WorldWideScience

Sample records for noise robust automatic

  1. Optimizing edge detectors for robust automatic threshold selection : Coping with edge curvature and noise

    NARCIS (Netherlands)

    Wilkinson, M.H.F.

    The Robust Automatic Threshold Selection algorithm was introduced as a threshold selection based on a simple image statistic. The statistic is an average of the grey levels of the pixels in an image weighted by the response at each pixel of a specific edge detector. Other authors have suggested that

  2. Sparse coding of the modulation spectrum for noise-robust automatic speech recognition

    NARCIS (Netherlands)

    Ahmadi, S.; Ahadi, S.M.; Cranen, B.; Boves, L.W.J.

    2014-01-01

    The full modulation spectrum is a high-dimensional representation of one-dimensional audio signals. Most previous research in automatic speech recognition converted this very rich representation into the equivalent of a sequence of short-time power spectra, mainly to simplify the computation of the

  3. Noise-robust speech triage.

    Science.gov (United States)

    Bartos, Anthony L; Cipr, Tomas; Nelson, Douglas J; Schwarz, Petr; Banowetz, John; Jerabek, Ladislav

    2018-04-01

    A method is presented in which conventional speech algorithms are applied, with no modifications, to improve their performance in extremely noisy environments. It has been demonstrated that, for eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID performance was optimized when the SNR of the testing and training data were close or identical. In this current effort multiple i-vector algorithms were used, greatly improving both processing throughput and equal error rate classification accuracy. Using identical approaches in the same noisy environment, performance of SID, language identification, gender identification, and diarization were significantly improved. A critical factor in this improvement is speech activity detection (SAD) that performs reliably in extremely noisy environments, where the speech itself is barely audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first maximized detection probability at low levels (-10 dB ≤ SNR < +10 dB) using just the voiced speech envelope, and the second exploited features extracted from the original speech to improve overall accuracy at higher quality levels (SNR ≥ +10 dB).

  4. Mars - robust automatic backbone assignment of proteins

    International Nuclear Information System (INIS)

    Jung, Young-Sang; Zweckstetter, Markus

    2004-01-01

    MARS a program for robust automatic backbone assignment of 13 C/ 15 N labeled proteins is presented. MARS does not require tight thresholds for establishing sequential connectivity or detailed adjustment of these thresholds and it can work with a wide variety of NMR experiments. Using only 13 C α / 13 C β connectivity information, MARS allows automatic, error-free assignment of 96% of the 370-residue maltose-binding protein. MARS can successfully be used when data are missing for a substantial portion of residues or for proteins with very high chemical shift degeneracy such as partially or fully unfolded proteins. Other sources of information, such as residue specific information or known assignments from a homologues protein, can be included into the assignment process. MARS exports its result in SPARKY format. This allows visual validation and integration of automated and manual assignment

  5. Automatic Synthesis of Robust and Optimal Controllers

    DEFF Research Database (Denmark)

    Cassez, Franck; Jessen, Jan Jacob; Larsen, Kim Guldstrand

    2009-01-01

    In this paper, we show how to apply recent tools for the automatic synthesis of robust and near-optimal controllers for a real industrial case study. We show how to use three different classes of models and their supporting existing tools, Uppaal-TiGA for synthesis, phaver for verification......, and Simulink for simulation, in a complementary way. We believe that this case study shows that our tools have reached a level of maturity that allows us to tackle interesting and relevant industrial control problems....

  6. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.

    Science.gov (United States)

    Chen, Jun; Yang, Jin; Guo, Hengyu; Li, Zhaoling; Zheng, Li; Su, Yuanjie; Wen, Zhen; Fan, Xing; Wang, Zhong Lin

    2015-12-22

    Although the triboelectric nanogenerator (TENG) has been proven to be a renewable and effective route for ambient energy harvesting, its robustness remains a great challenge due to the requirement of surface friction for a decent output, especially for the in-plane sliding mode TENG. Here, we present a rationally designed TENG for achieving a high output performance without compromising the device robustness by, first, converting the in-plane sliding electrification into a contact separation working mode and, second, creating an automatic transition between a contact working state and a noncontact working state. The magnet-assisted automatic transition triboelectric nanogenerator (AT-TENG) was demonstrated to effectively harness various ambient rotational motions to generate electricity with greatly improved device robustness. At a wind speed of 6.5 m/s or a water flow rate of 5.5 L/min, the harvested energy was capable of lighting up 24 spot lights (0.6 W each) simultaneously and charging a capacitor to greater than 120 V in 60 s. Furthermore, due to the rational structural design and unique output characteristics, the AT-TENG was not only capable of harvesting energy from natural bicycling and car motion but also acting as a self-powered speedometer with ultrahigh accuracy. Given such features as structural simplicity, easy fabrication, low cost, wide applicability even in a harsh environment, and high output performance with superior device robustness, the AT-TENG renders an effective and practical approach for ambient mechanical energy harvesting as well as self-powered active sensing.

  7. Robustness of quantum correlations against linear noise

    International Nuclear Information System (INIS)

    Guo, Zhihua; Cao, Huaixin; Qu, Shixian

    2016-01-01

    Relative robustness of quantum correlations (RRoQC) of a bipartite state is firstly introduced relative to a classically correlated state. Robustness of quantum correlations (RoQC) of a bipartite state is then defined as the minimum of RRoQC of the state relative to all classically correlated ones. It is proved that as a function on quantum states, RoQC is nonnegative, lower semi-continuous and neither convex nor concave; especially, it is zero if and only if the state is classically correlated. Thus, RoQC not only quantifies the endurance of quantum correlations of a state against linear noise, but also can be used to distinguish between quantum and classically correlated states. Furthermore, the effects of local quantum channels on the robustness are explored and characterized. (paper)

  8. Robust indexing for automatic data collection

    International Nuclear Information System (INIS)

    Sauter, Nicholas K.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.

    2003-01-01

    We present improved methods for indexing diffraction patterns from macromolecular crystals. The novel procedures include a more robust way to verify the position of the incident X-ray beam on the detector, an algorithm to verify that the deduced lattice basis is consistent with the observations, and an alternative approach to identify the metric symmetry of the lattice. These methods help to correct failures commonly experienced during indexing, and increase the overall success rate of the process. Rapid indexing, without the need for visual inspection, will play an important role as beamlines at synchrotron sources prepare for high-throughput automation

  9. Histogram equalization with Bayesian estimation for noise robust speech recognition.

    Science.gov (United States)

    Suh, Youngjoo; Kim, Hoirin

    2018-02-01

    The histogram equalization approach is an efficient feature normalization technique for noise robust automatic speech recognition. However, it suffers from performance degradation when some fundamental conditions are not satisfied in the test environment. To remedy these limitations of the original histogram equalization methods, class-based histogram equalization approach has been proposed. Although this approach showed substantial performance improvement under noise environments, it still suffers from performance degradation due to the overfitting problem when test data are insufficient. To address this issue, the proposed histogram equalization technique employs the Bayesian estimation method in the test cumulative distribution function estimation. It was reported in a previous study conducted on the Aurora-4 task that the proposed approach provided substantial performance gains in speech recognition systems based on the acoustic modeling of the Gaussian mixture model-hidden Markov model. In this work, the proposed approach was examined in speech recognition systems with deep neural network-hidden Markov model (DNN-HMM), the current mainstream speech recognition approach where it also showed meaningful performance improvement over the conventional maximum likelihood estimation-based method. The fusion of the proposed features with the mel-frequency cepstral coefficients provided additional performance gains in DNN-HMM systems, which otherwise suffer from performance degradation in the clean test condition.

  10. A Noise Robust Statistical Texture Model

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Stegmann, Mikkel Bille; Larsen, Rasmus

    2002-01-01

    Appearance Models segmentation framework. This is accomplished by augmenting the model with an estimate of the covariance of the noise present in the training data. This results in a more compact model maximising the signal-to-noise ratio, thus favouring subspaces rich on signal, but low on noise......This paper presents a novel approach to the problem of obtaining a low dimensional representation of texture (pixel intensity) variation present in a training set after alignment using a Generalised Procrustes analysis.We extend the conventional analysis of training textures in the Active...

  11. Superlinearly scalable noise robustness of redundant coupled dynamical systems.

    Science.gov (United States)

    Kohar, Vivek; Kia, Behnam; Lindner, John F; Ditto, William L

    2016-03-01

    We illustrate through theory and numerical simulations that redundant coupled dynamical systems can be extremely robust against local noise in comparison to uncoupled dynamical systems evolving in the same noisy environment. Previous studies have shown that the noise robustness of redundant coupled dynamical systems is linearly scalable and deviations due to noise can be minimized by increasing the number of coupled units. Here, we demonstrate that the noise robustness can actually be scaled superlinearly if some conditions are met and very high noise robustness can be realized with very few coupled units. We discuss these conditions and show that this superlinear scalability depends on the nonlinearity of the individual dynamical units. The phenomenon is demonstrated in discrete as well as continuous dynamical systems. This superlinear scalability not only provides us an opportunity to exploit the nonlinearity of physical systems without being bogged down by noise but may also help us in understanding the functional role of coupled redundancy found in many biological systems. Moreover, engineers can exploit superlinear noise suppression by starting a coupled system near (not necessarily at) the appropriate initial condition.

  12. Robust Automatic Speech Recognition Features using Complex Wavelet Packet Transform Coefficients

    Directory of Open Access Journals (Sweden)

    TjongWan Sen

    2009-11-01

    Full Text Available To improve the performance of phoneme based Automatic Speech Recognition (ASR in noisy environment; we developed a new technique that could add robustness to clean phonemes features. These robust features are obtained from Complex Wavelet Packet Transform (CWPT coefficients. Since the CWPT coefficients represent all different frequency bands of the input signal, decomposing the input signal into complete CWPT tree would also cover all frequencies involved in recognition process. For time overlapping signals with different frequency contents, e. g. phoneme signal with noises, its CWPT coefficients are the combination of CWPT coefficients of phoneme signal and CWPT coefficients of noises. The CWPT coefficients of phonemes signal would be changed according to frequency components contained in noises. Since the numbers of phonemes in every language are relatively small (limited and already well known, one could easily derive principal component vectors from clean training dataset using Principal Component Analysis (PCA. These principal component vectors could be used then to add robustness and minimize noises effects in testing phase. Simulation results, using Alpha Numeric 4 (AN4 from Carnegie Mellon University and NOISEX-92 examples from Rice University, showed that this new technique could be used as features extractor that improves the robustness of phoneme based ASR systems in various adverse noisy conditions and still preserves the performance in clean environments.

  13. Light field reconstruction robust to signal dependent noise

    Science.gov (United States)

    Ren, Kun; Bian, Liheng; Suo, Jinli; Dai, Qionghai

    2014-11-01

    Capturing four dimensional light field data sequentially using a coded aperture camera is an effective approach but suffers from low signal noise ratio. Although multiplexing can help raise the acquisition quality, noise is still a big issue especially for fast acquisition. To address this problem, this paper proposes a noise robust light field reconstruction method. Firstly, scene dependent noise model is studied and incorporated into the light field reconstruction framework. Then, we derive an optimization algorithm for the final reconstruction. We build a prototype by hacking an off-the-shelf camera for data capturing and prove the concept. The effectiveness of this method is validated with experiments on the real captured data.

  14. Robust image authentication in the presence of noise

    CERN Document Server

    2015-01-01

    This book addresses the problems that hinder image authentication in the presence of noise. It considers the advantages and disadvantages of existing algorithms for image authentication and shows new approaches and solutions for robust image authentication. The state of the art algorithms are compared and, furthermore, innovative approaches and algorithms are introduced. The introduced algorithms are applied to improve image authentication, watermarking and biometry.    Aside from presenting new directions and algorithms for robust image authentication in the presence of noise, as well as image correction, this book also:   Provides an overview of the state of the art algorithms for image authentication in the presence of noise and modifications, as well as a comparison of these algorithms, Presents novel algorithms for robust image authentication, whereby the image is tried to be corrected and authenticated, Examines different views for the solution of problems connected to image authentication in the pre...

  15. ADSL Transceivers Applying DSM and Their Nonstationary Noise Robustness

    Directory of Open Access Journals (Sweden)

    Bostoen Tom

    2006-01-01

    Full Text Available Dynamic spectrum management (DSM comprises a new set of techniques for multiuser power allocation and/or detection in digital subscriber line (DSL networks. At the Alcatel Research and Innovation Labs, we have recently developed a DSM test bed, which allows the performance of DSM algorithms to be evaluated in practice. With this test bed, we have evaluated the performance of a DSM level-1 algorithm known as iterative water-filling in an ADSL scenario. This paper describes the results of, on the one hand, the performance gains achieved with iterative water-filling, and, on the other hand, the nonstationary noise robustness of DSM-enabled ADSL modems. It will be shown that DSM trades off nonstationary noise robustness for performance improvements. A new bit swap procedure is then introduced to increase the noise robustness when applying DSM.

  16. Robust estimation of the noise variance from background MR data

    NARCIS (Netherlands)

    Sijbers, J.; Den Dekker, A.J.; Poot, D.; Bos, R.; Verhoye, M.; Van Camp, N.; Van der Linden, A.

    2006-01-01

    In the literature, many methods are available for estimation of the variance of the noise in magnetic resonance (MR) images. A commonly used method, based on the maximum of the background mode of the histogram, is revisited and a new, robust, and easy to use method is presented based on maximum

  17. Noise-robust speech recognition through auditory feature detection and spike sequence decoding.

    Science.gov (United States)

    Schafer, Phillip B; Jin, Dezhe Z

    2014-03-01

    Speech recognition in noisy conditions is a major challenge for computer systems, but the human brain performs it routinely and accurately. Automatic speech recognition (ASR) systems that are inspired by neuroscience can potentially bridge the performance gap between humans and machines. We present a system for noise-robust isolated word recognition that works by decoding sequences of spikes from a population of simulated auditory feature-detecting neurons. Each neuron is trained to respond selectively to a brief spectrotemporal pattern, or feature, drawn from the simulated auditory nerve response to speech. The neural population conveys the time-dependent structure of a sound by its sequence of spikes. We compare two methods for decoding the spike sequences--one using a hidden Markov model-based recognizer, the other using a novel template-based recognition scheme. In the latter case, words are recognized by comparing their spike sequences to template sequences obtained from clean training data, using a similarity measure based on the length of the longest common sub-sequence. Using isolated spoken digits from the AURORA-2 database, we show that our combined system outperforms a state-of-the-art robust speech recognizer at low signal-to-noise ratios. Both the spike-based encoding scheme and the template-based decoding offer gains in noise robustness over traditional speech recognition methods. Our system highlights potential advantages of spike-based acoustic coding and provides a biologically motivated framework for robust ASR development.

  18. Robustness of digitally modulated signal features against variation in HF noise model

    Directory of Open Access Journals (Sweden)

    Shoaib Mobien

    2011-01-01

    Full Text Available Abstract High frequency (HF band has both military and civilian uses. It can be used either as a primary or backup communication link. Automatic modulation classification (AMC is of an utmost importance in this band for the purpose of communications monitoring; e.g., signal intelligence and spectrum management. A widely used method for AMC is based on pattern recognition (PR. Such a method has two main steps: feature extraction and classification. The first step is generally performed in the presence of channel noise. Recent studies show that HF noise could be modeled by Gaussian or bi-kappa distributions, depending on day-time. Therefore, it is anticipated that change in noise model will have impact on features extraction stage. In this article, we investigate the robustness of well known digitally modulated signal features against variation in HF noise. Specifically, we consider temporal time domain (TTD features, higher order cumulants (HOC, and wavelet based features. In addition, we propose new features extracted from the constellation diagram and evaluate their robustness against the change in noise model. This study is targeting 2PSK, 4PSK, 8PSK, 16QAM, 32QAM, and 64QAM modulations, as they are commonly used in HF communications.

  19. Robustness against parametric noise of nonideal holonomic gates

    International Nuclear Information System (INIS)

    Lupo, Cosmo; Aniello, Paolo; Napolitano, Mario; Florio, Giuseppe

    2007-01-01

    Holonomic gates for quantum computation are commonly considered to be robust against certain kinds of parametric noise, the cause of this robustness being the geometric character of the transformation achieved in the adiabatic limit. On the other hand, the effects of decoherence are expected to become more and more relevant when the adiabatic limit is approached. Starting from the system described by Florio et al. [Phys. Rev. A 73, 022327 (2006)], here we discuss the behavior of nonideal holonomic gates at finite operational time, i.e., long before the adiabatic limit is reached. We have considered several models of parametric noise and studied the robustness of finite-time gates. The results obtained suggest that the finite-time gates present some effects of cancellation of the perturbations introduced by the noise which mimic the geometrical cancellation effect of standard holonomic gates. Nevertheless, a careful analysis of the results leads to the conclusion that these effects are related to a dynamical instead of a geometrical feature

  20. Robustness against parametric noise of nonideal holonomic gates

    Science.gov (United States)

    Lupo, Cosmo; Aniello, Paolo; Napolitano, Mario; Florio, Giuseppe

    2007-07-01

    Holonomic gates for quantum computation are commonly considered to be robust against certain kinds of parametric noise, the cause of this robustness being the geometric character of the transformation achieved in the adiabatic limit. On the other hand, the effects of decoherence are expected to become more and more relevant when the adiabatic limit is approached. Starting from the system described by Florio [Phys. Rev. A 73, 022327 (2006)], here we discuss the behavior of nonideal holonomic gates at finite operational time, i.e., long before the adiabatic limit is reached. We have considered several models of parametric noise and studied the robustness of finite-time gates. The results obtained suggest that the finite-time gates present some effects of cancellation of the perturbations introduced by the noise which mimic the geometrical cancellation effect of standard holonomic gates. Nevertheless, a careful analysis of the results leads to the conclusion that these effects are related to a dynamical instead of a geometrical feature.

  1. Arduino-based noise robust online heart-rate detection.

    Science.gov (United States)

    Das, Sangita; Pal, Saurabh; Mitra, Madhuchhanda

    2017-04-01

    This paper introduces a noise robust real time heart rate detection system from electrocardiogram (ECG) data. An online data acquisition system is developed to collect ECG signals from human subjects. Heart rate is detected using window-based autocorrelation peak localisation technique. A low-cost Arduino UNO board is used to implement the complete automated process. The performance of the system is compared with PC-based heart rate detection technique. Accuracy of the system is validated through simulated noisy ECG data with various levels of signal to noise ratio (SNR). The mean percentage error of detected heart rate is found to be 0.72% for the noisy database with five different noise levels.

  2. A blood pressure monitor with robust noise reduction system under linear cuff inflation and deflation.

    Science.gov (United States)

    Usuda, Takashi; Kobayashi, Naoki; Takeda, Sunao; Kotake, Yoshifumi

    2010-01-01

    We have developed the non-invasive blood pressure monitor which can measure the blood pressure quickly and robustly. This monitor combines two measurement mode: the linear inflation and the linear deflation. On the inflation mode, we realized a faster measurement with rapid inflation rate. On the deflation mode, we realized a robust noise reduction. When there is neither noise nor arrhythmia, the inflation mode incorporated on this monitor provides precise, quick and comfortable measurement. Once the inflation mode fails to calculate appropriate blood pressure due to body movement or arrhythmia, then the monitor switches automatically to the deflation mode and measure blood pressure by using digital signal processing as wavelet analysis, filter bank, filter combined with FFT and Inverse FFT. The inflation mode succeeded 2440 measurements out of 3099 measurements (79%) in an operating room and a rehabilitation room. The new designed blood pressure monitor provides the fastest measurement for patient with normal circulation and robust measurement for patients with body movement or severe arrhythmia. Also this fast measurement method provides comfortableness for patients.

  3. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling.

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  4. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling

    Science.gov (United States)

    Keshtkaran, Mohammad Reza; Yang, Zhi

    2017-06-01

    Objective. Spike sorting is a fundamental preprocessing step for many neuroscience studies which rely on the analysis of spike trains. Most of the feature extraction and dimensionality reduction techniques that have been used for spike sorting give a projection subspace which is not necessarily the most discriminative one. Therefore, the clusters which appear inherently separable in some discriminative subspace may overlap if projected using conventional feature extraction approaches leading to a poor sorting accuracy especially when the noise level is high. In this paper, we propose a noise-robust and unsupervised spike sorting algorithm based on learning discriminative spike features for clustering. Approach. The proposed algorithm uses discriminative subspace learning to extract low dimensional and most discriminative features from the spike waveforms and perform clustering with automatic detection of the number of the clusters. The core part of the algorithm involves iterative subspace selection using linear discriminant analysis and clustering using Gaussian mixture model with outlier detection. A statistical test in the discriminative subspace is proposed to automatically detect the number of the clusters. Main results. Comparative results on publicly available simulated and real in vivo datasets demonstrate that our algorithm achieves substantially improved cluster distinction leading to higher sorting accuracy and more reliable detection of clusters which are highly overlapping and not detectable using conventional feature extraction techniques such as principal component analysis or wavelets. Significance. By providing more accurate information about the activity of more number of individual neurons with high robustness to neural noise and outliers, the proposed unsupervised spike sorting algorithm facilitates more detailed and accurate analysis of single- and multi-unit activities in neuroscience and brain machine interface studies.

  5. Robust Fallback Scheme for the Danish Automatic Voltage Control System

    DEFF Research Database (Denmark)

    Qin, Nan; Dmitrova, Evgenia; Lund, Torsten

    2015-01-01

    This paper proposes a fallback scheme for the Danish automatic voltage control system. It will be activated in case of the local station loses telecommunication to the control center and/or the local station voltage violates the acceptable operational limits. It cuts in/out switchable and tap...... power system....

  6. Automatic Offline Formulation of Robust Model Predictive Control Based on Linear Matrix Inequalities Method

    Directory of Open Access Journals (Sweden)

    Longge Zhang

    2013-01-01

    Full Text Available Two automatic robust model predictive control strategies are presented for uncertain polytopic linear plants with input and output constraints. A sequence of nested geometric proportion asymptotically stable ellipsoids and controllers is constructed offline first. Then the feedback controllers are automatically selected with the receding horizon online in the first strategy. Finally, a modified automatic offline robust MPC approach is constructed to improve the closed system's performance. The new proposed strategies not only reduce the conservatism but also decrease the online computation. Numerical examples are given to illustrate their effectiveness.

  7. Modification of computational auditory scene analysis (CASA) for noise-robust acoustic feature

    Science.gov (United States)

    Kwon, Minseok

    While there have been many attempts to mitigate interferences of background noise, the performance of automatic speech recognition (ASR) still can be deteriorated by various factors with ease. However, normal hearing listeners can accurately perceive sounds of their interests, which is believed to be a result of Auditory Scene Analysis (ASA). As a first attempt, the simulation of the human auditory processing, called computational auditory scene analysis (CASA), was fulfilled through physiological and psychological investigations of ASA. CASA comprised of Zilany-Bruce auditory model, followed by tracking fundamental frequency for voice segmentation and detecting pairs of onset/offset at each characteristic frequency (CF) for unvoiced segmentation. The resulting Time-Frequency (T-F) representation of acoustic stimulation was converted into acoustic feature, gammachirp-tone frequency cepstral coefficients (GFCC). 11 keywords with various environmental conditions are used and the robustness of GFCC was evaluated by spectral distance (SD) and dynamic time warping distance (DTW). In "clean" and "noisy" conditions, the application of CASA generally improved noise robustness of the acoustic feature compared to a conventional method with or without noise suppression using MMSE estimator. The intial study, however, not only showed the noise-type dependency at low SNR, but also called the evaluation methods in question. Some modifications were made to capture better spectral continuity from an acoustic feature matrix, to obtain faster processing speed, and to describe the human auditory system more precisely. The proposed framework includes: 1) multi-scale integration to capture more accurate continuity in feature extraction, 2) contrast enhancement (CE) of each CF by competition with neighboring frequency bands, and 3) auditory model modifications. The model modifications contain the introduction of higher Q factor, middle ear filter more analogous to human auditory system

  8. Towards a fully automatic and robust DIMM (DIMMA)

    International Nuclear Information System (INIS)

    Varela, A M; Muñoz-Tuñón, C; Del Olmo-García, A M; Rodríguez, L F; Delgado, J M; Castro-Almazán, J A

    2015-01-01

    Quantitative seeing measurements have been provided at the Canarian Observatories since 1990 by differential image motion monitors (DIMMs). Image quality needs to be studied in long term (routine) measurements. This is important, for instance, in deciding on the siting of large telescopes or in the development of adaptive optics programmes, not to mention the development and design of new instruments. On the other hand, the continuous real time monitoring is essential in the day-to-day operation of telescopes.These routine measurements have to be carried out by standard, easy-to-operate and cross- calibrated instruments that required to be be operational with minimum intervention over many years. The DIMMA (Automatic Differential Image Motion Monitor) is the next step, a fully automated seeing monitor that is capable of providing data without manual operation and in remote locations. Currently, the IAC has two DIMMs working at Roque de los Muchachos Observatory (ORM) and Teide Observatory (OT). They are robotic and require an operator to start and initialize the program, focus the telescope, change the star when needed and turn off at the end of the night, all of which is done remotely. With a view to automation, we have designed a code for monitoring image quality (avoiding spurious data) and a program for autofocus, which is presented here. The data quality control protocol is also given. (paper)

  9. Cortical activity patterns predict robust speech discrimination ability in noise

    Science.gov (United States)

    Shetake, Jai A.; Wolf, Jordan T.; Cheung, Ryan J.; Engineer, Crystal T.; Ram, Satyananda K.; Kilgard, Michael P.

    2012-01-01

    The neural mechanisms that support speech discrimination in noisy conditions are poorly understood. In quiet conditions, spike timing information appears to be used in the discrimination of speech sounds. In this study, we evaluated the hypothesis that spike timing is also used to distinguish between speech sounds in noisy conditions that significantly degrade neural responses to speech sounds. We tested speech sound discrimination in rats and recorded primary auditory cortex (A1) responses to speech sounds in background noise of different intensities and spectral compositions. Our behavioral results indicate that rats, like humans, are able to accurately discriminate consonant sounds even in the presence of background noise that is as loud as the speech signal. Our neural recordings confirm that speech sounds evoke degraded but detectable responses in noise. Finally, we developed a novel neural classifier that mimics behavioral discrimination. The classifier discriminates between speech sounds by comparing the A1 spatiotemporal activity patterns evoked on single trials with the average spatiotemporal patterns evoked by known sounds. Unlike classifiers in most previous studies, this classifier is not provided with the stimulus onset time. Neural activity analyzed with the use of relative spike timing was well correlated with behavioral speech discrimination in quiet and in noise. Spike timing information integrated over longer intervals was required to accurately predict rat behavioral speech discrimination in noisy conditions. The similarity of neural and behavioral discrimination of speech in noise suggests that humans and rats may employ similar brain mechanisms to solve this problem. PMID:22098331

  10. Computationally Efficient and Noise Robust DOA and Pitch Estimation

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2016-01-01

    Many natural signals, such as voiced speech and some musical instruments, are approximately periodic over short intervals. These signals are often described in mathematics by the sum of sinusoids (harmonics) with frequencies that are proportional to the fundamental frequency, or pitch. In sensor...... a joint DOA and pitch estimator. In white Gaussian noise, we derive even more computationally efficient solutions which are designed using the narrowband power spectrum of the harmonics. Numerical results reveal the performance of the estimators in colored noise compared with the Cram\\'{e}r-Rao lower...

  11. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.

    Science.gov (United States)

    Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing

    2018-03-07

    The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.

  12. White noise theory of robust nonlinear filtering with correlated state and observation noises

    NARCIS (Netherlands)

    Bagchi, Arunabha; Karandikar, Rajeeva

    1992-01-01

    In the direct white noise theory of nonlinear filtering, the state process is still modeled as a Markov process satisfying an Ito stochastic differential equation, while a finitely additive white noise is used to model the observation noise. In the present work, this asymmetry is removed by modeling

  13. White noise theory of robust nonlinear filtering with correlated state and observation noises

    NARCIS (Netherlands)

    Bagchi, Arunabha; Karandikar, Rajeeva

    1994-01-01

    In the existing `direct¿ white noise theory of nonlinear filtering, the state process is still modelled as a Markov process satisfying an Itô stochastic differential equation, while a `finitely additive¿ white noise is used to model the observation noise. We remove this asymmetry by modelling the

  14. Making tensor factorizations robust to non-gaussian noise.

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Eric C. (Rice University, Houston, TX); Kolda, Tamara Gibson

    2011-03-01

    Tensors are multi-way arrays, and the CANDECOMP/PARAFAC (CP) tensor factorization has found application in many different domains. The CP model is typically fit using a least squares objective function, which is a maximum likelihood estimate under the assumption of independent and identically distributed (i.i.d.) Gaussian noise. We demonstrate that this loss function can be highly sensitive to non-Gaussian noise. Therefore, we propose a loss function based on the 1-norm because it can accommodate both Gaussian and grossly non-Gaussian perturbations. We also present an alternating majorization-minimization (MM) algorithm for fitting a CP model using our proposed loss function (CPAL1) and compare its performance to the workhorse algorithm for fitting CP models, CP alternating least squares (CPALS).

  15. Assuring robustness to noise in optimal quantum control experiments

    International Nuclear Information System (INIS)

    Bartelt, A.F.; Roth, M.; Mehendale, M.; Rabitz, H.

    2005-01-01

    Closed-loop optimal quantum control experiments operate in the inherent presence of laser noise. In many applications, attaining high quality results [i.e., a high signal-to-noise (S/N) ratio for the optimized objective] is as important as producing a high control yield. Enhancement of the S/N ratio will typically be in competition with the mean signal, however, the latter competition can be balanced by biasing the optimization experiments towards higher mean yields while retaining a good S/N ratio. Other strategies can also direct the optimization to reduce the standard deviation of the statistical signal distribution. The ability to enhance the S/N ratio through an optimized choice of the control is demonstrated for two condensed phase model systems: second harmonic generation in a nonlinear optical crystal and stimulated emission pumping in a dye solution

  16. ATMAD: robust image analysis for Automatic Tissue MicroArray De-arraying.

    Science.gov (United States)

    Nguyen, Hoai Nam; Paveau, Vincent; Cauchois, Cyril; Kervrann, Charles

    2018-04-19

    Over the last two decades, an innovative technology called Tissue Microarray (TMA), which combines multi-tissue and DNA microarray concepts, has been widely used in the field of histology. It consists of a collection of several (up to 1000 or more) tissue samples that are assembled onto a single support - typically a glass slide - according to a design grid (array) layout, in order to allow multiplex analysis by treating numerous samples under identical and standardized conditions. However, during the TMA manufacturing process, the sample positions can be highly distorted from the design grid due to the imprecision when assembling tissue samples and the deformation of the embedding waxes. Consequently, these distortions may lead to severe errors of (histological) assay results when the sample identities are mismatched between the design and its manufactured output. The development of a robust method for de-arraying TMA, which localizes and matches TMA samples with their design grid, is therefore crucial to overcome the bottleneck of this prominent technology. In this paper, we propose an Automatic, fast and robust TMA De-arraying (ATMAD) approach dedicated to images acquired with brightfield and fluorescence microscopes (or scanners). First, tissue samples are localized in the large image by applying a locally adaptive thresholding on the isotropic wavelet transform of the input TMA image. To reduce false detections, a parametric shape model is considered for segmenting ellipse-shaped objects at each detected position. Segmented objects that do not meet the size and the roundness criteria are discarded from the list of tissue samples before being matched with the design grid. Sample matching is performed by estimating the TMA grid deformation under the thin-plate model. Finally, thanks to the estimated deformation, the true tissue samples that were preliminary rejected in the early image processing step are recognized by running a second segmentation step. We

  17. Automatic physiological waveform processing for FMRI noise correction and analysis.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2008-03-01

    Full Text Available Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.

  18. Robust automatic high resolution segmentation of SOFC anode porosity in 3D

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Bowen, Jacob R.

    2008-01-01

    Routine use of 3D characterization of SOFCs by focused ion beam (FIB) serial sectioning is generally restricted by the time consuming task of manually delineating structures within each image slice. We apply advanced image analysis algorithms to automatically segment the porosity phase of an SOFC...... anode in 3D. The technique is based on numerical approximations to partial differential equations to evolve a 3D surface to the desired phase boundary. Vector fields derived from the experimentally acquired data are used as the driving force. The automatic segmentation compared to manual delineation...... reveals and good correspondence and the two approaches are quantitatively compared. It is concluded that the. automatic approach is more robust, more reproduceable and orders of magnitude quicker than manual segmentation of SOFC anode porosity for subsequent quantitative 3D analysis. Lastly...

  19. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter

    Science.gov (United States)

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  20. Robust extended Kalman filter of discrete-time Markovian jump nonlinear system under uncertain noise

    International Nuclear Information System (INIS)

    Zhu, Jin; Park, Jun Hong; Lee, Kwan Soo; Spiryagin, Maksym

    2008-01-01

    This paper examines the problem of robust extended Kalman filter design for discrete -time Markovian jump nonlinear systems with noise uncertainty. Because of the existence of stochastic Markovian switching, the state and measurement equations of underlying system are subject to uncertain noise whose covariance matrices are time-varying or un-measurable instead of stationary. First, based on the expression of filtering performance deviation, admissible uncertainty of noise covariance matrix is given. Secondly, two forms of noise uncertainty are taken into account: Non- Structural and Structural. It is proved by applying game theory that this filter design is a robust mini-max filter. A numerical example shows the validity of the method

  1. Robust Cyclic MUSIC Algorithm for Finding Directions in Impulsive Noise Environment

    Directory of Open Access Journals (Sweden)

    Sen Li

    2017-01-01

    Full Text Available This paper addresses the issue of direction finding of a cyclostationary signal under impulsive noise environments modeled by α-stable distribution. Since α-stable distribution does not have finite second-order statistics, the conventional cyclic correlation-based signal-selective direction finding algorithms do not work effectively. To resolve this problem, we define two robust cyclic correlation functions which are derived from robust statistics property of the correntropy and the nonlinear transformation, respectively. The MUSIC algorithm with the robust cyclic correlation matrix of the received signals of arrays is then used to estimate the direction of cyclostationary signal in the presence of impulsive noise. The computer simulation results demonstrate that the two proposed robust cyclic correlation-based algorithms outperform the conventional cyclic correlation and the fractional lower order cyclic correlation based methods.

  2. THE NOISE IMMUNITY OF THE DIGITAL DEMODULATOR MFM-AM SIGNAL USED IN DATA COMMUNICATIONS SYSTEMS OF AIR TRAFFIC CONTROL WITH AUTOMATIC DEPENDENT SURVEILLANCE AGAINST A NON-GAUSSIAN NOISE

    Directory of Open Access Journals (Sweden)

    A. L. Senyavskiy

    2015-01-01

    Full Text Available The article analyzes the robustness of the digital demodulator of the signal with the lowest frequency shift keying at a subcarrier frequency with respect to non-Gaussian interference type of atmospheric, industrial noise and interfering frequency -and phase-shift keyed signals. This type of demodulator is used for the transmission of navigation data in the systems of air traffic control with automatic dependent surveillance.

  3. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    Science.gov (United States)

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  4. An automatic classifier of emotions built from entropy of noise.

    Science.gov (United States)

    Ferreira, Jacqueline; Brás, Susana; Silva, Carlos F; Soares, Sandra C

    2017-04-01

    The electrocardiogram (ECG) signal has been widely used to study the physiological substrates of emotion. However, searching for better filtering techniques in order to obtain a signal with better quality and with the maximum relevant information remains an important issue for researchers in this field. Signal processing is largely performed for ECG analysis and interpretation, but this process can be susceptible to error in the delineation phase. In addition, it can lead to the loss of important information that is usually considered as noise and, consequently, discarded from the analysis. The goal of this study was to evaluate if the ECG noise allows for the classification of emotions, while using its entropy as an input in a decision tree classifier. We collected the ECG signal from 25 healthy participants while they were presented with videos eliciting negative (fear and disgust) and neutral emotions. The results indicated that the neutral condition showed a perfect identification (100%), whereas the classification of negative emotions indicated good identification performances (60% of sensitivity and 80% of specificity). These results suggest that the entropy of noise contains relevant information that can be useful to improve the analysis of the physiological correlates of emotion. © 2016 Society for Psychophysiological Research.

  5. Aerodynamic design applying automatic differentiation and using robust variable fidelity optimization

    Science.gov (United States)

    Takemiya, Tetsushi

    , and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite

  6. Long term memory for noise: evidence of robust encoding of very short temporal acoustic patterns.

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Viswanathan

    2016-11-01

    Full Text Available Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs (the two halves of the noise were identical or 1-s plain random noises (Ns. Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin and scrambled (chopping sounds into 10- and 20-ms bits before shuffling versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant’s discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities.

  7. A robust and hierarchical approach for the automatic co-registration of intensity and visible images

    Science.gov (United States)

    González-Aguilera, Diego; Rodríguez-Gonzálvez, Pablo; Hernández-López, David; Luis Lerma, José

    2012-09-01

    This paper presents a new robust approach to integrate intensity and visible images which have been acquired with a terrestrial laser scanner and a calibrated digital camera, respectively. In particular, an automatic and hierarchical method for the co-registration of both sensors is developed. The approach integrates several existing solutions to improve the performance of the co-registration between range-based and visible images: the Affine Scale-Invariant Feature Transform (A-SIFT), the epipolar geometry, the collinearity equations, the Groebner basis solution and the RANdom SAmple Consensus (RANSAC), integrating a voting scheme. The approach presented herein improves the existing co-registration approaches in automation, robustness, reliability and accuracy.

  8. Aircraft noise effects on sleep: a systematic comparison of EEG awakenings and automatically detected cardiac activations

    International Nuclear Information System (INIS)

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria; Kluge, Götz; Griefahn, Barbara

    2008-01-01

    Polysomnography is the gold standard for investigating noise effects on sleep, but data collection and analysis are sumptuous and expensive. We recently developed an algorithm for the automatic identification of cardiac activations associated with cortical arousals, which uses heart rate information derived from a single electrocardiogram (ECG) channel. We hypothesized that cardiac activations can be used as estimates for EEG awakenings. Polysomnographic EEG awakenings and automatically detected cardiac activations were systematically compared using laboratory data of 112 subjects (47 male, mean ± SD age 37.9 ± 13 years), 985 nights and 23 855 aircraft noise events (ANEs). The probability of automatically detected cardiac activations increased monotonically with increasing maximum sound pressure levels of ANEs, exceeding the probability of EEG awakenings by up to 18.1%. If spontaneous reactions were taken into account, exposure–response curves were practically identical for EEG awakenings and cardiac activations. Automatically detected cardiac activations may be used as estimates for EEG awakenings. More investigations are needed to further validate the ECG algorithm in the field and to investigate inter-individual differences in its ability to predict EEG awakenings. This inexpensive, objective and non-invasive method facilitates large-scale field studies on the effects of traffic noise on sleep

  9. Comparison of PAM and CAP modulations robustness against mode partition noise in optical links

    Science.gov (United States)

    Stepniak, Grzegorz

    2017-08-01

    Mode partition noise (MPN) of the laser employed at the transmitter can significantly degrade the transmission performance. In the paper, we introduce a simulation model of MPN in vertical cavity surface emitting laser (VCSEL) and simulate transmission of pulse amplitude modulation (PAM) and carrierless amplitude phase (CAP) signals in multimode fiber (MMF) link. By turning off other effects, like relative intensity noise (RIN), we focus solely on the influence of MPN on transmission performance degradation. Robustness of modulation and equalization type against MPN is studied.

  10. The Effects of Background Noise on the Performance of an Automatic Speech Recogniser

    Science.gov (United States)

    Littlefield, Jason; HashemiSakhtsari, Ahmad

    2002-11-01

    Ambient or environmental noise is a major factor that affects the performance of an automatic speech recognizer. Large vocabulary, speaker-dependent, continuous speech recognizers are commercially available. Speech recognizers, perform well in a quiet environment, but poorly in a noisy environment. Speaker-dependent speech recognizers require training prior to them being tested, where the level of background noise in both phases affects the performance of the recognizer. This study aims to determine whether the best performance of a speech recognizer occurs when the levels of background noise during the training and test phases are the same, and how the performance is affected when the levels of background noise during the training and test phases are different. The relationship between the performance of the speech recognizer and upgrading the computer speed and amount of memory as well as software version was also investigated.

  11. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Science.gov (United States)

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as

  12. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    Science.gov (United States)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  13. Fully automatic adjoints: a robust and efficient mechanism for generating adjoint ocean models

    Science.gov (United States)

    Ham, D. A.; Farrell, P. E.; Funke, S. W.; Rognes, M. E.

    2012-04-01

    The problem of generating and maintaining adjoint models is sufficiently difficult that typically only the most advanced and well-resourced community ocean models achieve it. There are two current technologies which each suffer from their own limitations. Algorithmic differentiation, also called automatic differentiation, is employed by models such as the MITGCM [2] and the Alfred Wegener Institute model FESOM [3]. This technique is very difficult to apply to existing code, and requires a major initial investment to prepare the code for automatic adjoint generation. AD tools may also have difficulty with code employing modern software constructs such as derived data types. An alternative is to formulate the adjoint differential equation and to discretise this separately. This approach, known as the continuous adjoint and employed in ROMS [4], has the disadvantage that two different model code bases must be maintained and manually kept synchronised as the model develops. The discretisation of the continuous adjoint is not automatically consistent with that of the forward model, producing an additional source of error. The alternative presented here is to formulate the flow model in the high level language UFL (Unified Form Language) and to automatically generate the model using the software of the FEniCS project. In this approach it is the high level code specification which is differentiated, a task very similar to the formulation of the continuous adjoint [5]. However since the forward and adjoint models are generated automatically, the difficulty of maintaining them vanishes and the software engineering process is therefore robust. The scheduling and execution of the adjoint model, including the application of an appropriate checkpointing strategy is managed by libadjoint [1]. In contrast to the conventional algorithmic differentiation description of a model as a series of primitive mathematical operations, libadjoint employs a new abstraction of the simulation

  14. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    Science.gov (United States)

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may

  15. Automatic exposure control systems designed to maintain constant image noise: effects on computed tomography dose and noise relative to clinically accepted technique charts.

    Science.gov (United States)

    Favazza, Christopher P; Yu, Lifeng; Leng, Shuai; Kofler, James M; McCollough, Cynthia H

    2015-01-01

    To compare computed tomography dose and noise arising from use of an automatic exposure control (AEC) system designed to maintain constant image noise as patient size varies with clinically accepted technique charts and AEC systems designed to vary image noise. A model was developed to describe tube current modulation as a function of patient thickness. Relative dose and noise values were calculated as patient width varied for AEC settings designed to yield constant or variable noise levels and were compared to empirically derived values used by our clinical practice. Phantom experiments were performed in which tube current was measured as a function of thickness using a constant-noise-based AEC system and the results were compared with clinical technique charts. For 12-, 20-, 28-, 44-, and 50-cm patient widths, the requirement of constant noise across patient size yielded relative doses of 5%, 14%, 38%, 260%, and 549% and relative noises of 435%, 267%, 163%, 61%, and 42%, respectively, as compared with our clinically used technique chart settings at each respective width. Experimental measurements showed that a constant noise-based AEC system yielded 175% relative noise for a 30-cm phantom and 206% relative dose for a 40-cm phantom compared with our clinical technique chart. Automatic exposure control systems that prescribe constant noise as patient size varies can yield excessive noise in small patients and excessive dose in obese patients compared with clinically accepted technique charts. Use of noise-level technique charts and tube current limits can mitigate these effects.

  16. Concurrent Codes: A Holographic-Type Encoding Robust against Noise and Loss.

    Directory of Open Access Journals (Sweden)

    David M Benton

    Full Text Available Concurrent coding is an encoding scheme with 'holographic' type properties that are shown here to be robust against a significant amount of noise and signal loss. This single encoding scheme is able to correct for random errors and burst errors simultaneously, but does not rely on cyclic codes. A simple and practical scheme has been tested that displays perfect decoding when the signal to noise ratio is of order -18dB. The same scheme also displays perfect reconstruction when a contiguous block of 40% of the transmission is missing. In addition this scheme is 50% more efficient in terms of transmitted power requirements than equivalent cyclic codes. A simple model is presented that describes the process of decoding and can determine the computational load that would be expected, as well as describing the critical levels of noise and missing data at which false messages begin to be generated.

  17. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U; Bednarz, T

    2014-01-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  18. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    Science.gov (United States)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  19. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    International Nuclear Information System (INIS)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H.

    2012-01-01

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within ∼200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  20. Boundary layer noise subtraction in hydrodynamic tunnel using robust principal component analysis.

    Science.gov (United States)

    Amailland, Sylvain; Thomas, Jean-Hugh; Pézerat, Charles; Boucheron, Romuald

    2018-04-01

    The acoustic study of propellers in a hydrodynamic tunnel is of paramount importance during the design process, but can involve significant difficulties due to the boundary layer noise (BLN). Indeed, advanced denoising methods are needed to recover the acoustic signal in case of poor signal-to-noise ratio. The technique proposed in this paper is based on the decomposition of the wall-pressure cross-spectral matrix (CSM) by taking advantage of both the low-rank property of the acoustic CSM and the sparse property of the BLN CSM. Thus, the algorithm belongs to the class of robust principal component analysis (RPCA), which derives from the widely used principal component analysis. If the BLN is spatially decorrelated, the proposed RPCA algorithm can blindly recover the acoustical signals even for negative signal-to-noise ratio. Unfortunately, in a realistic case, acoustic signals recorded in a hydrodynamic tunnel show that the noise may be partially correlated. A prewhitening strategy is then considered in order to take into account the spatially coherent background noise. Numerical simulations and experimental results show an improvement in terms of BLN reduction in the large hydrodynamic tunnel. The effectiveness of the denoising method is also investigated in the context of acoustic source localization.

  1. Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise. II. Bayesian analyses

    International Nuclear Information System (INIS)

    Allen, Bruce; Creighton, Jolien D.E.; Flanagan, Eanna E.; Romano, Joseph D.

    2003-01-01

    In a previous paper (paper I), we derived a set of near-optimal signal detection techniques for gravitational wave detectors whose noise probability distributions contain non-Gaussian tails. The methods modify standard methods by truncating or clipping sample values which lie in those non-Gaussian tails. The methods were derived, in the frequentist framework, by minimizing false alarm probabilities at fixed false detection probability in the limit of weak signals. For stochastic signals, the resulting statistic consisted of a sum of an autocorrelation term and a cross-correlation term; it was necessary to discard 'by hand' the autocorrelation term in order to arrive at the correct, generalized cross-correlation statistic. In the present paper, we present an alternative derivation of the same signal detection techniques from within the Bayesian framework. We compute, for both deterministic and stochastic signals, the probability that a signal is present in the data, in the limit where the signal-to-noise ratio squared per frequency bin is small, where the signal is nevertheless strong enough to be detected (integrated signal-to-noise ratio large compared to 1), and where the total probability in the non-Gaussian tail part of the noise distribution is small. We show that, for each model considered, the resulting probability is to a good approximation a monotonic function of the detection statistic derived in paper I. Moreover, for stochastic signals, the new Bayesian derivation automatically eliminates the problematic autocorrelation term

  2. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Directory of Open Access Journals (Sweden)

    Jun Yi Wang

    Full Text Available Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation to 0.978 (for SegAdapter-corrected segmentation for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large

  3. A Robust Vision-based Runway Detection and Tracking Algorithm for Automatic UAV Landing

    KAUST Repository

    Abu Jbara, Khaled F.

    2015-05-01

    This work presents a novel real-time algorithm for runway detection and tracking applied to the automatic takeoff and landing of Unmanned Aerial Vehicles (UAVs). The algorithm is based on a combination of segmentation based region competition and the minimization of a specific energy function to detect and identify the runway edges from streaming video data. The resulting video-based runway position estimates are updated using a Kalman Filter, which can integrate other sensory information such as position and attitude angle estimates to allow a more robust tracking of the runway under turbulence. We illustrate the performance of the proposed lane detection and tracking scheme on various experimental UAV flights conducted by the Saudi Aerospace Research Center. Results show an accurate tracking of the runway edges during the landing phase under various lighting conditions. Also, it suggests that such positional estimates would greatly improve the positional accuracy of the UAV during takeoff and landing phases. The robustness of the proposed algorithm is further validated using Hardware in the Loop simulations with diverse takeoff and landing videos generated using a commercial flight simulator.

  4. Robust cubature Kalman filter for GNSS/INS with missing observations and colored measurement noise.

    Science.gov (United States)

    Cui, Bingbo; Chen, Xiyuan; Tang, Xihua; Huang, Haoqian; Liu, Xiao

    2018-01-01

    In order to improve the accuracy of GNSS/INS working in GNSS-denied environment, a robust cubature Kalman filter (RCKF) is developed by considering colored measurement noise and missing observations. First, an improved cubature Kalman filter (CKF) is derived by considering colored measurement noise, where the time-differencing approach is applied to yield new observations. Then, after analyzing the disadvantages of existing methods, the measurement augment in processing colored noise is translated into processing the uncertainties of CKF, and new sigma point update framework is utilized to account for the bounded model uncertainties. By reusing the diffused sigma points and approximation residual in the prediction stage of CKF, the RCKF is developed and its error performance is analyzed theoretically. Results of numerical experiment and field test reveal that RCKF is more robust than CKF and extended Kalman filter (EKF), and compared with EKF, the heading error of land vehicle is reduced by about 72.4%. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. A multi-frame particle tracking algorithm robust against input noise

    International Nuclear Information System (INIS)

    Li, Dongning; Zhang, Yuanhui; Sun, Yigang; Yan, Wei

    2008-01-01

    The performance of a particle tracking algorithm which detects particle trajectories from discretely recorded particle positions could be substantially hindered by the input noise. In this paper, a particle tracking algorithm is developed which is robust against input noise. This algorithm employs the regression method instead of the extrapolation method usually employed by existing algorithms to predict future particle positions. If a trajectory cannot be linked to a particle at a frame, the algorithm can still proceed by trying to find a candidate at the next frame. The connectivity of tracked trajectories is inspected to remove the false ones. The algorithm is validated with synthetic data. The result shows that the algorithm is superior to traditional algorithms in the aspect of tracking long trajectories

  6. Robust Sequential Covariance Intersection Fusion Kalman Filtering over Multi-agent Sensor Networks with Measurement Delays and Uncertain Noise Variances

    Institute of Scientific and Technical Information of China (English)

    QI Wen-Juan; ZHANG Peng; DENG Zi-Li

    2014-01-01

    This paper deals with the problem of designing robust sequential covariance intersection (SCI) fusion Kalman filter for the clustering multi-agent sensor network system with measurement delays and uncertain noise variances. The sensor network is partitioned into clusters by the nearest neighbor rule. Using the minimax robust estimation principle, based on the worst-case conservative sensor network system with conservative upper bounds of noise variances, and applying the unbiased linear minimum variance (ULMV) optimal estimation rule, we present the two-layer SCI fusion robust steady-state Kalman filter which can reduce communication and computation burdens and save energy sources, and guarantee that the actual filtering error variances have a less-conservative upper-bound. A Lyapunov equation method for robustness analysis is proposed, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented and the robust accuracy relations of the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the global SCI fuser is higher than those of the local SCI fusers and the robust accuracies of all SCI fusers are higher than that of each local robust Kalman filter. A simulation example for a tracking system verifies the robustness and robust accuracy relations.

  7. Noise-robust cortical tracking of attended speech in real-world acoustic scenes

    DEFF Research Database (Denmark)

    Fuglsang, Søren; Dau, Torsten; Hjortkjær, Jens

    2017-01-01

    Selectively attending to one speaker in a multi-speaker scenario is thought to synchronize low-frequency cortical activity to the attended speech signal. In recent studies, reconstruction of speech from single-trial electroencephalogram (EEG) data has been used to decode which talker a listener...... is attending to in a two-talker situation. It is currently unclear how this generalizes to more complex sound environments. Behaviorally, speech perception is robust to the acoustic distortions that listeners typically encounter in everyday life, but it is unknown whether this is mirrored by a noise......-robust neural tracking of attended speech. Here we used advanced acoustic simulations to recreate real-world acoustic scenes in the laboratory. In virtual acoustic realities with varying amounts of reverberation and number of interfering talkers, listeners selectively attended to the speech stream...

  8. Automatic spinal cord localization, robust to MRI contrasts using global curve optimization.

    Science.gov (United States)

    Gros, Charley; De Leener, Benjamin; Dupont, Sara M; Martin, Allan R; Fehlings, Michael G; Bakshi, Rohit; Tummala, Subhash; Auclair, Vincent; McLaren, Donald G; Callot, Virginie; Cohen-Adad, Julien; Sdika, Michaël

    2018-02-01

    During the last two decades, MRI has been increasingly used for providing valuable quantitative information about spinal cord morphometry, such as quantification of the spinal cord atrophy in various diseases. However, despite the significant improvement of MR sequences adapted to the spinal cord, automatic image processing tools for spinal cord MRI data are not yet as developed as for the brain. There is nonetheless great interest in fully automatic and fast processing methods to be able to propose quantitative analysis pipelines on large datasets without user bias. The first step of most of these analysis pipelines is to detect the spinal cord, which is challenging to achieve automatically across the broad range of MRI contrasts, field of view, resolutions and pathologies. In this paper, a fully automated, robust and fast method for detecting the spinal cord centerline on MRI volumes is introduced. The algorithm uses a global optimization scheme that attempts to strike a balance between a probabilistic localization map of the spinal cord center point and the overall spatial consistency of the spinal cord centerline (i.e. the rostro-caudal continuity of the spinal cord). Additionally, a new post-processing feature, which aims to automatically split brain and spine regions is introduced, to be able to detect a consistent spinal cord centerline, independently from the field of view. We present data on the validation of the proposed algorithm, known as "OptiC", from a large dataset involving 20 centers, 4 contrasts (T 2 -weighted n = 287, T 1 -weighted n = 120, T 2 ∗ -weighted n = 307, diffusion-weighted n = 90), 501 subjects including 173 patients with a variety of neurologic diseases. Validation involved the gold-standard centerline coverage, the mean square error between the true and predicted centerlines and the ability to accurately separate brain and spine regions. Overall, OptiC was able to cover 98.77% of the gold-standard centerline, with a

  9. Study of shift shock reduction of an automatic transmission using robust control; Robust seigyo wo mochiita ido hensokuki no hensoku shock teigen ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, K [JATCO Corp., Shizuoka (Japan); Totsuka, H; Sanada, K; Kitagawa, A [Tokyo Institute of Technology, Tokyo (Japan)

    1997-10-01

    To effectively reduce shift shock of an Automatic Transmission, we designed a feed-back controller that manipulates the hydraulic pressure of a clutch and input torque, and also controls the turbine revolution and output torque. We used robust control theory to consider the fluctuation of hydraulic characteristics and friction elements, and verified the effect of the controller by simulation and experiment. 1 ref., 11 figs.

  10. Evidence of "hidden hearing loss" following noise exposures that produce robust TTS and ABR wave-I amplitude reductions.

    Science.gov (United States)

    Lobarinas, Edward; Spankovich, Christopher; Le Prell, Colleen G

    2017-06-01

    In animals, noise exposures that produce robust temporary threshold shifts (TTS) can produce immediate damage to afferent synapses and long-term degeneration of low spontaneous rate auditory nerve fibers. This synaptopathic damage has been shown to correlate with reduced auditory brainstem response (ABR) wave-I amplitudes at suprathreshold levels. The perceptual consequences of this "synaptopathy" remain unknown but have been suggested to include compromised hearing performance in competing background noise. Here, we used a modified startle inhibition paradigm to evaluate whether noise exposures that produce robust TTS and ABR wave-I reduction but not permanent threshold shift (PTS) reduced hearing-in-noise performance. Animals exposed to 109 dB SPL octave band noise showed TTS >30 dB 24-h post noise and modest but persistent ABR wave-I reduction 2 weeks post noise despite full recovery of ABR thresholds. Hearing-in-noise performance was negatively affected by the noise exposure. However, the effect was observed only at the poorest signal to noise ratio and was frequency specific. Although TTS >30 dB 24-h post noise was a predictor of functional deficits, there was no relationship between the degree of ABR wave-I reduction and degree of functional impairment. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Generic and robust method for automatic segmentation of PET images using an active contour model

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Mingzan [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen (Netherlands)

    2016-08-15

    Purpose: Although positron emission tomography (PET) images have shown potential to improve the accuracy of targeting in radiation therapy planning and assessment of response to treatment, the boundaries of tumors are not easily distinguishable from surrounding normal tissue owing to the low spatial resolution and inherent noisy characteristics of PET images. The objective of this study is to develop a generic and robust method for automatic delineation of tumor volumes using an active contour model and to evaluate its performance using phantom and clinical studies. Methods: MASAC, a method for automatic segmentation using an active contour model, incorporates the histogram fuzzy C-means clustering, and localized and textural information to constrain the active contour to detect boundaries in an accurate and robust manner. Moreover, the lattice Boltzmann method is used as an alternative approach for solving the level set equation to make it faster and suitable for parallel programming. Twenty simulated phantom studies and 16 clinical studies, including six cases of pharyngolaryngeal squamous cell carcinoma and ten cases of nonsmall cell lung cancer, were included to evaluate its performance. Besides, the proposed method was also compared with the contourlet-based active contour algorithm (CAC) and Schaefer’s thresholding method (ST). The relative volume error (RE), Dice similarity coefficient (DSC), and classification error (CE) metrics were used to analyze the results quantitatively. Results: For the simulated phantom studies (PSs), MASAC and CAC provide similar segmentations of the different lesions, while ST fails to achieve reliable results. For the clinical datasets (2 cases with connected high-uptake regions excluded) (CSs), CAC provides for the lowest mean RE (−8.38% ± 27.49%), while MASAC achieves the best mean DSC (0.71 ± 0.09) and mean CE (53.92% ± 12.65%), respectively. MASAC could reliably quantify different types of lesions assessed in this work

  12. Automatic picker of P & S first arrivals and robust event locator

    Science.gov (United States)

    Pinsky, V.; Polozov, A.; Hofstetter, A.

    2003-12-01

    We report on further development of automatic all distances location procedure designed for a regional network. The procedure generalizes the previous "loca l" (R ratio of two STAs, calculated in two consecutive and equal time windows (instead of previously used Akike Information Criterion). "Teleseismic " location is split in two stages: preliminary and final one. The preliminary part estimates azimuth and apparent velocity by fitting a plane wave to the P automatic pickings. The apparent velocity criterion is used to decide about strategy of the following computations: teleseismic or regional. The preliminary estimates of azimuth and apparent velocity provide starting value for the final teleseismic and regional location. Apparent velocity is used to get first a pproximation distance to the source on the basis of the P, Pn, Pg travel-timetables. The distance estimate together with the preliminary azimuth estimate provides first approximations of the source latitude and longitude via sine and cosine theorems formulated for the spherical triangle. Final location is based on robust grid-search optimization procedure, weighting the number of pickings that simultaneously fit the model travel times. The grid covers initial location and becomes finer while approaching true hypocenter. The target function is a sum of the bell-shaped characteristic functions, used to emphasize true pickings and eliminate outliers. The final solution is a grid point that provides maximum to the target function. The procedure was applied to a list of ML > 4 earthquakes recorded by the Israel Seismic Network (ISN) in the 1999-2002 time period. Most of them are badly constrained relative the network. However, the results of location with average normalized error relative bulletin solutions e=dr/R of 5% were obtained, in each of the distance ranges. The first version of the procedure was incorporated in the national Early Warning System in 2001. Recently, we started to send automatic Early

  13. Robust Automatic Modulation Classification Technique for Fading Channels via Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Jung Hwan Lee

    2017-08-01

    Full Text Available In this paper, we propose a deep neural network (DNN-based automatic modulation classification (AMC for digital communications. While conventional AMC techniques perform well for additive white Gaussian noise (AWGN channels, classification accuracy degrades for fading channels where the amplitude and phase of channel gain change in time. The key contributions of this paper are in two phases. First, we analyze the effectiveness of a variety of statistical features for AMC task in fading channels. We reveal that the features that are shown to be effective for fading channels are different from those known to be good for AWGN channels. Second, we introduce a new enhanced AMC technique based on DNN method. We use the extensive and diverse set of statistical features found in our study for the DNN-based classifier. The fully connected feedforward network with four hidden layers are trained to classify the modulation class for several fading scenarios. Numerical evaluation shows that the proposed technique offers significant performance gain over the existing AMC methods in fading channels.

  14. Feasibility of online IMPT adaptation using fast, automatic and robust dose restoration

    Science.gov (United States)

    Bernatowicz, Kinga; Geets, Xavier; Barragan, Ana; Janssens, Guillaume; Souris, Kevin; Sterpin, Edmond

    2018-04-01

    Intensity-modulated proton therapy (IMPT) offers excellent dose conformity and healthy tissue sparing, but it can be substantially compromised in the presence of anatomical changes. A major dosimetric effect is caused by density changes, which alter the planned proton range in the patient. Three different methods, which automatically restore an IMPT plan dose on a daily CT image were implemented and compared: (1) simple dose restoration (DR) using optimization objectives of the initial plan, (2) voxel-wise dose restoration (vDR), and (3) isodose volume dose restoration (iDR). Dose restorations were calculated for three different clinical cases, selected to test different capabilities of the restoration methods: large range adaptation, complex dose distributions and robust re-optimization. All dose restorations were obtained in less than 5 min, without manual adjustments of the optimization settings. The evaluation of initial plans on repeated CTs showed large dose distortions, which were substantially reduced after restoration. In general, all dose restoration methods improved DVH-based scores in propagated target volumes and OARs. Analysis of local dose differences showed that, although all dose restorations performed similarly in high dose regions, iDR restored the initial dose with higher precision and accuracy in the whole patient anatomy. Median dose errors decreased from 13.55 Gy in distorted plan to 9.75 Gy (vDR), 6.2 Gy (DR) and 4.3 Gy (iDR). High quality dose restoration is essential to minimize or eventually by-pass the physician approval of the restored plan, as long as dose stability can be assumed. Motion (as well as setup and range uncertainties) can be taken into account by including robust optimization in the dose restoration. Restoring clinically-approved dose distribution on repeated CTs does not require new ROI segmentation and is compatible with an online adaptive workflow.

  15. Nonlatching positive feedback enables robust bimodality by decoupling expression noise from the mean

    Energy Technology Data Exchange (ETDEWEB)

    Razooky, Brandon S. [Rockefeller Univ., New York, NY (United States). Lab. of Virology and Infectious Disease; Gladstone Institutes (Virology and Immunology), San Francisco, CA (United States); Univ. of California, San Francisco, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary; Cao, Youfang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hansen, Maike M. K. [Gladstone Institutes (Virology and Immunology), San Francisco, CA (United States); Perelson, Alan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Simpson, Michael L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary; Weinberger, Leor S. [Gladstone Institutes (Virology and Immunology), San Francisco, CA (United States); Univ. of California, San Francisco, CA (United States). Dept. of Biochemistry and Biophysics; Univ. of California, San Francisco, CA (United States). QB3: California Inst. of Quantitative Biosciences; Univ. of California, San Francisco, CA (United States). Dept. of Pharmaceutical Chemistry

    2017-10-18

    Fundamental to biological decision-making is the ability to generate bimodal expression patterns where two alternate expression states simultaneously exist. Here in this study, we use a combination of single-cell analysis and mathematical modeling to examine the sources of bimodality in the transcriptional program controlling HIV’s fate decision between active replication and viral latency. We find that the HIV Tat protein manipulates the intrinsic toggling of HIV’s promoter, the LTR, to generate bimodal ON-OFF expression, and that transcriptional positive feedback from Tat shifts and expands the regime of LTR bimodality. This result holds for both minimal synthetic viral circuits and full-length virus. Strikingly, computational analysis indicates that the Tat circuit’s non-cooperative ‘non-latching’ feedback architecture is optimized to slow the promoter’s toggling and generate bimodality by stochastic extinction of Tat. In contrast to the standard Poisson model, theory and experiment show that non-latching positive feedback substantially dampens the inverse noise-mean relationship to maintain stochastic bimodality despite increasing mean-expression levels. Given the rapid evolution of HIV, the presence of a circuit optimized to robustly generate bimodal expression appears consistent with the hypothesis that HIV’s decision between active replication and latency provides a viral fitness advantage. More broadly, the results suggest that positive-feedback circuits may have evolved not only for signal amplification but also for robustly generating bimodality by decoupling expression fluctuations (noise) from mean expression levels.

  16. Robust Automatic Target Recognition via HRRP Sequence Based on Scatterer Matching

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2018-02-01

    Full Text Available High resolution range profile (HRRP plays an important role in wideband radar automatic target recognition (ATR. In order to alleviate the sensitivity to clutter and target aspect, employing a sequence of HRRP is a promising approach to enhance the ATR performance. In this paper, a novel HRRP sequence-matching method based on singular value decomposition (SVD is proposed. First, the HRRP sequence is decoupled into the angle space and the range space via SVD, which correspond to the span of the left and the right singular vectors, respectively. Second, atomic norm minimization (ANM is utilized to estimate dominant scatterers in the range space and the Hausdorff distance is employed to measure the scatter similarity between the test and training data. Next, the angle space similarity between the test and training data is evaluated based on the left singular vector correlations. Finally, the range space matching result and the angle space correlation are fused with the singular values as weights. Simulation and outfield experimental results demonstrate that the proposed matching metric is a robust similarity measure for HRRP sequence recognition.

  17. Robust Wavelet Estimation to Eliminate Simultaneously the Effects of Boundary Problems, Outliers, and Correlated Noise

    Directory of Open Access Journals (Sweden)

    Alsaidi M. Altaher

    2012-01-01

    Full Text Available Classical wavelet thresholding methods suffer from boundary problems caused by the application of the wavelet transformations to a finite signal. As a result, large bias at the edges and artificial wiggles occur when the classical boundary assumptions are not satisfied. Although polynomial wavelet regression and local polynomial wavelet regression effectively reduce the risk of this problem, the estimates from these two methods can be easily affected by the presence of correlated noise and outliers, giving inaccurate estimates. This paper introduces two robust methods in which the effects of boundary problems, outliers, and correlated noise are simultaneously taken into account. The proposed methods combine thresholding estimator with either a local polynomial model or a polynomial model using the generalized least squares method instead of the ordinary one. A primary step that involves removing the outlying observations through a statistical function is considered as well. The practical performance of the proposed methods has been evaluated through simulation experiments and real data examples. The results are strong evidence that the proposed method is extremely effective in terms of correcting the boundary bias and eliminating the effects of outliers and correlated noise.

  18. Robust sequential learning of feedforward neural networks in the presence of heavy-tailed noise.

    Science.gov (United States)

    Vuković, Najdan; Miljković, Zoran

    2015-03-01

    Feedforward neural networks (FFNN) are among the most used neural networks for modeling of various nonlinear problems in engineering. In sequential and especially real time processing all neural networks models fail when faced with outliers. Outliers are found across a wide range of engineering problems. Recent research results in the field have shown that to avoid overfitting or divergence of the model, new approach is needed especially if FFNN is to run sequentially or in real time. To accommodate limitations of FFNN when training data contains a certain number of outliers, this paper presents new learning algorithm based on improvement of conventional extended Kalman filter (EKF). Extended Kalman filter robust to outliers (EKF-OR) is probabilistic generative model in which measurement noise covariance is not constant; the sequence of noise measurement covariance is modeled as stochastic process over the set of symmetric positive-definite matrices in which prior is modeled as inverse Wishart distribution. In each iteration EKF-OR simultaneously estimates noise estimates and current best estimate of FFNN parameters. Bayesian framework enables one to mathematically derive expressions, while analytical intractability of the Bayes' update step is solved by using structured variational approximation. All mathematical expressions in the paper are derived using the first principles. Extensive experimental study shows that FFNN trained with developed learning algorithm, achieves low prediction error and good generalization quality regardless of outliers' presence in training data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Multi-stream LSTM-HMM decoding and histogram equalization for noise robust keyword spotting.

    Science.gov (United States)

    Wöllmer, Martin; Marchi, Erik; Squartini, Stefano; Schuller, Björn

    2011-09-01

    Highly spontaneous, conversational, and potentially emotional and noisy speech is known to be a challenge for today's automatic speech recognition (ASR) systems, which highlights the need for advanced algorithms that improve speech features and models. Histogram Equalization is an efficient method to reduce the mismatch between clean and noisy conditions by normalizing all moments of the probability distribution of the feature vector components. In this article, we propose to combine histogram equalization and multi-condition training for robust keyword detection in noisy speech. To better cope with conversational speaking styles, we show how contextual information can be effectively exploited in a multi-stream ASR framework that dynamically models context-sensitive phoneme estimates generated by a long short-term memory neural network. The proposed techniques are evaluated on the SEMAINE database-a corpus containing emotionally colored conversations with a cognitive system for "Sensitive Artificial Listening".

  20. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    Science.gov (United States)

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  1. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    Directory of Open Access Journals (Sweden)

    Haryong Song

    2015-10-01

    Full Text Available Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  2. FIACH: A biophysical model for automatic retrospective noise control in fMRI.

    Science.gov (United States)

    Tierney, Tim M; Weiss-Croft, Louise J; Centeno, Maria; Shamshiri, Elhum A; Perani, Suejen; Baldeweg, Torsten; Clark, Christopher A; Carmichael, David W

    2016-01-01

    Different noise sources in fMRI acquisition can lead to spurious false positives and reduced sensitivity. We have developed a biophysically-based model (named FIACH: Functional Image Artefact Correction Heuristic) which extends current retrospective noise control methods in fMRI. FIACH can be applied to both General Linear Model (GLM) and resting state functional connectivity MRI (rs-fcMRI) studies. FIACH is a two-step procedure involving the identification and correction of non-physiological large amplitude temporal signal changes and spatial regions of high temporal instability. We have demonstrated its efficacy in a sample of 42 healthy children while performing language tasks that include overt speech with known activations. We demonstrate large improvements in sensitivity when FIACH is compared with current methods of retrospective correction. FIACH reduces the confounding effects of noise and increases the study's power by explaining significant variance that is not contained within the commonly used motion parameters. The method is particularly useful in detecting activations in inferior temporal regions which have proven problematic for fMRI. We have shown greater reproducibility and robustness of fMRI responses using FIACH in the context of task induced motion. In a clinical setting this will translate to increasing the reliability and sensitivity of fMRI used for the identification of language lateralisation and eloquent cortex. FIACH can benefit studies of cognitive development in young children, patient populations and older adults. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Towards social touch intelligence: developing a robust system for automatic touch recognition

    NARCIS (Netherlands)

    Jung, Merel Madeleine

    2014-01-01

    Touch behavior is of great importance during social interaction. Automatic recognition of social touch is necessary to transfer the touch modality from interpersonal interaction to other areas such as Human-Robot Interaction (HRI). This paper describes a PhD research program on the automatic

  4. Robust synchronization analysis in nonlinear stochastic cellular networks with time-varying delays, intracellular perturbations and intercellular noise.

    Science.gov (United States)

    Chen, Po-Wei; Chen, Bor-Sen

    2011-08-01

    Naturally, a cellular network consisted of a large amount of interacting cells is complex. These cells have to be synchronized in order to emerge their phenomena for some biological purposes. However, the inherently stochastic intra and intercellular interactions are noisy and delayed from biochemical processes. In this study, a robust synchronization scheme is proposed for a nonlinear stochastic time-delay coupled cellular network (TdCCN) in spite of the time-varying process delay and intracellular parameter perturbations. Furthermore, a nonlinear stochastic noise filtering ability is also investigated for this synchronized TdCCN against stochastic intercellular and environmental disturbances. Since it is very difficult to solve a robust synchronization problem with the Hamilton-Jacobi inequality (HJI) matrix, a linear matrix inequality (LMI) is employed to solve this problem via the help of a global linearization method. Through this robust synchronization analysis, we can gain a more systemic insight into not only the robust synchronizability but also the noise filtering ability of TdCCN under time-varying process delays, intracellular perturbations and intercellular disturbances. The measures of robustness and noise filtering ability of a synchronized TdCCN have potential application to the designs of neuron transmitters, on-time mass production of biochemical molecules, and synthetic biology. Finally, a benchmark of robust synchronization design in Escherichia coli repressilators is given to confirm the effectiveness of the proposed methods. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Automatic bearing fault diagnosis of permanent magnet synchronous generators in wind turbines subjected to noise interference

    Science.gov (United States)

    Guo, Jun; Lu, Siliang; Zhai, Chao; He, Qingbo

    2018-02-01

    An automatic bearing fault diagnosis method is proposed for permanent magnet synchronous generators (PMSGs), which are widely installed in wind turbines subjected to low rotating speeds, speed fluctuations, and electrical device noise interferences. The mechanical rotating angle curve is first extracted from the phase current of a PMSG by sequentially applying a series of algorithms. The synchronous sampled vibration signal of the fault bearing is then resampled in the angular domain according to the obtained rotating phase information. Considering that the resampled vibration signal is still overwhelmed by heavy background noise, an adaptive stochastic resonance filter is applied to the resampled signal to enhance the fault indicator and facilitate bearing fault identification. Two types of fault bearings with different fault sizes in a PMSG test rig are subjected to experiments to test the effectiveness of the proposed method. The proposed method is fully automated and thus shows potential for convenient, highly efficient and in situ bearing fault diagnosis for wind turbines subjected to harsh environments.

  6. The benefit obtained from visually displayed text from an automatic speech recognizer during listening to speech presented in noise

    NARCIS (Netherlands)

    Zekveld, A.A.; Kramer, S.E.; Kessens, J.M.; Vlaming, M.S.M.G.; Houtgast, T.

    2008-01-01

    OBJECTIVES: The aim of this study was to evaluate the benefit that listeners obtain from visually presented output from an automatic speech recognition (ASR) system during listening to speech in noise. DESIGN: Auditory-alone and audiovisual speech reception thresholds (SRTs) were measured. The SRT

  7. Robustness of SOC Estimation Algorithms for EV Lithium-Ion Batteries against Modeling Errors and Measurement Noise

    Directory of Open Access Journals (Sweden)

    Xue Li

    2015-01-01

    Full Text Available State of charge (SOC is one of the most important parameters in battery management system (BMS. There are numerous algorithms for SOC estimation, mostly of model-based observer/filter types such as Kalman filters, closed-loop observers, and robust observers. Modeling errors and measurement noises have critical impact on accuracy of SOC estimation in these algorithms. This paper is a comparative study of robustness of SOC estimation algorithms against modeling errors and measurement noises. By using a typical battery platform for vehicle applications with sensor noise and battery aging characterization, three popular and representative SOC estimation methods (extended Kalman filter, PI-controlled observer, and H∞ observer are compared on such robustness. The simulation and experimental results demonstrate that deterioration of SOC estimation accuracy under modeling errors resulted from aging and larger measurement noise, which is quantitatively characterized. The findings of this paper provide useful information on the following aspects: (1 how SOC estimation accuracy depends on modeling reliability and voltage measurement accuracy; (2 pros and cons of typical SOC estimators in their robustness and reliability; (3 guidelines for requirements on battery system identification and sensor selections.

  8. A robust and coherent network statistic for detecting gravitational waves from inspiralling compact binaries in non-Gaussian noise

    CERN Document Server

    Bose, S

    2002-01-01

    The robust statistic proposed by Creighton (Creighton J D E 1999 Phys. Rev. D 60 021101) and Allen et al (Allen et al 2001 Preprint gr-gc/010500) for the detection of stationary non-Gaussian noise is briefly reviewed. We compute the robust statistic for generic weak gravitational-wave signals in the mixture-Gaussian noise model to an accuracy higher than in those analyses, and reinterpret its role. Specifically, we obtain the coherent statistic for detecting gravitational-wave signals from inspiralling compact binaries with an arbitrary network of earth-based interferometers. Finally, we show that excess computational costs incurred owing to non-Gaussianity is negligible compared to the cost of detection in Gaussian noise.

  9. Resolution and robustness to noise of the sensitivity-based method for microwave imaging with data acquired on cylindrical surfaces

    International Nuclear Information System (INIS)

    Zhang, Yifan; Tu, Sheng; Amineh, Reza K; Nikolova, Natalia K

    2012-01-01

    The spatial resolution limit of a Jacobian-based microwave imaging algorithm and its robustness to noise are evaluated. The focus here is on tomographic systems where the wideband data are acquired with a vertically scanned circular sensor array and at each scanning step a 2D image is reconstructed in the plane of the sensor array. The theoretical resolution is obtained as one-half of the maximum-frequency wavelength with far-zone data and about two-thirds of the array radius with near-zone data. Validation examples are given using analytical electromagnetic models. The algorithm is shown to be robust to noise when the response data are corrupted by Gaussian white noise. (paper)

  10. Robust

    DEFF Research Database (Denmark)

    2017-01-01

    Robust – Reflections on Resilient Architecture’, is a scientific publication following the conference of the same name in November of 2017. Researches and PhD-Fellows, associated with the Masters programme: Cultural Heritage, Transformation and Restoration (Transformation), at The Royal Danish...

  11. A new robust markerless method for automatic image-to-patient registration in image-guided neurosurgery system.

    Science.gov (United States)

    Liu, Yinlong; Song, Zhijian; Wang, Manning

    2017-12-01

    Compared with the traditional point-based registration in the image-guided neurosurgery system, surface-based registration is preferable because it does not use fiducial markers before image scanning and does not require image acquisition dedicated for navigation purposes. However, most existing surface-based registration methods must include a manual step for coarse registration, which increases the registration time and elicits some inconvenience and uncertainty. A new automatic surface-based registration method is proposed, which applies 3D surface feature description and matching algorithm to obtain point correspondences for coarse registration and uses the iterative closest point (ICP) algorithm in the last step to obtain an image-to-patient registration. Both phantom and clinical data were used to execute automatic registrations and target registration error (TRE) calculated to verify the practicality and robustness of the proposed method. In phantom experiments, the registration accuracy was stable across different downsampling resolutions (18-26 mm) and different support radii (2-6 mm). In clinical experiments, the mean TREs of two patients by registering full head surfaces were 1.30 mm and 1.85 mm. This study introduced a new robust automatic surface-based registration method based on 3D feature matching. The method achieved sufficient registration accuracy with different real-world surface regions in phantom and clinical experiments.

  12. Robust Image Regression Based on the Extended Matrix Variate Power Exponential Distribution of Dependent Noise.

    Science.gov (United States)

    Luo, Lei; Yang, Jian; Qian, Jianjun; Tai, Ying; Lu, Gui-Fu

    2017-09-01

    Dealing with partial occlusion or illumination is one of the most challenging problems in image representation and classification. In this problem, the characterization of the representation error plays a crucial role. In most current approaches, the error matrix needs to be stretched into a vector and each element is assumed to be independently corrupted. This ignores the dependence between the elements of error. In this paper, it is assumed that the error image caused by partial occlusion or illumination changes is a random matrix variate and follows the extended matrix variate power exponential distribution. This has the heavy tailed regions and can be used to describe a matrix pattern of l×m dimensional observations that are not independent. This paper reveals the essence of the proposed distribution: it actually alleviates the correlations between pixels in an error matrix E and makes E approximately Gaussian. On the basis of this distribution, we derive a Schatten p -norm-based matrix regression model with L q regularization. Alternating direction method of multipliers is applied to solve this model. To get a closed-form solution in each step of the algorithm, two singular value function thresholding operators are introduced. In addition, the extended Schatten p -norm is utilized to characterize the distance between the test samples and classes in the design of the classifier. Extensive experimental results for image reconstruction and classification with structural noise demonstrate that the proposed algorithm works much more robustly than some existing regression-based methods.

  13. Advancing Noise Robust Automatic Speech Recognition for Command and Control Applications

    National Research Council Canada - National Science Library

    Bass, James D

    2006-01-01

    .... The reliable elimination of the keyboard and mouse in mounted and un-mounted C2 systems has been a desire of systems developers and requirements writers since the development of PC-based ASR systems in the early 1990...

  14. A Robust Vision-based Runway Detection and Tracking Algorithm for Automatic UAV Landing

    KAUST Repository

    Abu Jbara, Khaled F.

    2015-01-01

    and attitude angle estimates to allow a more robust tracking of the runway under turbulence. We illustrate the performance of the proposed lane detection and tracking scheme on various experimental UAV flights conducted by the Saudi Aerospace Research Center

  15. A Noise-Assisted Data Analysis Method for Automatic EOG-Based Sleep Stage Classification Using Ensemble Learning.

    Science.gov (United States)

    Olesen, Alexander Neergaard; Christensen, Julie A E; Sorensen, Helge B D; Jennum, Poul J

    2016-08-01

    Reducing the number of recording modalities for sleep staging research can benefit both researchers and patients, under the condition that they provide as accurate results as conventional systems. This paper investigates the possibility of exploiting the multisource nature of the electrooculography (EOG) signals by presenting a method for automatic sleep staging using the complete ensemble empirical mode decomposition with adaptive noise algorithm, and a random forest classifier. It achieves a high overall accuracy of 82% and a Cohen's kappa of 0.74 indicating substantial agreement between automatic and manual scoring.

  16. Robust shot-noise measurement for continuous-variable quantum key distribution

    Science.gov (United States)

    Kunz-Jacques, Sébastien; Jouguet, Paul

    2015-02-01

    We study a practical method to measure the shot noise in real time in continuous-variable quantum key distribution systems. The amount of secret key that can be extracted from the raw statistics depends strongly on this quantity since it affects in particular the computation of the excess noise (i.e., noise in excess of the shot noise) added by an eavesdropper on the quantum channel. Some powerful quantum hacking attacks relying on faking the estimated value of the shot noise to hide an intercept and resend strategy were proposed. Here, we provide experimental evidence that our method can defeat the saturation attack and the wavelength attack.

  17. Noise robust automatic speech recognition with adaptive quantile based noise estimation and speech band emphasizing filter bank

    DEFF Research Database (Denmark)

    Bonde, Casper Stork; Graversen, Carina; Gregersen, Andreas Gregers

    2005-01-01

    and standard MFCC. AQBNE also outperforms the Aurora Baseline for the Medium Mismatch (MM) and Well Matched (WM) conditions. Though for all three conditions, the Aurora Advanced Frontend achieves superior performance, the AQBNE is still a relevant method to consider for small foot print applications....

  18. Stochastic models of cellular circadian rhythms in plants help to understand the impact of noise on robustness and clock structure

    Directory of Open Access Journals (Sweden)

    Maria Luisa eGuerriero

    2014-10-01

    Full Text Available Rhythmic behavior is essential for plants; for example, daily (circadian rhythms control photosynthesis and seasonal rhythms regulate their life cycle. The core of the circadian clock is a genetic network that coordinates the expression of specific clock genes in a circadian rhythm reflecting the 24-hour day/night cycle.Circadian clocks exhibit stochastic noise due to the low copy numbers of clock genes and the consequent cell-to-cell variation: this intrinsic noise plays a major role in circadian clocks by inducing more robust oscillatory behavior. Another source of noise is the environment, which causes variation in temperature and light intensity: this extrinsic noise is part of the requirement for the structural complexity of clock networks.Advances in experimental techniques now permit single-cell measurements and the development of single-cell models. Here we present some modeling studies showing the importance of considering both types of noise in understanding how plants adapt to regular and irregular light variations. Stochastic models have proven useful for understanding the effect of regular variations. By contrast, the impact of irregular variations and the interaction of different noise sources are less studied.

  19. Automatic Generation of Machine Emulators: Efficient Synthesis of Robust Virtual Machines for Legacy Software Migration

    DEFF Research Database (Denmark)

    Franz, Michael; Gal, Andreas; Probst, Christian

    2006-01-01

    As older mainframe architectures become obsolete, the corresponding le- gacy software is increasingly executed via platform emulators running on top of more modern commodity hardware. These emulators are virtual machines that often include a combination of interpreters and just-in-time compilers....... Implementing interpreters and compilers for each combination of emulated and target platform independently of each other is a redundant and error-prone task. We describe an alternative approach that automatically synthesizes specialized virtual-machine interpreters and just-in-time compilers, which...... then execute on top of an existing software portability platform such as Java. The result is a considerably reduced implementation effort....

  20. Robust driver heartbeat estimation: A q-Hurst exponent based automatic sensor change with interactive multi-model EKF.

    Science.gov (United States)

    Vrazic, Sacha

    2015-08-01

    Preventing car accidents by monitoring the driver's physiological parameters is of high importance. However, existing measurement methods are not robust to driver's body movements. In this paper, a system that estimates the heartbeat from the seat embedded piezoelectric sensors, and that is robust to strong body movements is presented. Multifractal q-Hurst exponents are used within a classifier to predict the most probable best sensor signal to be used in an Interactive Multi-Model Extended Kalman Filter pulsation estimation procedure. The car vibration noise is reduced using an autoregressive exogenous model to predict the noise on sensors. The performance of the proposed system was evaluated on real driving data up to 100 km/h and with slaloms at high speed. It is shown that this method improves by 36.7% the pulsation estimation under strong body movement compared to static sensor pulsation estimation and appears to provide reliable pulsation variability information for top-level analysis of drowsiness or other conditions.

  1. Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions.

    Science.gov (United States)

    Ye-Lin, Yiyao; Garcia-Casado, Javier; Prats-Boluda, Gema; Alberola-Rubio, José; Perales, Alfredo

    2014-01-01

    Electrohysterography (EHG) is a noninvasive technique for monitoring uterine electrical activity. However, the presence of artifacts in the EHG signal may give rise to erroneous interpretations and make it difficult to extract useful information from these recordings. The aim of this work was to develop an automatic system of segmenting EHG recordings that distinguishes between uterine contractions and artifacts. Firstly, the segmentation is performed using an algorithm that generates the TOCO-like signal derived from the EHG and detects windows with significant changes in amplitude. After that, these segments are classified in two groups: artifacted and nonartifacted signals. To develop a classifier, a total of eleven spectral, temporal, and nonlinear features were calculated from EHG signal windows from 12 women in the first stage of labor that had previously been classified by experts. The combination of characteristics that led to the highest degree of accuracy in detecting artifacts was then determined. The results showed that it is possible to obtain automatic detection of motion artifacts in segmented EHG recordings with a precision of 92.2% using only seven features. The proposed algorithm and classifier together compose a useful tool for analyzing EHG signals and would help to promote clinical applications of this technique.

  2. Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions

    Directory of Open Access Journals (Sweden)

    Yiyao Ye-Lin

    2014-01-01

    Full Text Available Electrohysterography (EHG is a noninvasive technique for monitoring uterine electrical activity. However, the presence of artifacts in the EHG signal may give rise to erroneous interpretations and make it difficult to extract useful information from these recordings. The aim of this work was to develop an automatic system of segmenting EHG recordings that distinguishes between uterine contractions and artifacts. Firstly, the segmentation is performed using an algorithm that generates the TOCO-like signal derived from the EHG and detects windows with significant changes in amplitude. After that, these segments are classified in two groups: artifacted and nonartifacted signals. To develop a classifier, a total of eleven spectral, temporal, and nonlinear features were calculated from EHG signal windows from 12 women in the first stage of labor that had previously been classified by experts. The combination of characteristics that led to the highest degree of accuracy in detecting artifacts was then determined. The results showed that it is possible to obtain automatic detection of motion artifacts in segmented EHG recordings with a precision of 92.2% using only seven features. The proposed algorithm and classifier together compose a useful tool for analyzing EHG signals and would help to promote clinical applications of this technique.

  3. SU-F-R-38: Impact of Smoothing and Noise On Robustness of CBCT Textural Features for Prediction of Response to Radiotherapy Treatment of Head and Neck Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Bagher-Ebadian, H; Chetty, I; Liu, C; Movsas, B; Siddiqui, F [Henry Ford Health System, Detroit, MI (United States)

    2016-06-15

    Purpose: To examine the impact of image smoothing and noise on the robustness of textural information extracted from CBCT images for prediction of radiotherapy response for patients with head/neck (H/N) cancers. Methods: CBCT image datasets for 14 patients with H/N cancer treated with radiation (70 Gy in 35 fractions) were investigated. A deformable registration algorithm was used to fuse planning CT’s to CBCT’s. Tumor volume was automatically segmented on each CBCT image dataset. Local control at 1-year was used to classify 8 patients as responders (R), and 6 as non-responders (NR). A smoothing filter [2D Adaptive Weiner (2DAW) with 3 different windows (ψ=3, 5, and 7)], and two noise models (Poisson and Gaussian, SNR=25) were implemented, and independently applied to CBCT images. Twenty-two textural features, describing the spatial arrangement of voxel intensities calculated from gray-level co-occurrence matrices, were extracted for all tumor volumes. Results: Relative to CBCT images without smoothing, none of 22 textural features extracted showed any significant differences when smoothing was applied (using the 2DAW with filtering parameters of ψ=3 and 5), in the responder and non-responder groups. When smoothing, 2DAW with ψ=7 was applied, one textural feature, Information Measure of Correlation, was significantly different relative to no smoothing. Only 4 features (Energy, Entropy, Homogeneity, and Maximum-Probability) were found to be statistically different between the R and NR groups (Table 1). These features remained statistically significant discriminators for R and NR groups in presence of noise and smoothing. Conclusion: This preliminary work suggests that textural classifiers for response prediction, extracted from H&N CBCT images, are robust to low-power noise and low-pass filtering. While other types of filters will alter the spatial frequencies differently, these results are promising. The current study is subject to Type II errors. A much

  4. QFT Based Robust Positioning Control of the PMSM Using Automatic Loop Shaping with Teaching Learning Optimization

    Directory of Open Access Journals (Sweden)

    Nitish Katal

    2016-01-01

    Full Text Available Automation of the robust control system synthesis for uncertain systems is of great practical interest. In this paper, the loop shaping step for synthesizing quantitative feedback theory (QFT based controller for a two-phase permanent magnet stepper motor (PMSM has been automated using teaching learning-based optimization (TLBO algorithm. The QFT controller design problem has been posed as an optimization problem and TLBO algorithm has been used to minimize the proposed cost function. This facilitates designing low-order fixed-structure controller, eliminates the need of manual loop shaping step on the Nichols charts, and prevents the overdesign of the controller. A performance comparison of the designed controller has been made with the classical PID tuning method of Ziegler-Nichols and QFT controller tuned using other optimization algorithms. The simulation results show that the designed QFT controller using TLBO offers robust stability, disturbance rejection, and proper reference tracking over a range of PMSM’s parametric uncertainties as compared to the classical design techniques.

  5. Robust spinal cord resting-state fMRI using independent component analysis-based nuisance regression noise reduction.

    Science.gov (United States)

    Hu, Yong; Jin, Richu; Li, Guangsheng; Luk, Keith Dk; Wu, Ed X

    2018-04-16

    Physiological noise reduction plays a critical role in spinal cord (SC) resting-state fMRI (rsfMRI). To reduce physiological noise and increase the robustness of SC rsfMRI by using an independent component analysis (ICA)-based nuisance regression (ICANR) method. Retrospective. Ten healthy subjects (female/male = 4/6, age = 27 ± 3 years, range 24-34 years). 3T/gradient-echo echo planar imaging (EPI). We used three alternative methods (no regression [Nil], conventional region of interest [ROI]-based noise reduction method without ICA [ROI-based], and correction of structured noise using spatial independent component analysis [CORSICA]) to compare with the performance of ICANR. Reduction of the influence of physiological noise on the SC and the reproducibility of rsfMRI analysis after noise reduction were examined. The correlation coefficient (CC) was calculated to assess the influence of physiological noise. Reproducibility was calculated by intraclass correlation (ICC). Results from different methods were compared by one-way analysis of variance (ANOVA) with post-hoc analysis. No significant difference in cerebrospinal fluid (CSF) pulsation influence or tissue motion influence were found (P = 0.223 in CSF, P = 0.2461 in tissue motion) in the ROI-based (CSF: 0.122 ± 0.020; tissue motion: 0.112 ± 0.015), and Nil (CSF: 0.134 ± 0.026; tissue motion: 0.124 ± 0.019). CORSICA showed a significantly stronger influence of CSF pulsation and tissue motion (CSF: 0.166 ± 0.045, P = 0.048; tissue motion: 0.160 ± 0.032, P = 0.048) than Nil. ICANR showed a significantly weaker influence of CSF pulsation and tissue motion (CSF: 0.076 ± 0.007, P = 0.0003; tissue motion: 0.081 ± 0.014, P = 0.0182) than Nil. The ICC values in the Nil, ROI-based, CORSICA, and ICANR were 0.669, 0.645, 0.561, and 0.766, respectively. ICANR more effectively reduced physiological noise from both tissue motion and CSF pulsation than three alternative methods. ICANR increases the robustness of SC rsf

  6. A Robust Approach For Acoustic Noise Suppression In Speech Using ANFIS

    Science.gov (United States)

    Martinek, Radek; Kelnar, Michal; Vanus, Jan; Bilik, Petr; Zidek, Jan

    2015-11-01

    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.

  7. A Robust FLOM Based Spectrum Sensing Scheme under Middleton Class A Noise in IoT

    Directory of Open Access Journals (Sweden)

    Enwei Xu

    2017-01-01

    Full Text Available Accessibility to remote users in dynamic environment, high spectrum utilization, and no spectrum purchase make Cognitive Radio (CR a feasible solution of wireless communications in the Internet of Things (IoT. Reliable spectrum sensing becomes the prerequisite for the establishment of communication between IoT-capable objects. Considering the application environment, spectrum sensing not only has to cope with man-made impulsive noises but also needs to overcome noise fluctuations. In this paper, we study the Fractional Lower Order Moments (FLOM based spectrum sensing method under Middleton Class A noise and incorporate a Noise Power Estimation (NPE module into the sensing system to deal with the issue of noise uncertainty. Moreover, the NPE process does not need noise-only samples. The analytical expressions of the probabilities of detection and the probability of false alarm are derived. The impact on sensing performance of the parameters of the NPE module is also analyzed. The theoretical analysis and simulation results show that our proposed sensing method achieves a satisfactory performance at low SNR.

  8. An Automatic K-Means Clustering Algorithm of GPS Data Combining a Novel Niche Genetic Algorithm with Noise and Density

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2017-12-01

    Full Text Available Rapidly growing Global Positioning System (GPS data plays an important role in trajectory and their applications (e.g., GPS-enabled smart devices. In order to employ K-means to mine the better origins and destinations (OD behind the GPS data and overcome its shortcomings including slowness of convergence, sensitivity to initial seeds selection, and getting stuck in a local optimum, this paper proposes and focuses on a novel niche genetic algorithm (NGA with density and noise for K-means clustering (NoiseClust. In NoiseClust, an improved noise method and K-means++ are proposed to produce the initial population and capture higher quality seeds that can automatically determine the proper number of clusters, and also handle the different sizes and shapes of genes. A density-based method is presented to divide the number of niches, with its aim to maintain population diversity. Adaptive probabilities of crossover and mutation are also employed to prevent the convergence to a local optimum. Finally, the centers (the best chromosome are obtained and then fed into the K-means as initial seeds to generate even higher quality clustering results by allowing the initial seeds to readjust as needed. Experimental results based on taxi GPS data sets demonstrate that NoiseClust has high performance and effectiveness, and easily mine the city’s situations in four taxi GPS data sets.

  9. Experimental investigation of the robustness against noise for different Bell-type inequalities in three-qubit Greenberger-Horne-Zeilinger states

    International Nuclear Information System (INIS)

    Lu Huaixin; Zhao Jiaqiang; Cao Lianzhen; Wang Xiaoqin

    2011-01-01

    There are different families of inequalities that can be used to characterize the entanglement of multiqubit entangled states by the violation of quantum mechanics prediction versus local realism prediction. In a noisy environment, the violation of different inequalities distinguishes a direct from a noise-free environment. That is, each inequality has a different robustness against noise. We investigate theoretically and experimentally this proposition with the Mermin inequality, Bell inequality, and Svetlichny inequality using three-qubit GHZ states for different levels of noise. Our purpose is to determine which one of the inequalities is more robust against noise and thus more suitable to characterize entanglement of states. Our results show that the Mermin inequality is the most robust against stronger noise and is, thus, more suitable for characterizing the entanglement of three-qubit GHZ states in a noisy environment.

  10. Experimental investigation of the robustness against noise for different Bell-type inequalities in three-qubit Greenberger-Horne-Zeilinger states

    Energy Technology Data Exchange (ETDEWEB)

    Lu Huaixin; Zhao Jiaqiang; Cao Lianzhen; Wang Xiaoqin [Department of Physics and Electronic Science, Weifang University, Weifang, Shandong 261061 (China)

    2011-10-15

    There are different families of inequalities that can be used to characterize the entanglement of multiqubit entangled states by the violation of quantum mechanics prediction versus local realism prediction. In a noisy environment, the violation of different inequalities distinguishes a direct from a noise-free environment. That is, each inequality has a different robustness against noise. We investigate theoretically and experimentally this proposition with the Mermin inequality, Bell inequality, and Svetlichny inequality using three-qubit GHZ states for different levels of noise. Our purpose is to determine which one of the inequalities is more robust against noise and thus more suitable to characterize entanglement of states. Our results show that the Mermin inequality is the most robust against stronger noise and is, thus, more suitable for characterizing the entanglement of three-qubit GHZ states in a noisy environment.

  11. A robust automatic leukocyte recognition method based on island-clustering texture

    Directory of Open Access Journals (Sweden)

    Xiaoshun Li

    2016-01-01

    Full Text Available A leukocyte recognition method for human peripheral blood smear based on island-clustering texture (ICT is proposed. By analyzing the features of the five typical classes of leukocyte images, a new ICT model is established. Firstly, some feature points are extracted in a gray leukocyte image by mean-shift clustering to be the centers of islands. Secondly, the growing region is employed to create regions of the islands in which the seeds are just these feature points. These islands distribution can describe a new texture. Finally, a distinguished parameter vector of these islands is created as the ICT features by combining the ICT features with the geometric features of the leukocyte. Then the five typical classes of leukocytes can be recognized successfully at the correct recognition rate of more than 92.3% with a total sample of 1310 leukocytes. Experimental results show the feasibility of the proposed method. Further analysis reveals that the method is robust and results can provide important information for disease diagnosis.

  12. The area-of-interest problem in eyetracking research: A noise-robust solution for face and sparse stimuli.

    Science.gov (United States)

    Hessels, Roy S; Kemner, Chantal; van den Boomen, Carlijn; Hooge, Ignace T C

    2016-12-01

    A problem in eyetracking research is choosing areas of interest (AOIs): Researchers in the same field often use widely varying AOIs for similar stimuli, making cross-study comparisons difficult or even impossible. Subjective choices while choosing AOIs cause differences in AOI shape, size, and location. On the other hand, not many guidelines for constructing AOIs, or comparisons between AOI-production methods, are available. In the present study, we addressed this gap by comparing AOI-production methods in face stimuli, using data collected with infants and adults (with autism spectrum disorder [ASD] and matched controls). Specifically, we report that the attention-attracting and attention-maintaining capacities of AOIs differ between AOI-production methods, and that this matters for statistical comparisons in one of three groups investigated (the ASD group). In addition, we investigated the relation between AOI size and an AOI's attention-attracting and attention-maintaining capacities, as well as the consequences for statistical analyses, and report that adopting large AOIs solves the problem of statistical differences between the AOI methods. Finally, we tested AOI-production methods for their robustness to noise, and report that large AOIs-using the Voronoi tessellation method or the limited-radius Voronoi tessellation method with large radii-are most robust to noise. We conclude that large AOIs are a noise-robust solution in face stimuli and, when implemented using the Voronoi method, are the most objective of the researcher-defined AOIs. Adopting Voronoi AOIs in face-scanning research should allow better between-group and cross-study comparisons.

  13. Robust Multiparty Quantum Secret Key Sharing Over Two Collective-Noise Channels via Three-Photon Mixed States

    International Nuclear Information System (INIS)

    Wang Zhangyin; Yuan Hao; Gao Gan; Shi Shouhua

    2006-01-01

    We present a robust (n,n)-threshold scheme for multiparty quantum secret sharing of key over two collective-noise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states. In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.

  14. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans

    International Nuclear Information System (INIS)

    Lassen, B C; Kuhnigk, J-M; Van Ginneken, B; Van Rikxoort, E M; Jacobs, C

    2015-01-01

    The malignancy of lung nodules is most often detected by analyzing changes of the nodule diameter in follow-up scans. A recent study showed that comparing the volume or the mass of a nodule over time is much more significant than comparing the diameter. Since the survival rate is higher when the disease is still in an early stage it is important to detect the growth rate as soon as possible. However manual segmentation of a volume is time-consuming. Whereas there are several well evaluated methods for the segmentation of solid nodules, less work is done on subsolid nodules which actually show a higher malignancy rate than solid nodules. In this work we present a fast, semi-automatic method for segmentation of subsolid nodules. As minimal user interaction the method expects a user-drawn stroke on the largest diameter of the nodule. First, a threshold-based region growing is performed based on intensity analysis of the nodule region and surrounding parenchyma. In the next step the chest wall is removed by a combination of a connected component analyses and convex hull calculation. Finally, attached vessels are detached by morphological operations. The method was evaluated on all nodules of the publicly available LIDC/IDRI database that were manually segmented and rated as non-solid or part-solid by four radiologists (Dataset 1) and three radiologists (Dataset 2). For these 59 nodules the Jaccard index for the agreement of the proposed method with the manual reference segmentations was 0.52/0.50 (Dataset 1/Dataset 2) compared to an inter-observer agreement of the manual segmentations of 0.54/0.58 (Dataset 1/Dataset 2). Furthermore, the inter-observer agreement using the proposed method (i.e. different input strokes) was analyzed and gave a Jaccard index of 0.74/0.74 (Dataset 1/Dataset 2). The presented method provides satisfactory segmentation results with minimal observer effort in minimal time and can reduce the inter-observer variability for segmentation of

  15. Robust semi-automatic segmentation of pulmonary subsolid nodules in chest computed tomography scans

    Science.gov (United States)

    Lassen, B. C.; Jacobs, C.; Kuhnigk, J.-M.; van Ginneken, B.; van Rikxoort, E. M.

    2015-02-01

    The malignancy of lung nodules is most often detected by analyzing changes of the nodule diameter in follow-up scans. A recent study showed that comparing the volume or the mass of a nodule over time is much more significant than comparing the diameter. Since the survival rate is higher when the disease is still in an early stage it is important to detect the growth rate as soon as possible. However manual segmentation of a volume is time-consuming. Whereas there are several well evaluated methods for the segmentation of solid nodules, less work is done on subsolid nodules which actually show a higher malignancy rate than solid nodules. In this work we present a fast, semi-automatic method for segmentation of subsolid nodules. As minimal user interaction the method expects a user-drawn stroke on the largest diameter of the nodule. First, a threshold-based region growing is performed based on intensity analysis of the nodule region and surrounding parenchyma. In the next step the chest wall is removed by a combination of a connected component analyses and convex hull calculation. Finally, attached vessels are detached by morphological operations. The method was evaluated on all nodules of the publicly available LIDC/IDRI database that were manually segmented and rated as non-solid or part-solid by four radiologists (Dataset 1) and three radiologists (Dataset 2). For these 59 nodules the Jaccard index for the agreement of the proposed method with the manual reference segmentations was 0.52/0.50 (Dataset 1/Dataset 2) compared to an inter-observer agreement of the manual segmentations of 0.54/0.58 (Dataset 1/Dataset 2). Furthermore, the inter-observer agreement using the proposed method (i.e. different input strokes) was analyzed and gave a Jaccard index of 0.74/0.74 (Dataset 1/Dataset 2). The presented method provides satisfactory segmentation results with minimal observer effort in minimal time and can reduce the inter-observer variability for segmentation of

  16. A Noise-Assisted Data Analysis Method for Automatic EOG-Based Sleep Stage Classification Using Ensemble Learning

    DEFF Research Database (Denmark)

    Olesen, Alexander Neergaard; Christensen, Julie Anja Engelhard; Sørensen, Helge Bjarup Dissing

    2016-01-01

    Reducing the number of recording modalities for sleep staging research can benefit both researchers and patients, under the condition that they provide as accurate results as conventional systems. This paper investigates the possibility of exploiting the multisource nature of the electrooculography...... (EOG) signals by presenting a method for automatic sleep staging using the complete ensemble empirical mode decomposition with adaptive noise algorithm, and a random forest classifier. It achieves a high overall accuracy of 82% and a Cohen’s kappa of 0.74 indicating substantial agreement between...

  17. Research on influence of gear parameters on noise, vibrations and harshness conditions for automatic transmissions run-off cycle

    Directory of Open Access Journals (Sweden)

    Pascalau Nelu

    2017-01-01

    Full Text Available Noise vibration harshness (NVH defines, as a whole, that specific field within automotive industry, that studies mostly the noise and vibrations for different assemblies (such as chassis or drivetrain – gearbox or complete vehicles, particularly cars and trucks. Gear quality parameters have been studied and it has been experienced that these parameters have an important relevance for NVH topic. Therefore, this paper introduces a case-study, as to highlight the influence of two of these parameters, profile angle deviation (fHα and tooth trace angle deviation (fHβ, on run-off cycle on test benches, for high-performance automatic transmission, designed for passenger vehicles. The demand for high accuracy is mandatory, so fine adjustments are required, as could be further observed, in order to accomplish the requirements for a lower NVH run-off rate, while the whole life-time.

  18. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    Science.gov (United States)

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  19. Robust frequency diversity based algorithm for clutter noise reduction of ultrasonic signals using multiple sub-spectrum phase coherence

    Energy Technology Data Exchange (ETDEWEB)

    Gongzhang, R.; Xiao, B.; Lardner, T.; Gachagan, A. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Li, M. [School of Engineering, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-02-18

    This paper presents a robust frequency diversity based algorithm for clutter reduction in ultrasonic A-scan waveforms. The performance of conventional spectral-temporal techniques like Split Spectrum Processing (SSP) is highly dependent on the parameter selection, especially when the signal to noise ratio (SNR) is low. Although spatial beamforming offers noise reduction with less sensitivity to parameter variation, phased array techniques are not always available. The proposed algorithm first selects an ascending series of frequency bands. A signal is reconstructed for each selected band in which a defect is present when all frequency components are in uniform sign. Combining all reconstructed signals through averaging gives a probability profile of potential defect position. To facilitate data collection and validate the proposed algorithm, Full Matrix Capture is applied on the austenitic steel and high nickel alloy (HNA) samples with 5MHz transducer arrays. When processing A-scan signals with unrefined parameters, the proposed algorithm enhances SNR by 20dB for both samples and consequently, defects are more visible in B-scan images created from the large amount of A-scan traces. Importantly, the proposed algorithm is considered robust, while SSP is shown to fail on the austenitic steel data and achieves less SNR enhancement on the HNA data.

  20. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state

    International Nuclear Information System (INIS)

    Chang Yan; Zhang Shi-Bin; Yan Li-Li; Han Gui-Hua

    2015-01-01

    By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0′〉 state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0′〉. By using the |0′〉 state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping–pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. (paper)

  1. Robust Sequential Circuits Design Technique for Low Voltage and High Noise Scenarios

    Directory of Open Access Journals (Sweden)

    Garcia-Leyva Lancelot

    2016-01-01

    In this paper we introduce an innovative input and output data redundancy principle for sequential block circuits, the responsible to keep the state of the system, showing its efficiency in front of other robust technique approaches. The methodology is totally different from the Von Neumann approaches, because element are not replicated N times, but instead, they check the coherence of redundant input data no allowing data propagation in case of discrepancy. This mechanism does not require voting devices.

  2. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing.

    Science.gov (United States)

    Chen, Bor-Sen; Hsu, Chih-Yuan

    2012-10-26

    Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI). We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI)-based design problem, which could be solved with the help of LMI

  3. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  4. Robust Frame Synchronization for Low Signal-to-Noise Ratio Channels Using Energy-Corrected Differential Correlation

    Directory of Open Access Journals (Sweden)

    Kim Pansoo

    2009-01-01

    Full Text Available Recent standards for wireless transmission require reliable synchronization for channels with low signal-to-noise ratio (SNR as well as with a large amount of frequency offset, which necessitates a robust correlator structure for the initial frame synchronization process. In this paper, a new correlation strategy especially targeted for low SNR regions is proposed and its performance is analyzed. By utilizing a modified energy correction term, the proposed method effectively reduces the variance of the decision variable to enhance the detection performance. Most importantly, the method is demonstrated to outperform all previously reported schemes by a significant margin, for SNRs below 5 dB regardless of the existence of the frequency offsets. A variation of the proposed method is also presented for further enhancement over the channels with small frequency errors. The particular application considered for the performance verification is the second generation digital video broadcasting system for satellites (DVB-S2.

  5. From statistical proofs of the Kochen-Specker theorem to noise-robust noncontextuality inequalities

    Science.gov (United States)

    Kunjwal, Ravi; Spekkens, Robert W.

    2018-05-01

    The Kochen-Specker theorem rules out models of quantum theory wherein projective measurements are assigned outcomes deterministically and independently of context. This notion of noncontextuality is not applicable to experimental measurements because these are never free of noise and thus never truly projective. For nonprojective measurements, therefore, one must drop the requirement that an outcome be assigned deterministically in the model and merely require that it be assigned a distribution over outcomes in a manner that is context-independent. By demanding context independence in the representation of preparations as well, one obtains a generalized principle of noncontextuality that also supports a quantum no-go theorem. Several recent works have shown how to derive inequalities on experimental data which, if violated, demonstrate the impossibility of finding a generalized-noncontextual model of this data. That is, these inequalities do not presume quantum theory and, in particular, they make sense without requiring an operational analog of the quantum notion of projectiveness. We here describe a technique for deriving such inequalities starting from arbitrary proofs of the Kochen-Specker theorem. It extends significantly previous techniques that worked only for logical proofs, which are based on sets of projective measurements that fail to admit of any deterministic noncontextual assignment, to the case of statistical proofs, which are based on sets of projective measurements that d o admit of some deterministic noncontextual assignments, but not enough to explain the quantum statistics.

  6. Denoising of B1+ field maps for noise-robust image reconstruction in electrical properties tomography

    International Nuclear Information System (INIS)

    Michel, Eric; Hernandez, Daniel; Cho, Min Hyoung; Lee, Soo Yeol

    2014-01-01

    Purpose: To validate the use of adaptive nonlinear filters in reconstructing conductivity and permittivity images from the noisy B 1 + maps in electrical properties tomography (EPT). Methods: In EPT, electrical property images are computed by taking Laplacian of the B 1 + maps. To mitigate the noise amplification in computing the Laplacian, the authors applied adaptive nonlinear denoising filters to the measured complex B 1 + maps. After the denoising process, they computed the Laplacian by central differences. They performed EPT experiments on phantoms and a human brain at 3 T along with corresponding EPT simulations on finite-difference time-domain models. They evaluated the EPT images comparing them with the ones obtained by previous EPT reconstruction methods. Results: In both the EPT simulations and experiments, the nonlinear filtering greatly improved the EPT image quality when evaluated in terms of the mean and standard deviation of the electrical property values at the regions of interest. The proposed method also improved the overall similarity between the reconstructed conductivity images and the true shapes of the conductivity distribution. Conclusions: The nonlinear denoising enabled us to obtain better-quality EPT images of the phantoms and the human brain at 3 T

  7. Investigation of neural network paradigms for the development of automatic noise diagnostic/reactor surveillance systems

    International Nuclear Information System (INIS)

    Korsah, K.; Uhrig, R.E.

    1991-01-01

    The use of artificial intelligence (AI) techniques as an aid in the maintenance and operation of nuclear power plant systems has been recognized for the past several years, and several applications using expert systems technology currently exist. The authors investigated the backpropagation paradigm for the recognition of neutron noise power spectral density (PSD) signatures as a possible alternative to current methods based on statistical techniques. The goal is to advance the state of the art in the application of noise analysis techniques to monitor nuclear reactor internals. Continuous surveillance of reactor systems for structural degradation can be quite cost-effective because (1) the loss of mechanical integrity of the reactor internal components can be detected at an early stage before severe damage occurs, (2) unnecessary periodic maintenance can be avoided, (3) plant downtime can be reduced to a minimum, (4) a high level of plant safety can be maintained, and (5) it can be used to help justify the extension of a plant's operating license. The initial objectives were to use neutron noise PSD data from a pressurized water reactor, acquired over a period of ∼2 years by the Oak Ridge National Laboratory (ORNL) Power Spectral Density RECognition (PSDREC) system to develop networks that can (1) differentiate between normal neutron spectral data and anomalous spectral data (e.g., malfunctioning instrumentation); and (2) detect significant shifts in the positions of spectral resonances while reducing the effect of small, random shifts (in neutron noise analysis, shifts in the resonance(s) present in a neutron PSD spectrum are the primary means for diagnosing degradation of reactor internals). 11 refs, 8 figs

  8. Robust automatic control system of vessel descent-rise device for plant with distributed parameters “cable – towed underwater vehicle”

    Science.gov (United States)

    Chupina, K. V.; Kataev, E. V.; Khannanov, A. M.; Korshunov, V. N.; Sennikov, I. A.

    2018-05-01

    The paper is devoted to a problem of synthesis of the robust control system for a distributed parameters plant. The vessel descent-rise device has a heave compensation function for stabilization of the towed underwater vehicle on a set depth. A sea state code, parameters of the underwater vehicle and cable vary during underwater operations, the vessel heave is a stochastic process. It means that the plant and external disturbances have uncertainty. That is why it is necessary to use the robust theory for synthesis of an automatic control system, but without use of traditional methods of optimization, because this cable has distributed parameters. The offered technique has allowed one to design an effective control system for stabilization of immersion depth of the towed underwater vehicle for various degrees of sea roughness and to provide its robustness to deviations of parameters of the vehicle and cable’s length.

  9. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function.

    Science.gov (United States)

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-05-02

    Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength (DW) PSA is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesis herein presented may be used for interferometric contouring of discontinuous industrial objects. Also DW-PSA may be useful for DW shop-testing of deep free-form aspheres. As shown here, using the FTF-based synthesis one may easily find explicit DW-PSA formulae optimized for high signal-to-noise and high detuning robustness. To this date, no general synthesis and analysis for temporal DW-PSAs has been given; only ad hoc DW-PSAs formulas have been reported. Consequently, no explicit formulae for their spectra, their signal-to-noise, their detuning and harmonic robustness has been given. Here for the first time a fully general procedure for designing DW-PSAs (or triple-wavelengths PSAs) with desire spectrum, signal-to-noise ratio and detuning robustness is given. We finally generalize DW-PSA to higher number of wavelength temporal PSAs.

  10. Robust random telegraph conductivity noise in single crystals of the ferromagnetic insulating manganite La0.86Ca0.14MnO3

    Science.gov (United States)

    Przybytek, J.; Fink-Finowicki, J.; Puźniak, R.; Shames, A.; Markovich, V.; Mogilyansky, D.; Jung, G.

    2017-03-01

    Robust random telegraph conductivity fluctuations have been observed in La0.86Ca0.14MnO3 manganite single crystals. At room temperatures, the spectra of conductivity fluctuations are featureless and follow a 1 /f shape in the entire experimental frequency and bias range. Upon lowering the temperature, clear Lorentzian bias-dependent excess noise appears on the 1 /f background and eventually dominates the spectral behavior. In the time domain, fully developed Lorentzian noise appears as pronounced two-level random telegraph noise with a thermally activated switching rate, which does not depend on bias current and applied magnetic field. The telegraph noise is very robust and persists in the exceptionally wide temperature range of more than 50 K. The amplitude of the telegraph noise decreases exponentially with increasing bias current in exactly the same manner as the sample resistance increases with the current, pointing out the dynamic current redistribution between percolation paths dominated by phase-separated clusters with different conductivity as a possible origin of two-level conductivity fluctuations.

  11. Automatic minimization of ocular artifacts fromelectroencephalogram: A novel approach by combining CompleteEEMD with Adaptive Noise and Renyi’s Entropy

    DEFF Research Database (Denmark)

    Guarascio, Mario; Puthusserypady, Sadasivan

    2017-01-01

    forminimizing the OAs from corrupted EEG signals. The RE criterion is suggested to automatically select theIntrinsic Mode Functions (IMFs) to reconstruct the artifact minimized EEG signals. The scheme requiresonly a single channel OAs corrupted EEG recording and a reasonable computation time. The methodis first......Ocular artifacts (OAs) are one of the major interferences that obscure electroencephalogram (EEG) signals.In this paper, a novel, completely automatic, adaptive and fast method that combines the CompleteEmpirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Renyi’s Entropy (RE) is proposed....... The method is compared to the one based on the CEEMDAN and manual choice of IMFsfor OAs minimization from EEG. Results from extensive simulation studies clearly indicate the efficacyof the proposed scheme in automatically minimizing the OAs from the corrupted EEG signals....

  12. On the predictability of extreme events in records with linear and nonlinear long-range memory: Efficiency and noise robustness

    Science.gov (United States)

    Bogachev, Mikhail I.; Bunde, Armin

    2011-06-01

    We study the predictability of extreme events in records with linear and nonlinear long-range memory in the presence of additive white noise using two different approaches: (i) the precursory pattern recognition technique (PRT) that exploits solely the information about short-term precursors, and (ii) the return interval approach (RIA) that exploits long-range memory incorporated in the elapsed time after the last extreme event. We find that the PRT always performs better when only linear memory is present. In the presence of nonlinear memory, both methods demonstrate comparable efficiency in the absence of white noise. When additional white noise is present in the record (which is the case in most observational records), the efficiency of the PRT decreases monotonously with increasing noise level. In contrast, the RIA shows an abrupt transition between a phase of low level noise where the prediction is as good as in the absence of noise, and a phase of high level noise where the prediction becomes poor. In the phase of low and intermediate noise the RIA predicts considerably better than the PRT, which explains our recent findings in physiological and financial records.

  13. Parametric Synthesis of Automatic Control System of Industrial Robot Manipulator in Compliance with Requirements of Robust Quality

    Directory of Open Access Journals (Sweden)

    A. A. Nesenchuk

    2004-01-01

    Full Text Available The paper considers an application of a root-locus method for synthesis of dynamic systems with uncertainty that meet the requirements of pre-set quality. This method is used for parametric synthesis of automatic control system of industrial robot manipulator that is used for transportation of engineering products. The synthesis takes place under conditions of substantial changes in inertia moment of robot load. As a result of investigations it is possible to determine range of values of variable parameter that ensures the required quality of control system operation. A system of computer programs has been developed in order to solve the problem.

  14. Robustness and precision of an automatic marker detection algorithm for online prostate daily targeting using a standard V-EPID.

    Science.gov (United States)

    Aubin, S; Beaulieu, L; Pouliot, S; Pouliot, J; Roy, R; Girouard, L M; Martel-Brisson, N; Vigneault, E; Laverdière, J

    2003-07-01

    An algorithm for the daily localization of the prostate using implanted markers and a standard video-based electronic portal imaging device (V-EPID) has been tested. Prior to planning, three gold markers were implanted in the prostate of seven patients. The clinical images were acquired with a BeamViewPlus 2.1 V-EPID for each field during the normal course radiotherapy treatment and are used off-line to determine the ability of the automatic marker detection algorithm to adequately and consistently detect the markers. Clinical images were obtained with various dose levels from ranging 2.5 to 75 MU. The algorithm is based on marker attenuation characterization in the portal image and spatial distribution. A total of 1182 clinical images were taken. The results show an average efficiency of 93% for the markers detected individually and 85% for the group of markers. This algorithm accomplishes the detection and validation in 0.20-0.40 s. When the center of mass of the group of implanted markers is used, then all displacements can be corrected to within 1.0 mm in 84% of the cases and within 1.5 mm in 97% of cases. The standard video-based EPID tested provides excellent marker detection capability even with low dose levels. The V-EPID can be used successfully with radiopaque markers and the automatic detection algorithm to track and correct the daily setup deviations due to organ motions.

  15. LTD windows of the STDP learning rule and synaptic connections having a large transmission delay enable robust sequence learning amid background noise.

    Science.gov (United States)

    Hayashi, Hatsuo; Igarashi, Jun

    2009-06-01

    Spike-timing-dependent synaptic plasticity (STDP) is a simple and effective learning rule for sequence learning. However, synapses being subject to STDP rules are readily influenced in noisy circumstances because synaptic conductances are modified by pre- and postsynaptic spikes elicited within a few tens of milliseconds, regardless of whether those spikes convey information or not. Noisy firing existing everywhere in the brain may induce irrelevant enhancement of synaptic connections through STDP rules and would result in uncertain memory encoding and obscure memory patterns. We will here show that the LTD windows of the STDP rules enable robust sequence learning amid background noise in cooperation with a large signal transmission delay between neurons and a theta rhythm, using a network model of the entorhinal cortex layer II with entorhinal-hippocampal loop connections. The important element of the present model for robust sequence learning amid background noise is the symmetric STDP rule having LTD windows on both sides of the LTP window, in addition to the loop connections having a large signal transmission delay and the theta rhythm pacing activities of stellate cells. Above all, the LTD window in the range of positive spike-timing is important to prevent influences of noise with the progress of sequence learning.

  16. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs

    International Nuclear Information System (INIS)

    Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Budiharto, Tom; Haustermans, Karin; Heuvel, Frank van den

    2010-01-01

    Purpose: A robust and accurate method that allows the automatic detection of fiducial markers in MV and kV projection image pairs is proposed. The method allows to automatically correct for inter or intrafraction motion. Methods: Intratreatment MV projection images are acquired during each of five treatment beams of prostate cancer patients with four implanted fiducial markers. The projection images are first preprocessed using a series of marker enhancing filters. 2D candidate marker locations are generated for each of the filtered projection images and 3D candidate marker locations are reconstructed by pairing candidates in subsequent projection images. The correct marker positions are retrieved in 3D by the minimization of a cost function that combines 2D image intensity and 3D geometric or shape information for the entire marker configuration simultaneously. This optimization problem is solved using dynamic programming such that the globally optimal configuration for all markers is always found. Translational interfraction and intrafraction prostate motion and the required patient repositioning is assessed from the position of the centroid of the detected markers in different MV image pairs. The method was validated on a phantom using CT as ground-truth and on clinical data sets of 16 patients using manual marker annotations as ground-truth. Results: The entire setup was confirmed to be accurate to around 1 mm by the phantom measurements. The reproducibility of the manual marker selection was less than 3.5 pixels in the MV images. In patient images, markers were correctly identified in at least 99% of the cases for anterior projection images and 96% of the cases for oblique projection images. The average marker detection accuracy was 1.4±1.8 pixels in the projection images. The centroid of all four reconstructed marker positions in 3D was positioned within 2 mm of the ground-truth position in 99.73% of all cases. Detecting four markers in a pair of MV images

  17. Evaluation of a finite-element reciprocity method for epileptic EEG source localization: Accuracy, computational complexity and noise robustness

    DEFF Research Database (Denmark)

    Shirvany, Yazdan; Rubæk, Tonny; Edelvik, Fredrik

    2013-01-01

    The aim of this paper is to evaluate the performance of an EEG source localization method that combines a finite element method (FEM) and the reciprocity theorem.The reciprocity method is applied to solve the forward problem in a four-layer spherical head model for a large number of test dipoles...... noise and electrode misplacement.The results show approximately 3% relative error between numerically calculated potentials done by the reciprocity theorem and the analytical solutions. When adding EEG noise with SNR between 5 and 10, the mean localization error is approximately 4.3 mm. For the case...... with 10 mm electrode misplacement the localization error is 4.8 mm. The reciprocity EEG source localization speeds up the solution of the inverse problem with more than three orders of magnitude compared to the state-of-the-art methods.The reciprocity method has high accuracy for modeling the dipole...

  18. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.

    Science.gov (United States)

    Stromatias, Evangelos; Neil, Daniel; Pfeiffer, Michael; Galluppi, Francesco; Furber, Steve B; Liu, Shih-Chii

    2015-01-01

    Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs) are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks require vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and construction of spike-based hardware platforms offers an alternative for running deep neural networks with significantly lower power consumption, but has to overcome hardware limitations in terms of noise and limited weight precision, as well as noise inherent in the sensor signal. This article investigates how such hardware constraints impact the performance of spiking neural network implementations of DBNs. In particular, the influence of limited bit precision during execution and training, and the impact of silicon mismatch in the synaptic weight parameters of custom hybrid VLSI implementations is studied. Furthermore, the network performance of spiking DBNs is characterized with regard to noise in the spiking input signal. Our results demonstrate that spiking DBNs can tolerate very low levels of hardware bit precision down to almost two bits, and show that their performance can be improved by at least 30% through an adapted training mechanism that takes the bit precision of the target platform into account. Spiking DBNs thus present an important use-case for large-scale hybrid analog-digital or digital neuromorphic platforms such as SpiNNaker, which can execute large but precision-constrained deep networks in real time.

  19. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms

    Directory of Open Access Journals (Sweden)

    Evangelos eStromatias

    2015-07-01

    Full Text Available Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks requires vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and construction of spike-based hardware platforms offers an alternative for running deep neural networks with significantly lower power consumption, but has to overcome hardware limitations in terms of noise and limited weight precision, as well as noise inherent in the sensor signal. This article investigates how such hardware constraints impact the performance of spiking neural network implementations of DBNs. In particular, the influence of limited bit precision during execution and training, and the impact of silicon mismatch in the synaptic weight parameters of custom hybrid VLSI implementations is studied. Furthermore, the network performance of spiking DBNs is characterized with regard to noise in the spiking input signal. Our results demonstrate that spiking DBNs can tolerate very low levels of hardware bit precision down to almost 2 bits, and shows that their performance can be improved by at least 30% through an adapted training mechanism that takes the bit precision of the target platform into account. Spiking DBNs thus present an important use-case for large-scale hybrid analog-digital or digital neuromorphic platforms such as SpiNNaker, which can execute large but precision-constrained deep networks in real time.

  20. Liquid chromatography-mass spectrometry platform for both small neurotransmitters and neuropeptides in blood, with automatic and robust solid phase extraction

    Science.gov (United States)

    Johnsen, Elin; Leknes, Siri; Wilson, Steven Ray; Lundanes, Elsa

    2015-03-01

    Neurons communicate via chemical signals called neurotransmitters (NTs). The numerous identified NTs can have very different physiochemical properties (solubility, charge, size etc.), so quantification of the various NT classes traditionally requires several analytical platforms/methodologies. We here report that a diverse range of NTs, e.g. peptides oxytocin and vasopressin, monoamines adrenaline and serotonin, and amino acid GABA, can be simultaneously identified/measured in small samples, using an analytical platform based on liquid chromatography and high-resolution mass spectrometry (LC-MS). The automated platform is cost-efficient as manual sample preparation steps and one-time-use equipment are kept to a minimum. Zwitter-ionic HILIC stationary phases were used for both on-line solid phase extraction (SPE) and liquid chromatography (capillary format, cLC). This approach enabled compounds from all NT classes to elute in small volumes producing sharp and symmetric signals, and allowing precise quantifications of small samples, demonstrated with whole blood (100 microliters per sample). An additional robustness-enhancing feature is automatic filtration/filter back-flushing (AFFL), allowing hundreds of samples to be analyzed without any parts needing replacement. The platform can be installed by simple modification of a conventional LC-MS system.

  1. Robust, fully automatic delineation of the head contour by stereotactical normalization for attenuation correction according to Chang in dopamine transporter scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Catharina; Brenner, Winfried; Buchert, Ralph [Charite - Universitaetsmedizin Berlin, Department of Nuclear Medicine, Berlin (Germany); Kurth, Jens; Schwarzenboeck, Sarah; Krause, Bernd J. [Universitaetsmedizin Rostock, Department of Nuclear Medicine, Rostock (Germany); Seese, Anita; Steinhoff, Karen; Sabri, Osama; Hesse, Swen [Universitaetsklinikum Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Umland-Seidler, Bert [GE Healthcare Buchler GmbH and Co. KG, Munich (Germany)

    2015-09-15

    Chang's method, the most widely used attenuation correction (AC) in brain single-photon emission computed tomography (SPECT), requires delineation of the outer contour of the head. Manual and automatic threshold-based methods are prone to errors due to variability of tracer uptake in the scalp. The present study proposes a new method for fully automated delineation of the head based on stereotactical normalization. The method was validated for SPECT with I-123-ioflupane. The new method was compared to threshold-based delineation in 62 unselected patients who had received I-123-ioflupane SPECT at one of 3 centres. The impact on diagnostic power was tested for semi-quantitative analysis and visual reading of the SPECT images (six independent readers). The two delineation methods produced highly consistent semi-quantitative results. This was confirmed by receiver operating characteristic analyses in which the putamen specific-to-background ratio achieved highest area under the curve with negligible effect of the delineation method: 0.935 versus 0.938 for stereotactical normalization and threshold-based delineation, respectively. Visual interpretation of DVR images was also not affected by the delineation method. Delineation of the head contour by stereotactical normalization appears useful for Chang AC in I-123-ioflupane SPECT. It is robust and does not require user interaction. (orig.)

  2. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise.

    Science.gov (United States)

    Che-Castaldo, Christian; Jenouvrier, Stephanie; Youngflesh, Casey; Shoemaker, Kevin T; Humphries, Grant; McDowall, Philip; Landrum, Laura; Holland, Marika M; Li, Yun; Ji, Rubao; Lynch, Heather J

    2017-10-10

    Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.

  3. Using 3D spatial correlations to improve the noise robustness of multi component analysis of 3D multi echo quantitative T2 relaxometry data.

    Science.gov (United States)

    Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan

    2018-05-12

    We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust

  4. Markov random field based automatic image alignment for electron tomography.

    Science.gov (United States)

    Amat, Fernando; Moussavi, Farshid; Comolli, Luis R; Elidan, Gal; Downing, Kenneth H; Horowitz, Mark

    2008-03-01

    We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.

  5. [Study of CT Automatic Exposure Control System (CT-AEC) Optimization in CT Angiography of Lower Extremity Artery by Considering Contrast-to-Noise Ratio].

    Science.gov (United States)

    Inada, Satoshi; Masuda, Takanori; Maruyama, Naoya; Yamashita, Yukari; Sato, Tomoyasu; Imada, Naoyuki

    2016-01-01

    To evaluate the image quality and effect of radiation dose reduction by setting for computed tomography automatic exposure control system (CT-AEC) in computed tomographic angiography (CTA) of lower extremity artery. Two methods of setting were compared for CT-AEC [conventional and contrast-to-noise ratio (CNR) methods]. Conventional method was set noise index (NI): 14and tube current threshold: 10-750 mA. CNR method was set NI: 18, minimum tube current: (X+Y)/2 mA (X, Y: maximum X (Y)-axis tube current value of leg in NI: 14), and maximum tube current: 750 mA. The image quality was evaluated by CNR, and radiation dose reduction was evaluated by dose-length-product (DLP). In conventional method, mean CNRs for pelvis, femur, and leg were 19.9±4.8, 20.4±5.4, and 16.2±4.3, respectively. There was a significant difference between the CNRs of pelvis and leg (P<0.001), and between femur and leg (P<0.001). In CNR method, mean CNRs for pelvis, femur, and leg were 15.2±3.3, 15.3±3.2, and 15.3±3.1, respectively; no significant difference between pelvis, femur, and leg (P=0.973) in CNR method was observed. Mean DLPs were 1457±434 mGy⋅cm in conventional method, and 1049±434 mGy·cm in CNR method. There was a significant difference in the DLPs of conventional method and CNR method (P<0.001). CNR method gave equal CNRs for pelvis, femur, and leg, and was beneficial for radiation dose reduction in CTA of lower extremity artery.

  6. Automatically gated image-guided breath-hold IMRT is a fast, precise, and dosimetrically robust treatment for lung cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Simeonova-Chergou, Anna; Jahnke, Anika; Siebenlist, Kerstin; Stieler, Florian; Mai, Sabine; Boda-Heggemann, Judit; Wenz, Frederik; Lohr, Frank; Jahnke, Lennart [University Medical Center Mannheim, University of Heidelberg, Department of Radiotherapy and Oncology, Mannheim (Germany)

    2016-03-15

    High-dose radiotherapy of lung cancer is challenging. Tumors may move by up to 2 cm in craniocaudal and anteroposterior directions as a function of breathing cycle. Tumor displacement increases with treatment time, which consequentially increases the treatment uncertainty. This study analyzed whether automatically gated cone-beam-CT (CBCT)-controlled intensity modulated fast deep inspiration breath hold (DIBH) stereotactic body radiation therapy (SBRT) in flattening filter free (FFF) technique and normofractionated lung DIBH intensity-modulated radiotherapy (IMRT)/volumetric-modulated arc therapy (VMAT) treatments delivered with a flattening filter can be applied with sufficient accuracy within a clinically acceptable timeslot. Plans of 34 patients with lung tumors were analyzed. Of these patients, 17 received computer-controlled fast DIBH SBRT with a dose of 60 Gy (5 fractions of 12 Gy or 12 fractions of 5 Gy) in an FFF VMAT technique (FFF-SBRT) every other day and 17 received conventional VMAT with a flattening filter (conv-VMAT) and 2-Gy daily fractional doses (cumulative dose 50-70 Gy). FFF-SBRT plans required more monitor units (MU) than conv-VMAT plans (2956.6 ± 885.3 MU for 12 Gy/fraction and 1148.7 ± 289.2 MU for 5 Gy/fraction vs. 608.4 ± 157.5 MU for 2 Gy/fraction). Total treatment and net beam-on times were shorter for FFF-SBRT plans than conv-VMAT plans (268.0 ± 74.4 s vs. 330.2 ± 93.6 s and 85.8 ± 25.3 s vs. 117.2 ± 29.6 s, respectively). Total slot time was 13.0 min for FFF-SBRT and 14.0 min for conv-VMAT. All modalities could be delivered accurately despite multiple beam-on/-off cycles and were robust against multiple interruptions. Automatically gated CBCT-controlled fast DIBH SBRT in VMAT FFF technique and normofractionated lung DIBH VMAT can be applied with a low number of breath-holds in a short timeslot, with excellent dosimetric accuracy. In clinical routine, these approaches combine optimally reduced lung tissue irradiation with maximal

  7. TU-F-17A-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - An Automatic Toolkit for Efficient and Robust Analysis of 4D Respiratory Motion

    International Nuclear Information System (INIS)

    Wei, J; Yuan, A; Li, G

    2014-01-01

    Purpose: To provide an automatic image analysis toolkit to process thoracic 4-dimensional computed tomography (4DCT) and extract patient-specific motion information to facilitate investigational or clinical use of 4DCT. Methods: We developed an automatic toolkit in MATLAB to overcome the extra workload from the time dimension in 4DCT. This toolkit employs image/signal processing, computer vision, and machine learning methods to visualize, segment, register, and characterize lung 4DCT automatically or interactively. A fully-automated 3D lung segmentation algorithm was designed and 4D lung segmentation was achieved in batch mode. Voxel counting was used to calculate volume variations of the torso, lung and its air component, and local volume changes at the diaphragm and chest wall to characterize breathing pattern. Segmented lung volumes in 12 patients are compared with those from a treatment planning system (TPS). Voxel conversion was introduced from CT# to other physical parameters, such as gravity-induced pressure, to create a secondary 4D image. A demon algorithm was applied in deformable image registration and motion trajectories were extracted automatically. Calculated motion parameters were plotted with various templates. Machine learning algorithms, such as Naive Bayes and random forests, were implemented to study respiratory motion. This toolkit is complementary to and will be integrated with the Computational Environment for Radiotherapy Research (CERR). Results: The automatic 4D image/data processing toolkit provides a platform for analysis of 4D images and datasets. It processes 4D data automatically in batch mode and provides interactive visual verification for manual adjustments. The discrepancy in lung volume calculation between this and the TPS is <±2% and the time saving is by 1–2 orders of magnitude. Conclusion: A framework of 4D toolkit has been developed to analyze thoracic 4DCT automatically or interactively, facilitating both investigational

  8. TU-F-17A-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - An Automatic Toolkit for Efficient and Robust Analysis of 4D Respiratory Motion

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J [City College of New York, New York, NY (United States); Yuan, A; Li, G [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: To provide an automatic image analysis toolkit to process thoracic 4-dimensional computed tomography (4DCT) and extract patient-specific motion information to facilitate investigational or clinical use of 4DCT. Methods: We developed an automatic toolkit in MATLAB to overcome the extra workload from the time dimension in 4DCT. This toolkit employs image/signal processing, computer vision, and machine learning methods to visualize, segment, register, and characterize lung 4DCT automatically or interactively. A fully-automated 3D lung segmentation algorithm was designed and 4D lung segmentation was achieved in batch mode. Voxel counting was used to calculate volume variations of the torso, lung and its air component, and local volume changes at the diaphragm and chest wall to characterize breathing pattern. Segmented lung volumes in 12 patients are compared with those from a treatment planning system (TPS). Voxel conversion was introduced from CT# to other physical parameters, such as gravity-induced pressure, to create a secondary 4D image. A demon algorithm was applied in deformable image registration and motion trajectories were extracted automatically. Calculated motion parameters were plotted with various templates. Machine learning algorithms, such as Naive Bayes and random forests, were implemented to study respiratory motion. This toolkit is complementary to and will be integrated with the Computational Environment for Radiotherapy Research (CERR). Results: The automatic 4D image/data processing toolkit provides a platform for analysis of 4D images and datasets. It processes 4D data automatically in batch mode and provides interactive visual verification for manual adjustments. The discrepancy in lung volume calculation between this and the TPS is <±2% and the time saving is by 1–2 orders of magnitude. Conclusion: A framework of 4D toolkit has been developed to analyze thoracic 4DCT automatically or interactively, facilitating both investigational

  9. Multi-Phase Sub-Sampling Fractional-N PLL with soft loop switching for fast robust locking

    NARCIS (Netherlands)

    Liao, Dongyi; Dai, FA Foster; Nauta, Bram; Klumperink, Eric A.M.

    2017-01-01

    This paper presents a low phase noise sub-sampling PLL (SSPLL) with multi-phase outputs. Automatic soft switching between the sub-sampling phase loop and frequency loop is proposed to improve robustness against perturbations and interferences that may cause a traditional SSPLL to lose lock. A

  10. Retrieving robust noise-based seismic velocity changes from sparse data sets: synthetic tests and application to Klyuchevskoy volcanic group (Kamchatka)

    Science.gov (United States)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N. M.; Droznin, D. V.; Droznina, S. Ya; Senyukov, S. L.; Gordeev, E. I.

    2018-05-01

    Continuous noise-based monitoring of seismic velocity changes provides insights into volcanic unrest, earthquake mechanisms and fluid injection in the sub-surface. The standard monitoring approach relies on measuring travel time changes of late coda arrivals between daily and reference noise cross-correlations, usually chosen as stacks of daily cross-correlations. The main assumption of this method is that the shape of the noise correlations does not change over time or, in other terms, that the ambient-noise sources are stationary through time. These conditions are not fulfilled when a strong episodic source of noise, such as a volcanic tremor for example, perturbs the reconstructed Green's function. In this paper we propose a general formulation for retrieving continuous time series of noise-based seismic velocity changes without the requirement of any arbitrary reference cross-correlation function. Instead, we measure the changes between all possible pairs of daily cross-correlations and invert them using different smoothing parameters to obtain the final velocity change curve. We perform synthetic tests in order to establish a general framework for future applications of this technique. In particular, we study the reliability of velocity change measurements versus the stability of noise cross-correlation functions. We apply this approach to a complex dataset of noise cross-correlations at Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the presence of highly non-stationary seismic tremors.

  11. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  12. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  13. Radiometric Normalization of Temporal Images Combining Automatic Detection of Pseudo-Invariant Features from the Distance and Similarity Spectral Measures, Density Scatterplot Analysis, and Robust Regression

    Directory of Open Access Journals (Sweden)

    Ana Paula Ferreira de Carvalho

    2013-05-01

    Full Text Available Radiometric precision is difficult to maintain in orbital images due to several factors (atmospheric conditions, Earth-sun distance, detector calibration, illumination, and viewing angles. These unwanted effects must be removed for radiometric consistency among temporal images, leaving only land-leaving radiances, for optimum change detection. A variety of relative radiometric correction techniques were developed for the correction or rectification of images, of the same area, through use of reference targets whose reflectance do not change significantly with time, i.e., pseudo-invariant features (PIFs. This paper proposes a new technique for radiometric normalization, which uses three sequential methods for an accurate PIFs selection: spectral measures of temporal data (spectral distance and similarity, density scatter plot analysis (ridge method, and robust regression. The spectral measures used are the spectral angle (Spectral Angle Mapper, SAM, spectral correlation (Spectral Correlation Mapper, SCM, and Euclidean distance. The spectral measures between the spectra at times t1 and t2 and are calculated for each pixel. After classification using threshold values, it is possible to define points with the same spectral behavior, including PIFs. The distance and similarity measures are complementary and can be calculated together. The ridge method uses a density plot generated from images acquired on different dates for the selection of PIFs. In a density plot, the invariant pixels, together, form a high-density ridge, while variant pixels (clouds and land cover changes are spread, having low density, facilitating its exclusion. Finally, the selected PIFs are subjected to a robust regression (M-estimate between pairs of temporal bands for the detection and elimination of outliers, and to obtain the optimal linear equation for a given set of target points. The robust regression is insensitive to outliers, i.e., observation that appears to deviate

  14. Effect of contrast material on image noise and radiation dose in adult chest computed tomography using automatic exposure control: A comparative study between 16-, 64- and 128-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Jijo, E-mail: jijopaul1980@gmail.com [Clinic of the Goethe University, Department of Diagnostic and Interventional Radiology, Haus 23C UG, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Goethe University, Department of Biophysics, Max von Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Schell, Boris, E-mail: boris.schell@googlemail.com [Clinic of the Goethe University, Department of Diagnostic and Interventional Radiology, Haus 23C UG, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Kerl, J. Matthias, E-mail: matthias.kerl@gmai.com [Clinic of the Goethe University, Department of Diagnostic and Interventional Radiology, Haus 23C UG, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Maentele, Werner, E-mail: maentele@biophysik.uni-frankfurt.de [Goethe University, Department of Biophysics, Max von Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Vogl, Thomas J., E-mail: t.vogl@em.uni-frankfurt.de [Clinic of the Goethe University, Department of Diagnostic and Interventional Radiology, Haus 23C UG, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Bauer, Ralf W., E-mail: ralfwbauer@aol.com [Clinic of the Goethe University, Department of Diagnostic and Interventional Radiology, Haus 23C UG, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2011-08-15

    Purpose: To determine the difference in radiation dose between non-enhanced (NECT) and contrast-enhanced (CECT) chest CT examinations contributed by contrast material with different scanner generations with automatic exposure control (AEC). Methods and materials: Each 42 adult patients received a NECT and CECT of the chest in one session on a 16-, 64- or 128-slice CT scanner with the same scan protocol settings. However, AEC technology (Care Dose 4D, Siemens) underwent upgrades in each of the three scanner generations. DLP, CTDIvol and image noise were compared. Results: Although absolute differences in image noise were very small and ranged between 10 and 13 HU for NECT and CECT in median, the differences in image noise and dose (DLP: 16-slice:+2.8%; 64-slice:+3.9%; 128-slice:+5.6%) between NECT and CECT were statistically significant in all groups. Image noise and dose parameters were significantly lower in the most recent 128-slice CT generation for both NECT and CECT (DLP: 16-slice:+35.5-39.2%; 64-slice:+6.8-8.5%). Conclusion: The presence of contrast material lead to an increase in dose for chest examinations in three CT generations with AEC. Although image noise values were significantly higher for CECT, the absolute differences were in a range of 3 HU. This can be regarded as negligible, thus indicating that AEC is able to fulfill its purpose of maintaining image quality. However, technological developments lead to a significant reduction of dose and image noise with the latest CT generation.

  15. A Low-Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller

    Science.gov (United States)

    2017-03-01

    from both environment and hardware further reduces the transmission energy with negligible computation and memory overhead. The rate controller...detection, Region-of-interest, Rate control Introduction In wireless image sensor nodes for moving object surveillance, energy efficiency can be...noise, reliable moving object detection is required to avoid unnecessary transmission of background scenes [1]. Transmission energy can be further

  16. Synthesis of multi-wavelength temporal phase-shifting algorithms optimized for high signal-to-noise ratio and high detuning robustness using the frequency transfer function

    OpenAIRE

    Servin, Manuel; Padilla, Moises; Garnica, Guillermo

    2016-01-01

    Synthesis of single-wavelength temporal phase-shifting algorithms (PSA) for interferometry is well-known and firmly based on the frequency transfer function (FTF) paradigm. Here we extend the single-wavelength FTF-theory to dual and multi-wavelength PSA-synthesis when several simultaneous laser-colors are present. The FTF-based synthesis for dual-wavelength PSA (DW-PSA) is optimized for high signal-to-noise ratio and minimum number of temporal phase-shifted interferograms. The DW-PSA synthesi...

  17. Robustness of holonomic quantum gates

    International Nuclear Information System (INIS)

    Solinas, P.; Zanardi, P.; Zanghi, N.

    2005-01-01

    Full text: If the driving field fluctuates during the quantum evolution this produces errors in the applied operator. The holonomic (and geometrical) quantum gates are believed to be robust against some kind of noise. Because of the geometrical dependence of the holonomic operators can be robust against this kind of noise; in fact if the fluctuations are fast enough they cancel out leaving the final operator unchanged. I present the numerical studies of holonomic quantum gates subject to this parametric noise, the fidelity of the noise and ideal evolution is calculated for different noise correlation times. The holonomic quantum gates seem robust not only for fast fluctuating fields but also for slow fluctuating fields. These results can be explained as due to the geometrical feature of the holonomic operator: for fast fluctuating fields the fluctuations are canceled out, for slow fluctuating fields the fluctuations do not perturb the loop in the parameter space. (author)

  18. Acoustic ambient noise recorder

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.; Navelkar, G.S.; Almeida, A.M.; More, S.R.; Chodankar, P.V.; Murty, C.S.

    with a robust outfit that can withstand high pressures and chemically corrosion resistant materials. Keeping these considerations in view, a CMOS micro-controller-based marine acoustic ambient noise recorder has been developed with a real time clock...

  19. Robust Circle Detection Using Harmony Search

    Directory of Open Access Journals (Sweden)

    Jaco Fourie

    2017-01-01

    Full Text Available Automatic circle detection is an important element of many image processing algorithms. Traditionally the Hough transform has been used to find circular objects in images but more modern approaches that make use of heuristic optimisation techniques have been developed. These are often used in large complex images where the presence of noise or limited computational resources make the Hough transform impractical. Previous research on the use of the Harmony Search (HS in circle detection showed that HS is an attractive alternative to many of the modern circle detectors based on heuristic optimisers like genetic algorithms and simulated annealing. We propose improvements to this work that enables our algorithm to robustly find multiple circles in larger data sets and still work on realistic images that are heavily corrupted by noisy edges.

  20. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  1. Active Noise Control for Dishwasher noise

    Science.gov (United States)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  2. A variational Bayesian method to inverse problems with impulsive noise

    KAUST Repository

    Jin, Bangti

    2012-01-01

    We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm. © 2011 Elsevier Inc.

  3. Verification test for on-line diagnosis algorithm based on noise analysis

    International Nuclear Information System (INIS)

    Tamaoki, T.; Naito, N.; Tsunoda, T.; Sato, M.; Kameda, A.

    1980-01-01

    An on-line diagnosis algorithm was developed and its verification test was performed using a minicomputer. This algorithm identifies the plant state by analyzing various system noise patterns, such as power spectral densities, coherence functions etc., in three procedure steps. Each obtained noise pattern is examined by using the distances from its reference patterns prepared for various plant states. Then, the plant state is identified by synthesizing each result with an evaluation weight. This weight is determined automatically from the reference noise patterns prior to on-line diagnosis. The test was performed with 50 MW (th) Steam Generator noise data recorded under various controller parameter values. The algorithm performance was evaluated based on a newly devised index. The results obtained with one kind of weight showed the algorithm efficiency under the proper selection of noise patterns. Results for another kind of weight showed the robustness of the algorithm to this selection. (orig.)

  4. Automatic generation of anatomic characteristics from cerebral aneurysm surface models.

    Science.gov (United States)

    Neugebauer, M; Lawonn, K; Beuing, O; Preim, B

    2013-03-01

    Computer-aided research on cerebral aneurysms often depends on a polygonal mesh representation of the vessel lumen. To support a differentiated, anatomy-aware analysis, it is necessary to derive anatomic descriptors from the surface model. We present an approach on automatic decomposition of the adjacent vessels into near- and far-vessel regions and computation of the axial plane. We also exemplarily present two applications of the geometric descriptors: automatic computation of a unique vessel order and automatic viewpoint selection. Approximation methods are employed to analyze vessel cross-sections and the vessel area profile along the centerline. The resulting transition zones between near- and far- vessel regions are used as input for an optimization process to compute the axial plane. The unique vessel order is defined via projection into the plane space of the axial plane. The viewing direction for the automatic viewpoint selection is derived from the normal vector of the axial plane. The approach was successfully applied to representative data sets exhibiting a broad variability with respect to the configuration of their adjacent vessels. A robustness analysis showed that the automatic decomposition is stable against noise. A survey with 4 medical experts showed a broad agreement with the automatically defined transition zones. Due to the general nature of the underlying algorithms, this approach is applicable to most of the likely aneurysm configurations in the cerebral vasculature. Additional geometric information obtained during automatic decomposition can support correction in case the automatic approach fails. The resulting descriptors can be used for various applications in the field of visualization, exploration and analysis of cerebral aneurysms.

  5. Noise tolerant spatiotemporal chaos computing.

    Science.gov (United States)

    Kia, Behnam; Kia, Sarvenaz; Lindner, John F; Sinha, Sudeshna; Ditto, William L

    2014-12-01

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  6. Automatic Imitation

    Science.gov (United States)

    Heyes, Cecilia

    2011-01-01

    "Automatic imitation" is a type of stimulus-response compatibility effect in which the topographical features of task-irrelevant action stimuli facilitate similar, and interfere with dissimilar, responses. This article reviews behavioral, neurophysiological, and neuroimaging research on automatic imitation, asking in what sense it is "automatic"…

  7. Chemometric strategy for automatic chromatographic peak detection and background drift correction in chromatographic data.

    Science.gov (United States)

    Yu, Yong-Jie; Xia, Qiao-Ling; Wang, Sheng; Wang, Bing; Xie, Fu-Wei; Zhang, Xiao-Bing; Ma, Yun-Ming; Wu, Hai-Long

    2014-09-12

    Peak detection and background drift correction (BDC) are the key stages in using chemometric methods to analyze chromatographic fingerprints of complex samples. This study developed a novel chemometric strategy for simultaneous automatic chromatographic peak detection and BDC. A robust statistical method was used for intelligent estimation of instrumental noise level coupled with first-order derivative of chromatographic signal to automatically extract chromatographic peaks in the data. A local curve-fitting strategy was then employed for BDC. Simulated and real liquid chromatographic data were designed with various kinds of background drift and degree of overlapped chromatographic peaks to verify the performance of the proposed strategy. The underlying chromatographic peaks can be automatically detected and reasonably integrated by this strategy. Meanwhile, chromatograms with BDC can be precisely obtained. The proposed method was used to analyze a complex gas chromatography dataset that monitored quality changes in plant extracts during storage procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Robust adaptive subspace detection in impulsive noise

    KAUST Repository

    Ben Atitallah, Ismail

    2016-09-13

    This paper addresses the design of the Adaptive Subspace Matched Filter (ASMF) detector in the presence of compound Gaussian clutters and a mismatch in the steering vector. In particular, we consider the case wherein the ASMF uses the regularized Tyler estimator (RTE) to estimate the clutter covariance matrix. Under this setting, a major question that needs to be addressed concerns the setting of the threshold and the regularization parameter. To answer this question, we consider the regime in which the number of observations used to estimate the RTE and their dimensions grow large together. Recent results from random matrix theory are then used in order to approximate the false alarm and detection probabilities by deterministic quantities. The latter are optimized in order to maximize an upper bound on the asymptotic detection probability while keeping the asymptotic false alarm probability at a fixed rate. © 2016 IEEE.

  9. Robust adaptive subspace detection in impulsive noise

    KAUST Repository

    Ben Atitallah, Ismail; Kammoun, Abla; Alouini, Mohamed-Slim; Al-Naffouri, Tareq Y.

    2016-01-01

    This paper addresses the design of the Adaptive Subspace Matched Filter (ASMF) detector in the presence of compound Gaussian clutters and a mismatch in the steering vector. In particular, we consider the case wherein the ASMF uses the regularized Tyler estimator (RTE) to estimate the clutter covariance matrix. Under this setting, a major question that needs to be addressed concerns the setting of the threshold and the regularization parameter. To answer this question, we consider the regime in which the number of observations used to estimate the RTE and their dimensions grow large together. Recent results from random matrix theory are then used in order to approximate the false alarm and detection probabilities by deterministic quantities. The latter are optimized in order to maximize an upper bound on the asymptotic detection probability while keeping the asymptotic false alarm probability at a fixed rate. © 2016 IEEE.

  10. MIMO scheme performance and detection in epsilon noise

    OpenAIRE

    Stepanov, Sander

    2006-01-01

    New approach for analysis and decoding MIMO signaling is developed for usual model of nongaussion noise consists of background and impulsive noise named epsilon - noise. It is shown that non-gaussion noise performance significantly worse than gaussion ones. Stimulation results strengthen out theory. Robust in statistical sense detection rule is suggested for such kind of noise features much best robust detector performance than detector designed for Gaussian noise in impulsive environment and...

  11. Comparison of models of automatic classification of textural patterns of mineral presents in Colombian coals

    International Nuclear Information System (INIS)

    Lopez Carvajal, Jaime; Branch Bedoya, John Willian

    2005-01-01

    The automatic classification of objects is a very interesting approach under several problem domains. This paper outlines some results obtained under different classification models to categorize textural patterns of minerals using real digital images. The data set used was characterized by a small size and noise presence. The implemented models were the Bayesian classifier, Neural Network (2-5-1), support vector machine, decision tree and 3-nearest neighbors. The results after applying crossed validation show that the Bayesian model (84%) proved better predictive capacity than the others, mainly due to its noise robustness behavior. The neuronal network (68%) and the SVM (67%) gave promising results, because they could be improved increasing the data amount used, while the decision tree (55%) and K-NN (54%) did not seem to be adequate for this problem, because of their sensibility to noise

  12. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  13. A robust classic.

    Science.gov (United States)

    Kutzner, Florian; Vogel, Tobias; Freytag, Peter; Fiedler, Klaus

    2011-01-01

    In the present research, we argue for the robustness of illusory correlations (ICs, Hamilton & Gifford, 1976) regarding two boundary conditions suggested in previous research. First, we argue that ICs are maintained under extended experience. Using simulations, we derive conflicting predictions. Whereas noise-based accounts predict ICs to be maintained (Fielder, 2000; Smith, 1991), a prominent account based on discrepancy-reducing feedback learning predicts ICs to disappear (Van Rooy et al., 2003). An experiment involving 320 observations with majority and minority members supports the claim that ICs are maintained. Second, we show that actively using the stereotype to make predictions that are met with reward and punishment does not eliminate the bias. In addition, participants' operant reactions afford a novel online measure of ICs. In sum, our findings highlight the robustness of ICs that can be explained as a result of unbiased but noisy learning.

  14. Robust visual hashing via ICA

    International Nuclear Information System (INIS)

    Fournel, Thierry; Coltuc, Daniela

    2010-01-01

    Designed to maximize information transmission in the presence of noise, independent component analysis (ICA) could appear in certain circumstances as a statistics-based tool for robust visual hashing. Several ICA-based scenarios can attempt to reach this goal. A first one is here considered.

  15. Robustness of raw quantum tomography

    Science.gov (United States)

    Asorey, M.; Facchi, P.; Florio, G.; Man'ko, V. I.; Marmo, G.; Pascazio, S.; Sudarshan, E. C. G.

    2011-01-01

    We scrutinize the effects of non-ideal data acquisition on the tomograms of quantum states. The presence of a weight function, schematizing the effects of a finite window or equivalently noise, only affects the state reconstruction procedure by a normalization constant. The results are extended to a discrete mesh and show that quantum tomography is robust under incomplete and approximate knowledge of tomograms.

  16. Robustness of raw quantum tomography

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M. [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Facchi, P. [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Florio, G. [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Man' ko, V.I., E-mail: manko@lebedev.r [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, G. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Pascazio, S. [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Sudarshan, E.C.G. [Department of Physics, University of Texas, Austin, TX 78712 (United States)

    2011-01-31

    We scrutinize the effects of non-ideal data acquisition on the tomograms of quantum states. The presence of a weight function, schematizing the effects of a finite window or equivalently noise, only affects the state reconstruction procedure by a normalization constant. The results are extended to a discrete mesh and show that quantum tomography is robust under incomplete and approximate knowledge of tomograms.

  17. Robust surface registration using N-points approximate congruent sets

    Directory of Open Access Journals (Sweden)

    Yao Jian

    2011-01-01

    Full Text Available Abstract Scans acquired by 3D sensors are typically represented in a local coordinate system. When multiple scans, taken from different locations, represent the same scene these must be registered to a common reference frame. We propose a fast and robust registration approach to automatically align two scans by finding two sets of N-points, that are approximately congruent under rigid transformation and leading to a good estimate of the transformation between their corresponding point clouds. Given two scans, our algorithm randomly searches for the best sets of congruent groups of points using a RANSAC-based approach. To successfully and reliably align two scans when there is only a small overlap, we improve the basic RANSAC random selection step by employing a weight function that approximates the probability of each pair of points in one scan to match one pair in the other. The search time to find pairs of congruent sets of N-points is greatly reduced by employing a fast search codebook based on both binary and multi-dimensional lookup tables. Moreover, we introduce a novel indicator of the overlapping region quality which is used to verify the estimated rigid transformation and to improve the alignment robustness. Our framework is general enough to incorporate and efficiently combine different point descriptors derived from geometric and texture-based feature points or scene geometrical characteristics. We also present a method to improve the matching effectiveness of texture feature descriptors by extracting them from an atlas of rectified images recovered from the scan reflectance image. Our algorithm is robust with respect to different sampling densities and also resilient to noise and outliers. We demonstrate its robustness and efficiency on several challenging scan datasets with varying degree of noise, outliers, extent of overlap, acquired from indoor and outdoor scenarios.

  18. Influence of binary mask estimation errors on robust speaker identification

    DEFF Research Database (Denmark)

    May, Tobias

    2017-01-01

    Missing-data strategies have been developed to improve the noise-robustness of automatic speech recognition systems in adverse acoustic conditions. This is achieved by classifying time-frequency (T-F) units into reliable and unreliable components, as indicated by a so-called binary mask. Different...... approaches have been proposed to handle unreliable feature components, each with distinct advantages. The direct masking (DM) approach attenuates unreliable T-F units in the spectral domain, which allows the extraction of conventionally used mel-frequency cepstral coefficients (MFCCs). Instead of attenuating....... Since each of these approaches utilizes the knowledge about reliable and unreliable feature components in a different way, they will respond differently to estimation errors in the binary mask. The goal of this study was to identify the most effective strategy to exploit knowledge about reliable...

  19. Automatic quantitative renal scintigraphy

    International Nuclear Information System (INIS)

    Valeyre, J.; Deltour, G.; Delisle, M.J.; Bouchard, A.

    1976-01-01

    Renal scintigraphy data may be analyzed automatically by the use of a processing system coupled to an Anger camera (TRIDAC-MULTI 8 or CINE 200). The computing sequence is as follows: normalization of the images; background noise subtraction on both images; evaluation of mercury 197 uptake by the liver and spleen; calculation of the activity fractions on each kidney with respect to the injected dose, taking into account the kidney depth and the results referred to normal values; edition of the results. Automation minimizes the scattering parameters and by its simplification is a great asset in routine work [fr

  20. Automatic physical inference with information maximizing neural networks

    Science.gov (United States)

    Charnock, Tom; Lavaux, Guilhem; Wandelt, Benjamin D.

    2018-04-01

    Compressing large data sets to a manageable number of summaries that are informative about the underlying parameters vastly simplifies both frequentist and Bayesian inference. When only simulations are available, these summaries are typically chosen heuristically, so they may inadvertently miss important information. We introduce a simulation-based machine learning technique that trains artificial neural networks to find nonlinear functionals of data that maximize Fisher information: information maximizing neural networks (IMNNs). In test cases where the posterior can be derived exactly, likelihood-free inference based on automatically derived IMNN summaries produces nearly exact posteriors, showing that these summaries are good approximations to sufficient statistics. In a series of numerical examples of increasing complexity and astrophysical relevance we show that IMNNs are robustly capable of automatically finding optimal, nonlinear summaries of the data even in cases where linear compression fails: inferring the variance of Gaussian signal in the presence of noise, inferring cosmological parameters from mock simulations of the Lyman-α forest in quasar spectra, and inferring frequency-domain parameters from LISA-like detections of gravitational waveforms. In this final case, the IMNN summary outperforms linear data compression by avoiding the introduction of spurious likelihood maxima. We anticipate that the automatic physical inference method described in this paper will be essential to obtain both accurate and precise cosmological parameter estimates from complex and large astronomical data sets, including those from LSST and Euclid.

  1. An Overview of the Adaptive Robust DFT

    Directory of Open Access Journals (Sweden)

    Djurović Igor

    2010-01-01

    Full Text Available Abstract This paper overviews basic principles and applications of the robust DFT (RDFT approach, which is used for robust processing of frequency-modulated (FM signals embedded in non-Gaussian heavy-tailed noise. In particular, we concentrate on the spectral analysis and filtering of signals corrupted by impulsive distortions using adaptive and nonadaptive robust estimators. Several adaptive estimators of location parameter are considered, and it is shown that their application is preferable with respect to non-adaptive counterparts. This fact is demonstrated by efficiency comparison of adaptive and nonadaptive RDFT methods for different noise environments.

  2. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, J [Taishan Medical University, Taian, Shandong (China); Washington University in St Louis, St Louis, MO (United States); Li, H. Harlod; Zhang, T; Yang, D [Washington University in St Louis, St Louis, MO (United States); Ma, F [Taishan Medical University, Taian, Shandong (China)

    2015-06-15

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The most important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.

  3. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    International Nuclear Information System (INIS)

    Qiu, J; Li, H. Harlod; Zhang, T; Yang, D; Ma, F

    2015-01-01

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The most important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools

  4. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation

    Directory of Open Access Journals (Sweden)

    Jongpal Kim

    2015-12-01

    Full Text Available To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG readout chip is fabricated using a 0.13-μm complementary metal–oxide–semiconductor (CMOS process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.

  5. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation.

    Science.gov (United States)

    Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho

    2015-12-31

    To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal-oxide-semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.

  6. Robustness of Linear Systems towards Multi-Dissipative Pertubations

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Poulsen, Niels Kjølstad

    1997-01-01

    We consider the question of robust stability of a linear time invariant plant subject to dynamic perturbations, which are dissipative in the sense of Willems with respect to several quadratic supply rates. For instance, parasitic dynamics are often both small gain and passive. We reduce several...... robustness analysis questions to linear matrix inequalities: robust stability, robust H2 performance and robust performance in presence of disturbances with finite signal-to-noise ratios...

  7. Noise Pollution

    Science.gov (United States)

    ... Regulated by EPA EPA or a designated Federal agency regulates noise sources, such as rail and motor carriers, low noise emission products, construction equipment, transport equipment, trucks, motorcycles, and the labeling of hearing ...

  8. Analysis of separation test for automatic brake adjuster based on linear radon transformation

    Science.gov (United States)

    Luo, Zai; Jiang, Wensong; Guo, Bin; Fan, Weijun; Lu, Yi

    2015-01-01

    The linear Radon transformation is applied to extract inflection points for online test system under the noise conditions. The linear Radon transformation has a strong ability of anti-noise and anti-interference by fitting the online test curve in several parts, which makes it easy to handle consecutive inflection points. We applied the linear Radon transformation to the separation test system to solve the separating clearance of automatic brake adjuster. The experimental results show that the feature point extraction error of the gradient maximum optimal method is approximately equal to ±0.100, while the feature point extraction error of linear Radon transformation method can reach to ±0.010, which has a lower error than the former one. In addition, the linear Radon transformation is robust.

  9. Automatic Detection of P and S Phases by Support Vector Machine

    Science.gov (United States)

    Jiang, Y.; Ning, J.; Bao, T.

    2017-12-01

    Many methods in seismology rely on accurately picked phases. A well performed program on automatically phase picking will assure the application of these methods. Related researches before mostly focus on finding different characteristics between noise and phases, which are all not enough successful. We have developed a new method which mainly based on support vector machine to detect P and S phases. In it, we first input some waveform pieces into the support vector machine, then employ it to work out a hyper plane which can divide the space into two parts: respectively noise and phase. We further use the same method to find a hyper plane which can separate the phase space into P and S parts based on the three components' cross-correlation matrix. In order to further improve the ability of phase detection, we also employ array data. At last, we show that the overall effect of our method is robust by employing both synthetic and real data.

  10. Detection of heart beats in multimodal data: a robust beat-to-beat interval estimation approach.

    Science.gov (United States)

    Antink, Christoph Hoog; Brüser, Christoph; Leonhardt, Steffen

    2015-08-01

    The heart rate and its variability play a vital role in the continuous monitoring of patients, especially in the critical care unit. They are commonly derived automatically from the electrocardiogram as the interval between consecutive heart beat. While their identification by QRS-complexes is straightforward under ideal conditions, the exact localization can be a challenging task if the signal is severely contaminated with noise and artifacts. At the same time, other signals directly related to cardiac activity are often available. In this multi-sensor scenario, methods of multimodal sensor-fusion allow the exploitation of redundancies to increase the accuracy and robustness of beat detection.In this paper, an algorithm for the robust detection of heart beats in multimodal data is presented. Classic peak-detection is augmented by robust multi-channel, multimodal interval estimation to eliminate false detections and insert missing beats. This approach yielded a score of 90.70 and was thus ranked third place in the PhysioNet/Computing in Cardiology Challenge 2014: Robust Detection of Heart Beats in Muthmodal Data follow-up analysis.In the future, the robust beat-to-beat interval estimator may directly be used for the automated processing of multimodal patient data for applications such as diagnosis support and intelligent alarming.

  11. Community noise

    Science.gov (United States)

    Bragdon, C. R.

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  12. Robust estimation of adaptive tensors of curvature by tensor voting.

    Science.gov (United States)

    Tong, Wai-Shun; Tang, Chi-Keung

    2005-03-01

    Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.

  13. Classification of mislabelled microarrays using robust sparse logistic regression.

    Science.gov (United States)

    Bootkrajang, Jakramate; Kabán, Ata

    2013-04-01

    Previous studies reported that labelling errors are not uncommon in microarray datasets. In such cases, the training set may become misleading, and the ability of classifiers to make reliable inferences from the data is compromised. Yet, few methods are currently available in the bioinformatics literature to deal with this problem. The few existing methods focus on data cleansing alone, without reference to classification, and their performance crucially depends on some tuning parameters. In this article, we develop a new method to detect mislabelled arrays simultaneously with learning a sparse logistic regression classifier. Our method may be seen as a label-noise robust extension of the well-known and successful Bayesian logistic regression classifier. To account for possible mislabelling, we formulate a label-flipping process as part of the classifier. The regularization parameter is automatically set using Bayesian regularization, which not only saves the computation time that cross-validation would take, but also eliminates any unwanted effects of label noise when setting the regularization parameter. Extensive experiments with both synthetic data and real microarray datasets demonstrate that our approach is able to counter the bad effects of labelling errors in terms of predictive performance, it is effective at identifying marker genes and simultaneously it detects mislabelled arrays to high accuracy. The code is available from http://cs.bham.ac.uk/∼jxb008. Supplementary data are available at Bioinformatics online.

  14. Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion

    Directory of Open Access Journals (Sweden)

    Yuanshen Zhao

    2016-01-01

    Full Text Available Automatic recognition of mature fruits in a complex agricultural environment is still a challenge for an autonomous harvesting robot due to various disturbances existing in the background of the image. The bottleneck to robust fruit recognition is reducing influence from two main disturbances: illumination and overlapping. In order to recognize the tomato in the tree canopy using a low-cost camera, a robust tomato recognition algorithm based on multiple feature images and image fusion was studied in this paper. Firstly, two novel feature images, the  a*-component image and the I-component image, were extracted from the L*a*b* color space and luminance, in-phase, quadrature-phase (YIQ color space, respectively. Secondly, wavelet transformation was adopted to fuse the two feature images at the pixel level, which combined the feature information of the two source images. Thirdly, in order to segment the target tomato from the background, an adaptive threshold algorithm was used to get the optimal threshold. The final segmentation result was processed by morphology operation to reduce a small amount of noise. In the detection tests, 93% target tomatoes were recognized out of 200 overall samples. It indicates that the proposed tomato recognition method is available for robotic tomato harvesting in the uncontrolled environment with low cost.

  15. Robust Tomato Recognition for Robotic Harvesting Using Feature Images Fusion.

    Science.gov (United States)

    Zhao, Yuanshen; Gong, Liang; Huang, Yixiang; Liu, Chengliang

    2016-01-29

    Automatic recognition of mature fruits in a complex agricultural environment is still a challenge for an autonomous harvesting robot due to various disturbances existing in the background of the image. The bottleneck to robust fruit recognition is reducing influence from two main disturbances: illumination and overlapping. In order to recognize the tomato in the tree canopy using a low-cost camera, a robust tomato recognition algorithm based on multiple feature images and image fusion was studied in this paper. Firstly, two novel feature images, the  a*-component image and the I-component image, were extracted from the L*a*b* color space and luminance, in-phase, quadrature-phase (YIQ) color space, respectively. Secondly, wavelet transformation was adopted to fuse the two feature images at the pixel level, which combined the feature information of the two source images. Thirdly, in order to segment the target tomato from the background, an adaptive threshold algorithm was used to get the optimal threshold. The final segmentation result was processed by morphology operation to reduce a small amount of noise. In the detection tests, 93% target tomatoes were recognized out of 200 overall samples. It indicates that the proposed tomato recognition method is available for robotic tomato harvesting in the uncontrolled environment with low cost.

  16. Data-Driven Neural Network Model for Robust Reconstruction of Automobile Casting

    Science.gov (United States)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Lu

    2017-09-01

    In computer vision system, it is a challenging task to robustly reconstruct complex 3D geometries of automobile castings. However, 3D scanning data is usually interfered by noises, the scanning resolution is low, these effects normally lead to incomplete matching and drift phenomenon. In order to solve these problems, a data-driven local geometric learning model is proposed to achieve robust reconstruction of automobile casting. In order to relieve the interference of sensor noise and to be compatible with incomplete scanning data, a 3D convolution neural network is established to match the local geometric features of automobile casting. The proposed neural network combines the geometric feature representation with the correlation metric function to robustly match the local correspondence. We use the truncated distance field(TDF) around the key point to represent the 3D surface of casting geometry, so that the model can be directly embedded into the 3D space to learn the geometric feature representation; Finally, the training labels is automatically generated for depth learning based on the existing RGB-D reconstruction algorithm, which accesses to the same global key matching descriptor. The experimental results show that the matching accuracy of our network is 92.2% for automobile castings, the closed loop rate is about 74.0% when the matching tolerance threshold τ is 0.2. The matching descriptors performed well and retained 81.6% matching accuracy at 95% closed loop. For the sparse geometric castings with initial matching failure, the 3D matching object can be reconstructed robustly by training the key descriptors. Our method performs 3D reconstruction robustly for complex automobile castings.

  17. A molecular noise generator

    International Nuclear Information System (INIS)

    Lu Ting; Ferry, Michael; Hasty, Jeff; Weiss, Ron

    2008-01-01

    Recent studies have demonstrated that intracellular variations in the rate of gene expression are of fundamental importance to cellular function and development. While such 'noise' is often considered detrimental in the context of perturbing genetic systems, it can be beneficial in processes such as species diversification and facilitation of evolution. A major difficulty in exploring such effects is that the magnitude and spectral properties of the induced variations arise from some intrinsic cellular process that is difficult to manipulate. Here, we present two designs of a molecular noise generator that allow for the flexible modulation of the noise profile of a target gene. The first design uses a dual-signal mechanism that enables independent tuning of the mean and variability of an output protein. This is achieved through the combinatorial control of two signals that regulate transcription and translation separately. We then extend the design to allow for DNA copy-number regulation, which leads to a wider tuning spectrum for the output molecule. To gain a deeper understanding of the circuit's functionality in a realistic environment, we introduce variability in the input signals in order to ascertain the degree of noise induced by the control process itself. We conclude by illustrating potential applications of the noise generator, demonstrating how it could be used to ascertain the robust or fragile properties of a genetic circuit

  18. Robust and Effective Component-based Banknote Recognition by SURF Features.

    Science.gov (United States)

    Hasanuzzaman, Faiz M; Yang, Xiaodong; Tian, YingLi

    2011-01-01

    Camera-based computer vision technology is able to assist visually impaired people to automatically recognize banknotes. A good banknote recognition algorithm for blind or visually impaired people should have the following features: 1) 100% accuracy, and 2) robustness to various conditions in different environments and occlusions. Most existing algorithms of banknote recognition are limited to work for restricted conditions. In this paper we propose a component-based framework for banknote recognition by using Speeded Up Robust Features (SURF). The component-based framework is effective in collecting more class-specific information and robust in dealing with partial occlusion and viewpoint changes. Furthermore, the evaluation of SURF demonstrates its effectiveness in handling background noise, image rotation, scale, and illumination changes. To authenticate the robustness and generalizability of the proposed approach, we have collected a large dataset of banknotes from a variety of conditions including occlusion, cluttered background, rotation, and changes of illumination, scaling, and viewpoints. The proposed algorithm achieves 100% recognition rate on our challenging dataset.

  19. Automatically sweeping dual-channel boxcar integrator

    International Nuclear Information System (INIS)

    Keefe, D.J.; Patterson, D.R.

    1978-01-01

    An automatically sweeping dual-channel boxcar integrator has been developed to automate the search for a signal that repeatedly follows a trigger pulse by a constant or slowly varying time delay when that signal is completely hidden in random electrical noise and dc-offset drifts. The automatically sweeping dual-channel boxcar integrator improves the signal-to-noise ratio and eliminates dc-drift errors in the same way that a conventional dual-channel boxcar integrator does, but, in addition, automatically locates the hidden signal. When the signal is found, its time delay is displayed with 100-ns resolution, and its peak value is automatically measured and displayed. This relieves the operator of the tedious, time-consuming, and error-prone search for the signal whenever the time delay changes. The automatically sweeping boxcar integrator can also be used as a conventional dual-channel boxcar integrator. In either mode, it can repeatedly integrate a signal up to 990 times and thus make accurate measurements of the signal pulse height in the presence of random noise, dc offsets, and unsynchronized interfering signals

  20. Design Robust Controller for Rotary Kiln

    Directory of Open Access Journals (Sweden)

    Omar D. Hernández-Arboleda

    2013-11-01

    Full Text Available This paper presents the design of a robust controller for a rotary kiln. The designed controller is a combination of a fractional PID and linear quadratic regulator (LQR, these are not used to control the kiln until now, in addition robustness criteria are evaluated (gain margin, phase margin, strength gain, rejecting high frequency noise and sensitivity applied to the entire model (controller-plant, obtaining good results with a frequency range of 0.020 to 90 rad/s, which contributes to the robustness of the system.

  1. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    The Lombard effect refers to the phenomenon where talkers automatically increase their level of speech in a noisy environment. While many studies have characterized how the Lombard effect influences different measures of speech production (e.g., F0, spectral tilt, etc.), few have investigated...... the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... of noisy environments and will alter their speech accordingly....

  2. Non-Stationary Rician Noise Estimation in Parallel MRI Using a Single Image: A Variance-Stabilizing Approach.

    Science.gov (United States)

    Pieciak, Tomasz; Aja-Fernandez, Santiago; Vegas-Sanchez-Ferrero, Gonzalo

    2017-10-01

    Parallel magnetic resonance imaging (pMRI) techniques have gained a great importance both in research and clinical communities recently since they considerably accelerate the image acquisition process. However, the image reconstruction algorithms needed to correct the subsampling artifacts affect the nature of noise, i.e., it becomes non-stationary. Some methods have been proposed in the literature dealing with the non-stationary noise in pMRI. However, their performance depends on information not usually available such as multiple acquisitions, receiver noise matrices, sensitivity coil profiles, reconstruction coefficients, or even biophysical models of the data. Besides, some methods show an undesirable granular pattern on the estimates as a side effect of local estimation. Finally, some methods make strong assumptions that just hold in the case of high signal-to-noise ratio (SNR), which limits their usability in real scenarios. We propose a new automatic noise estimation technique for non-stationary Rician noise that overcomes the aforementioned drawbacks. Its effectiveness is due to the derivation of a variance-stabilizing transformation designed to deal with any SNR. The method was compared to the main state-of-the-art methods in synthetic and real scenarios. Numerical results confirm the robustness of the method and its better performance for the whole range of SNRs.

  3. A Fast and Robust Method for Measuring Optical Channel Gain

    DEFF Research Database (Denmark)

    Harbo, Anders La-Cour; Stoustrup, Jakob; Villemoes, L.F.

    2000-01-01

    We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions......We present a numerically stable and computational simple method for fast and robust measurement of optical channel gain. By transmitting adaptively designed signals through the channel, good accuracy is possible even in severe noise conditions...

  4. Methods for robustness programming

    NARCIS (Netherlands)

    Olieman, N.J.

    2008-01-01

    Robustness of an object is defined as the probability that an object will have properties as required. Robustness Programming (RP) is a mathematical approach for Robustness estimation and Robustness optimisation. An example in the context of designing a food product, is finding the best composition

  5. Robustness in laying hens

    NARCIS (Netherlands)

    Star, L.

    2008-01-01

    The aim of the project ‘The genetics of robustness in laying hens’ was to investigate nature and regulation of robustness in laying hens under sub-optimal conditions and the possibility to increase robustness by using animal breeding without loss of production. At the start of the project, a robust

  6. Robustness: confronting lessons from physics and biology.

    Science.gov (United States)

    Lesne, Annick

    2008-11-01

    The term robustness is encountered in very different scientific fields, from engineering and control theory to dynamical systems to biology. The main question addressed herein is whether the notion of robustness and its correlates (stability, resilience, self-organisation) developed in physics are relevant to biology, or whether specific extensions and novel frameworks are required to account for the robustness properties of living systems. To clarify this issue, the different meanings covered by this unique term are discussed; it is argued that they crucially depend on the kind of perturbations that a robust system should by definition withstand. Possible mechanisms underlying robust behaviours are examined, either encountered in all natural systems (symmetries, conservation laws, dynamic stability) or specific to biological systems (feedbacks and regulatory networks). Special attention is devoted to the (sometimes counterintuitive) interrelations between robustness and noise. A distinction between dynamic selection and natural selection in the establishment of a robust behaviour is underlined. It is finally argued that nested notions of robustness, relevant to different time scales and different levels of organisation, allow one to reconcile the seemingly contradictory requirements for robustness and adaptability in living systems.

  7. Automatic Estimation of Movement Statistics of People

    DEFF Research Database (Denmark)

    Ægidiussen Jensen, Thomas; Rasmussen, Henrik Anker; Moeslund, Thomas B.

    2012-01-01

    Automatic analysis of how people move about in a particular environment has a number of potential applications. However, no system has so far been able to do detection and tracking robustly. Instead, trajectories are often broken into tracklets. The key idea behind this paper is based around...

  8. Robust spike sorting of retinal ganglion cells tuned to spot stimuli.

    Science.gov (United States)

    Ghahari, Alireza; Badea, Tudor C

    2016-08-01

    We propose an automatic spike sorting approach for the data recorded from a microelectrode array during visual stimulation of wild type retinas with tiled spot stimuli. The approach first detects individual spikes per electrode by their signature local minima. With the mixture probability distribution of the local minima estimated afterwards, it applies a minimum-squared-error clustering algorithm to sort the spikes into different clusters. A template waveform for each cluster per electrode is defined, and a number of reliability tests are performed on it and its corresponding spikes. Finally, a divisive hierarchical clustering algorithm is used to deal with the correlated templates per cluster type across all the electrodes. According to the measures of performance of the spike sorting approach, it is robust even in the cases of recordings with low signal-to-noise ratio.

  9. Automatic fault extraction using a modified ant-colony algorithm

    International Nuclear Information System (INIS)

    Zhao, Junsheng; Sun, Sam Zandong

    2013-01-01

    The basis of automatic fault extraction is seismic attributes, such as the coherence cube which is always used to identify a fault by the minimum value. The biggest challenge in automatic fault extraction is noise, including that of seismic data. However, a fault has a better spatial continuity in certain direction, which makes it quite different from noise. Considering this characteristic, a modified ant-colony algorithm is introduced into automatic fault identification and tracking, where the gradient direction and direction consistency are used as constraints. Numerical model test results show that this method is feasible and effective in automatic fault extraction and noise suppression. The application of field data further illustrates its validity and superiority. (paper)

  10. Drone noise

    Science.gov (United States)

    Tinney, Charles; Sirohi, Jayant; University of Texas at Austin Team

    2017-11-01

    A basic understanding of the noise produced by single and multirotor drones operating at static thrust conditions is presented. This work acts as an extension to previous efforts conducted at The University of Texas at Austin (Tinney et al. 2017, AHS Forum 73). Propeller diameters ranging from 8 inch to 12 inch are examined for configurations comprising an isolated rotor, a quadcopter configuration and a hexacopter configuration, and with a constant drone pitch of 2.25. An azimuthal array of half-inch microphones, placed between 2 and 3 hub-center diameters from the drone center, are used to assess the acoustic near-field. Thrust levels, acquired using a six degree-of-freedom load cell, are then used to correlate acoustic noise levels to aerodynamic performance for each drone configuration. The findings reveal a nearly logarithmic increase in noise with increasing thrust. However, for the same thrust condition, considerable noise reduction is achieved by increasing the number of propeller blades thereby reducing the blade passage frequency and both the thickness and loading noise sources that accompany it.

  11. Automatic liquid nitrogen feeding device

    International Nuclear Information System (INIS)

    Gillardeau, J.; Bona, F.; Dejachy, G.

    1963-01-01

    An automatic liquid nitrogen feeding device has been developed (and used) in the framework of corrosion tests realized with constantly renewed uranium hexafluoride. The issue was to feed liquid nitrogen to a large capacity metallic trap in order to condensate uranium hexafluoride at the exit of the corrosion chambers. After having studied various available devices, a feeding device has been specifically designed to be robust, secure and autonomous, as well as ensuring a high liquid nitrogen flowrate and a highly elevated feeding frequency. The device, made of standard material, has been used during 4000 hours without any problem [fr

  12. Improved Robustness and Efficiency for Automatic Visual Site Monitoring

    Science.gov (United States)

    2009-09-01

    detection from a moving vehicle. In ECCV, pages 37–49, 2000. 36, 91, 158 [37] Andrew Gelman , John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data...luggage items in a public space. In PETS Workshop, pages 75–82. IEEE, 2006. 180, 192 [98] Juan Soulie. C++ language tutorial: Arrays. World Wide Web

  13. Automatically identifying scatter in fluorescence data using robust techniques

    DEFF Research Database (Denmark)

    Engelen, S.; Frosch, Stina; Hubert, M.

    2007-01-01

    as input data for three different PARAFAC methods. Firstly inserting missing values in the scatter regions are tested, secondly an interpolation of the scatter regions is performed and finally the scatter regions are down-weighted. These results show that the PARAFAC method to choose after scatter...

  14. Pavement noise measurements in Poland

    Science.gov (United States)

    Zofka, Ewa; Zofka, Adam; Mechowski, Tomasz

    2017-09-01

    The objective of this study is to investigate the feasibility of the On-Board Sound Intensity (OBSI) system to measure tire-pavement noise in Poland. In general, sources of noise emitted by the modern vehicles are the propulsion noise, aerodynamic resistance and noise generated at the tire-pavement interface. In order to capture tire-pavement noise, the OBSI system uses a noise intensity probe installed in the close proximity of that interface. In this study, OBSI measurements were performed at different types of pavement surfaces such as stone mastic asphalt (SMA), regular asphalt concrete (HMA) as well as Portland cement concrete (PCC). The influence of several necessary OBSI measurement conditions were recognized as: testing speed, air temperature, tire pressure and tire type. The results of this study demonstrate that the OBSI system is a viable and robust tool that can be used for the quality evaluation of newly built asphalt pavements in Poland. It can be also applied to generate reliable input parameters for the noise propagation models that are used to assess the environmental impact of new and existing highway corridors.

  15. Noise and vibration analysis system

    International Nuclear Information System (INIS)

    Johnsen, J.R.; Williams, R.L.

    1985-01-01

    The analysis of noise and vibration data from an operating nuclear plant can provide valuable information that can identify and characterize abnormal conditions. Existing plant monitoring equipment, such as loose parts monitoring systems (LPMS) and neutron flux detectors, may be capable of gathering noise data, but may lack the analytical capability to extract useful meanings hidden in the noise. By analyzing neutron noise signals, the structural motion and integrity of core components can be assessed. Computer analysis makes trending of frequency spectra within a fuel cycle and from one cycle to another a practical means of core internals monitoring. The Babcock and Wilcox Noise and Vibration Analysis System (NVAS) is a powerful, compact system that can automatically perform complex data analysis. The system can acquire, process, and store data, then produce report-quality plots of the important parameter. Software to perform neutron noise analysis and loose parts analysis operates on the same hardware package. Since the system is compact, inexpensive, and easy to operate, it allows utilities to perform more frequency analyses without incurring high costs and provides immediate results

  16. Training shortest-path tractography: Automatic learning of spatial priors

    DEFF Research Database (Denmark)

    Kasenburg, Niklas; Liptrot, Matthew George; Reislev, Nina Linde

    2016-01-01

    Tractography is the standard tool for automatic delineation of white matter tracts from diffusion weighted images. However, the output of tractography often requires post-processing to remove false positives and ensure a robust delineation of the studied tract, and this demands expert prior...... knowledge. Here we demonstrate how such prior knowledge, or indeed any prior spatial information, can be automatically incorporated into a shortest-path tractography approach to produce more robust results. We describe how such a prior can be automatically generated (learned) from a population, and we...

  17. Phase noise of dispersion-managed solitons

    International Nuclear Information System (INIS)

    Spiller, Elaine T.; Biondini, Gino

    2009-01-01

    We quantify noise-induced phase deviations of dispersion-managed solitons (DMS) in optical fiber communications and femtosecond lasers. We first develop a perturbation theory for the dispersion-managed nonlinear Schroedinger equation (DMNLSE) in order to compute the noise-induced mean and variance of the soliton parameters. We then use the analytical results to guide importance-sampled Monte Carlo simulations of the noise-driven DMNLSE. Comparison of these results with those from the original unaveraged governing equations confirms the validity of the DMNLSE as a model for many dispersion-managed systems and quantify the increased robustness of DMS with respect to noise-induced phase jitter.

  18. Perceptual Robust Design

    DEFF Research Database (Denmark)

    Pedersen, Søren Nygaard

    The research presented in this PhD thesis has focused on a perceptual approach to robust design. The results of the research and the original contribution to knowledge is a preliminary framework for understanding, positioning, and applying perceptual robust design. Product quality is a topic...... been presented. Therefore, this study set out to contribute to the understanding and application of perceptual robust design. To achieve this, a state-of-the-art and current practice review was performed. From the review two main research problems were identified. Firstly, a lack of tools...... for perceptual robustness was found to overlap with the optimum for functional robustness and at most approximately 2.2% out of the 14.74% could be ascribed solely to the perceptual robustness optimisation. In conclusion, the thesis have offered a new perspective on robust design by merging robust design...

  19. Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies

    Directory of Open Access Journals (Sweden)

    David J Clark

    2015-05-01

    Full Text Available Automaticity is a hallmark feature of walking in adults who are healthy and well-functioning. In the context of walking, ‘automaticity’ refers to the ability of the nervous system to successfully control typical steady state walking with minimal use of attention-demanding executive control resources. Converging lines of evidence indicate that walking deficits and disorders are characterized in part by a shift in the locomotor control strategy from healthy automaticity to compensatory executive control. This is potentially detrimental to walking performance, as an executive control strategy is not optimized for locomotor control. Furthermore, it places excessive demands on a limited pool of executive reserves. The result is compromised ability to perform basic and complex walking tasks and heightened risk for adverse mobility outcomes including falls. Strategies for rehabilitation of automaticity are not well defined, which is due to both a lack of systematic research into the causes of impaired automaticity and to a lack of robust neurophysiological assessments by which to gauge automaticity. These gaps in knowledge are concerning given the serious functional implications of compromised automaticity. Therefore, the objective of this article is to advance the science of automaticity of walking by consolidating evidence and identifying gaps in knowledge regarding: a functional significance of automaticity; b neurophysiology of automaticity; c measurement of automaticity; d mechanistic factors that compromise automaticity; and e strategies for rehabilitation of automaticity.

  20. A Robust Parallel Algorithm for Combinatorial Compressed Sensing

    Science.gov (United States)

    Mendoza-Smith, Rodrigo; Tanner, Jared W.; Wechsung, Florian

    2018-04-01

    In previous work two of the authors have shown that a vector $x \\in \\mathbb{R}^n$ with at most $k Parallel-$\\ell_0$ decoding algorithm, where $\\mathrm{nnz}(A)$ denotes the number of nonzero entries in $A \\in \\mathbb{R}^{m \\times n}$. In this paper we present the Robust-$\\ell_0$ decoding algorithm, which robustifies Parallel-$\\ell_0$ when the sketch $Ax$ is corrupted by additive noise. This robustness is achieved by approximating the asymptotic posterior distribution of values in the sketch given its corrupted measurements. We provide analytic expressions that approximate these posteriors under the assumptions that the nonzero entries in the signal and the noise are drawn from continuous distributions. Numerical experiments presented show that Robust-$\\ell_0$ is superior to existing greedy and combinatorial compressed sensing algorithms in the presence of small to moderate signal-to-noise ratios in the setting of Gaussian signals and Gaussian additive noise.

  1. Robustness of Populations in Stochastic Environments

    DEFF Research Database (Denmark)

    Gießen, Christian; Kötzing, Timo

    2016-01-01

    We consider stochastic versions of OneMax and LeadingOnes and analyze the performance of evolutionary algorithms with and without populations on these problems. It is known that the (1+1) EA on OneMax performs well in the presence of very small noise, but poorly for higher noise levels. We extend...... the abilities of the (1+1) EA. Larger population sizes are even more beneficial; we consider both parent and offspring populations. In this sense, populations are robust in these stochastic settings....

  2. Hybrid model decomposition of speech and noise in a radial basis function neural model framework

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Hartmann, Uwe

    1994-01-01

    The aim of the paper is to focus on a new approach to automatic speech recognition in noisy environments where the noise has either stationary or non-stationary statistical characteristics. The aim is to perform automatic recognition of speech in the presence of additive car noise. The technique...

  3. Robustness of Structural Systems

    DEFF Research Database (Denmark)

    Canisius, T.D.G.; Sørensen, John Dalsgaard; Baker, J.W.

    2007-01-01

    The importance of robustness as a property of structural systems has been recognised following several structural failures, such as that at Ronan Point in 1968,where the consequenceswere deemed unacceptable relative to the initiating damage. A variety of research efforts in the past decades have...... attempted to quantify aspects of robustness such as redundancy and identify design principles that can improve robustness. This paper outlines the progress of recent work by the Joint Committee on Structural Safety (JCSS) to develop comprehensive guidance on assessing and providing robustness in structural...... systems. Guidance is provided regarding the assessment of robustness in a framework that considers potential hazards to the system, vulnerability of system components, and failure consequences. Several proposed methods for quantifying robustness are reviewed, and guidelines for robust design...

  4. Robust multivariate analysis

    CERN Document Server

    J Olive, David

    2017-01-01

    This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given.  The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory.   The robust techniques  are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis.  A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with...

  5. Robust-mode analysis of hydrodynamic flows

    Science.gov (United States)

    Roy, Sukesh; Gord, James R.; Hua, Jia-Chen; Gunaratne, Gemunu H.

    2017-04-01

    The emergence of techniques to extract high-frequency high-resolution data introduces a new avenue for modal decomposition to assess the underlying dynamics, especially of complex flows. However, this task requires the differentiation of robust, repeatable flow constituents from noise and other irregular features of a flow. Traditional approaches involving low-pass filtering and principle components analysis have shortcomings. The approach outlined here, referred to as robust-mode analysis, is based on Koopman decomposition. Three applications to (a) a counter-rotating cellular flame state, (b) variations in financial markets, and (c) turbulent injector flows are provided.

  6. Finding weak points automatically

    International Nuclear Information System (INIS)

    Archinger, P.; Wassenberg, M.

    1999-01-01

    Operators of nuclear power stations have to carry out material tests at selected components by regular intervalls. Therefore a full automaticated test, which achieves a clearly higher reproducibility, compared to part automaticated variations, would provide a solution. In addition the full automaticated test reduces the dose of radiation for the test person. (orig.) [de

  7. Noise-driven manifestation of learning in mature neural networks

    International Nuclear Information System (INIS)

    Monterola, Christopher; Saloma, Caesar

    2002-01-01

    We show that the generalization capability of a mature thresholding neural network to process above-threshold disturbances in a noise-free environment is extended to subthreshold disturbances by ambient noise without retraining. The ability to benefit from noise is intrinsic and does not have to be learned separately. Nonlinear dependence of sensitivity with noise strength is significantly narrower than in individual threshold systems. Noise has a minimal effect on network performance for above-threshold signals. We resolve two seemingly contradictory responses of trained networks to noise--their ability to benefit from its presence and their robustness against noisy strong disturbances

  8. Track filtering by robust neural network

    International Nuclear Information System (INIS)

    Baginyan, S.A.; Kisel', I.V.; Konotopskaya, E.V.; Ososkov, G.A.

    1993-01-01

    In the present paper we study the following problems of track information extraction by the artificial neural network (ANN) rotor model: providing initial ANN configuration by an algorithm general enough to be applicable for any discrete detector in- or out of a magnetic field; robustness to heavy contaminated raw data (up to 100% signal-to-noise ratio); stability to the growing event multiplicity. These problems were carried out by corresponding innovations of our model, namely: by a special one-dimensional histogramming, by multiplying weights by a specially designed robust multiplier, and by replacing the simulated annealing schedule by ANN dynamics with an optimally fixed temperature. Our approach is valid for both circular and straight (non-magnetic) tracks and tested on 2D simulated data contaminated by 100% noise points distributed uniformly. To be closer to some reality in our simulation, we keep parameters of the cylindrical spectrometer ARES. 12 refs.; 9 figs

  9. Robust non-local median filter

    Science.gov (United States)

    Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji

    2017-04-01

    This paper describes a novel image filter with superior performance on detail-preserving removal of random-valued impulse noise superimposed on natural gray-scale images. The non-local means filter is in the limelight as a way of Gaussian noise removal with superior performance on detail preservation. By referring the fundamental concept of the non-local means, we had proposed a non-local median filter as a specialized way for random-valued impulse noise removal so far. In the non-local processing, the output of a filter is calculated from pixels in blocks which are similar to the block centered at a pixel of interest. As a result, aggressive noise removal is conducted without destroying the detailed structures in an original image. However, the performance of non-local processing decreases enormously in the case of high noise occurrence probability. A cause of this problem is that the superimposed noise disturbs accurate calculation of the similarity between the blocks. To cope with this problem, we propose an improved non-local median filter which is robust to the high level of corruption by introducing a new similarity measure considering possibility of being the original signal. The effectiveness and validity of the proposed method are verified in a series of experiments using natural gray-scale images.

  10. Robust Object Tracking Using Valid Fragments Selection.

    Science.gov (United States)

    Zheng, Jin; Li, Bo; Tian, Peng; Luo, Gang

    Local features are widely used in visual tracking to improve robustness in cases of partial occlusion, deformation and rotation. This paper proposes a local fragment-based object tracking algorithm. Unlike many existing fragment-based algorithms that allocate the weights to each fragment, this method firstly defines discrimination and uniqueness for local fragment, and builds an automatic pre-selection of useful fragments for tracking. Then, a Harris-SIFT filter is used to choose the current valid fragments, excluding occluded or highly deformed fragments. Based on those valid fragments, fragment-based color histogram provides a structured and effective description for the object. Finally, the object is tracked using a valid fragment template combining the displacement constraint and similarity of each valid fragment. The object template is updated by fusing feature similarity and valid fragments, which is scale-adaptive and robust to partial occlusion. The experimental results show that the proposed algorithm is accurate and robust in challenging scenarios.

  11. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  12. Robust gates for holonomic quantum computation

    International Nuclear Information System (INIS)

    Florio, Giuseppe; Pascazio, Saverio; Facchi, Paolo; Fazio, Rosario; Giovannetti, Vittorio

    2006-01-01

    Non-Abelian geometric phases are attracting increasing interest because of possible experimental application in quantum computation. We study the effects of the environment (modeled as an ensemble of harmonic oscillators) on a holonomic transformation and write the corresponding master equation. The solution is analytically and numerically investigated and the behavior of the fidelity analyzed: fidelity revivals are observed and an optimal finite operation time is determined at which the gate is most robust against noise

  13. Robustness of Structures

    DEFF Research Database (Denmark)

    Faber, Michael Havbro; Vrouwenvelder, A.C.W.M.; Sørensen, John Dalsgaard

    2011-01-01

    In 2005, the Joint Committee on Structural Safety (JCSS) together with Working Commission (WC) 1 of the International Association of Bridge and Structural Engineering (IABSE) organized a workshop on robustness of structures. Two important decisions resulted from this workshop, namely...... ‘COST TU0601: Robustness of Structures’ was initiated in February 2007, aiming to provide a platform for exchanging and promoting research in the area of structural robustness and to provide a basic framework, together with methods, strategies and guidelines enhancing robustness of structures...... the development of a joint European project on structural robustness under the COST (European Cooperation in Science and Technology) programme and the decision to develop a more elaborate document on structural robustness in collaboration between experts from the JCSS and the IABSE. Accordingly, a project titled...

  14. Noise pollution resources compendium

    Science.gov (United States)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  15. Yesterday's noise - today's signal

    International Nuclear Information System (INIS)

    Serdula, K.J.

    1978-01-01

    Plant performance can be improved by noise analysis. This paper describes noise characteristics, imposed noise and response functions, a case history of cost benefits derived from application of noise analysis techniques, areas for application of noise analysis techniques with special reference to the Gentilly-1 nuclear generating station, and the validity of noise measurement results. (E.C.B.)

  16. Robust Growth Determinants

    OpenAIRE

    Doppelhofer, Gernot; Weeks, Melvyn

    2011-01-01

    This paper investigates the robustness of determinants of economic growth in the presence of model uncertainty, parameter heterogeneity and outliers. The robust model averaging approach introduced in the paper uses a flexible and parsi- monious mixture modeling that allows for fat-tailed errors compared to the normal benchmark case. Applying robust model averaging to growth determinants, the paper finds that eight out of eighteen variables found to be significantly related to economic growth ...

  17. Robust Programming by Example

    OpenAIRE

    Bishop , Matt; Elliott , Chip

    2011-01-01

    Part 2: WISE 7; International audience; Robust programming lies at the heart of the type of coding called “secure programming”. Yet it is rarely taught in academia. More commonly, the focus is on how to avoid creating well-known vulnerabilities. While important, that misses the point: a well-structured, robust program should anticipate where problems might arise and compensate for them. This paper discusses one view of robust programming and gives an example of how it may be taught.

  18. Automatic system for 3D reconstruction of the chick eye based on digital photographs.

    Science.gov (United States)

    Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L

    2012-01-01

    The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA.

  19. Automatic document navigation for digital content remastering

    Science.gov (United States)

    Lin, Xiaofan; Simske, Steven J.

    2003-12-01

    This paper presents a novel method of automatically adding navigation capabilities to re-mastered electronic books. We first analyze the need for a generic and robust system to automatically construct navigation links into re-mastered books. We then introduce the core algorithm based on text matching for building the links. The proposed method utilizes the tree-structured dictionary and directional graph of the table of contents to efficiently conduct the text matching. Information fusion further increases the robustness of the algorithm. The experimental results on the MIT Press digital library project are discussed and the key functional features of the system are illustrated. We have also investigated how the quality of the OCR engine affects the linking algorithm. In addition, the analogy between this work and Web link mining has been pointed out.

  20. Robust distributed cognitive relay beamforming

    KAUST Repository

    Pandarakkottilil, Ubaidulla

    2012-05-01

    In this paper, we present a distributed relay beamformer design for a cognitive radio network in which a cognitive (or secondary) transmit node communicates with a secondary receive node assisted by a set of cognitive non-regenerative relays. The secondary nodes share the spectrum with a licensed primary user (PU) node, and each node is assumed to be equipped with a single transmit/receive antenna. The interference to the PU resulting from the transmission from the cognitive nodes is kept below a specified limit. The proposed robust cognitive relay beamformer design seeks to minimize the total relay transmit power while ensuring that the transceiver signal-to-interference- plus-noise ratio and PU interference constraints are satisfied. The proposed design takes into account a parameter of the error in the channel state information (CSI) to render the performance of the beamformer robust in the presence of imperfect CSI. Though the original problem is non-convex, we show that the proposed design can be reformulated as a tractable convex optimization problem that can be solved efficiently. Numerical results are provided and illustrate the performance of the proposed designs for different network operating conditions and parameters. © 2012 IEEE.

  1. Quantum Noise

    International Nuclear Information System (INIS)

    Beenakker, C W J

    2005-01-01

    Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schroedinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The

  2. Robust signal extraction for on-line monitoring data

    NARCIS (Netherlands)

    Davies, P.L.; Fried, R.; Gather, U.

    2004-01-01

    Data from the automatic monitoring of intensive care patients exhibits trends, outliers, and level changes as well as periods of relative constancy. All this is overlaid with a high level of noise and there are dependencies between the different items measured. Current monitoring systems tend to

  3. Robust procedures in chemometrics

    DEFF Research Database (Denmark)

    Kotwa, Ewelina

    properties of the analysed data. The broad theoretical background of robust procedures was given as a very useful supplement to the classical methods, and a new tool, based on robust PCA, aiming at identifying Rayleigh and Raman scatters in excitation-mission (EEM) data was developed. The results show...

  4. On the robustness of EC-PC spike detection method for online neural recording.

    Science.gov (United States)

    Zhou, Yin; Wu, Tong; Rastegarnia, Amir; Guan, Cuntai; Keefer, Edward; Yang, Zhi

    2014-09-30

    Online spike detection is an important step to compress neural data and perform real-time neural information decoding. An unsupervised, automatic, yet robust signal processing is strongly desired, thus it can support a wide range of applications. We have developed a novel spike detection algorithm called "exponential component-polynomial component" (EC-PC) spike detection. We firstly evaluate the robustness of the EC-PC spike detector under different firing rates and SNRs. Secondly, we show that the detection Precision can be quantitatively derived without requiring additional user input parameters. We have realized the algorithm (including training) into a 0.13 μm CMOS chip, where an unsupervised, nonparametric operation has been demonstrated. Both simulated data and real data are used to evaluate the method under different firing rates (FRs), SNRs. The results show that the EC-PC spike detector is the most robust in comparison with some popular detectors. Moreover, the EC-PC detector can track changes in the background noise due to the ability to re-estimate the neural data distribution. Both real and synthesized data have been used for testing the proposed algorithm in comparison with other methods, including the absolute thresholding detector (AT), median absolute deviation detector (MAD), nonlinear energy operator detector (NEO), and continuous wavelet detector (CWD). Comparative testing results reveals that the EP-PC detection algorithm performs better than the other algorithms regardless of recording conditions. The EC-PC spike detector can be considered as an unsupervised and robust online spike detection. It is also suitable for hardware implementation. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Quaternion Wiener Deconvolution for Noise Robust Color Image Registration

    Czech Academy of Sciences Publication Activity Database

    Pedone, M.; Bayro-Corrochano, E.; Flusser, Jan; Heikkilä, J.

    2015-01-01

    Roč. 22, č. 9 (2015), s. 1278-1282 ISSN 1070-9908 R&D Projects: GA ČR GA13-29225S Keywords : Clifford algebra * multivector derivative * phase correlation * quaternion * Wiener filter Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.661, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0441249.pdf

  6. Automatic Photoelectric Telescope Service

    International Nuclear Information System (INIS)

    Genet, R.M.; Boyd, L.J.; Kissell, K.E.; Crawford, D.L.; Hall, D.S.; BDM Corp., McLean, VA; Kitt Peak National Observatory, Tucson, AZ; Dyer Observatory, Nashville, TN)

    1987-01-01

    Automatic observatories have the potential of gathering sizable amounts of high-quality astronomical data at low cost. The Automatic Photoelectric Telescope Service (APT Service) has realized this potential and is routinely making photometric observations of a large number of variable stars. However, without observers to provide on-site monitoring, it was necessary to incorporate special quality checks into the operation of the APT Service at its multiple automatic telescope installation on Mount Hopkins. 18 references

  7. Automatic Fiscal Stabilizers

    Directory of Open Access Journals (Sweden)

    Narcis Eduard Mitu

    2013-11-01

    Full Text Available Policies or institutions (built into an economic system that automatically tend to dampen economic cycle fluctuations in income, employment, etc., without direct government intervention. For example, in boom times, progressive income tax automatically reduces money supply as incomes and spendings rise. Similarly, in recessionary times, payment of unemployment benefits injects more money in the system and stimulates demand. Also called automatic stabilizers or built-in stabilizers.

  8. A low noise clock generator for high-resolution time-to-digital convertors

    International Nuclear Information System (INIS)

    Prinzie, J.; Leroux, P.; Christiaensen, J.; Moreira, P.; Steyaert, M.

    2016-01-01

    A robust PLL clock generator has been designed for the harsh environment in high-energy physics applications. The PLL operates with a reference clock frequency of 40 MHz to 50 MHz and performs a multiplication by 64. An LC tank VCO with low internal phase noise can generate a frequency from 2.2 GHz up to 3.2 GHz with internal discrete bank switching. The PLL includes an automatic bank selection algorithm to correctly select the correct range of the oscillator. The PLL has been fabricated in a 65 nm CMOS technology and consumes less than 30 mW. The additive jitter of the PLL has been measured to be less than 400 fs RMS

  9. Automatic differentiation bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, G.F. [comp.

    1992-07-01

    This is a bibliography of work related to automatic differentiation. Automatic differentiation is a technique for the fast, accurate propagation of derivative values using the chain rule. It is neither symbolic nor numeric. Automatic differentiation is a fundamental tool for scientific computation, with applications in optimization, nonlinear equations, nonlinear least squares approximation, stiff ordinary differential equation, partial differential equations, continuation methods, and sensitivity analysis. This report is an updated version of the bibliography which originally appeared in Automatic Differentiation of Algorithms: Theory, Implementation, and Application.

  10. Design optimization for cost and quality: The robust design approach

    Science.gov (United States)

    Unal, Resit

    1990-01-01

    Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process.

  11. Robust stability analysis of adaptation algorithms for single perceptron.

    Science.gov (United States)

    Hui, S; Zak, S H

    1991-01-01

    The problem of robust stability and convergence of learning parameters of adaptation algorithms in a noisy environment for the single preceptron is addressed. The case in which the same input pattern is presented in the adaptation cycle is analyzed. The algorithm proposed is of the Widrow-Hoff type. It is concluded that this algorithm is robust. However, the weight vectors do not necessarily converge in the presence of measurement noise. A modified version of this algorithm in which the reduction factors are allowed to vary with time is proposed, and it is shown that this algorithm is robust and that the weight vectors converge in the presence of bounded noise. Only deterministic-type arguments are used in the analysis. An ultimate bound on the error in terms of a convex combination of the initial error and the bound on the noise is obtained.

  12. Noise thermometer

    Energy Technology Data Exchange (ETDEWEB)

    Von Brixy, H. [Forschungszentrum Juelich GmbH (Germany); Kakuta, Tsunemi

    1996-03-01

    The noise thermometry (NT) is a temperature measuring method by which the absolute temperature measurement can be performed with a very high accuracy and without any influence of ambient environments and of the thermal history of its NT sensor (electric resistor). Hence it is quite suitable for application as a standard thermometry to the in-situ temperature calibration of incore thermocouples. The KFA Juelich had played a pioneering role in the development of NT and applied the results successfully to the AVR for testing its feasibility. In this report, all about the NT including its principle, sensor elements and system configurations are presented together with the experiences in the AVR and the results of investigation to apply it to high temperature measurement. The NT can be adopted as a standard method for incore temperature measurement and in situ temperature calibration in the HTTR. (author). 85 refs.

  13. Noise thermometer

    International Nuclear Information System (INIS)

    Von Brixy, H.; Kakuta, Tsunemi.

    1996-03-01

    The noise thermometry (NT) is a temperature measuring method by which the absolute temperature measurement can be performed with a very high accuracy and without any influence of ambient environments and of the thermal history of its NT sensor (electric resistor). Hence it is quite suitable for application as a standard thermometry to the in-situ temperature calibration of incore thermocouples. The KFA Juelich had played a pioneering role in the development of NT and applied the results successfully to the AVR for testing its feasibility. In this report, all about the NT including its principle, sensor elements and system configurations are presented together with the experiences in the AVR and the results of investigation to apply it to high temperature measurement. The NT can be adopted as a standard method for incore temperature measurement and in situ temperature calibration in the HTTR. (author). 85 refs

  14. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    Science.gov (United States)

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.

  15. Noise level and MPEG-2 encoder statistics

    Science.gov (United States)

    Lee, Jungwoo

    1997-01-01

    Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.

  16. Noise-driven phenomena in hysteretic systems

    CERN Document Server

    Dimian, Mihai

    2014-01-01

    Noise-Driven Phenomena in Hysteretic Systems provides a general approach to nonlinear systems with hysteresis driven by noisy inputs, which leads to a unitary framework for the analysis of various stochastic aspects of hysteresis. This book includes integral, differential and algebraic models that are used to describe scalar and vector hysteretic nonlinearities originating from various areas of science and engineering. The universality of the authors approach is also reflected by the diversity of the models used to portray the input noise, from the classical Gaussian white noise to its impulsive forms, often encountered in economics and biological systems, and pink noise, ubiquitous in multi-stable electronic systems. The book is accompanied by HysterSoft© - a robust simulation environment designed to perform complex hysteresis modeling – that can be used by the reader to reproduce many of the results presented in the book as well as to research both disruptive and constructive effects of noise in hysteret...

  17. Brain MR Image Restoration Using an Automatic Trilateral Filter With GPU-Based Acceleration.

    Science.gov (United States)

    Chang, Herng-Hua; Li, Cheng-Yuan; Gallogly, Audrey Haihong

    2018-02-01

    Noise reduction in brain magnetic resonance (MR) images has been a challenging and demanding task. This study develops a new trilateral filter that aims to achieve robust and efficient image restoration. Extended from the bilateral filter, the proposed algorithm contains one additional intensity similarity funct-ion, which compensates for the unique characteristics of noise in brain MR images. An entropy function adaptive to intensity variations is introduced to regulate the contributions of the weighting components. To hasten the computation, parallel computing based on the graphics processing unit (GPU) strategy is explored with emphasis on memory allocations and thread distributions. To automate the filtration, image texture feature analysis associated with machine learning is investigated. Among the 98 candidate features, the sequential forward floating selection scheme is employed to acquire the optimal texture features for regularization. Subsequently, a two-stage classifier that consists of support vector machines and artificial neural networks is established to predict the filter parameters for automation. A speedup gain of 757 was reached to process an entire MR image volume of 256 × 256 × 256 pixels, which completed within 0.5 s. Automatic restoration results revealed high accuracy with an ensemble average relative error of 0.53 ± 0.85% in terms of the peak signal-to-noise ratio. This self-regulating trilateral filter outperformed many state-of-the-art noise reduction methods both qualitatively and quantitatively. We believe that this new image restoration algorithm is of potential in many brain MR image processing applications that require expedition and automation.

  18. Robustness Beamforming Algorithms

    Directory of Open Access Journals (Sweden)

    Sajad Dehghani

    2014-04-01

    Full Text Available Adaptive beamforming methods are known to degrade in the presence of steering vector and covariance matrix uncertinity. In this paper, a new approach is presented to robust adaptive minimum variance distortionless response beamforming make robust against both uncertainties in steering vector and covariance matrix. This method minimize a optimization problem that contains a quadratic objective function and a quadratic constraint. The optimization problem is nonconvex but is converted to a convex optimization problem in this paper. It is solved by the interior-point method and optimum weight vector to robust beamforming is achieved.

  19. Automatic delineation of functional volumes in emission tomography for oncology applications

    International Nuclear Information System (INIS)

    Hatt, M.

    2008-12-01

    One of the main factors of error for semi-quantitative analysis in positron emission tomography (PET) imaging for diagnosis and patient follow up, as well as new flourishing applications like image guided radiotherapy, is the methodology used to define the volumes of interest in the functional images. This is explained by poor image quality in emission tomography resulting from noise and partial volume effects induced blurring, as well as the variability of acquisition protocols, scanner models and image reconstruction procedures. The large number of proposed methodologies for the definition of a PET volume of interest does not help either. The majority of such proposed approaches are based on deterministic binary thresholding that are not robust to contrast variation and noise. In addition, these methodologies are usually unable to correctly handle heterogeneous uptake inside tumours. The objective of this thesis is to develop an automatic, robust, accurate and reproducible 3D image segmentation approach for the functional volumes determination of tumours of all sizes and shapes, and whose activity distribution may be strongly heterogeneous. The approach we have developed is based on a statistical image segmentation framework, combined with a fuzzy measure, which allows to take into account both noisy and blurry properties of nuclear medicine images. It uses a stochastic iterative parameters estimation and a locally adaptive model of the voxel and its neighbours for the estimation and segmentation. The developed approaches have been evaluated using a large array of datasets, comprising both simulated and real acquisitions of phantoms and tumours. The results obtained on phantom acquisitions allowed to validate the accuracy of the segmentation with respect to the size of considered structures, down to 13 mm in diameter (about twice the spatial resolution of a typical PET scanner), as well as its robustness with respect to noise, contrast variation, acquisition

  20. Neural Bases of Automaticity

    Science.gov (United States)

    Servant, Mathieu; Cassey, Peter; Woodman, Geoffrey F.; Logan, Gordon D.

    2018-01-01

    Automaticity allows us to perform tasks in a fast, efficient, and effortless manner after sufficient practice. Theories of automaticity propose that across practice processing transitions from being controlled by working memory to being controlled by long-term memory retrieval. Recent event-related potential (ERP) studies have sought to test this…

  1. Automatic control systems engineering

    International Nuclear Information System (INIS)

    Shin, Yun Gi

    2004-01-01

    This book gives descriptions of automatic control for electrical electronics, which indicates history of automatic control, Laplace transform, block diagram and signal flow diagram, electrometer, linearization of system, space of situation, state space analysis of electric system, sensor, hydro controlling system, stability, time response of linear dynamic system, conception of root locus, procedure to draw root locus, frequency response, and design of control system.

  2. Automatic Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Preuss, Mike

    2014-01-01

    Automatically generating computer animations is a challenging and complex problem with applications in games and film production. In this paper, we investigate howto translate a shot list for a virtual scene into a series of virtual camera configurations — i.e automatically controlling the virtual...

  3. Automatic differentiation of functions

    International Nuclear Information System (INIS)

    Douglas, S.R.

    1990-06-01

    Automatic differentiation is a method of computing derivatives of functions to any order in any number of variables. The functions must be expressible as combinations of elementary functions. When evaluated at specific numerical points, the derivatives have no truncation error and are automatically found. The method is illustrated by simple examples. Source code in FORTRAN is provided

  4. Robustness Metrics: Consolidating the multiple approaches to quantify Robustness

    DEFF Research Database (Denmark)

    Göhler, Simon Moritz; Eifler, Tobias; Howard, Thomas J.

    2016-01-01

    robustness metrics; 3) Functional expectancy and dispersion robustness metrics; and 4) Probability of conformance robustness metrics. The goal was to give a comprehensive overview of robustness metrics and guidance to scholars and practitioners to understand the different types of robustness metrics...

  5. Robustness of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2008-01-01

    This paper describes the background of the robustness requirements implemented in the Danish Code of Practice for Safety of Structures and in the Danish National Annex to the Eurocode 0, see (DS-INF 146, 2003), (DS 409, 2006), (EN 1990 DK NA, 2007) and (Sørensen and Christensen, 2006). More...... frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new structures essential....... According to Danish design rules robustness shall be documented for all structures in high consequence class. The design procedure to document sufficient robustness consists of: 1) Review of loads and possible failure modes / scenarios and determination of acceptable collapse extent; 2) Review...

  6. Robustness of structures

    DEFF Research Database (Denmark)

    Vrouwenvelder, T.; Sørensen, John Dalsgaard

    2009-01-01

    After the collapse of the World Trade Centre towers in 2001 and a number of collapses of structural systems in the beginning of the century, robustness of structural systems has gained renewed interest. Despite many significant theoretical, methodical and technological advances, structural...... of robustness for structural design such requirements are not substantiated in more detail, nor have the engineering profession been able to agree on an interpretation of robustness which facilitates for its uantification. A European COST action TU 601 on ‘Robustness of structures' has started in 2007...... by a group of members of the CSS. This paper describes the ongoing work in this action, with emphasis on the development of a theoretical and risk based quantification and optimization procedure on the one side and a practical pre-normative guideline on the other....

  7. Automatic detection of ECG electrode misplacement: a tale of two algorithms

    International Nuclear Information System (INIS)

    Xia, Henian; Garcia, Gabriel A; Zhao, Xiaopeng

    2012-01-01

    Artifacts in an electrocardiogram (ECG) due to electrode misplacement can lead to wrong diagnoses. Various computer methods have been developed for automatic detection of electrode misplacement. Here we reviewed and compared the performance of two algorithms with the highest accuracies on several databases from PhysioNet. These algorithms were implemented into four models. For clean ECG records with clearly distinguishable waves, the best model produced excellent accuracies (> = 98.4%) for all misplacements except the LA/LL interchange (87.4%). However, the accuracies were significantly lower for records with noise and arrhythmias. Moreover, when the algorithms were tested on a database that was independent from the training database, the accuracies may be poor. For the worst scenario, the best accuracies for different types of misplacements ranged from 36.1% to 78.4%. A large number of ECGs of various qualities and pathological conditions are collected every day. To improve the quality of health care, the results of this paper call for more robust and accurate algorithms for automatic detection of electrode misplacement, which should be developed and tested using a database of extensive ECG records. (paper)

  8. Automatic fringe enhancement with novel bidimensional sinusoids-assisted empirical mode decomposition.

    Science.gov (United States)

    Wang, Chenxing; Kemao, Qian; Da, Feipeng

    2017-10-02

    Fringe-based optical measurement techniques require reliable fringe analysis methods, where empirical mode decomposition (EMD) is an outstanding one due to its ability of analyzing complex signals and the merit of being data-driven. However, two challenging issues hinder the application of EMD in practical measurement. One is the tricky mode mixing problem (MMP), making the decomposed intrinsic mode functions (IMFs) have equivocal physical meaning; the other is the automatic and accurate extraction of the sinusoidal fringe from the IMFs when unpredictable and unavoidable background and noise exist in real measurements. Accordingly, in this paper, a novel bidimensional sinusoids-assisted EMD (BSEMD) is proposed to decompose a fringe pattern into mono-component bidimensional IMFs (BIMFs), with the MMP solved; properties of the resulted BIMFs are then analyzed to recognize and enhance the useful fringe component. The decomposition and the fringe recognition are integrated and the latter provides a feedback to the former, helping to automatically stop the decomposition to make the algorithm simpler and more reliable. A series of experiments show that the proposed method is accurate, efficient and robust to various fringe patterns even with poor quality, rendering it a potential tool for practical use.

  9. Template-based automatic extraction of the joint space of foot bones from CT scan

    Science.gov (United States)

    Park, Eunbi; Kim, Taeho; Park, Jinah

    2016-03-01

    Clean bone segmentation is critical in studying the joint anatomy for measuring the spacing between the bones. However, separation of the coupled bones in CT images is sometimes difficult due to ambiguous gray values coming from the noise and the heterogeneity of bone materials as well as narrowing of the joint space. For fine reconstruction of the individual local boundaries, manual operation is a common practice where the segmentation remains to be a bottleneck. In this paper, we present an automatic method for extracting the joint space by applying graph cut on Markov random field model to the region of interest (ROI) which is identified by a template of 3D bone structures. The template includes encoded articular surface which identifies the tight region of the high-intensity bone boundaries together with the fuzzy joint area of interest. The localized shape information from the template model within the ROI effectively separates the bones nearby. By narrowing the ROI down to the region including two types of tissue, the object extraction problem was reduced to binary segmentation and solved via graph cut. Based on the shape of a joint space marked by the template, the hard constraint was set by the initial seeds which were automatically generated from thresholding and morphological operations. The performance and the robustness of the proposed method are evaluated on 12 volumes of ankle CT data, where each volume includes a set of 4 tarsal bones (calcaneus, talus, navicular and cuboid).

  10. Robust Approaches to Forecasting

    OpenAIRE

    Jennifer Castle; David Hendry; Michael P. Clements

    2014-01-01

    We investigate alternative robust approaches to forecasting, using a new class of robust devices, contrasted with equilibrium correction models. Their forecasting properties are derived facing a range of likely empirical problems at the forecast origin, including measurement errors, implulses, omitted variables, unanticipated location shifts and incorrectly included variables that experience a shift. We derive the resulting forecast biases and error variances, and indicate when the methods ar...

  11. Robustness - theoretical framework

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Rizzuto, Enrico; Faber, Michael H.

    2010-01-01

    More frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new struct...... of this fact sheet is to describe a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines....

  12. Qualitative Robustness in Estimation

    Directory of Open Access Journals (Sweden)

    Mohammed Nasser

    2012-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman","serif";} Qualitative robustness, influence function, and breakdown point are three main concepts to judge an estimator from the viewpoint of robust estimation. It is important as well as interesting to study relation among them. This article attempts to present the concept of qualitative robustness as forwarded by first proponents and its later development. It illustrates intricacies of qualitative robustness and its relation with consistency, and also tries to remove commonly believed misunderstandings about relation between influence function and qualitative robustness citing some examples from literature and providing a new counter-example. At the end it places a useful finite and a simulated version of   qualitative robustness index (QRI. In order to assess the performance of the proposed measures, we have compared fifteen estimators of correlation coefficient using simulated as well as real data sets.

  13. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  14. Noise and Hearing Protection

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Noise and Hearing Protection Noise and Hearing Protection Patient ... it is. How can I tell if a noise is dangerous? People differ in their sensitivity to ...

  15. Nonlinear Image Restoration in Confocal Microscopy : Stability under Noise

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1995-01-01

    In this paper we study the noise stability of iterative algorithms developed for attenuation correction in Fluorescence Confocal Microscopy using FT methods. In each iteration the convolution of the previous estimate is computed. It turns out that the estimators are robust to noise perturbation.

  16. Robust classification using mixtures of dependency networks

    DEFF Research Database (Denmark)

    Gámez, José A.; Mateo, Juan L.; Nielsen, Thomas Dyhre

    2008-01-01

    Dependency networks have previously been proposed as alternatives to e.g. Bayesian networks by supporting fast algorithms for automatic learning. Recently dependency networks have also been proposed as classification models, but as with e.g. general probabilistic inference, the reported speed......-ups are often obtained at the expense of accuracy. In this paper we try to address this issue through the use of mixtures of dependency networks. To reduce learning time and improve robustness when dealing with data sparse classes, we outline methods for reusing calculations across mixture components. Finally...

  17. An automatic microseismic or acoustic emission arrival identification scheme with deep recurrent neural networks

    Science.gov (United States)

    Zheng, Jing; Lu, Jiren; Peng, Suping; Jiang, Tianqi

    2018-02-01

    The conventional arrival pick-up algorithms cannot avoid the manual modification of the parameters for the simultaneous identification of multiple events under different signal-to-noise ratios (SNRs). Therefore, in order to automatically obtain the arrivals of multiple events with high precision under different SNRs, in this study an algorithm was proposed which had the ability to pick up the arrival of microseismic or acoustic emission events based on deep recurrent neural networks. The arrival identification was performed using two important steps, which included a training phase and a testing phase. The training process was mathematically modelled by deep recurrent neural networks using Long Short-Term Memory architecture. During the testing phase, the learned weights were utilized to identify the arrivals through the microseismic/acoustic emission data sets. The data sets were obtained by rock physics experiments of the acoustic emission. In order to obtain the data sets under different SNRs, this study added random noise to the raw experiments' data sets. The results showed that the outcome of the proposed method was able to attain an above 80 per cent hit-rate at SNR 0 dB, and an approximately 70 per cent hit-rate at SNR -5 dB, with an absolute error in 10 sampling points. These results indicated that the proposed method had high selection precision and robustness.

  18. FliPer: checking the reliability of global seismic parameters from automatic pipelines

    Science.gov (United States)

    Bugnet, L.; García, R. A.; Davies, G. R.; Mathur, S.; Corsaro, E.

    2017-12-01

    Our understanding of stars through asteroseismic data analysis is limited by our ability to take advantage of the huge amount of observed stars provided by space missions such as CoRoT, \\keplerp, \\ktop, and soon TESS and PLATO. Global seismic pipelines provide global stellar parameters such as mass and radius using the mean seismic parameters, as well as the effective temperature. These pipelines are commonly used automatically on thousands of stars observed by K2 for 3 months (and soon TESS for at least ˜ 1 month). However, pipelines are not immune from misidentifying noise peaks and stellar oscillations. Therefore, new validation techniques are required to assess the quality of these results. We present a new metric called FliPer (Flicker in Power), which takes into account the average variability at all measured time scales. The proper calibration of \\powvar enables us to obtain good estimations of global stellar parameters such as surface gravity that are robust against the influence of noise peaks and hence are an excellent way to find faults in asteroseismic pipelines.

  19. A robust nonlinear filter for image restoration.

    Science.gov (United States)

    Koivunen, V

    1995-01-01

    A class of nonlinear regression filters based on robust estimation theory is introduced. The goal of the filtering is to recover a high-quality image from degraded observations. Models for desired image structures and contaminating processes are employed, but deviations from strict assumptions are allowed since the assumptions on signal and noise are typically only approximately true. The robustness of filters is usually addressed only in a distributional sense, i.e., the actual error distribution deviates from the nominal one. In this paper, the robustness is considered in a broad sense since the outliers may also be due to inappropriate signal model, or there may be more than one statistical population present in the processing window, causing biased estimates. Two filtering algorithms minimizing a least trimmed squares criterion are provided. The design of the filters is simple since no scale parameters or context-dependent threshold values are required. Experimental results using both real and simulated data are presented. The filters effectively attenuate both impulsive and nonimpulsive noise while recovering the signal structure and preserving interesting details.

  20. Objective and subjective rating of tonal noise radiated from UK wind farms: Pt. 2

    International Nuclear Information System (INIS)

    1996-01-01

    This final report provides data on the assessment of tonal noise radiation from wind turbines in the United Kingdom. Both objective and subjective assessments of the noise pollution from various wind farms are incorporated in the study. Previous subjective tests are verified here using a larger subject and sample size compared to the initial study. The study also aims to produce an objective automatic tonal assessment procedure which identifies tones and broad band masking noise in wind farm radiated noise spectra. (UK)

  1. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.

    Science.gov (United States)

    Serra, Angela; Coretto, Pietro; Fratello, Michele; Tagliaferri, Roberto; Stegle, Oliver

    2018-02-15

    Microarray technology can be used to study the expression of thousands of genes across a number of different experimental conditions, usually hundreds. The underlying principle is that genes sharing similar expression patterns, across different samples, can be part of the same co-expression system, or they may share the same biological functions. Groups of genes are usually identified based on cluster analysis. Clustering methods rely on the similarity matrix between genes. A common choice to measure similarity is to compute the sample correlation matrix. Dimensionality reduction is another popular data analysis task which is also based on covariance/correlation matrix estimates. Unfortunately, covariance/correlation matrix estimation suffers from the intrinsic noise present in high-dimensional data. Sources of noise are: sampling variations, presents of outlying sample units, and the fact that in most cases the number of units is much larger than the number of genes. In this paper, we propose a robust correlation matrix estimator that is regularized based on adaptive thresholding. The resulting method jointly tames the effects of the high-dimensionality, and data contamination. Computations are easy to implement and do not require hand tunings. Both simulated and real data are analyzed. A Monte Carlo experiment shows that the proposed method is capable of remarkable performances. Our correlation metric is more robust to outliers compared with the existing alternatives in two gene expression datasets. It is also shown how the regularization allows to automatically detect and filter spurious correlations. The same regularization is also extended to other less robust correlation measures. Finally, we apply the ARACNE algorithm on the SyNTreN gene expression data. Sensitivity and specificity of the reconstructed network is compared with the gold standard. We show that ARACNE performs better when it takes the proposed correlation matrix estimator as input. The R

  2. Robustness in econometrics

    CERN Document Server

    Sriboonchitta, Songsak; Huynh, Van-Nam

    2017-01-01

    This book presents recent research on robustness in econometrics. Robust data processing techniques – i.e., techniques that yield results minimally affected by outliers – and their applications to real-life economic and financial situations are the main focus of this book. The book also discusses applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that uses mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. In day-by-day data, we often encounter outliers that do not reflect the long-term economic trends, e.g., unexpected and abrupt fluctuations. As such, it is important to develop robust data processing techniques that can accommodate these fluctuations.

  3. Robust Manufacturing Control

    CERN Document Server

    2013-01-01

    This contributed volume collects research papers, presented at the CIRP Sponsored Conference Robust Manufacturing Control: Innovative and Interdisciplinary Approaches for Global Networks (RoMaC 2012, Jacobs University, Bremen, Germany, June 18th-20th 2012). These research papers present the latest developments and new ideas focusing on robust manufacturing control for global networks. Today, Global Production Networks (i.e. the nexus of interconnected material and information flows through which products and services are manufactured, assembled and distributed) are confronted with and expected to adapt to: sudden and unpredictable large-scale changes of important parameters which are occurring more and more frequently, event propagation in networks with high degree of interconnectivity which leads to unforeseen fluctuations, and non-equilibrium states which increasingly characterize daily business. These multi-scale changes deeply influence logistic target achievement and call for robust planning and control ...

  4. Fully automatic and precise data analysis developed for time-of-flight mass spectrometry.

    Science.gov (United States)

    Meyer, Stefan; Riedo, Andreas; Neuland, Maike B; Tulej, Marek; Wurz, Peter

    2017-09-01

    Scientific objectives of current and future space missions are focused on the investigation of the origin and evolution of the solar system with the particular emphasis on habitability and signatures of past and present life. For in situ measurements of the chemical composition of solid samples on planetary surfaces, the neutral atmospheric gas and the thermal plasma of planetary atmospheres, the application of mass spectrometers making use of time-of-flight mass analysers is a technique widely used. However, such investigations imply measurements with good statistics and, thus, a large amount of data to be analysed. Therefore, faster and especially robust automated data analysis with enhanced accuracy is required. In this contribution, an automatic data analysis software, which allows fast and precise quantitative data analysis of time-of-flight mass spectrometric data, is presented and discussed in detail. A crucial part of this software is a robust and fast peak finding algorithm with a consecutive numerical integration method allowing precise data analysis. We tested our analysis software with data from different time-of-flight mass spectrometers and different measurement campaigns thereof. The quantitative analysis of isotopes, using automatic data analysis, yields results with an accuracy of isotope ratios up to 100 ppm for a signal-to-noise ratio (SNR) of 10 4 . We show that the accuracy of isotope ratios is in fact proportional to SNR -1 . Furthermore, we observe that the accuracy of isotope ratios is inversely proportional to the mass resolution. Additionally, we show that the accuracy of isotope ratios is depending on the sample width T s by T s 0.5 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Thai Automatic Speech Recognition

    National Research Council Canada - National Science Library

    Suebvisai, Sinaporn; Charoenpornsawat, Paisarn; Black, Alan; Woszczyna, Monika; Schultz, Tanja

    2005-01-01

    .... We focus on the discussion of the rapid deployment of ASR for Thai under limited time and data resources, including rapid data collection issues, acoustic model bootstrap, and automatic generation of pronunciations...

  6. Automatic Payroll Deposit System.

    Science.gov (United States)

    Davidson, D. B.

    1979-01-01

    The Automatic Payroll Deposit System in Yakima, Washington's Public School District No. 7, directly transmits each employee's salary amount for each pay period to a bank or other financial institution. (Author/MLF)

  7. Automatic Test Systems Aquisition

    National Research Council Canada - National Science Library

    1994-01-01

    We are providing this final memorandum report for your information and use. This report discusses the efforts to achieve commonality in standards among the Military Departments as part of the DoD policy for automatic test systems (ATS...

  8. Robust plasmonic substrates

    DEFF Research Database (Denmark)

    Kostiučenko, Oksana; Fiutowski, Jacek; Tamulevicius, Tomas

    2014-01-01

    Robustness is a key issue for the applications of plasmonic substrates such as tip-enhanced Raman spectroscopy, surface-enhanced spectroscopies, enhanced optical biosensing, optical and optoelectronic plasmonic nanosensors and others. A novel approach for the fabrication of robust plasmonic...... substrates is presented, which relies on the coverage of gold nanostructures with diamond-like carbon (DLC) thin films of thicknesses 25, 55 and 105 nm. DLC thin films were grown by direct hydrocarbon ion beam deposition. In order to find the optimum balance between optical and mechanical properties...

  9. Robust Self Tuning Controllers

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    1985-01-01

    The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...... has several operation modes and a detector for controlling the mode. A special self tuning controller has been developed to regulate plant with changing time delay.......The present thesis concerns robustness properties of adaptive controllers. It is addressed to methods for robustifying self tuning controllers with respect to abrupt changes in the plant parameters. In the thesis an algorithm for estimating abruptly changing parameters is presented. The estimator...

  10. Robust Short-Lag Spatial Coherence Imaging.

    Science.gov (United States)

    Nair, Arun Asokan; Tran, Trac Duy; Bell, Muyinatu A Lediju

    2018-03-01

    Short-lag spatial coherence (SLSC) imaging displays the spatial coherence between backscattered ultrasound echoes instead of their signal amplitudes and is more robust to noise and clutter artifacts when compared with traditional delay-and-sum (DAS) B-mode imaging. However, SLSC imaging does not consider the content of images formed with different lags, and thus does not exploit the differences in tissue texture at each short-lag value. Our proposed method improves SLSC imaging by weighting the addition of lag values (i.e., M-weighting) and by applying robust principal component analysis (RPCA) to search for a low-dimensional subspace for projecting coherence images created with different lag values. The RPCA-based projections are considered to be denoised versions of the originals that are then weighted and added across lags to yield a final robust SLSC (R-SLSC) image. Our approach was tested on simulation, phantom, and in vivo liver data. Relative to DAS B-mode images, the mean contrast, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) improvements with R-SLSC images are 21.22 dB, 2.54, and 2.36, respectively, when averaged over simulated, phantom, and in vivo data and over all lags considered, which corresponds to mean improvements of 96.4%, 121.2%, and 120.5%, respectively. When compared with SLSC images, the corresponding mean improvements with R-SLSC images were 7.38 dB, 1.52, and 1.30, respectively (i.e., mean improvements of 14.5%, 50.5%, and 43.2%, respectively). Results show great promise for smoothing out the tissue texture of SLSC images and enhancing anechoic or hypoechoic target visibility at higher lag values, which could be useful in clinical tasks such as breast cyst visualization, liver vessel tracking, and obese patient imaging.

  11. Brand and automaticity

    OpenAIRE

    Liu, J.

    2008-01-01

    A presumption of most consumer research is that consumers endeavor to maximize the utility of their choices and are in complete control of their purchasing and consumption behavior. However, everyday life experience suggests that many of our choices are not all that reasoned or conscious. Indeed, automaticity, one facet of behavior, is indispensable to complete the portrait of consumers. Despite its importance, little attention is paid to how the automatic side of behavior can be captured and...

  12. Position automatic determination technology

    International Nuclear Information System (INIS)

    1985-10-01

    This book tells of method of position determination and characteristic, control method of position determination and point of design, point of sensor choice for position detector, position determination of digital control system, application of clutch break in high frequency position determination, automation technique of position determination, position determination by electromagnetic clutch and break, air cylinder, cam and solenoid, stop position control of automatic guide vehicle, stacker crane and automatic transfer control.

  13. Automatic intelligent cruise control

    OpenAIRE

    Stanton, NA; Young, MS

    2006-01-01

    This paper reports a study on the evaluation of automatic intelligent cruise control (AICC) from a psychological perspective. It was anticipated that AICC would have an effect upon the psychology of driving—namely, make the driver feel like they have less control, reduce the level of trust in the vehicle, make drivers less situationally aware, but might reduce the workload and make driving might less stressful. Drivers were asked to drive in a driving simulator under manual and automatic inte...

  14. Efficient robust conditional random fields.

    Science.gov (United States)

    Song, Dongjin; Liu, Wei; Zhou, Tianyi; Tao, Dacheng; Meyer, David A

    2015-10-01

    Conditional random fields (CRFs) are a flexible yet powerful probabilistic approach and have shown advantages for popular applications in various areas, including text analysis, bioinformatics, and computer vision. Traditional CRF models, however, are incapable of selecting relevant features as well as suppressing noise from noisy original features. Moreover, conventional optimization methods often converge slowly in solving the training procedure of CRFs, and will degrade significantly for tasks with a large number of samples and features. In this paper, we propose robust CRFs (RCRFs) to simultaneously select relevant features. An optimal gradient method (OGM) is further designed to train RCRFs efficiently. Specifically, the proposed RCRFs employ the l1 norm of the model parameters to regularize the objective used by traditional CRFs, therefore enabling discovery of the relevant unary features and pairwise features of CRFs. In each iteration of OGM, the gradient direction is determined jointly by the current gradient together with the historical gradients, and the Lipschitz constant is leveraged to specify the proper step size. We show that an OGM can tackle the RCRF model training very efficiently, achieving the optimal convergence rate [Formula: see text] (where k is the number of iterations). This convergence rate is theoretically superior to the convergence rate O(1/k) of previous first-order optimization methods. Extensive experiments performed on three practical image segmentation tasks demonstrate the efficacy of OGM in training our proposed RCRFs.

  15. Robust and accurate vectorization of line drawings.

    Science.gov (United States)

    Hilaire, Xavier; Tombre, Karl

    2006-06-01

    This paper presents a method for vectorizing the graphical parts of paper-based line drawings. The method consists of separating the input binary image into layers of homogeneous thickness, skeletonizing each layer, segmenting the skeleton by a method based on random sampling, and simplifying the result. The segmentation method is robust with a best bound of 50 percent noise reached for indefinitely long primitives. Accurate estimation of the recognized vector's parameters is enabled by explicitly computing their feasibility domains. Theoretical performance analysis and expression of the complexity of the segmentation method are derived. Experimental results and comparisons with other vectorization systems are also provided.

  16. Robust Pitch Estimation Using an Optimal Filter on Frequency Estimates

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    of such signals from unconstrained frequency estimates (UFEs). A minimum variance distortionless response (MVDR) method is proposed as an optimal solution to minimize the variance of UFEs considering the constraint of integer harmonics. The MVDR filter is designed based on noise statistics making it robust...

  17. Robust AlGaN/GaN MMIC Receiver Components

    NARCIS (Netherlands)

    Heijningen, M. van; Janssen, J.P.B.; Vliet, F.E. van

    2009-01-01

    Apart from delivering very high output powers, GaN can also be used to realize robust receiver components, such as Low Noise Amplifiersand Switches. This paper presents the designand measurement results of two GaN X-band switch and LNA MMICs, designed for integration in a radar front end. The switch

  18. Non-Markovian noise

    International Nuclear Information System (INIS)

    Fulinski, A.

    1994-01-01

    The properties of non-Markovian noises with exponentially correlated memory are discussed. Considered are dichotomic noise, white shot noise, Gaussian white noise, and Gaussian colored noise. The stationary correlation functions of the non-Markovian versions of these noises are given by linear combinations of two or three exponential functions (colored noises) or of the δ function and exponential function (white noises). The non-Markovian white noises are well defined only when the kernel of the non-Markovian master equation contains a nonzero admixture of a Markovian term. Approximate equations governing the probability densities for processes driven by such non-Markovian noises are derived, including non-Markovian versions of the Fokker-Planck equation and the telegrapher's equation. As an example, it is shown how the non-Markovian nature changes the behavior of the driven linear process

  19. Robust surgery loading

    NARCIS (Netherlands)

    Hans, Elias W.; Wullink, Gerhard; van Houdenhoven, Mark; Kazemier, Geert

    2008-01-01

    We consider the robust surgery loading problem for a hospital’s operating theatre department, which concerns assigning surgeries and sufficient planned slack to operating room days. The objective is to maximize capacity utilization and minimize the risk of overtime, and thus cancelled patients. This

  20. Robustness Envelopes of Networks

    NARCIS (Netherlands)

    Trajanovski, S.; Martín-Hernández, J.; Winterbach, W.; Van Mieghem, P.

    2013-01-01

    We study the robustness of networks under node removal, considering random node failure, as well as targeted node attacks based on network centrality measures. Whilst both of these have been studied in the literature, existing approaches tend to study random failure in terms of average-case

  1. Median Robust Extended Local Binary Pattern for Texture Classification.

    Science.gov (United States)

    Liu, Li; Lao, Songyang; Fieguth, Paul W; Guo, Yulan; Wang, Xiaogang; Pietikäinen, Matti

    2016-03-01

    Local binary patterns (LBP) are considered among the most computationally efficient high-performance texture features. However, the LBP method is very sensitive to image noise and is unable to capture macrostructure information. To best address these disadvantages, in this paper, we introduce a novel descriptor for texture classification, the median robust extended LBP (MRELBP). Different from the traditional LBP and many LBP variants, MRELBP compares regional image medians rather than raw image intensities. A multiscale LBP type descriptor is computed by efficiently comparing image medians over a novel sampling scheme, which can capture both microstructure and macrostructure texture information. A comprehensive evaluation on benchmark data sets reveals MRELBP's high performance-robust to gray scale variations, rotation changes and noise-but at a low computational cost. MRELBP produces the best classification scores of 99.82%, 99.38%, and 99.77% on three popular Outex test suites. More importantly, MRELBP is shown to be highly robust to image noise, including Gaussian noise, Gaussian blur, salt-and-pepper noise, and random pixel corruption.

  2. Automatic measurement of images on astrometric plates

    Science.gov (United States)

    Ortiz Gil, A.; Lopez Garcia, A.; Martinez Gonzalez, J. M.; Yershov, V.

    1994-04-01

    We present some results on the process of automatic detection and measurement of objects in overlapped fields of astrometric plates. The main steps of our algorithm are the following: determination of the Scale and Tilt between charge coupled devices (CCD) and microscope coordinate systems and estimation of signal-to-noise ratio in each field;--image identification and improvement of its position and size;--image final centering;--image selection and storage. Several parameters allow the use of variable criteria for image identification, characterization and selection. Problems related with faint images and crowded fields will be approached by special techniques (morphological filters, histogram properties and fitting models).

  3. Dynamic Optimization of Feedforward Automatic Gauge Control Based on Extended Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    YANG Bin-hu; YANG Wei-dong; CHEN Lian-gui; QU Lei

    2008-01-01

    Automatic gauge control is an essentially nonlinear process varying with time delay, and stochastically varying input and process noise always influence the target gauge control accuracy. To improve the control capability of feedforward automatic gauge control, Kalman filter was employed to filter the noise signal transferred from one stand to another. The linearized matrix that the Kalman filter algorithm needed was concluded; thus, the feedforward automatic gauge control architecture was dynamically optimized. The theoretical analyses and simulation show that the proposed algorithm is reasonable and effective.

  4. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Cognition.

    Science.gov (United States)

    Clark, Charlotte; Paunovic, Katarina

    2018-02-07

    This systematic review assesses the quality of the evidence across individual studies on the effect of environmental noise (road traffic, aircraft, and train and railway noise) on cognition. Quantitative non-experimental studies of the association between environmental noise exposure on child and adult cognitive performance published up to June 2015 were reviewed: no limit was placed on the start date for the search. A total of 34 papers were identified, all of which were of child populations. 82% of the papers were of cross-sectional design, with fewer studies of longitudinal or intervention design. A range of cognitive outcomes were examined. The quality of the evidence across the studies for each individual noise source and cognitive outcome was assessed using an adaptation of GRADE methodology. This review found, given the predominance of cross-sectional studies, that the quality of the evidence across studies ranged from being of moderate quality for an effect for some outcomes, e.g., aircraft noise effects on reading comprehension and on long-term memory, to no effect for other outcomes such as attention and executive function and for some noise sources such as road traffic noise and railway noise. The GRADE evaluation of low quality evidence across studies for some cognitive domains and for some noise sources does not necessarily mean that there are no effects: rather, that more robust and a greater number of studies are required.

  5. Robust keyword retrieval method for OCRed text

    Science.gov (United States)

    Fujii, Yusaku; Takebe, Hiroaki; Tanaka, Hiroshi; Hotta, Yoshinobu

    2011-01-01

    Document management systems have become important because of the growing popularity of electronic filing of documents and scanning of books, magazines, manuals, etc., through a scanner or a digital camera, for storage or reading on a PC or an electronic book. Text information acquired by optical character recognition (OCR) is usually added to the electronic documents for document retrieval. Since texts generated by OCR generally include character recognition errors, robust retrieval methods have been introduced to overcome this problem. In this paper, we propose a retrieval method that is robust against both character segmentation and recognition errors. In the proposed method, the insertion of noise characters and dropping of characters in the keyword retrieval enables robustness against character segmentation errors, and character substitution in the keyword of the recognition candidate for each character in OCR or any other character enables robustness against character recognition errors. The recall rate of the proposed method was 15% higher than that of the conventional method. However, the precision rate was 64% lower.

  6. Neuromorphic Configurable Architecture for Robust Motion Estimation

    Directory of Open Access Journals (Sweden)

    Guillermo Botella

    2008-01-01

    Full Text Available The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM. This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems running in real time with high computational complexity. This work includes the resource usage and performance data, and the comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in difficult environments due to its bioinspired and robustness properties.

  7. Robust Adaptive Speed Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Bidstrup, N.

    This thesis concerns speed control of current vector controlled induction motor drives (CVC drives). The CVC drive is an existing prototype drive developed by Danfoss A/S, Transmission Division. Practical tests have revealed that the open loop dynamical properties of the CVC drive are highly......, (LS) identification and generalized predictive control (GPC) has been implemented and tested on the CVC drive. Allthough GPC is a robust control method, it was not possible to maintain specified controller performance in the entire operating range. This was the main reason for investigating truly...... and measurement noise in general, were the major reasons for the drifting parameters. Two approaches was proposed to robustify MASTR2 against the output noise. The first approach consists of filtering the output. Output filtering had a significant effect in simulations, but the robustness against the output noise...

  8. Robust Adaptive Speed Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Bidstrup, N.

    , (LS) identification and generalized predictive control (GPC) has been implemented and tested on the CVC drive. Allthough GPC is a robust control method, it was not possible to maintain specified controller performance in the entire operating range. This was the main reason for investigating truly...... adaptive speed control of the CVC drive. A direct truly adaptive speed controller has been implemented. The adaptive controller is a moving Average Self-Tuning Regulator which is abbreviated MASTR throughout the thesis. Two practical implementations of this controller were proposed. They were denoted MASTR...... and measurement noise in general, were the major reasons for the drifting parameters. Two approaches was proposed to robustify MASTR2 against the output noise. The first approach consists of filtering the output. Output filtering had a significant effect in simulations, but the robustness against the output noise...

  9. ROBUSTNESS OF A FACE-RECOGNITION TECHNIQUE BASED ON SUPPORT VECTOR MACHINES

    OpenAIRE

    Prashanth Harshangi; Koshy George

    2010-01-01

    The ever-increasing requirements of security concerns have placed a greater demand for face recognition surveillance systems. However, most current face recognition techniques are not quite robust with respect to factors such as variable illumination, facial expression and detail, and noise in images. In this paper, we demonstrate that face recognition using support vector machines are sufficiently robust to different kinds of noise, does not require image pre-processing, and can be used with...

  10. Disentangling Complexity in Bayesian Automatic Adaptive Quadrature

    Science.gov (United States)

    Adam, Gheorghe; Adam, Sanda

    2018-02-01

    The paper describes a Bayesian automatic adaptive quadrature (BAAQ) solution for numerical integration which is simultaneously robust, reliable, and efficient. Detailed discussion is provided of three main factors which contribute to the enhancement of these features: (1) refinement of the m-panel automatic adaptive scheme through the use of integration-domain-length-scale-adapted quadrature sums; (2) fast early problem complexity assessment - enables the non-transitive choice among three execution paths: (i) immediate termination (exceptional cases); (ii) pessimistic - involves time and resource consuming Bayesian inference resulting in radical reformulation of the problem to be solved; (iii) optimistic - asks exclusively for subrange subdivision by bisection; (3) use of the weaker accuracy target from the two possible ones (the input accuracy specifications and the intrinsic integrand properties respectively) - results in maximum possible solution accuracy under minimum possible computing time.

  11. Traffic Noise Assessment at Residential Areas in Skudai, Johor

    Science.gov (United States)

    Sulaiman, F. S.; Darus, N.; Mashros, N.; Haron, Z.; Yahya, K.

    2018-03-01

    Vehicles passing by on roadways in residential areas may produce unpleasant traffic noise that affects the residents. This paper presents the traffic noise assessment of three selected residential areas located in Skudai, Johor. The objectives of this study are to evaluate traffic characteristics at selected residential areas, determine related noise indices, and assess impact of traffic noise. Traffic characteristics such as daily traffic volume and vehicle speed were evaluated using automatic traffic counter (ATC). Meanwhile, noise indices like equivalent continuous sound pressure level (LAeq), noise level exceeded 10% (L10) and 90% (L90) of measurement time were determined using sound level meter (SLM). Besides that, traffic noise index (TNI) and noise pollution level (LNP) were calculated based on the measured noise indices. The results showed an increase in noise level of 60 to 70 dBA maximum due to increase in traffic volume. There was also a significant change in noise level of more than 70 dBA even though average vehicle speed did not vary significantly. Nevertheless, LAeq, TNI, and LNP values for all sites during daytime were lower than the maximum recommended levels. Thus, residents in the three studied areas were not affected in terms of quality of life and health.

  12. Allegro: noise performance and the ongoing search for gravitational waves

    International Nuclear Information System (INIS)

    Heng, I S; Daw, E; Giaime, J; Hamilton, W O; Mchugh, M P; Johnson, W W

    2002-01-01

    The noise performance of Allegro since 1993 is summarized. We show that the noise level of Allegro is, in general, stationary. Non-Gaussian impulse excitations persist despite efforts to isolate the detector from environmental disturbances. Some excitations are caused by seismic activity and flux jumps in the SQUID. Algorithms to identify and automatically veto these events are presented. Also, the contribution of Allegro to collaborations with other resonant-mass detectors via the International Gravitational Event Collaboration and with LIGO is reviewed

  13. Allegro: noise performance and the ongoing search for gravitational waves

    CERN Document Server

    Heng, I S; Giaime, J; Hamilton, W O; McHugh, M P; Johnson, W W

    2002-01-01

    The noise performance of Allegro since 1993 is summarized. We show that the noise level of Allegro is, in general, stationary. Non-Gaussian impulse excitations persist despite efforts to isolate the detector from environmental disturbances. Some excitations are caused by seismic activity and flux jumps in the SQUID. Algorithms to identify and automatically veto these events are presented. Also, the contribution of Allegro to collaborations with other resonant-mass detectors via the International Gravitational Event Collaboration and with LIGO is reviewed.

  14. Robust boosting via convex optimization

    Science.gov (United States)

    Rätsch, Gunnar

    2001-12-01

    In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules - also called base hypotheses. The so-called boosting algorithms iteratively find a weighted linear combination of base hypotheses that predict well on unseen data. We address the following issues: o The statistical learning theory framework for analyzing boosting methods. We study learning theoretic guarantees on the prediction performance on unseen examples. Recently, large margin classification techniques emerged as a practical result of the theory of generalization, in particular Boosting and Support Vector Machines. A large margin implies a good generalization performance. Hence, we analyze how large the margins in boosting are and find an improved algorithm that is able to generate the maximum margin solution. o How can boosting methods be related to mathematical optimization techniques? To analyze the properties of the resulting classification or regression rule, it is of high importance to understand whether and under which conditions boosting converges. We show that boosting can be used to solve large scale constrained optimization problems, whose solutions are well characterizable. To show this, we relate boosting methods to methods known from mathematical optimization, and derive convergence guarantees for a quite general family of boosting algorithms. o How to make Boosting noise robust? One of the problems of current boosting techniques is that they are sensitive to noise in the training sample. In order to make boosting robust, we transfer the soft margin idea from support vector learning to boosting. We develop theoretically motivated regularized algorithms that exhibit a high noise robustness. o How to adapt boosting to regression problems

  15. Noise-dependent optimal strategies for quantum metrology

    Science.gov (United States)

    Huang, Zixin; Macchiavello, Chiara; Maccone, Lorenzo

    2018-03-01

    For phase estimation using qubits, we show that for some noise channels, the optimal entanglement-assisted strategy depends on the noise level. We note that there is a nontrivial crossover between the parallel-entangled strategy and the ancilla-assisted strategy: in the former the probes are all entangled; in the latter the probes are entangled with a noiseless ancilla but not among themselves. The transition can be explained by the fact that separable states are more robust against noise and therefore are optimal in the high-noise limit, but they are in turn outperformed by ancilla-assisted ones.

  16. Robust Airline Schedules

    OpenAIRE

    Eggenberg, Niklaus; Salani, Matteo; Bierlaire, Michel

    2010-01-01

    Due to economic pressure industries, when planning, tend to focus on optimizing the expected profit or the yield. The consequence of highly optimized solutions is an increased sensitivity to uncertainty. This generates additional "operational" costs, incurred by possible modifications of the original plan to be performed when reality does not reflect what was expected in the planning phase. The modern research trend focuses on "robustness" of solutions instead of yield or profit. Although ro...

  17. The Crane Robust Control

    Directory of Open Access Journals (Sweden)

    Marek Hicar

    2004-01-01

    Full Text Available The article is about a control design for complete structure of the crane: crab, bridge and crane uplift.The most important unknown parameters for simulations are burden weight and length of hanging rope. We will use robustcontrol for crab and bridge control to ensure adaptivity for burden weight and rope length. Robust control will be designed for current control of the crab and bridge, necessary is to know the range of unknown parameters. Whole robust will be splitto subintervals and after correct identification of unknown parameters the most suitable robust controllers will be chosen.The most important condition at the crab and bridge motion is avoiding from burden swinging in the final position. Crab and bridge drive is designed by asynchronous motor fed from frequency converter. We will use crane uplift with burden weightobserver in combination for uplift, crab and bridge drive with cooperation of their parameters: burden weight, rope length and crab and bridge position. Controllers are designed by state control method. We will use preferably a disturbance observerwhich will identify burden weight as a disturbance. The system will be working in both modes at empty hook as well asat maximum load: burden uplifting and dropping down.

  18. Automatic Program Development

    DEFF Research Database (Denmark)

    Automatic Program Development is a tribute to Robert Paige (1947-1999), our accomplished and respected colleague, and moreover our good friend, whose untimely passing was a loss to our academic and research community. We have collected the revised, updated versions of the papers published in his...... honor in the Higher-Order and Symbolic Computation Journal in the years 2003 and 2005. Among them there are two papers by Bob: (i) a retrospective view of his research lines, and (ii) a proposal for future studies in the area of the automatic program derivation. The book also includes some papers...... by members of the IFIP Working Group 2.1 of which Bob was an active member. All papers are related to some of the research interests of Bob and, in particular, to the transformational development of programs and their algorithmic derivation from formal specifications. Automatic Program Development offers...

  19. Two Systems for Automatic Music Genre Recognition

    DEFF Research Database (Denmark)

    Sturm, Bob L.

    2012-01-01

    We re-implement and test two state-of-the-art systems for automatic music genre classification; but unlike past works in this area, we look closer than ever before at their behavior. First, we look at specific instances where each system consistently applies the same wrong label across multiple...... trials of cross-validation. Second, we test the robustness of each system to spectral equalization. Finally, we test how well human subjects recognize the genres of music excerpts composed by each system to be highly genre representative. Our results suggest that neither high-performing system has...... a capacity to recognize music genre....

  20. A Context Dependent Automatic Target Recognition System

    Science.gov (United States)

    Kim, J. H.; Payton, D. W.; Olin, K. E.; Tseng, D. Y.

    1984-06-01

    This paper describes a new approach to automatic target recognizer (ATR) development utilizing artificial intelligent techniques. The ATR system exploits contextual information in its detection and classification processes to provide a high degree of robustness and adaptability. In the system, knowledge about domain objects and their contextual relationships is encoded in frames, separating it from low level image processing algorithms. This knowledge-based system demonstrates an improvement over the conventional statistical approach through the exploitation of diverse forms of knowledge in its decision-making process.

  1. Automatic target detection using binary template matching

    Science.gov (United States)

    Jun, Dong-San; Sun, Sun-Gu; Park, HyunWook

    2005-03-01

    This paper presents a new automatic target detection (ATD) algorithm to detect targets such as battle tanks and armored personal carriers in ground-to-ground scenarios. Whereas most ATD algorithms were developed for forward-looking infrared (FLIR) images, we have developed an ATD algorithm for charge-coupled device (CCD) images, which have superior quality to FLIR images in daylight. The proposed algorithm uses fast binary template matching with an adaptive binarization, which is robust to various light conditions in CCD images and saves computation time. Experimental results show that the proposed method has good detection performance.

  2. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  3. Automatic text summarization

    CERN Document Server

    Torres Moreno, Juan Manuel

    2014-01-01

    This new textbook examines the motivations and the different algorithms for automatic document summarization (ADS). We performed a recent state of the art. The book shows the main problems of ADS, difficulties and the solutions provided by the community. It presents recent advances in ADS, as well as current applications and trends. The approaches are statistical, linguistic and symbolic. Several exemples are included in order to clarify the theoretical concepts.  The books currently available in the area of Automatic Document Summarization are not recent. Powerful algorithms have been develop

  4. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  5. Automatic NAA. Saturation activities

    International Nuclear Information System (INIS)

    Westphal, G.P.; Grass, F.; Kuhnert, M.

    2008-01-01

    A system for Automatic NAA is based on a list of specific saturation activities determined for one irradiation position at a given neutron flux and a single detector geometry. Originally compiled from measurements of standard reference materials, the list may be extended also by the calculation of saturation activities from k 0 and Q 0 factors, and f and α values of the irradiation position. A systematic improvement of the SRM approach is currently being performed by pseudo-cyclic activation analysis, to reduce counting errors. From these measurements, the list of saturation activities is recalculated in an automatic procedure. (author)

  6. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering.

    Science.gov (United States)

    Oliynyk, Andriy; Bonifazzi, Claudio; Montani, Fernando; Fadiga, Luciano

    2012-08-08

    Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting), which is designed to optimize: (i) fast and accurate detection, (ii) offline sorting and (iii) online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com) using LabVIEW (National Instruments, USA). We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is competitive with respect to other robust spike

  7. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering

    Directory of Open Access Journals (Sweden)

    Oliynyk Andriy

    2012-08-01

    Full Text Available Abstract Background Understanding how neurons contribute to perception, motor functions and cognition requires the reliable detection of spiking activity of individual neurons during a number of different experimental conditions. An important problem in computational neuroscience is thus to develop algorithms to automatically detect and sort the spiking activity of individual neurons from extracellular recordings. While many algorithms for spike sorting exist, the problem of accurate and fast online sorting still remains a challenging issue. Results Here we present a novel software tool, called FSPS (Fuzzy SPike Sorting, which is designed to optimize: (i fast and accurate detection, (ii offline sorting and (iii online classification of neuronal spikes with very limited or null human intervention. The method is based on a combination of Singular Value Decomposition for fast and highly accurate pre-processing of spike shapes, unsupervised Fuzzy C-mean, high-resolution alignment of extracted spike waveforms, optimal selection of the number of features to retain, automatic identification the number of clusters, and quantitative quality assessment of resulting clusters independent on their size. After being trained on a short testing data stream, the method can reliably perform supervised online classification and monitoring of single neuron activity. The generalized procedure has been implemented in our FSPS spike sorting software (available free for non-commercial academic applications at the address: http://www.spikesorting.com using LabVIEW (National Instruments, USA. We evaluated the performance of our algorithm both on benchmark simulated datasets with different levels of background noise and on real extracellular recordings from premotor cortex of Macaque monkeys. The results of these tests showed an excellent accuracy in discriminating low-amplitude and overlapping spikes under strong background noise. The performance of our method is

  8. Robust X-band LNAs in AlGaN/GaN technology

    NARCIS (Netherlands)

    Janssen, J.P.B.; Heijningen, M. van; Visser, G.C.; Rodenburg, M.; Johnson, H.K.; Uren, M.J.; Morvan, E.; Vliet, F.E. van

    2009-01-01

    Gallium-Nitride technology is known for its high power density and power amplifier designs, but is also very well suited to realise robust receiver components. This paper presents the design, realisation and measurement of two robust AlGaN/GaN low noise amplifiers. The two versions have been

  9. Robust X-band LNAs in AlGaN/GaN technology

    NARCIS (Netherlands)

    Janssen, J.P.B.; van Heiningen, M.; Visser, G.C.; Rodenburg, M.; Johnson, H.K.; Uren, M.J.; Morvan, E.; van Vliet, Frank Edward

    2009-01-01

    Abstract Gallium-Nitride technology is known for its high power density and power amplifier designs, but is also very well suited to realise robust receiver components. This paper presents the design, realisation and measurement of two robust AlGaN/GaN low noise amplifiers. The two versions have

  10. NASA Jet Noise Research

    Science.gov (United States)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  11. Noise-aware dictionary-learning-based sparse representation framework for detection and removal of single and combined noises from ECG signal.

    Science.gov (United States)

    Satija, Udit; Ramkumar, Barathram; Sabarimalai Manikandan, M

    2017-02-01

    Automatic electrocardiogram (ECG) signal enhancement has become a crucial pre-processing step in most ECG signal analysis applications. In this Letter, the authors propose an automated noise-aware dictionary learning-based generalised ECG signal enhancement framework which can automatically learn the dictionaries based on the ECG noise type for effective representation of ECG signal and noises, and can reduce the computational load of sparse representation-based ECG enhancement system. The proposed framework consists of noise detection and identification, noise-aware dictionary learning, sparse signal decomposition and reconstruction. The noise detection and identification is performed based on the moving average filter, first-order difference, and temporal features such as number of turning points, maximum absolute amplitude, zerocrossings, and autocorrelation features. The representation dictionary is learned based on the type of noise identified in the previous stage. The proposed framework is evaluated using noise-free and noisy ECG signals. Results demonstrate that the proposed method can significantly reduce computational load as compared with conventional dictionary learning-based ECG denoising approaches. Further, comparative results show that the method outperforms existing methods in automatically removing noises such as baseline wanders, power-line interference, muscle artefacts and their combinations without distorting the morphological content of local waves of ECG signal.

  12. GHZ argument for four-qubit entangled states in the presence of white and colored noise

    International Nuclear Information System (INIS)

    Shi Mingjun; Ren Changliang; Chong Bo; Du Jiangfeng

    2008-01-01

    Greenberger-Horn-Zeilinger (GHZ) argument of nonlocality without inequalities is extended to the case of four-qubit mixed states. Three different kinds of entangled states are analyzed in presence of white and colored noise. The nonlocality properties of these states will be weakened and destroyed by the noise. We found that all these states have the same ability to resist the influence of white noise, while the cluster state is the most robust against colored noise

  13. Experimental noise-resistant Bell-inequality violations for polarization-entangled photons

    International Nuclear Information System (INIS)

    Bovino, Fabio A.; Castagnoli, Giuseppe; Cabello, Adan; Lamas-Linares, Antia

    2006-01-01

    We experimentally demonstrate that violations of Bell's inequalities for two-photon polarization-entangled states with colored noise are extremely robust, whereas this is not the case for states with white noise. Controlling the amount of noise by using the timing compensation scheme introduced by Kim et al. [Phys. Rev. A 67, 010301(R) (2003)], we have observed violations even for states with very high noise, in excellent agrement with the predictions of Cabello et al. [Phys. Rev. A 72, 052112 (2005)

  14. Cliff : the automatized zipper

    NARCIS (Netherlands)

    Baharom, M.Z.; Toeters, M.J.; Delbressine, F.L.M.; Bangaru, C.; Feijs, L.M.G.

    2016-01-01

    It is our strong believe that fashion - more specifically apparel - can support us so much more in our daily life than it currently does. The Cliff project takes the opportunity to create a generic automatized zipper. It is a response to the struggle by elderly, people with physical disability, and

  15. Automatic Complexity Analysis

    DEFF Research Database (Denmark)

    Rosendahl, Mads

    1989-01-01

    One way to analyse programs is to to derive expressions for their computational behaviour. A time bound function (or worst-case complexity) gives an upper bound for the computation time as a function of the size of input. We describe a system to derive such time bounds automatically using abstract...

  16. Automatic Oscillating Turret.

    Science.gov (United States)

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  17. Reactor component automatic grapple

    International Nuclear Information System (INIS)

    Greenaway, P.R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment. (author)

  18. Automatic sweep circuit

    International Nuclear Information System (INIS)

    Keefe, D.J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input is described. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found

  19. Automatic sweep circuit

    Science.gov (United States)

    Keefe, Donald J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found.

  20. Recursive automatic classification algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, E V; Dorofeyuk, A A

    1982-03-01

    A variational statement of the automatic classification problem is given. The dependence of the form of the optimal partition surface on the form of the classification objective functional is investigated. A recursive algorithm is proposed for maximising a functional of reasonably general form. The convergence problem is analysed in connection with the proposed algorithm. 8 references.

  1. Automatic Commercial Permit Sets

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Paul [Folsom Labs, Inc., San Francisco, CA (United States)

    2017-12-21

    Final report for Folsom Labs’ Solar Permit Generator project, which has successfully completed, resulting in the development and commercialization of a software toolkit within the cloud-based HelioScope software environment that enables solar engineers to automatically generate and manage draft documents for permit submission.

  2. Noise Reduction Techniques

    Science.gov (United States)

    Hallas, Tony

    There are two distinct kinds of noise - structural and color. Each requires a specific method of attack to minimize. The great challenge is to reduce the noise without reducing the faint and delicate detail in the image. My most-used and favorite noise suppression is found in Photoshop CS 5 Camera Raw. If I cannot get the desired results with the first choice, I will use Noise Ninja, which has certain advantages in some situations that we will cover.

  3. Noise Gating Solar Images

    Science.gov (United States)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  4. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    Science.gov (United States)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  5. Noise-invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise

    Science.gov (United States)

    Moore, R. Channing; Lee, Tyler; Theunissen, Frédéric E.

    2013-01-01

    Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex. PMID:23505354

  6. Noise-invariant neurons in the avian auditory cortex: hearing the song in noise.

    Science.gov (United States)

    Moore, R Channing; Lee, Tyler; Theunissen, Frédéric E

    2013-01-01

    Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex.

  7. Noise-invariant neurons in the avian auditory cortex: hearing the song in noise.

    Directory of Open Access Journals (Sweden)

    R Channing Moore

    Full Text Available Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex.

  8. Aircrafts' taxi noise emission

    NARCIS (Netherlands)

    Asensio, C.; Pagan Munoz, Raul; López, J.M.

    2008-01-01

    An investigation has been conducted, with the objective of creating a database of inputs that can be used with noise prediction software, to evaluate noise of aircraft taxing movements and community noise exposure levels. The acoustic consultant can use these data with any of the software packages,

  9. Adaptive robust Kalman filtering for precise point positioning

    International Nuclear Information System (INIS)

    Guo, Fei; Zhang, Xiaohong

    2014-01-01

    The optimality of precise point postioning (PPP) solution using a Kalman filter is closely connected to the quality of the a priori information about the process noise and the updated mesurement noise, which are sometimes difficult to obtain. Also, the estimation enviroment in the case of dynamic or kinematic applications is not always fixed but is subject to change. To overcome these problems, an adaptive robust Kalman filtering algorithm, the main feature of which introduces an equivalent covariance matrix to resist the unexpected outliers and an adaptive factor to balance the contribution of observational information and predicted information from the system dynamic model, is applied for PPP processing. The basic models of PPP including the observation model, dynamic model and stochastic model are provided first. Then an adaptive robust Kalmam filter is developed for PPP. Compared with the conventional robust estimator, only the observation with largest standardized residual will be operated by the IGG III function in each iteration to avoid reducing the contribution of the normal observations or even filter divergence. Finally, tests carried out in both static and kinematic modes have confirmed that the adaptive robust Kalman filter outperforms the classic Kalman filter by turning either the equivalent variance matrix or the adaptive factor or both of them. This becomes evident when analyzing the positioning errors in flight tests at the turns due to the target maneuvering and unknown process/measurement noises. (paper)

  10. An efficient global energy optimization approach for robust 3D plane segmentation of point clouds

    Science.gov (United States)

    Dong, Zhen; Yang, Bisheng; Hu, Pingbo; Scherer, Sebastian

    2018-03-01

    Automatic 3D plane segmentation is necessary for many applications including point cloud registration, building information model (BIM) reconstruction, simultaneous localization and mapping (SLAM), and point cloud compression. However, most of the existing 3D plane segmentation methods still suffer from low precision and recall, and inaccurate and incomplete boundaries, especially for low-quality point clouds collected by RGB-D sensors. To overcome these challenges, this paper formulates the plane segmentation problem as a global energy optimization because it is robust to high levels of noise and clutter. First, the proposed method divides the raw point cloud into multiscale supervoxels, and considers planar supervoxels and individual points corresponding to nonplanar supervoxels as basic units. Then, an efficient hybrid region growing algorithm is utilized to generate initial plane set by incrementally merging adjacent basic units with similar features. Next, the initial plane set is further enriched and refined in a mutually reinforcing manner under the framework of global energy optimization. Finally, the performances of the proposed method are evaluated with respect to six metrics (i.e., plane precision, plane recall, under-segmentation rate, over-segmentation rate, boundary precision, and boundary recall) on two benchmark datasets. Comprehensive experiments demonstrate that the proposed method obtained good performances both in high-quality TLS point clouds (i.e., http://SEMANTIC3D.NET)

  11. Robust drone detection for day/night counter-UAV with static VIS and SWIR cameras

    Science.gov (United States)

    Müller, Thomas

    2017-05-01

    Recent progress in the development of unmanned aerial vehicles (UAVs) has led to more and more situations in which drones like quadrocopters or octocopters pose a potential serious thread or could be used as a powerful tool for illegal activities. Therefore, counter-UAV systems are required in a lot of applications to detect approaching drones as early as possible. In this paper, an efficient and robust algorithm is presented for UAV detection using static VIS and SWIR cameras. Whereas VIS cameras with a high resolution enable to detect UAVs in the daytime in further distances, surveillance at night can be performed with a SWIR camera. First, a background estimation and structural adaptive change detection process detects movements and other changes in the observed scene. Afterwards, the local density of changes is computed used for background density learning and to build up the foreground model which are compared in order to finally get the UAV alarm result. The density model is used to filter out noise effects, on the one hand. On the other hand, moving scene parts like moving leaves in the wind or driving cars on a street can easily be learned in order to mask such areas out and suppress false alarms there. This scene learning is done automatically simply by processing without UAVs in order to capture the normal situation. The given results document the performance of the presented approach in VIS and SWIR in different situations.

  12. A fast and robust method for automated analysis of axonal transport.

    Science.gov (United States)

    Welzel, Oliver; Knörr, Jutta; Stroebel, Armin M; Kornhuber, Johannes; Groemer, Teja W

    2011-09-01

    Cargo movement along axons and dendrites is indispensable for the survival and maintenance of neuronal networks. Key parameters of this transport such as particle velocities and pausing times are often studied using kymograph construction, which converts the transport along a line of interest from a time-lapse movie into a position versus time image. Here we present a method for the automatic analysis of such kymographs based on the Hough transform, which is a robust and fast technique to extract lines from images. The applicability of the method was tested on simulated kymograph images and real data from axonal transport of synaptophysin and tetanus toxin as well as the velocity analysis of synaptic vesicle sharing between adjacent synapses in hippocampal neurons. Efficiency analysis revealed that the algorithm is able to detect a wide range of velocities and can be used at low signal-to-noise ratios. The present work enables the quantification of axonal transport parameters with high throughput with no a priori assumptions and minimal human intervention.

  13. Classical noise, quantum noise and secure communication

    International Nuclear Information System (INIS)

    Tannous, C; Langlois, J

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems. (review)

  14. Robust efficient video fingerprinting

    Science.gov (United States)

    Puri, Manika; Lubin, Jeffrey

    2009-02-01

    We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.

  15. A model for measurement of noise in CCD digital-video cameras

    International Nuclear Information System (INIS)

    Irie, K; Woodhead, I M; McKinnon, A E; Unsworth, K

    2008-01-01

    This study presents a comprehensive measurement of CCD digital-video camera noise. Knowledge of noise detail within images or video streams allows for the development of more sophisticated algorithms for separating true image content from the noise generated in an image sensor. The robustness and performance of an image-processing algorithm is fundamentally limited by sensor noise. The individual noise sources present in CCD sensors are well understood, but there has been little literature on the development of a complete noise model for CCD digital-video cameras, incorporating the effects of quantization and demosaicing

  16. Active noise control in a duct to cancel broadband noise

    Science.gov (United States)

    Chen, Kuan-Chun; Chang, Cheng-Yuan; Kuo, Sen M.

    2017-09-01

    The paper presents cancelling duct noises by using the active noise control (ANC) techniques. We use the single channel feed forward algorithm with feedback neutralization to realize ANC. Several kinds of ducts noises including tonal noises, sweep tonal signals, and white noise had investigated. Experimental results show that the proposed ANC system can cancel these noises in a PVC duct very well. The noise reduction of white noise can be up to 20 dB.

  17. Resolution enhancement of robust Bayesian pre-stack inversion in the frequency domain

    Science.gov (United States)

    Yin, Xingyao; Li, Kun; Zong, Zhaoyun

    2016-10-01

    AVO/AVA (amplitude variation with an offset or angle) inversion is one of the most practical and useful approaches to estimating model parameters. So far, publications on AVO inversion in the Fourier domain have been quite limited in view of its poor stability and sensitivity to noise compared with time-domain inversion. For the resolution and stability of AVO inversion in the Fourier domain, a novel robust Bayesian pre-stack AVO inversion based on the mixed domain formulation of stationary convolution is proposed which could solve the instability and achieve superior resolution. The Fourier operator will be integrated into the objective equation and it avoids the Fourier inverse transform in our inversion process. Furthermore, the background constraints of model parameters are taken into consideration to improve the stability and reliability of inversion which could compensate for the low-frequency components of seismic signals. Besides, the different frequency components of seismic signals can realize decoupling automatically. This will help us to solve the inverse problem by means of multi-component successive iterations and the convergence precision of the inverse problem could be improved. So, superior resolution compared with the conventional time-domain pre-stack inversion could be achieved easily. Synthetic tests illustrate that the proposed method could achieve high-resolution results with a high degree of agreement with the theoretical model and verify the quality of anti-noise. Finally, applications on a field data case demonstrate that the proposed method could obtain stable inversion results of elastic parameters from pre-stack seismic data in conformity with the real logging data.

  18. Noise equalization for detection of microcalcification clusters in direct digital mammogram images.

    NARCIS (Netherlands)

    McLoughlin, K.J.; Bones, P.J.; Karssemeijer, N.

    2004-01-01

    Equalizing image noise is shown to be an important step in the automatic detection of microcalcifications in digital mammography. This study extends a well established film-screen noise equalization scheme developed by Veldkamp et al. for application to full-field digital mammogram (FFDM) images. A

  19. On the Interplay between Entropy and Robustness of Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2010-05-01

    Full Text Available The interplay between entropy and robustness of gene network is a core mechanism of systems biology. The entropy is a measure of randomness or disorder of a physical system due to random parameter fluctuation and environmental noises in gene regulatory networks. The robustness of a gene regulatory network, which can be measured as the ability to tolerate the random parameter fluctuation and to attenuate the effect of environmental noise, will be discussed from the robust H∞ stabilization and filtering perspective. In this review, we will also discuss their balancing roles in evolution and potential applications in systems and synthetic biology.

  20. Robust Active Label Correction

    DEFF Research Database (Denmark)

    Kremer, Jan; Sha, Fei; Igel, Christian

    2018-01-01

    for the noisy data lead to different active label correction algorithms. If loss functions consider the label noise rates, these rates are estimated during learning, where importance weighting compensates for the sampling bias. We show empirically that viewing the true label as a latent variable and computing......Active label correction addresses the problem of learning from input data for which noisy labels are available (e.g., from imprecise measurements or crowd-sourcing) and each true label can be obtained at a significant cost (e.g., through additional measurements or human experts). To minimize......). To select labels for correction, we adopt the active learning strategy of maximizing the expected model change. We consider the change in regularized empirical risk functionals that use different pointwise loss functions for patterns with noisy and true labels, respectively. Different loss functions...

  1. Robust online Hamiltonian learning

    International Nuclear Information System (INIS)

    Granade, Christopher E; Ferrie, Christopher; Wiebe, Nathan; Cory, D G

    2012-01-01

    In this work we combine two distinct machine learning methodologies, sequential Monte Carlo and Bayesian experimental design, and apply them to the problem of inferring the dynamical parameters of a quantum system. We design the algorithm with practicality in mind by including parameters that control trade-offs between the requirements on computational and experimental resources. The algorithm can be implemented online (during experimental data collection), avoiding the need for storage and post-processing. Most importantly, our algorithm is capable of learning Hamiltonian parameters even when the parameters change from experiment-to-experiment, and also when additional noise processes are present and unknown. The algorithm also numerically estimates the Cramer–Rao lower bound, certifying its own performance. (paper)

  2. Combat aircraft noise

    Science.gov (United States)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  3. Direct-reading dial for noise temperature and noise resistance

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1967-01-01

    An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance.......An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance....

  4. Robust estimation of seismic coda shape

    Science.gov (United States)

    Nikkilä, Mikko; Polishchuk, Valentin; Krasnoshchekov, Dmitry

    2014-04-01

    We present a new method for estimation of seismic coda shape. It falls into the same class of methods as non-parametric shape reconstruction with the use of neural network techniques where data are split into a training and validation data sets. We particularly pursue the well-known problem of image reconstruction formulated in this case as shape isolation in the presence of a broadly defined noise. This combined approach is enabled by the intrinsic feature of seismogram which can be divided objectively into a pre-signal seismic noise with lack of the target shape, and the remainder that contains scattered waveforms compounding the coda shape. In short, we separately apply shape restoration procedure to pre-signal seismic noise and the event record, which provides successful delineation of the coda shape in the form of a smooth almost non-oscillating function of time. The new algorithm uses a recently developed generalization of classical computational-geometry tool of α-shape. The generalization essentially yields robust shape estimation by ignoring locally a number of points treated as extreme values, noise or non-relevant data. Our algorithm is conceptually simple and enables the desired or pre-determined level of shape detail, constrainable by an arbitrary data fit criteria. The proposed tool for coda shape delineation provides an alternative to moving averaging and/or other smoothing techniques frequently used for this purpose. The new algorithm is illustrated with an application to the problem of estimating the coda duration after a local event. The obtained relation coefficient between coda duration and epicentral distance is consistent with the earlier findings in the region of interest.

  5. Noise suppression in duct

    International Nuclear Information System (INIS)

    Ahmed, A.; Barfeh, M.A.G.

    2001-01-01

    In air-conditioning system the noise generated by supply fan is carried by conditioned air through the ductwork. The noise created in ductwork run may be transmission, regenerative and ductborne. Transmission noise is fan noise, regenerative noise is due to turbulence in flow and ductborne noise is the noise radiating from duct to surroundings. Some noise is attenuated in ducts also but if noise level is high then it needs to be attenuated. A simple mitre bend can attenuate-noise. This principle is extended to V and M-shape ducts with inside lining of fibreglass, which gave maximum attenuation of 77 dB and 62 dB respectively corresponding to 8 kHz frequency as compared to mitre, bend giving maximum 18 dB attenuation. Sound level meter measured sound levels with octave band filter and tests were conducted in anechoic room. A V-shape attenuator can be used at fan outlet and high frequency noise can be minimized greatly. (author)

  6. Active3 noise reduction

    International Nuclear Information System (INIS)

    Holzfuss, J.

    1996-01-01

    Noise reduction is a problem being encountered in a variety of applications, such as environmental noise cancellation, signal recovery and separation. Passive noise reduction is done with the help of absorbers. Active noise reduction includes the transmission of phase inverted signals for the cancellation. This paper is about a threefold active approach to noise reduction. It includes the separation of a combined source, which consists of both a noise and a signal part. With the help of interaction with the source by scanning it and recording its response, modeling as a nonlinear dynamical system is achieved. The analysis includes phase space analysis and global radial basis functions as tools for the prediction used in a subsequent cancellation procedure. Examples are given which include noise reduction of speech. copyright 1996 American Institute of Physics

  7. Highly noise resistant multiqubit quantum correlations

    Science.gov (United States)

    Laskowski, Wiesław; Vértesi, Tamás; Wieśniak, Marcin

    2015-11-01

    We analyze robustness of correlations of the N-qubit GHZ and Dicke states against white noise admixture. For sufficiently large N, the Dicke states (for any number of excitations) lead to more robust violation of local realism than the GHZ states (e.g. for N > 8 for the W state). We also identify states that are the most resistant to white noise. Surprisingly, it turns out that these states are the GHZ states augmented with fully product states. Based on our numerical analysis conducted up to N = 8, and an analytical formula derived for any N parties, we conjecture that the three-qubit GHZ state augmented with a product of (N - 3) pure qubits is the most robust against white noise admixture among any N-qubit state. As a by-product, we derive a single Bell inequality and show that it is violated by all pure entangled states of a given number of parties. This gives an alternative proof of Gisin’s theorem.

  8. Highly noise resistant multiqubit quantum correlations

    International Nuclear Information System (INIS)

    Laskowski, Wiesław; Wieśniak, Marcin; Vértesi, Tamás

    2015-01-01

    We analyze robustness of correlations of the N-qubit GHZ and Dicke states against white noise admixture. For sufficiently large N, the Dicke states (for any number of excitations) lead to more robust violation of local realism than the GHZ states (e.g. for N > 8 for the W state). We also identify states that are the most resistant to white noise. Surprisingly, it turns out that these states are the GHZ states augmented with fully product states. Based on our numerical analysis conducted up to N = 8, and an analytical formula derived for any N parties, we conjecture that the three-qubit GHZ state augmented with a product of (N − 3) pure qubits is the most robust against white noise admixture among any N-qubit state. As a by-product, we derive a single Bell inequality and show that it is violated by all pure entangled states of a given number of parties. This gives an alternative proof of Gisin’s theorem. (paper)

  9. Background noise exerts diverse effects on the cortical encoding of foreground sounds.

    Science.gov (United States)

    Malone, B J; Heiser, Marc A; Beitel, Ralph E; Schreiner, Christoph E

    2017-08-01

    In natural listening conditions, many sounds must be detected and identified in the context of competing sound sources, which function as background noise. Traditionally, noise is thought to degrade the cortical representation of sounds by suppressing responses and increasing response variability. However, recent studies of neural network models and brain slices have shown that background synaptic noise can improve the detection of signals. Because acoustic noise affects the synaptic background activity of cortical networks, it may improve the cortical responses to signals. We used spike train decoding techniques to determine the functional effects of a continuous white noise background on the responses of clusters of neurons in auditory cortex to foreground signals, specifically frequency-modulated sweeps (FMs) of different velocities, directions, and amplitudes. Whereas the addition of noise progressively suppressed the FM responses of some cortical sites in the core fields with decreasing signal-to-noise ratios (SNRs), the stimulus representation remained robust or was even significantly enhanced at specific SNRs in many others. Even though the background noise level was typically not explicitly encoded in cortical responses, significant information about noise context could be decoded from cortical responses on the basis of how the neural representation of the foreground sweeps was affected. These findings demonstrate significant diversity in signal in noise processing even within the core auditory fields that could support noise-robust hearing across a wide range of listening conditions. NEW & NOTEWORTHY The ability to detect and discriminate sounds in background noise is critical for our ability to communicate. The neural basis of robust perceptual performance in noise is not well understood. We identified neuronal populations in core auditory cortex of squirrel monkeys that differ in how they process foreground signals in background noise and that may

  10. Automatic indexing, compiling and classification

    International Nuclear Information System (INIS)

    Andreewsky, Alexandre; Fluhr, Christian.

    1975-06-01

    A review of the principles of automatic indexing, is followed by a comparison and summing-up of work by the authors and by a Soviet staff from the Moscou INFORM-ELECTRO Institute. The mathematical and linguistic problems of the automatic building of thesaurus and automatic classification are examined [fr

  11. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  12. Robust automated knowledge capture.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Adams, Susan Marie; Abbott, Robert G.; Forsythe, James Chris; Trumbo, Michael Christopher Stefan; Haass, Michael Joseph; Hendrickson, Stacey M. Langfitt

    2011-10-01

    This report summarizes research conducted through the Sandia National Laboratories Robust Automated Knowledge Capture Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding of the influence of individual cognitive attributes on decision making. The project has developed a quantitative model known as RumRunner that has proven effective in predicting the propensity of an individual to shift strategies on the basis of task and experience related parameters. Three separate studies are described which have validated the basic RumRunner model. This work provides a basis for better understanding human decision making in high consequent national security applications, and in particular, the individual characteristics that underlie adaptive thinking.

  13. Passion, Robustness and Perseverance

    DEFF Research Database (Denmark)

    Lim, Miguel Antonio; Lund, Rebecca

    2016-01-01

    Evaluation and merit in the measured university are increasingly based on taken-for-granted assumptions about the “ideal academic”. We suggest that the scholar now needs to show that she is passionate about her work and that she gains pleasure from pursuing her craft. We suggest that passion...... and pleasure achieve an exalted status as something compulsory. The scholar ought to feel passionate about her work and signal that she takes pleasure also in the difficult moments. Passion has become a signal of robustness and perseverance in a job market characterised by funding shortages, increased pressure...... way to demonstrate their potential and, crucially, their passion for their work. Drawing on the literature on technologies of governance, we reflect on what is captured and what is left out by these two evaluation instruments. We suggest that bibliometric analysis at the individual level is deeply...

  14. Robust Optical Flow Estimation

    Directory of Open Access Journals (Sweden)

    Javier Sánchez Pérez

    2013-10-01

    Full Text Available n this work, we describe an implementation of the variational method proposed by Brox etal. in 2004, which yields accurate optical flows with low running times. It has several benefitswith respect to the method of Horn and Schunck: it is more robust to the presence of outliers,produces piecewise-smooth flow fields and can cope with constant brightness changes. Thismethod relies on the brightness and gradient constancy assumptions, using the information ofthe image intensities and the image gradients to find correspondences. It also generalizes theuse of continuous L1 functionals, which help mitigate the effect of outliers and create a TotalVariation (TV regularization. Additionally, it introduces a simple temporal regularizationscheme that enforces a continuous temporal coherence of the flow fields.

  15. Robust Multimodal Dictionary Learning

    Science.gov (United States)

    Cao, Tian; Jojic, Vladimir; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    We propose a robust multimodal dictionary learning method for multimodal images. Joint dictionary learning for both modalities may be impaired by lack of correspondence between image modalities in training data, for example due to areas of low quality in one of the modalities. Dictionaries learned with such non-corresponding data will induce uncertainty about image representation. In this paper, we propose a probabilistic model that accounts for image areas that are poorly corresponding between the image modalities. We cast the problem of learning a dictionary in presence of problematic image patches as a likelihood maximization problem and solve it with a variant of the EM algorithm. Our algorithm iterates identification of poorly corresponding patches and re-finements of the dictionary. We tested our method on synthetic and real data. We show improvements in image prediction quality and alignment accuracy when using the method for multimodal image registration. PMID:24505674

  16. Robust snapshot interferometric spectropolarimetry.

    Science.gov (United States)

    Kim, Daesuk; Seo, Yoonho; Yoon, Yonghee; Dembele, Vamara; Yoon, Jae Woong; Lee, Kyu Jin; Magnusson, Robert

    2016-05-15

    This Letter describes a Stokes vector measurement method based on a snapshot interferometric common-path spectropolarimeter. The proposed scheme, which employs an interferometric polarization-modulation module, can extract the spectral polarimetric parameters Ψ(k) and Δ(k) of a transmissive anisotropic object by which an accurate Stokes vector can be calculated in the spectral domain. It is inherently strongly robust to the object 3D pose variation, since it is designed distinctly so that the measured object can be placed outside of the interferometric module. Experiments are conducted to verify the feasibility of the proposed system. The proposed snapshot scheme enables us to extract the spectral Stokes vector of a transmissive anisotropic object within tens of msec with high accuracy.

  17. Automatization of welding

    International Nuclear Information System (INIS)

    Iwabuchi, Masashi; Tomita, Jinji; Nishihara, Katsunori.

    1978-01-01

    Automatization of welding is one of the effective measures for securing high degree of quality of nuclear power equipment, as well as for correspondence to the environment at the site of plant. As the latest ones of the automatic welders practically used for welding of nuclear power apparatuses in factories of Toshiba and IHI, those for pipes and lining tanks are described here. The pipe welder performs the battering welding on the inside of pipe end as the so-called IGSCC countermeasure and the succeeding butt welding through the same controller. The lining tank welder is able to perform simultaneous welding of two parallel weld lines on a large thin plate lining tank. Both types of the welders are demonstrating excellent performance at the shops as well as at the plant site. (author)

  18. Automatic structural scene digitalization.

    Science.gov (United States)

    Tang, Rui; Wang, Yuhan; Cosker, Darren; Li, Wenbin

    2017-01-01

    In this paper, we present an automatic system for the analysis and labeling of structural scenes, floor plan drawings in Computer-aided Design (CAD) format. The proposed system applies a fusion strategy to detect and recognize various components of CAD floor plans, such as walls, doors, windows and other ambiguous assets. Technically, a general rule-based filter parsing method is fist adopted to extract effective information from the original floor plan. Then, an image-processing based recovery method is employed to correct information extracted in the first step. Our proposed method is fully automatic and real-time. Such analysis system provides high accuracy and is also evaluated on a public website that, on average, archives more than ten thousands effective uses per day and reaches a relatively high satisfaction rate.

  19. Automatic trend estimation

    CERN Document Server

    Vamos¸, C˘alin

    2013-01-01

    Our book introduces a method to evaluate the accuracy of trend estimation algorithms under conditions similar to those encountered in real time series processing. This method is based on Monte Carlo experiments with artificial time series numerically generated by an original algorithm. The second part of the book contains several automatic algorithms for trend estimation and time series partitioning. The source codes of the computer programs implementing these original automatic algorithms are given in the appendix and will be freely available on the web. The book contains clear statement of the conditions and the approximations under which the algorithms work, as well as the proper interpretation of their results. We illustrate the functioning of the analyzed algorithms by processing time series from astrophysics, finance, biophysics, and paleoclimatology. The numerical experiment method extensively used in our book is already in common use in computational and statistical physics.

  20. International Conference on Robust Statistics

    CERN Document Server

    Filzmoser, Peter; Gather, Ursula; Rousseeuw, Peter

    2003-01-01

    Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.

  1. Deliberation versus automaticity in decision making: Which presentation format features facilitate automatic decision making?

    Directory of Open Access Journals (Sweden)

    Anke Soellner

    2013-05-01

    Full Text Available The idea of automatic decision making approximating normatively optimal decisions without necessitating much cognitive effort is intriguing. Whereas recent findings support the notion that such fast, automatic processes explain empirical data well, little is known about the conditions under which such processes are selected rather than more deliberate stepwise strategies. We investigate the role of the format of information presentation, focusing explicitly on the ease of information acquisition and its influence on information integration processes. In a probabilistic inference task, the standard matrix employed in prior research was contrasted with a newly created map presentation format and additional variations of both presentation formats. Across three experiments, a robust presentation format effect emerged: Automatic decision making was more prevalent in the matrix (with high information accessibility, whereas sequential decision strategies prevailed when the presentation format demanded more information acquisition effort. Further scrutiny of the effect showed that it is not driven by the presentation format as such, but rather by the extent of information search induced by a format. Thus, if information is accessible with minimal need for information search, information integration is likely to proceed in a perception-like, holistic manner. In turn, a moderate demand for information search decreases the likelihood of behavior consistent with the assumptions of automatic decision making.

  2. Automatic food decisions

    DEFF Research Database (Denmark)

    Mueller Loose, Simone

    Consumers' food decisions are to a large extent shaped by automatic processes, which are either internally directed through learned habits and routines or externally influenced by context factors and visual information triggers. Innovative research methods such as eye tracking, choice experiments...... and food diaries allow us to better understand the impact of unconscious processes on consumers' food choices. Simone Mueller Loose will provide an overview of recent research insights into the effects of habit and context on consumers' food choices....

  3. Automatic LOD selection

    OpenAIRE

    Forsman, Isabelle

    2017-01-01

    In this paper a method to automatically generate transition distances for LOD, improving image stability and performance is presented. Three different methods were tested all measuring the change between two level of details using the spatial frequency. The methods were implemented as an optional pre-processing step in order to determine the transition distances from multiple view directions. During run-time both view direction based selection and the furthest distance for each direction was ...

  4. Seismic noise attenuation using an online subspace tracking algorithm

    Science.gov (United States)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  5. Noise power spectrum of the fixed pattern noise in digital radiography detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sik, E-mail: dskim@hufs.ac.kr [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Kim, Eun [R& D Center, DRTECH Co., Gyeonggi-do 13558 (Korea, Republic of)

    2016-06-15

    Purpose: The fixed pattern noise in radiography image detectors is caused by various sources. Multiple readout circuits with gate drivers and charge amplifiers are used to efficiently acquire the pixel voltage signals. However, the multiple circuits are not identical and thus yield nonuniform system gains. Nonuniform sensitivities are also produced from local variations in the charge collection elements. Furthermore, in phosphor-based detectors, the optical scattering at the top surface of the columnar CsI growth, the grain boundaries, and the disorder structure causes spatial sensitivity variations. These nonuniform gains or sensitivities cause fixed pattern noise and degrade the detector performance, even though the noise problem can be partially alleviated by using gain correction techniques. Hence, in order to develop good detectors, comparative analysis of the energy spectrum of the fixed pattern noise is important. Methods: In order to observe the energy spectrum of the fixed pattern noise, a normalized noise power spectrum (NNPS) of the fixed pattern noise is considered in this paper. Since the fixed pattern noise is mainly caused by the nonuniform gains, we call the spectrum the gain NNPS. We first asymptotically observe the gain NNPS and then formulate two relationships to calculate the gain NNPS based on a nonuniform-gain model. Since the gain NNPS values are quite low compared to the usual NNPS, measuring such a low NNPS value is difficult. By using the average of the uniform exposure images, a robust measuring method for the gain NNPS is proposed in this paper. Results: By using the proposed measuring method, the gain NNPS curves of several prototypes of general radiography and mammography detectors were measured to analyze their fixed pattern noise properties. We notice that a direct detector, which is based on the a-Se photoconductor, showed lower gain NNPS than the indirect-detector case, which is based on the CsI scintillator. By comparing the gain

  6. Robust video object cosegmentation.

    Science.gov (United States)

    Wang, Wenguan; Shen, Jianbing; Li, Xuelong; Porikli, Fatih

    2015-10-01

    With ever-increasing volumes of video data, automatic extraction of salient object regions became even more significant for visual analytic solutions. This surge has also opened up opportunities for taking advantage of collective cues encapsulated in multiple videos in a cooperative manner. However, it also brings up major challenges, such as handling of drastic appearance, motion pattern, and pose variations, of foreground objects as well as indiscriminate backgrounds. Here, we present a cosegmentation framework to discover and segment out common object regions across multiple frames and multiple videos in a joint fashion. We incorporate three types of cues, i.e., intraframe saliency, interframe consistency, and across-video similarity into an energy optimization framework that does not make restrictive assumptions on foreground appearance and motion model, and does not require objects to be visible in all frames. We also introduce a spatio-temporal scale-invariant feature transform (SIFT) flow descriptor to integrate across-video correspondence from the conventional SIFT-flow into interframe motion flow from optical flow. This novel spatio-temporal SIFT flow generates reliable estimations of common foregrounds over the entire video data set. Experimental results show that our method outperforms the state-of-the-art on a new extensive data set (ViCoSeg).

  7. Genetic noise control via protein oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  8. Robustness Analyses of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard; Hald, Frederik

    2013-01-01

    The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many mo...... with respect to robustness of timber structures and will discuss the consequences of such robustness issues related to the future development of timber structures.......The robustness of structural systems has obtained a renewed interest arising from a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure. In order to minimise the likelihood of such disproportionate structural failures, many...... modern building codes consider the need for the robustness of structures and provide strategies and methods to obtain robustness. Therefore, a structural engineer may take necessary steps to design robust structures that are insensitive to accidental circumstances. The present paper summaries issues...

  9. Judgments of aircraft noise in a traffic noise background

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  10. Automatic Generation of Facial Expression Using Triangular Geometric Deformation

    OpenAIRE

    Jia-Shing Sheu; Tsu-Shien Hsieh; Ho-Nien Shou

    2014-01-01

    This paper presents an image deformation algorithm and constructs an automatic facial expression generation system to generate new facial expressions in neutral state. After the users input the face image in a neutral state into the system, the system separates the possible facial areas and the image background by skin color segmentation. It then uses the morphological operation to remove noise and to capture the organs of facial expression, such as the eyes, mouth, eyebrow, and nose. The fea...

  11. Automatic acoustic and vibration monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Tothmatyas, Istvan; Illenyi, Andras; Kiss, Jozsef; Komaromi, Tibor; Nagy, Istvan; Olchvary, Geza

    1990-01-01

    A diagnostic system for nuclear power plant monitoring is described. Acoustic and vibration diagnostics can be applied to monitor various reactor components and auxiliary equipment including primary circuit machinery, leak detection, integrity of reactor vessel, loose parts monitoring. A noise diagnostic system has been developed for the Paks Nuclear Power Plant, to supervise the vibration state of primary circuit machinery. An automatic data acquisition and processing system is described for digitalizing and analysing diagnostic signals. (R.P.) 3 figs

  12. Automatic, non-intrusive, flame detection in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M.D.; Mehta, S.A.; Moore, R.G. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Al-Himyary, T.J. [Al-Himyary Consulting Inc., Calgary, AB (Canada)

    2004-07-01

    Flames have been known to occur within small diameter pipes operating under conditions of high turbulent flow. Although there are several methods of flame detection, few offer remote, non-line-of-site detection. In particular, combustion cannot be detected in cases where flammable mixtures are carried in flare lines, storage tank vents, air drilling or improperly designed purging operations. Combustion noise is being examined as a means to address this problem. A study was conducted in which flames within a small diameter tube were automatically detected using high speed pressure measurements and a newly developed algorithm. Commercially available, high-pressure, dynamic-pressure transducers were used for the measurements. The results of an experimental study showed that combustion noise can be distinguished from other sources of noise by its inverse power law relationship with frequency. This paper presented a newly developed algorithm which provides early detection of flames when combined with high-speed pressure measurements. The algorithm can also separate combustion noise automatically from other sources of noise when combined with other filters. In this study, the noise generated by a fluttering check valve was attenuated using a stop band filter. This detection method was found to be very reliable under the conditions tests, as long as there was no flow restriction between the sensor and the flame. A flow restriction would have resulted in the detection of only the strongest flame noise. It was shown that acoustic flame detection can be applied successfully in flare stacks, industrial burners and turbine combustors. It can be 15 times more sensitive than optical or electrical methods in diagnosing combustion problems with lean burning combustors. It may also be the only method available in applications that require remote, non-line-of-sight detection. 11 refs., 3 tabs., 15 figs.

  13. Ambient Noise in an Urbanized Tidal Channel

    Science.gov (United States)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  14. A Comparison of seismic instrument noise coherence analysis techniques

    Science.gov (United States)

    Ringler, A.T.; Hutt, C.R.; Evans, J.R.; Sandoval, L.D.

    2011-01-01

    The self-noise of a seismic instrument is a fundamental characteristic used to evaluate the quality of the instrument. It is important to be able to measure this self-noise robustly, to understand how differences among test configurations affect the tests, and to understand how different processing techniques and isolation methods (from nonseismic sources) can contribute to differences in results. We compare two popular coherence methods used for calculating incoherent noise, which is widely used as an estimate of instrument self-noise (incoherent noise and self-noise are not strictly identical but in observatory practice are approximately equivalent; Holcomb, 1989; Sleeman et al., 2006). Beyond directly comparing these two coherence methods on similar models of seismometers, we compare how small changes in test conditions can contribute to incoherent-noise estimates. These conditions include timing errors, signal-to-noise ratio changes (ratios between background noise and instrument incoherent noise), relative sensor locations, misalignment errors, processing techniques, and different configurations of sensor types.

  15. Application of the robust design concept for fuel loading pattern

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Ohori, Kazuma; Yamamoto, Akio

    2011-01-01

    Application of the robust design concept for fuel loading pattern design is proposed as a new approach to improve the prediction accuracy of core characteristics. The robust design is a design concept that establishes a resistant (robust) system for perturbations or noises, by properly setting design variables. In order to apply the concept of robust design to fuel loading pattern design, we focus on a theoretical approach based on the higher order perturbation method. This approach indicates that the eigenvalue separation is one of the effective indices to measure the robustness of a designed fuel loading pattern. In order to verify the effectiveness of the eigenvalue separation as an index of robustness, numerical analysis is carried out for typical 3-loop PWR cores, and we evaluated the correlation between the eigenvalue separation and the variation of relative assembly power due to the perturbation of the cross section. The numerical results show that the variation of relative power decreases as the eigenvalue separation increases; thus, it is confirmed that the eigenvalue separation is an effective index of robustness. Based on the eigenvalue separation of a fuel loading pattern, we discuss design guidelines of a fuel loading pattern to improve the robustness. For example, if each fuel assembly has independent uncertainty on its cross section, the robustness of the core can be enhanced by increasing the relative power at the center of the core. The proposed guidelines will be useful to design a loading pattern that has robustness for uncertainties due to cross section, calculation method, and so on. (author)

  16. assessment of noise pollutio noise pollutio noise pollution

    African Journals Online (AJOL)

    eobe

    re above the recommended limit of 85 dB(A) and these high noise intensit related health ... multiple workplaces i.e. steel pipe and a unit factory ... construction material. However .... selected workers, particularly the machine operators. In some ...

  17. Description of Anomalous Noise Events for Reliable Dynamic Traffic Noise Mapping in Real-Life Urban and Suburban Soundscapes

    Directory of Open Access Journals (Sweden)

    Francesc Alías

    2017-02-01

    Full Text Available Traffic noise is one of the main pollutants in urban and suburban areas. European authorities have driven several initiatives to study, prevent and reduce the effects of exposure of population to traffic. Recent technological advances have allowed the dynamic computation of noise levels by means of Wireless Acoustic Sensor Networks (WASN such as that developed within the European LIFE DYNAMAP project. Those WASN should be capable of detecting and discarding non-desired sound sources from road traffic noise, denoted as anomalous noise events (ANE, in order to generate reliable noise level maps. Due to the local, occasional and diverse nature of ANE, some works have opted to artificially build ANE databases at the cost of misrepresentation. This work presents the production and analysis of a real-life environmental audio database in two urban and suburban areas specifically conceived for anomalous noise events’ collection. A total of 9 h 8 min of labelled audio data is obtained differentiating among road traffic noise, background city noise and ANE. After delimiting their boundaries manually, the acoustic salience of the ANE samples is automatically computed as a contextual signal-to-noise ratio (SNR. The analysis of the real-life environmental database shows high diversity of ANEs in terms of occurrences, durations and SNRs, as well as confirming both the expected differences between the urban and suburban soundscapes in terms of occurrences and SNRs, and the rare nature of ANE.

  18. Automatic delamination defect detection in radiographic sequence of rocket boosters

    International Nuclear Information System (INIS)

    Rebuffel, V.; Pires, S.; Caplier, A.; Lamarque, P.

    2003-01-01

    Solid rocket motors are routinely examined in real-time X-ray radioscopic mode. The large and cylindrical boosters are rotating between a high energy source and a two dimensional detector. The purpose of this control is to detect possible defects all through the sample. In the tangential configuration, the part of the object that intersects the X-rays beam is the peripheral one, allowing to detect the delamination defect between the propellant and the external metal envelope. But the defect detectability is very poor due to the strong attenuation of the X-rays through the motors. During the rotation of the booster, the system acquires a sequence of radiographs where the defects are visible over several successive instants. We have previously developed a real-time tomo-synthesis system, processing the radiographs on line, and based on a tomo-synthesis reconstruction algorithm in order to improve the signal-to-noise ratio. This system is installed at the industrial site of Kourou, and is currently used by the operators in charge of the visual inspection of the boosters. In this paper, we present a method that processes the digital images obtained by the system in the purpose of automatically extracting the delamination defects. Due to the size and the poor contrast of the defects, a single image is not sufficient to perform this detection. A spatio-temporal aspect is required for the algorithm to be robust and efficient. In a first step, the proposed method computes the apparent local displacement between the current radiograph and a reference one. This reference image is acquired at the beginning of the rotation, with few noise, and is supposed to be defect free. The apparent displacement is due to the non-perfect rotation positioning. It may be uniform or not, depending on the deformation of the insulation liner of the metallic wall. The images are then registered and compared. On the resulting difference image we apply a smoothed threshold to obtain an

  19. Most probable dimension value and most flat interval methods for automatic estimation of dimension from time series

    International Nuclear Information System (INIS)

    Corana, A.; Bortolan, G.; Casaleggio, A.

    2004-01-01

    We present and compare two automatic methods for dimension estimation from time series. Both methods, based on conceptually different approaches, work on the derivative of the bi-logarithmic plot of the correlation integral versus the correlation length (log-log plot). The first method searches for the most probable dimension values (MPDV) and associates to each of them a possible scaling region. The second one searches for the most flat intervals (MFI) in the derivative of the log-log plot. The automatic procedures include the evaluation of the candidate scaling regions using two reliability indices. The data set used to test the methods consists of time series from known model attractors with and without the addition of noise, structured time series, and electrocardiographic signals from the MIT-BIH ECG database. Statistical analysis of results was carried out by means of paired t-test, and no statistically significant differences were found in the large majority of the trials. Consistent results are also obtained dealing with 'difficult' time series. In general for a more robust and reliable estimate, the use of both methods may represent a good solution when time series from complex systems are analyzed. Although we present results for the correlation dimension only, the procedures can also be used for the automatic estimation of generalized q-order dimensions and pointwise dimension. We think that the proposed methods, eliminating the need of operator intervention, allow a faster and more objective analysis, thus improving the usefulness of dimension analysis for the characterization of time series obtained from complex dynamical systems

  20. STUDY OF AUTOMATIC IMAGE RECTIFICATION AND REGISTRATION OF SCANNED HISTORICAL AERIAL PHOTOGRAPHS

    Directory of Open Access Journals (Sweden)

    H. R. Chen

    2016-06-01

    Full Text Available Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  1. Scale invariant SURF detector and automatic clustering segmentation for infrared small targets detection

    Science.gov (United States)

    Zhang, Haiying; Bai, Jiaojiao; Li, Zhengjie; Liu, Yan; Liu, Kunhong

    2017-06-01

    The detection and discrimination of infrared small dim targets is a challenge in automatic target recognition (ATR), because there is no salient information of size, shape and texture. Many researchers focus on mining more discriminative information of targets in temporal-spatial. However, such information may not be available with the change of imaging environments, and the targets size and intensity keep changing in different imaging distance. So in this paper, we propose a novel research scheme using density-based clustering and backtracking strategy. In this scheme, the speeded up robust feature (SURF) detector is applied to capture candidate targets in single frame at first. And then, these points are mapped into one frame, so that target traces form a local aggregation pattern. In order to isolate the targets from noises, a newly proposed density-based clustering algorithm, fast search and find of density peak (FSFDP for short), is employed to cluster targets by the spatial intensive distribution. Two important factors of the algorithm, percent and γ , are exploited fully to determine the clustering scale automatically, so as to extract the trace with highest clutter suppression ratio. And at the final step, a backtracking algorithm is designed to detect and discriminate target trace as well as to eliminate clutter. The consistence and continuity of the short-time target trajectory in temporal-spatial is incorporated into the bounding function to speed up the pruning. Compared with several state-of-arts methods, our algorithm is more effective for the dim targets with lower signal-to clutter ratio (SCR). Furthermore, it avoids constructing the candidate target trajectory searching space, so its time complexity is limited to a polynomial level. The extensive experimental results show that it has superior performance in probability of detection (Pd) and false alarm suppressing rate aiming at variety of complex backgrounds.

  2. Automatic first-arrival picking based on extended super-virtual interferometry with quality control procedure

    Science.gov (United States)

    An, Shengpei; Hu, Tianyue; Liu, Yimou; Peng, Gengxin; Liang, Xianghao

    2017-12-01

    Static correction is a crucial step of seismic data processing for onshore play, which frequently has a complex near-surface condition. The effectiveness of the static correction depends on an accurate determination of first-arrival traveltimes. However, it is difficult to accurately auto-pick the first arrivals for data with low signal-to-noise ratios (SNR), especially for those measured in the area of the complex near-surface. The technique of the super-virtual interferometry (SVI) has the potential to enhance the SNR of first arrivals. In this paper, we develop the extended SVI with (1) the application of the reverse correlation to improve the capability of SNR enhancement at near-offset, and (2) the usage of the multi-domain method to partially overcome the limitation of current method, given insufficient available source-receiver combinations. Compared to the standard SVI, the SNR enhancement of the extended SVI can be up to 40%. In addition, we propose a quality control procedure, which is based on the statistical characteristics of multichannel recordings of first arrivals. It can auto-correct the mispicks, which might be spurious events generated by the SVI. This procedure is very robust, highly automatic and it can accommodate large data in batches. Finally, we develop one automatic first-arrival picking method to combine the extended SVI and the quality control procedure. Both the synthetic and the field data examples demonstrate that the proposed method is able to accurately auto-pick first arrivals in seismic traces with low SNR. The quality of the stacked seismic sections obtained from this method is much better than those obtained from an auto-picking method, which is commonly employed by the commercial software.

  3. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young

    2017-03-01

    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  4. Poultry Plant Noise Control

    Science.gov (United States)

    1982-01-01

    A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.

  5. Adaptive noise cancellation

    International Nuclear Information System (INIS)

    Akram, N.

    1999-01-01

    In this report we describe the concept of adaptive noise canceling, an alternative method of estimating signals corrupted by additive noise of interference. The method uses 'primary' input containing the corrupted signal and a 'reference' input containing noise correlated in some unknown way with the primary noise, the reference input is adaptively filtered and subtracted from the primary input to obtain the signal estimate. Adaptive filtering before subtraction allows the treatment of inputs that are deterministic or stochastic, stationary or time variable. When the reference input is free of signal and certain other conditions are met then noise in the primary input can be essentially eliminated without signal distortion. It is further shown that the adaptive filter also acts as notch filter. Simulated results illustrate the usefulness of the adaptive noise canceling technique. (author)

  6. Acceptable noise level

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Nielsen, Lars Holme; Lantz, Johannes

    2012-01-01

    The acceptable noise level (ANL) is used to quantify the amount of background noise that subjects can accept while listening to speech, and is suggested for prediction of individual hearing-aid use. The aim of this study was to assess the repeatability of the ANL measured in normal-hearing subjects...... using running Danish and non-semantic speech materials as stimuli and modulated speech-spectrum and multi-talker babble noises as competing stimuli....

  7. Noise at the Interface

    DEFF Research Database (Denmark)

    Prior, Andrew

    2011-01-01

    The notion of noise occupies a contested territory, in which it is framed as pollution and detritus even as it makes its opposite a possibility - noise is always defined in opposition to something else, even if this ‘other’ is not quite clear. This paper explores noise in the context of ‘the...... interface’ asking what its affordances as an idea may contribute to our understanding of interface. I draw historically on information theory in particular to initiate this exploration....

  8. Acceptable noise level

    DEFF Research Database (Denmark)

    Olsen, Steen Østergaard; Nielsen, Lars Holme; Lantz, Johannes

    2012-01-01

    The acceptable noise level (ANL) is used to quantify the amount of background noise that subjects can accept while listening to speech, and is suggested for prediction of individual hearing-aid use. The aim of this study was to assess the repeatability of the ANL measured in normal-hearing subjec...... using running Danish and non-semantic speech materials as stimuli and modulated speech-spectrum and multi-talker babble noises as competing stimuli....

  9. Global Distribution Adjustment and Nonlinear Feature Transformation for Automatic Colorization

    Directory of Open Access Journals (Sweden)

    Terumasa Aoki

    2018-01-01

    Full Text Available Automatic colorization is generally classified into two groups: propagation-based methods and reference-based methods. In reference-based automatic colorization methods, color image(s are used as reference(s to reconstruct original color of a gray target image. The most important task here is to find the best matching pairs for all pixels between reference and target images in order to transfer color information from reference to target pixels. A lot of attractive local feature-based image matching methods have already been developed for the last two decades. Unfortunately, as far as we know, there are no optimal matching methods for automatic colorization because the requirements for pixel matching in automatic colorization are wholly different from those for traditional image matching. To design an efficient matching algorithm for automatic colorization, clustering pixel with low computational cost and generating descriptive feature vector are the most important challenges to be solved. In this paper, we present a novel method to address these two problems. In particular, our work concentrates on solving the second problem (designing a descriptive feature vector; namely, we will discuss how to learn a descriptive texture feature using scaled sparse texture feature combining with a nonlinear transformation to construct an optimal feature descriptor. Our experimental results show our proposed method outperforms the state-of-the-art methods in terms of robustness for color reconstruction for automatic colorization applications.

  10. Robust continuous clustering.

    Science.gov (United States)

    Shah, Sohil Atul; Koltun, Vladlen

    2017-09-12

    Clustering is a fundamental procedure in the analysis of scientific data. It is used ubiquitously across the sciences. Despite decades of research, existing clustering algorithms have limited effectiveness in high dimensions and often require tuning parameters for different domains and datasets. We present a clustering algorithm that achieves high accuracy across multiple domains and scales efficiently to high dimensions and large datasets. The presented algorithm optimizes a smooth continuous objective, which is based on robust statistics and allows heavily mixed clusters to be untangled. The continuous nature of the objective also allows clustering to be integrated as a module in end-to-end feature learning pipelines. We demonstrate this by extending the algorithm to perform joint clustering and dimensionality reduction by efficiently optimizing a continuous global objective. The presented approach is evaluated on large datasets of faces, hand-written digits, objects, newswire articles, sensor readings from the Space Shuttle, and protein expression levels. Our method achieves high accuracy across all datasets, outperforming the best prior algorithm by a factor of 3 in average rank.

  11. Noise upon the Sinusoids

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2005-01-01

    Sinusoids are used for making harmonic and other sounds. In order to having life in the sounds and adding a wide variety of noises, irregularities are inserted in the frequency and amplitudes. A simple and intuitive noise model is presented, consisting of a low-pass filtered noise, and having...... control for strength and bandwidth. The noise is added on the frequency and amplitudes of the sinusoids, and the resulting irregularity’s (jitter and shimmer) bandwidth is derived. This, together with an overview of investigation methods of the jitter and shimmer results in an analysis of the necessary...

  12. Understanding jet noise.

    Science.gov (United States)

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  13. Landing gear noise attenuation

    Science.gov (United States)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  14. Two-level Robust Measurement Fusion Kalman Filter for Clustering Sensor Networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; QI Wen-Juan; DENG Zi-Li

    2014-01-01

    This paper investigates the distributed fusion Kalman filtering over clustering sensor networks. The sensor network is partitioned as clusters by the nearest neighbor rule and each cluster consists of sensing nodes and cluster-head. Using the minimax robust estimation principle, based on the worst-case conservative system with the conservative upper bounds of noise variances, two-level robust measurement fusion Kalman filter is presented for the clustering sensor network systems with uncertain noise variances. It can significantly reduce the communication load and save energy when the number of sensors is very large. A Lyapunov equation approach for the robustness analysis is presented, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented, and the robust accuracy relations among the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the two-level weighted measurement fuser is equal to that of the global centralized robust fuser and is higher than those of each local robust filter and each local weighted measurement fuser. A simulation example shows the correctness and effectiveness of the proposed results.

  15. Robust Trust in Expert Testimony

    Directory of Open Access Journals (Sweden)

    Christian Dahlman

    2015-05-01

    Full Text Available The standard of proof in criminal trials should require that the evidence presented by the prosecution is robust. This requirement of robustness says that it must be unlikely that additional information would change the probability that the defendant is guilty. Robustness is difficult for a judge to estimate, as it requires the judge to assess the possible effect of information that the he or she does not have. This article is concerned with expert witnesses and proposes a method for reviewing the robustness of expert testimony. According to the proposed method, the robustness of expert testimony is estimated with regard to competence, motivation, external strength, internal strength and relevance. The danger of trusting non-robust expert testimony is illustrated with an analysis of the Thomas Quick Case, a Swedish legal scandal where a patient at a mental institution was wrongfully convicted for eight murders.

  16. AUTOMATIC FREQUENCY CONTROL SYSTEM

    Science.gov (United States)

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  17. Automatic dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.

    2008-01-01

    The Catani-Seymour dipole subtraction is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. We automatized the procedure in a computer code. The code is useful especially for the processes with many parton legs. In this talk, we first explain the algorithm of the dipole subtraction and the whole structure of our code. After that we show the results for some processes where the infrared divergences of real emission processes are subtracted. (author)

  18. Automatic programmable air ozonizer

    International Nuclear Information System (INIS)

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  19. Robust linear registration of CT images using random regression forests

    Science.gov (United States)

    Konukoglu, Ender; Criminisi, Antonio; Pathak, Sayan; Robertson, Duncan; White, Steve; Haynor, David; Siddiqui, Khan

    2011-03-01

    Global linear registration is a necessary first step for many different tasks in medical image analysis. Comparing longitudinal studies1, cross-modality fusion2, and many other applications depend heavily on the success of the automatic registration. The robustness and efficiency of this step is crucial as it affects all subsequent operations. Most common techniques cast the linear registration problem as the minimization of a global energy function based on the image intensities. Although these algorithms have proved useful, their robustness in fully automated scenarios is still an open question. In fact, the optimization step often gets caught in local minima yielding unsatisfactory results. Recent algorithms constrain the space of registration parameters by exploiting implicit or explicit organ segmentations, thus increasing robustness4,5. In this work we propose a novel robust algorithm for automatic global linear image registration. Our method uses random regression forests to estimate posterior probability distributions for the locations of anatomical structures - represented as axis aligned bounding boxes6. These posterior distributions are later integrated in a global linear registration algorithm. The biggest advantage of our algorithm is that it does not require pre-defined segmentations or regions. Yet it yields robust registration results. We compare the robustness of our algorithm with that of the state of the art Elastix toolbox7. Validation is performed via 1464 pair-wise registrations in a database of very diverse 3D CT images. We show that our method decreases the "failure" rate of the global linear registration from 12.5% (Elastix) to only 1.9%.

  20. Seismic noise level variation in South Korea

    Science.gov (United States)

    Sheen, D.; Shin, J.

    2008-12-01

    The variations of seismic background noise in South Korea have been investigated by means of power spectral analysis. The Korea Institute of Geoscience and Mineral Resources (KIGAM) and the Korea Meteorological Administation (KMA) have national wide seismic networks in South Korea, and, in the end of 2007, there are 30 broadband stations which have been operating for more than a year. In this study, we have estimated the power spectral density of seismic noise for 30 broadband stations from 2005 to 2007. Since we estimate PSDs from a large dataset of continuous waveform in this study, a robust PSD estimate of McNamara and Buland (2004) is used. In the frequency range 1-5 Hz, the diurnal variations of noise are observed at most of stations, which are especially larger at coastal stations and at insular than at inland. Some stations shows daily difference of diurnal variations, which represents that cultural activities contribute to the noise level of a station. The variation of number of triggered stations, however, shows that cultural noise has little influence on the detection capability of seismic network in South Korea. Seasonal variations are observed well in the range 0.1-0.5 Hz, while much less found in the frequency range 1-5 Hz. We observed that strong peaks in the range 0.1-0.5 Hz occur at the summer when Pacific typhoons are close to the Korean Peninsula.

  1. Time-Distance Helioseismology: Noise Estimation

    Science.gov (United States)

    Gizon, L.; Birch, A. C.

    2004-10-01

    As in global helioseismology, the dominant source of noise in time-distance helioseismology measurements is realization noise due to the stochastic nature of the excitation mechanism of solar oscillations. Characterizing noise is important for the interpretation and inversion of time-distance measurements. In this paper we introduce a robust definition of travel time that can be applied to very noisy data. We then derive a simple model for the full covariance matrix of the travel-time measurements. This model depends only on the expectation value of the filtered power spectrum and assumes that solar oscillations are stationary and homogeneous on the solar surface. The validity of the model is confirmed through comparison with SOHO MDI measurements in a quiet-Sun region. We show that the correlation length of the noise in the travel times is about half the dominant wavelength of the filtered power spectrum. We also show that the signal-to-noise ratio in quiet-Sun travel-time maps increases roughly as the square root of the observation time and is at maximum for a distance near half the length scale of supergranulation.

  2. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    Schepers, J.G.

    1997-06-01

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  3. Robust electrocardiogram (ECG) beat classification using discrete wavelet transform

    International Nuclear Information System (INIS)

    Minhas, Fayyaz-ul-Amir Afsar; Arif, Muhammad

    2008-01-01

    This paper presents a robust technique for the classification of six types of heartbeats through an electrocardiogram (ECG). Features extracted from the QRS complex of the ECG using a wavelet transform along with the instantaneous RR-interval are used for beat classification. The wavelet transform utilized for feature extraction in this paper can also be employed for QRS delineation, leading to reduction in overall system complexity as no separate feature extraction stage would be required in the practical implementation of the system. Only 11 features are used for beat classification with the classification accuracy of ∼99.5% through a KNN classifier. Another main advantage of this method is its robustness to noise, which is illustrated in this paper through experimental results. Furthermore, principal component analysis (PCA) has been used for feature reduction, which reduces the number of features from 11 to 6 while retaining the high beat classification accuracy. Due to reduction in computational complexity (using six features, the time required is ∼4 ms per beat), a simple classifier and noise robustness (at 10 dB signal-to-noise ratio, accuracy is 95%), this method offers substantial advantages over previous techniques for implementation in a practical ECG analyzer

  4. Robust modal curvature features for identifying multiple damage in beams

    Science.gov (United States)

    Ostachowicz, Wiesław; Xu, Wei; Bai, Runbo; Radzieński, Maciej; Cao, Maosen

    2014-03-01

    Curvature mode shape is an effective feature for damage detection in beams. However, it is susceptible to measurement noise, easily impairing its advantage of sensitivity to damage. To deal with this deficiency, this study formulates an improved curvature mode shape for multiple damage detection in beams based on integrating a wavelet transform (WT) and a Teager energy operator (TEO). The improved curvature mode shape, termed the WT - TEO curvature mode shape, has inherent capabilities of immunity to noise and sensitivity to damage. The proposed method is experimentally validated by identifying multiple cracks in cantilever steel beams with the mode shapes acquired using a scanning laser vibrometer. The results demonstrate that the improved curvature mode shape can identify multiple damage accurately and reliably, and it is fairly robust to measurement noise.

  5. Sounds and Noises. A Position Paper on Noise Pollution.

    Science.gov (United States)

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  6. Automatic personnel contamination monitor

    International Nuclear Information System (INIS)

    Lattin, Kenneth R.

    1978-01-01

    United Nuclear Industries, Inc. (UNI) has developed an automatic personnel contamination monitor (APCM), which uniquely combines the design features of both portal and hand and shoe monitors. In addition, this prototype system also has a number of new features, including: micro computer control and readout, nineteen large area gas flow detectors, real-time background compensation, self-checking for system failures, and card reader identification and control. UNI's experience in operating the Hanford N Reactor, located in Richland, Washington, has shown the necessity of automatically monitoring plant personnel for contamination after they have passed through the procedurally controlled radiation zones. This final check ensures that each radiation zone worker has been properly checked before leaving company controlled boundaries. Investigation of the commercially available portal and hand and shoe monitors indicated that they did not have the sensitivity or sophistication required for UNI's application, therefore, a development program was initiated, resulting in the subject monitor. Field testing shows good sensitivity to personnel contamination with the majority of alarms showing contaminants on clothing, face and head areas. In general, the APCM has sensitivity comparable to portal survey instrumentation. The inherit stand-in, walk-on feature of the APCM not only makes it easy to use, but makes it difficult to bypass. (author)

  7. Formal Specification Based Automatic Test Generation for Embedded Network Systems

    Directory of Open Access Journals (Sweden)

    Eun Hye Choi

    2014-01-01

    Full Text Available Embedded systems have become increasingly connected and communicate with each other, forming large-scaled and complicated network systems. To make their design and testing more reliable and robust, this paper proposes a formal specification language called SENS and a SENS-based automatic test generation tool called TGSENS. Our approach is summarized as follows: (1 A user describes requirements of target embedded network systems by logical property-based constraints using SENS. (2 Given SENS specifications, test cases are automatically generated using a SAT-based solver. Filtering mechanisms to select efficient test cases are also available in our tool. (3 In addition, given a testing goal by the user, test sequences are automatically extracted from exhaustive test cases. We’ve implemented our approach and conducted several experiments on practical case studies. Through the experiments, we confirmed the efficiency of our approach in design and test generation of real embedded air-conditioning network systems.

  8. Automatic Segmentation of Vessels in In-Vivo Ultrasound Scans

    DEFF Research Database (Denmark)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin

    2017-01-01

    presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs......Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper...... a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers ”8L2 Linear” and ”10L2w Wide Linear” (BK Ultrasound, Herlev, Denmark). The algorithm...

  9. Absolute negative mobility induced by white Poissonian noise

    International Nuclear Information System (INIS)

    Spiechowicz, J; Łuczka, J; Hänggi, P

    2013-01-01

    We study the transport properties of inertial Brownian particles which move in a symmetric periodic potential and are subjected to both a symmetric, unbiased time-periodic external force and a biased Poissonian white shot noise (of non-zero average F) which is composed of a random sequence of δ-shaped pulses with random amplitudes. Upon varying the parameters of the white shot noise, one can conveniently manipulate the transport direction and the overall nonlinear response behavior. We find that within tailored parameter regimes the response is opposite to the applied average bias F of such white shot noise. This particular transport characteristic thus mimics that of a nonlinear absolute negative mobility (ANM) regime. Moreover, such white shot noise driven ANM is robust with respect to the statistics of the shot noise spikes. Our findings can be checked and corroborated experimentally by the use of a setup that consists of a single resistively and capacitively shunted Josephson junction device. (paper)

  10. Robust MST-Based Clustering Algorithm.

    Science.gov (United States)

    Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing

    2018-06-01

    Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.

  11. Mediality is Noise

    DEFF Research Database (Denmark)

    Prior, Andrew

    This PhD is concerned with the use of noise as a material within media arts practice, especially in ‘post-digital’ contexts such as glitch electronica, glitch art and uses of old media. It examines the relationship between informational culture and noise, exploring the ways in which the structuring...

  12. Post commissioning noise study

    International Nuclear Information System (INIS)

    Heraud, P.

    2008-01-01

    This presentation described a wind farm post-commissioning study conducted at a wind farm owned by Helimax Energy Inc. The farm was located in a partly-forested, partly cultivated region in Quebec that featured gently rolling hills. Over 600 dwellings were located within 2 km of the wind farm, and 44 dwellings were within the wind farm's boundaries. The noise impact assessments were conducted at various points near the wind farm. The wind farm was designed using an International Standards Organization (ISO) noise propagation model and a 40 dBA to provide adequate setbacks. The study was conducted using 10 days of continuous measurements at selected points of a wind farm. Points of reception included points from 650 m to 800 m. Noise over 2 km was not thought to be contributed by the wind turbine. The nearest dwelling was 512 m from one of the farm's wind turbines. The study also considered ground factor, temperature, relative humidity, and the height of the receptors. Quebec noise level limits are 40 dBA at night, and 45 dBA during the day. Noise level limits are independent of wind speed. Measured noise contributions over 40 dBA were not observed during the measurement program. The wind turbines were only audible for 1 night out of the 30 night study period. It was concluded that the ISO noise propagation model is a reliable tool for conducting noise impact assessments. tabs., figs

  13. Noise, buildings and people

    Energy Technology Data Exchange (ETDEWEB)

    Croome, D J

    1977-01-01

    This book covers the physics of acoustics necessary to understand the analytical aspects of acoustical design and noise control in buildings. The major part is devoted to the problems of noise and man, and other chapters cover features of noise control in and around buildings. In an introduction, building environmental engineering is dealth with in general terms of architecture, creativity, systms design, etc. Aspects of the acoustical environment, noise sources in buildings, control of airborne and structure-borne noise and acoustical design techniques are covered in Part II. Items include: comfort, physiological response to noise and vibrations, noise criteria, human performance, speech communication, landscaped offices, sound generation by air-conditioning and heating equipment, building structure and noise attenuation, acoustical design. Part III gives some fundamentals of acoustics; mechanical vibration, wave motion, propagation of sound, structure-borne sound, behavior of sound in rooms, transmission of sound through structure. References include lists of British standards and booklets on health and safety at work.

  14. Low frequency noise study.

    Science.gov (United States)

    2007-04-01

    This report documents a study to investigate human response to the low-frequency : content of aviation noise, or low-frequency noise (LFN). The study comprised field : measurements and laboratory studies. The major findings were: : 1. Start-of-takeof...

  15. Noise Pollution, Teachers' Edition.

    Science.gov (United States)

    O'Donnell, Patrick A.; Lavaroni, Charles W.

    One of three in a series about pollution, this teacher's guide for a unit on noise pollution is designed for use in junior high school grades. It offers suggestions for extending the information and activities contained in the textual material for students. Chapter 1 discusses the problem of noise pollution and involves students in processes of…

  16. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  17. The impact of different background noises on the Production Effect.

    Science.gov (United States)

    Mama, Yaniv; Fostick, Leah; Icht, Michal

    2018-04-01

    The presence of background noise has been previously shown to disrupt cognitive performance, especially memory. The amount of interference is derived from the acoustic characteristics of the noise; energetic vs. informational, steady-state vs. fluctuating. However, the literature is inconsistent concerning the effects of different types of noise on long-term memory free recall. In the present study, we tested the impact of different noises on recall of items that were learned under two conditions - silent or aloud reading, a Production Effect (PE) paradigm. As the PE represents enhanced memory for words read aloud relative to words read silently during study, we focused on the effect of noise on this robust memory phenomenon. The results showed that (a) steady-state energetic noise did not affect memory, with a recall advantage for aloud words (PE), comparable to a no-noise condition, (b) fluctuating-energetic noise and fluctuating-informational (eight-talkers babble) noise eliminated the PE, with similar recall for aloud and silent items. These results are discussed in light of their theoretical implications, stressing the role of attention in the PE. Ecological implications regarding studying in noisy environments are suggested. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Larsen, P.

    1993-01-01

    Denmark has 3200 wind turbines with an installed maximum capacity of 418MW. The most important Danish research projects into wind turbine noise and the main results are listed. These date from 1983. Two comprehensive studies are currently in progress. The first is an analytical and empirical investigation of aerodynamic noise from wind turbine rotors and has so far dealt mainly with tip noise. The measurement method, using a hard board mounted microphone on the ground near the turbine, is described. Four different tip designs have been tested. Some examples of reference sound power level spectra for three of the designs are presented. During the past two years a computerbased data acquisition system has been used for real-time determination of sound power levels. The second study, which has just commenced, is on annoyance from wind turbine noise. It will include noise measurements, masking calculations and a social survey on the perceived nuisance. (UK)

  19. Noise from wind turbines

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1992-11-01

    Based on a previous project concerning the calculation of the amount of noise emanating from wind turbine arrays, this one examines the subject further by investigating whether there could be significant differences in the amount of noise made by individual wind turbines in an array, and whether the noise is transmitted in varying directions - so that when it is carried in the same direction as the wind blows it would appear to be louder. The aim was also to determine whether the previously used method of calculation lacked precision. It was found that differences in noise niveaux related to individual wind turbines were insignificant and that noise was not so loud when it was not borne in the direction of the wind. It was necessary to change the method of calculation as reckoning should include the influence of the terrain, wind velocity and distance. The measuring and calculation methods are exemplified and the resulting measurements are presented in detail. (AB)

  20. Reactor noise monitoring device

    International Nuclear Information System (INIS)

    Yamanaka, Hiroto.

    1990-01-01

    The present invention concerns a reactor noise monitoring device by detecting abnormal sounds in background noises. Vibration sounds detected by accelerometers are applied to a loose parts detector. The detector generates high alarm if there are sudden impact sounds in the background noises and applies output signals to an accumulation device. If there is slight impact sounds in the vicinity of any of the accelerometers, the accumulation device accumulates the abnormal sounds assumed to be generated from an identical site while synchronizing the waveforms for all of the channels. Then, the device outputs signals in which the background noises are cancelled, as detection signals. Therefore, S/N ratio can be improved and the abnormal sounds contained in the background noises can be detected, to thereby improve the accuracy for estimating the position where the abnormal sounds are generated. (I.S.)

  1. Noise Enhanced Stability

    International Nuclear Information System (INIS)

    Spagnolo, B.; Agudov, N.V.; Dubkov, A.A.

    2004-01-01

    The noise can stabilize a fluctuating or a periodically driven metastable state in such a way that the system remains in this state for a longer time than in the absence of white noise. This is the noise enhanced stability phenomenon, observed experimentally and numerically in different physical systems. After shortly reviewing all the physical systems where the phenomenon was observed, the theoretical approaches used to explain the effect are presented. Specifically the conditions to observe the effect in systems: (a) with periodical driving force, and (b) with random dichotomous driving force, are discussed. In case (b) we review the analytical results concerning the mean first passage time and the nonlinear relaxation time as a function of the white noise intensity, the parameters of the potential barrier, and of the dichotomous noise. (author)

  2. Copyright Protection of Color Imaging Using Robust-Encoded Watermarking

    Directory of Open Access Journals (Sweden)

    M. Cedillo-Hernandez

    2015-04-01

    Full Text Available In this paper we present a robust-encoded watermarking method applied to color images for copyright protection, which presents robustness against several geometric and signal processing distortions. Trade-off between payload, robustness and imperceptibility is a very important aspect which has to be considered when a watermark algorithm is designed. In our proposed scheme, previously to be embedded into the image, the watermark signal is encoded using a convolutional encoder, which can perform forward error correction achieving better robustness performance. Then, the embedding process is carried out through the discrete cosine transform domain (DCT of an image using the image normalization technique to accomplish robustness against geometric and signal processing distortions. The embedded watermark coded bits are extracted and decoded using the Viterbi algorithm. In order to determine the presence or absence of the watermark into the image we compute the bit error rate (BER between the recovered and the original watermark data sequence. The quality of the watermarked image is measured using the well-known indices: Peak Signal to Noise Ratio (PSNR, Visual Information Fidelity (VIF and Structural Similarity Index (SSIM. The color difference between the watermarked and original images is obtained by using the Normalized Color Difference (NCD measure. The experimental results show that the proposed method provides good performance in terms of imperceptibility and robustness. The comparison among the proposed and previously reported methods based on different techniques is also provided.

  3. Timing robustness in the budding and fission yeast cell cycles.

    KAUST Repository

    Mangla, Karan

    2010-02-01

    Robustness of biological models has emerged as an important principle in systems biology. Many past analyses of Boolean models update all pending changes in signals simultaneously (i.e., synchronously), making it impossible to consider robustness to variations in timing that result from noise and different environmental conditions. We checked previously published mathematical models of the cell cycles of budding and fission yeast for robustness to timing variations by constructing Boolean models and analyzing them using model-checking software for the property of speed independence. Surprisingly, the models are nearly, but not totally, speed-independent. In some cases, examination of timing problems discovered in the analysis exposes apparent inaccuracies in the model. Biologically justified revisions to the model eliminate the timing problems. Furthermore, in silico random mutations in the regulatory interactions of a speed-independent Boolean model are shown to be unlikely to preserve speed independence, even in models that are otherwise functional, providing evidence for selection pressure to maintain timing robustness. Multiple cell cycle models exhibit strong robustness to timing variation, apparently due to evolutionary pressure. Thus, timing robustness can be a basis for generating testable hypotheses and can focus attention on aspects of a model that may need refinement.

  4. Automatic sets and Delone sets

    International Nuclear Information System (INIS)

    Barbe, A; Haeseler, F von

    2004-01-01

    Automatic sets D part of Z m are characterized by having a finite number of decimations. They are equivalently generated by fixed points of certain substitution systems, or by certain finite automata. As examples, two-dimensional versions of the Thue-Morse, Baum-Sweet, Rudin-Shapiro and paperfolding sequences are presented. We give a necessary and sufficient condition for an automatic set D part of Z m to be a Delone set in R m . The result is then extended to automatic sets that are defined as fixed points of certain substitutions. The morphology of automatic sets is discussed by means of examples

  5. Robust and distributed hypothesis testing

    CERN Document Server

    Gül, Gökhan

    2017-01-01

    This book generalizes and extends the available theory in robust and decentralized hypothesis testing. In particular, it presents a robust test for modeling errors which is independent from the assumptions that a sufficiently large number of samples is available, and that the distance is the KL-divergence. Here, the distance can be chosen from a much general model, which includes the KL-divergence as a very special case. This is then extended by various means. A minimax robust test that is robust against both outliers as well as modeling errors is presented. Minimax robustness properties of the given tests are also explicitly proven for fixed sample size and sequential probability ratio tests. The theory of robust detection is extended to robust estimation and the theory of robust distributed detection is extended to classes of distributions, which are not necessarily stochastically bounded. It is shown that the quantization functions for the decision rules can also be chosen as non-monotone. Finally, the boo...

  6. Robustness of IPTV business models

    NARCIS (Netherlands)

    Bouwman, H.; Zhengjia, M.; Duin, P. van der; Limonard, S.

    2008-01-01

    The final stage in the STOF method is an evaluation of the robustness of the design, for which the method provides some guidelines. For many innovative services, the future holds numerous uncertainties, which makes evaluating the robustness of a business model a difficult task. In this chapter, we

  7. Robustness Evaluation of Timber Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Sørensen, John Dalsgaard

    2009-01-01

    Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure.......Robustness of structural systems has obtained a renewed interest due to a much more frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure....

  8. A Robust H∞ Controller for an UAV Flight Control System

    Directory of Open Access Journals (Sweden)

    J. López

    2015-01-01

    Full Text Available The objective of this paper is the implementation and validation of a robust H∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H∞ robust controller in the inner loop, H∞ control methodology is used. The two controllers that conform the outer loop are designed using the H∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.

  9. Evaluation of Robust Estimators Applied to Fluorescence Assays

    Directory of Open Access Journals (Sweden)

    U. Ruotsalainen

    2007-12-01

    Full Text Available We evaluated standard robust methods in the estimation of fluorescence signal in novel assays used for determining the biomolecule concentrations. The objective was to obtain an accurate and reliable estimate using as few observations as possible by decreasing the influence of outliers. We assumed the true signals to have Gaussian distribution, while no assumptions about the outliers were made. The experimental results showed that arithmetic mean performs poorly even with the modest deviations. Further, the robust methods, especially the M-estimators, performed extremely well. The results proved that the use of robust methods is advantageous in the estimation problems where noise and deviations are significant, such as in biological and medical applications.

  10. Robust adaptive multichannel SAR processing based on covariance matrix reconstruction

    Science.gov (United States)

    Tan, Zhen-ya; He, Feng

    2018-04-01

    With the combination of digital beamforming (DBF) processing, multichannel synthetic aperture radar(SAR) systems in azimuth promise well in high-resolution and wide-swath imaging, whereas conventional processing methods don't take the nonuniformity of scattering coefficient into consideration. This paper brings up a robust adaptive Multichannel SAR processing method which utilizes the Capon spatial spectrum estimator to obtain the spatial spectrum distribution over all ambiguous directions first, and then the interference-plus-noise covariance Matrix is reconstructed based on definition to acquire the Multichannel SAR processing filter. The performance of processing under nonuniform scattering coefficient is promoted by this novel method and it is robust again array errors. The experiments with real measured data demonstrate the effectiveness and robustness of the proposed method.

  11. Synchronization of uncoupled excitable systems induced by white and coloured noise

    International Nuclear Information System (INIS)

    Zambrano, Samuel; Marino, Ines P; Seoane, Jesus M; Sanjuan, Miguel A F; Euzzor, Stefano; Geltrude, Andrea; Meucci, Riccardo; Arecchi, Fortunato T

    2010-01-01

    We study, both numerically and experimentally, the synchronization of uncoupled excitable systems due to a common noise. We consider two identical FitzHugh-Nagumo systems, which display both spiking and non-spiking behaviours in chaotic or periodic regimes. An electronic circuit provides a laboratory implementation of these dynamics. Synchronization is tested with both white and coloured noise, showing that coloured noise is more effective in inducing synchronization of the systems. We also study the effects on the synchronization of parameter mismatch and of the presence of intrinsic (not common) noise, and we conclude that the best performance of coloured noise is robust under these distortions.

  12. Estimating integrated variance in the presence of microstructure noise using linear regression

    Science.gov (United States)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  13. Physics- and engineering knowledge-based geometry repair system for robust parametric CAD geometries

    OpenAIRE

    Li, Dong

    2012-01-01

    In modern multi-objective design optimisation, an effective geometry engine is becoming an essential tool and its performance has a significant impact on the entire process. Building a parametric geometry requires difficult compromises between the conflicting goals of robustness and flexibility. The work presents a solution for improving the robustness of parametric geometry models by capturing and modelling relative engineering knowledge into a surrogate model, and deploying it automatically...

  14. Automatic design of digital synthetic gene circuits.

    Directory of Open Access Journals (Sweden)

    Mario A Marchisio

    2011-02-01

    Full Text Available De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input-output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions.

  15. Robust statistical methods with R

    CERN Document Server

    Jureckova, Jana

    2005-01-01

    Robust statistical methods were developed to supplement the classical procedures when the data violate classical assumptions. They are ideally suited to applied research across a broad spectrum of study, yet most books on the subject are narrowly focused, overly theoretical, or simply outdated. Robust Statistical Methods with R provides a systematic treatment of robust procedures with an emphasis on practical application.The authors work from underlying mathematical tools to implementation, paying special attention to the computational aspects. They cover the whole range of robust methods, including differentiable statistical functions, distance of measures, influence functions, and asymptotic distributions, in a rigorous yet approachable manner. Highlighting hands-on problem solving, many examples and computational algorithms using the R software supplement the discussion. The book examines the characteristics of robustness, estimators of real parameter, large sample properties, and goodness-of-fit tests. It...

  16. Noise data management using commercially available data-base software

    International Nuclear Information System (INIS)

    Damiano, B.; Thie, J.A.

    1988-01-01

    A data base has been created using commercially available software to manage the data collected by an automated noise data acquisition system operated by Oak Ridge National Laboratory at the Fast Flux Test Facility (FFTF). The data base was created to store, organize, and retrieve selected features of the nuclear and process signal noise data, because the large volume of data collected by the automated system makes manual data handling and interpretation based on visual examination of noise signatures impractical. Compared with manual data handling, use of the data base allows the automatically collected data to be utilized more fully and effectively. The FFTF noise data base uses the Oracle Relational Data Base Management System implemented on a desktop personal computer

  17. Process and device for automatically surveying complex installations

    International Nuclear Information System (INIS)

    Pekrul, P.J.; Thiele, A.W.

    1976-01-01

    A description is given of a process for automatically analysing separate signal processing channels in real time, one channel per signal, in a facility with significant background noise in signals varying in time and coming from transducers at selected points for the continuous monitoring of the operating conditions of the various components of the installation. The signals are intended to determine potential breakdowns, determine conclusions as to the severity of these potential breakdowns and indicate to an operator the measures to be taken in consequence. The feature of this process is that it comprises the automatic and successive selection of each channel for the purpose of spectral analysis, the automatic processing of the signal of each selected channel to show energy spectrum density data at pre-determined frequencies, the automatic comparison of the energy spectrum density data of each channel with pre-determined sets of limits varying with the frequency, and the automatic indication to the operator of the condition of the various components of the installation associated to each channel and the measures to be taken depending on the set of limits [fr

  18. Effects of background noise on total noise annoyance

    Science.gov (United States)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  19. Automatic detection and visualisation of MEG ripple oscillations in epilepsy

    Directory of Open Access Journals (Sweden)

    Nicole van Klink

    2017-01-01

    Full Text Available High frequency oscillations (HFOs, 80–500 Hz in invasive EEG are a biomarker for the epileptic focus. Ripples (80–250 Hz have also been identified in non-invasive MEG, yet detection is impeded by noise, their low occurrence rates, and the workload of visual analysis. We propose a method that identifies ripples in MEG through noise reduction, beamforming and automatic detection with minimal user effort. We analysed 15 min of presurgical resting-state interictal MEG data of 25 patients with epilepsy. The MEG signal-to-noise was improved by using a cross-validation signal space separation method, and by calculating ~2400 beamformer-based virtual sensors in the grey matter. Ripples in these sensors were automatically detected by an algorithm optimized for MEG. A small subset of the identified ripples was visually checked. Ripple locations were compared with MEG spike dipole locations and the resection area if available. Running the automatic detection algorithm resulted in on average 905 ripples per patient, of which on average 148 ripples were visually reviewed. Reviewing took approximately 5 min per patient, and identified ripples in 16 out of 25 patients. In 14 patients the ripple locations showed good or moderate concordance with the MEG spikes. For six out of eight patients who had surgery, the ripple locations showed concordance with the resection area: 4/5 with good outcome and 2/3 with poor outcome. Automatic ripple detection in beamformer-based virtual sensors is a feasible non-invasive tool for the identification of ripples in MEG. Our method requires minimal user effort and is easily applicable in a clinical setting.

  20. Automatic identification in mining

    Energy Technology Data Exchange (ETDEWEB)

    Puckett, D; Patrick, C [Mine Computers and Electronics Inc., Morehead, KY (United States)

    1998-06-01

    The feasibility of monitoring the locations and vital statistics of equipment and personnel in surface and underground mining operations has increased with advancements in radio frequency identification (RFID) technology. This paper addresses the use of RFID technology, which is relatively new to the mining industry, to track surface equipment in mine pits, loading points and processing facilities. Specific applications are discussed, including both simplified and complex truck tracking systems and an automatic pit ticket system. This paper concludes with a discussion of the future possibilities of using RFID technology in mining including monitoring heart and respiration rates, body temperatures and exertion levels; monitoring repetitious movements for the study of work habits; and logging air quality via personnel sensors. 10 refs., 5 figs.

  1. Automatic quantitative metallography

    International Nuclear Information System (INIS)

    Barcelos, E.J.B.V.; Ambrozio Filho, F.; Cunha, R.C.

    1976-01-01

    The quantitative determination of metallographic parameters is analysed through the description of Micro-Videomat automatic image analysis system and volumetric percentage of perlite in nodular cast irons, porosity and average grain size in high-density sintered pellets of UO 2 , and grain size of ferritic steel. Techniques adopted are described and results obtained are compared with the corresponding ones by the direct counting process: counting of systematic points (grid) to measure volume and intersections method, by utilizing a circunference of known radius for the average grain size. The adopted technique for nodular cast iron resulted from the small difference of optical reflectivity of graphite and perlite. Porosity evaluation of sintered UO 2 pellets is also analyzed [pt

  2. Semi-automatic fluoroscope

    International Nuclear Information System (INIS)

    Tarpley, M.W.

    1976-10-01

    Extruded aluminum-clad uranium-aluminum alloy fuel tubes must pass many quality control tests before irradiation in Savannah River Plant nuclear reactors. Nondestructive test equipment has been built to automatically detect high and low density areas in the fuel tubes using x-ray absorption techniques with a video analysis system. The equipment detects areas as small as 0.060-in. dia with 2 percent penetrameter sensitivity. These areas are graded as to size and density by an operator using electronic gages. Video image enhancement techniques permit inspection of ribbed cylindrical tubes and make possible the testing of areas under the ribs. Operation of the testing machine, the special low light level television camera, and analysis and enhancement techniques are discussed

  3. Automatic surveying techniques

    International Nuclear Information System (INIS)

    Sah, R.

    1976-01-01

    In order to investigate the feasibility of automatic surveying methods in a more systematic manner, the PEP organization signed a contract in late 1975 for TRW Systems Group to undertake a feasibility study. The completion of this study resulted in TRW Report 6452.10-75-101, dated December 29, 1975, which was largely devoted to an analysis of a survey system based on an Inertial Navigation System. This PEP note is a review and, in some instances, an extension of that TRW report. A second survey system which employed an ''Image Processing System'' was also considered by TRW, and it will be reviewed in the last section of this note. 5 refs., 5 figs., 3 tabs

  4. AUTOMATIC ARCHITECTURAL STYLE RECOGNITION

    Directory of Open Access Journals (Sweden)

    M. Mathias

    2012-09-01

    Full Text Available Procedural modeling has proven to be a very valuable tool in the field of architecture. In the last few years, research has soared to automatically create procedural models from images. However, current algorithms for this process of inverse procedural modeling rely on the assumption that the building style is known. So far, the determination of the building style has remained a manual task. In this paper, we propose an algorithm which automates this process through classification of architectural styles from facade images. Our classifier first identifies the images containing buildings, then separates individual facades within an image and determines the building style. This information could then be used to initialize the building reconstruction process. We have trained our classifier to distinguish between several distinct architectural styles, namely Flemish Renaissance, Haussmannian and Neoclassical. Finally, we demonstrate our approach on various street-side images.

  5. Noise and Hearing Loss Prevention

    Science.gov (United States)

    ... message, please visit this page: About CDC.gov . NOISE AND HEARING LOSS PREVENTION Language: English (US) Español ( ... when hazardous noise levels cannot be adequately reduced. Noise and Hearing Loss on the NIOSH Science Blog ...

  6. Handbook Of Noise And Vibration

    International Nuclear Information System (INIS)

    1995-12-01

    This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

  7. Data preprocessing methods for robust Fourier ptychographic microscopy

    Science.gov (United States)

    Zhang, Yan; Pan, An; Lei, Ming; Yao, Baoli

    2017-12-01

    Fourier ptychographic microscopy (FPM) is a recently developed computational imaging technique that achieves gigapixel images with both high resolution and large field-of-view. In the current FPM experimental setup, the dark-field images with high-angle illuminations are easily overwhelmed by stray lights and background noises due to the low signal-to-noise ratio, thus significantly degrading the achievable resolution of the FPM approach. We provide an overall and systematic data preprocessing scheme to enhance the FPM's performance, which involves sampling analysis, underexposed/overexposed treatments, background noises suppression, and stray lights elimination. It is demonstrated experimentally with both US Air Force (USAF) 1951 resolution target and biological samples that the benefit of the noise removal by these methods far outweighs the defect of the accompanying signal loss, as part of the lost signals can be compensated by the improved consistencies among the captured raw images. In addition, the reported nonparametric scheme could be further cooperated with the existing state-of-the-art algorithms with a great flexibility, facilitating a stronger noise-robust capability of the FPM approach in various applications.

  8. Introductory guide to noise

    CSIR Research Space (South Africa)

    Ferreira, T.M

    1973-01-01

    Full Text Available or (by remaining at the 'alarm' level) prevents us from sleeping or resting. Some noise comes into buildings from outside, such as when a passing jet plane drowns a telephone conversation or when traffic noise prevents one from hearing an interesting... on aircraft that make too much noise. Motor cars, buses, buzz-bikes and vacuum deaners can be effectively quietened but until now the public has not been prepared to pay the price of legislation. Also, many young sports-car enthusiasts still think...

  9. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.

    2015-08-19

    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  10. Hypermedicalization in White Noise.

    Science.gov (United States)

    Benson, Josef

    2015-09-01

    The Nazis hijacked Germany's medical establishment and appropriated medical language to hegemonize their ideology. In White Noise, shifting medical information stifles the public into docility. In Nazi Germany the primacy of language and medical authority magnified the importance of academic doctors. The muddling of identities caused complex insecurities and the need for psychological doubles. In White Noise, Professor Gladney is driven by professional insecurities to enact a double in Murray. Through the manipulation of language and medical overreach the U.S., exemplified in the novel White Noise, has become a hypermedicalized society where the spirit of the Hippocratic Oath has eroded.

  11. Controlled Noise Seismology

    KAUST Repository

    Hanafy, Sherif M.; AlTheyab, Abdullah; Schuster, Gerard T.

    2015-01-01

    We use controlled noise seismology (CNS) to generate surface waves, where we continuously record seismic data while generating artificial noise along the profile line. To generate the CNS data we drove a vehicle around the geophone line and continuously recorded the generated noise. The recorded data set is then correlated over different time windows and the correlograms are stacked together to generate the surface waves. The virtual shot gathers reveal surface waves with moveout velocities that closely approximate those from active source shot gathers.

  12. The sequentially discounting autoregressive (SDAR) method for on-line automatic seismic event detecting on long term observation

    Science.gov (United States)

    Wang, L.; Toshioka, T.; Nakajima, T.; Narita, A.; Xue, Z.

    2017-12-01

    In recent years, more and more Carbon Capture and Storage (CCS) studies focus on seismicity monitoring. For the safety management of geological CO2 storage at Tomakomai, Hokkaido, Japan, an Advanced Traffic Light System (ATLS) combined different seismic messages (magnitudes, phases, distributions et al.) is proposed for injection controlling. The primary task for ATLS is the seismic events detection in a long-term sustained time series record. Considering the time-varying characteristics of Signal to Noise Ratio (SNR) of a long-term record and the uneven energy distributions of seismic event waveforms will increase the difficulty in automatic seismic detecting, in this work, an improved probability autoregressive (AR) method for automatic seismic event detecting is applied. This algorithm, called sequentially discounting AR learning (SDAR), can identify the effective seismic event in the time series through the Change Point detection (CPD) of the seismic record. In this method, an anomaly signal (seismic event) can be designed as a change point on the time series (seismic record). The statistical model of the signal in the neighborhood of event point will change, because of the seismic event occurrence. This means the SDAR aims to find the statistical irregularities of the record thought CPD. There are 3 advantages of SDAR. 1. Anti-noise ability. The SDAR does not use waveform messages (such as amplitude, energy, polarization) for signal detecting. Therefore, it is an appropriate technique for low SNR data. 2. Real-time estimation. When new data appears in the record, the probability distribution models can be automatic updated by SDAR for on-line processing. 3. Discounting property. the SDAR introduces a discounting parameter to decrease the influence of present statistic value on future data. It makes SDAR as a robust algorithm for non-stationary signal processing. Within these 3 advantages, the SDAR method can handle the non-stationary time-varying long

  13. X-band Robust AlGaN/GaN Receiver MMICs with over 41 dBm Power Handling

    NARCIS (Netherlands)

    Janssen, J.P.B.; Heijningen, M. van; Provenzano, G.; Visser, G.C.; Morvan, E.; Vliet, F.E. van

    2008-01-01

    Gallium-Nitride technology is known for its high power density and power amplifier designs, but is also very well suited to realize robust receiver components. This paper presents the design and measurement of a robust AlGaN/GaN Low Noise Amplifier and Transmit/Receive Switch MMIC. Two versions of

  14. X-Band Robust AlGaN/GaN Receiver MMICs with over 41 dBm Power Handling

    NARCIS (Netherlands)

    Janssen, J.P.B.; van Heijningen, M; Provenzano, G.; van Vliet, Frank Edward

    2008-01-01

    Abstract Gallium-Nitride technology is known for its high power density and power amplifier designs, but is also very well suited to realize robust receiver components. This paper presents the design and measurement of a robust AlGaN/GaN Low Noise Amplifier and Transmit/Receive Switch MMIC. Two

  15. Robust loss functions for boosting.

    Science.gov (United States)

    Kanamori, Takafumi; Takenouchi, Takashi; Eguchi, Shinto; Murata, Noboru

    2007-08-01

    Boosting is known as a gradient descent algorithm over loss functions. It is often pointed out that the typical boosting algorithm, Adaboost, is highly affected by outliers. In this letter, loss functions for robust boosting are studied. Based on the concept of robust statistics, we propose a transformation of loss functions that makes boosting algorithms robust against extreme outliers. Next, the truncation of loss functions is applied to contamination models that describe the occurrence of mislabels near decision boundaries. Numerical experiments illustrate that the proposed loss functions derived from the contamination models are useful for handling highly noisy data in comparison with other loss functions.

  16. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, although...... the importance of robustness for structural design is widely recognized the code requirements are not specified in detail, which makes the practical use difficult. This paper describes a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines...

  17. Robustness of airline route networks

    Science.gov (United States)

    Lordan, Oriol; Sallan, Jose M.; Escorihuela, Nuria; Gonzalez-Prieto, David

    2016-03-01

    Airlines shape their route network by defining their routes through supply and demand considerations, paying little attention to network performance indicators, such as network robustness. However, the collapse of an airline network can produce high financial costs for the airline and all its geographical area of influence. The aim of this study is to analyze the topology and robustness of the network route of airlines following Low Cost Carriers (LCCs) and Full Service Carriers (FSCs) business models. Results show that FSC hubs are more central than LCC bases in their route network. As a result, LCC route networks are more robust than FSC networks.

  18. Low noise omnidirectional optical receiver for the mobile FSO networks

    Science.gov (United States)

    Witas, Karel; Hejduk, Stanislav; Vasinek, Vladimir; Vitasek, Jan; Latal, Jan

    2013-05-01

    A high sensitive optical receiver design for the mobile free space optical (FSO) networks is presented. There is an array of photo-detectors and preamplifiers working into same load. It is the second stage sum amplifier getting all signals together. This topology creates a parallel amplifier with an excellent signal to noise ratio (SNR). An automatic gain control (AGC) feature is included also. As a result, the effective noise suppression at the receiver side increases optical signal coverage even with the transmitter power being constant. The design has been verified on the model car which was able to respond beyond the line of sight (LOS).

  19. Alien Noise Cancellation

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Full FEXT Cancellation. Expectation Maximization based Algorithms. Partial Cancellation. Optimal Choice of what to Cancel and what not to! Alien Noise Cancellation. Efficient Crosstalk channel estimation. In addition:

  20. Induced Noise Control

    National Research Council Canada - National Science Library

    Maidanik, G

    2002-01-01

    The induced noise control parameter is defined in terms of the ratio of the stored energy in a master dynamic system, when it is coupled to an adjunct dynamic system, to that stored energy when the coupling is absent...

  1. A computationally simple and robust method to detect determinism in a time series

    DEFF Research Database (Denmark)

    Lu, Sheng; Ju, Ki Hwan; Kanters, Jørgen K.

    2006-01-01

    We present a new, simple, and fast computational technique, termed the incremental slope (IS), that can accurately distinguish between deterministic from stochastic systems even when the variance of noise is as large or greater than the signal, and remains robust for time-varying signals. The IS ......We present a new, simple, and fast computational technique, termed the incremental slope (IS), that can accurately distinguish between deterministic from stochastic systems even when the variance of noise is as large or greater than the signal, and remains robust for time-varying signals...

  2. Advances in Modal Analysis Using a Robust and Multiscale Method

    Science.gov (United States)

    Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.

    2010-12-01

    This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.

  3. Advances in Modal Analysis Using a Robust and Multiscale Method

    Directory of Open Access Journals (Sweden)

    Frisson Christian

    2010-01-01

    Full Text Available Abstract This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.

  4. Robust surface roughness indices and morphological interpretation

    Science.gov (United States)

    Trevisani, Sebastiano; Rocca, Michele

    2016-04-01

    Geostatistical-based image/surface texture indices based on variogram (Atkison and Lewis, 2000; Herzfeld and Higginson, 1996; Trevisani et al., 2012) and on its robust variant MAD (median absolute differences, Trevisani and Rocca, 2015) offer powerful tools for the analysis and interpretation of surface morphology (potentially not limited to solid earth). In particular, the proposed robust index (Trevisani and Rocca, 2015) with its implementation based on local kernels permits the derivation of a wide set of robust and customizable geomorphometric indices capable to outline specific aspects of surface texture. The stability of MAD in presence of signal noise and abrupt changes in spatial variability is well suited for the analysis of high-resolution digital terrain models. Moreover, the implementation of MAD by means of a pixel-centered perspective based on local kernels, with some analogies to the local binary pattern approach (Lucieer and Stein, 2005; Ojala et al., 2002), permits to create custom roughness indices capable to outline different aspects of surface roughness (Grohmann et al., 2011; Smith, 2015). In the proposed poster, some potentialities of the new indices in the context of geomorphometry and landscape analysis will be presented. At same time, challenges and future developments related to the proposed indices will be outlined. Atkinson, P.M., Lewis, P., 2000. Geostatistical classification for remote sensing: an introduction. Computers & Geosciences 26, 361-371. Grohmann, C.H., Smith, M.J., Riccomini, C., 2011. Multiscale Analysis of Topographic Surface Roughness in the Midland Valley, Scotland. IEEE Transactions on Geoscience and Remote Sensing 49, 1220-1213. Herzfeld, U.C., Higginson, C.A., 1996. Automated geostatistical seafloor classification - Principles, parameters, feature vectors, and discrimination criteria. Computers and Geosciences, 22 (1), pp. 35-52. Lucieer, A., Stein, A., 2005. Texture-based landform segmentation of LiDAR imagery

  5. The impact of auditory white noise on semantic priming.

    Science.gov (United States)

    Angwin, Anthony J; Wilson, Wayne J; Copland, David A; Barry, Robert J; Myatt, Grace; Arnott, Wendy L

    2018-04-10

    It has been proposed that white noise can improve cognitive performance for some individuals, particularly those with lower attention, and that this effect may be mediated by dopaminergic circuitry. Given existing evidence that semantic priming is modulated by dopamine, this study investigated whether white noise can facilitate semantic priming. Seventy-eight adults completed an auditory semantic priming task with and without white noise, at either a short or long inter-stimulus interval (ISI). Measures of both direct and indirect semantic priming were examined. Analysis of the results revealed significant direct and indirect priming effects at each ISI in noise and silence, however noise significantly reduced the magnitude of indirect priming. Analyses of subgroups with higher versus lower attention revealed a reduction to indirect priming in noise relative to silence for participants with lower executive and orienting attention. These findings suggest that white noise focuses automatic spreading activation, which may be driven by modulation of dopaminergic circuitry. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Approximations to camera sensor noise

    Science.gov (United States)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  7. Automatic Speech Acquisition and Recognition for Spacesuit Audio Systems

    Science.gov (United States)

    Ye, Sherry

    2015-01-01

    NASA has a widely recognized but unmet need for novel human-machine interface technologies that can facilitate communication during astronaut extravehicular activities (EVAs), when loud noises and strong reverberations inside spacesuits make communication challenging. WeVoice, Inc., has developed a multichannel signal-processing method for speech acquisition in noisy and reverberant environments that enables automatic speech recognition (ASR) technology inside spacesuits. The technology reduces noise by exploiting differences between the statistical nature of signals (i.e., speech) and noise that exists in the spatial and temporal domains. As a result, ASR accuracy can be improved to the level at which crewmembers will find the speech interface useful. System components and features include beam forming/multichannel noise reduction, single-channel noise reduction, speech feature extraction, feature transformation and normalization, feature compression, and ASR decoding. Arithmetic complexity models were developed and will help designers of real-time ASR systems select proper tasks when confronted with constraints in computational resources. In Phase I of the project, WeVoice validated the technology. The company further refined the technology in Phase II and developed a prototype for testing and use by suited astronauts.

  8. Aircraft noise: effects on macro- and microstructure of sleep.

    Science.gov (United States)

    Basner, Mathias; Glatz, Christian; Griefahn, Barbara; Penzel, Thomas; Samel, Alexander

    2008-05-01

    The effects of aircraft noise on sleep macrostructure (Rechtschaffen and Kales) and microstructure (American Sleep Disorders Association [ASDA] arousal criteria) were investigated. For each of 10 subjects (mean age 35.3 years, 5 males), a baseline night without aircraft noise (control), and two nights with exposure to 64 noise events with a maximum sound pressure level (SPL) of either 45 or 65 dBA were chosen. Spontaneous and noise-induced alterations during sleep classified as arousals (ARS), changes to lighter sleep stages (CSS), awakenings including changes to sleep stage 1 (AS1), and awakenings (AWR) were analyzed. The number of events per night increased in the order AWR, AS1, CSS, and ARS under control conditions as well as under the two noise conditions. Furthermore, probabilities for sleep disruptions increased with increasing noise level. ARS were observed about fourfold compared to AWR, irrespective of control or noise condition. Under the conditions investigated, different sleep parameters show different sensitivities, but also different specificities for noise-induced sleep disturbances. We conclude that most information on sleep disturbances can be achieved by investigating robust classic parameters like AWR or AS1, although ASDA electroencephalographic (EEG) arousals might add relevant information in situations with low maximum SPLs, chronic sleep deprivation or chronic exposure.

  9. Robust Portfolio Optimization Using Pseudodistances.

    Science.gov (United States)

    Toma, Aida; Leoni-Aubin, Samuela

    2015-01-01

    The presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data. We prove and discuss theoretical properties of these estimators, such as affine equivariance, B-robustness, asymptotic normality and asymptotic relative efficiency. These estimators can be easily used in place of the classical estimators, thereby providing robust optimized portfolios. A Monte Carlo simulation study and applications to real data show the advantages of the proposed approach. We study both in-sample and out-of-sample performance of the proposed robust portfolios comparing them with some other portfolios known in literature.

  10. Noise frame duration, masking potency and whiteness of temporal noise.

    Science.gov (United States)

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  11. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data.

    Science.gov (United States)

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-07

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  12. Machine learning-based kinetic modeling: a robust and reproducible solution for quantitative analysis of dynamic PET data

    Science.gov (United States)

    Pan, Leyun; Cheng, Caixia; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2017-05-01

    A variety of compartment models are used for the quantitative analysis of dynamic positron emission tomography (PET) data. Traditionally, these models use an iterative fitting (IF) method to find the least squares between the measured and calculated values over time, which may encounter some problems such as the overfitting of model parameters and a lack of reproducibility, especially when handling noisy data or error data. In this paper, a machine learning (ML) based kinetic modeling method is introduced, which can fully utilize a historical reference database to build a moderate kinetic model directly dealing with noisy data but not trying to smooth the noise in the image. Also, due to the database, the presented method is capable of automatically adjusting the models using a multi-thread grid parameter searching technique. Furthermore, a candidate competition concept is proposed to combine the advantages of the ML and IF modeling methods, which could find a balance between fitting to historical data and to the unseen target curve. The machine learning based method provides a robust and reproducible solution that is user-independent for VOI-based and pixel-wise quantitative analysis of dynamic PET data.

  13. Active noise control primer

    CERN Document Server

    Snyder, Scott D

    2000-01-01

    Active noise control - the reduction of noise by generating an acoustic signal that actively interferes with the noise - has become an active area of basic research and engineering applications. The aim of this book is to present all of the basic knowledge one needs for assessing how useful active noise control will be for a given problem and then to provide some guidance for designing, setting up, and tuning an active noise-control system. Written for students who have no prior knowledge of acoustics, signal processing, or noise control but who do have a reasonable grasp of basic physics and mathematics, the book is short and descriptive. It leaves for more advanced texts or research monographs all mathematical details and proofs concerning vibrations, signal processing and the like. The book can thus be used in independent study, in a classroom with laboratories, or in conjunction with a kit for experiment or demonstration. Topics covered include: basic acoustics; human perception and sound; sound intensity...

  14. Power reactor noise

    International Nuclear Information System (INIS)

    Thie, J.A.

    1981-01-01

    This book concentrates on the different types of noise present in power reactors and how the analysis of this noise can be used as a tool for reactor monitoring and diagnostics. Noise analysis is a growing field that offers advantages such as simplicity, low cost, and natural multivariable interactions. A major advantage, continuous and undisturbed monitoring, supplies a means of obtaining early warnings of possible reactor malfunctions thus preventing further complications by alerting operators to a problem - and aiding in the diagnosis of that problem - before it demands major repairs. Following an introductory chapter, the theoretical basis for the various methods of noise analysis is explained, and full chapters are devoted to the fundamentals of statistics for time-domain analysis and Fourier series and related topics for frequency-domain analysis. General experimental techniques and associated theoretical considerations are reviewed, leading to discussion of practical applications in the latter half of the book. Besides chapters giving examples of neutron noise and acoustical noise, chapters are also devoted to extensive examples from pressurized water reactor and boiling water reactor power plants

  15. Accurate estimation of camera shot noise in the real-time

    Science.gov (United States)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.

    2017-10-01

    Nowadays digital cameras are essential parts of various technological processes and daily tasks. They are widely used in optics and photonics, astronomy, biology and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photo- and videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Temporal noise can be divided into signal-dependent shot noise and signal-nondependent dark temporal noise. For measurement of camera noise characteristics, the most widely used methods are standards (for example, EMVA Standard 1288). It allows precise shot and dark temporal noise measurement but difficult in implementation and time-consuming. Earlier we proposed method for measurement of temporal noise of photo- and videocameras. It is based on the automatic segmentation of nonuniform targets (ASNT). Only two frames are sufficient for noise measurement with the modified method. In this paper, we registered frames and estimated shot and dark temporal noises of cameras consistently in the real-time. The modified ASNT method is used. Estimation was performed for the cameras: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PL-B781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. Time of registering and processing of frames used for temporal noise estimation was measured. Using standard computer, frames were registered and processed during a fraction of second to several seconds only. Also the

  16. Robust methods for data reduction

    CERN Document Server

    Farcomeni, Alessio

    2015-01-01

    Robust Methods for Data Reduction gives a non-technical overview of robust data reduction techniques, encouraging the use of these important and useful methods in practical applications. The main areas covered include principal components analysis, sparse principal component analysis, canonical correlation analysis, factor analysis, clustering, double clustering, and discriminant analysis.The first part of the book illustrates how dimension reduction techniques synthesize available information by reducing the dimensionality of the data. The second part focuses on cluster and discriminant analy

  17. Fusion of Color and Depth Camera Data for Robust Fall Detection

    NARCIS (Netherlands)

    Josemans, W.; Englebienne, G.; Kröse, B.; Battiato, S.; Braz, J.

    2013-01-01

    The availability of cheap imaging sensors makes it possible to increase the robustness of vision-based alarm systems. This paper explores the benefit of data fusion in the application of fall detection. Falls are a common source of injury for elderly people and automatic fall detection is,

  18. Frequently updated noise threat maps created with use of supercomputing grid

    Directory of Open Access Journals (Sweden)

    Szczodrak Maciej

    2014-09-01

    Full Text Available An innovative supercomputing grid services devoted to noise threat evaluation were presented. The services described in this paper concern two issues, first is related to the noise mapping, while the second one focuses on assessment of the noise dose and its influence on the human hearing system. The discussed serviceswere developed within the PL-Grid Plus Infrastructure which accumulates Polish academic supercomputer centers. Selected experimental results achieved by the usage of the services proposed were presented. The assessment of the environmental noise threats includes creation of the noise maps using either ofline or online data, acquired through a grid of the monitoring stations. A concept of estimation of the source model parameters based on the measured sound level for the purpose of creating frequently updated noise maps was presented. Connecting the noise mapping grid service with a distributed sensor network enables to automatically update noise maps for a specified time period. Moreover, a unique attribute of the developed software is the estimation of the auditory effects evoked by the exposure to noise. The estimation method uses a modified psychoacoustic model of hearing and is based on the calculated noise level values and on the given exposure period. Potential use scenarios of the grid services for research or educational purpose were introduced. Presentation of the results of predicted hearing threshold shift caused by exposure to excessive noise can raise the public awareness of the noise threats.

  19. Efficient and robust gradient enhanced Kriging emulators.

    Energy Technology Data Exchange (ETDEWEB)

    Dalbey, Keith R.

    2013-08-01

    %E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

  20. Automatic EEG spike detection.

    Science.gov (United States)

    Harner, Richard

    2009-10-01

    Since the 1970s advances in science and technology during each succeeding decade have renewed the expectation of efficient, reliable automatic epileptiform spike detection (AESD). But even when reinforced with better, faster tools, clinically reliable unsupervised spike detection remains beyond our reach. Expert-selected spike parameters were the first and still most widely used for AESD. Thresholds for amplitude, duration, sharpness, rise-time, fall-time, after-coming slow waves, background frequency, and more have been used. It is still unclear which of these wave parameters are essential, beyond peak-peak amplitude and duration. Wavelet parameters are very appropriate to AESD but need to be combined with other parameters to achieve desired levels of spike detection efficiency. Artificial Neural Network (ANN) and expert-system methods may have reached peak efficiency. Support Vector Machine (SVM) technology focuses on outliers rather than centroids of spike and nonspike data clusters and should improve AESD efficiency. An exemplary spike/nonspike database is suggested as a tool for assessing parameters and methods for AESD and is available in CSV or Matlab formats from the author at brainvue@gmail.com. Exploratory Data Analysis (EDA) is presented as a graphic method for finding better spike parameters and for the step-wise evaluation of the spike detection process.