Advanced Aero-Propulsion allowing validation against experimental measurements. The LES are repeated for different nozzle-wall separation distances as well as with and without the addition of sixteen microjets positioned uniformly around the nozzle lip. For some nozzle-wall distances, but not all, the microjets result in substantial noise reduction. Observations of substantial noise reduction are associated with a relative absence of large-scale coherent vortices in the jet shear layer. To better understand and predict the effectiveness of microjet noise control, the application of global stability analysis about LES mean fields is used to extract axisymmetric and helical instability modes connected to the complex interplay between the coherent vortices, shocks, and acoustic feedback. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.
Guo, Yanjie; Chen, Xuefeng; Wang, Shibin; Sun, Ruobin; Zhao, Zhibin
2017-05-18
The gearbox is one of the key components in wind turbines. Gearbox fault signals are usually nonstationary and highly contaminated with noise. The presence of amplitude-modulated and frequency-modulated (AM-FM) characteristics compound the difficulty of precise fault diagnosis of wind turbines, therefore, it is crucial to develop an effective fault diagnosis method for such equipment. This paper presents an improved diagnosis method for wind turbines via the combination of synchrosqueezing transform and local mean decomposition. Compared to the conventional time-frequency analysis techniques, the improved method which is performed in non-real-time can effectively reduce the noise pollution of the signals and preserve the signal characteristics, and hence is suitable for the analysis of nonstationary signals with high noise. This method is further validated by simulated signals and practical vibration data measured from a 1.5 MW wind turbine. The results confirm that the proposed method can simultaneously control the noise and increase the accuracy of time-frequency representation.
Le Prell, Colleen G; Brungart, Douglas S
2016-09-01
In humans, the accepted clinical standards for detecting hearing loss are the behavioral audiogram, based on the absolute detection threshold of pure-tones, and the threshold auditory brainstem response (ABR). The audiogram and the threshold ABR are reliable and sensitive measures of hearing thresholds in human listeners. However, recent results from noise-exposed animals demonstrate that noise exposure can cause substantial neurodegeneration in the peripheral auditory system without degrading pure-tone audiometric thresholds. It has been suggested that clinical measures of auditory performance conducted with stimuli presented above the detection threshold may be more sensitive than the behavioral audiogram in detecting early-stage noise-induced hearing loss in listeners with audiometric thresholds within normal limits. Supra-threshold speech-in-noise testing and supra-threshold ABR responses are reviewed here, given that they may be useful supplements to the behavioral audiogram for assessment of possible neurodegeneration in noise-exposed listeners. Supra-threshold tests may be useful for assessing the effects of noise on the human inner ear, and the effectiveness of interventions designed to prevent noise trauma. The current state of the science does not necessarily allow us to define a single set of best practice protocols. Nonetheless, we encourage investigators to incorporate these metrics into test batteries when feasible, with an effort to standardize procedures to the greatest extent possible as new reports emerge.
Analysis of operating conditions of the voltage transformer
Directory of Open Access Journals (Sweden)
Fastiy G. P.
2017-12-01
Full Text Available In electrical networks, constant monitoring of the electrical equipment operation is necessary. To accomplish this task, current transformers and voltage transformers (VT are used, on which the accuracy of electrical measurements, electricity metering, and the reliability of the emergency control system depend. The results of the analysis of the conditions for forming the magnetization of a voltage transformer in the mode with unilateral connection of overhead transmission lines, as well as variants of violations in the 110 kV network that may exist for a relatively long time have been presented. It should be noted that the considered network has its own peculiarities: the overhead transmission lines connected in series have a significant length and a low level of load, which may be a condition for the appearance of a transmission lines capacitive effect (the Ferranti effect, the latter can cause overvoltage. Overvoltage occurs when the operating modes are temporary in terms of operation, adverse combinations of network parameters take place, and can continue until the circuit and network modes change. Most often they appear in asymmetric modes, with short circuits to ground, etc. Asymmetric modes caused by incomplete-phase commutations and wire breaks on the overhead line, as well as wire breaks with subsequent disconnection of power transformers that can affect the voltage level on the VT have been considered. The possibility of VT magnetizing with a prolonged voltage rise in symmetric modes, namely, the manifestation of the Ferranti effect with various loads at substations up to complete switching-off and power transformers switching off has been investigated. The analysis of the measuring voltage transformer operating conditions has been based on materials provided by the "Kolenergo" services.
Quantitative analysis of LISA pathfinder test-mass noise
International Nuclear Information System (INIS)
Ferraioli, Luigi; Congedo, Giuseppe; Hueller, Mauro; Vitale, Stefano; Hewitson, Martin; Nofrarias, Miquel; Armano, Michele
2011-01-01
LISA Pathfinder (LPF) is a mission aiming to test the critical technology for the forthcoming space-based gravitational-wave detectors. The main scientific objective of the LPF mission is to demonstrate test masses free falling with residual accelerations below 3x10 -14 m s -2 /√(Hz) at 1 mHz. Reaching such an ambitious target will require a significant amount of system optimization and characterization, which will in turn require accurate and quantitative noise analysis procedures. In this paper, we discuss two main problems associated with the analysis of the data from LPF: i) excess noise detection and ii) noise parameter identification. The mission is focused on the low-frequency region ([0.1, 10] mHz) of the available signal spectrum. In such a region, the signal is dominated by the force noise acting on test masses. At the same time, the mission duration is limited to 90 days and typical data segments will be 24 hours in length. Considering those constraints, noise analysis is expected to deal with a limited amount of non-Gaussian data, since the spectrum statistics will be far from Gaussian and the lowest available frequency is limited by the data length. In this paper, we analyze the details of the expected statistics for spectral data and develop two suitable excess noise estimators. One is based on the statistical properties of the integrated spectrum, the other is based on the Kolmogorov-Smirnov test. The sensitivity of the estimators is discussed theoretically for independent data, then the algorithms are tested on LPF synthetic data. The test on realistic LPF data allows the effect of spectral data correlations on the efficiency of the different noise excess estimators to be highlighted. It also reveals the versatility of the Kolmogorov-Smirnov approach, which can be adapted to provide reasonable results on correlated data from a modified version of the standard equations for the inversion of the test statistic. Closely related to excess noise
A novel application of the S-transform in removing powerline interference from biomedical signals
International Nuclear Information System (INIS)
Huang, Chien-Chun; Young, Ming-Shing; Liang, Sheng-Fu; Shaw, Fu-Zen
2009-01-01
Powerline interference always disturbs recordings of biomedical signals. Numerous methods have been developed to reduce powerline interference. However, most of these techniques not only reduce the interference but also attenuate the 60 Hz power of the biomedical signals themselves. In the present study, we applied the S-transform, which provides an absolute phase of each frequency in a multi-resolution time–frequency analysis, to reduce 60 Hz interference. According to results from an electrocardiogram (ECG) to which a simulated 60 Hz noise was added, the S-transform de-noising process restored a power spectrum identical to that of the original ECG coincident with a significant reduction in the 60 Hz interference. Moreover, the S-transform de-noised the signal in an intensity-independent manner when reducing the 60 Hz interference. In both a real ECG signal from the MIT database and natural brain activity contaminated with 60 Hz interference, the S-transform also displayed superior merit to a notch filter in the aspect of reducing noise and preserving the signal. Based on these data, a novel application of the S-transform for removing powerline interference is established
Measurement, characterization, and modeling of noise in staring infrared focal plane arrays
International Nuclear Information System (INIS)
Scribner, D.A.; Kruer, M.R.; Gridley, C.J.; Sarkady, K.
1987-01-01
An account is given of selected methods for the measurement and characterization of spatial and temporal noise in staring focal plane arrays (FPAs), in order to demonstrate how these results can be used in simulations and analytic models to predict the performance of selected staring sensors. Attention is given to MIR FPAs applicable to the detection and tracking of point sources, and to the ways in which these spatial and temporal noise measurements can be incorporated into simulations and sensors having staring FPAs. Methods for predicting the performance of selected staring sensor systems are derivable from spatial and temporal noise values. 13 references
Intensity of noise in the classroom and analysis of acoustic emissions in schoolchildren
Directory of Open Access Journals (Sweden)
Almeida Filho, Nelson de
2012-01-01
Full Text Available Introduction: Noise-induced hearing loss is a sensorineural hearing loss, usually bilateral, irreversible and progressive with time of exposure. As the noise made by children in school may be considered detrimental, the study looks of their occurrence in Taubaté's schools. Objective: To determine if students are exposed to noise intensity affecting the cochlea, define the profile of these schoolchildren, demonstrating the occurrence of changes in cochlear activity following exposure to noise in a day of class. Method: Study's way prospective transversal cross sectional cut with 28 elementary school students in the first half of 2009. Questionnaires for assessing preexisting cochlear damage . Evaluation of cochlear function by analysis of acoustic emissions evoked distortion product, made before the students come into class and immediately after the end of these. Measurement of noise inside the classrooms and recreation areas during the interval. Results: 57.1% accused some hearing loss in the examinations before class. By day's end, 04 girls and 03 boys had worsened in relation of the first examination. The noise reached levels higher than recommended at the three class rooms. The largest number of students with worsening, belong to the class room with higher noise level. The noise during the intervals is also excessive. Conclusions: The noise in this school is above the limit. 42.85% of students who had experienced worsening had school performance inadequate. 25% had worse after noise exposure in a school day.
International Nuclear Information System (INIS)
Doherty, W.
2013-01-01
A nebulizer-centric response function model of the analytical inductively coupled argon plasma ion source was used to investigate the statistical frequency distributions and noise reduction factors of simultaneously measured flicker noise limited isotope ion signals and their ratios. The response function model was extended by assuming i) a single gaussian distributed random noise source (nebulizer gas pressure fluctuations) and ii) the isotope ion signal response is a parabolic function of the nebulizer gas pressure. Model calculations of ion signal and signal ratio histograms were obtained by applying the statistical method of translation to the non-linear response function model of the plasma. Histograms of Ni, Cu, Pr, Tl and Pb isotope ion signals measured using a multi-collector plasma mass spectrometer were, without exception, negative skew. Histograms of the corresponding isotope ratios of Ni, Cu, Tl and Pb were either positive or negative skew. There was a complete agreement between the measured and model calculated histogram skew properties. The nebulizer-centric response function model was also used to investigate the effect of non-linear response functions on the effectiveness of noise cancellation by signal division. An alternative noise correction procedure suitable for parabolic signal response functions was derived and applied to measurements of isotope ratios of Cu, Ni, Pb and Tl. The largest noise reduction factors were always obtained when the non-linearity of the response functions was taken into account by the isotope ratio calculation. Possible applications of the nebulizer-centric response function model to other types of analytical instrumentation, large amplitude signal noise sources (e.g., lasers, pumped nebulizers) and analytical error in isotope ratio measurements by multi-collector plasma mass spectrometry are discussed. - Highlights: ► Isotope ion signal noise is modelled as a parabolic transform of a gaussian variable. ► Flicker
Measuring multielectron beam imaging fidelity with a signal-to-noise ratio analysis
Mukhtar, Maseeh; Bunday, Benjamin D.; Quoi, Kathy; Malloy, Matt; Thiel, Brad
2016-07-01
Java Monte Carlo Simulator for Secondary Electrons (JMONSEL) simulations are used to generate expected imaging responses of chosen test cases of patterns and defects with the ability to vary parameters for beam energy, spot size, pixel size, and/or defect material and form factor. The patterns are representative of the design rules for an aggressively scaled FinFET-type design. With these simulated images and resulting shot noise, a signal-to-noise framework is developed, which relates to defect detection probabilities. Additionally, with this infrastructure, the effect of detection chain noise and frequency-dependent system response can be made, allowing for targeting of best recipe parameters for multielectron beam inspection validation experiments. Ultimately, these results should lead to insights into how such parameters will impact tool design, including necessary doses for defect detection and estimations of scanning speeds for achieving high throughput for high-volume manufacturing.
Aeroacoustic Validation of Installed Low Noise Propulsion for NASA's N+2 Supersonic Airliner
Bridges, James
2018-01-01
An aeroacoustic test was conducted at NASA Glenn Research Center on an integrated propulsion system designed to meet noise regulations of ICAO Chapter 4 with 10EPNdB cumulative margin. The test had two objectives: to demonstrate that the aircraft design did meet the noise goal, and to validate the acoustic design tools used in the design. Variations in the propulsion system design and its installation were tested and the results compared against predictions. Far-field arrays of microphones measured the acoustic spectral directivity, which was transformed to full scale as noise certification levels. Phased array measurements confirmed that the shielding of the installation model adequately simulated the full aircraft and provided data for validating RANS-based noise prediction tools. Particle image velocimetry confirmed that the flow field around the nozzle on the jet rig mimicked that of the full aircraft and produced flow data to validate the RANS solutions used in the noise predictions. The far-field acoustic measurements confirmed the empirical predictions for the noise. Results provided here detail the steps taken to ensure accuracy of the measurements and give insights into the physics of exhaust noise from installed propulsion systems in future supersonic vehicles.
Multi-scale analysis of teleconnection indices: climate noise and nonlinear trend analysis
Directory of Open Access Journals (Sweden)
C. Franzke
2009-02-01
Full Text Available The multi-scale nature and climate noise properties of teleconnection indices are examined by using the Empirical Mode Decomposition (EMD procedure. The EMD procedure allows for the analysis of non-stationary time series to extract physically meaningful intrinsic mode functions (IMF and nonlinear trends. The climatologically relevant monthly mean teleconnection indices of the North Atlantic Oscillation (NAO, the North Pacific index (NP and the Southern Annular Mode (SAM are analyzed.
The significance of IMFs and trends are tested against the null hypothesis of climate noise. The analysis of surrogate monthly mean time series from a red noise process shows that the EMD procedure is effectively a dyadic filter bank and the IMFs (except the first IMF are nearly Gaussian distributed. The distribution of the variance contained in IMFs of an ensemble of AR(1 simulations is nearly χ^{2} distributed. To test the statistical significance of the IMFs of the teleconnection indices and their nonlinear trends we utilize an ensemble of corresponding monthly averaged AR(1 processes, which we refer to as climate noise. Our results indicate that most of the interannual and decadal variability of the analysed teleconnection indices cannot be distinguished from climate noise. The NP and SAM indices have significant nonlinear trends, while the NAO has no significant trend when tested against a climate noise hypothesis.
NACA0015 measurements in LM wind tunnel and turbulence generated noise
Energy Technology Data Exchange (ETDEWEB)
Bertagnolio, Franck
2008-11-15
A NACA0015 airfoil section was instrumented with an array of highfrequency microphones mounted on its surface and measured in the wind tunnel at LM Glasfiber at various inflow speeds, angles of attack, and with different turbulent inflow conditions. The aim of this work is to analyze these measurement data, including the turbulent inflow characteristics. The airfoil surface pressure data are considered in the perspective of turbulent inflow noise in order to identify the potential for using these data to validate and possibly improve associated noise models from the literature. In addition, these data are further analyzed in the context of trailing edge noise modeling which is directly related to the surface pressure fluctuations in the vicinity of the trailing edge. (au)
Alfisyahrin; Isranuri, I.
2018-02-01
Active Noise Control is a technique to overcome noisy with noise or sound countered with sound in scientific terminology i.e signal countered with signals. This technique can be used to dampen relevant noise in accordance with the wishes of the engineering task and reducing automotive muffler noise to a minimum. Objective of this study is to develop a Active Noise Control which should cancel the noise of automotive Exhaust (Silencer) through Signal Processing Simulation methods. Noise generator of Active Noise Control is to make the opponent signal amplitude and frequency of the automotive noise. The steps are: Firstly, the noise of automotive silencer was measured to characterize the automotive noise that its amplitude and frequency which intended to be expressed. The opposed sound which having similar character with the signal source should be generated by signal function. A comparison between the data which has been completed with simulation calculations Fourier transform field data is data that has been captured on the muffler (noise silencer) Toyota Kijang Capsule assembly 2009. MATLAB is used to simulate how the signal processing noise generated by exhaust (silencer) using FFT. This opponent is inverted phase signal from the signal source 180° conducted by Instruments of Signal Noise Generators. The process of noise cancelation examined through simulation using computer software simulation. The result is obtained that attenuation of sound (noise cancellation) has a difference of 33.7%. This value is obtained from the comparison of the value of the signal source and the signal value of the opponent. So it can be concluded that the noisy signal can be attenuated by 33.7%.
Yi, Cancan; Lv, Yong; Xiao, Han; Huang, Tao; You, Guanghui
2018-04-01
Since it is difficult to obtain the accurate running status of mechanical equipment with only one sensor, multisensor measurement technology has attracted extensive attention. In the field of mechanical fault diagnosis and condition assessment based on vibration signal analysis, multisensor signal denoising has emerged as an important tool to improve the reliability of the measurement result. A reassignment technique termed the synchrosqueezing wavelet transform (SWT) has obvious superiority in slow time-varying signal representation and denoising for fault diagnosis applications. The SWT uses the time-frequency reassignment scheme, which can provide signal properties in 2D domains (time and frequency). However, when the measured signal contains strong noise components and fast varying instantaneous frequency, the performance of SWT-based analysis still depends on the accuracy of instantaneous frequency estimation. In this paper, a matching synchrosqueezing wavelet transform (MSWT) is investigated as a potential candidate to replace the conventional synchrosqueezing transform for the applications of denoising and fault feature extraction. The improved technology utilizes the comprehensive instantaneous frequency estimation by chirp rate estimation to achieve a highly concentrated time-frequency representation so that the signal resolution can be significantly improved. To exploit inter-channel dependencies, the multisensor denoising strategy is performed by using a modulated multivariate oscillation model to partition the time-frequency domain; then, the common characteristics of the multivariate data can be effectively identified. Furthermore, a modified universal threshold is utilized to remove noise components, while the signal components of interest can be retained. Thus, a novel MSWT-based multisensor signal denoising algorithm is proposed in this paper. The validity of this method is verified by numerical simulation, and experiments including a rolling
Analysis of Individual Preferences for Tuning Noise-Reduction Algorithms
Houben, Rolph; Dijkstra, Tjeerd M. H.; Dreschler, Wouter A.
2012-01-01
There is little research on user preference for different settings of noise reduction, especially for individual users. We therefore measured individual preferences for pairs of audio streams differing in the trade-off between noise reduction and speech distortion. A logistic probability model was
Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.
Zhang, Jiachao; Hirakawa, Keigo
2017-04-01
This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.
Directory of Open Access Journals (Sweden)
Hongtao Yang
2018-01-01
Full Text Available This paper proposes a novel strong tracking filter (STF, which is suitable for dealing with the filtering problem of nonlinear systems when the following cases occur: that is, the constructed model does not match the actual system, the measurements have the one-step random delay, and the process and measurement noises are correlated at the same epoch. Firstly, a framework of decoupling filter (DF based on equivalent model transformation is derived. Further, according to the framework of DF, a new extended Kalman filtering (EKF algorithm via using first-order linearization approximation is developed. Secondly, the computational process of the suboptimal fading factor is derived on the basis of the extended orthogonality principle (EOP. Thirdly, the ultimate form of the proposed STF is obtained by introducing the suboptimal fading factor into the above EKF algorithm. The proposed STF can automatically tune the suboptimal fading factor on the basis of the residuals between available and predicted measurements and further the gain matrices of the proposed STF tune online to improve the filtering performance. Finally, the effectiveness of the proposed STF has been proved through numerical simulation experiments.
Nagymihaly, Roland S.; Jójárt, Péter; Börzsönyi, Ádám.; Osvay, Károly
2017-05-01
In most of cases the drift of the carrier envelope phase (CEP) of a chirped pulse amplifier (CPA) system is determined only [1], being the relevant parameter at laser-matter interactions. The need of coherent combination of multiple amplifier channels to further increase the peak power of pulses requires interferometric precision [2]. For this purpose, the stability of the group delay of the pulses may become equally important. Further development of amplifier systems requires the investigation of phase noise contributions of individual subsystems, like amplifier stages. Spectrally resolved interferometry (SRI), which is a completely linear optical method, makes the measurement of spectral phase noise possible of basically any part of a laser system [3]. By utilizing this method, the CEP stability of water-cooled Ti:Sa based amplifiers was investigated just recently, where the effects of seed and pump energy, repetition rate, and the cooling crystal mounts were thoroughly measured [4]. We present a systematic investigation on the noise of the spectral phase, including CEP, of laser pulses amplified in a cryogenically-cooled Ti:Sa amplifier of a CPA chain. The double-pass amplifier was built in the sample arm of a compact Michelson interferometer. The Ti:Sa crystal was cooled below 30 °K. The inherent phase noise was measured for different operation modes, as at various repetition rates, and pump depletion. Noise contributions of the vacuum pumps and the cryogenic refrigerator were found to be 43 and 47 mrad, respectively. We have also identified CEP noise having thermal as well as mechanical origin. Both showed a monotonically decreasing tendency towards higher repetition rates. We found that the widths of the noise distributions are getting broader towards lower repetition rates. Spectral phase noise with and without amplification was measured, and we found no significant difference in the phase noise distributions. The mechanical vibration was also measured in
Visibility of wavelet quantization noise
Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.
1997-01-01
The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.
[Continuum based fast Fourier transform processing of infrared spectrum].
Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai
2009-12-01
To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.
Noise power spectrum of the fixed pattern noise in digital radiography detectors
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Sik, E-mail: dskim@hufs.ac.kr [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Kim, Eun [R& D Center, DRTECH Co., Gyeonggi-do 13558 (Korea, Republic of)
2016-06-15
Purpose: The fixed pattern noise in radiography image detectors is caused by various sources. Multiple readout circuits with gate drivers and charge amplifiers are used to efficiently acquire the pixel voltage signals. However, the multiple circuits are not identical and thus yield nonuniform system gains. Nonuniform sensitivities are also produced from local variations in the charge collection elements. Furthermore, in phosphor-based detectors, the optical scattering at the top surface of the columnar CsI growth, the grain boundaries, and the disorder structure causes spatial sensitivity variations. These nonuniform gains or sensitivities cause fixed pattern noise and degrade the detector performance, even though the noise problem can be partially alleviated by using gain correction techniques. Hence, in order to develop good detectors, comparative analysis of the energy spectrum of the fixed pattern noise is important. Methods: In order to observe the energy spectrum of the fixed pattern noise, a normalized noise power spectrum (NNPS) of the fixed pattern noise is considered in this paper. Since the fixed pattern noise is mainly caused by the nonuniform gains, we call the spectrum the gain NNPS. We first asymptotically observe the gain NNPS and then formulate two relationships to calculate the gain NNPS based on a nonuniform-gain model. Since the gain NNPS values are quite low compared to the usual NNPS, measuring such a low NNPS value is difficult. By using the average of the uniform exposure images, a robust measuring method for the gain NNPS is proposed in this paper. Results: By using the proposed measuring method, the gain NNPS curves of several prototypes of general radiography and mammography detectors were measured to analyze their fixed pattern noise properties. We notice that a direct detector, which is based on the a-Se photoconductor, showed lower gain NNPS than the indirect-detector case, which is based on the CsI scintillator. By comparing the gain
Performance measures for transform data coding.
Pearl, J.; Andrews, H. C.; Pratt, W. K.
1972-01-01
This paper develops performance criteria for evaluating transform data coding schemes under computational constraints. Computational constraints that conform with the proposed basis-restricted model give rise to suboptimal coding efficiency characterized by a rate-distortion relation R(D) similar in form to the theoretical rate-distortion function. Numerical examples of this performance measure are presented for Fourier, Walsh, Haar, and Karhunen-Loeve transforms.
Radio-frequency shot-noise measurement in a magnetic tunnel junction with a MgO barrier
International Nuclear Information System (INIS)
Rehman, Mushtaq; Park, Junghwan; Song, Woon; Chong, Yonuk; Lee, Yeonsub; Min, Byoungchul; Shin, Kyungho; Ryu, Sangwan; Khim, Zheong
2010-01-01
We measured the noise power of a magnetic tunnel junction in the frequency range of 710 ∼ 1200 MHz. A low-noise cryogenic HEMT amplifier was used to measure the small noise signal at a high frequency with wide bandwidth. The MgO-barrier tunnel junction showed large tunnel magnetoresistance ratio of 215% at low temperature, which indicates electronic transport through the tunnel barrier without any significant spin-flip scattering. In the bias-dependent noise measurement, however, the zero-bias shot noise was enhanced compared to the value expected from a perfect tunnel barrier or the value observed from a good Al-AlO x -Al tunnel junction. We assume that this enhanced noise comes from inelastic tunneling processes through the barrier, which may be related to the observed zero-bias anomaly in the differential resistance of the tunnel junctions. We present a simple phenomenological model for how the inelastic scattering process can enhance the zero-bias noise in a tunnel junction.
Investigation on Aerodynamic Noise Evaluation and Attenuation In a Globe Valve using CFD Analysis
Directory of Open Access Journals (Sweden)
S K Sreekala
2016-03-01
Full Text Available Noise pollution will soon become the third greatest menace to the human environment after air and water pollution. Since noise is a by-product of energy conversion, there will be increasing noise as the demand for energy for transportation, power, food, and chemicals increases. In the field of control equipment, noise produced by valves has become a focal point of attention .In this paper aerodynamic noise evaluation of a globe valve was carried out using a three dimensional Computational Fluid Dynamic technique(CFD. The results obtained from numerical analysis are compared with the experimental measurements and are found to be in good agreement. Reduction in sound pressure level was achieved by doubling the number of flow passages in the cage at full open condition and at the same operating conditions. Hence sound attenuation is established by changing the cage configuration with no change in total area of flow passage in the cage
Air flow measurement techniques applied to noise reduction of a centrifugal blower
Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin
2005-09-01
The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.
Identification of neutron noise sources in a boiling water reactor
International Nuclear Information System (INIS)
Sides, W.H. Jr.; Mathis, M.V.; Smith, C.M.
1977-01-01
Measurements were made at units 2 and 3 of the Browns Ferry Nuclear Power Plant in order to characterize the noise signatures of the neutron and process signals and to determine the usefulness of such signatures for anomaly detection in BWR-4s. Previous measurements and theoretical analyses of BWR noise by others were concerned with the determination of steam velocity and void fraction (using the local component of neutron noise) and with the sources of global noise. The work described is under a five-part program to develop a complete and systematic analysis and representation of BWR neutron and process noise through complementary measurements and stochastic model developments. The parts are: (1) recording as many neutron detector and process noise signals as are available in a BWR-4; (2) reducing these data to noise signatures in order to perform an empirical analysis of these signatures, and documenting the relationships between the signals from spatially separated neutron detectors and between neutron and process variables; (3) developing spatially dependent neutronic models coupled with thermal-hydraulic models to aid in interpreting the observed relationships among the measured noise signatures, (4) comparing measured noise signatures with model predictions to obtain additional insight into BWR-4 dynamic behavior and to validate the models; and (5) using these models to predict the sensitivity of noise monitoring for detection, surveillance, and diagnosis of postulated in-core anomalies in BWRs. The paper describes the procedures used to obtain the noise recordings and presents initial empirical analysis and observations pertaining to the noise signatures and the relationships between several noise variables in the 0.01- to 1-Hz range. The mathematical models have not been developed sufficiently to report theoretical results or to compare measured spectra with model predictions at this time
Trusiak, Maciej; Służewski, Łukasz; Patorski, Krzysztof
2016-02-22
Hybrid single shot algorithm for accurate phase demodulation of complex fringe patterns is proposed. It employs empirical mode decomposition based adaptive fringe pattern enhancement (i.e., denoising, background removal and amplitude normalization) and subsequent boosted phase demodulation using 2D Hilbert spiral transform aided by the Principal Component Analysis method for novel, correct and accurate local fringe direction map calculation. Robustness to fringe pattern significant noise, uneven background and amplitude modulation as well as local fringe period and shape variations is corroborated by numerical simulations and experiments. Proposed automatic, adaptive, fast and comprehensive fringe analysis solution compares favorably with other previously reported techniques.
Noise Pollution and Health Effects
Directory of Open Access Journals (Sweden)
Geravandi
2015-01-01
Full Text Available Background Noise pollution is of particular importance due to the physical and psychological effects on humans. Noise is a stressor that affects the autonomic nervous system and the endocrine system. Noise is also a threat to marine and terrestrial ecosystems. Health risks from noise are correlated with road traffic. In other words, noise health effects are the health consequences of elevated sound levels. Objectives This study aims to determine the effect of noise pollution (near roadways on health issues in Ahvaz, Iran. Materials and Methods In this cross-sectional study, equivalent sound pressure level were measured by sound level meters TES-1353 in 75 locations around 4 roadways, which had a high load of traffic in Ahvaz City during day time. During the study, 820 measurements were recorded at measuring stations, for 7 days per week with 1-hour interval between each measurement. Statistical analysis was carried out by SPSS software. Results According to the research findings, the equivalent sound pressure levels in all stations were 76.28 ± 3.12 dB (Mean ± SD. According to sound measurements and the survey questionnaire, noise pollution is higher than EPA (US Environmental Protection Agency and Iran standard level. Based on result of this study the worst noise health effects were the nervousness and sleep quality during 2012. Conclusions According to the results of this study, with increasing load of traffic, there is an increasing need for proper consideration plans to control noise pollution and prevent its effects.
Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images
Kamble, V. M.; Bhurchandi, K.
2018-03-01
Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.
Frequency analysis of DC tolerant current transformers
International Nuclear Information System (INIS)
Mlejnek, P; Kaspar, P
2013-01-01
This article deals with wide frequency range behaviour of DC tolerant current transformers that are usually used in modern static energy meters. In this application current transformers must comply with European and International Standards in their accuracy and DC tolerance. Therefore, the linear DC tolerant current transformers and double core current transformers are used in this field. More details about the problems of these particular types of transformers can be found in our previous works. Although these transformers are designed mainly for power distribution network frequency (50/60 Hz), it can be interesting to understand their behaviour in wider frequency range. Based on this knowledge the new generations of energy meters with measuring quality of electric energy will be produced. This solution brings better measurement of consumption of nonlinear loads or measurement of non-sinusoidal voltage and current sources such as solar cells or fuel cells. The determination of actual power consumption in such energy meters is done using particular harmonics component of current and voltage. We measured the phase and ratio errors that are the most important parameters of current transformers, to characterize several samples of current transformers of both types
Impulsive Noise Characterization in Narrowband Power Line Communication
Directory of Open Access Journals (Sweden)
Li Bai
2018-04-01
Full Text Available Currently, narrowband Power line communication (PLC is considered an attractive communication system in smart grid environments for applications such as advanced metering infrastructure (AMI. In this paper, we will present a comprehensive comparison and analysis in time and frequency domain of noise measured in China and Italy. In addition, impulsive noise in these two countries are mainly analyzed and modeled using two probability based models, Middleton Class A (MCA model and α stable distribution model. The results prove that noise measured in China is rich in impulsive noise, and can be modeled well by α stable distribution model, while noise measured in Italy has less impulsive noise, and can be better modeled by the MCA model.
The radon transform. Theory and implementation
International Nuclear Information System (INIS)
Toft, P.
1996-01-01
The subject of this Ph.D. thesis is the mathematical Radon transform, which is well suited for curve detection in digital images, and for reconstruction of tomography images. The thesis is divided into two main parts. Part I describes the Radon- and the Hough-transform and especially their discrete approximations with respect to curve parameter detection in digital images. The sampling relationships of the Radon transform is reviewed from a digital signal processing point of view. The discrete Radon transform is investigated for detection of curves, and aspects regarding the performance of the Radon transform assuming various types of noise is covered. Furthermore, a new fast scheme for estimating curve parameters is presented. Part II of the thesis describes the inverse Radon transform in 2D and 3D with focus on reconstruction of tomography images. Some of the direct reconstruction schemes are analyzed, including their discrete implementation. Furthermore, several iterative reconstruction schemes based on linear algebra are reviewed and applied for reconstruction of Positron Emission Tomography (PET) images. A new and very fast implementation of 2D iterative reconstruction methods is devised. In a more practical oriented chapter, the noise in PET images is modelled from a very large number of measurements. Several packagers for Radon- and Hough-transform based curve detection and direct/iterative 2D and 3D reconstruction have been developed and provided for free. (au) 140 refs
Identification of the breakdown and analysis of transformer 22/0.4 kV
Directory of Open Access Journals (Sweden)
Martin Brandt
2013-12-01
Full Text Available The paper deals with the identification of the breakdown of the transformer withdrawn from operation because of repeated reaction of transformer protections. Successively the transformer was put of operation, removed from the distribution and put to diagnostic measurements. The analysis SFRA contributed to the interturn short circuit.
Noise problems in coal mining complex- a case discussion
International Nuclear Information System (INIS)
Mishra, Y.; Mitra, H.; Ghosh, S.; Pal, A.K.
1996-01-01
Noise monitoring study was conducted at Moonidih mining complex of Jharia coal-field. The study included monitoring and analysis of ambient as well as workplace noise levels. An attempt has been made to critically analyse the noise situation through octave band analysis, thereby identifying alarming noise frequencies for each noise generating equipment having Leq level more than 90 dBA. A noise model has also been developed to draw noise contours of the entire mining complex. Based on these studies, suitable control measures have been suggested. (author). 6 refs., 3 figs
Directory of Open Access Journals (Sweden)
Oleg A. Kartyshev
2017-01-01
Full Text Available Problems in the sphere of an adverse ecological effect assessment of aerodrome environs aviation noise are analyzed. It is noted, that there is no modern standard and methodical base for such assessment. It is shown that when planning the build- ing, and also when developing noise-protective actions for residential areas in the zones of aviation noise increased level im- pact it’s most effectively to carry out acoustic zoning of areas near airports borders and flight routes. The system of transport sources noise rationing in Russia doesn't consider the established practice of its application. The aircraft of noisy types were actively taken out of service and aviation noise impact near the airports decreased, but the problem of noise protection, de- mands control when planning land use. Noise measurements in residential areas, near houses and inside, showed the excess of maximum allowed level values to 25-35 dBA (on equivalent value and to 25-40 dBA (on the maximum value.As a consequence of the European states policy in the sphere of aviation noise management and of aerodrome en- virons zoning noise levels at the airports of Europe and their surroundings were stabilized and the sizes of noise contours were reduced. For different countries there was made the analysis of legislative bases of the implementation of the re-striction requirement for residential areas and the possibility of using the territory under noise impact. For rationing theaerodrome environs noise of the airports it’s offered to take a sound equivalent level in which admissible values are ranged on three zones for the main standard criterion. The authors present acoustic measurements results in houses near the airport Vnukovo on condition of using standard two-chamber trimmable and folding windows with the ventilating valve. It is shown that the popular window designs can't provide inside noise reduction at night to the standard L Amax level = 45 dBA from the aviation source
International Nuclear Information System (INIS)
Collatz, S.
1982-01-01
Reactor noise spectra of in core neutron detectors are measured in the low frequency range (0.03 Hz to 1 Hz) and evaluated. The increase of the effective noise signal value is due to pressure oscillations or oscillations of special steam volume portions. Thus boiling monitoring of reactor cores in PWR type reactors may be possible, if the low frequency noise of the whole set of in core detectors is taken into account
Analysis of noise pollution level in a University campus in South India
Thattai, D.; Sudarsan, J. S.; Sathyanathan, R.; Ramasamy, Visalatchi
2017-07-01
Noise comprises those sounds occurring around us that are not part of the environment under consideration. Noise is also a type of pollution and impacts on our health and wellness. The prevalence of noise is increasing in magnitude and severity because of growing population and urbanization. Noise pollution leads to many chronic and socially significant impacts. This study analyzes the level of noise at different points in SRM University. As the University encompasses a hospital also, it is more important to identify the sources of high noise levels and control them. As per Indian standards the desirable noise pollution for educational institutions and hospitals in daytime is 50 dbA. Noise levels were measured with a sound level meter at 19 points within the campus at three different timings (8-10 am, 12-2 pm, and 3-5 pm) over two cycles of measurements. The preliminary results show higher noise levels during morning and evening. Noise during Cycle 2 (latter half of semester) was 20% more compared to that of Cycle 1 (beginning of semester).
Energy Technology Data Exchange (ETDEWEB)
Pan, Yue; Cai, Yimao, E-mail: caiyimao@pku.edu.cn; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)
2016-04-11
TaO{sub x}-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO{sub x}-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO{sub x} RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO{sub x} RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.
Radon-Wigner transform for optical field analysis
Alieva, T.; Bastiaans, M.J.; Nijhawan, O.P.; Gupta, A.K.; Musla, A.K.; Singh, Kehar
1998-01-01
The Radon-Wigner transform, associated with the intensity distribution in the fractional Fourier transform system, is used for the analysis of complex structures of coherent as well as partially coherent optical fields. The application of the Radon-Wigner transform to the analysis of fractal fields
International Nuclear Information System (INIS)
Glockler, O.; Cooke, D.F.; Tulett, M.V.
1995-01-01
In 1992, a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro's CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. Critical plant components, instrumentation and processes are monitored on a regular basis, and their dynamic characteristics are verified on-power. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes, reactivity devices and fuel channels induced by moderator/coolant flow, (6) estimating the dynamics and response time of RTD temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (1 0) detecting coolant boiling in fully instrumented fuel channels, (1 1) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the
Towards measuring the off-resonant thermal noise of a pendulum mirror
Leonhardt, V; Kloevekorn, P; Willke, B; Lück, H B; Danzmann, K
2002-01-01
Thermal noise is one of the dominant noise sources in interferometric length measurements and can limit the sensitivity of gravitational wave detectors. Our goal is to analyse the off-resonant thermal noise of a high Q pendulum. Therefore we interferometrically detect the length changes of a 2.3 cm long optical resonator, which for good seismic isolation consists of two multiple stage pendulums. We are able to lock the length of this optical resonator to a frequency-stabilized laser beam and as a result get the spectral density of the differential mirror movement.
Noise analysis role in reactor safety, Spectral analysis (PSD)
International Nuclear Information System (INIS)
Jovanovic, S.; Velickovic, Lj.
1967-11-01
Spectral power density of a zero power reactor is frequency dependent and related to transfer function of the reactor and to spectral density of the input disturbance. Measurement of spectral power density of a critical system is used to obtain the ratio (β/l), β is the effective yield of delayed neutrons, and l is the effective mean neutron lifetime. When reactor is subcritical, if the effective yie ald of delayed neutrons, the effective mean neutron lifetime are known, the shutdown margin can be determined by relation α = (1 - k (1- β0)/l, k is the effective multiplication factor. Output neutron spectrum at the RB reactor in Vinca was measured for a few reactor core configurations and for a few levels of heavy water at subcritical state. Measured values were satisfactory when the reactor was critical, but the reactor noise of subcritical system was covered by the white noise of the detector and electronic equipment. The Ra-Be source was under the reactor vessel when measurements of subcritical system were done. More efficient detector or external random stimulus for increasing the intensity of neutron fluctuations would be needed to obtain results for subcritical system
Noise Source Identification of a Ring-Plate Cycloid Reducer Based on Coherence Analysis
Yang, Bing; Liu, Yan
2013-01-01
A ring-plate-type cycloid speed reducer is one of the most important reducers owing to its low volume, compactness, smooth and high performance, and high reliability. The vibration and noise tests of the reducer prototype are completed using the HEAD acoustics multichannel noise test and analysis system. The characteristics of the vibration and noise are obtained based on coherence analysis and the noise sources are identified. The conclusions provide the bases for further noise research and ...
Phase-based motion magnification video for monitoring of vital signals using the Hermite transform
Brieva, Jorge; Moya-Albor, Ernesto
2017-11-01
In this paper we present a new Eulerian phase-based motion magnification technique using the Hermite Transform (HT) decomposition that is inspired in the Human Vision System (HVS). We test our method in one sequence of the breathing of a newborn baby and on a video sequence that shows the heartbeat on the wrist. We detect and magnify the heart pulse applying our technique. Our motion magnification approach is compared to the Laplacian phase based approach by means of quantitative metrics (based on the RMS error and the Fourier transform) to measure the quality of both reconstruction and magnification. In addition a noise robustness analysis is performed for the two methods.
OBS Data Denoising Based on Compressed Sensing Using Fast Discrete Curvelet Transform
Nan, F.; Xu, Y.
2017-12-01
OBS (Ocean Bottom Seismometer) data denoising is an important step of OBS data processing and inversion. It is necessary to get clearer seismic phases for further velocity structure analysis. Traditional methods for OBS data denoising include band-pass filter, Wiener filter and deconvolution etc. (Liu, 2015). Most of these filtering methods are based on Fourier Transform (FT). Recently, the multi-scale transform methods such as wavelet transform (WT) and Curvelet transform (CvT) are widely used for data denoising in various applications. The FT, WT and CvT could represent signal sparsely and separate noise in transform domain. They could be used in different cases. Compared with Curvelet transform, the FT has Gibbs phenomenon and it cannot handle points discontinuities well. WT is well localized and multi scale, but it has poor orientation selectivity and could not handle curves discontinuities well. CvT is a multiscale directional transform that could represent curves with only a small number of coefficients. It provide an optimal sparse representation of objects with singularities along smooth curves, which is suitable for seismic data processing. As we know, different seismic phases in OBS data are showed as discontinuous curves in time domain. Hence, we promote to analysis the OBS data via CvT and separate the noise in CvT domain. In this paper, our sparsity-promoting inversion approach is restrained by L1 condition and we solve this L1 problem by using modified iteration thresholding. Results show that the proposed method could suppress the noise well and give sparse results in Curvelet domain. Figure 1 compares the Curvelet denoising method with Wavelet method on the same iterations and threshold through synthetic example. a)Original data. b) Add-noise data. c) Denoised data using CvT. d) Denoised data using WT. The CvT can well eliminate the noise and has better result than WT. Further we applied the CvT denoise method for the OBS data processing. Figure 2a
An implementation problem for boson fields and quantum Girsanov transform
Energy Technology Data Exchange (ETDEWEB)
Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Obata, Nobuaki, E-mail: obata@math.is.tohoku.ac.jp [Graduate School of Information Sciences, Tohoku University, Sendai 980-8579 (Japan)
2016-08-15
We study an implementation problem for quadratic functions of annihilation and creation operators on a boson field in terms of quantum white noise calculus. The implementation problem is shown to be equivalent to a linear differential equation for white noise operators containing quantum white noise derivatives. The solution is explicitly obtained and turns out to form a class of white noise operators including generalized Fourier–Gauss and Fourier–Mehler transforms, Bogoliubov transform, and a quantum extension of the Girsanov transform.
An implementation problem for boson fields and quantum Girsanov transform
International Nuclear Information System (INIS)
Ji, Un Cig; Obata, Nobuaki
2016-01-01
We study an implementation problem for quadratic functions of annihilation and creation operators on a boson field in terms of quantum white noise calculus. The implementation problem is shown to be equivalent to a linear differential equation for white noise operators containing quantum white noise derivatives. The solution is explicitly obtained and turns out to form a class of white noise operators including generalized Fourier–Gauss and Fourier–Mehler transforms, Bogoliubov transform, and a quantum extension of the Girsanov transform.
International Nuclear Information System (INIS)
Lee, Seongjun; Kim, Jonghoon
2015-01-01
Sophisticated data of the experimental DCV (discharging/charging voltage) of a lithium-ion battery is required for high-accuracy SOC (state-of-charge) estimation algorithms based on the state-space ECM (electrical circuit model) in BMSs (battery management systems). However, when sensing noisy DCV signals, erroneous SOC estimation (which results in low BMS performance) is inevitable. Therefore, this manuscript describes the design and implementation of a DWT (discrete wavelet transform)-based denoising technique for DCV signals. The steps for denoising a noisy DCV measurement in the proposed approach are as follows. First, using MRA (multi-resolution analysis), the noise-riding DCV signal is decomposed into different frequency sub-bands (low- and high-frequency components, A n and D n ). Specifically, signal processing of the high frequency component D n that focuses on a short-time interval is necessary to reduce noise in the DCV measurement. Second, a hard-thresholding-based denoising rule is applied to adjust the wavelet coefficients of the DWT to achieve a clear separation between the signal and the noise. Third, the desired de-noised DCV signal is reconstructed by taking the IDWT (inverse discrete wavelet transform) of the filtered detailed coefficients. Finally, this signal is sent to the ECM-based SOC estimation algorithm using an EKF (extended Kalman filter). Experimental results indicate the robustness of the proposed approach for reliable SOC estimation. - Highlights: • Sophisticated data of the experimental DCV is required for high-accuracy SOC. • DWT (discrete wavelet transform)-based denoising technique is newly investigated. • Three steps for denoising a noisy DCV measurement in this work are implemented. • Experimental results indicate the robustness of the proposed work for reliable SOC
A novel approach to reduce environmental noise in microgravity measurements using a Scintrex CG5
Boddice, Daniel; Atkins, Phillip; Rodgers, Anthony; Metje, Nicole; Goncharenko, Yuriy; Chapman, David
2018-05-01
The accuracy and repeatability of microgravity measurements for surveying purposes are affected by two main sources of noise; instrument noise from the sensor and electronics, and environmental sources of noise from anthropogenic activity, wind, microseismic activity and other sources of vibrational noise. There is little information in the literature on the quantitative values of these different noise sources and their significance for microgravity measurements. Experiments were conducted to quantify these sources of noise with multiple instruments, and to develop methodologies to reduce these unwanted signals thereby improving the accuracy or speed of microgravity measurements. External environmental sources of noise were found to be concentrated at higher frequencies (> 0.1 Hz), well within the instrument's bandwidth. In contrast, the internal instrumental noise was dominant at frequencies much lower than the reciprocal of the maximum integration time, and was identified as the limiting factor for current instruments. The optimum time for integration was found to be between 120 and 150 s for the instruments tested. In order to reduce the effects of external environmental noise on microgravity measurements, a filtering and despiking technique was created using data from noisy environments next to a main road and outside on a windy day. The technique showed a significant improvement in the repeatability of measurements, with between 40% and 50% lower standard deviations being obtained over numerous different data sets. The filtering technique was then tested in field conditions by using an anomaly of known size, and a comparison made between different filtering methods. Results showed improvements with the proposed method performing better than a conventional, or boxcar, averaging process. The proposed despiking process was generally found to be ineffective, with greater gains obtained when complete measurement records were discarded. Field survey results were
Wang, Dong; Borthwick, Alistair G; He, Handan; Wang, Yuankun; Zhu, Jieyu; Lu, Yuan; Xu, Pengcheng; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin
2018-01-01
Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, wavelet de-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. Compared to three other generic methods, the results generated by WD-REPA model presented invariably smaller error measures which means the forecasting capability of the WD-REPA model is better than other models. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series. Copyright © 2017 Elsevier Inc. All rights reserved.
Phasor Measurement Unit under Interference Conditions
DEFF Research Database (Denmark)
Ghiga, Radu; Martin, Kenneth E.; Wu, Qiuwei
2017-01-01
interference condition scenarios. In the first scenario, noise is added to the PMU input signal. The test runs a sweep of Signalto-Noise Ratios (SNR) and the accuracy versus the noise level is obtained. The second scenario injects multiple harmonics with the input to test the influence on accuracy. The last...... scenario focuses on instrument transformer saturation which leads to a modified waveform injected in the PMU. This test goes through different levels of Current Transformer (CT) saturation and analyzes the effect of saturation on the accuracy of PMUs. The test results show PMU measurements will be degraded...
Directory of Open Access Journals (Sweden)
Haichao Cai
2015-01-01
Full Text Available When detecting the ultrasonic flaw of thick-walled pipe, the flaw echo signals are often interrupted by scanning system frequency and background noise. In particular when the thick-walled pipe defect is small, echo signal amplitude is often drowned in noise signal and affects the extraction of defect signal and the position determination accuracy. This paper presents the modified S-transform domain singular value decomposition method for the analysis of ultrasonic flaw echo signals. By changing the scale rule of Gaussian window functions with S-transform to improve the time-frequency resolution. And the paper tries to decompose the singular value decomposition of time-frequency matrix after the S-transform to determine the singular entropy of effective echo signal and realize the adaptive filter. Experiments show that, using this method can not only remove high frequency noise but also remove the low frequency noise and improve the signal-to-noise ratio of echo signal.
Bandwidth-dependent transformation of noise data f
P. Bormann;
1998-01-01
Additional keywords: bandwidth dependence amplitudes, Dynamikbereich, Frequenzband, relative Bandbreite, spektrale Leistungsdichte der Bodenunruhe, Darstellungen der Bodenunruhespektren in verschiedenen kinematischen Einheiten, Transformation kinematischer Einheiten, Transformation von Spektren in Amplituden der Bodenbewegung, Abhaengigkeit der Amplituden von der Bandbreite
Wolfgang, F.; Nicol, J.
1962-11-01
Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)
Photoinduced electro-optics measurements of biosilica transformation to cristobalite
Energy Technology Data Exchange (ETDEWEB)
Fuchs, Ido [Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel); Aluma, Yaniv; Ilan, Micha [Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Kityk, Iwan [Institute of Electronic Systems, Faculty of Electrical Engineering, Czestochowa University, Czestochowa 42-201 (Poland); Mastai, Yitzhak, E-mail: Yitzhak.Mastai@biu.ac.il [Department of Chemistry and the Institute of Nanotechnology, Bar-Ilan University, Ramat-Gan 52900 (Israel)
2015-03-15
In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.
Photoinduced electro-optics measurements of biosilica transformation to cristobalite
International Nuclear Information System (INIS)
Fuchs, Ido; Aluma, Yaniv; Ilan, Micha; Kityk, Iwan; Mastai, Yitzhak
2015-01-01
In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown that natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties
International Nuclear Information System (INIS)
Fegeant, Olivier
1999-01-01
The growing interest in wind energy has increased the need of accuracy in wind turbine noise immission measurements and thus, the need of new measurement techniques. This paper shows that mounting the microphone on a vertical board improves the signal-to-noise ratio over the whole frequency range compared to the free microphone technique. Indeed, the wind turbine is perceived two times noisier by the microphone due to the signal reflection by the board while, in addition, the wind noise is reduced. Furthermore, the board shielding effect allows the measurements to be carried out in the presence of reflecting surfaces such as building facades
Directory of Open Access Journals (Sweden)
Shoji Kawahito
2016-11-01
Full Text Available This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs. This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC. The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median: 0.29 e−rms when compared with the CMS gain of two (2.4 e−rms, or 16 (1.1 e−rms.
Dekoninck, Luc; Botteldooren, Dick; Int Panis, Luc
2013-11-01
Several studies have shown that a significant amount of daily air pollution exposure, in particular Black Carbon (BC), is inhaled during trips. Assessing this contribution to exposure remains difficult because on the one hand local air pollution maps lack spatio-temporal resolution, at the other hand direct measurement of particulate matter concentration remains expensive. This paper proposes to use in-traffic noise measurements in combination with geographical and meteorological information for predicting BC exposure during commuting trips. Mobile noise measurements are cheaper and easier to perform than mobile air pollution measurements and can easily be used in participatory sensing campaigns. The uniqueness of the proposed model lies in the choice of noise indicators that goes beyond the traditional overall A-weighted noise level used in previous work. Noise and BC exposures are both related to the traffic intensity but also to traffic speed and traffic dynamics. Inspired by theoretical knowledge on the emission of noise and BC, the low frequency engine related noise and the difference between high frequency and low frequency noise that indicates the traffic speed, are introduced in the model. In addition, it is shown that splitting BC in a local and a background component significantly improves the model. The coefficients of the proposed model are extracted from 200 commuter bicycle trips. The predicted average exposure over a single trip correlates with measurements with a Pearson coefficient of 0.78 using only four parameters: the low frequency noise level, wind speed, the difference between high and low frequency noise and a street canyon index expressing local air pollution dispersion properties.
Dispersion analysis of spaced antenna scintillation measurement
Directory of Open Access Journals (Sweden)
M. Grzesiak
2009-07-01
Full Text Available We present a dispersion analysis of the phase of GPS signals received at high latitude. Basic theoretical aspects for spectral analysis of two-point measurement are given. To account for nonstationarity and statistical robustness a power distribution of the windowed Fourier transform cross-spectra as a function of frequency and phase is analysed using the Radon transform.
The effect of noise in a performance measure on work motivation: A real effort laboratory experiment
Sloof, R.; van Praag, C.M.
2008-01-01
This paper reports the results of an individual real effort laboratory experiment where subjects are paid for measured performance. Measured performance equals actual performance plus noise. We compare a stable environment where the noise is small with a volatile environment where the noise is
The effect of noise in a performance measure on work motivation: A real effort laboratory experiment
Sloof, R.; van Praag, C.M.
2010-01-01
This paper reports the results of an individual real effort laboratory experiment where subjects are paid for measured performance. Measured performance equals actual performance plus noise. We compare a stable environment where the noise is small with a volatile environment where the noise is
Salomons, E.M.; Janssen, S.A.
2011-01-01
In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a
Measurement of signal-to-noise ratio performance of TV fluoroscopy systems
International Nuclear Information System (INIS)
Geluk, R.J.
1985-01-01
A method has been developed for direct measurement of Signal-to-Noise ratio performance on X-ray TV systems. To this end the TV signal resulting from a calibrated test object, is compared with the noise level in the image. The method is objective and produces instantaneous readout, which makes it very suitable for system evaluation under dynamic conditions. (author)
Quan, Naicheng; Zhang, Chunmin; Mu, Tingkui
2018-05-01
We address the optimal configuration of a partial Mueller matrix polarimeter used to determine the ellipsometric parameters in the presence of additive Gaussian noise and signal-dependent shot noise. The numerical results show that, for the PSG/PSA consisting of a variable retarder and a fixed polarizer, the detection process immune to these two types of noise can be optimally composed by 121.2° retardation with a pair of azimuths ±71.34° and a 144.48° retardation with a pair of azimuths ±31.56° for four Mueller matrix elements measurement. Compared with the existing configurations, the configuration presented in this paper can effectively decrease the measurement variance and thus statistically improve the measurement precision of the ellipsometric parameters.
RetroTransformDB: A Dataset of Generic Transforms for Retrosynthetic Analysis
Directory of Open Access Journals (Sweden)
Svetlana Avramova
2018-04-01
Full Text Available Presently, software tools for retrosynthetic analysis are widely used by organic, medicinal, and computational chemists. Rule-based systems extensively use collections of retro-reactions (transforms. While there are many public datasets with reactions in synthetic direction (usually non-generic reactions, there are no publicly-available databases with generic reactions in computer-readable format which can be used for the purposes of retrosynthetic analysis. Here we present RetroTransformDB—a dataset of transforms, compiled and coded in SMIRKS line notation by us. The collection is comprised of more than 100 records, with each one including the reaction name, SMIRKS linear notation, the functional group to be obtained, and the transform type classification. All SMIRKS transforms were tested syntactically, semantically, and from a chemical point of view in different software platforms. The overall dataset design and the retrosynthetic fitness were analyzed and curated by organic chemistry experts. The RetroTransformDB dataset may be used by open-source and commercial software packages, as well as chemoinformatics tools.
Energy Technology Data Exchange (ETDEWEB)
Wang, Yuan-Mei; Li, Jun-Gang, E-mail: jungl@bit.edu.cn; Zou, Jian
2017-06-15
Highlights: • Adaptive measurement strategy is used to detect the presence of a magnetic field. • Gaussian Ornstein–Uhlenbeck noise and non-Gaussian noise have been considered. • Weaker magnetic fields may be more easily detected than some stronger ones. - Abstract: By using the adaptive measurement method we study how to detect whether a weak magnetic field is actually present or not under Gaussian noise and non-Gaussian noise. We find that the adaptive measurement method can effectively improve the detection accuracy. For the case of Gaussian noise, we find the stronger the magnetic field strength, the easier for us to detect the magnetic field. Counterintuitively, for non-Gaussian noise, some weaker magnetic fields are more likely to be detected rather than some stronger ones. Finally, we give a reasonable physical interpretation.
The noise analysis and the BWR operation map
International Nuclear Information System (INIS)
Blazquez, J.; Ballestrin, J.
1996-01-01
An analytical expression for the Decay Ratio is obtained: DR = exp(-bW / P 1/2 ). The physics behind is also explained. It applies to a commercial BWR Operation Map, on the vicinity of the power instability. This functional form seems fitting to the structure of the Operation map. The power P and the coolant flow are measured straightforward; the Decay Ratio is obtained by neutron noise analysis techniques. The parameter b, depending on the void reactivity coefficient, is then calculated on line during the Reactor Operation. New DR value is now predicted for each new displacement on the Map, so unexpected instability events are more likely avoided. (authors)
Effect of Wind Farm Noise on Local Residents' Decision to Adopt Mitigation Measures.
Botelho, Anabela; Arezes, Pedro; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M Costa
2017-07-11
Wind turbines' noise is frequently pointed out as the reason for local communities' objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes' noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people's decision to adopt mitigating measures, independently of the reported annoyance.
Effect of Wind Farm Noise on Local Residents’ Decision to Adopt Mitigation Measures
Botelho, Anabela; Bernardo, Carlos; Dias, Hernâni; Pinto, Lígia M. Costa
2017-01-01
Wind turbines’ noise is frequently pointed out as the reason for local communities’ objection to the installation of wind farms. The literature suggests that local residents feel annoyed by such noise and that, in many instances, this is significant enough to make them adopt noise-abatement interventions on their homes. Aiming at characterizing the relationship between wind turbine noise, annoyance, and mitigating actions, we propose a novel conceptual framework. The proposed framework posits that actual sound pressure levels of wind turbines determine individual homes’ noise-abatement decisions; in addition, the framework analyzes the role that self-reported annoyance, and perception of noise levels, plays on the relationship between actual noise pressure levels and those decisions. The application of this framework to a particular case study shows that noise perception and annoyance constitutes a link between the two. Importantly, however, noise also directly affects people’s decision to adopt mitigating measures, independently of the reported annoyance. PMID:28696404
International Nuclear Information System (INIS)
Mihalczo, J.T.
1987-01-01
The 252 Cf-source-driven neutron noise analysis method was evaluated to determine if it could be used to measure the subcriticality of storage casks of burnt LWR fuel submerged in fuel storage pools, fully loaded and as they are being loaded. The motivation for this evaluation was that measurements of k/sub eff/ would provide the parameter most directly related to the criticality safety of storage cask configurations of LWR fuel and could allow proper credit for fuel burnup without reliance on calculations. This in turn could lead to more cost-effective cask designs. Evaluation of the method for this application was based on (1) experiments already completed at a critical experiments facility using arrays of PWR fuel pins typical of the size of storage cask configurations, (2) the existence of neutron detectors that can function in shipping cask environments, and (3) the ability to construct ionization chambers containing 252 Cf of adequate intensity for these measurements. These three considerations are discussed
Electrostatic noise measurement with a pair of spherical probes near interplanetary shocks
International Nuclear Information System (INIS)
Solomon, J.; Touzin, F.
1991-01-01
In order to obtain accurate measurements of electrostatic noise spectra on board the ISEE 1 satellite, near interplanetary shock waves, the authors perform a detailed theoretical and numerical study of an antenna consisting of a pair of spherical probes. They compute the quasi-thermal electrostatic noise observed theoretically on the antenna by assuming that the solar wind plasma can be properly represented by the sum of two Maxwellian distributions (core and halo). They study the dependence of the electrostatic spectra on the antenna length and on the different plasma parameters, particularly on the density and temperature ratio of the core and of the halo. They show that by also taking into account the instrumental noise and the shot noise on the antenna, a calibration factor can be precisely determined for the antenna that they consider. They display some results obtained from measurements of electrostatic noise spectra behind interplanetary shock waves. Finally, they discuss the real meaning of a specific halo temperature, and they show that, in a first approximation, the theoretical results are only slightly modified when they consider types of distributions other than Maxwellians
Performance analysis of an all-optical OFDM system in presence of non-linear phase noise.
Hmood, Jassim K; Harun, Sulaiman W; Emami, Siamak D; Khodaei, Amin; Noordin, Kamarul A; Ahmad, Harith; Shalaby, Hossam M H
2015-02-23
The potential for higher spectral efficiency has increased the interest in all-optical orthogonal frequency division multiplexing (OFDM) systems. However, the sensitivity of all-optical OFDM to fiber non-linearity, which causes nonlinear phase noise, is still a major concern. In this paper, an analytical model for estimating the phase noise due to self-phase modulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) in an all-optical OFDM system is presented. The phase noise versus power, distance, and number of subcarriers is evaluated by implementing the mathematical model using Matlab. In order to verify the results, an all-optical OFDM system, that uses coupler-based inverse fast Fourier transform/fast Fourier transform without any nonlinear compensation, is demonstrated by numerical simulation. The system employs 29 subcarriers; each subcarrier is modulated by a 4-QAM or 16-QAM format with a symbol rate of 25 Gsymbol/s. The results indicate that the phase variance due to FWM is dominant over those induced by either SPM or XPM. It is also shown that the minimum phase noise occurs at -3 dBm and -1 dBm for 4-QAM and 16-QAM, respectively. Finally, the error vector magnitude (EVM) versus subcarrier power and symbol rate is quantified using both simulation and the analytical model. It turns out that both EVM results are in good agreement with each other.
QIM blind video watermarking scheme based on Wavelet transform and principal component analysis
Directory of Open Access Journals (Sweden)
Nisreen I. Yassin
2014-12-01
Full Text Available In this paper, a blind scheme for digital video watermarking is proposed. The security of the scheme is established by using one secret key in the retrieval of the watermark. Discrete Wavelet Transform (DWT is applied on each video frame decomposing it into a number of sub-bands. Maximum entropy blocks are selected and transformed using Principal Component Analysis (PCA. Quantization Index Modulation (QIM is used to quantize the maximum coefficient of the PCA blocks of each sub-band. Then, the watermark is embedded into the selected suitable quantizer values. The proposed scheme is tested using a number of video sequences. Experimental results show high imperceptibility. The computed average PSNR exceeds 45 dB. Finally, the scheme is applied on two medical videos. The proposed scheme shows high robustness against several attacks such as JPEG coding, Gaussian noise addition, histogram equalization, gamma correction, and contrast adjustment in both cases of regular videos and medical videos.
Measurement of β/Λ ratio in IEA-R1 reactor using noise technique
International Nuclear Information System (INIS)
Moreira, J.M.L.; Kassar, E.
1986-01-01
The ratio β/Λ for the IEA-R1 reactor is obtained experimentally through the noise analysis technique. This technique is based on the determination of the power spectral density of the reactor neutron population, with the reactor in a subcritical state driven by a 'white' neutron source. A ratio β/Λ of 43,5 s -1 is estimated from the break frequency of the measured transfer function of the IEA-R1 reactor. (Author) [pt
Measurement of multi-bunch transfer functions using time-domain data and Fourier analysis
International Nuclear Information System (INIS)
Hindi, H.; Sapozhnikov, L.; Fox, J.; Prabhakar, S.; Oxoby, G.; Linscott, I.; Drago, A.
1993-12-01
Multi-bunch transfer functions are principal ingredients in understanding both the behavior of high-current storage rings as well as control of their instabilities. The measurement of transfer functions on a bunch-by-bunch basis is particularly important in the design of active feedback systems. Traditional methods of network analysis that work well in the single bunch case become difficult to implement for many bunches. We have developed a method for obtaining empirical estimates of the multi-bunch longitudinal transfer functions from the time-domain measurements of the bunches' phase oscillations. This method involves recording the response of the bunch of interest to a white-noise excitation. The transfer function can then be computed as the ratio of the fast Fourier transforms (FFTs) of the response and excitation sequences, averaged over several excitations. The calculation is performed off-line on bunch-phase data and is well-suited to the multi-bunch case. A description of this method and an analysis of its performance is presented with results obtained using the longitudinal quick prototype feedback system developed at SLAC
Measuring Student Transformation in Entrepreneurship Education Programs
Directory of Open Access Journals (Sweden)
Steven A. Gedeon
2017-01-01
Full Text Available This article describes how to measure student transformation primarily within a university entrepreneurship degree program. Student transformation is defined as changes in knowledge (“Head”, skills (“Hand”, and attitudinal (“Heart” learning outcomes. Following the institutional impact model, student transformation is the primary goal of education and all other program goals and aspects of quality desired by stakeholders are either input factors (professors, courses, facilities, support, etc. or output performance (number of startups, average starting salary, % employment, etc.. This goal-setting framework allows competing stakeholder quality expectations to be incorporated into a continuous process improvement (CPI model when establishing program goals. How to measure these goals to implement TQM methods is shown. Measuring student transformation as the central focus of a program promotes harmony among competing stakeholders and also provides a metric on which other program decisions (e.g., class size, assignments, and pedagogical technique may be based. Different stakeholders hold surprisingly different views on defining program quality. The proposed framework provides a useful way to bring these competing views into a CPI cycle to implement TQM requirements of accreditation. The specific entrepreneurial learning outcome goals described in the tables in this article may also be used directly by educators in nonaccredited programs and single courses/workshops or for other audiences.
Noise Source Identification of a Ring-Plate Cycloid Reducer Based on Coherence Analysis
Directory of Open Access Journals (Sweden)
Bing Yang
2013-01-01
Full Text Available A ring-plate-type cycloid speed reducer is one of the most important reducers owing to its low volume, compactness, smooth and high performance, and high reliability. The vibration and noise tests of the reducer prototype are completed using the HEAD acoustics multichannel noise test and analysis system. The characteristics of the vibration and noise are obtained based on coherence analysis and the noise sources are identified. The conclusions provide the bases for further noise research and control of the ring-plate-type cycloid reducer.
International Nuclear Information System (INIS)
Faires, L.M.; Palmer, B.A.; Brault, J.W.
1984-01-01
High resolution Fourier transform spectrometry has been used to perform line width and line shape analysis of eighty-one iron I emision lines in the spectral range 290 to 390nm originating in the normal analytical zone of an inductively coupled plasma. Computer programs using non-linear least squares fitting techniques for line shape analysis were applied to the fully resolved spectra to determine Gaussian and Lorentzian components of the total observed line width. The effect of noise in the spectrum on the precision of the line fitting technique was assessed, and the importance of signal to noise ratio for line shape analysis is discussed. Translational (Doppler) temperatures were calculated from the Gaussian components of the line width and were found to be on the order of 6300 0 K. The excitation temperature of iron I was also determined from the same spectral data by the spectroscopic slope method based on the Einstein-Boltzmann expression for spectral intensity and was found to be on the order of 4700 0 K. 31 references
Instrumentation for Gate Current Noise Measurements on sub-100 nm MOS Transistors
Gaioni, L; Ratti, L; Re, V; Speziali, V; Traversi, G
2008-01-01
This work describes a measuring system that was developed to characterize the gate current noise performances of CMOS devices with minimum feature size in the 100 nm span. These devices play an essential role in the design of present daymixedsignal integrated circuits, because of the advantages associated with the scaling process. The reduction in the gate oxide thickness brought about by CMOS technology downscaling leads to a non-negligible gate current due to direct tunneling phenomena; this current represents a noise source which requires an accurate characterization for optimum analog design. In this paper, two instruments able to perform measurements in two different ranges of gate current values will be discussed. Some of the results of gate current noise characterization will also be presented.
Energy Technology Data Exchange (ETDEWEB)
Sakurai, H.; Seno, T.; Tanabe, Y. (Asahi Glass Co. Ltd., Tokyo (Japan))
1991-06-10
Concerning the second harmonic generation(SHG) of diode laser pumped solid state laser using a nonlinear optical material, the researches are carried out to pracitically apply to the optical pickup. Therefore, the reduction of output optical noise has become the important researching subject. The theoretical and experimental analyses of noise generating mechanism were carried out for the system in which Nd;YAG as the laser diode and KTP (KTiOPO {sub 4}) as the nonlinear optical crystal were used. The following findings for the noise generating mechanism could be obtained: The competitive interaction between the polarization modes was dominant noise mechanism in the high frequency range from 1 to 20MHz and the noise could be removed sufficiently by using the QWP(quarter wave plate). On the other hand, the noise observed in the low frequency range from 100 to 200kHz depended on the resonance length, agreed qualitatively with the theoretical analysis of the noise to the competitive longitudinal modes and agreed quantitatively with the noise generating frequency range. 10 refs., 13 figs., 1 tab.
Optimizing transformations for automated, high throughput analysis of flow cytometry data.
Finak, Greg; Perez, Juan-Manuel; Weng, Andrew; Gottardo, Raphael
2010-11-04
In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, an