WorldWideScience

Sample records for noise random telegraph

  1. Modeling Random Telegraph Noise Under Switched Bias Conditions Using Cyclostationary RTS Noise

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Vandamme, L.K.J.; Nauta, Bram

    In this paper, we present measurements and simulation of random telegraph signal (RTS) noise in n-channel MOSFETs under periodic large signal gate-source excitation (switched bias conditions). This is particularly relevant to analog CMOS circuit design where large signal swings occur and where LF

  2. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  3. Robust random telegraph conductivity noise in single crystals of the ferromagnetic insulating manganite La0.86Ca0.14MnO3

    Science.gov (United States)

    Przybytek, J.; Fink-Finowicki, J.; Puźniak, R.; Shames, A.; Markovich, V.; Mogilyansky, D.; Jung, G.

    2017-03-01

    Robust random telegraph conductivity fluctuations have been observed in La0.86Ca0.14MnO3 manganite single crystals. At room temperatures, the spectra of conductivity fluctuations are featureless and follow a 1 /f shape in the entire experimental frequency and bias range. Upon lowering the temperature, clear Lorentzian bias-dependent excess noise appears on the 1 /f background and eventually dominates the spectral behavior. In the time domain, fully developed Lorentzian noise appears as pronounced two-level random telegraph noise with a thermally activated switching rate, which does not depend on bias current and applied magnetic field. The telegraph noise is very robust and persists in the exceptionally wide temperature range of more than 50 K. The amplitude of the telegraph noise decreases exponentially with increasing bias current in exactly the same manner as the sample resistance increases with the current, pointing out the dynamic current redistribution between percolation paths dominated by phase-separated clusters with different conductivity as a possible origin of two-level conductivity fluctuations.

  4. Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution

    International Nuclear Information System (INIS)

    Zhang Yu; Wang Guangyi; Lu Xinmiao; Hu Yongcai; Xu Jiangtao

    2016-01-01

    The random telegraph signal noise in the pixel source follower MOSFET is the principle component of the noise in the CMOS image sensor under low light. In this paper, the physical and statistical model of the random telegraph signal noise in the pixel source follower based on the binomial distribution is set up. The number of electrons captured or released by the oxide traps in the unit time is described as the random variables which obey the binomial distribution. As a result, the output states and the corresponding probabilities of the first and the second samples of the correlated double sampling circuit are acquired. The standard deviation of the output states after the correlated double sampling circuit can be obtained accordingly. In the simulation section, one hundred thousand samples of the source follower MOSFET have been simulated, and the simulation results show that the proposed model has the similar statistical characteristics with the existing models under the effect of the channel length and the density of the oxide trap. Moreover, the noise histogram of the proposed model has been evaluated at different environmental temperatures. (paper)

  5. Separation of random telegraph sSignals from 1/f noise in MOSFETs under constant and switched bias conditions

    NARCIS (Netherlands)

    Kolhatkar, J.S.; Vandamme, L.K.J.; Salm, Cora; Wallinga, Hans

    2004-01-01

    The low-frequency noise power spectrum of small dimension MOSFETs is dominated by Lorentzians arising from random telegraph signals (RTS). The low-frequency noise is observed to decrease when the devices are periodically switched 'off'. The technique of determining the statistical lifetimes and

  6. Effect of drain current on appearance probability and amplitude of random telegraph noise in low-noise CMOS image sensors

    Science.gov (United States)

    Ichino, Shinya; Mawaki, Takezo; Teramoto, Akinobu; Kuroda, Rihito; Park, Hyeonwoo; Wakashima, Shunichi; Goto, Tetsuya; Suwa, Tomoyuki; Sugawa, Shigetoshi

    2018-04-01

    Random telegraph noise (RTN), which occurs in in-pixel source follower (SF) transistors, has become one of the most critical problems in high-sensitivity CMOS image sensors (CIS) because it is a limiting factor of dark random noise. In this paper, the behaviors of RTN toward changes in SF drain current conditions were analyzed using a low-noise array test circuit measurement system with a floor noise of 35 µV rms. In addition to statistical analysis by measuring a large number of transistors (18048 transistors), we also analyzed the behaviors of RTN parameters such as amplitude and time constants in the individual transistors. It is demonstrated that the appearance probability of RTN becomes small under a small drain current condition, although large-amplitude RTN tends to appear in a very small number of cells.

  7. New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM

    Science.gov (United States)

    Maestro, M.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M. B.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Campabadal, F.; Aymerich, X.

    2016-01-01

    Random Telegraph Noise (RTN) is one of the main reliability problems of resistive switching-based memories. To understand the physics behind RTN, a complete and accurate RTN characterization is required. The standard equipment used to analyse RTN has a typical time resolution of ∼2 ms which prevents evaluating fast phenomena. In this work, a new RTN measurement procedure, which increases the measurement time resolution to 2 μs, is proposed. The experimental set-up, together with the recently proposed Weighted Time Lag (W-LT) method for the analysis of RTN signals, allows obtaining a more detailed and precise information about the RTN phenomenon.

  8. Statistical Analysis of the Random Telegraph Noise in a 1.1 μm Pixel, 8.3 MP CMOS Image Sensor Using On-Chip Time Constant Extraction Method.

    Science.gov (United States)

    Chao, Calvin Yi-Ping; Tu, Honyih; Wu, Thomas Meng-Hsiu; Chou, Kuo-Yu; Yeh, Shang-Fu; Yin, Chin; Lee, Chih-Lin

    2017-11-23

    A study of the random telegraph noise (RTN) of a 1.1 μm pitch, 8.3 Mpixel CMOS image sensor (CIS) fabricated in a 45 nm backside-illumination (BSI) technology is presented in this paper. A noise decomposition scheme is used to pinpoint the noise source. The long tail of the random noise (RN) distribution is directly linked to the RTN from the pixel source follower (SF). The full 8.3 Mpixels are classified into four categories according to the observed RTN histogram peaks. A theoretical formula describing the RTN as a function of the time difference between the two phases of the correlated double sampling (CDS) is derived and validated by measured data. An on-chip time constant extraction method is developed and applied to the RTN analysis. The effects of readout circuit bandwidth on the settling ratios of the RTN histograms are investigated and successfully accounted for in a simulation using a RTN behavior model.

  9. Two Stochastic Resonances Induced by Two Different Multiplicative Telegraphic Noises for an Electric System

    International Nuclear Information System (INIS)

    Li Jinghui

    2008-01-01

    In this paper, an electric system with two dichotomous resistors is investigated. It is shown that this system can display two stochastic resonances, which are the amplitude of the periodic response as the functions of the two dichotomous resistors strengthes respectively. In the limits of Gaussian white noise and shot white noise (i.e., the two noises are both Gaussian white noise or shot white noise), no phenomena of resonance appear. By further study, we find that when the system is with three or more multiplicative telegraphic noises, there are three or more stochastic resonances

  10. Phase slip and telegraph noise in δ-MoN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Buh, Jože, E-mail: joze.buh@ijs.si [Jozef Stefan Institute, Department of Complex Matter, Jamova 39, SI-1000 Ljubljana (Slovenia); Mrzel, Aleš; Kovič, Andrej; Kabanov, Viktor [Jozef Stefan Institute, Department of Complex Matter, Jamova 39, SI-1000 Ljubljana (Slovenia); Jagličić, Zvonko [Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana (Slovenia); University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2, SI-1000 Ljubljana (Slovenia); Vrtnik, Stanislav; Koželj, Primož [Jozef Stefan Institute, Jozef Stefan Institute, Department of Condensed Matter Physics, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Mathematics and Physics, Jozef Stefan Institute, University of Ljubljana, SI-1000 Ljubljana (Slovenia); Mihailović, Dragan [Jozef Stefan Institute, Department of Complex Matter, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Mathematics and Physics, Jozef Stefan Institute, University of Ljubljana, SI-1000 Ljubljana (Slovenia); Jozef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2017-04-15

    Highlights: • Normal to SC transition width is strongly dependent on the diameter of the wire. • Telegraph noise frequency can be controlled by bias current. • Bias current is controlling the stability of different resistive states. • Magnetic field blurs of transitions between resistive superconducting states. - Abstract: We have investigated the effect of the nanowire thickness on the superconducting resistive phase transition R(T) in δ-MoN nanowires. We have characterized the width of the transition in terms of thermally-activated phase-slip theory. A large increase in the width of the transition was found with the decrease of the nanowire thickness. Discrete phase-slip fluctuations also lead to the appearance of meta-stable resistive superconducting states in current-bearing superconducting wires, with spontaneous switching between them. We have investigated the effect of the bias current on the switching rate and the stability of different resistive states.

  11. Different microscopic interpretations of the reaction-telegrapher equation

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Daniel; Mendez, Vicenc [Grup de Fisica EstadIstica, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2009-02-20

    In this paper we provide some new insights into the microscopic interpretation of the telegrapher's and the reaction-telegrapher equations. We use the framework of continuous-time random walks to derive the telegrapher's equation from two different perspectives reported before: the kinetic derivation (KD) and the delayed random-walk derivation (DRWD). We analyze the similarities and the differences between both derivations, paying special attention to the case when a reaction process is also present in the system. As a result, we are able to show that the equivalence between the KD and the DRWD can break down when transport and reaction are coupled processes. Also, this analysis allows us to elaborate on the specific role of relaxation effects in reaction-diffusion processes.

  12. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  13. Macroscopic superposition states and decoherence by quantum telegraph noise

    International Nuclear Information System (INIS)

    Abel, Benjamin Simon

    2008-01-01

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  14. Characterization of nitride hole lateral transport in a charge trap flash memory by using a random telegraph signal method

    Science.gov (United States)

    Liu, Yu-Heng; Jiang, Cheng-Min; Lin, Hsiao-Yi; Wang, Tahui; Tsai, Wen-Jer; Lu, Tao-Cheng; Chen, Kuang-Chao; Lu, Chih-Yuan

    2017-07-01

    We use a random telegraph signal method to investigate nitride trapped hole lateral transport in a charge trap flash memory. The concept of this method is to utilize an interface oxide trap and its associated random telegraph signal as an internal probe to detect a local channel potential change resulting from nitride charge lateral movement. We apply different voltages to the drain of a memory cell and vary a bake temperature in retention to study the electric field and temperature dependence of hole lateral movement in a nitride. Thermal energy absorption by trapped holes in lateral transport is characterized. Mechanisms of hole lateral transport in retention are investigated. From the measured and modeled results, we find that thermally assisted trap-to-band tunneling is a major trapped hole emission mechanism in nitride hole lateral transport.

  15. Random Telegraph Signal Amplitudes in Sub 100 nm (Decanano) MOSFETs: A 3D 'Atomistic' Simulation Study

    Science.gov (United States)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    2000-01-01

    In this paper we use 3D simulations to study the amplitudes of random telegraph signals (RTS) associated with the trapping of a single carrier in interface states in the channel of sub 100 nm (decanano) MOSFETs. Both simulations using continuous doping charge and random discrete dopants in the active region of the MOSFETs are presented. We have studied the dependence of the RTS amplitudes on the position of the trapped charge in the channel and on the device design parameters. We have observed a significant increase in the maximum RTS amplitude when discrete random dopants are employed in the simulations.

  16. Random telegraph signal amplitudes in sub 100 nm (decanano) MOSFETs: a 3D `Atomistic' simulation study

    OpenAIRE

    Asenov, A.; Balasubramaniam, R.; Brown, A.R.; Davies, J.H.; Saini, S.

    2000-01-01

    In this paper we use 3D simulations to study the amplitudes of random telegraph signals (RTS) associated with the trapping of a single carrier in interface states in the channel of sub 100 nm (decanano) MOSFETs. Both simulations using continuous doping charge and random discrete dopants in the active region of the MOSFETs are presented. We have studied the dependence of the RTS amplitudes on the position of the trapped charge in the channel and on the device design parameters. We have observe...

  17. Analysis of photogenerated random telegraph signal in single electron detector (photo-SET).

    Science.gov (United States)

    Troudi, M; Sghaier, Na; Kalboussi, A; Souifi, A

    2010-01-04

    In this paper, we analyzed slow single traps, situated inside the tunnel oxide of small area single electron photo-detector (photo-SET or nanopixel). The relationship between excitation signal (photons) and random-telegraph-signal (RTS) was evidenced. We demonstrated that photoinduced RTS observed on a photo-detector is due to the interaction between single photogenerated charges that tunnel from dot to dot and current path. Based on RTS analysis for various temperatures, gate bias and optical power we determined the characteristics of these single photogenerated traps: the energy position within the silicon bandgap, capture cross section and the position within the Si/SiO(x = 1.5) interfaces.

  18. Bush telegraph readings in writing

    CERN Document Server

    Strongman, Luke

    2015-01-01

    A ""bush telegraph"" is an antipodean slang noun phrase for a ""grapevine"" or an informal network of communication. The title of this book on English language use comes from the fact that the book is written from the southern hemisphere (where the idea of a ""bush telegraph"" is more widely-known) and because the concept of a ""bush telegraph"" describes what the book provides - a discussion of salient points in English language use and tertiary teaching across branches of interrelated interests. Each chapter of Bush Telegraph describes aspects of English writing culture. Separately and toget

  19. Transfer of Telegraph Technology to China: The Role of The Great northern Telegraph Company 1870-1890

    DEFF Research Database (Denmark)

    Baark, Erik

    This report examines the historical events surrounding the introduction of telegraph technology in China by the Danish Great Northern Telegraph Company. It describes the influence of Great Northern on diplomatic relations between Denmark and China during the decades of the 1870s and 1880s......, and the contributions in terms of the establishment of telegraph schools and development of a Chinese telegraph code that this company made as part of the technology transfer process....

  20. The Random Telegraph Signal Behavior of Intermittently Stuck Bits in SDRAMs

    Science.gov (United States)

    Chugg, Andrew Michael; Burnell, Andrew J.; Duncan, Peter H.; Parker, Sarah; Ward, Jonathan J.

    2009-12-01

    This paper reports behavior analogous to the Random Telegraph Signal (RTS) seen in the leakage currents from radiation induced hot pixels in Charge Coupled Devices (CCDs), but in the context of stuck bits in Synchronous Dynamic Random Access Memories (SDRAMs). Our analysis suggests that pseudo-random sticking and unsticking of the SDRAM bits is due to thermally induced fluctuations in leakage current through displacement damage complexes in depletion regions that were created by high-energy neutron and proton interactions. It is shown that the number of observed stuck bits increases exponentially with temperature, due to the general increase in the leakage currents through the damage centers with temperature. Nevertheless, some stuck bits are seen to pseudo-randomly stick and unstick in the context of a continuously rising trend of temperature, thus demonstrating that their damage centers can exist in multiple widely spaced, discrete levels of leakage current, which is highly consistent with RTS. This implies that these intermittently stuck bits (ISBs) are a displacement damage phenomenon and are unrelated to microdose issues, which is confirmed by the observation that they also occur in unbiased irradiation. Finally, we note that observed variations in the periodicity of the sticking and unsticking behavior on several timescales is most readily explained by multiple leakage current pathways through displacement damage complexes spontaneously and independently opening and closing under the influence of thermal vibrations.

  1. Random telegraph signals by alkanethiol-protected Au nanoparticles in chemically assembled single-electron transistors

    International Nuclear Information System (INIS)

    Kano, Shinya; Azuma, Yasuo; Tanaka, Daisuke; Sakamoto, Masanori; Teranishi, Toshiharu; Smith, Luke W.; Smith, Charles G.; Majima, Yutaka

    2013-01-01

    We have studied random telegraph signals (RTSs) in a chemically assembled single-electron transistor (SET) at temperatures as low as 300 mK. The RTSs in the chemically assembled SET were investigated by measuring the source–drain current, using a histogram of the RTS dwell time, and calculating the power spectrum density of the drain current–time characteristics. It was found that the dwell time of the RTS was dependent on the drain voltage of the SET, but was independent of the gate voltage. Considering the spatial structure of the chemically assembled SET, the origin of the RTS is attributed to the trapped charges on an alkanethiol-protected Au nanoparticle positioned near the SET. These results are important as they will help to realize stable chemically assembled SETs in practical applications

  2. Pervasive randomness in physics: an introduction to its modelling and spectral characterisation

    Science.gov (United States)

    Howard, Roy

    2017-10-01

    An introduction to the modelling and spectral characterisation of random phenomena is detailed at a level consistent with a first exposure to the subject at an undergraduate level. A signal framework for defining a random process is provided and this underpins an introduction to common random processes including the Poisson point process, the random walk, the random telegraph signal, shot noise, information signalling random processes, jittered pulse trains, birth-death random processes and Markov chains. An introduction to the spectral characterisation of signals and random processes, via either an energy spectral density or a power spectral density, is detailed. The important case of defining a white noise random process concludes the paper.

  3. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  4. Proton and gamma -Rays Irradiation-Induced Dark Current Random Telegraph Signal in a 0.18-mu{{m}} CMOS Image Sensor

    Science.gov (United States)

    Martin, E.; Nuns, T.; Virmontois, C.; David, J.-P.; Gilard, O.

    2013-08-01

    The dark current random telegraph signal (RTS) behavior has been studied in a five-transistor-per-pixel (5T) pinned photodiode 0.18-μm COTS active pixel sensor (APS). Several devices, irradiated using protons and gamma rays, have been studied in order to assess the ionizing and displacement damage effects. The influence of the proton energy, fluence, ionizing dose and applied bias during irradiation on the number of RTS pixels, the number of discrete levels, maximum transition amplitude, and mean switching time constants is investigated.

  5. Dots and dashes: art, virtual reality, and the telegraph

    Science.gov (United States)

    Ruzanka, Silvia; Chang, Ben

    2009-02-01

    Dots and Dashes is a virtual reality artwork that explores online romance over the telegraph, based on Ella Cheever Thayer's novel Wired Love - a Romance in Dots and Dashes (an Old Story Told in a New Way)1. The uncanny similarities between this story and the world of today's virtual environments provides the springboard for an exploration of a wealth of anxieties and dreams, including the construction of identities in an electronically mediated environment, the shifting boundaries between the natural and machine worlds, and the spiritual dimensions of science and technology. In this paper we examine the parallels between the telegraph networks and our current conceptions of cyberspace, as well as unique social and cultural impacts specific to the telegraph. These include the new opportunities and roles available to women in the telegraph industry and the connection between the telegraph and the Spiritualist movement. We discuss the development of the artwork, its structure and aesthetics, and the technical development of the work.

  6. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...

  7. Exact solution for the generalized Telegraph Fisher's equation

    International Nuclear Information System (INIS)

    Abdusalam, H.A.; Fahmy, E.S.

    2009-01-01

    In this paper, we applied the factorization scheme for the generalized Telegraph Fisher's equation and an exact particular solution has been found. The exact particular solution for the generalized Fisher's equation was obtained as a particular case of the generalized Telegraph Fisher's equation and the two-parameter solution can be obtained when n=2.

  8. Low-frequency flux noise in YBCO dc SQUIDs cooled in static magnetic fields

    International Nuclear Information System (INIS)

    Sager, M.P.; Bindslev Hansen, J.; Petersen, P.R.E.; Holst, T.; Shen, Y.Q.

    1999-01-01

    The low-frequency flux noise in bicrystal and step-edge YBa 2 Cu 3 O x dc SQUIDs has been investigated. The width, w, of the superconducting strips forming the SQUID frame was varied from 4 to 42 μm. The SQUIDs were cooled in static magnetic fields up to 150 μT. Two types of low-frequency noise dominated, namely 1/f-like noise and random telegraph noise giving a Lorentzian frequency spectrum. The 1/f noise performance of the w = 4, 6 and 7 μm SQUIDs was almost identical, while the SQUIDs with w = 22 and 42 μm showed an order of magnitude higher noise level. Our analysis of the data suggests an exponential increase of the 1/f noise versus the cooling field, exhibiting a characteristic magnetic field around 40 μT. (author)

  9. Lightning Wires: The Telegraph and China's Technological Modernization 1860-1890

    DEFF Research Database (Denmark)

    Baark, Erik

    This book examines the transfer of telegraph technology to China in the late nineteenth century. It shows how the initial Chinese rejection of the telegraph as an "inconvenient technology" contributed to violent conflicts between foreigners and the...

  10. Non-Markovian noise

    International Nuclear Information System (INIS)

    Fulinski, A.

    1994-01-01

    The properties of non-Markovian noises with exponentially correlated memory are discussed. Considered are dichotomic noise, white shot noise, Gaussian white noise, and Gaussian colored noise. The stationary correlation functions of the non-Markovian versions of these noises are given by linear combinations of two or three exponential functions (colored noises) or of the δ function and exponential function (white noises). The non-Markovian white noises are well defined only when the kernel of the non-Markovian master equation contains a nonzero admixture of a Markovian term. Approximate equations governing the probability densities for processes driven by such non-Markovian noises are derived, including non-Markovian versions of the Fokker-Planck equation and the telegrapher's equation. As an example, it is shown how the non-Markovian nature changes the behavior of the driven linear process

  11. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...

  12. A non-differentiable solution for the local fractional telegraph equation

    Directory of Open Access Journals (Sweden)

    Li Jie

    2017-01-01

    Full Text Available In this paper, we consider the linear telegraph equations with local fractional derivative. The local fractional Laplace series expansion method is used to handle the local fractional telegraph equation. The analytical solution with the non-differentiable graphs is discussed in detail. The proposed method is efficient and accurate.

  13. Static and low frequency noise characterization of ultra-thin body InAs MOSFETs

    Science.gov (United States)

    Karatsori, T. A.; Pastorek, M.; Theodorou, C. G.; Fadjie, A.; Wichmann, N.; Desplanque, L.; Wallart, X.; Bollaert, S.; Dimitriadis, C. A.; Ghibaudo, G.

    2018-05-01

    A complete static and low frequency noise characterization of ultra-thin body InAs MOSFETs is presented. Characterization techniques, such as the well-known Y-function method established for Si MOSFETs, are applied in order to extract the electrical parameters and study the behavior of these research grade devices. Additionally, the Lambert-W function parameter extraction methodology valid from weak to strong inversion is also used in order to verify its applicability in these experimental level devices. Moreover, a low-frequency noise characterization of the UTB InAs MOSFETs is presented, revealing carrier trapping/detrapping in slow oxide traps and remote Coulomb scattering as origin of 1/f noise, which allowed for the extraction of the oxide trap areal density. Finally, Lorentzian-like noise is also observed in the sub-micron area devices and attributed to both Random Telegraph Noise from oxide individual traps and g-r noise from the semiconductor interface.

  14. Low frequency noise peak near magnon emission energy in magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liang; Xiang, Li; Guo, Huiqiang; Wei, Jian, E-mail: weijian6791@pku.edu.cn [International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China and Collaborative Innovation Center of Quantum Matter, Beijing (China); Li, D. L.; Yuan, Z. H.; Feng, J. F., E-mail: jiafengfeng@iphy.ac.cn; Han, X. F. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Coey, J. M. D. [CRANN and School of Physics, Trinity College, Dublin 2 (Ireland)

    2014-12-15

    We report on the low frequency (LF) noise measurements in magnetic tunnel junctions (MTJs) below 4 K and at low bias, where the transport is strongly affected by scattering with magnons emitted by hot tunnelling electrons, as thermal activation of magnons from the environment is suppressed. For both CoFeB/MgO/CoFeB and CoFeB/AlO{sub x}/CoFeB MTJs, enhanced LF noise is observed at bias voltage around magnon emission energy, forming a peak in the bias dependence of noise power spectra density, independent of magnetic configurations. The noise peak is much higher and broader for unannealed AlO{sub x}-based MTJ, and besides Lorentzian shape noise spectra in the frequency domain, random telegraph noise (RTN) is visible in the time traces. During repeated measurements the noise peak reduces and the RTN becomes difficult to resolve, suggesting defects being annealed. The Lorentzian shape noise spectra can be fitted with bias-dependent activation of RTN, with the attempt frequency in the MHz range, consistent with magnon dynamics. These findings suggest magnon-assisted activation of defects as the origin of the enhanced LF noise.

  15. Low frequency noise peak near magnon emission energy in magnetic tunnel junctions

    Directory of Open Access Journals (Sweden)

    Liang Liu

    2014-12-01

    Full Text Available We report on the low frequency (LF noise measurements in magnetic tunnel junctions (MTJs below 4 K and at low bias, where the transport is strongly affected by scattering with magnons emitted by hot tunnelling electrons, as thermal activation of magnons from the environment is suppressed. For both CoFeB/MgO/CoFeB and CoFeB/AlOx/CoFeB MTJs, enhanced LF noise is observed at bias voltage around magnon emission energy, forming a peak in the bias dependence of noise power spectra density, independent of magnetic configurations. The noise peak is much higher and broader for unannealed AlOx-based MTJ, and besides Lorentzian shape noise spectra in the frequency domain, random telegraph noise (RTN is visible in the time traces. During repeated measurements the noise peak reduces and the RTN becomes difficult to resolve, suggesting defects being annealed. The Lorentzian shape noise spectra can be fitted with bias-dependent activation of RTN, with the attempt frequency in the MHz range, consistent with magnon dynamics. These findings suggest magnon-assisted activation of defects as the origin of the enhanced LF noise.

  16. Quantized dissipation and random telegraph voltage noise in epitaxial BiSrCaCuO thin films

    International Nuclear Information System (INIS)

    Jung, G.; Savo, B.; Vecchione, A.

    1993-01-01

    In this paper we report on the observation of correlated multiple-voltage RTN switching in high quality epitaxial BiSrCaCuO thin film. We ascribe the correlated noise to the quantization of flux flow dissipation in the film. (orig.)

  17. Critical Domain Problem for the Reaction–Telegraph Equation Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Weam Alharbi

    2018-04-01

    Full Text Available A telegraph equation is believed to be an appropriate model of population dynamics as it accounts for the directional persistence of individual animal movement. Being motivated by the problem of habitat fragmentation, which is known to be a major threat to biodiversity that causes species extinction worldwide, we consider the reaction–telegraph equation (i.e., telegraph equation combined with the population growth on a bounded domain with the goal to establish the conditions of species survival. We first show analytically that, in the case of linear growth, the expression for the domain’s critical size coincides with the critical size of the corresponding reaction–diffusion model. We then consider two biologically relevant cases of nonlinear growth, i.e., the logistic growth and the growth with a strong Allee effect. Using extensive numerical simulations, we show that in both cases the critical domain size of the reaction–telegraph equation is larger than the critical domain size of the reaction–diffusion equation. Finally, we discuss possible modifications of the model in order to enhance the positivity of its solutions.

  18. A gate current 1/f noise model for GaN/AlGaN HEMTs

    International Nuclear Information System (INIS)

    Liu Yu'an; Zhuang Yiqi

    2014-01-01

    This work presents a theoretical and experimental study on the gate current 1/f noise in AlGaN/GaN HEMTs. Based on the carrier number fluctuation in the two-dimensional electron gas channel of AlGaN/GaN HEMTs, a gate current 1/f noise model containing a trap-assisted tunneling current and a space charge limited current is built. The simulation results are in good agreement with the experiment. Experiments show that, if V g < V x (critical gate voltage of dielectric relaxation), gate current 1/f noise comes from the superimposition of trap-assisted tunneling RTS (random telegraph noise), while V g > V x , gate current 1/f noise comes from not only the trap-assisted tunneling RTS, but also the space charge limited current RTS. This indicates that the gate current 1/f noise of the GaN-based HEMTs device is sensitive to the interaction of defects and the piezoelectric relaxation. It provides a useful characterization tool for deeper information about the defects and their evolution in AlGaN/GaN HEMTs. (semiconductor devices)

  19. Cooke and Wheatstone and the invention of the electric telegraph

    CERN Document Server

    Hubbard, Geoffrey

    2013-01-01

    Originally published in 1965. Charles Wheatstone collaborated with William Cooke in the invention and early exploitation of the Electric Telegraph. This was the first long distance, faster-than-a-horse messenger. This volume gives an account of the earlier work on which the English invention was founded, and the curious route by which it came to England. It discusses the way in which two such antagonistic men were driven into collaboration and sets out the history of the early telegraph lines, including work on the London and Birmingham Railway and the Great Western Railway.

  20. TELEGRAPHS TO INCANDESCENT LAMPS: A SEQUENTIAL PROCESS OF INNOVATION

    Directory of Open Access Journals (Sweden)

    Laurence J. Malone

    2000-01-01

    Full Text Available This paper outlines a sequential process of technological innovation in the emergence of the electrical industry in the United States from 1830 to 1880. Successive inventions that realize the commercial possibilities of electricity provided the foundation for an industry where technical knowledge, invention and diffusion were ultimately consolidated within the managerial structure of new firms. The genesis of the industry is traced, sequentially, through the development of the telegraph, arc light and incandescent lamp. Exploring the origins of the telegraph and incandescent lamp reveals a process where a series of inventions and firms result from successful efforts touse scientific principles to create new commodities and markets.

  1. Microscopic origin of read current noise in TaO_x-based resistive switching memory by ultra-low temperature measurement

    International Nuclear Information System (INIS)

    Pan, Yue; Cai, Yimao; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru

    2016-01-01

    TaO_x-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO_x-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO_x RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO_x RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.

  2. Random Correlation Matrix and De-Noising

    OpenAIRE

    Ken-ichi Mitsui; Yoshio Tabata

    2006-01-01

    In Finance, the modeling of a correlation matrix is one of the important problems. In particular, the correlation matrix obtained from market data has the noise. Here we apply the de-noising processing based on the wavelet analysis to the noisy correlation matrix, which is generated by a parametric function with random parameters. First of all, we show that two properties, i.e. symmetry and ones of all diagonal elements, of the correlation matrix preserve via the de-noising processing and the...

  3. Microscopic origin of read current noise in TaO{sub x}-based resistive switching memory by ultra-low temperature measurement

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Yue; Cai, Yimao, E-mail: caiyimao@pku.edu.cn; Liu, Yefan; Fang, Yichen; Yu, Muxi; Tan, Shenghu; Huang, Ru [Institute of Microelectronics, Peking University, Beijing 100871 (China)

    2016-04-11

    TaO{sub x}-based resistive random access memory (RRAM) attracts considerable attention for the development of next generation nonvolatile memories. However, read current noise in RRAM is one of the critical concerns for storage application, and its microscopic origin is still under debate. In this work, the read current noise in TaO{sub x}-based RRAM was studied thoroughly. Based on a noise power spectral density analysis at room temperature and at ultra-low temperature of 25 K, discrete random telegraph noise (RTN) and continuous average current fluctuation (ACF) are identified and decoupled from the total read current noise in TaO{sub x} RRAM devices. A statistical comparison of noise amplitude further reveals that ACF depends strongly on the temperature, whereas RTN is independent of the temperature. Measurement results combined with conduction mechanism analysis show that RTN in TaO{sub x} RRAM devices arises from electron trapping/detrapping process in the hopping conduction, and ACF is originated from the thermal activation of conduction centers that form the percolation network. At last, a unified model in the framework of hopping conduction is proposed to explain the underlying mechanism of both RTN and ACF noise, which can provide meaningful guidelines for designing noise-immune RRAM devices.

  4. Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise

    Energy Technology Data Exchange (ETDEWEB)

    Kenfack, Lionel Tenemeza, E-mail: kenfacklionel300@gmail.com [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Tchoffo, Martin; Fai, Lukong Cornelius [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Fouokeng, Georges Collince [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Laboratoire de Génie des Matériaux, Pôle Recherche-Innovation-Entrepreneuriat (PRIE), Institut Universitaire de la Côte, BP 3001 Douala (Cameroon)

    2017-04-15

    We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.

  5. Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise

    International Nuclear Information System (INIS)

    Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius; Fouokeng, Georges Collince

    2017-01-01

    We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.

  6. Removal of Stationary Sinusoidal Noise from Random Vibration Signals.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Brian; Cap, Jerome S.

    2018-02-01

    In random vibration environments, sinusoidal line noise may appear in the vibration signal and can affect analysis of the resulting data. We studied two methods which remove stationary sine tones from random noise: a matrix inversion algorithm and a chirp-z transform algorithm. In addition, we developed new methods to determine the frequency of the tonal noise. The results show that both of the removal methods can eliminate sine tones in prefabricated random vibration data when the sine-to-random ratio is at least 0.25. For smaller ratios down to 0.02 only the matrix inversion technique can remove the tones, but the metrics to evaluate its effectiveness also degrade. We also found that using fast Fourier transforms best identified the tonal noise, and determined that band-pass-filtering the signals prior to the process improved sine removal. When applied to actual vibration test data, the methods were not as effective at removing harmonic tones, which we believe to be a result of mixed-phase sinusoidal noise.

  7. "A New Business in the World": The Telegraph, Privacy, and the U.S. Constitution in the Nineteenth Century.

    Science.gov (United States)

    Jepsen, Thomas

    2018-01-01

    Disclosures about electronic surveillance by the U.S. National Security Agency have revived interest in issues of communications privacy and Fourth Amendment rights. In the early days of the telegraph, there was no legal protection afforded to the privacy of telegraphic communication, and seizures of telegraphic dispatches figured in major events of the nineteenth century in the United States. Attempts to protect the content of telegrams by defining a customer/operator "privilege" under common law were rejected by the courts, as were attempts to protect the confidentiality of telegraphic communications through an analogy with the postal service. Each attempt by the government and the courts to obtain access to private telegraphic communication revived a debate about the constitutionality of such actions, which ultimately led to a new interpretation of constitutional law, including a legal right to privacy.

  8. GPR random noise reduction using BPD and EMD

    Science.gov (United States)

    Ostoori, Roya; Goudarzi, Alireza; Oskooi, Behrooz

    2018-04-01

    Ground-penetrating radar (GPR) exploration is a new high-frequency technology that explores near-surface objects and structures accurately. The high-frequency antenna of the GPR system makes it a high-resolution method compared to other geophysical methods. The frequency range of recorded GPR is so wide that random noise recording is inevitable due to acquisition. This kind of noise comes from unknown sources and its correlation to the adjacent traces is nearly zero. This characteristic of random noise along with the higher accuracy of GPR system makes denoising very important for interpretable results. The main objective of this paper is to reduce GPR random noise based on pursuing denoising using empirical mode decomposition. Our results showed that empirical mode decomposition in combination with basis pursuit denoising (BPD) provides satisfactory outputs due to the sifting process compared to the time-domain implementation of the BPD method on both synthetic and real examples. Our results demonstrate that because of the high computational costs, the BPD-empirical mode decomposition technique should only be used for heavily noisy signals.

  9. Adomian decomposition method for solving the telegraph equation in charged particle transport

    International Nuclear Information System (INIS)

    Abdou, M.A.

    2005-01-01

    In this paper, the analysis for the telegraph equation in case of isotropic small angle scattering from the Boltzmann transport equation for charged particle is presented. The Adomian decomposition is used to solve the telegraph equation. By means of MAPLE the Adomian polynomials of obtained series (ADM) solution have been calculated. The behaviour of the distribution function are shown graphically. The results reported in this article provide further evidence of the usefulness of Adomain decomposition for obtaining solution of linear and nonlinear problems

  10. Cross-diffusional effect in a telegraph reaction diffusion Lotka-Volterra two competitive system

    International Nuclear Information System (INIS)

    Abdusalam, H.A; Fahmy, E.S.

    2003-01-01

    It is known now that, telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion in several branches of sciences. Telegraph reaction diffusion Lotka-Volterra two competitive system is considered. We observed that this system can give rise to diffusive instability only in the presence of cross-diffusion. Local and global stability analysis in the cross-diffusional effect are studied by considering suitable Lyapunov functional

  11. Quantum-noise randomized ciphers

    International Nuclear Information System (INIS)

    Nair, Ranjith; Yuen, Horace P.; Kumar, Prem; Corndorf, Eric; Eguchi, Takami

    2006-01-01

    We review the notion of a classical random cipher and its advantages. We sharpen the usual description of random ciphers to a particular mathematical characterization suggested by the salient feature responsible for their increased security. We describe a concrete system known as αη and show that it is equivalent to a random cipher in which the required randomization is affected by coherent-state quantum noise. We describe the currently known security features of αη and similar systems, including lower bounds on the unicity distances against ciphertext-only and known-plaintext attacks. We show how αη used in conjunction with any standard stream cipher such as the Advanced Encryption Standard provides an additional, qualitatively different layer of security from physical encryption against known-plaintext attacks on the key. We refute some claims in the literature that αη is equivalent to a nonrandom stream cipher

  12. Effects of random noise in a dynamical model of love

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yong, E-mail: hsux3@nwpu.edu.cn [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Gu Rencai; Zhang Huiqing [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-07-15

    Highlights: > We model the complexity and unpredictability of psychology as Gaussian white noise. > The stochastic system of love is considered including bifurcation and chaos. > We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.

  13. Effects of random noise in a dynamical model of love

    International Nuclear Information System (INIS)

    Xu Yong; Gu Rencai; Zhang Huiqing

    2011-01-01

    Highlights: → We model the complexity and unpredictability of psychology as Gaussian white noise. → The stochastic system of love is considered including bifurcation and chaos. → We show that noise can both suppress and induce chaos in dynamical models of love. - Abstract: This paper aims to investigate the stochastic model of love and the effects of random noise. We first revisit the deterministic model of love and some basic properties are presented such as: symmetry, dissipation, fixed points (equilibrium), chaotic behaviors and chaotic attractors. Then we construct a stochastic love-triangle model with parametric random excitation due to the complexity and unpredictability of the psychological system, where the randomness is modeled as the standard Gaussian noise. Stochastic dynamics under different three cases of 'Romeo's romantic style', are examined and two kinds of bifurcations versus the noise intensity parameter are observed by the criteria of changes of top Lyapunov exponent and shape of stationary probability density function (PDF) respectively. The phase portraits and time history are carried out to verify the proposed results, and the good agreement can be found. And also the dual roles of the random noise, namely suppressing and inducing chaos are revealed.

  14. The importance for speech intelligibility of random fluctuations in "steady" background noise.

    Science.gov (United States)

    Stone, Michael A; Füllgrabe, Christian; Mackinnon, Robert C; Moore, Brian C J

    2011-11-01

    Spectrally shaped steady noise is commonly used as a masker of speech. The effects of inherent random fluctuations in amplitude of such a noise are typically ignored. Here, the importance of these random fluctuations was assessed by comparing two cases. For one, speech was mixed with steady speech-shaped noise and N-channel tone vocoded, a process referred to as signal-domain mixing (SDM); this preserved the random fluctuations of the noise. For the second, the envelope of speech alone was extracted for each vocoder channel and a constant was added corresponding to the root-mean-square value of the noise envelope for that channel. This is referred to as envelope-domain mixing (EDM); it removed the random fluctuations of the noise. Sinusoidally modulated noise and a single talker were also used as backgrounds, with both SDM and EDM. Speech intelligibility was measured for N = 12, 19, and 30, with the target-to-background ratio fixed at -7 dB. For SDM, performance was best for the speech background and worst for the steady noise. For EDM, this pattern was reversed. Intelligibility with steady noise was consistently very poor for SDM, but near-ceiling for EDM, demonstrating that the random fluctuations in steady noise have a large effect.

  15. Archaeological Test and Data Recovery Program at Telegraph Canyon, Chula Vista, California,

    Science.gov (United States)

    1978-09-01

    Several areas in the immediate vicinity were known to contain subsurface cables used to control SDG &E’s power network, and required avoidance. Addi...3 oEST FACE A TRENCH 4 Corps of Engineers Telegraph Canyon Creek WESTEC Servjces. Inr . compass bearing 20 7 ;7777,77 .77 7 1 METERS 170 c{ METERS...666 1.00 ~ 0 1.33 E -2.*00 -2.33 2.66 3.00 FUREf TRENCH 4 Corps of EngineersgTelegraph Canyon Creek; compass bearing 20 28 ’Lb..--._ .. *.* o •- -. o

  16. Super fast physical-random number generation using laser diode frequency noises

    Science.gov (United States)

    Ushiki, Tetsuro; Doi, Kohei; Maehara, Shinya; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2011-02-01

    Random numbers can be classified as either pseudo- or physical-random in character. Pseudo-random numbers' periodicity renders them inappropriate for use in cryptographic applications, but naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideally-suited to the task. The laser diode naturally produces a wideband "noise" signal that is believed to have tremendous capacity and great promise, for the rapid generation of physical-random numbers for use in cryptographic applications. We measured a laser diode's output, at a fast photo detector and generated physical-random numbers from frequency noises. We then identified and evaluated the binary-number-line's statistical properties. The result shows that physical-random number generation, at speeds as high as 40Gbps, is obtainable, using the laser diode's frequency noise characteristic.

  17. Efficiency of transport in periodic potentials: dichotomous noise contra deterministic force

    Science.gov (United States)

    Spiechowicz, J.; Łuczka, J.; Machura, L.

    2016-05-01

    We study the transport of an inertial Brownian particle moving in a symmetric and periodic one-dimensional potential, and subjected to both a symmetric, unbiased external harmonic force as well as biased dichotomic noise η (t) also known as a random telegraph signal or a two state continuous-time Markov process. In doing so, we concentrate on the previously reported regime (Spiechowicz et al 2014 Phys. Rev. E 90 032104) for which non-negative biased noise η (t) in the form of generalized white Poissonian noise can induce anomalous transport processes similar to those generated by a deterministic constant force F= but significantly more effective than F, i.e. the particle moves much faster, the velocity fluctuations are noticeably reduced and the transport efficiency is enhanced several times. Here, we confirm this result for the case of dichotomous fluctuations which, in contrast to white Poissonian noise, can assume positive as well as negative values and examine the role of thermal noise in the observed phenomenon. We focus our attention on the impact of bidirectionality of dichotomous fluctuations and reveal that the effect of nonequilibrium noise enhanced efficiency is still detectable. This result may explain transport phenomena occurring in strongly fluctuating environments of both physical and biological origin. Our predictions can be corroborated experimentally by use of a setup that consists of a resistively and capacitively shunted Josephson junction.

  18. Modeling of low- and high-frequency noise by slow and fast fluctuators

    Science.gov (United States)

    Nesterov, Alexander I.; Berman, Gennady P.

    2012-05-01

    We study the dynamics of dephasing in a quantum two-level system by modeling both 1/f and high-frequency noise by random telegraph processes. Our approach is based on a so-called spin-fluctuator model in which a noisy environment is modeled by a large number of fluctuators. In the continuous limit we obtain an effective random process (ERP) that is described by a distribution function of the fluctuators. In a simplified model, we reduce the ERP to the two (slow and fast) ensembles of fluctuators. Using this model, we study decoherence in a superconducting flux qubit and we compare our theoretical results with the available experimental data. We demonstrate good agreement of our theoretical predictions with the experiments. Our approach can be applied to many quantum systems, such as biological complexes, semiconductors, superconducting, and spin qubits, where the effects of interaction with the environment are essential.

  19. The clustering of local maxima in random noise

    International Nuclear Information System (INIS)

    Coles, P.

    1989-01-01

    A mixture of analytic and numerical techniques is used to study the clustering properties of local maxima of random noise. Technical complexities restrict us to the case of 1D noise, but the results obtained should give a reasonably accurate picture of the behaviour of cosmological density peaks in noise defined on a 3D domain. We give estimates of the two-point correlation function of local maxima, for both Gaussian and non-Gaussian noise and show that previous approximations are not accurate. (author)

  20. On the joint statistics of stable random processes

    International Nuclear Information System (INIS)

    Hopcraft, K I; Jakeman, E

    2011-01-01

    A utilitarian continuous bi-variate random process whose first-order probability density function is a stable random variable is constructed. Results paralleling some of those familiar from the theory of Gaussian noise are derived. In addition to the joint-probability density for the process, these include fractional moments and structure functions. Although the correlation functions for stable processes other than Gaussian do not exist, we show that there is coherence between values adopted by the process at different times, which identifies a characteristic evolution with time. The distribution of the derivative of the process, and the joint-density function of the value of the process and its derivative measured at the same time are evaluated. These enable properties to be calculated analytically such as level crossing statistics and those related to the random telegraph wave. When the stable process is fractal, the proportion of time it spends at zero is finite and some properties of this quantity are evaluated, an optical interpretation for which is provided. (paper)

  1. Electron transport and noise spectroscopy in organic magnetic tunnel junctions with PTCDA and Alq3 barriers

    Science.gov (United States)

    Martinez, Isidoro; Cascales, Juan Pedro; Hong, Jhen-Yong; Lin, Minn-Tsong; Prezioso, Mirko; Riminucci, Alberto; Dediu, Valentin A.; Aliev, Farkhad G.

    2016-10-01

    The possible influence of internal barrier dynamics on spin, charge transport and their fluctuations in organic spintronics remains poorly understood. Here we present investigation of the electron transport and low frequency noise at temperatures down to 0.3K in magnetic tunnel junctions with an organic PTCDA barriers with thickness up to 5 nm in the tunneling regime and with 200 nm thick Alq3 barrier in the hopping regime. We observed high tunneling magneto-resistance at low temperatures (15-40%) and spin dependent super-poissonian shot noise in organic magnetic tunnel junctions (OMTJs) with PTCDA. The Fano factor exceeds 1.5-2 values which could be caused by interfacial states controlled by spin dependent bunching in the tunneling events through the molecules.1 The bias dependence of the low frequency noise in OMTJs with PTCDA barriers which includes both 1/f and random telegraph noise activated at specific biases will also be discussed. On the other hand, the organic junctions with ferromagnetic electrodes and thick Alq3 barriers present sub-poissonian shot noise which depends on the temperature, indicative of variable range hopping.

  2. RTS noise and dark current white defects reduction using selective averaging based on a multi-aperture system.

    Science.gov (United States)

    Zhang, Bo; Kagawa, Keiichiro; Takasawa, Taishi; Seo, Min Woong; Yasutomi, Keita; Kawahito, Shoji

    2014-01-16

    In extremely low-light conditions, random telegraph signal (RTS) noise and dark current white defects become visible. In this paper, a multi-aperture imaging system and selective averaging method which removes the RTS noise and the dark current white defects by minimizing the synthetic sensor noise at every pixel is proposed. In the multi-aperture imaging system, a very small synthetic F-number which is much smaller than 1.0 is achieved by increasing optical gain with multiple lenses. It is verified by simulation that the effective noise normalized by optical gain in the peak of noise histogram is reduced from 1.38e⁻ to 0.48 e⁻ in a 3 × 3-aperture system using low-noise CMOS image sensors based on folding-integration and cyclic column ADCs. In the experiment, a prototype 3 × 3-aperture camera, where each aperture has 200 × 200 pixels and an imaging lens with a focal length of 3.0 mm and F-number of 3.0, is developed. Under a low-light condition, in which the maximum average signal is 11e⁻ per aperture, the RTS and dark current white defects are removed and the peak signal-to-noise ratio (PSNR) of the image is increased by 6.3 dB.

  3. The deterministic chaos and random noise in turbulent jet

    International Nuclear Information System (INIS)

    Yao, Tian-Liang; Liu, Hai-Feng; Xu, Jian-Liang; Li, Wei-Feng

    2014-01-01

    A turbulent flow is usually treated as a superposition of coherent structure and incoherent turbulence. In this paper, the largest Lyapunov exponent and the random noise in the near field of round jet and plane jet are estimated with our previously proposed method of chaotic time series analysis [T. L. Yao, et al., Chaos 22, 033102 (2012)]. The results show that the largest Lyapunov exponents of the round jet and plane jet are in direct proportion to the reciprocal of the integral time scale of turbulence, which is in accordance with the results of the dimensional analysis, and the proportionality coefficients are equal. In addition, the random noise of the round jet and plane jet has the same linear relation with the Kolmogorov velocity scale of turbulence. As a result, the random noise may well be from the incoherent disturbance in turbulence, and the coherent structure in turbulence may well follow the rule of chaotic motion

  4. Current-limiting and ultrafast system for the characterization of resistive random access memories.

    Science.gov (United States)

    Diaz-Fortuny, J; Maestro, M; Martin-Martinez, J; Crespo-Yepes, A; Rodriguez, R; Nafria, M; Aymerich, X

    2016-06-01

    A new system for the ultrafast characterization of resistive switching phenomenon is developed to acquire the current during the Set and Reset process in a microsecond time scale. A new electronic circuit has been developed as a part of the main setup system, which is capable of (i) applying a hardware current limit ranging from nanoampers up to miliampers and (ii) converting the Set and Reset exponential gate current range into an equivalent linear voltage. The complete system setup allows measuring with a microsecond resolution. Some examples demonstrate that, with the developed setup, an in-depth analysis of resistive switching phenomenon and random telegraph noise can be made.

  5. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Science.gov (United States)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  6. A didactically novel derivation of the telegraph equation to describe sound propagation in rigid tubes

    International Nuclear Information System (INIS)

    Till, Bernie C; Driessen, Peter F

    2014-01-01

    Starting from first principles, we derive the telegraph equation to describe the propagation of sound waves in rigid tubes by using a simple approach that yields a lossy transmission line model with frequency-independent parameters. The approach is novel in the sense that it has not been found in the literature or textbooks. To derive the lossy acoustic telegraph equation from the lossless wave equation, we need only to relax the assumption that the dynamical variables are constant over the entire cross-sectional area of the tube. In this paper, we do this by introducing a relatively narrow boundary layer at the wall of the tube, over which the dynamical variables decrease linearly from the constant value to zero. This allows us to make very simple corrections to the lossless case, and to express them in terms of two parameters, namely the viscous diffusion time constant and the thermal diffusion time constant. The coefficients of the resulting telegraph equation are frequency-independent. A comparison with the telegraph equation for the electrical transmission line establishes precise relationships between the electrical circuit elements and the physical properties of the fluid. These relationships are thus proven a posteriori rather than asserted a priori. In this way, we arrive at an instructive and useful derivation of the acoustic telegraph equation, which takes viscous damping and thermal dissipation into account, and is accessible to students at the undergraduate level. This derivation does not resort to the combined heavy machinery of fluid dynamics and thermodynamics, does not assume that the waveforms are sinusoidal, and does not assume any particular cross-sectional shape of the tube. Surprisingly, we have been unable to find a comparable treatment in the standard introductory physics and acoustics texts, or in the literature. (paper)

  7. Random Valued Impulse Noise Removal Using Region Based Detection Approach

    Directory of Open Access Journals (Sweden)

    S. Banerjee

    2017-12-01

    Full Text Available Removal of random valued noisy pixel is extremely challenging when the noise density is above 50%. The existing filters are generally not capable of eliminating such noise when density is above 70%. In this paper a region wise density based detection algorithm for random valued impulse noise has been proposed. On the basis of the intensity values, the pixels of a particular window are sorted and then stored into four regions. The higher density based region is considered for stepwise detection of noisy pixels. As a result of this detection scheme a maximum of 75% of noisy pixels can be detected. For this purpose this paper proposes a unique noise removal algorithm. It was experimentally proved that the proposed algorithm not only performs exceptionally when it comes to visual qualitative judgment of standard images but also this filter combination outsmarts the existing algorithm in terms of MSE, PSNR and SSIM comparison even up to 70% noise density level.

  8. Realistic noise-tolerant randomness amplification using finite number of devices

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Ramanathan, Ravishankar; Grudka, Andrzej; Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Szarek, Tomasz; Wojewódka, Hanna

    2016-04-01

    Randomness is a fundamental concept, with implications from security of modern data systems, to fundamental laws of nature and even the philosophy of science. Randomness is called certified if it describes events that cannot be pre-determined by an external adversary. It is known that weak certified randomness can be amplified to nearly ideal randomness using quantum-mechanical systems. However, so far, it was unclear whether randomness amplification is a realistic task, as the existing proposals either do not tolerate noise or require an unbounded number of different devices. Here we provide an error-tolerant protocol using a finite number of devices for amplifying arbitrary weak randomness into nearly perfect random bits, which are secure against a no-signalling adversary. The correctness of the protocol is assessed by violating a Bell inequality, with the degree of violation determining the noise tolerance threshold. An experimental realization of the protocol is within reach of current technology.

  9. Analogies between colored Lévy noise and random channel approach to disordered kinetics

    Science.gov (United States)

    Vlad, Marcel O.; Velarde, Manuel G.; Ross, John

    2004-02-01

    We point out some interesting analogies between colored Lévy noise and the random channel approach to disordered kinetics. These analogies are due to the fact that the probability density of the Lévy noise source plays a similar role as the probability density of rate coefficients in disordered kinetics. Although the equations for the two approaches are not identical, the analogies can be used for deriving new, useful results for both problems. The random channel approach makes it possible to generalize the fractional Uhlenbeck-Ornstein processes (FUO) for space- and time-dependent colored noise. We describe the properties of colored noise in terms of characteristic functionals, which are evaluated by using a generalization of Huber's approach to complex relaxation [Phys. Rev. B 31, 6070 (1985)]. We start out by investigating the properties of symmetrical white noise and then define the Lévy colored noise in terms of a Langevin equation with a Lévy white noise source. We derive exact analytical expressions for the various characteristic functionals, which characterize the noise, and a functional fractional Fokker-Planck equation for the probability density functional of the noise at a given moment in time. Second, by making an analogy between the theory of colored noise and the random channel approach to disordered kinetics, we derive fractional equations for the evolution of the probability densities of the random rate coefficients in disordered kinetics. These equations serve as a basis for developing methods for the evaluation of the statistical properties of the random rate coefficients from experimental data. Special attention is paid to the analysis of systems for which the observed kinetic curves can be described by linear or nonlinear stretched exponential kinetics.

  10. Superconducting Magnetic Tensor Gradiometer System for Detection of Underwater Military Munitions

    Science.gov (United States)

    2012-06-01

    TILTING IN THE GEOMAGNETIC FIELD ....................................................................................... 75 7.4 MAGNETIC DIPOLE...the full geomagnetic field indicate that the required sensitivity specification can be met if the field seen by the devices is substantially reduced...between discrete values similar to random telegraph noise. Fortunately, this noise source can be substantially suppressed by using an AC bias reversal

  11. Fast random-number generation using a diode laser's frequency noise characteristic

    Science.gov (United States)

    Takamori, Hiroki; Doi, Kohei; Maehara, Shinya; Kawakami, Kohei; Sato, Takashi; Ohkawa, Masashi; Ohdaira, Yasuo

    2012-02-01

    Random numbers can be classified as either pseudo- or physical-random, in character. Pseudo-random numbers are generated by definite periodicity, so, their usefulness in cryptographic applications is somewhat limited. On the other hand, naturally-generated physical-random numbers have no calculable periodicity, thereby making them ideal for the task. Diode lasers' considerable wideband noise gives them tremendous capacity for generating physical-random numbers, at a high rate of speed. We measured a diode laser's output with a fast photo detector, and evaluated the binary-numbers from the diode laser's frequency noise characteristics. We then identified and evaluated the binary-number-line's statistical properties. We also investigate the possibility that much faster physical-random number parallel-generation is possible, using separate outputs of different optical-path length and character, which we refer to as "coherence collapse".

  12. A Denoising Scheme for Randomly Clustered Noise Removal in ICCD Sensing Image

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2017-01-01

    Full Text Available An Intensified Charge-Coupled Device (ICCD image is captured by the ICCD image sensor in extremely low-light conditions. Its noise has two distinctive characteristics. (a Different from the independent identically distributed (i.i.d. noise in natural image, the noise in the ICCD sensing image is spatially clustered, which induces unexpected structure information; (b The pattern of the clustered noise is formed randomly. In this paper, we propose a denoising scheme to remove the randomly clustered noise in the ICCD sensing image. First, we decompose the image into non-overlapped patches and classify them into flat patches and structure patches according to if real structure information is included. Then, two denoising algorithms are designed for them, respectively. For each flat patch, we simulate multiple similar patches for it in pseudo-time domain and remove its noise by averaging all the simulated patches, considering that the structure information induced by the noise varies randomly over time. For each structure patch, we design a structure-preserved sparse coding algorithm to reconstruct the real structure information. It reconstructs each patch by describing it as a weighted summation of its neighboring patches and incorporating the weights into the sparse representation of the current patch. Based on all the reconstructed patches, we generate a reconstructed image. After that, we repeat the whole process by changing relevant parameters, considering that blocking artifacts exist in a single reconstructed image. Finally, we obtain the reconstructed image by merging all the generated images into one. Experiments are conducted on an ICCD sensing image dataset, which verifies its subjective performance in removing the randomly clustered noise and preserving the real structure information in the ICCD sensing image.

  13. Listening to the Noise: Random Fluctuations Reveal Gene Network Parameters

    Science.gov (United States)

    Munsky, Brian; Trinh, Brooke; Khammash, Mustafa

    2010-03-01

    The cellular environment is abuzz with noise originating from the inherent random motion of reacting molecules in the living cell. In this noisy environment, clonal cell populations exhibit cell-to-cell variability that can manifest significant prototypical differences. Noise induced stochastic fluctuations in cellular constituents can be measured and their statistics quantified using flow cytometry, single molecule fluorescence in situ hybridization, time lapse fluorescence microscopy and other single cell and single molecule measurement techniques. We show that these random fluctuations carry within them valuable information about the underlying genetic network. Far from being a nuisance, the ever-present cellular noise acts as a rich source of excitation that, when processed through a gene network, carries its distinctive fingerprint that encodes a wealth of information about that network. We demonstrate that in some cases the analysis of these random fluctuations enables the full identification of network parameters, including those that may otherwise be difficult to measure. We use theoretical investigations to establish experimental guidelines for the identification of gene regulatory networks, and we apply these guideline to experimentally identify predictive models for different regulatory mechanisms in bacteria and yeast.

  14. Scaling law of diffusivity generated by a noisy telegraph signal with fractal intermittency

    International Nuclear Information System (INIS)

    Paradisi, Paolo; Allegrini, Paolo

    2015-01-01

    In many complex systems the non-linear cooperative dynamics determine the emergence of self-organized, metastable, structures that are associated with a birth–death process of cooperation. This is found to be described by a renewal point process, i.e., a sequence of crucial birth–death events corresponding to transitions among states that are faster than the typical long-life time of the metastable states. Metastable states are highly correlated, but the occurrence of crucial events is typically associated with a fast memory drop, which is the reason for the renewal condition. Consequently, these complex systems display a power-law decay and, thus, a long-range or scale-free behavior, in both time correlations and distribution of inter-event times, i.e., fractal intermittency. The emergence of fractal intermittency is then a signature of complexity. However, the scaling features of complex systems are, in general, affected by the presence of added white or short-term noise. This has been found also for fractal intermittency. In this work, after a brief review on metastability and noise in complex systems, we discuss the emerging paradigm of Temporal Complexity. Then, we propose a model of noisy fractal intermittency, where noise is interpreted as a renewal Poisson process with event rate r_p. We show that the presence of Poisson noise causes the emergence of a normal diffusion scaling in the long-time range of diffusion generated by a telegraph signal driven by noisy fractal intermittency. We analytically derive the scaling law of the long-time normal diffusivity coefficient. We find the surprising result that this long-time normal diffusivity depends not only on the Poisson event rate, but also on the parameters of the complex component of the signal: the power exponent μ of the inter-event time distribution, denoted as complexity index, and the time scale T needed to reach the asymptotic power-law behavior marking the emergence of complexity. In particular

  15. Jump Telegraph Processes and Financial Markets with Memory

    Directory of Open Access Journals (Sweden)

    Nikita Ratanov

    2007-01-01

    Full Text Available The paper develops a new class of financial market models. These models are based on generalized telegraph processes with alternating velocities and jumps occurring at switching velocities. The model under consideration is arbitrage-free and complete if the directions of jumps in stock prices are in a certain correspondence with their velocity and with the behaviour of the interest rate. A risk-neutral measure and arbitrage-free formulae for a standard call option are constructed. This model has some features of models with memory, but it is more simple.

  16. 'A thorn in the side of European geodesy': measuring Paris-Greenwich longitude by electric telegraph.

    Science.gov (United States)

    Kershaw, Michael

    2014-12-01

    The difference in longitude between the observatories of Paris and Greenwich was long of fundamental importance to geodesy, navigation and timekeeping. Measured many times and by many different means since the seventeenth century, the preferred method of the later nineteenth and early twentieth centuries made use of the electric telegraph. I describe here for the first time the four Paris-Greenwich telegraphic longitude determinations made between 1854 and 1902. Despite contemporary faith in the new technique, the first was soon found to be inaccurate; the second was a failure, ending in Anglo-French dispute over whose result was to be trusted; the third failed in exactly the same way; and when eventually the fourth was presented as a success, the evidence for that success was far from clear-cut. I use this as a case study in precision measurement, showing how mutual grounding between different measurement techniques, in the search for agreement between them, was an important force for change and improvement. I also show that better precision had more to do with the gradually improving methods of astronomical, time determination than with the singular innovation of the telegraph, thus emphasizing the importance of what have been described as 'observatory techniques' to nineteenth-century practices of precision measurement.

  17. Suppression of thermal noise in a non-Markovian random velocity field

    International Nuclear Information System (INIS)

    Ueda, Masahiko

    2016-01-01

    We study the diffusion of Brownian particles in a Gaussian random velocity field with short memory. By extending the derivation of an effective Fokker–Planck equation for the Lanvegin equation with weakly colored noise to a random velocity-field problem, we find that the effect of thermal noise on particles is suppressed by the existence of memory. We also find that the renormalization effect for the relative diffusion of two particles is stronger than that for single-particle diffusion. The results are compared with those of molecular dynamics simulations. (paper: classical statistical mechanics, equilibrium and non-equilibrium)

  18. An effective approach to attenuate random noise based on compressive sensing and curvelet transform

    International Nuclear Information System (INIS)

    Liu, Wei; Cao, Siyuan; Zu, Shaohuan; Chen, Yangkang

    2016-01-01

    Random noise attenuation is an important step in seismic data processing. In this paper, we propose a novel denoising approach based on compressive sensing and the curvelet transform. We formulate the random noise attenuation problem as an L _1 norm regularized optimization problem. We propose to use the curvelet transform as the sparse transform in the optimization problem to regularize the sparse coefficients in order to separate signal and noise and to use the gradient projection for sparse reconstruction (GPSR) algorithm to solve the formulated optimization problem with an easy implementation and a fast convergence. We tested the performance of our proposed approach on both synthetic and field seismic data. Numerical results show that the proposed approach can effectively suppress the distortion near the edge of seismic events during the noise attenuation process and has high computational efficiency compared with the traditional curvelet thresholding and iterative soft thresholding based denoising methods. Besides, compared with f-x deconvolution, the proposed denoising method is capable of eliminating the random noise more effectively while preserving more useful signals. (paper)

  19. Random Number Simulations Reveal How Random Noise Affects the Measurements and Graphical Portrayals of Self-Assessed Competency

    Directory of Open Access Journals (Sweden)

    Edward Nuhfer

    2016-01-01

    Full Text Available Self-assessment measures of competency are blends of an authentic self-assessment signal that researchers seek to measure and random disorder or "noise" that accompanies that signal. In this study, we use random number simulations to explore how random noise affects critical aspects of self-assessment investigations: reliability, correlation, critical sample size, and the graphical representations of self-assessment data. We show that graphical conventions common in the self-assessment literature introduce artifacts that invite misinterpretation. Troublesome conventions include: (y minus x vs. (x scatterplots; (y minus x vs. (x column graphs aggregated as quantiles; line charts that display data aggregated as quantiles; and some histograms. Graphical conventions that generate minimal artifacts include scatterplots with a best-fit line that depict (y vs. (x measures (self-assessed competence vs. measured competence plotted by individual participant scores, and (y vs. (x scatterplots of collective average measures of all participants plotted item-by-item. This last graphic convention attenuates noise and improves the definition of the signal. To provide relevant comparisons across varied graphical conventions, we use a single dataset derived from paired measures of 1154 participants' self-assessed competence and demonstrated competence in science literacy. Our results show that different numerical approaches employed in investigating and describing self-assessment accuracy are not equally valid. By modeling this dataset with random numbers, we show how recognizing the varied expressions of randomness in self-assessment data can improve the validity of numeracy-based descriptions of self-assessment.

  20. Multichannel active control of random noise in a small reverberant room

    DEFF Research Database (Denmark)

    Laugesen, Søren; Elliott, Stephen J.

    1993-01-01

    An algorithm for multichannel adaptive IIR (infinite impulse response) filtering is presented and applied to the active control of broadband random noise in a small reverberant room. Assuming complete knowledge of the primary noise, the theoretically optimal reductions of acoustic energy are init...... with the primary noise field generated by a panel excited by a loudspeaker in an adjoining room. These results show that far better performances are provided by IIR and FIR filters when the primary source has a lightly damped dynamic behavior which the active controller must model...

  1. Uudised : Daily Telegraph tunnustab Arvo Pärti. Klaver tuleb külla II : Katedraaliklaver

    Index Scriptorium Estoniae

    1999-01-01

    Inglise ajaleht "Daily Telegraph" pöörab oma 12. juuni numbris tähelepanu A. Pärdi teosele "Cantus Benjamin Britteni mälestuseks". 5.07-1.08 toimub R. Rannapi kontserttuur "Klaver tuleb külla II" kavaga "Katedraaliklaver"

  2. Random noise characterization on the carrying capacities of a ...

    African Journals Online (AJOL)

    The process of the survival of species dependent on a limited resource in a polluted environment which isnot a new idea can be described by the technique of a mathematical modelling. We have utilised the technique of a numerical simulation to study the impact of environmental random noise on the carrying capacities of ...

  3. Stochastic Spiking Neural Networks Enabled by Magnetic Tunnel Junctions: From Nontelegraphic to Telegraphic Switching Regimes

    Science.gov (United States)

    Liyanagedera, Chamika M.; Sengupta, Abhronil; Jaiswal, Akhilesh; Roy, Kaushik

    2017-12-01

    Stochastic spiking neural networks based on nanoelectronic spin devices can be a possible pathway to achieving "brainlike" compact and energy-efficient cognitive intelligence. The computational model attempt to exploit the intrinsic device stochasticity of nanoelectronic synaptic or neural components to perform learning or inference. However, there has been limited analysis on the scaling effect of stochastic spin devices and its impact on the operation of such stochastic networks at the system level. This work attempts to explore the design space and analyze the performance of nanomagnet-based stochastic neuromorphic computing architectures for magnets with different barrier heights. We illustrate how the underlying network architecture must be modified to account for the random telegraphic switching behavior displayed by magnets with low barrier heights as they are scaled into the superparamagnetic regime. We perform a device-to-system-level analysis on a deep neural-network architecture for a digit-recognition problem on the MNIST data set.

  4. A semi-supervised method to detect seismic random noise with fuzzy GK clustering

    International Nuclear Information System (INIS)

    Hashemi, Hosein; Javaherian, Abdolrahim; Babuska, Robert

    2008-01-01

    We present a new method to detect random noise in seismic data using fuzzy Gustafson–Kessel (GK) clustering. First, using an adaptive distance norm, a matrix is constructed from the observed seismic amplitudes. The next step is to find centres of ellipsoidal clusters and construct a partition matrix which determines the soft decision boundaries between seismic events and random noise. The GK algorithm updates the cluster centres in order to iteratively minimize the cluster variance. Multiplication of the fuzzy membership function with values of each sample yields new sections; we name them 'clustered sections'. The seismic amplitude values of the clustered sections are given in a way to decrease the level of noise in the original noisy seismic input. In pre-stack data, it is essential to study the clustered sections in a f–k domain; finding the quantitative index for weighting the post-stack data needs a similar approach. Using the knowledge of a human specialist together with the fuzzy unsupervised clustering, the method is a semi-supervised random noise detection. The efficiency of this method is investigated on synthetic and real seismic data for both pre- and post-stack data. The results show a significant improvement of the input noisy sections without harming the important amplitude and phase information of the original data. The procedure for finding the final weights of each clustered section should be carefully done in order to keep almost all the evident seismic amplitudes in the output section. The method interactively uses the knowledge of the seismic specialist in detecting the noise

  5. Calibration of Correlation Radiometers Using Pseudo-Random Noise Signals

    Directory of Open Access Journals (Sweden)

    Sebastián Pantoja

    2009-08-01

    Full Text Available The calibration of correlation radiometers, and particularly aperture synthesis interferometric radiometers, is a critical issue to ensure their performance. Current calibration techniques are based on the measurement of the cross-correlation of receivers’ outputs when injecting noise from a common noise source requiring a very stable distribution network. For large interferometric radiometers this centralized noise injection approach is very complex from the point of view of mass, volume and phase/amplitude equalization. Distributed noise injection techniques have been proposed as a feasible alternative, but are unable to correct for the so-called “baseline errors” associated with the particular pair of receivers forming the baseline. In this work it is proposed the use of centralized Pseudo-Random Noise (PRN signals to calibrate correlation radiometers. PRNs are sequences of symbols with a long repetition period that have a flat spectrum over a bandwidth which is determined by the symbol rate. Since their spectrum resembles that of thermal noise, they can be used to calibrate correlation radiometers. At the same time, since these sequences are deterministic, new calibration schemes can be envisaged, such as the correlation of each receiver’s output with a baseband local replica of the PRN sequence, as well as new distribution schemes of calibration signals. This work analyzes the general requirements and performance of using PRN sequences for the calibration of microwave correlation radiometers, and particularizes the study to a potential implementation in a large aperture synthesis radiometer using an optical distribution network.

  6. Random walk in dynamically disordered chains: Poisson white noise disorder

    International Nuclear Information System (INIS)

    Hernandez-Garcia, E.; Pesquera, L.; Rodriguez, M.A.; San Miguel, M.

    1989-01-01

    Exact solutions are given for a variety of models of random walks in a chain with time-dependent disorder. Dynamic disorder is modeled by white Poisson noise. Models with site-independent (global) and site-dependent (local) disorder are considered. Results are described in terms of an affective random walk in a nondisordered medium. In the cases of global disorder the effective random walk contains multistep transitions, so that the continuous limit is not a diffusion process. In the cases of local disorder the effective process is equivalent to usual random walk in the absence of disorder but with slower diffusion. Difficulties associated with the continuous-limit representation of random walk in a disordered chain are discussed. In particular, the authors consider explicit cases in which taking the continuous limit and averaging over disorder sources do not commute

  7. Reduction of Musical Noise in Spectral Subtraction Method Using Subframe Phase Randomization

    Energy Technology Data Exchange (ETDEWEB)

    Seok, J.W.; Bae, K.S. [Kyungpook National University, Taegu (Korea)

    1999-06-01

    The Subframe phase randomization method is applied to the spectral subtraction method to reduce the musical noise in nonvoicing region after speech enhancement. The musical noise in the spectral subtraction method is the result of the narrowband tonal components that appearing somewhat periodically in the spectrogram of unvoiced and silence regions. Thus each synthesis frame in nonvoicing region is divided into several subframes to broaden the narrowband spectrum, and then phases of silence and unvoiced regions are randomized to eliminate the tonal components in the spectrum while keeping the shape of the amplitude spectrum. Performance assessments based on visual inspection of spectrogram, objective measure, and informal subjective listening tests demonstrate the superiority of the proposed algorithm. (author). 7 refs., 5 figs.

  8. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter

    Science.gov (United States)

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  9. Resonance fluorescence and quantum jumps in single atoms: Testing the randomness of quantum mechanics

    International Nuclear Information System (INIS)

    Erber, T.; Hammerling, P.; Hockney, G.; Porrati, M.; Putterman, S.; La Jolla Institute, La Jolla, California 92037; Department of Physics, University of California, Los Angeles, California 90024)

    1989-01-01

    When a single trapped 198 Hg + ion is illuminated by two lasers, each tuned to an approximate transition, the resulting fluorescence switches on and off in a series of pulses resembling a bistable telegraph. This intermittent fluorescence can also be obtained by optical pumping with a single laser. Quantum jumps between successive atomic levels may be traced directly with multiple-resonance fluorescence. Atomic transition rates and photon antibunching distributions can be inferred from the pulse statistics and compared with quantum theory. Stochastic tests also indicate that the quantum telegraphs are good random number generators. During periods when the fluorescence is switched off, the radiationless atomic currents that generate the telegraph signals can be adjusted by varying the laser illumination: if this coherent evolution of the wave functions is sustained over sufficiently long time intervals, novel interactive precision measurements, near the limits of the time-energy uncertainty relations, are possible. Copyright 1989 Academic Press, Inc

  10. The Telegraph Equation and Its Solution by Reduced Differential Transform Method

    Directory of Open Access Journals (Sweden)

    Vineet K. Srivastava

    2013-01-01

    Full Text Available One-dimensional second-order hyperbolic telegraph equation was formulated using Ohm’s law and solved by a recent and reliable semianalytic method, namely, the reduced differential transform method (RDTM. Using this method, it is possible to find the exact solution or a closed approximate solution of a differential equation. Three numerical examples have been carried out in order to check the effectiveness, the accuracy, and convergence of the method. The RDTM is a powerful mathematical technique for solving wide range of problems arising in science and engineering fields.

  11. The Impact of the Telegraph on Anglo-Japanese Diplomacy during the Nineteenth Century

    Directory of Open Access Journals (Sweden)

    Jack Nicholls

    2009-12-01

    Full Text Available In our age of high-speed communication, it is easy to underestimate how vast the distance between Britain and Japan really is. At a time when it took over four months for letters to cross from Japan to Britain and back, the first British diplomats posted there were almost completely isolated by their remoteness. The British Ministers to Japan were thus forced to rely on their own judgement in carrying out their allotted task of nurturing British commerce, with occasionally disastrous consequences. This isolation was ended at a stroke in 1870, when Japan was connected to the globe-spanning telegraph network, and the British could send messages via the wire between London and Tokyo in a matter of hours rather than months. This article explores the degree to which the everyday business of a British envoy in Japan was actually changed by the introduction of the telegraph, and asks whether the availability of a technology is enough, in itself, to change society. To answer this question, I look at the careers of the three most distinguished nineteenth-century British diplomats in Japan: Sir Rutherford Alcock (1859–1864, Sir Harry Parkes (1865– 1883 and Sir Ernest Mason Satow (1895–1900.

  12. Prediction of interior noise due to random acoustic or turbulent boundary layer excitation using statistical energy analysis

    Science.gov (United States)

    Grosveld, Ferdinand W.

    1990-01-01

    The feasibility of predicting interior noise due to random acoustic or turbulent boundary layer excitation was investigated in experiments in which a statistical energy analysis model (VAPEPS) was used to analyze measurements of the acceleration response and sound transmission of flat aluminum, lucite, and graphite/epoxy plates exposed to random acoustic or turbulent boundary layer excitation. The noise reduction of the plate, when backed by a shallow cavity and excited by a turbulent boundary layer, was predicted using a simplified theory based on the assumption of adiabatic compression of the fluid in the cavity. The predicted plate acceleration response was used as input in the noise reduction prediction. Reasonable agreement was found between the predictions and the measured noise reduction in the frequency range 315-1000 Hz.

  13. Stabilization and asymptotic behavior of a generalized telegraph equation

    Science.gov (United States)

    Nicaise, Serge

    2015-12-01

    We analyze the stability of different models of the telegraph equation set in a real interval. They correspond to the coupling between a first-order hyperbolic system and a first-order differential equation of parabolic type. We show that some models have an exponential decay rate, while other ones are only polynomially stable. When the parameters are constant, we show that the obtained polynomial decay is optimal and in the case of an exponential decay that the decay rate is equal to the spectral abscissa. These optimality results are based on a careful spectral analysis of the operator. In particular, we characterize its full spectrum that is made of a discrete set of eigenvalues and an essential spectrum reduced to one point.

  14. Seismic random noise attenuation using shearlet and total generalized variation

    International Nuclear Information System (INIS)

    Kong, Dehui; Peng, Zhenming

    2015-01-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better. (paper)

  15. Seismic random noise attenuation using shearlet and total generalized variation

    Science.gov (United States)

    Kong, Dehui; Peng, Zhenming

    2015-12-01

    Seismic denoising from a corrupted observation is an important part of seismic data processing which improves the signal-to-noise ratio (SNR) and resolution. In this paper, we present an effective denoising method to attenuate seismic random noise. The method takes advantage of shearlet and total generalized variation (TGV) regularization. Different regularity levels of TGV improve the quality of the final result by suppressing Gibbs artifacts caused by the shearlet. The problem is formulated as mixed constraints in a convex optimization. A Bregman algorithm is proposed to solve the proposed model. Extensive experiments based on one synthetic datum and two post-stack field data are done to compare performance. The results demonstrate that the proposed method provides superior effectiveness and preserve the structure better.

  16. RDTM solution of Caputo time fractional-order hyperbolic telegraph equation

    Directory of Open Access Journals (Sweden)

    Vineet K. Srivastava

    2013-03-01

    Full Text Available In this study, a mathematical model has been developed for the second order hyperbolic one-dimensional time fractional Telegraph equation (TFTE. The fractional derivative has been described in the Caputo sense. The governing equations have been solved by a recent reliable semi-analytic method known as the reduced differential transformation method (RDTM. The method is a powerful mathematical technique for solving wide range of problems. Using RDTM method, it is possible to find exact solution as well as closed approximate solution of any ordinary or partial differential equation. Three numerical examples of TFTE have been provided in order to check the effectiveness, accuracy and convergence of the method. The computed results are also depicted graphically.

  17. Random-Resistor-Random-Temperature Kirchhoff-Law-Johnson-Noise (RRRT-KLJN Key Exchange

    Directory of Open Access Journals (Sweden)

    Kish Laszlo B.

    2016-03-01

    Full Text Available We introduce two new Kirchhoff-law-Johnson-noise (KLJN secure key distribution schemes which are generalizations of the original KLJN scheme. The first of these, the Random-Resistor (RR- KLJN scheme, uses random resistors with values chosen from a quasi-continuum set. It is well-known since the creation of the KLJN concept that such a system could work in cryptography, because Alice and Bob can calculate the unknown resistance value from measurements, but the RR-KLJN system has not been addressed in prior publications since it was considered impractical. The reason for discussing it now is the second scheme, the Random Resistor Random Temperature (RRRT- KLJN key exchange, inspired by a recent paper of Vadai, Mingesz and Gingl, wherein security was shown to be maintained at non-zero power flow. In the RRRT-KLJN secure key exchange scheme, both the resistances and their temperatures are continuum random variables. We prove that the security of the RRRT-KLJN scheme can prevail at a non-zero power flow, and thus the physical law guaranteeing security is not the Second Law of Thermodynamics but the Fluctuation-Dissipation Theorem. Alice and Bob know their own resistances and temperatures and can calculate the resistance and temperature values at the other end of the communication channel from measured voltage, current and power-flow data in the wire. However, Eve cannot determine these values because, for her, there are four unknown quantities while she can set up only three equations. The RRRT-KLJN scheme has several advantages and makes all former attacks on the KLJN scheme invalid or incomplete.

  18. Covariance-Based Estimation from Multisensor Delayed Measurements with Random Parameter Matrices and Correlated Noises

    Directory of Open Access Journals (Sweden)

    R. Caballero-Águila

    2014-01-01

    Full Text Available The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction, filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random parameter matrices, and noises involved in the observation model. The accuracy of the estimators is measured by their error covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the feasibility of the proposed algorithms.

  19. Preliminary results of statistical dynamic experiments on a heat exchanger

    International Nuclear Information System (INIS)

    Corran, E.R.; Cummins, J.D.

    1962-10-01

    The inherent noise signals present in a heat exchanger have been recorded and analysed in order to determine some of the statistical dynamic characteristics of the heat exchanger. These preliminary results show that the primary side temperature frequency response may be determined by analysing the inherent noise. The secondary side temperature frequency response and cross coupled temperature frequency responses between primary and secondary are poorly determined because of the presence of a non-stationary noise source in the secondary circuit of this heat exchanger. This may be overcome by correlating the dependent variables with an externally applied noise signal. Some preliminary experiments with an externally applied random telegraph type of signal are reported. (author)

  20. Integration of motion energy from overlapping random background noise increases perceived speed of coherently moving stimuli.

    Science.gov (United States)

    Chuang, Jason; Ausloos, Emily C; Schwebach, Courtney A; Huang, Xin

    2016-12-01

    The perception of visual motion can be profoundly influenced by visual context. To gain insight into how the visual system represents motion speed, we investigated how a background stimulus that did not move in a net direction influenced the perceived speed of a center stimulus. Visual stimuli were two overlapping random-dot patterns. The center stimulus moved coherently in a fixed direction, whereas the background stimulus moved randomly. We found that human subjects perceived the speed of the center stimulus to be significantly faster than its veridical speed when the background contained motion noise. Interestingly, the perceived speed was tuned to the noise level of the background. When the speed of the center stimulus was low, the highest perceived speed was reached when the background had a low level of motion noise. As the center speed increased, the peak perceived speed was reached at a progressively higher background noise level. The effect of speed overestimation required the center stimulus to overlap with the background. Increasing the background size within a certain range enhanced the effect, suggesting spatial integration. The speed overestimation was significantly reduced or abolished when the center stimulus and the background stimulus had different colors, or when they were placed at different depths. When the center- and background-stimuli were perceptually separable, speed overestimation was correlated with perceptual similarity between the center- and background-stimuli. These results suggest that integration of motion energy from random motion noise has a significant impact on speed perception. Our findings put new constraints on models regarding the neural basis of speed perception. Copyright © 2016 the American Physiological Society.

  1. Random attractors for stochastic lattice reversible Gray-Scott systems with additive noise

    Directory of Open Access Journals (Sweden)

    Hongyan Li

    2015-10-01

    Full Text Available In this article, we prove the existence of a random attractor of the stochastic three-component reversible Gray-Scott system on infinite lattice with additive noise. We use a transformation of addition involved with Ornstein-Uhlenbeck process, for proving the pullback absorbing property and the pullback asymptotic compactness of the reaction diffusion system with cubic nonlinearity.

  2. Imaging, manipulation and flux noise of single Abrikosov vortices in YBa2Cu3O7-δ dc SQUIDs

    International Nuclear Information System (INIS)

    Bailer, Matthias

    2013-01-01

    The thesis deals with the imaging and investigation of single Abrikosov vortices in grain boundary dc SQUIDs1 from the high-temperature superconductor YBa 2 Cu 3 O 7-δ . The low temperature scanning electron microscopy (LTSEM) was used for the measurements, which makes a local, spatially resolved investigation of the electrical properties of materials at low temperatures possible. The advantage over other flux quantum imaging methods is the facility to determine the low-frequency flux noise in the SQUID in the process. Special SQUID designs were created, which allow a reproducible cooling of single flux quanta. Electrical transport and noise measurements were carried out to precharacterise the SQUIDs. Within the scope of the thesis it was the first time that antivortices were imaged with the LTSEM. The possibilities of a manipulation of flux quanta (with the electron beam) were investigated and illustrated. By the averaged measurement of the waveform of a single vortex, linescans with unprecedented resolution could be obtained. This allowed the outstanding comparison of the measured, virtual vortex displacement with various theoretically determined waveforms. The experiments to flux noise provided new insights into the noise behaviour of single flux quanta, which exhibit the typical single fluctuators random telegraph signal, and enabled the analysis of the associated hopping processes. Thus concrete values of the spectral noise power density S r ∼ 196 nm 2 /root(Hz) - 0,28 μm 2 /root(Hz) radially to the SQUID hole could be determined by different, pinned vortices. An influence of the hopping behaviour and therefore of the flux noise succeeded by varying an applied magnetic field. Through tilting the potential course of a vortex, the course of the pinning potential by different hopping processes could be reconstructed using stochastic analysis of the time trace data. With the thesis could be shown convincingly that the vortex imaging method of the LTSEM in

  3. 12 CFR 221.114 - Bank loans to purchase stock of American Telephone and Telegraph Company under Employees' Stock...

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Bank loans to purchase stock of American...) Interpretations § 221.114 Bank loans to purchase stock of American Telephone and Telegraph Company under Employees' Stock Plan. (a) The Board of Governors interpreted this part in connection with proposed loans by a bank...

  4. Random resampling masks: a non-Bayesian one-shot strategy for noise reduction in digital holography.

    Science.gov (United States)

    Bianco, V; Paturzo, M; Memmolo, P; Finizio, A; Ferraro, P; Javidi, B

    2013-03-01

    Holographic imaging may become severely degraded by a mixture of speckle and incoherent additive noise. Bayesian approaches reduce the incoherent noise, but prior information is needed on the noise statistics. With no prior knowledge, one-shot reduction of noise is a highly desirable goal, as the recording process is simplified and made faster. Indeed, neither multiple acquisitions nor a complex setup are needed. So far, this result has been achieved at the cost of a deterministic resolution loss. Here we propose a fast non-Bayesian denoising method that avoids this trade-off by means of a numerical synthesis of a moving diffuser. In this way, only one single hologram is required as multiple uncorrelated reconstructions are provided by random complementary resampling masks. Experiments show a significant incoherent noise reduction, close to the theoretical improvement bound, resulting in image-contrast improvement. At the same time, we preserve the resolution of the unprocessed image.

  5. Telegraph Canyon Creek, City of Chula Vista, San Diego County, California. Detailed Report for Flood Control. Volume 2. Technical Appendixes.

    Science.gov (United States)

    1983-07-01

    occurred within 40 miles of’ the site. Most of these earthquakes appear to be related to activity on the Elsinore, Agua Caliente, and offshore faults. The...device would be required by the Sweetwater Authority to prevent contamination of potable water lines. TELEGRAPH CANYON CREEK - - Recommended Plant List A

  6. Evaluation of domain randomness in periodically poled lithium niobate by diffraction noise measurement.

    Science.gov (United States)

    Dwivedi, Prashant Povel; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik

    2013-12-16

    Random duty-cycle errors (RDE) in ferroelectric quasi-phase-matching (QPM) devices not only affect the frequency conversion efficiency, but also generate non-phase-matched parasitic noise that can be detrimental to some applications. We demonstrate an accurate but simple method for measuring the RDE in periodically poled lithium niobate. Due to the equivalence between the undepleted harmonic generation spectrum and the diffraction pattern from the QPM grating, we employed linear diffraction measurement which is much simpler than tunable harmonic generation experiments [J. S. Pelc, et al., Opt. Lett.36, 864-866 (2011)]. As a result, we could relate the RDE for the QPM device to the relative noise intensity between the diffraction orders.

  7. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise.

    Science.gov (United States)

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ-stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α. We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ-stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  8. Scaling characteristics of one-dimensional fractional diffusion processes in the presence of power-law distributed random noise

    Science.gov (United States)

    Nezhadhaghighi, Mohsen Ghasemi

    2017-08-01

    Here, we present results of numerical simulations and the scaling characteristics of one-dimensional random fluctuations with heavy-tailed probability distribution functions. Assuming that the distribution function of the random fluctuations obeys Lévy statistics with a power-law scaling exponent, we investigate the fractional diffusion equation in the presence of μ -stable Lévy noise. We study the scaling properties of the global width and two-point correlation functions and then compare the analytical and numerical results for the growth exponent β and the roughness exponent α . We also investigate the fractional Fokker-Planck equation for heavy-tailed random fluctuations. We show that the fractional diffusion processes in the presence of μ -stable Lévy noise display special scaling properties in the probability distribution function (PDF). Finally, we numerically study the scaling properties of the heavy-tailed random fluctuations by using the diffusion entropy analysis. This method is based on the evaluation of the Shannon entropy of the PDF generated by the random fluctuations, rather than on the measurement of the global width of the process. We apply the diffusion entropy analysis to extract the growth exponent β and to confirm the validity of our numerical analysis.

  9. Random noise suppression of seismic data using non-local Bayes algorithm

    Science.gov (United States)

    Chang, De-Kuan; Yang, Wu-Yang; Wang, Yi-Hui; Yang, Qing; Wei, Xin-Jian; Feng, Xiao-Ying

    2018-02-01

    For random noise suppression of seismic data, we present a non-local Bayes (NL-Bayes) filtering algorithm. The NL-Bayes algorithm uses the Gaussian model instead of the weighted average of all similar patches in the NL-means algorithm to reduce the fuzzy of structural details, thereby improving the denoising performance. In the denoising process of seismic data, the size and the number of patches in the Gaussian model are adaptively calculated according to the standard deviation of noise. The NL-Bayes algorithm requires two iterations to complete seismic data denoising, but the second iteration makes use of denoised seismic data from the first iteration to calculate the better mean and covariance of the patch Gaussian model for improving the similarity of patches and achieving the purpose of denoising. Tests with synthetic and real data sets demonstrate that the NL-Bayes algorithm can effectively improve the SNR and preserve the fidelity of seismic data.

  10. ELLIPTICAL WEIGHTED HOLICs FOR WEAK LENSING SHEAR MEASUREMENT. III. THE EFFECT OF RANDOM COUNT NOISE ON IMAGE MOMENTS IN WEAK LENSING ANALYSIS

    International Nuclear Information System (INIS)

    Okura, Yuki; Futamase, Toshifumi

    2013-01-01

    This is the third paper on the improvement of systematic errors in weak lensing analysis using an elliptical weight function, referred to as E-HOLICs. In previous papers, we succeeded in avoiding errors that depend on the ellipticity of the background image. In this paper, we investigate the systematic error that depends on the signal-to-noise ratio of the background image. We find that the origin of this error is the random count noise that comes from the Poisson noise of sky counts. The random count noise makes additional moments and centroid shift error, and those first-order effects are canceled in averaging, but the second-order effects are not canceled. We derive the formulae that correct this systematic error due to the random count noise in measuring the moments and ellipticity of the background image. The correction formulae obtained are expressed as combinations of complex moments of the image, and thus can correct the systematic errors caused by each object. We test their validity using a simulated image and find that the systematic error becomes less than 1% in the measured ellipticity for objects with an IMCAT significance threshold of ν ∼ 11.7.

  11. Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks

    International Nuclear Information System (INIS)

    Corndorf, Eric; Liang Chuang; Kanter, Gregory S.; Kumar, Prem; Yuen, Horace P.

    2005-01-01

    We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650 Mbit/s data encryption through a 10 Gbit/s data-bearing, in-line amplified 200-km-long line. In our protocol, legitimate users (who share a short secret key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performance criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered

  12. Measurement time and statistics for a noise thermometer with a synthetic-noise reference

    Science.gov (United States)

    White, D. R.; Benz, S. P.; Labenski, J. R.; Nam, S. W.; Qu, J. F.; Rogalla, H.; Tew, W. L.

    2008-08-01

    This paper describes methods for reducing the statistical uncertainty in measurements made by noise thermometers using digital cross-correlators and, in particular, for thermometers using pseudo-random noise for the reference signal. First, a discrete-frequency expression for the correlation bandwidth for conventional noise thermometers is derived. It is shown how an alternative frequency-domain computation can be used to eliminate the spectral response of the correlator and increase the correlation bandwidth. The corresponding expressions for the uncertainty in the measurement of pseudo-random noise in the presence of uncorrelated thermal noise are then derived. The measurement uncertainty in this case is less than that for true thermal-noise measurements. For pseudo-random sources generating a frequency comb, an additional small reduction in uncertainty is possible, but at the cost of increasing the thermometer's sensitivity to non-linearity errors. A procedure is described for allocating integration times to further reduce the total uncertainty in temperature measurements. Finally, an important systematic error arising from the calculation of ratios of statistical variables is described.

  13. Adaptive filtration of speech signals in the presence of correlated noise with random variation of probabilistic characteristics

    OpenAIRE

    M. O. Partala; S. Ya. Zhuk

    2007-01-01

    On the base of mixed Markoff process in discrete time optimal and quasioptimal algorithms is designed for adaptive filtration of speech signals in the presence of correlated noise with random variation of probabilistic characteristics.

  14. Quantum walks of two interacting particles on percolation graphs

    Science.gov (United States)

    Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Paris, Matteo G. A.; Bordone, Paolo

    2017-10-01

    We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.

  15. Kalman Filtering for Discrete Stochastic Systems with Multiplicative Noises and Random Two-Step Sensor Delays

    Directory of Open Access Journals (Sweden)

    Dongyan Chen

    2015-01-01

    Full Text Available This paper is concerned with the optimal Kalman filtering problem for a class of discrete stochastic systems with multiplicative noises and random two-step sensor delays. Three Bernoulli distributed random variables with known conditional probabilities are introduced to characterize the phenomena of the random two-step sensor delays which may happen during the data transmission. By using the state augmentation approach and innovation analysis technique, an optimal Kalman filter is constructed for the augmented system in the sense of the minimum mean square error (MMSE. Subsequently, the optimal Kalman filtering is derived for corresponding augmented system in initial instants. Finally, a simulation example is provided to demonstrate the feasibility and effectiveness of the proposed filtering method.

  16. Noise estimation for remote sensing image data analysis

    Science.gov (United States)

    Du, Qian

    2004-01-01

    Noise estimation does not receive much attention in remote sensing society. It may be because normally noise is not large enough to impair image analysis result. Noise estimation is also very challenging due to the randomness nature of the noise (for random noise) and the difficulty of separating the noise component from the signal in each specific location. We review and propose seven different types of methods to estimate noise variance and noise covariance matrix in a remotely sensed image. In the experiment, it is demonstrated that a good noise estimate can improve the performance of an algorithm via noise whitening if this algorithm assumes white noise.

  17. Random noise can help to improve synchronization of excimer laser pulses.

    Science.gov (United States)

    Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János

    2016-02-01

    Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications.

  18. Block matching 3D random noise filtering for absorption optical projection tomography

    International Nuclear Information System (INIS)

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R; Gros, J; Sbarbati, A

    2010-01-01

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360 0 full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio increment of over 30 d

  19. A high speed digital noise generator

    Science.gov (United States)

    Obrien, J.; Gaffney, B.; Liu, B.

    In testing of digital signal processing hardware, a high speed pseudo-random noise generator is often required to simulate an input noise source to the hardware. This allows the hardware to be exercised in a manner analogous to actual operating conditions. In certain radar and communication environments, a noise generator operating at speeds in excess of 60 MHz may be required. In this paper, a method of generating high speed pseudo-random numbers from an arbitrarily specified distribution (Gaussian, Log-Normal, etc.) using a transformation from a uniform noise source is described. A noise generator operating at 80 MHz has been constructed. Different distributions can be readily obtained by simply changing the ROM set. The hardware and test results will be described. Using this approach, the generation of pseudo-random sequences with arbitrary distributions at word rates in excess of 200 MHz can be readily achieved.

  20. Elimination of noise peak for signal processing in Johnson noise thermometry development

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Jeong, J. E.; Jeo, Y. H.; Kisner, Roger A.

    2003-01-01

    The internal and external noise is the most considering obstacle in development of Johnson Noise Thermometry system. This paper addresses an external noise elimination issue of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. Although internal random noise is canceled by Cross Power Spectral Density function, a continuous wave penetrating into the electronic circuit is eliminated by the difference of peaks between Johnson signal and external noise. The elimination logic using standard deviation of CPSD and energy leakage problem in discrete CPSD function are discussed in this paper

  1. Complexity in White Noise Analysis

    Science.gov (United States)

    Hida, Takeyuki

    We restrict our attention to random complex systems and discuss degree their degree of complexity based on a white noise. The white noise is realized as the time derivative of a Brownian motion B(t), and denoted by Ḃ(t). The collection {Ḃ(t)}, is a system of idealized elementary variables and at the same time the system is a stochastic representation of the time t, in other words it is time-oriented. Having expressed the given evolutional random phenomena in question in terms of the Ḃ(t), we introduce the notion of spectral multiplicity, which describes how much the phenomena are complex. The multiplicity is the number of cyclic subspaces that are spanned by the given random phenomena. Each cyclic subspace has further structure. Typical property is multiple Markov property, although this property appears only particular cases. As a related property, in fact as a characteristic of a complex system, one can speak of the time reversibility and irreversibility of certain random phenomena in terms of the white noise. We expect an irreversible random complex system may be decomposed into reversible systems.

  2. Quantum Corrections to the 'Atomistic' MOSFET Simulations

    Science.gov (United States)

    Asenov, Asen; Slavcheva, G.; Kaya, S.; Balasubramaniam, R.

    2000-01-01

    We have introduced in a simple and efficient manner quantum mechanical corrections in our 3D 'atomistic' MOSFET simulator using the density gradient formalism. We have studied in comparison with classical simulations the effect of the quantum mechanical corrections on the simulation of random dopant induced threshold voltage fluctuations, the effect of the single charge trapping on interface states and the effect of the oxide thickness fluctuations in decanano MOSFETs with ultrathin gate oxides. The introduction of quantum corrections enhances the threshold voltage fluctuations but does not affect significantly the amplitude of the random telegraph noise associated with single carrier trapping. The importance of the quantum corrections for proper simulation of oxide thickness fluctuation effects has also been demonstrated.

  3. Fluctuation-Driven Transport in Biological Nanopores. A 3D Poisson–Nernst–Planck Study

    Directory of Open Access Journals (Sweden)

    Marcel Aguilella-Arzo

    2017-03-01

    Full Text Available Living systems display a variety of situations in which non-equilibrium fluctuations couple to certain protein functions yielding astonishing results. Here we study the bacterial channel OmpF under conditions similar to those met in vivo, where acidic resistance mechanisms are known to yield oscillations in the electric potential across the cell membrane. We use a three-dimensional structure-based theoretical approach to assess the possibility of obtaining fluctuation-driven transport. Our calculations show that remarkably high voltages would be necessary to observe the actual transport of ions against their concentration gradient. The reasons behind this are the mild selectivity of this bacterial pore and the relatively low efficiencies of the oscillating signals characteristic of membrane cells (random telegraph noise and thermal noise.

  4. Noise characteristics of neutron images obtained by cooled CCD device

    International Nuclear Information System (INIS)

    Taniguchi, Ryoichi; Sasaki, Ryoya; Okuda, Shuichi; Okamoto, Ken-Ichi; Ogawa, Yoshihiro; Tsujimoto, Tadashi

    2009-01-01

    The noise characteristics of a cooled CCD device induced by neutron and gamma ray irradiation have been investigated. In the cooled CCD images, characteristic white spot noises (CCD noise) frequently appeared, which have a shape like a pixel in most cases and their brightness is extremely high compared with that of the image pattern. They could be divided into the two groups, fixed pattern noise (FPN) and random noise. The former always appeared in the same position in the image and the latter appeared at any position. In the background image, nearly all of the CCD noises were found to be the FPN, while many of them were the random noise during the irradiation. The random CCD noises increased with irradiation and decreased soon after the irradiation. In the case of large irradiation, a part of the CCD noise remained as the FPN. These facts suggest that the CCD noise is a phenomenon strongly relating to radiation damage of the CCD device.

  5. The Signal Importance of Noise

    Science.gov (United States)

    Macy, Michael; Tsvetkova, Milena

    2015-01-01

    Noise is widely regarded as a residual category--the unexplained variance in a linear model or the random disturbance of a predictable pattern. Accordingly, formal models often impose the simplifying assumption that the world is noise-free and social dynamics are deterministic. Where noise is assigned causal importance, it is often assumed to be a…

  6. Digital signal processing for the Johnson noise thermometry: a time series analysis of the Johnson noise

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Hwang, In Koo; Chung, Chong Eun; Kwon, Kee Choon; David, E. H.; Kisner, R.A.

    2004-06-01

    In this report, we first proved that a random signal obtained by taking the sum of a set of signal frequency signals generates a continuous Markov process. We used this random signal to simulate the Johnson noise and verified that the Johnson noise thermometry can be used to improve the measurements of the reactor coolant temperature within an accuracy of below 0.14%. Secondly, by using this random signal we determined the optimal sampling rate when the frequency band of the Johnson noise signal is given. Also the results of our examination on how good the linearity of the Johnson noise is and how large the relative error of the temperature could become when the temperature increases are described. Thirdly, the results of our analysis on a set of the Johnson noise signal blocks taken from a simple electric circuit are described. We showed that the properties of the continuous Markov process are satisfied even when some channel noises are present. Finally, we describe the algorithm we devised to handle the problem of the time lag in the long-term average or the moving average in a transient state. The algorithm is based on the Haar wavelet and is to estimate the transient temperature that has much smaller time delay. We have shown that the algorithm can track the transient temperature successfully

  7. Solving the Telegraph and Oscillatory Differential Equations by a Block Hybrid Trigonometrically Fitted Algorithm

    Directory of Open Access Journals (Sweden)

    F. F. Ngwane

    2015-01-01

    Full Text Available We propose a block hybrid trigonometrically fitted (BHT method, whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs, including systems arising from the semidiscretization of hyperbolic Partial Differential Equations (PDEs, such as the Telegraph equation. The BHT is formulated from eight discrete hybrid formulas which are provided by a continuous two-step hybrid trigonometrically fitted method with two off-grid points. The BHT is implemented in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHT is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.

  8. Noise Enhanced Stability

    International Nuclear Information System (INIS)

    Spagnolo, B.; Agudov, N.V.; Dubkov, A.A.

    2004-01-01

    The noise can stabilize a fluctuating or a periodically driven metastable state in such a way that the system remains in this state for a longer time than in the absence of white noise. This is the noise enhanced stability phenomenon, observed experimentally and numerically in different physical systems. After shortly reviewing all the physical systems where the phenomenon was observed, the theoretical approaches used to explain the effect are presented. Specifically the conditions to observe the effect in systems: (a) with periodical driving force, and (b) with random dichotomous driving force, are discussed. In case (b) we review the analytical results concerning the mean first passage time and the nonlinear relaxation time as a function of the white noise intensity, the parameters of the potential barrier, and of the dichotomous noise. (author)

  9. Propagation of waves in a randomly inhomogeneous medium with strongly developed fluctuations. III. Arbitrary power-law noise correlation function

    International Nuclear Information System (INIS)

    Adzhemyan, L.Ts.; Vasil'ev, A.N.; Pis'mak, Yu.M.

    1988-01-01

    The investigation of the infrared behavior of the propagator of a light wave in a randomly inhomogeneous medium with massless Gaussian noise is continued. The infrared representation of the propagator for correlation function D varphi (k)∼k -2 is generalized to the case of an arbitrary power-law noise correlation function is rigorously established in the first two orders of the infrared asymptotic behavior by construction of a suitable R operation. As a consequence, the results are generalized to the case of critical opalescence, when D varphi (k)∼k -2+η , where η ∼ 0.03 is the Fisher index

  10. Clustering of noise-induced oscillations

    DEFF Research Database (Denmark)

    Sosnovtseva, Olga; Fomin, A I; Postnov, D E

    2001-01-01

    The subject of our study is clustering in a population of excitable systems driven by Gaussian white noise and with randomly distributed coupling strength. The cluster state is frequency-locked state in which all functional units run at the same noise-induced frequency. Cooperative dynamics...

  11. Classroom Noise and Teachers' Voice Production

    Science.gov (United States)

    Rantala, Leena M.; Hakala, Suvi; Holmqvist, Sofia; Sala, Eeva

    2015-01-01

    Purpose: The aim of this study was to research the associations between noise (ambient and activity noise) and objective metrics of teachers' voices in real working environments (i.e., classrooms). Method: Thirty-two female and 8 male teachers from 14 elementary schools were randomly selected for the study. Ambient noise was measured during breaks…

  12. Introduction to noise-resilient computing

    CERN Document Server

    Yanushkevich, Svetlana N; Tangim, Golam

    2013-01-01

    Noise abatement is the key problem of small-scaled circuit design. New computational paradigms are needed -- as these circuits shrink, they become very vulnerable to noise and soft errors. In this lecture, we present a probabilistic computation framework for improving the resiliency of logic gates and circuits under random conditions induced by voltage or current fluctuation. Among many probabilistic techniques for modeling such devices, only a few models satisfy the requirements of efficient hardware implementation -- specifically, Boltzman machines and Markov Random Field (MRF) models. These

  13. Approximations to camera sensor noise

    Science.gov (United States)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  14. Quasi-Coherent Noise Jamming to LFM Radar Based on Pseudo-random Sequence Phase-modulation

    Directory of Open Access Journals (Sweden)

    N. Tai

    2015-12-01

    Full Text Available A novel quasi-coherent noise jamming method is proposed against linear frequency modulation (LFM signal and pulse compression radar. Based on the structure of digital radio frequency memory (DRFM, the jamming signal is acquired by the pseudo-random sequence phase-modulation of sampled radar signal. The characteristic of jamming signal in time domain and frequency domain is analyzed in detail. Results of ambiguity function indicate that the blanket jamming effect along the range direction will be formed when jamming signal passes through the matched filter. By flexible controlling the parameters of interrupted-sampling pulse and pseudo-random sequence, different covering distances and jamming effects will be achieved. When the jamming power is equivalent, this jamming obtains higher process gain compared with non-coherent jamming. The jamming signal enhances the detection threshold and the real target avoids being detected. Simulation results and circuit engineering implementation validate that the jamming signal covers real target effectively.

  15. Discrete least squares polynomial approximation with random evaluations - application to PDEs with Random parameters

    KAUST Repository

    Nobile, Fabio

    2015-01-01

    the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial

  16. Errors due to random noise in velocity measurement using incoherent-scatter radar

    Directory of Open Access Journals (Sweden)

    P. J. S. Williams

    1996-12-01

    Full Text Available The random-noise errors involved in measuring the Doppler shift of an 'incoherent-scatter' spectrum are predicted theoretically for all values of Te/Ti from 1.0 to 3.0. After correction has been made for the effects of convolution during transmission and reception and the additional errors introduced by subtracting the average of the background gates, the rms errors can be expressed by a simple semi-empirical formula. The observed errors are determined from a comparison of simultaneous EISCAT measurements using an identical pulse code on several adjacent frequencies. The plot of observed versus predicted error has a slope of 0.991 and a correlation coefficient of 99.3%. The prediction also agrees well with the mean of the error distribution reported by the standard EISCAT analysis programme.

  17. Neuropathic pain: transcranial electric motor cortex stimulation using high frequency random noise. Case report of a novel treatment

    Directory of Open Access Journals (Sweden)

    Alm PA

    2013-06-01

    Full Text Available Per A Alm, Karolina DreimanisDepartment of Neuroscience, Uppsala University, Uppsala, SwedenObjectives: Electric motor cortex stimulation has been reported to be effective for many cases of neuropathic pain, in the form of epidural stimulation or transcranial direct current stimulation (tDCS. A novel technique is transcranial random noise stimulation (tRNS, which increases the cortical excitability irrespective of the orientation of the current. The aim of this study was to investigate the effect of tRNS on neuropathic pain in a small number of subjects, and in a case study explore the effects of different stimulation parameters and the long-term stability of treatment effects.Methods: The study was divided into three phases: (1 a double-blind 100–600 Hz, varying from 0.5 to 10 minutes and from 50 to 1500 µA, at intervals ranging from daily to fortnightly.crossover study, with four subjects; (2 a double-blind extended case study with one responder; and (3 open continued treatment. The motor cortex stimulation consisted of alternating current random noise (100–600 Hz, varying from 0.5 to 10 minutes and from 50 to 1500 μA, at intervals ranging from daily to fortnightly.Results: One out of four participants showed a strong positive effect (also compared with direct-current-sham, P = 0.006. Unexpectedly, this effect was shown to occur also for very weak (100 µA, P = 0.048 and brief (0.5 minutes, P = 0.028 stimulation. The effect was largest during the first month, but remained at a highly motivating level for the patient after 6 months.Discussion: The study suggests that tRNS may be an effective treatment for some cases of neuropathic pain. An important result was the indication that even low levels of stimulation may have substantial effects.Keywords: neuropathic pain, central pain, transcranial direct current stimulation, motor cortex stimulation, random noise stimulation

  18. Affectively salient meaning in random noise: a task sensitive to psychosis liability.

    Science.gov (United States)

    Galdos, Mariana; Simons, Claudia; Fernandez-Rivas, Aranzazu; Wichers, Marieke; Peralta, Concepción; Lataster, Tineke; Amer, Guillermo; Myin-Germeys, Inez; Allardyce, Judith; Gonzalez-Torres, Miguel Angel; van Os, Jim

    2011-11-01

    Stable differences in the tendency to attribute meaning and emotional value to experience may represent an indicator of liability to psychosis. A brief task was developed assessing variation in detecting affectively meaningful speech (speech illusion) in neutral random signals (white noise) and the degree to which this was associated with psychometric and familial vulnerability for psychosis. Thirty patients, 28 of their siblings, and 307 controls participated. The rate of speech illusion was compared between cases and controls. In controls, the association between speech illusion and interview-based positive schizotypy was assessed. The hypothesis of a dose-response increase in rate of speech illusion across increasing levels of familial vulnerability for psychosis (controls, siblings of patients, and patients) was examined. Patients were more likely to display speech illusions than controls (odds ratio [OR] = 4.0, 95% confidence interval [CI] = 1.4-11.7), also after controlling for neurocognitive variables (OR = 3.8, 95% CI = 1.04-14.1). The case-control difference was more accentuated for speech illusion perceived as affectively salient (positively or negatively appraised) than for neutrally appraised speech illusions. Speech illusion in the controls was strongly associated with positive schizotypy but not with negative schizotypy. In addition, the rate of speech illusion increased with increasing level of familial risk for psychotic disorder. The data suggest that the white noise task may be sensitive to psychometric and familial vulnerability for psychosis associated with alterations in top-down processing and/or salience attribution.

  19. Dynamics and bifurcations of random circle diffeomorphisms

    NARCIS (Netherlands)

    Zmarrou, H.; Homburg, A.J.

    2008-01-01

    We discuss iterates of random circle diffeomorphisms with identically distributed noise, where the noise is bounded and absolutely continuous. Using arguments of B. Deroin, V.A. Kleptsyn and A. Navas, we provide precise conditions under which random attracting fixed points or random attracting

  20. When noise is beneficial for sensory encoding: Noise adaptation can improve face processing.

    Science.gov (United States)

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Redies, Christoph; Németh, Kornél; Kovács, Gyula

    2017-10-01

    The presence of noise usually impairs the processing of a stimulus. Here, we studied the effects of noise on face processing and show, for the first time, that adaptation to noise patterns has beneficial effects on face perception. We used noiseless faces that were either surrounded by random noise or presented on a uniform background as stimuli. In addition, the faces were either preceded by noise adaptors or not. Moreover, we varied the statistics of the noise so that its spectral slope either matched that of the faces or it was steeper or shallower. Results of parallel ERP recordings showed that the background noise reduces the amplitude of the face-evoked N170, indicating less intensive face processing. Adaptation to a noise pattern, however, led to reduced P1 and enhanced N170 amplitudes as well as to a better behavioral performance in two of the three noise conditions. This effect was also augmented by the presence of background noise around the target stimuli. Additionally, the spectral slope of the noise pattern affected the size of the P1, N170 and P2 amplitudes. We reason that the observed effects are due to the selective adaptation of noise-sensitive neurons present in the face-processing cortical areas, which may enhance the signal-to-noise-ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Microwave noise detection of a quantum dot with stub impedance matching

    OpenAIRE

    Hasler, Thomas

    2016-01-01

    Noise is defined as random fluctuations of a signal in time. The fundamental requirement for noise is some sort of randomness. Noise is well-known and infamous to every experimentalist - whether he is working in the field of electronics, optics, acoustics or anywhere else - since such fluctuations are inherent and unavoidable in many systems. For most of us, the word noise has a negative connotation. It is considered to be an unwanted disturbance superposed on a useful signal, which tend...

  2. Dephasing of a qubit due to quantum and classical noise

    Indian Academy of Sciences (India)

    ... a telegraph process, enebles us to set limits on the pplicability of this process à i s ... Indian Institute of Science Education and Research-Kolkata, Mohanpur 741 ... Manuscript received: 27 January 2012; Manuscript revised: 22 March 2012 ...

  3. Training in Using Earplugs or Using Earplugs with a Higher than Necessary Noise Reduction Rating? A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    M Salmani Nodoushan

    2014-09-01

    Full Text Available Background: Noise-induced hearing loss (NIHL is one of the most common occupational diseases and the second most common cause of workers' claims for occupational injuries. Objective: Due to high prevalence of NIHL and several reports of improper use of hearing protective devices (HPDs, we conducted this study to compare the effect of face-to-face training in effective use of earplugs with appropriate NRR to overprotection of workers by using earplugs with higher than necessary noise reduction rating (NRR. Methods: In a randomized clinical trial, 150 workers referred to occupational medicine clinic were randomly allocated to three arms—a group wearing earplugs with an NRR of 25 with no training in appropriate use of the device; a group wearing earplugs with an NRR of 25 with training; another group wearing earplugs with an NRR of 30, with no training. Hearing threshold was measured in the study groups by real ear attenuation at threshold (REAT method. This trial is registered with Australian New Zealand clinical trials Registry, number ACTRN00363175. Results: The mean±SD age of the participants was 28±5 (range: 19–39 years. 42% of participants were female. The mean noise attenuation in the group with training was 13.88 dB, significantly higher than those observed in other groups. The highest attenuation was observed in high frequencies (4, 6, and 8 kHz in the group with training. Conclusion: Training in appropriate use of earplugs significantly affects the efficacy of earplugs—even more than using an earplug with higher NRR.

  4. Noise Tomography and Adaptive Illumination in Noise Radar

    Science.gov (United States)

    2015-10-01

    transform of scatu , defined in (2.15), in y–direction can be written as 2 ( , , ) ( , ) 2 j dn n scat n y scat n y k EU k x d k e O k k j...and J. A. Henning , "Radar penetration imaging using ultra- wideband (UWB) random noise waveforms," IEE Proceedings-Radar Sonar and Navigation, vol

  5. Feasibility of Johnson Noise Thermometry based on Digital Signal Processing Techniques

    International Nuclear Information System (INIS)

    Hwang, In Koo; Kim, Yang Mo

    2014-01-01

    This paper presents an implementation strategy of noise thermometry based on a digital signal processing technique and demonstrates its feasibilities. A key factor in its development is how to extract the small thermal noise signal from other noises, for example, random noise from amplifiers and continuous electromagnetic interference from the environment. The proposed system consists of two identical amplifiers and uses a cross correlation function to cancel the random noise of the amplifiers. Then, the external interference noises are eliminated by discriminating the difference in the peaks between the thermal signal and external noise. The gain of the amplifiers is estimated by injecting an already known pilot signal. The experimental simulation results of signal processing methods have demonstrated that the proposed approach is an effective method in eliminating an external noise signal and performing gain correction for development of the thermometry

  6. Signal processing method for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Hwang, I. G.; Moon, B. S.; Kinser, Rpger

    2003-01-01

    The development of Johnson Noise Thermometry requires a high sensitive preamplifier circuit to pick up the temperature-related noise on the sensing element. However, the random noise generated in this amplification circuit causes a significant erroneous influence to the measurement. This paper describes signal processing mechanism of the Johnson Noise Thermometry system which is underway of development in collaboration between KAERI and ORNL. It adopts two identical amplifier channels and utilizes a digital signal processing technique to remove the independent noise of each channel. The CPSD(Cross Power Spectral Density) function is used to cancel the independent noise and the differentiation of narrow or single frequency peak from the CPSD data separates the common mode electromagnetic interference noise

  7. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    International Nuclear Information System (INIS)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-01-01

    Highlights: • We demonstrated RSFQ digital components of a new quantum voltage noise source. • A pseudo-random number generator and variable pulse number multiplier are designed. • Fabrication process is based on four Nb wiring layers and Nb/AlOx/Nb junctions. • The circuits successfully operated with wide dc bias current margins, 80–120%. - Abstract: We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80–120%, with respect to the designed bias currents.

  8. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Takahiro, E-mail: yamada-takahiro@aist.go.jp [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Maezawa, Masaaki [Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 2, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan); Urano, Chiharu [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Central 3, Umezono 1-1-1, Tsukuba, Ibaraki 305-8563 (Japan)

    2015-11-15

    Highlights: • We demonstrated RSFQ digital components of a new quantum voltage noise source. • A pseudo-random number generator and variable pulse number multiplier are designed. • Fabrication process is based on four Nb wiring layers and Nb/AlOx/Nb junctions. • The circuits successfully operated with wide dc bias current margins, 80–120%. - Abstract: We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80–120%, with respect to the designed bias currents.

  9. Trajectories of Brownian particles with space-correlated noise

    Indian Academy of Sciences (India)

    EDOARDO MILOTTI

    walks with spatially correlated white noise: the time- dependence of the distance of pairs of random walkers. ... Dedicated to the memory of the late Professor Charusita Chakravarty. also quite well-known that the two-sided noise .... due to the individual noise components, we find that in the present context the value of ξ2 is.

  10. Absolute negative mobility induced by white Poissonian noise

    International Nuclear Information System (INIS)

    Spiechowicz, J; Łuczka, J; Hänggi, P

    2013-01-01

    We study the transport properties of inertial Brownian particles which move in a symmetric periodic potential and are subjected to both a symmetric, unbiased time-periodic external force and a biased Poissonian white shot noise (of non-zero average F) which is composed of a random sequence of δ-shaped pulses with random amplitudes. Upon varying the parameters of the white shot noise, one can conveniently manipulate the transport direction and the overall nonlinear response behavior. We find that within tailored parameter regimes the response is opposite to the applied average bias F of such white shot noise. This particular transport characteristic thus mimics that of a nonlinear absolute negative mobility (ANM) regime. Moreover, such white shot noise driven ANM is robust with respect to the statistics of the shot noise spikes. Our findings can be checked and corroborated experimentally by the use of a setup that consists of a single resistively and capacitively shunted Josephson junction device. (paper)

  11. Fractals in Power Reactor Noise

    International Nuclear Information System (INIS)

    Aguilar Martinez, O.

    1994-01-01

    In this work the non- lineal dynamic problem of power reactor is analyzed using classic concepts of fractal analysis as: attractors, Hausdorff-Besikovics dimension, phase space, etc. A new non-linear problem is also analyzed: the discrimination of chaotic signals from random neutron noise signals and processing for diagnosis purposes. The advantages of a fractal analysis approach in the power reactor noise are commented in details

  12. Speech production in amplitude-modulated noise

    DEFF Research Database (Denmark)

    Macdonald, Ewen N; Raufer, Stefan

    2013-01-01

    The Lombard effect refers to the phenomenon where talkers automatically increase their level of speech in a noisy environment. While many studies have characterized how the Lombard effect influences different measures of speech production (e.g., F0, spectral tilt, etc.), few have investigated...... the consequences of temporally fluctuating noise. In the present study, 20 talkers produced speech in a variety of noise conditions, including both steady-state and amplitude-modulated white noise. While listening to noise over headphones, talkers produced randomly generated five word sentences. Similar...... of noisy environments and will alter their speech accordingly....

  13. Digital random-number generator

    Science.gov (United States)

    Brocker, D. H.

    1973-01-01

    For binary digit array of N bits, use N noise sources to feed N nonlinear operators; each flip-flop in digit array is set by nonlinear operator to reflect whether amplitude of generator which feeds it is above or below mean value of generated noise. Fixed-point uniform distribution random number generation method can also be used to generate random numbers with other than uniform distribution.

  14. Generalized randomly amplified linear system driven by Gaussian noises: Extreme heavy tail and algebraic correlation decay in plasma turbulence

    International Nuclear Information System (INIS)

    Steinbrecher, Gyoergy; Weyssow, B.

    2004-01-01

    The extreme heavy tail and the power-law decay of the turbulent flux correlation observed in hot magnetically confined plasmas are modeled by a system of coupled Langevin equations describing a continuous time linear randomly amplified stochastic process where the amplification factor is driven by a superposition of colored noises which, in a suitable limit, generate a fractional Brownian motion. An exact analytical formula for the power-law tail exponent β is derived. The extremely small value of the heavy tail exponent and the power-law distribution of laminar times also found experimentally are obtained, in a robust manner, for a wide range of input values, as a consequence of the (asymptotic) self-similarity property of the noise spectrum. As a by-product, a new representation of the persistent fractional Brownian motion is obtained

  15. Seismic noise attenuation using an online subspace tracking algorithm

    Science.gov (United States)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  16. Noise enhances information transfer in hierarchical networks.

    Science.gov (United States)

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  17. High level white noise generator

    International Nuclear Information System (INIS)

    Borkowski, C.J.; Blalock, T.V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application

  18. High level white noise generator

    Science.gov (United States)

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  19. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2004-06-01

    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  20. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  1. Noise minimization in eukaryotic gene expression

    International Nuclear Information System (INIS)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-01

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection

  2. Noise Gating Solar Images

    Science.gov (United States)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  3. Critical ratios in harbor porpoises (Phocoena phocoena) for tonal signals between 0.315 and 150 kHz in random Gaussian white noise.

    Science.gov (United States)

    Kastelein, Ronald A; Wensveen, Paul J; Hoek, Lean; Au, Whitlow W L; Terhune, John M; de Jong, Christ A F

    2009-09-01

    A psychoacoustic behavioral technique was used to determine the critical ratios (CRs) of two harbor porpoises for tonal signals with frequencies between 0.315 and 150 kHz, in random Gaussian white noise. The masked 50% detection hearing thresholds were measured using a "go/no-go" response paradigm and an up-down staircase psychometric method. CRs were determined at one masking noise level for each test frequency and were similar in both animals. For signals between 0.315 and 4 kHz, the CRs were relatively constant at around 18 dB. Between 4 and 150 kHz the CR increased gradually from 18 to 39 dB ( approximately 3.3 dB/octave). Generally harbor porpoises can detect tonal signals in Gaussian white noise slightly better than most odontocetes tested so far. By combining the mean CRs found in the present study with the spectrum level of the background noise levels at sea, the basic audiogram, and the directivity index, the detection threshold levels of harbor porpoises for tonal signals in various sea states can be calculated.

  4. Surveillance of instruments by noise analysis

    International Nuclear Information System (INIS)

    Thie, J.A.

    1981-01-01

    Random fluctuations of neutron flux, temperature, and pressure in a reactor provide multifrequency excitation of the corresponding instrumentation chains. Mathematical descriptors suitable for characterizing the output, or noise, of the instrumentation are reviewed with a view toward using such noise in detecting instrument faults. Demonstrations of the feasibility of this approach in a number of reactors provide illustrative examples. Comparisons with traditional surveillance testing are made, and a number of advantages and some disadvantages of using noise analysis as a supplementary technique are pointed out

  5. Cross over of recurrence networks to random graphs and random ...

    Indian Academy of Sciences (India)

    2017-01-27

    Jan 27, 2017 ... that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to .... municative [19] or social [20], deviate from the random ..... He has shown that the spatial effects become.

  6. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Science.gov (United States)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-11-01

    We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80-120%, with respect to the designed bias currents.

  7. Is fMRI "noise" really noise? Resting state nuisance regressors remove variance with network structure.

    Science.gov (United States)

    Bright, Molly G; Murphy, Kevin

    2015-07-01

    Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed by 24, 12, 6, or only 3 head motion parameters demonstrated network structure typically associated with functional connectivity, and certain networks were discernable in the variance extracted by as few as 2 physiologic regressors. Simulated nuisance regressors, unrelated to the true data noise, also removed variance with network structure, indicating that any group of regressors that randomly sample variance may remove highly structured "signal" as well as "noise." Furthermore, to support this we demonstrate that random sampling of the original data variance continues to exhibit robust network structure, even when as few as 10% of the original volumes are considered. Finally, we examine the diminishing returns of increasing the number of nuisance regressors used in pre-processing, showing that excessive use of motion regressors may do little better than chance in removing variance within a functional network. It remains an open challenge to understand the balance between the benefits and confounds of noise correction using nuisance regressors. Copyright © 2015. Published by Elsevier Inc.

  8. Neutron noise in nuclear reactors

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pachowska, R.

    1961-06-01

    The power of a nuclear reactor, in the operating conditions, presents fluctuations due to various causes. This random behaviour can be included in the study of 'noises'. Among other sources of noise, we analyse hereafter the fluctuations due: a) to the discontinuous emissions of neutrons from an independent source; b) to the multiplication of neutrons inside the reactor. The method which we present makes use of the analogies between the rules governing a nuclear reactor in operation and a number of radio-electrical systems, in particular the feed-back loops. The reactor can be characterized by its 'passing band' and is described as a system submitted to a sequence of random pulses. In non linear operating condition, the effect of neutron noise is defined by means of a non-linear functional, this theory is thus related to previous works the references of which are given at the end of the present report. This leads us in particular in the case of nuclear reactors to some results given by A. Blaquiere in the case of radio-electrical loops. (author) [fr

  9. Peak effect and vortex dynamics in superconducting MgB2 single crystals

    International Nuclear Information System (INIS)

    Lee, Hyun-Sook; Jang, Dong-Jin; Kim, Heon-Jung; Kang, Byeongwon; Lee, Sung-Ik

    2007-01-01

    The dynamic nature of the vortex state of MgB 2 single crystals near the peak effect (PE) region, which is very different either from that of conventional low-temperature superconductors or from that of high-temperature cuprate superconductors, is introduced in this article. Relaxation from a disordered, metastable field-cooled (FC) state to an ordered, stable zero-field-cooled (ZFC) state of the MgB 2 single crystals under an applied magnetic field and current is investigated. From an analysis of the noise properties in the ZFC state, a dynamic vortex phase diagram of the MgB 2 is obtained near the PE region. Between the onset and the peak region in the critical current vs. magnetic field diagram, crossovers from a high-noise state to a noise-free state are observed with increasing current. Above the peak, however, an opposite phenomenon, crossovers from a noise-free to a high-noise state, is observed which has not been observed in any other superconductors. The hysteresis in the I-V curves and the two-level random telegraph noise in the time evolution of the voltage response under an constant applied current at the ZFC state are also studied in detail

  10. Passive Noise Filtering by Cellular Compartmentalization.

    Science.gov (United States)

    Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas

    2016-03-10

    Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Random processes in nuclear reactors

    CERN Document Server

    Williams, M M R

    1974-01-01

    Random Processes in Nuclear Reactors describes the problems that a nuclear engineer may meet which involve random fluctuations and sets out in detail how they may be interpreted in terms of various models of the reactor system. Chapters set out to discuss topics on the origins of random processes and sources; the general technique to zero-power problems and bring out the basic effect of fission, and fluctuations in the lifetime of neutrons, on the measured response; the interpretation of power reactor noise; and associated problems connected with mechanical, hydraulic and thermal noise sources

  12. Why nature needs 1/f noise

    International Nuclear Information System (INIS)

    Kuzovlev, Yu E

    2015-01-01

    While ubiquitous at all levels of organization in nature, including in nanotechnology, low-frequency 1/f noise is not yet understood. A possible reason is the unjustified application of probability theory concepts, primarily that of independence, to random physical phenomena. We show that in the framework of statistical mechanics, no medium can impart a definite diffusivity and mobility to a particle that performs random walk through it, which gives rise to flicker fluctuations in these properties. A universal source of 1/f noise in many-particle systems in this example is a dependence of the time behavior of any particular relaxation or transport process on the details of the initial microstate of the system as a whole. (methodological notes)

  13. Parallel feedback active noise control of MRI acoustic noise with signal decomposition using hybrid RLS-NLMS adaptive algorithms.

    Science.gov (United States)

    Ganguly, Anshuman; Krishna Vemuri, Sri Hari; Panahi, Issa

    2014-01-01

    This paper presents a cost-effective adaptive feedback Active Noise Control (FANC) method for controlling functional Magnetic Resonance Imaging (fMRI) acoustic noise by decomposing it into dominant periodic components and residual random components. Periodicity of fMRI acoustic noise is exploited by using linear prediction (LP) filtering to achieve signal decomposition. A hybrid combination of adaptive filters-Recursive Least Squares (RLS) and Normalized Least Mean Squares (NLMS) are then used to effectively control each component separately. Performance of the proposed FANC system is analyzed and Noise attenuation levels (NAL) up to 32.27 dB obtained by simulation are presented which confirm the effectiveness of the proposed FANC method.

  14. The diversity and unity of reactor noise theory

    International Nuclear Information System (INIS)

    Kuang, Zhifeng

    2001-01-01

    The study of reactor noise theory concerns questions about cause and effect relationships, and the utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and the various practical purposes. The neutron noise in zero-energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor the reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that the useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes. Paper II gives a numerical evaluation of these formulae. An assessment of the

  15. On the stochastic pendulum with Ornstein-Uhlenbeck noise

    International Nuclear Information System (INIS)

    Mallick, Kirone; Marcq, Philippe

    2004-01-01

    We study a frictionless pendulum subject to multiplicative random noise. Because of destructive interference between the angular displacement of the system and the noise term, the energy fluctuations are reduced when the noise has a non-zero correlation time. We derive the long time behaviour of the pendulum in the case of Ornstein-Uhlenbeck noise by a recursive adiabatic elimination procedure. An analytical expression for the asymptotic probability distribution function of the energy is obtained and the results agree with numerical simulations. Lastly, we compare our method with other approximation schemes

  16. Examining nocturnal railway noise and aircraft noise in the field: sleep, psychomotor performance, and annoyance.

    Science.gov (United States)

    Elmenhorst, Eva-Maria; Pennig, Sibylle; Rolny, Vinzent; Quehl, Julia; Mueller, Uwe; Maaß, Hartmut; Basner, Mathias

    2012-05-01

    Traffic noise is interfering during day- and nighttime causing distress and adverse physiological reactions in large parts of the population. Railway noise proved less annoying than aircraft noise in surveys which were the bases for a so called 5 dB railway bonus regarding noise protection in many European countries. The present field study investigated railway noise-induced awakenings during sleep, nighttime annoyance and the impact on performance the following day. Comparing these results with those from a field study on aircraft noise allowed for a ranking of traffic modes concerning physiological and psychological reactions. 33 participants (mean age 36.2 years ± 10.3 (SD); 22 females) living alongside railway tracks around Cologne/Bonn (Germany) were polysomnographically investigated. These data were pooled with data from a field study on aircraft noise (61 subjects) directly comparing the effects of railway and aircraft noise in one random subject effects logistic regression model. Annoyance was rated in the morning evaluating the previous night. Probability of sleep stage changes to wake/S1 from railway noise increased significantly from 6.5% at 35 dB(A) to 20.5% at 80 dB(A) LAFmax. Rise time of noise events had a significant impact on awakening probability. Nocturnal railway noise led to significantly higher awakening probabilities than aircraft noise, partly explained by the different rise times, whereas the order was inversed for annoyance. Freight train noise compared to passenger train noise proved to have the most impact on awakening probability. Nocturnal railway noise had no effect on psychomotor vigilance. Nocturnal freight train noise exposure in Germany was associated with increased awakening probabilities exceeding those for aircraft noise and contrasting the findings of many annoyance surveys and annoyance ratings of our study. During nighttime a bonus for railway noise seems not appropriate. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Noise in ecosystems: a short review.

    Science.gov (United States)

    Spagnolo, B; Valenti, D; Fiasconaro, A

    2004-06-01

    Noise, through its interaction with the nonlinearity of the living systems, can give rise to counter-intuitive phenomena such as stochastic resonance, noise-delayed extinction, temporal oscillations, and spatial patterns. In this paper we briefly review the noise-induced effects in three different ecosystems: (i) two competing species; (ii) three interacting species, one predator and two preys, and (iii) N-interacting species. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is random in cases (i) and (iii), and a periodical function, which accounts for the environmental temperature, in case (ii). We find noise-induced phenomena such as quasi-deterministic oscillations, stochastic resonance, noise-delayed extinction, and noise-induced pattern formation with nonmonotonic behaviors of patterns areas and of the density correlation as a function of the multiplicative noise intensity. The asymptotic behavior of the time average of the i(th) population when the ecosystem is composed of a great number of interacting species is obtained and the effect of the noise on the asymptotic probability distributions of the populations is discussed.

  18. Combined influence of CT random noise and HU-RSP calibration curve nonlinearities on proton range systematic errors

    Science.gov (United States)

    Brousmiche, S.; Souris, K.; Orban de Xivry, J.; Lee, J. A.; Macq, B.; Seco, J.

    2017-11-01

    Proton range random and systematic uncertainties are the major factors undermining the advantages of proton therapy, namely, a sharp dose falloff and a better dose conformality for lower doses in normal tissues. The influence of CT artifacts such as beam hardening or scatter can easily be understood and estimated due to their large-scale effects on the CT image, like cupping and streaks. In comparison, the effects of weakly-correlated stochastic noise are more insidious and less attention is drawn on them partly due to the common belief that they only contribute to proton range uncertainties and not to systematic errors thanks to some averaging effects. A new source of systematic errors on the range and relative stopping powers (RSP) has been highlighted and proved not to be negligible compared to the 3.5% uncertainty reference value used for safety margin design. Hence, we demonstrate that the angular points in the HU-to-RSP calibration curve are an intrinsic source of proton range systematic error for typical levels of zero-mean stochastic CT noise. Systematic errors on RSP of up to 1% have been computed for these levels. We also show that the range uncertainty does not generally vary linearly with the noise standard deviation. We define a noise-dependent effective calibration curve that better describes, for a given material, the RSP value that is actually used. The statistics of the RSP and the range continuous slowing down approximation (CSDA) have been analytically derived for the general case of a calibration curve obtained by the stoichiometric calibration procedure. These models have been validated against actual CSDA simulations for homogeneous and heterogeneous synthetical objects as well as on actual patient CTs for prostate and head-and-neck treatment planning situations.

  19. Random vibrations theory and practice

    CERN Document Server

    Wirsching, Paul H; Ortiz, Keith

    1995-01-01

    Random Vibrations: Theory and Practice covers the theory and analysis of mechanical and structural systems undergoing random oscillations due to any number of phenomena— from engine noise, turbulent flow, and acoustic noise to wind, ocean waves, earthquakes, and rough pavement. For systems operating in such environments, a random vibration analysis is essential to the safety and reliability of the system. By far the most comprehensive text available on random vibrations, Random Vibrations: Theory and Practice is designed for readers who are new to the subject as well as those who are familiar with the fundamentals and wish to study a particular topic or use the text as an authoritative reference. It is divided into three major sections: fundamental background, random vibration development and applications to design, and random signal analysis. Introductory chapters cover topics in probability, statistics, and random processes that prepare the reader for the development of the theory of random vibrations a...

  20. Numerical simulation of nonlinear dynamical systems driven by commutative noise

    International Nuclear Information System (INIS)

    Carbonell, F.; Biscay, R.J.; Jimenez, J.C.; Cruz, H. de la

    2007-01-01

    The local linearization (LL) approach has become an effective technique for the numerical integration of ordinary, random and stochastic differential equations. One of the reasons for this success is that the LL method achieves a convenient trade-off between numerical stability and computational cost. Besides, the LL method reproduces well the dynamics of nonlinear equations for which other classical methods fail. However, in the stochastic case, most of the reported works has been focused in Stochastic Differential Equations (SDE) driven by additive noise. This limits the applicability of the LL method since there is a number of interesting dynamics observed in equations with multiplicative noise. On the other hand, recent results show that commutative noise SDEs can be transformed into a random differential equation (RDE) by means of a random diffeomorfism (conjugacy). This paper takes advantages of such conjugacy property and the LL approach for defining a LL scheme for SDEs driven by commutative noise. The performance of the proposed method is illustrated by means of numerical simulations

  1. Noise-Induced Riddling in Chaotic Systems

    International Nuclear Information System (INIS)

    Lai, Y.; Grebogi, C.

    1996-01-01

    Recent works have considered the situation of riddling where, when a chaotic attractor lying in an invariant subspace is transversely stable, the basin of the attractor can be riddled with holes that belong to the basin of another attractor. We show that riddling can be induced by arbitrarily small random noise even if the attractor is transversely unstable, and we obtain universal scaling laws for noise-induced riddling. Our results imply that the phenomenon of riddling can be more prevalent than expected before, as noise is practically inevitable in dynamical systems. copyright 1996 The American Physical Society

  2. Noise-induced effects in population dynamics

    Science.gov (United States)

    Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando

    2002-03-01

    We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.

  3. Limitations of red noise in analysing Dansgaard-Oeschger events

    Directory of Open Access Journals (Sweden)

    H. Braun

    2010-02-01

    Full Text Available During the last glacial period, climate records from the North Atlantic region exhibit a pronounced spectral component corresponding to a period of about 1470 years, which has attracted much attention. This spectral peak is closely related to the recurrence pattern of Dansgaard-Oeschger (DO events. In previous studies a red noise random process, more precisely a first-order autoregressive (AR1 process, was used to evaluate the statistical significance of this peak, with a reported significance of more than 99%. Here we use a simple mechanistic two-state model of DO events, which itself was derived from a much more sophisticated ocean-atmosphere model of intermediate complexity, to numerically evaluate the spectral properties of random (i.e., solely noise-driven events. This way we find that the power spectral density of random DO events differs fundamentally from a simple red noise random process. These results question the applicability of linear spectral analysis for estimating the statistical significance of highly non-linear processes such as DO events. More precisely, to enhance our scientific understanding about the trigger of DO events, we must not consider simple "straw men" as, for example, the AR1 random process, but rather test against realistic alternative descriptions.

  4. The effects of music, white noise, and ambient noise on sedation and anxiety in patients under spinal anesthesia during surgery.

    Science.gov (United States)

    Ilkkaya, Nazan Koylu; Ustun, Faik Emre; Sener, Elif Bengi; Kaya, Cengiz; Ustun, Yasemin Burcu; Koksal, Ersin; Kocamanoglu, Ismail Serhat; Ozkan, Fatih

    2014-10-01

    To compare effects of music, white noise, and ambient (background) noise on patient anxiety and sedation. Open, parallel, and randomized controlled trial. Seventy-five patients aged 18 to 60 years who were scheduled for surgical procedures under spinal anesthesia were randomly assigned to ambient noise (Group O), white noise (Group B), or music groups (Group M). We evaluated patients' anxiety and sedation levels via the Observer's Assessment of Alertness/Sedation (OAA/S) scale and the State-Trait Anxiety Inventory (STAI) questionnaire. At 5 minutes before surgery, the STAI-State Anxiety Inventory (SA) value was significantly lower in Group M than the other groups. At 30-minute recovery, Group M showed significantly lower STAI-SA values than the other groups. Patient satisfaction was highest in Group M. OAA/S values were not significantly different between groups during any period (P > .05). We suggest that patient-selected music reduces perioperative anxiety and contributes to patient satisfaction during the perioperative period. Copyright © 2014 American Society of PeriAnesthesia Nurses. Published by Elsevier Inc. All rights reserved.

  5. ''1/f noise'' in music: Music from 1/f noise

    Energy Technology Data Exchange (ETDEWEB)

    Voss, R.F.; Clarke, J.

    1978-01-01

    The spectral density of fluctuations in the audio power of many musical selections and of English speech varies approximately as 1/f (f is the frequency) down to a frequency of 5 x 10/sup -4/ Hz. This result implies that the audio-power fluctuations are correlated over all times in the same manner as ''1/f noise'' in electronic components. The frequency fluctuations of music also have a 1/f spectral density at frequencies down to the inverse of the length of the piece of music. The frequency fluctuations of English speech have a quite different behavior, with a single characteristic time of about 0.1 s, the average length of a syllable. The observations on music suggest that 1/f noise is a good choice for stochastic composition. Compositions in which the frequency and duration of each note were determined by 1/f noise sources sounded pleasing. Those generated by white-noise sources sounded too random, while those generated by 1/f/sup 2/ noise sounded too correlated.

  6. Detection of signals in noise

    CERN Document Server

    Whalen, Anthony D; Declaris, Nicholas

    1971-01-01

    Detection of Signals in Noise serves as an introduction to the principles and applications of the statistical theory of signal detection. The book discusses probability and random processes; narrowband signals, their complex representation, and their properties described with the aid of the Hilbert transform; and Gaussian-derived processes. The text also describes the application of hypothesis testing for the detection of signals and the fundamentals required for statistical detection of signals in noise. Problem exercises, references, and a supplementary bibliography are included after each c

  7. Application of the Landau-Zener-Stückelberg-Majorana dynamics to the electrically driven flip of a hole spin

    Science.gov (United States)

    Pasek, W. J.; Maialle, M. Z.; Degani, M. H.

    2018-03-01

    An idea of employing the Landau-Zener-Stückelberg-Majorana dynamics to flip a spin of a single ground state hole is introduced and explored by a time-dependent simulation. This configuration interaction study considers a hole confined in a quantum molecule formed in an InSb 〈111 〉 quantum wire by application of an electrostatic potential. An up-down spin-mixing avoided crossing is formed by nonaxial terms in the Kohn-Luttinger Hamiltonian and the Dresselhaus spin-orbit one. Manipulation of the system is possible by the dynamic change of an external vertical electric field, which enables the consecutive driving of the hole through two anticrossings. Moreover, a simple model of the power-law-type noise that impedes precise electric control of the system is included in the form of random telegraph noise to estimate the limitations of the working conditions. We show that in principle the process is possible, but it requires precise control of the parameters of the driving impulse.

  8. MOSFET LF noise under Large Signal Excitation: Measurement, Modelling and Application

    NARCIS (Netherlands)

    van der Wel, A.P.

    2005-01-01

    Regarding LF noise in MOSFETs, it is noted that the MOSFET is a surface channel device. Both n and p-channel devices exhibit similar low frequency (LF) noise behaviour that can be explained by a carrier number fluctuation model (section 3.5). LF noise in MOSFETs is predominantly caused by Random

  9. Equilibrium and shot noise in mesoscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.

    1994-10-01

    Within the last decade, there has been a resurgence of interest in the study of noise in Mesoscopic devices, both experimentally and theoretically. Noise in solid state devices can have different origins: there is 1/f noise, which is believed to arise from fluctuations in the resistance of the sample due to the motion of impurities. On top of this contribution is a frequency independent component associated with the stochastic nature of electron transport, which will be the focus of this paper. If the sample considered is small enough that dephasing and inelastic effects can be neglected, equilibrium (thermal) and excess noise can be completely described in terms of the elastic scattering properties of the sample. As mentioned above, noise arises as a consequence of random processes governing the transport of electrons. Here, there are two sources of randomness: first, electrons incident on the sample occupy a given energy state with a probability given by the Fermi-Dirac distribution function. Secondly, electrons can be transmitted across the sample or reflected in the same reservoir where they came from with a probability given by the quantum mechanical transmission/reflection coefficients. Equilibrium noise refers to the case where no bias voltage is applied between the leads connected to the sample, where thermal agitation alone allows the electrons close to the Fermi level to tunnel through the sample. In general, equilibrium noise is related to the conductance of the sample via the Johnson-Nyquist formula. In the presence of a bias, in the classical regime, one expects to recover the full shot noise < {Delta}{sup 2}I >= 2I{Delta}{mu} as was observed a long time ago in vacuum diodes. In the Mesoscopic regime, however, excess noise is reduced below the shot noise level. The author introduces a more intuitive picture, where the current passing through the device is a superposition of pulses, or electron wave packets, which can be transmitted or reflected.

  10. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  11. Noise generator for tinnitus treatment based on look-up tables

    Science.gov (United States)

    Uriz, Alejandro J.; Agüero, Pablo; Tulli, Juan C.; Castiñeira Moreira, Jorge; González, Esteban; Hidalgo, Roberto; Casadei, Manuel

    2016-04-01

    Treatment of tinnitus by means of masking sounds allows to obtain a significant improve of the quality of life of the individual that suffer that condition. In view of that, it is possible to develop noise synthesizers based on random number generators in digital signal processors (DSP), which are used in almost any digital hearing aid devices. DSP architecture have limitations to implement a pseudo random number generator, due to it, the noise statistics can be not as good as expectations. In this paper, a technique to generate additive white gaussian noise (AWGN) or other types of filtered noise using coefficients stored in program memory of the DSP is proposed. Also, an implementation of the technique is carried out on a dsPIC from Microchip®. Objective experiments and experimental measurements are performed to analyze the proposed technique.

  12. Time response measurements of pressure sensors using pink noise technique

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Santos, Roberto Carlos dos

    2009-01-01

    This work presents an experimental setup for Pink Noise method application on pressure transmitters' response times. The Pink Noise method consists on injecting artificial pressure noise into the pressure transmitter. The artificial pressure noise is generated using a current-to-pressure (I-to-P) converter, which is driven by a random noise signal generator. The output pressure transmitter noise is then analyzed using conventional Noise Analysis Technique. Noise signals may be interpreted using spectral techniques or empirical time series models. The frequency domain method consists of evaluating the Power Spectral Density (PSD) function. The information needed for time constant estimation can be obtained by fitting an all-pole transfer function to this power spectral density. (author)

  13. Trajectories of Brownian particles with space-correlated noise

    Indian Academy of Sciences (India)

    Spatial correlations of the noise are usually ruled out, and the paths traced by the random walkers are statistically independent. In this study, I consider instead noise which is white in time and has a Gaussian correlation in space, and by means of numerical simulation, I show how the spatial correlation determines the time ...

  14. Mechanisms mediating the perception of complex acoustic patterns

    Science.gov (United States)

    Warren, Richard M.

    1990-11-01

    Five studies were completed: (1) It was found that, following repetition, long period (500 ms) random waveforms excised from Gaussian noise could be identified when embedded in longer segments of Gaussian noise even when the inter-stimulus interval exceeded the limits of echoic memory; (2) It was demonstrated that some spectral regions of these long-period random waveforms could be recognized with greater accuracy than others; (3) Experiments with three consecutive odd-numbered harmonics demonstrated that triads with low harmonic numbers have a pitch corresponding to the fundamental of the harmonic series, but triads centered at the 9th or 11th harmonic had pitches roughly one octave higher. Deviations from the octave were consistent with the waveform pseudoperiodicities. These pitch judgements have implications for theories concerning the bases from the dominant region of complex tones. Two series of experiments involving (4) the vowel conversion effect and (5) dichotic verbal transformations, which compared the rules governing perceptual organization of speech in Japanese and English, were carried out by the principal investigator during May and June at the Basic Research Laboratories of the Nippon Telegraph and Telephone Co., Tokyo.

  15. Generalised shot noise Cox processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    We introduce a new class of Cox cluster processes called generalised shot-noise processes (GSNCPs), which extends the definition of shot noise Cox processes (SNCPs) in two directions: the point process which drives the shot noise is not necessarily Poisson, and the kernel of the shot noise can...... be random. Thereby a very large class of models for aggregated or clustered point patterns is obtained. Due to the structure of GSNCPs, a number of useful results can be established. We focus first on deriving summary statistics for GSNCPs and next on how to make simulation for GSNCPs. Particularly, results...... for first and second order moment measures, reduced Palm distributions, the -function, simulation with or without edge effects, and conditional simulation of the intensity function driving a GSNCP are given. Our results are exemplified for special important cases of GSNCPs, and we discuss the relation...

  16. Noise level and MPEG-2 encoder statistics

    Science.gov (United States)

    Lee, Jungwoo

    1997-01-01

    Most software in the movie and broadcasting industries are still in analog film or tape format, which typically contains random noise that originated from film, CCD camera, and tape recording. The performance of the MPEG-2 encoder may be significantly degraded by the noise. It is also affected by the scene type that includes spatial and temporal activity. The statistical property of noise originating from camera and tape player is analyzed and the models for the two types of noise are developed. The relationship between the noise, the scene type, and encoder statistics of a number of MPEG-2 parameters such as motion vector magnitude, prediction error, and quant scale are discussed. This analysis is intended to be a tool for designing robust MPEG encoding algorithms such as preprocessing and rate control.

  17. Numerical Analysis of an H1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

    Directory of Open Access Journals (Sweden)

    Jinfeng Wang

    2014-01-01

    Full Text Available We discuss and analyze an H1-Galerkin mixed finite element (H1-GMFE method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H1-GMFE method. Based on the discussion on the theoretical error analysis in L2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H1-norm. Moreover, we derive and analyze the stability of H1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure.

  18. The benefits of noise and nonlinearity: Extracting energy from random vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Gammaitoni, Luca, E-mail: luca.gammaitoni@pg.infn.it [NiPS Laboratory, Universita di Perugia, I-06100 Perugia (Italy); Neri, Igor; Vocca, Helios [NiPS Laboratory, Universita di Perugia, I-06100 Perugia (Italy)

    2010-10-05

    Nonlinear behavior is the ordinary feature of the vast majority of dynamical systems and noise is commonly present in any finite temperature physical and chemical system. In this article we briefly review the potentially beneficial outcome of the interplay of noise and nonlinearity by addressing the novel field of vibration energy harvesting. The role of nonlinearity in a piezoelectric harvester oscillator dynamics is modeled with nonlinear stochastic differential equation.

  19. Adjusting phenotypes by noise control.

    Directory of Open Access Journals (Sweden)

    Kyung H Kim

    2012-01-01

    Full Text Available Genetically identical cells can show phenotypic variability. This is often caused by stochastic events that originate from randomness in biochemical processes involving in gene expression and other extrinsic cellular processes. From an engineering perspective, there have been efforts focused on theory and experiments to control noise levels by perturbing and replacing gene network components. However, systematic methods for noise control are lacking mainly due to the intractable mathematical structure of noise propagation through reaction networks. Here, we provide a numerical analysis method by quantifying the parametric sensitivity of noise characteristics at the level of the linear noise approximation. Our analysis is readily applicable to various types of noise control and to different types of system; for example, we can orthogonally control the mean and noise levels and can control system dynamics such as noisy oscillations. As an illustration we applied our method to HIV and yeast gene expression systems and metabolic networks. The oscillatory signal control was applied to p53 oscillations from DNA damage. Furthermore, we showed that the efficiency of orthogonal control can be enhanced by applying extrinsic noise and feedback. Our noise control analysis can be applied to any stochastic model belonging to continuous time Markovian systems such as biological and chemical reaction systems, and even computer and social networks. We anticipate the proposed analysis to be a useful tool for designing and controlling synthetic gene networks.

  20. Noise-Induced Synchronization among Sub-RF CMOS Analog Oscillators for Skew-Free Clock Distribution

    Science.gov (United States)

    Utagawa, Akira; Asai, Tetsuya; Hirose, Tetsuya; Amemiya, Yoshihito

    We present on-chip oscillator arrays synchronized by random noises, aiming at skew-free clock distribution on synchronous digital systems. Nakao et al. recently reported that independent neural oscillators can be synchronized by applying temporal random impulses to the oscillators [1], [2]. We regard neural oscillators as independent clock sources on LSIs; i. e., clock sources are distributed on LSIs, and they are forced to synchronize through the use of random noises. We designed neuron-based clock generators operating at sub-RF region (CMOS implementation with 0.25-μm CMOS parameters. Through circuit simulations, we demonstrate that i) the clock generators are certainly synchronized by pseudo-random noises and ii) clock generators exhibited phase-locked oscillations even if they had small device mismatches.

  1. Cooperation of deterministic dynamics and random noise in production of complex syntactical avian song sequences: a neural network model

    Directory of Open Access Journals (Sweden)

    Yuichi eYamashita

    2011-04-01

    Full Text Available How the brain learns and generates temporal sequences is a fundamental issue in neuroscience. The production of birdsongs, a process which involves complex learned sequences, provides researchers with an excellent biological model for this topic. The Bengalese finch in particular learns a highly complex song with syntactical structure. The nucleus HVC (HVC, a premotor nucleus within the avian song system, plays a key role in generating the temporal structures of their songs. From lesion studies, the nucleus interfacialis (NIf projecting to the HVC is considered one of the essential regions that contribute to the complexity of their songs. However, the types of interaction between the HVC and the NIf that can produce complex syntactical songs remain unclear. In order to investigate the function of interactions between the HVC and NIf, we have proposed a neural network model based on previous biological evidence. The HVC is modeled by a recurrent neural network (RNN that learns to generate temporal patterns of songs. The NIf is modeled as a mechanism that provides auditory feedback to the HVC and generates random noise that feeds into the HVC. The model showed that complex syntactical songs can be replicated by simple interactions between deterministic dynamics of the RNN and random noise. In the current study, the plausibility of the model is tested by the comparison between the changes in the songs of actual birds induced by pharmacological inhibition of the NIf and the changes in the songs produced by the model resulting from modification of parameters representing NIf functions. The efficacy of the model demonstrates that the changes of songs induced by pharmacological inhibition of the NIf can be interpreted as a trade-off between the effects of noise and the effects of feedback on the dynamics of the RNN of the HVC. These facts suggest that the current model provides a convincing hypothesis for the functional role of NIf-HVC interaction.

  2. Genetic noise control via protein oligomerization

    Directory of Open Access Journals (Sweden)

    Almaas Eivind

    2008-11-01

    Full Text Available Abstract Background Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Results We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch, integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast binding-unbinding kinetics among proteins, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its random switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced state from randomly being induced (uninduced. Conclusion The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of regulatory circuits

  3. Surface detection performance evaluation of pseudo-random noise continuous wave laser radar

    Science.gov (United States)

    Mitev, Valentin; Matthey, Renaud; Pereira do Carmo, Joao

    2017-11-01

    A number of space missions (including in the ESA Exploration Programme) foreseen a use of laser radar sensor (or lidar) for determination of range between spacecrafts or between spacecraft and ground surface (altimetry). Such sensors need to be compact, robust and power efficient, at the same time with high detection performance. These requirements can be achieved with a Pseudo-Random Noise continuous wave lidar (PRN cw lidar). Previous studies have pointed to the advantages of this lidar with respect to space missions, but they also identified its limitations in high optical background. The progress of the lasers and the detectors in the near IR spectral range requires a re-evaluation of the PRN cw lidar potential. Here we address the performances of this lidar for surface detection (altimetry) in planetary missions. The evaluation is based on the following system configuration: (i) A cw fiber amplifier as lidar transmitter. The seeding laser exhibits a single-frequency spectral line, with subsequent amplitude modulation. The fiber amplifier allows high output power level, keeping the spectral characteristics and the modulation of the seeding light input. (ii) An avalanche photodiode in photon counting detection; (iii) Measurement scenarios representative for Earth, Mercury and Mars.

  4. Discriminality of statistically independent Gaussian noise tokens and random tone-burst complexes

    NARCIS (Netherlands)

    Goossens, T.L.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.; Kollmeier, B.; Klump, G.; Hohmann, V.; Langemann, U.; Mauermann, M.; Uppenkamp, S.; Verhey, J.

    2007-01-01

    Hanna (1984) has shown that noise tokens with a duration of 400 ms are harder to discriminate than noise tokens of 100 ms. This is remarkable because a 400-ms stimulus potentially contains four times as much information for judging dissimilarity than the 100-ms stimulus. Apparently, the ability to

  5. The incidence of the different sources of noise on the uncertainty in radiochromic film dosimetry using single channel and multichannel methods

    Science.gov (United States)

    González-López, Antonio; Vera-Sánchez, Juan Antonio; Ruiz-Morales, Carmen

    2017-11-01

    The influence of the various sources of noise on the uncertainty in radiochromic film (RCF) dosimetry using single channel and multichannel methods is investigated in this work. These sources of noise are extracted from pixel value (PV) readings and dose maps. Pieces of an RCF were each irradiated to different uniform doses, ranging from 0 to 1092 cGy. Then, the pieces were read at two resolutions (72 and 150 ppp) with two flatbed scanners: Epson 10000XL and Epson V800, representing two states of technology. Noise was extracted as described in ISO 15739 (2013), separating its distinct constituents: random noise and fixed pattern (FP) noise. Regarding the PV maps, FP noise is the main source of noise for both models of digitizer. Also, the standard deviation of the random noise in the 10000XL model is almost twice that of the V800 model. In the dose maps, the FP noise is smaller in the multichannel method than in the single channel ones. However, random noise is higher in this method, throughout the dose range. In the multichannel method, FP noise is reduced, as a consequence of this method’s ability to eliminate channel independent perturbations. However, the random noise increases, because the dose is calculated as a linear combination of the doses obtained by the single channel methods. The values of the coefficients of this linear combination are obtained in the present study, and the root of the sum of their squares is shown to range between 0.9 and 1.9 over the dose range studied. These results indicate the random noise to play a fundamental role in the uncertainty of RCF dosimetry: low levels of random noise are required in the digitizer to fully exploit the advantages of the multichannel dosimetry method. This is particularly important for measuring high doses at high spatial resolutions.

  6. Accurate estimation of camera shot noise in the real-time

    Science.gov (United States)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Rostislav S.

    2017-10-01

    Nowadays digital cameras are essential parts of various technological processes and daily tasks. They are widely used in optics and photonics, astronomy, biology and other various fields of science and technology such as control systems and video-surveillance monitoring. One of the main information limitations of photo- and videocameras are noises of photosensor pixels. Camera's photosensor noise can be divided into random and pattern components. Temporal noise includes random noise component while spatial noise includes pattern noise component. Temporal noise can be divided into signal-dependent shot noise and signal-nondependent dark temporal noise. For measurement of camera noise characteristics, the most widely used methods are standards (for example, EMVA Standard 1288). It allows precise shot and dark temporal noise measurement but difficult in implementation and time-consuming. Earlier we proposed method for measurement of temporal noise of photo- and videocameras. It is based on the automatic segmentation of nonuniform targets (ASNT). Only two frames are sufficient for noise measurement with the modified method. In this paper, we registered frames and estimated shot and dark temporal noises of cameras consistently in the real-time. The modified ASNT method is used. Estimation was performed for the cameras: consumer photocamera Canon EOS 400D (CMOS, 10.1 MP, 12 bit ADC), scientific camera MegaPlus II ES11000 (CCD, 10.7 MP, 12 bit ADC), industrial camera PixeLink PL-B781F (CMOS, 6.6 MP, 10 bit ADC) and video-surveillance camera Watec LCL-902C (CCD, 0.47 MP, external 8 bit ADC). Experimental dependencies of temporal noise on signal value are in good agreement with fitted curves based on a Poisson distribution excluding areas near saturation. Time of registering and processing of frames used for temporal noise estimation was measured. Using standard computer, frames were registered and processed during a fraction of second to several seconds only. Also the

  7. Investigation of Noises in GPS Time Series: Case Study on Epn Weekly Solutions

    Science.gov (United States)

    Klos, Anna; Bogusz, Janusz; Figurski, Mariusz; Kosek, Wieslaw; Gruszczynski, Maciej

    2014-05-01

    The noises in GPS time series are stated to be described the best by the combination of white (Gaussian) and power-law processes. They are mainly the effect of mismodelled satellite orbits, Earth orientation parameters, atmospheric effects, antennae phase centre effects, or of monument instability. Due to the fact, that velocities of permanent stations define the kinematic reference frame, they have to fulfil the requirement of being stable at 0.1 mm/yr. The previously performed researches showed, that the wrong assumption of noise model leads to the underestimation of velocities and their uncertainties from 2 up to even 11, especially in the Up direction. This presentation focuses on more than 200 EPN (EUREF Permanent Network) stations from the area of Europe with various monument types (concrete pillars, buildings, metal masts, with or without domes, placed on the ground or on the rock) and coordinates of weekly changes (GPS weeks 0834-1459). The topocentric components (North, East, Up) in ITRF2005 which come from the EPN Re-Processing made by the Military University of Technology Local Analysis Centre (MUT LAC) were processed with Maximum Likelihood Estimation (MLE) using CATS software. We have assumed the existence of few combinations of noise models (these are: white, flicker and random walk noise with integer spectral indices and power-law noise models with fractional spectral indices) and investigated which of them EPN weekly time series are likely to follow. The results show, that noises in GPS time series are described the best by the combination of white and flicker noise model. It is strictly related to the so-called common mode error (CME) that is spatially correlated error being one of the dominant error source in GPS solutions. We have assumed CME as spatially uniform, what was a good approximation for stations located hundreds of kilometres one to another. Its removal with spatial filtering reduces the amplitudes of white and flicker noise by a

  8. Effect of multiplicative noise on stationary stochastic process

    Science.gov (United States)

    Kargovsky, A. V.; Chikishev, A. Yu.; Chichigina, O. A.

    2018-03-01

    An open system that can be analyzed using the Langevin equation with multiplicative noise is considered. The stationary state of the system results from a balance of deterministic damping and random pumping simulated as noise with controlled periodicity. The dependence of statistical moments of the variable that characterizes the system on parameters of the problem is studied. A nontrivial decrease in the mean value of the main variable with an increase in noise stochasticity is revealed. Applications of the results in several physical, chemical, biological, and technical problems of natural and humanitarian sciences are discussed.

  9. Shaping the spectrum of random-phase radar waveforms

    Science.gov (United States)

    Doerry, Armin W.; Marquette, Brandeis

    2017-05-09

    The various technologies presented herein relate to generation of a desired waveform profile in the form of a spectrum of apparently random noise (e.g., white noise or colored noise), but with precise spectral characteristics. Hence, a waveform profile that could be readily determined (e.g., by a spoofing system) is effectively obscured. Obscuration is achieved by dividing the waveform into a series of chips, each with an assigned frequency, wherein the sequence of chips are subsequently randomized. Randomization can be a function of the application of a key to the chip sequence. During processing of the echo pulse, a copy of the randomized transmitted pulse is recovered or regenerated against which the received echo is correlated. Hence, with the echo energy range-compressed in this manner, it is possible to generate a radar image with precise impulse response.

  10. Quantum optics in multiple scattering random media

    DEFF Research Database (Denmark)

    Lodahl, Peter; Lagendijk, Ad

    2005-01-01

    Quantum Optics in Multiple Scattering Random Media Peter Lodahl Research Center COM, Technical University of Denmark, Dk-2800 Lyngby, Denmark. Coherent transport of light in a disordered random medium has attracted enormous attention both from a fundamental and application point of view. Coherent......-tions that should be readily attainable experimentally is devised. Figure 1. Inverse total transmission of shot noise (left) and technical noise (right) as a function of the thickness of the ran-dom medium. The experimental data are well explained by theory (curves). [1] J. Tworzydlo and C.W.J. Beenakker, Phys. Rev...

  11. Stability of a nonlinear second order equation under parametric bounded noise excitation

    International Nuclear Information System (INIS)

    Wiebe, Richard; Xie, Wei-Chau

    2016-01-01

    The motivation for the following work is a structural column under dynamic axial loads with both deterministic (harmonic transmitted forces from the surrounding structure) and random (wind and/or earthquake) loading components. The bounded noise used herein is a sinusoid with an argument composed of a random (Wiener) process deviation about a mean frequency. By this approach, a noise parameter may be used to investigate the behavior through the spectrum from simple harmonic forcing, to a bounded random process with very little harmonic content. The stability of both the trivial and non-trivial stationary solutions of an axially-loaded column (which is modeled as a second order nonlinear equation) under parametric bounded noise excitation is investigated by use of Lyapunov exponents. Specifically the effect of noise magnitude, amplitude of the forcing, and damping on stability of a column is investigated. First order averaging is employed to obtain analytical approximations of the Lyapunov exponents of the trivial solution. For the non-trivial stationary solution however, the Lyapunov exponents are obtained via Monte Carlo simulation as the stability equations become analytically intractable. (paper)

  12. Cooperation evolution in random multiplicative environments

    Science.gov (United States)

    Yaari, G.; Solomon, S.

    2010-02-01

    Most real life systems have a random component: the multitude of endogenous and exogenous factors influencing them result in stochastic fluctuations of the parameters determining their dynamics. These empirical systems are in many cases subject to noise of multiplicative nature. The special properties of multiplicative noise as opposed to additive noise have been noticed for a long while. Even though apparently and formally the difference between free additive vs. multiplicative random walks consists in just a move from normal to log-normal distributions, in practice the implications are much more far reaching. While in an additive context the emergence and survival of cooperation requires special conditions (especially some level of reward, punishment, reciprocity), we find that in the multiplicative random context the emergence of cooperation is much more natural and effective. We study the various implications of this observation and its applications in various contexts.

  13. Noise simulation in cone beam CT imaging with parallel computing

    International Nuclear Information System (INIS)

    Tu, S.-J.; Shaw, Chris C; Chen, Lingyun

    2006-01-01

    We developed a computer noise simulation model for cone beam computed tomography imaging using a general purpose PC cluster. This model uses a mono-energetic x-ray approximation and allows us to investigate three primary performance components, specifically quantum noise, detector blurring and additive system noise. A parallel random number generator based on the Weyl sequence was implemented in the noise simulation and a visualization technique was accordingly developed to validate the quality of the parallel random number generator. In our computer simulation model, three-dimensional (3D) phantoms were mathematically modelled and used to create 450 analytical projections, which were then sampled into digital image data. Quantum noise was simulated and added to the analytical projection image data, which were then filtered to incorporate flat panel detector blurring. Additive system noise was generated and added to form the final projection images. The Feldkamp algorithm was implemented and used to reconstruct the 3D images of the phantoms. A 24 dual-Xeon PC cluster was used to compute the projections and reconstructed images in parallel with each CPU processing 10 projection views for a total of 450 views. Based on this computer simulation system, simulated cone beam CT images were generated for various phantoms and technique settings. Noise power spectra for the flat panel x-ray detector and reconstructed images were then computed to characterize the noise properties. As an example among the potential applications of our noise simulation model, we showed that images of low contrast objects can be produced and used for image quality evaluation

  14. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    Science.gov (United States)

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  15. Evaluation of noise levels in manufacturing sectors in Thika district ...

    African Journals Online (AJOL)

    Noise is considered as any unwanted sound that may adversely affect the health and wellbeing of individuals or populations exposed. This study assessed the magnitude of occupational noise exposures to workers in different manufacturing sectors in Thika District‐Kenya. Systematic random sampling was used to select 8 ...

  16. The Spread of a Noise Field in a Dispersive Medium

    Directory of Open Access Journals (Sweden)

    Cohen Leon

    2010-01-01

    Full Text Available We discuss the production of induced noise by a pulse and the propagation of the noise in a dispersive medium. We present a simple model where the noise is the sum of pulses and where the mean of each pulse is random. We obtain explicit expressions for the standard deviation of the spatial noise as a function of time. We also formulate the problem in terms of a time-frequency phase space approach and in particular we use the Wigner distribution to define the spatial/spatial-frequency distribution.

  17. The diversity and unit of reactor noise theory

    Science.gov (United States)

    Kuang, Zhifeng

    The study of reactor noise theory concerns questions about cause and effect relationships, and utilisation of random noise in nuclear reactor systems. The diversity of reactor noise theory arises from the variety of noise sources, the various mathematical treatments applied and various practical purposes. The neutron noise in zero- energy systems arises from the fluctuations in the number of neutrons per fission, the time between nuclear events, and the type of reactions. It can be used to evaluate system parameters. The mathematical treatment is based on the master equation of stochastic branching processes. The noise in power reactor systems is given rise by random processes of technological origin such as vibration of mechanical parts, boiling of the coolant, fluctuations of temperature and pressure. It can be used to monitor reactor behaviour with the possibility of detecting malfunctions at an early stage. The mathematical treatment is based on the Langevin equation. The unity of reactor noise theory arises from the fact that useful information from noise is embedded in the second moments of random variables, which lends the possibility of building up a unified mathematical description and analysis of the various reactor noise sources. Exploring such possibilities is the main subject among the three major topics reported in this thesis. The first subject is within the zero power noise in steady media, and we reported on the extension of the existing theory to more general cases. In Paper I, by use of the master equation approach, we have derived the most general Feynman- and Rossi-alpha formulae so far by taking the full joint statistics of the prompt and all the six groups of delayed neutron precursors, and a multiple emission source into account. The involved problems are solved with a combination of effective analytical techniques and symbolic algebra codes (Mathematica). Paper II gives a numerical evaluation of these formulae. An assessment of the

  18. Transport of radionuclides in stochastic media. Pt. 1: The quasi-asymptotic approximation

    International Nuclear Information System (INIS)

    Devooght, J.; Smidts, O.F.

    1996-01-01

    A three-dimensional quasi-asymptotic approximate equation is developed for the transport of radionuclides in a stochastic velocity field. This approximation is derived from an integro-differential equation of transport in stochastic media, commonly encountered in hydrogeology. The quasi-asymptotic equation turns out to be a generalised Telegrapher's equation as found by Williams in the particular context of fractured media. We obtain the Telegrapher's equation without specifying the causes responsible for the random velocity field. Our model may thus be applied in porous media as well as in fractured media. We give the developments leading to the analytical solution of the three-dimensional Telegrapher's equation for constant parameters. This solution is then visualised for a source in the form of a square wave. (Author)

  19. On the ability to discriminate Gaussian-noise tokens or random tone-burst complexes

    NARCIS (Netherlands)

    Goossens, T.L.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.

    2008-01-01

    This study investigated factors that influence a listeners' ability to discriminate Gaussian-noise stimuli in a same-different discrimination paradigm. The first experiment showed that discrimination ability increased with bandwidth for noise durations up to 100 ms. Duration had a nonmonotonic

  20. Efficacy and mode of action of a noise-sensor light alarm to decrease noise in the pediatric intensive care unit: a prospective, randomized study.

    Science.gov (United States)

    Jousselme, Chloé; Vialet, Renaud; Jouve, Elisabeth; Lagier, Pierre; Martin, Claude; Michel, Fabrice

    2011-03-01

    To determine whether a sound-activated light-alarm device could reduce the noise in the central area of our pediatric intensive care unit and to determine whether this reduction was significant enough to decrease the noise that could be perceived by a patient located in a nearby room. The secondary objective was to determine the mode of action of the device. In a 16-bed pediatric and neonatal intensive care unit, a large and clearly noticeable sound-activated light device was set in the noisiest part of the central area of our unit, and noise measurements were made in the central area and in a nearby room. In a prospective, quasi-experimental design, sound levels were compared across three different situations--no device present, device present and turned on, and device present but turned off--and noise level measurements were made over a total of 18 days. None. Setting a sound-activated light device on or off. When the device was present, the noise was about 2 dB lower in the central area and in a nearby room, but there was no difference in noise level with the device turned on vs. turned off. The noise decrease in the central area was of limited importance but was translated in a nearby room. The sound-activated light device did not directly decrease noise when turned on, but repetition of the visual signal throughout the day raised staff awareness of noise levels over time.

  1. SPDEs with α-Stable Lévy Noise: A Random Field Approach

    Directory of Open Access Journals (Sweden)

    Raluca M. Balan

    2014-01-01

    Full Text Available This paper is dedicated to the study of a nonlinear SPDE on a bounded domain in Rd, with zero initial conditions and Dirichlet boundary, driven by an α-stable Lévy noise Z with α∈(0,2, α≠1, and possibly nonsymmetric tails. To give a meaning to the concept of solution, we develop a theory of stochastic integration with respect to this noise. The idea is to first solve the equation with “truncated” noise (obtained by removing from Z the jumps which exceed a fixed value K, yielding a solution uK, and then show that the solutions uL,L>K coincide on the event t≤τK, for some stopping times τK converging to infinity. A similar idea was used in the setting of Hilbert-space valued processes. A major step is to show that the stochastic integral with respect to ZK satisfies a pth moment inequality. This inequality plays the same role as the Burkholder-Davis-Gundy inequality in the theory of integration with respect to continuous martingales.

  2. Suitable or optimal noise benefits in signal detection

    International Nuclear Information System (INIS)

    Liu, Shujun; Yang, Ting; Tang, Mingchun; Wang, Pin; Zhang, Xinzheng

    2016-01-01

    Highlights: • Six intervals of additive noises divided according to the two constraints. • Derivation of the suitable additive noise to meet the two constraints. • Formulation of the suitable noise for improvability or nonimprovability. • Optimal noises to minimize P FA , maximize P D and maximize the overall improvement. - Abstract: We present an effective way to generate the suitable or the optimal additive noises which can achieve the three goals of the noise enhanced detectability, i.e., the maximum detection probability (P D ), the minimum false alarm probability (P FA ) and the maximum overall improvement of P D and P FA , without increasing P FA and decreasing P D in a binary hypothesis testing problem. The mechanism of our method is that we divide the discrete vectors into six intervals and choose the useful or partial useful vectors from these intervals to form the additive noise according to different requirements. The form of the optimal noise is derived and proven as a randomization of no more than two discrete vectors in our way. Moreover, how to choose suitable and optimal noises from the six intervals are given. Finally, numerous examples are presented to illustrate the theoretical analysis, where the background noises are Gaussian, symmetric and asymmetric Gaussian mixture noise, respectively.

  3. Does the central limit theorem always apply to phase noise? Some implications for radar problems

    Science.gov (United States)

    Gray, John E.; Addison, Stephen R.

    2017-05-01

    The phase noise problem or Rayleigh problem occurs in all aspects of radar. It is an effect that a radar engineer or physicist always has to take into account as part of a design or in attempt to characterize the physics of a problem such as reverberation. Normally, the mathematical difficulties of phase noise characterization are avoided by assuming the phase noise probability distribution function (PDF) is uniformly distributed, and the Central Limit Theorem (CLT) is invoked to argue that the superposition of relatively few random components obey the CLT and hence the superposition can be treated as a normal distribution. By formalizing the characterization of phase noise (see Gray and Alouani) for an individual random variable, the summation of identically distributed random variables is the product of multiple characteristic functions (CF). The product of the CFs for phase noise has a CF that can be analyzed to understand the limitations CLT when applied to phase noise. We mirror Kolmogorov's original proof as discussed in Papoulis to show the CLT can break down for receivers that gather limited amounts of data as well as the circumstances under which it can fail for certain phase noise distributions. We then discuss the consequences of this for matched filter design as well the implications for some physics problems.

  4. Probability Theory Plus Noise: Descriptive Estimation and Inferential Judgment.

    Science.gov (United States)

    Costello, Fintan; Watts, Paul

    2018-01-01

    We describe a computational model of two central aspects of people's probabilistic reasoning: descriptive probability estimation and inferential probability judgment. This model assumes that people's reasoning follows standard frequentist probability theory, but it is subject to random noise. This random noise has a regressive effect in descriptive probability estimation, moving probability estimates away from normative probabilities and toward the center of the probability scale. This random noise has an anti-regressive effect in inferential judgement, however. These regressive and anti-regressive effects explain various reliable and systematic biases seen in people's descriptive probability estimation and inferential probability judgment. This model predicts that these contrary effects will tend to cancel out in tasks that involve both descriptive estimation and inferential judgement, leading to unbiased responses in those tasks. We test this model by applying it to one such task, described by Gallistel et al. ). Participants' median responses in this task were unbiased, agreeing with normative probability theory over the full range of responses. Our model captures the pattern of unbiased responses in this task, while simultaneously explaining systematic biases away from normatively correct probabilities seen in other tasks. Copyright © 2018 Cognitive Science Society, Inc.

  5. A 7 ke-SD-FWC 1.2 e-RMS Temporal Random Noise 128×256 Time-Resolved CMOS Image Sensor With Two In-Pixel SDs for Biomedical Applications.

    Science.gov (United States)

    Seo, Min-Woong; Kawahito, Shoji

    2017-12-01

    A large full well capacity (FWC) for wide signal detection range and low temporal random noise for high sensitivity lock-in pixel CMOS image sensor (CIS) embedded with two in-pixel storage diodes (SDs) has been developed and presented in this paper. For fast charge transfer from photodiode to SDs, a lateral electric field charge modulator (LEFM) is used for the developed lock-in pixel. As a result, the time-resolved CIS achieves a very large SD-FWC of approximately 7ke-, low temporal random noise of 1.2e-rms at 20 fps with true correlated double sampling operation and fast intrinsic response less than 500 ps at 635 nm. The proposed imager has an effective pixel array of and a pixel size of . The sensor chip is fabricated by Dongbu HiTek 1P4M 0.11 CIS process.

  6. Musical noise reduction using an adaptive filter

    Science.gov (United States)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  7. Entanglement probabilities of polymers: a white noise functional approach

    International Nuclear Information System (INIS)

    Bernido, Christopher C; Carpio-Bernido, M Victoria

    2003-01-01

    The entanglement probabilities for a highly flexible polymer to wind n times around a straight polymer are evaluated using white noise analysis. To introduce the white noise functional approach, the one-dimensional random walk problem is taken as an example. The polymer entanglement scenario, viewed as a random walk on a plane, is then treated and the entanglement probabilities are obtained for a magnetic flux confined along the straight polymer, and a case where an entangled polymer is subjected to the potential V = f-dot(s)θ. In the absence of the magnetic flux and the potential V, the entanglement probabilities reduce to a result obtained by Wiegel

  8. Noise-induced chaos in a quadratically nonlinear oscillator

    International Nuclear Information System (INIS)

    Gan Chunbiao

    2006-01-01

    The present paper focuses on the noise-induced chaos in a quadratically nonlinear oscillator. Simple zero points of the stochastic Melnikov integral theoretically mean the necessary rising of noise-induced chaotic response in the system based on the stochastic Melnikov method. To quantify the noise-induced chaos, the boundary of the system's safe basin is firstly studied and it is shown to be incursively fractal when chaos arises. Three cases are considered in simulating the safe basin of the system, i.e., the system is excited only by the harmonic excitation, by both the harmonic and the Gaussian white noise excitations, and only by the Gaussian white noise excitation. Secondly, the leading Lyapunov exponent by Rosenstein's algorithm is shown to quantify the chaotic nature of the sample time series of the system. The results show that the boundary of the safe basin can also be fractal even if the system is excited only by the external Gaussian white noise. Most importantly, the almost-harmonic, the noise-induced chaotic and the thoroughly random responses can be found in the system

  9. System test and noise performance studies at the ATLAS pixel detector

    International Nuclear Information System (INIS)

    Weingarten, J.

    2007-09-01

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  10. System test and noise performance studies at the ATLAS pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Weingarten, J.

    2007-09-15

    The central component of the ATLAS Inner Tracker is the pixel detector. It consists of three barrel layers and three disk-layers in the end-caps in both forward directions. The innermost barrel layer is mounted at a distance of about 5 cm from the interaction region. With its very high granularity, truly two-dimensional hit information, and fast readout it is well suited to cope with the high densities of charged tracks, expected this close to the interaction region. The huge number of readout channels necessitates a very complex services infrastructure for powering, readout and safety. After a description of the pixel detector and its services infrastructure, key results from the system test at CERN are presented. Furthermore the noise performance of the pixel detector, crucial for high tracking and vertexing efficiencies, is studied. Measurements of the single-channel random noise are presented together with studies of common mode noise and measurements of the noise occupancy using a random trigger generator. (orig.)

  11. Strong Tracking Filter for Nonlinear Systems with Randomly Delayed Measurements and Correlated Noises

    Directory of Open Access Journals (Sweden)

    Hongtao Yang

    2018-01-01

    Full Text Available This paper proposes a novel strong tracking filter (STF, which is suitable for dealing with the filtering problem of nonlinear systems when the following cases occur: that is, the constructed model does not match the actual system, the measurements have the one-step random delay, and the process and measurement noises are correlated at the same epoch. Firstly, a framework of decoupling filter (DF based on equivalent model transformation is derived. Further, according to the framework of DF, a new extended Kalman filtering (EKF algorithm via using first-order linearization approximation is developed. Secondly, the computational process of the suboptimal fading factor is derived on the basis of the extended orthogonality principle (EOP. Thirdly, the ultimate form of the proposed STF is obtained by introducing the suboptimal fading factor into the above EKF algorithm. The proposed STF can automatically tune the suboptimal fading factor on the basis of the residuals between available and predicted measurements and further the gain matrices of the proposed STF tune online to improve the filtering performance. Finally, the effectiveness of the proposed STF has been proved through numerical simulation experiments.

  12. The equivalent internal orientation and position noise for contour integration.

    Science.gov (United States)

    Baldwin, Alex S; Fu, Minnie; Farivar, Reza; Hess, Robert F

    2017-10-12

    Contour integration is the joining-up of local responses to parts of a contour into a continuous percept. In typical studies observers detect contours formed of discrete wavelets, presented against a background of random wavelets. This measures performance for detecting contours in the limiting external noise that background provides. Our novel task measures contour integration without requiring any background noise. This allowed us to perform noise-masking experiments using orientation and position noise. From these we measure the equivalent internal noise for contour integration. We found an orientation noise of 6° and position noise of 3 arcmin. Orientation noise was 2.6x higher in contour integration compared to an orientation discrimination control task. Comparing against a position discrimination task found position noise in contours to be 2.4x lower. This suggests contour integration involves intermediate processing that enhances the quality of element position representation at the expense of element orientation. Efficiency relative to the ideal observer was lower for the contour tasks (36% in orientation noise, 21% in position noise) compared to the controls (54% and 57%).

  13. Genetic noise control via protein oligomerization

    Energy Technology Data Exchange (ETDEWEB)

    Ghim, C; Almaas, E

    2008-06-12

    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamical role of protein-protein associations. We have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. In particular, we explicitly account for the fast protein binding-unbinding kinetics, RNA polymerases, and the promoter/operator sequences of DNA. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its intrinsic switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise. The stabilization of phenotypically important toggle switches, and nested positive feedback loops in

  14. Mapping of Natural Radionuclides using Noise Adjusted Singular Value Decomposition, NASVD

    DEFF Research Database (Denmark)

    Aage, Helle Karina

    2006-01-01

    Mapping of natural radionuclides from airborne gamma spectrometry suffer from random ”noise” in the spectra due to short measurement times. This is partly compensated for by using large volume detectors to improve the counting statistics. One method of further improving the quality of the measured...... spectra is to remove from the spectra a large fraction of this random noise using a special variant of Singular Value Decomposition: Noise Adjusted Singular Value Decomposition. In 1997-1999 the natural radionuclides on the Danish Island of Bornholm were mapped using a combination of the standard 3...

  15. Non-stationary least-squares complex decomposition for microseismic noise attenuation

    Science.gov (United States)

    Chen, Yangkang

    2018-06-01

    Microseismic data processing and imaging are crucial for subsurface real-time monitoring during hydraulic fracturing process. Unlike the active-source seismic events or large-scale earthquake events, the microseismic event is usually of very small magnitude, which makes its detection challenging. The biggest trouble of microseismic data is the low signal-to-noise ratio issue. Because of the small energy difference between effective microseismic signal and ambient noise, the effective signals are usually buried in strong random noise. I propose a useful microseismic denoising algorithm that is based on decomposing a microseismic trace into an ensemble of components using least-squares inversion. Based on the predictive property of useful microseismic event along the time direction, the random noise can be filtered out via least-squares fitting of multiple damping exponential components. The method is flexible and almost automated since the only parameter needed to be defined is a decomposition number. I use some synthetic and real data examples to demonstrate the potential of the algorithm in processing complicated microseismic data sets.

  16. Study on phase noise induced by 1/f noise of the modulator drive circuit in high-sensitivity fiber optic gyroscope

    Science.gov (United States)

    Teng, Fei; Jin, Jing; Li, Yong; Zhang, Chunxi

    2018-05-01

    The contribution of modulator drive circuit noise as a 1/f noise source to the output noise of the high-sensitivity interferometric fiber optic gyroscope (IFOG) was studied here. A noise model of closed-loop IFOG was built. By applying the simulated 1/f noise sequence into the model, a gyroscope output data series was acquired, and the corresponding power spectrum density (PSD) and the Allan variance curve were calculated to analyze the noise characteristic. The PSD curve was in the spectral shape of 1/f, which verifies that the modulator drive circuit induced a low frequency 1/f phase noise into the gyroscope. The random walk coefficient (RWC), a standard metric to characterize the noise performance of the IFOG, was calculated according to the Allan variance curve. Using an operational amplifier with an input 1/f noise of 520 nV/√Hz at 1 Hz, the RWC induced by this 1/f noise was 2 × 10-4°/√h, which accounts for 63% of the total RWC. To verify the correctness of the noise model we proposed, a high-sensitivity gyroscope prototype was built and tested. The simulated Allan variance curve gave a good rendition of the prototype actual measured curve. The error percentage between the simulated RWC and the measured value was less than 13%. According to the model, a noise reduction method is proposed and the effectiveness is verified by the experiment.

  17. Approximating distributions from moments

    Science.gov (United States)

    Pawula, R. F.

    1987-11-01

    A method based upon Pearson-type approximations from statistics is developed for approximating a symmetric probability density function from its moments. The extended Fokker-Planck equation for non-Markov processes is shown to be the underlying foundation for the approximations. The approximation is shown to be exact for the beta probability density function. The applicability of the general method is illustrated by numerous pithy examples from linear and nonlinear filtering of both Markov and non-Markov dichotomous noise. New approximations are given for the probability density function in two cases in which exact solutions are unavailable, those of (i) the filter-limiter-filter problem and (ii) second-order Butterworth filtering of the random telegraph signal. The approximate results are compared with previously published Monte Carlo simulations in these two cases.

  18. Array-level stability enhancement of 50 nm AlxOy ReRAM

    Science.gov (United States)

    Iwasaki, Tomoko Ogura; Ning, Sheyang; Yamazawa, Hiroki; Takeuchi, Ken

    2015-12-01

    ReRAM's low voltage and low current programmability are attractive features to solve the scaling issues of conventional floating gate Flash. However, read instability in ReRAM is a critical issue, due to random telegraph noise (RTN), sensitivity to disturb and retention. In this work, the array-level characteristics of read stability in 50 nm AlxOy ReRAM are investigated and a circuit technique to improve stability is proposed and evaluated. First, in order to quantitatively assess memory cell stability, a method of stability characterization is defined. Next, based on this methodology, a proposal to improve read stability, called ;stability check loop; is evaluated. The stability check loop is a stability verification procedure, by which, instability improvement of 7×, and read error rate improvement of 40% are obtained.

  19. White Gaussian Noise - Models for Engineers

    Science.gov (United States)

    Jondral, Friedrich K.

    2018-04-01

    This paper assembles some information about white Gaussian noise (WGN) and its applications. It starts from a description of thermal noise, i. e. the irregular motion of free charge carriers in electronic devices. In a second step, mathematical models of WGN processes and their most important parameters, especially autocorrelation functions and power spectrum densities, are introduced. In order to proceed from mathematical models to simulations, we discuss the generation of normally distributed random numbers. The signal-to-noise ratio as the most important quality measure used in communications, control or measurement technology is accurately introduced. As a practical application of WGN, the transmission of quadrature amplitude modulated (QAM) signals over additive WGN channels together with the optimum maximum likelihood (ML) detector is considered in a demonstrative and intuitive way.

  20. The psychosis-like effects of Δ(9)-tetrahydrocannabinol are associated with increased cortical noise in healthy humans.

    Science.gov (United States)

    Cortes-Briones, Jose A; Cahill, John D; Skosnik, Patrick D; Mathalon, Daniel H; Williams, Ashley; Sewell, R Andrew; Roach, Brian J; Ford, Judith M; Ranganathan, Mohini; D'Souza, Deepak Cyril

    2015-12-01

    Drugs that induce psychosis may do so by increasing the level of task-irrelevant random neural activity or neural noise. Increased levels of neural noise have been demonstrated in psychotic disorders. We tested the hypothesis that neural noise could also be involved in the psychotomimetic effects of delta-9-tetrahydrocannabinol (Δ(9)-THC), the principal active constituent of cannabis. Neural noise was indexed by measuring the level of randomness in the electroencephalogram during the prestimulus baseline period of an oddball task using Lempel-Ziv complexity, a nonlinear measure of signal randomness. The acute, dose-related effects of Δ(9)-THC on Lempel-Ziv complexity and signal power were studied in humans (n = 24) who completed 3 test days during which they received intravenous Δ(9)-THC (placebo, .015 and .03 mg/kg) in a double-blind, randomized, crossover, and counterbalanced design. Δ(9)-THC increased neural noise in a dose-related manner. Furthermore, there was a strong positive relationship between neural noise and the psychosis-like positive and disorganization symptoms induced by Δ(9)-THC, which was independent of total signal power. Instead, there was no relationship between noise and negative-like symptoms. In addition, Δ(9)-THC reduced total signal power during both active drug conditions compared with placebo, but no relationship was detected between signal power and psychosis-like symptoms. At doses that produced psychosis-like effects, Δ(9)-THC increased neural noise in humans in a dose-dependent manner. Furthermore, increases in neural noise were related with increases in Δ(9)-THC-induced psychosis-like symptoms but not negative-like symptoms. These findings suggest that increases in neural noise may contribute to the psychotomimetic effects of Δ(9)-THC. Published by Elsevier Inc.

  1. Effect of noise in computed tomographic reconstructions on detectability

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1982-01-01

    The detectability of features in an image is ultimately limited by the random fluctuations in density or noise present in that image. The noise in CT reconstructions arising from the statistical fluctuations in the one-dimensional input projection measurements has an unusual character owing to the reconstruction procedure. Such CT image noise differs from the white noise normally found in images in its lack of low-frequency components. The noise power spectrum of CT reconstructions can be related to the effective density of x-ray quanta detected in the projection measurements, designated as NEQ (noise-equivalent quanta). The detectability of objects that are somewhat larger than the spatial resolution is directly related to NEQ. Since contrast resolution may be defined in terms of the ability to detect large, low-contrast objects, the measurement of a CT scanner's NEQ may be used to characterize its contrast sensitivity

  2. Effects of randomness on chaos and order of coupled logistic maps

    International Nuclear Information System (INIS)

    Savi, Marcelo A.

    2007-01-01

    Natural systems are essentially nonlinear being neither completely ordered nor completely random. These nonlinearities are responsible for a great variety of possibilities that includes chaos. On this basis, the effect of randomness on chaos and order of nonlinear dynamical systems is an important feature to be understood. This Letter considers randomness as fluctuations and uncertainties due to noise and investigates its influence in the nonlinear dynamical behavior of coupled logistic maps. The noise effect is included by adding random variations either to parameters or to state variables. Besides, the coupling uncertainty is investigated by assuming tinny values for the connection parameters, representing the idea that all Nature is, in some sense, weakly connected. Results from numerical simulations show situations where noise alters the system nonlinear dynamics

  3. Eliminating thermal violin spikes from LIGO noise

    Energy Technology Data Exchange (ETDEWEB)

    Santamore, D. H.; Levin, Yuri

    2001-08-15

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than {approx}2 x 10{sup -13} cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors.

  4. Eliminating thermal violin spikes from LIGO noise

    International Nuclear Information System (INIS)

    Santamore, D. H.; Levin, Yuri

    2001-01-01

    We have developed a scheme for reducing LIGO suspension thermal noise close to violin-mode resonances. The idea is to monitor directly the thermally induced motion of a small portion of (a 'point' on) each suspension fiber, thereby recording the random forces driving the test-mass motion close to each violin-mode frequency. One can then suppress the thermal noise by optimally subtracting the recorded fiber motions from the measured motion of the test mass, i.e., from the LIGO output. The proposed method is a modification of an analogous but more technically difficult scheme by Braginsky, Levin and Vyatchanin for reducing broad-band suspension thermal noise. The efficiency of our method is limited by the sensitivity of the sensor used to monitor the fiber motion. If the sensor has no intrinsic noise (i.e. has unlimited sensitivity), then our method allows, in principle, a complete removal of violin spikes from the thermal-noise spectrum. We find that in LIGO-II interferometers, in order to suppress violin spikes below the shot-noise level, the intrinsic noise of the sensor must be less than ∼2 x 10 -13 cm/Hz. This sensitivity is two orders of magnitude greater than that of currently available sensors

  5. Discriminality of statistically independent Gaussian noise tokens and random tone-burst complexes

    OpenAIRE

    Goossens, T.L.J.; Par, van de, S.L.J.D.E.; Kohlrausch, A.G.; Kollmeier, B.; Klump, G.; Hohmann, V.; Langemann, U.; Mauermann, M.; Uppenkamp, S.; Verhey, J.

    2007-01-01

    Hanna (1984) has shown that noise tokens with a duration of 400 ms are harder to discriminate than noise tokens of 100 ms. This is remarkable because a 400-ms stimulus potentially contains four times as much information for judging dissimilarity than the 100-ms stimulus. Apparently, the ability to use all information in a stimulus is impaired by some kind of limitation, e.g. a memory limitation (cf. Cowan 2000) or a limitation in the ability to allocate attentional resources (cf. Kidd and Wat...

  6. On minimizing the influence of the noise tail of correlation functions in operational modal analysis

    DEFF Research Database (Denmark)

    Tarpø, Marius; Olsen, Peter; Amador, Sandro

    2017-01-01

    on the identification results (random errors) when the noise tail is included in the identification. On the other hand, if the correlation function is truncated too much, then important information is lost. In other to minimize this error, a suitable truncation based on manual inspection of the correlation function......In operational modal analysis (OMA) correlation functions are used by all classical time-domain modal identification techniques that uses the impulse response function (free decays) as primary data. However, the main difference between the impulse response and the correlation functions estimated...... from the operational responses is that the latter present a higher noise level. This is due to statistical errors in the estimation of the correlation function and it causes random noise in the end of the function and this is called the noise tail. This noise might have significant influence...

  7. External noise distinguishes attention mechanisms.

    Science.gov (United States)

    Lu, Z L; Dosher, B A

    1998-05-01

    We developed and tested a powerful method for identifying and characterizing the effect of attention on performance in visual tasks as due to signal enhancement, distractor exclusion, or internal noise suppression. Based on a noisy Perceptual Template Model (PTM) of a human observer, the method adds increasing amounts of external noise (white gaussian random noise) to the visual stimulus and observes the effect on performance of a perceptual task for attended and unattended stimuli. The three mechanisms of attention yield three "signature" patterns of performance. The general framework for characterizing the mechanisms of attention is used here to investigate the attentional mechanisms in a concurrent location-cued orientation discrimination task. Test stimuli--Gabor patches tilted slightly to the right or left--always appeared on both the left and the right of fixation, and varied independently. Observers were cued on each trial to attend to the left, the right, or evenly to both stimuli, and decide the direction of tilt of both test stimuli. For eight levels of added external noise and three attention conditions (attended, unattended, and equal), subjects' contrast threshold levels were determined. At low levels of external noise, attention affected threshold contrast: threshold contrasts for non-attended stimuli were systematically higher than for equal attention stimuli, which were, in turn, higher than for attended stimuli. Specifically, when the rms contrast of the external noise is below 10%, there is a consistent 17% elevation of contrast threshold from attended to unattended condition across all three subjects. For higher levels of external noise, attention conditions did not affect threshold contrast values at all. These strong results are characteristic of a signal enhancement, or equivalently, an internal additive noise reduction mechanism of attention.

  8. Noise performance of frequency modulation Kelvin force microscopy

    Directory of Open Access Journals (Sweden)

    Heinrich Diesinger

    2014-01-01

    Full Text Available Noise performance of a phase-locked loop (PLL based frequency modulation Kelvin force microscope (FM-KFM is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as “noise gain” from operational amplifier (OpAmp design that offers the advantage of decoupling the noise performance study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modulation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion determines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design. Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more integral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values.

  9. A random-parametric reactor model with direct feedback and non-white noise

    International Nuclear Information System (INIS)

    Sako, O.; Taniguchi, A.; Kuroda, Y.

    1982-01-01

    The effects of multiplicative direct power feedback and non-white reactivity noise on the fluctuations of the neutron density are studied, based on the master equation using the cumulant expansion and the system-size expansion. The results obtained are the following: non-whiteness of reactivity noise reduces the variance of neutron density, as well as the level of the power spectral density. The nonlinear effect of power feedback gives rise to at least a pair of corner frequencies, in contrast to the single corner frequency in linearized case. (author)

  10. Quantum Entanglement Growth under Random Unitary Dynamics

    Directory of Open Access Journals (Sweden)

    Adam Nahum

    2017-07-01

    Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  11. Quantum Entanglement Growth under Random Unitary Dynamics

    Science.gov (United States)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  12. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  13. Modal Parameter Identification from Responses of General Unknown Random Inputs

    DEFF Research Database (Denmark)

    Ibrahim, S. R.; Asmussen, J. C.; Brincker, Rune

    1996-01-01

    Modal parameter identification from ambient responses due to a general unknown random inputs is investigated. Existing identification techniques which are based on assumptions of white noise and or stationary random inputs are utilized even though the inputs conditions are not satisfied....... This is accomplished via adding. In cascade. A force cascade conversion to the structures system under consideration. The input to the force conversion system is white noise and the output of which is the actual force(s) applied to the structure. The white noise input(s) and the structures responses are then used...

  14. Non-linearity consideration when analyzing reactor noise statistical characteristics. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kebadze, B V; Adamovski, L A

    1975-06-01

    Statistical characteristics of boiling water reactor noise in the vicinity of stability threshold are studied. The reactor is considered as a non-linear system affected by random perturbations. To solve a non-linear problem the principle of statistical linearization is used. It is shown that the halfwidth of resonance peak in neutron power noise spectrum density as well as the reciprocal of noise dispersion, which are used in predicting a stable operation theshold, are different from zero both within and beyond the stability boundary the determination of which was based on linear criteria.

  15. Noise reduction by support vector regression with a Ricker wavelet kernel

    International Nuclear Information System (INIS)

    Deng, Xiaoying; Yang, Dinghui; Xie, Jing

    2009-01-01

    We propose a noise filtering technology based on the least-squares support vector regression (LS-SVR), to improve the signal-to-noise ratio (SNR) of seismic data. We modified it by using an admissible support vector (SV) kernel, namely the Ricker wavelet kernel, to replace the conventional radial basis function (RBF) kernel in seismic data processing. We investigated the selection of the regularization parameter for the LS-SVR and derived a concise selecting formula directly from the noisy data. We used the proposed method for choosing the regularization parameter which not only had the advantage of high speed but could also obtain almost the same effectiveness as an optimal parameter method. We conducted experiments using synthetic data corrupted by the random noise of different types and levels, and found that our method was superior to the wavelet transform-based approach and the Wiener filtering. We also applied the method to two field seismic data sets and concluded that it was able to effectively suppress the random noise and improve the data quality in terms of SNR

  16. Noise reduction by support vector regression with a Ricker wavelet kernel

    Science.gov (United States)

    Deng, Xiaoying; Yang, Dinghui; Xie, Jing

    2009-06-01

    We propose a noise filtering technology based on the least-squares support vector regression (LS-SVR), to improve the signal-to-noise ratio (SNR) of seismic data. We modified it by using an admissible support vector (SV) kernel, namely the Ricker wavelet kernel, to replace the conventional radial basis function (RBF) kernel in seismic data processing. We investigated the selection of the regularization parameter for the LS-SVR and derived a concise selecting formula directly from the noisy data. We used the proposed method for choosing the regularization parameter which not only had the advantage of high speed but could also obtain almost the same effectiveness as an optimal parameter method. We conducted experiments using synthetic data corrupted by the random noise of different types and levels, and found that our method was superior to the wavelet transform-based approach and the Wiener filtering. We also applied the method to two field seismic data sets and concluded that it was able to effectively suppress the random noise and improve the data quality in terms of SNR.

  17. A Stochastic Approach to Noise Modeling for Barometric Altimeters

    Directory of Open Access Journals (Sweden)

    Angelo Maria Sabatini

    2013-11-01

    Full Text Available The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes, we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions.

  18. Energy-Based Wavelet De-Noising of Hydrologic Time Series

    Science.gov (United States)

    Sang, Yan-Fang; Liu, Changming; Wang, Zhonggen; Wen, Jun; Shang, Lunyu

    2014-01-01

    De-noising is a substantial issue in hydrologic time series analysis, but it is a difficult task due to the defect of methods. In this paper an energy-based wavelet de-noising method was proposed. It is to remove noise by comparing energy distribution of series with the background energy distribution, which is established from Monte-Carlo test. Differing from wavelet threshold de-noising (WTD) method with the basis of wavelet coefficient thresholding, the proposed method is based on energy distribution of series. It can distinguish noise from deterministic components in series, and uncertainty of de-noising result can be quantitatively estimated using proper confidence interval, but WTD method cannot do this. Analysis of both synthetic and observed series verified the comparable power of the proposed method and WTD, but de-noising process by the former is more easily operable. The results also indicate the influences of three key factors (wavelet choice, decomposition level choice and noise content) on wavelet de-noising. Wavelet should be carefully chosen when using the proposed method. The suitable decomposition level for wavelet de-noising should correspond to series' deterministic sub-signal which has the smallest temporal scale. If too much noise is included in a series, accurate de-noising result cannot be obtained by the proposed method or WTD, but the series would show pure random but not autocorrelation characters, so de-noising is no longer needed. PMID:25360533

  19. Sensor response time monitoring using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.; Holbert, K.E.

    1988-01-01

    Random noise techniques in nuclear power plants have been developed for system surveillance and for analysis of reactor core dynamics. The noise signals also contain information about sensor dynamics, and this can be extracted using frequency, amplitude and time domain analyses. Even though noise analysis has been used for sensor response time testing in some nuclear power plants, an adequate validation of this method has never been carried out. This paper presents the results of limited work recently performed to examine the validity of the noise analysis for sensor response time testing in nuclear power plants. The conclusion is that noise analysis has the potential for detecting gross changes in sensor response but it cannot be used for reliable measurement of response time until more laboratory and field experience is accumulated. The method is more advantageous for testing pressure sensors than it is for temperature sensors. This is because: 1) for temperature sensors, a method called Loop Current Step Response test is available which is quantitatively more exact than noise analysis, 2) no method currently exists for on-line testing of pressure transmitters other than the Power-Interrupt test which is applicable only to force balance pressure transmitters, and 3) pressure sensor response time is affected by sensing line degradation which is inherently taken into account by testing with noise analysis. (author)

  20. Studies on multiplication effect of noises of PPDs, and a proposal of a new structure to improve the performance

    International Nuclear Information System (INIS)

    Oide, H.; Murase, T.; Otono, H.; Yamashita, S.

    2010-01-01

    Pixelated Photon Detectors (PPDs) are arrayed APDs operated in Geiger-mode. Multi-Pixel Photon Counter (MPPC) is a PPD produced by Hamamatsu Photonics K.K. Test of dark noise rate of a 1600 pixel MPPC as a function of over-voltage at room temperature indicates that the over-voltage is limited up to a few volts because of explosive increase of noise rate. The over-voltage dependence of random noise rate is nevertheless mostly linear. We confirmed this is due to multiplication effect of noises because of after-pulsing and crosstalk. Over-voltage dependence of random noise and photon detection efficiency are qualitatively different. Considering the electric field structure of MPPC (p-on-n type) and Geiger-efficiency as a function of the position of initial pair creation, these characteristics are possible to be understood. One suggestion for p-on-n type PPD from these results is narrowing the depletion layer below the multiplication layer to reduce random noise and after-pulsing. Another proposal is to put additional buffer capacitance parallel to the diode to accomplish higher gain with lower over-voltage simultaneously with lower noise rate.

  1. Studies on multiplication effect of noises of PPDs, and a proposal of a new structure to improve the performance

    Energy Technology Data Exchange (ETDEWEB)

    Oide, H., E-mail: oide@icepp.s.u-tokyo.ac.j [Department of Physics, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo (Japan); Murase, T.; Otono, H. [Department of Physics, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo (Japan); Yamashita, S. [ICEPP, University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo (Japan)

    2010-01-21

    Pixelated Photon Detectors (PPDs) are arrayed APDs operated in Geiger-mode. Multi-Pixel Photon Counter (MPPC) is a PPD produced by Hamamatsu Photonics K.K. Test of dark noise rate of a 1600 pixel MPPC as a function of over-voltage at room temperature indicates that the over-voltage is limited up to a few volts because of explosive increase of noise rate. The over-voltage dependence of random noise rate is nevertheless mostly linear. We confirmed this is due to multiplication effect of noises because of after-pulsing and crosstalk. Over-voltage dependence of random noise and photon detection efficiency are qualitatively different. Considering the electric field structure of MPPC (p-on-n type) and Geiger-efficiency as a function of the position of initial pair creation, these characteristics are possible to be understood. One suggestion for p-on-n type PPD from these results is narrowing the depletion layer below the multiplication layer to reduce random noise and after-pulsing. Another proposal is to put additional buffer capacitance parallel to the diode to accomplish higher gain with lower over-voltage simultaneously with lower noise rate.

  2. Noise effect in metabolic networks

    International Nuclear Information System (INIS)

    Zheng-Yan, Li; Zheng-Wei, Xie; Tong, Chen; Qi, Ouyang

    2009-01-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states. (cross-disciplinary physics and related areas of science and technology)

  3. Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links

    Science.gov (United States)

    Jiao, Haisong; Pu, Tao; Xiang, Peng; Zheng, Jilin; Fang, Tao; Zhu, Huatao

    2017-08-01

    The quantitative security of quantum-noise randomized cipher (QNRC) in optically amplified links is analyzed from the perspective of physical-layer advantage. Establishing the wire-tap channel models for both key and data, we derive the general expressions of secrecy capacities for the key against ciphertext-only attack and known-plaintext attack, and that for the data, which serve as the basic performance metrics. Further, the maximal achievable secrecy rate of the system is proposed, under which secrecy of both the key and data is guaranteed. Based on the same framework, the secrecy capacities of various cases can be assessed and compared. The results indicate perfect secrecy is potentially achievable for data transmission, and an elementary principle of setting proper number of photons and bases is given to ensure the maximal data secrecy capacity. But the key security is asymptotically perfect, which tends to be the main constraint of systemic maximal secrecy rate. Moreover, by adopting cascaded optical amplification, QNRC can realize long-haul transmission with secure rate up to Gb/s, which is orders of magnitude higher than the perfect secrecy rates of other encryption systems.

  4. Random noise attenuation of non-uniformly sampled 3D seismic data along two spatial coordinates using non-equispaced curvelet transform

    Science.gov (United States)

    Zhang, Hua; Yang, Hui; Li, Hongxing; Huang, Guangnan; Ding, Zheyi

    2018-04-01

    The attenuation of random noise is important for improving the signal to noise ratio (SNR). However, the precondition for most conventional denoising methods is that the noisy data must be sampled on a uniform grid, making the conventional methods unsuitable for non-uniformly sampled data. In this paper, a denoising method capable of regularizing the noisy data from a non-uniform grid to a specified uniform grid is proposed. Firstly, the denoising method is performed for every time slice extracted from the 3D noisy data along the source and receiver directions, then the 2D non-equispaced fast Fourier transform (NFFT) is introduced in the conventional fast discrete curvelet transform (FDCT). The non-equispaced fast discrete curvelet transform (NFDCT) can be achieved based on the regularized inversion of an operator that links the uniformly sampled curvelet coefficients to the non-uniformly sampled noisy data. The uniform curvelet coefficients can be calculated by using the inversion algorithm of the spectral projected-gradient for ℓ1-norm problems. Then local threshold factors are chosen for the uniform curvelet coefficients for each decomposition scale, and effective curvelet coefficients are obtained respectively for each scale. Finally, the conventional inverse FDCT is applied to the effective curvelet coefficients. This completes the proposed 3D denoising method using the non-equispaced curvelet transform in the source-receiver domain. The examples for synthetic data and real data reveal the effectiveness of the proposed approach in applications to noise attenuation for non-uniformly sampled data compared with the conventional FDCT method and wavelet transformation.

  5. Noise-sustained fluctuations in stochastic dynamics with a delay.

    Science.gov (United States)

    D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2012-04-01

    Delayed responses to external drivers are ubiquitous in environmental, social, and biological processes. Delays may induce oscillations, Hopf bifurcations, and instabilities in deterministic systems even in the absence of nonlinearities. Despite recent advances in the study of delayed stochastic differential equations, the interaction of random drivers with delays remains poorly understood. In particular, it is unclear whether noise-induced behaviors may emerge from these interactions. Here we show that noise may enhance and sustain transient periodic oscillations inherent to deterministic delayed systems. We investigate the conditions conducive to the emergence and disappearance of these dynamics in a linear system in the presence of both additive and multiplicative noise.

  6. Quantum random number generator

    Science.gov (United States)

    Soubusta, Jan; Haderka, Ondrej; Hendrych, Martin

    2001-03-01

    Since reflection or transmission of a quantum particle on a beamsplitter is inherently random quantum process, a device built on this principle does not suffer from drawbacks of neither pseudo-random computer generators or classical noise sources. Nevertheless, a number of physical conditions necessary for high quality random numbers generation must be satisfied. Luckily, in quantum optics realization they can be well controlled. We present an easy random number generator based on the division of weak light pulses on a beamsplitter. The randomness of the generated bit stream is supported by passing the data through series of 15 statistical test. The device generates at a rate of 109.7 kbit/s.

  7. Networks of ·/G/∞ queues with shot-noise-driven arrival intensities

    NARCIS (Netherlands)

    Koops, D.T.; Boxma, O.J.; Mandjes, M.R.H.

    2017-01-01

    We study infinite-server queues in which the arrival process is a Cox process (or doubly stochastic Poisson process), of which the arrival rate is given by a shot-noise process. A shot-noise rate emerges naturally in cases where the arrival rate tends to exhibit sudden increases (or shots) at random

  8. Localization noise in deep subwavelength plasmonic devices

    Science.gov (United States)

    Ghoreyshi, Ali; Victora, R. H.

    2018-05-01

    The grain shape dependence of absorption has been investigated in metal-insulator thin films. We demonstrate that randomness in the size and shape of plasmonic particles can lead to Anderson localization of polarization modes in the deep subwavelength regime. These localized modes can contribute to significant variation in the local field. In the case of plasmonic nanodevices, the effects of the localized modes have been investigated by mapping an electrostatic Hamiltonian onto the Anderson Hamiltonian in the presence of a random vector potential. We show that local behavior of the optical beam can be understood in terms of the weighted local density of the localized modes of the depolarization field. Optical nanodevices that operate on a length scale with high variation in the density of states of localized modes will experience a previously unidentified localized noise. This localization noise contributes uncertainty to the output of plasmonic nanodevices and limits their scalability. In particular, the resulting impact on heat-assisted magnetic recording is discussed.

  9. Nuisance Caused by Aircraft Noise in the Vicinity of Tehran International Airport

    Directory of Open Access Journals (Sweden)

    Stan Frost

    1999-03-01

    Full Text Available Noise measurement and social questionnaire surveys in three residential areas around Mehrabad International Airport (Tehran, Iran were based upon randomly selected dwellings in each area. A total of 193 individuals responded and many are annoyed and dissatisfied with aircraft noise and in consequence they would like to move. Aircraft noise is the strongest negative environmental factor affecting the residents in the vicinity of Mehrabad Airport and it could be a hazard for their health.

  10. Investigation of mode partition noise in Fabry-Perot laser diode

    Science.gov (United States)

    Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping

    2014-09-01

    Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.

  11. Cascaded analysis of signal and noise propagation through a heterogeneous breast model

    International Nuclear Information System (INIS)

    Mainprize, James G.; Yaffe, Martin J.

    2010-01-01

    Purpose: The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the ''power law'' filter used to generate the texture of the tissue distribution. Methods: A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. Results: As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Conclusions: Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.

  12. Sound localization and occupational noise

    Directory of Open Access Journals (Sweden)

    Pedro de Lemos Menezes

    2014-02-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the effects of occupational noise on sound localization in different spatial planes and frequencies among normal hearing firefighters. METHOD: A total of 29 adults with pure-tone hearing thresholds below 25 dB took part in the study. The participants were divided into a group of 19 firefighters exposed to occupational noise and a control group of 10 adults who were not exposed to such noise. All subjects were assigned a sound localization task involving 117 stimuli from 13 sound sources that were spatially distributed in horizontal, vertical, midsagittal and transverse planes. The three stimuli, which were square waves with fundamental frequencies of 500, 2,000 and 4,000 Hz, were presented at a sound level of 70 dB and were randomly repeated three times from each sound source. The angle between the speaker's axis in the same plane was 45°, and the distance to the subject was 1 m. RESULT: The results demonstrate that the sound localization ability of the firefighters was significantly lower (p<0.01 than that of the control group. CONCLUSION: Exposure to occupational noise, even when not resulting in hearing loss, may lead to a diminished ability to locate a sound source.

  13. Low-noise Collision Operators for Particle-in-cell Simulations

    International Nuclear Information System (INIS)

    Lewandowski, J.L.V.

    2005-01-01

    A new method to implement low-noise collision operators in particle-in-cell simulations is presented. The method is based on the fact that relevant collision operators can be included naturally in the Lagrangian formulation that exemplifies the particle-in-cell simulation method. Numerical simulations show that the momentum and energy conservation properties of the simulated plasma associated with the low-noise collision operator are improved as compared with standard collision algorithms based on random numbers

  14. Analog model for quantum gravity effects: phonons in random fluids.

    Science.gov (United States)

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  15. SLMRACE: a noise-free RACE implementation with reduced computational time

    Science.gov (United States)

    Chauvin, Juliet; Provenzi, Edoardo

    2017-05-01

    We present a faster and noise-free implementation of the RACE algorithm. RACE has mixed characteristics between the famous Retinex model of Land and McCann and the automatic color equalization (ACE) color-correction algorithm. The original random spray-based RACE implementation suffers from two main problems: its computational time and the presence of noise. Here, we will show that it is possible to adapt two techniques recently proposed by Banić et al. to the RACE framework in order to drastically decrease the computational time and noise generation. The implementation will be called smart-light-memory-RACE (SLMRACE).

  16. A One-Dimensional Wave Equation with White Noise Boundary Condition

    International Nuclear Information System (INIS)

    Kim, Jong Uhn

    2006-01-01

    We discuss the Cauchy problem for a one-dimensional wave equation with white noise boundary condition. We also establish the existence of an invariant measure when the noise is additive. Similar problems for parabolic equations were discussed by several authors. To our knowledge, there is only one work which investigated the initial-boundary value problem for a wave equation with random noise at the boundary. We handle a more general case by a different method. Our result on the existence of an invariant measure relies on the author's recent work on a certain class of stochastic evolution equations

  17. Effects of noise on a computational model for disease states of mood disorders

    Science.gov (United States)

    Tobias Huber, Martin; Krieg, Jürgen-Christian; Braun, Hans Albert; Moss, Frank

    2000-03-01

    Nonlinear dynamics are currently proposed to explain the progressive course of recurrent mood disorders starting with isolated episodes and ending with accelerated irregular (``chaotic") mood fluctuations. Such a low-dimensional disease model is attractive because of its principal accordance with biological disease models, i.e. the kindling and biological rhythms model. However, most natural systems are nonlinear and noisy and several studies in the neuro- and physical sciences have demonstrated interesting cooperative behaviors arising from interacting random and deterministic dynamics. Here, we consider the effects of noise on a recent neurodynamical model for the timecourse of affective disorders (Huber et al.: Biological Psychiatry 1999;46:256-262). We describe noise effects on temporal patterns and mean episode frequencies of various in computo disease states. Our simulations demonstrate that noise can cause unstructured randomness or can maximize periodic order. The frequency of episode occurence can increase with noise but it can also remain unaffected or even can decrease. We show further that noise can make visible bifurcations before they would normally occur under deterministic conditions and we quantify this behavior with a recently developed statistical method. All these effects depend critically on both, the dynamic state and the noise intensity. Implications for neurobiology and course of mood disorders are discussed.

  18. Micro-Texture Synthesis by Phase Randomization

    Directory of Open Access Journals (Sweden)

    Bruno Galerne

    2011-09-01

    Full Text Available This contribution is concerned with texture synthesis by example, the process of generating new texture images from a given sample. The Random Phase Noise algorithm presented here synthesizes a texture from an original image by simply randomizing its Fourier phase. It is able to reproduce textures which are characterized by their Fourier modulus, namely the random phase textures (or micro-textures.

  19. A Health-Based Metric for Evaluating the Effectiveness of Noise Barrier Mitigation Associated With Transport Infrastructure Noise

    Directory of Open Access Journals (Sweden)

    Geoffrey P Prendergast

    2017-01-01

    Full Text Available Introduction: This study examines the use of the number of night-time sleep disturbances as a health-based metric to assess the cost effectiveness of rail noise mitigation strategies for situations, wherein high-intensity noises dominate such as freight train pass-bys and wheel squeal. Materials and Methods: Twenty residential properties adjacent to the existing and proposed rail tracks in a noise catchment area of the Epping to Thornleigh Third Track project were used as a case study. Awakening probabilities were calculated for individual’s awakening 1, 3 and 5 times a night when subjected to 10 independent freight train pass-by noise events using internal maximum sound pressure levels (LAFmax. Results: Awakenings were predicted using a random intercept multivariate logistic regression model. With source mitigation in place, the majority of the residents were still predicted to be awoken at least once per night (median 88.0%, although substantial reductions in the median probabilities of awakening three and five times per night from 50.9 to 29.4% and 9.2 to 2.7%, respectively, were predicted. This resulted in a cost-effective estimate of 7.6–8.8 less people being awoken at least three times per night per A$1 million spent on noise barriers. Conclusion: The study demonstrates that an easily understood metric can be readily used to assist making decisions related to noise mitigation for large-scale transport projects.

  20. Discrete least squares polynomial approximation with random evaluations - application to PDEs with Random parameters

    KAUST Repository

    Nobile, Fabio

    2015-01-07

    We consider a general problem F(u, y) = 0 where u is the unknown solution, possibly Hilbert space valued, and y a set of uncertain parameters. We specifically address the situation in which the parameterto-solution map u(y) is smooth, however y could be very high (or even infinite) dimensional. In particular, we are interested in cases in which F is a differential operator, u a Hilbert space valued function and y a distributed, space and/or time varying, random field. We aim at reconstructing the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial expansions, for the output of computer experiments. In the case of PDEs with random parameters, the metamodel is then used to approximate statistics of the output quantity. We discuss the stability of discrete least squares on random points show convergence estimates both in expectation and probability. We also present possible strategies to select, either a-priori or by adaptive algorithms, sequences of approximating polynomial spaces that allow to reduce, and in some cases break, the curse of dimensionality

  1. Effects of background noise on total noise annoyance

    Science.gov (United States)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  2. Statistical properties of a filtered Poisson process with additive random noise: distributions, correlations and moment estimation

    International Nuclear Information System (INIS)

    Theodorsen, A; Garcia, O E; Rypdal, M

    2017-01-01

    Filtered Poisson processes are often used as reference models for intermittent fluctuations in physical systems. Such a process is here extended by adding a noise term, either as a purely additive term to the process or as a dynamical term in a stochastic differential equation. The lowest order moments, probability density function, auto-correlation function and power spectral density are derived and used to identify and compare the effects of the two different noise terms. Monte-Carlo studies of synthetic time series are used to investigate the accuracy of model parameter estimation and to identify methods for distinguishing the noise types. It is shown that the probability density function and the three lowest order moments provide accurate estimations of the model parameters, but are unable to separate the noise types. The auto-correlation function and the power spectral density also provide methods for estimating the model parameters, as well as being capable of identifying the noise type. The number of times the signal crosses a prescribed threshold level in the positive direction also promises to be able to differentiate the noise type. (paper)

  3. Noise-sustained structure, Intermittency, and the Ginzburg--Landau equation

    International Nuclear Information System (INIS)

    Deissler, R.J.

    1985-01-01

    The time-dependent generalized Ginzburg--Landau equation is an equation that is related to many physical systems. Solutions of this equation in the presence of low-level external noise are studied. Numerical solutions of this equation in the stationary frame of refernce and with nonzero group velocity that is greater than a critical velocity exhibit a selective spatial amplification of noise resulting in spatially growing waves. These waves in turn result in the formation of a dynamic structure. It is found that the microscopic noise plays an importuant role in the macroscopic dynamics of the system. For certain parameter values the system exhibits intermittent turbulent behavior in which the random nature of the external noise plays a crucial role. A mechanism which may be responsible for the intermittent turbulence occurring in some fluid systems is suggested

  4. Maximizing noise energy for noise-masking studies.

    Science.gov (United States)

    Jules Étienne, Cédric; Arleo, Angelo; Allard, Rémy

    2017-08-01

    Noise-masking experiments are widely used to investigate visual functions. To be useful, noise generally needs to be strong enough to noticeably impair performance, but under some conditions, noise does not impair performance even when its contrast approaches the maximal displayable limit of 100 %. To extend the usefulness of noise-masking paradigms over a wider range of conditions, the present study developed a noise with great masking strength. There are two typical ways of increasing masking strength without exceeding the limited contrast range: use binary noise instead of Gaussian noise or filter out frequencies that are not relevant to the task (i.e., which can be removed without affecting performance). The present study combined these two approaches to further increase masking strength. We show that binarizing the noise after the filtering process substantially increases the energy at frequencies within the pass-band of the filter given equated total contrast ranges. A validation experiment showed that similar performances were obtained using binarized-filtered noise and filtered noise (given equated noise energy at the frequencies within the pass-band) suggesting that the binarization operation, which substantially reduced the contrast range, had no significant impact on performance. We conclude that binarized-filtered noise (and more generally, truncated-filtered noise) can substantially increase the energy of the noise at frequencies within the pass-band. Thus, given a limited contrast range, binarized-filtered noise can display higher energy levels than Gaussian noise and thereby widen the range of conditions over which noise-masking paradigms can be useful.

  5. Low-frequency-noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    From 203 cases of low-frequency complaints a random selection of twenty-one cases were investigated. The main aim of the investigation was to answer the question whether the annoyance is caused by an external physical sound or by a physically non-existing sound, i.e. low-frequency tinnitus. Noise...... of the complainants are annoyed by a physical sound (20-180 Hz), while others suffer from low-frequency tinnitus (perceived frequency 40-100 Hz). Physical sound at frequencies below 20 Hz (infrasound) is not responsible for the annoyance - or at all audible - in any of the investigated cases, and none...... of the complainants has extraordinary hearing sensitivity at low frequencies. For comparable cases of low-frequency noise complaints in general, it is anticipated that physical sound is responsible in a substantial part of the cases, while low-frequency tinnitus is responsible in another substantial part of the cases....

  6. Environmental noise in downtown Medellin 2002

    International Nuclear Information System (INIS)

    Bedoya, Julian; Correa E, Alexander

    2003-01-01

    A total of 6400 noise measurements were taken in downtown Medellin, a 2km x 2km area to characterize noise levels. The area was divided into a grid of 160 blocks with a length 154 m each; 40 measurements were taken in each block Sampling was conducted for 10 days, with simultaneous measurements in four sampling zones selected randomly and with coverage of four sampling periods 7:00-9:00 AM, 9:30-11:30 AM, 12:00 AM-2:00 PM, y 5:00-7:00 PM). The zone between 44 and 49 streets and between 40 and 49 avenues has the maximum average noise level with 74 dBA (decibels in scale A). Four of the noisiest sites were measured during 48 hours continuously by usage of a dosimeter Auto correlation results allowed use of Geo statistics to built isophones for the tour time periods. Isophones plots over imposed on physical layout of the city shows a good correlation between high noise levels and heavy traffic through main avenues (Avenida Oriental, Calle San Juan, Avenida del Ferrocarril, Bazar de los Puentes, Glorieta de la Minorista). Medellin is a noisy city that does not meet existing national regulations. The proposed methodology based on Geo statistics and experimental design is a feasible and comprehensive approach to manage urban noise

  7. Colored-noise-induced discontinuous transitions in symbiotic ecosystems

    Science.gov (United States)

    Mankin, Romi; Sauga, Ako; Ainsaar, Ain; Haljas, Astrid; Paunel, Kristiina

    2004-06-01

    A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems subjected to three-level (trichotomous) noise [R. Mankin, A. Ainsaar, A. Haljas, and E. Reiter, Phys. Rev. E 65, 051108 (2002)]. Relying on the mean-field theory, an exact self-consistency equation for stationary states is derived. In some cases the mean field exhibits hysteresis as a function of noise parameters. It is established that random interactions with the environment can cause discontinuous transitions. The dependence of the critical coupling strengths on the noise parameters is found and illustrated by phase diagrams. Predictions from the mean-field theory are compared with the results of numerical simulations. Our results provide a possible scenario for catastrophic shifts of population sizes observed in nature.

  8. Active Noise Control for Dishwasher noise

    Science.gov (United States)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  9. Modeling of Thermal Phase Noise in a Solid Core Photonic Crystal Fiber-Optic Gyroscope.

    Science.gov (United States)

    Song, Ningfang; Ma, Kun; Jin, Jing; Teng, Fei; Cai, Wei

    2017-10-26

    A theoretical model of the thermal phase noise in a square-wave modulated solid core photonic crystal fiber-optic gyroscope has been established, and then verified by measurements. The results demonstrate a good agreement between theory and experiment. The contribution of the thermal phase noise to the random walk coefficient of the gyroscope is derived. A fiber coil with 2.8 km length is used in the experimental solid core photonic crystal fiber-optic gyroscope, showing a random walk coefficient of 9.25 × 10 -5 deg/√h.

  10. Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis

    Science.gov (United States)

    Ryashko, Lev

    2018-03-01

    A phenomenon of the noise-induced oscillatory multistability in glycolysis is studied. As a basic deterministic skeleton, we consider the two-dimensional Higgins model. The noise-induced generation of mixed-mode stochastic oscillations is studied in various parametric zones. Probabilistic mechanisms of the stochastic excitability of equilibria and noise-induced splitting of randomly forced cycles are analysed by the stochastic sensitivity function technique. A parametric zone of supersensitive Canard-type cycles is localized and studied in detail. It is shown that the generation of mixed-mode stochastic oscillations is accompanied by the noise-induced transitions from order to chaos.

  11. Mirror Symmetry Breaking and Restoration: The Role of Noise and Chiral Bias

    International Nuclear Information System (INIS)

    Hochberg, David

    2009-01-01

    The nonequilibrium effective potential is computed for the Frank model of spontaneous mirror symmetry breaking (SMSB) in chemistry in which external noise is introduced to account for random environmental effects. When these fluctuations exceed a critical magnitude, mirror symmetry is restored. The competition between ambient noise and the chiral bias due to physical fields and polarized radiation can be explored with this potential.

  12. Noise analysis of gate electrode work function engineered recessed channel (GEWE-RC) MOSFET

    International Nuclear Information System (INIS)

    Agarwala, Ajita; Chaujar, Rishu

    2012-01-01

    This paper discusses the noise assessment, using ATLAS device simulation software, of a gate electrode work function engineered recessed channel (GEWE-RC) MOSFET involving an RC and GEWE design integrated onto a conventional MOSFET. Furthermore, the behaviour of GEWE-RC MOSFET is compared with that of a conventional MOSFET having the same device parameters. This paper thus optimizes and predicts the feasibility of a novel design, i.e., GEWE-RC MOSFET for high-performance applications where device and noise reduction is a major concern. The noise metrics taken into consideration are: minimum noise figure and optimum source impedance. The statistical tools auto correlation and cross correlation are also analysed owing to the random nature of noise.

  13. Tunnel conductance of Watson-Crick nucleoside-base pairs from telegraph noise

    International Nuclear Information System (INIS)

    Chang Shuai; He Jin; Lin Lisha; Zhang Peiming; Liang Feng; Huang Shuo; Lindsay, Stuart; Young, Michael

    2009-01-01

    The use of tunneling signals to sequence DNA is presently hampered by the small tunnel conductance of a junction spanning an entire DNA molecule. The design of a readout system that uses a shorter tunneling path requires knowledge of the absolute conductance across base pairs. We have exploited the stochastic switching of hydrogen-bonded DNA base-nucleoside pairs trapped in a tunnel junction to determine the conductance of individual molecular pairs. This conductance is found to be sensitive to the geometry of the junction, but a subset of the data appears to come from unstrained molecular pairs. The conductances determined from these pairs are within a factor of two of the predictions of density functional calculations. The experimental data reproduces the counterintuitive theoretical prediction that guanine-deoxycytidine pairs (3 H-bonds) have a smaller conductance than adenine-thymine pairs (2 H-bonds). A bimodal distribution of switching lifetimes shows that both H-bonds and molecule-metal contacts break.

  14. Auditory white noise reduces age-related fluctuations in balance.

    Science.gov (United States)

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Effects of noise on the interstellar polarization law

    International Nuclear Information System (INIS)

    Clarke, D.; Al-Roubaie, A.

    1983-01-01

    A re-appraisal has been made of catalogued four- and seven-colour polarimetric data in terms of the Serkowski law P(lambda)/Psub(max)=exp(-K ln 2 (lambdasub(max)/lambda)) for the wavelength dependence of interstellar polarization. It has been found that the parameter (K) controlling the peakiness of the p(lambda) curve is not a constant at 1.15 but that it is correlated with the value of lambdasub(max), the wavelength corresponding to the maximum value of p(lambda). It has also been found the the form of the correlation depends significantly on the choice of the wavelength values used to measure p(lambda). A numerical exercise involving data simulation shows that the correlations found in the real data could be an artifact of the random noise on the p(lambda) measurements. It is also suggested that a recent proposal to refine the interstellar law reflects, at least partly, the effects of random noise associated with polarimetric measurements. (author)

  16. Asynchronous Advanced Encryption Standard Hardware with Random Noise Injection for Improved Side-Channel Attack Resistance

    Directory of Open Access Journals (Sweden)

    Siva Kotipalli

    2014-01-01

    (SCA resistance. These designs are based on a delay-insensitive (DI logic paradigm known as null convention logic (NCL, which supports useful properties for resisting SCAs including dual-rail encoding, clock-free operation, and monotonic transitions. Potential benefits include reduced and more uniform switching activities and reduced signal-to-noise (SNR ratio. A novel method to further augment NCL AES hardware with random voltage scaling technique is also presented for additional security. Thereby, the proposed components leak significantly less side-channel information than conventional clocked approaches. To quantitatively verify such improvements, functional verification and WASSO (weighted average simultaneous switching output analysis have been carried out on both conventional synchronous approach and the proposed NCL based approach using Mentor Graphics ModelSim and Xilinx simulation tools. Hardware implementation has been carried out on both designs exploiting a specified side-channel attack standard evaluation FPGA board, called SASEBO-GII, and the corresponding power waveforms for both designs have been collected. Along with the results of software simulations, we have analyzed the collected waveforms to validate the claims related to benefits of the proposed cryptohardware design approach.

  17. Noise-induced chaos and basin erosion in softening Duffing oscillator

    International Nuclear Information System (INIS)

    Gan Chunbiao

    2005-01-01

    It is common for many dynamical systems to have two or more attractors coexist and in such cases the basin boundary is fractal. The purpose of this paper is to study the noise-induced chaos and discuss the effect of noises on erosion of safe basin in the softening Duffing oscillator. The Melnikov approach is used to obtain the necessary condition for the rising of chaos, and the largest Lyapunov exponent is computed to identify the chaotic nature of the sample time series from the system. According to the Melnikov condition, the safe basins are simulated for both the deterministic and the stochastic cases of the system. It is shown that the external Gaussian white noise excitation is robust for inducing the chaos, while the external bounded noise is weak. Moreover, the erosion of the safe basin can be aggravated by both the Gaussian white and the bounded noise excitations, and fractal boundary can appear when the system is only excited by the random processes, which means noise-induced chaotic response is induced

  18. Anti-deterministic behaviour of discrete systems that are less predictable than noise

    Science.gov (United States)

    Urbanowicz, Krzysztof; Kantz, Holger; Holyst, Janusz A.

    2005-05-01

    We present a new type of deterministic dynamical behaviour that is less predictable than white noise. We call it anti-deterministic (AD) because time series corresponding to the dynamics of such systems do not generate deterministic lines in recurrence plots for small thresholds. We show that although the dynamics is chaotic in the sense of exponential divergence of nearby initial conditions and although some properties of AD data are similar to white noise, the AD dynamics is in fact, less predictable than noise and hence is different from pseudo-random number generators.

  19. Low-frequency excess flux noise in superconducting devices

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Sebastian; Ferring, Anna; Fleischmann, Andreas; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2016-07-01

    Low-frequency noise is a rather universal phenomenon and appears in physical, chemical, biological or even economical systems. However, there is often very little known about the underlying processes leading to its occurrence. In particular, the origin of low-frequency excess flux noise in superconducting devices has been an unresolved puzzle for many decades. Its existence limits, for example, the coherence time of superconducting quantum bits or makes high-precision measurements of low-frequency signals using SQUIDs rather challenging. Recent experiments suggest that low-frequency excess flux noise in Josephson junction based devices might be caused by the random reversal of interacting spins in surface layer oxides and in the superconductor-substrate interface. Even if it turns out to be generally correct, the underlying physical processes, i.e. the origin of these spins, their physical nature as well as the interaction mechanisms, have not been resolved so far. In this contribution we discuss recent measurements of low-frequency SQUID noise which we performed to investigate the origin of low-frequency excess flux noise in superconducting devices. Within this context we give an overview of our measurement techniques and link our data with present theoretical models and literature data.

  20. Multifractal detrended fluctuation analysis of analog random multiplicative processes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.B.M.; Vermelho, M.V.D. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil); Lyra, M.L. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)], E-mail: marcelo@if.ufal.br; Viswanathan, G.M. [Instituto de Fisica, Universidade Federal de Alagoas, Maceio - AL, 57072-970 (Brazil)

    2009-09-15

    We investigate non-Gaussian statistical properties of stationary stochastic signals generated by an analog circuit that simulates a random multiplicative process with weak additive noise. The random noises are originated by thermal shot noise and avalanche processes, while the multiplicative process is generated by a fully analog circuit. The resulting signal describes stochastic time series of current interest in several areas such as turbulence, finance, biology and environment, which exhibit power-law distributions. Specifically, we study the correlation properties of the signal by employing a detrended fluctuation analysis and explore its multifractal nature. The singularity spectrum is obtained and analyzed as a function of the control circuit parameter that tunes the asymptotic power-law form of the probability distribution function.

  1. A method simulating random magnetic field in interplanetary space by an autoregressive method

    International Nuclear Information System (INIS)

    Kato, Masahito; Sakai, Takasuke

    1985-01-01

    With an autoregressive method, we tried to generate the random noise fitting in with the power spectrum which can be analytically Fouriertransformed into an autocorrelation function. Although we can not directly compare our method with FFT by Owens (1978), we can only point out the following; FFT method should determine at first the number of data points N, or the total length to be generated and we cannot generate random data more than N. Because, beyond the NΔy, the generated data repeats the same pattern as below NΔy, where Δy = minimum interval for random noise. So if you want to change or increase N after generating the random noise, you should start the generation from the first step. The characteristic of the generated random number may depend upon the number of N, judging from the generating method. Once the prediction error filters are determined, our method can produce successively the random numbers, that is, we can possibly extend N to infinite without any effort. (author)

  2. Optimal source coding, removable noise elimination, and natural coordinate system construction for general vector sources using replicator neural networks

    Science.gov (United States)

    Hecht-Nielsen, Robert

    1997-04-01

    A new universal one-chart smooth manifold model for vector information sources is introduced. Natural coordinates (a particular type of chart) for such data manifolds are then defined. Uniformly quantized natural coordinates form an optimal vector quantization code for a general vector source. Replicator neural networks (a specialized type of multilayer perceptron with three hidden layers) are the introduced. As properly configured examples of replicator networks approach minimum mean squared error (e.g., via training and architecture adjustment using randomly chosen vectors from the source), these networks automatically develop a mapping which, in the limit, produces natural coordinates for arbitrary source vectors. The new concept of removable noise (a noise model applicable to a wide variety of real-world noise processes) is then discussed. Replicator neural networks, when configured to approach minimum mean squared reconstruction error (e.g., via training and architecture adjustment on randomly chosen examples from a vector source, each with randomly chosen additive removable noise contamination), in the limit eliminate removable noise and produce natural coordinates for the data vector portions of the noise-corrupted source vectors. Consideration regarding selection of the dimension of a data manifold source model and the training/configuration of replicator neural networks are discussed.

  3. Visibility of wavelet quantization noise

    Science.gov (United States)

    Watson, A. B.; Yang, G. Y.; Solomon, J. A.; Villasenor, J.

    1997-01-01

    The discrete wavelet transform (DWT) decomposes an image into bands that vary in spatial frequency and orientation. It is widely used for image compression. Measures of the visibility of DWT quantization errors are required to achieve optimal compression. Uniform quantization of a single band of coefficients results in an artifact that we call DWT uniform quantization noise; it is the sum of a lattice of random amplitude basis functions of the corresponding DWT synthesis filter. We measured visual detection thresholds for samples of DWT uniform quantization noise in Y, Cb, and Cr color channels. The spatial frequency of a wavelet is r 2-lambda, where r is display visual resolution in pixels/degree, and lambda is the wavelet level. Thresholds increase rapidly with wavelet spatial frequency. Thresholds also increase from Y to Cr to Cb, and with orientation from lowpass to horizontal/vertical to diagonal. We construct a mathematical model for DWT noise detection thresholds that is a function of level, orientation, and display visual resolution. This allows calculation of a "perceptually lossless" quantization matrix for which all errors are in theory below the visual threshold. The model may also be used as the basis for adaptive quantization schemes.

  4. Human observer detection experiments with mammograms and power-law noise

    International Nuclear Information System (INIS)

    Burgess, Arthur E.; Jacobson, Francine L.; Judy, Philip F.

    2001-01-01

    We determined contrast thresholds for lesion detection as a function of lesion size in both mammograms and filtered noise backgrounds with the same average power spectrum, P(f )=B/f 3 . Experiments were done using hybrid images with digital images of tumors added to digitized normal backgrounds, displayed on a monochrome monitor. Four tumors were extracted from digitized specimen radiographs. The lesion sizes were varied by digital rescaling to cover the range from 0.5 to 16 mm. Amplitudes were varied to determine the value required for 92% correct detection in two-alternative forced-choice (2AFC) and 90% for search experiments. Three observers participated, two physicists and a radiologist. The 2AFC mammographic results demonstrated a novel contrast-detail (CD) diagram with threshold amplitudes that increased steadily (with slope of 0.3) with increasing size for lesions larger than 1 mm. The slopes for prewhitening model observers were about 0.4. Human efficiency relative to these models was as high as 90%. The CD diagram slopes for the 2AFC experiments with filtered noise were 0.44 for humans and 0.5 for models. Human efficiency relative to the ideal observer was about 40%. The difference in efficiencies for the two types of backgrounds indicates that breast structure cannot be considered to be pure random noise for 2AFC experiments. Instead, 2AFC human detection with mammographic backgrounds is limited by a combination of noise and deterministic masking effects. The search experiments also gave thresholds that increased with lesion size. However, there was no difference in human results for mammographic and filtered noise backgrounds, suggesting that breast structure can be considered to be pure random noise for this task. Our conclusion is that, in spite of the fact that mammographic backgrounds have nonstationary statistics, models based on statistical decision theory can still be applied successfully to estimate human performance

  5. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    Directory of Open Access Journals (Sweden)

    Sabine A. Janssen

    2011-05-01

    Full Text Available In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A‑weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  6. Group-velocity dispersion effects on quantum noise of a fiber optical soliton in phase space

    International Nuclear Information System (INIS)

    Ju, Heongkyu; Lee, Euncheol

    2010-01-01

    Group-velocity dispersion (GVD) effects on quantum noise of ultrashort pulsed light are theoretically investigated at the soliton energy level, using Gaussian-weighted pseudo-random distribution of phasors in phase space for the modeling of quantum noise properties including phase noise, photon number noise, and quantum noise shape in phase space. We present the effects of GVD that mixes the different spectral components in time, on the self-phase modulation(SPM)-induced quantum noise properties in phase space such as quadrature squeezing, photon-number noise, and tilting/distortion of quantum noise shape in phase space, for the soliton that propagates a distance of the nonlinear length η NL = 1/( γP 0 ) (P 0 is the pulse peak power and γ is the SPM parameter). The propagation dependence of phase space quantum noise properties for an optical soliton is also provided.

  7. A Comparison of Three Random Number Generators for Aircraft Dynamic Modeling Applications

    Science.gov (United States)

    Grauer, Jared A.

    2017-01-01

    Three random number generators, which produce Gaussian white noise sequences, were compared to assess their suitability in aircraft dynamic modeling applications. The first generator considered was the MATLAB (registered) implementation of the Mersenne-Twister algorithm. The second generator was a website called Random.org, which processes atmospheric noise measured using radios to create the random numbers. The third generator was based on synthesis of the Fourier series, where the random number sequences are constructed from prescribed amplitude and phase spectra. A total of 200 sequences, each having 601 random numbers, for each generator were collected and analyzed in terms of the mean, variance, normality, autocorrelation, and power spectral density. These sequences were then applied to two problems in aircraft dynamic modeling, namely estimating stability and control derivatives from simulated onboard sensor data, and simulating flight in atmospheric turbulence. In general, each random number generator had good performance and is well-suited for aircraft dynamic modeling applications. Specific strengths and weaknesses of each generator are discussed. For Monte Carlo simulation, the Fourier synthesis method is recommended because it most accurately and consistently approximated Gaussian white noise and can be implemented with reasonable computational effort.

  8. Noise Reduction for Nonlinear Nonstationary Time Series Data using Averaging Intrinsic Mode Function

    Directory of Open Access Journals (Sweden)

    Christofer Toumazou

    2013-07-01

    Full Text Available A novel noise filtering algorithm based on averaging Intrinsic Mode Function (aIMF, which is a derivation of Empirical Mode Decomposition (EMD, is proposed to remove white-Gaussian noise of foreign currency exchange rates that are nonlinear nonstationary times series signals. Noise patterns with different amplitudes and frequencies were randomly mixed into the five exchange rates. A number of filters, namely; Extended Kalman Filter (EKF, Wavelet Transform (WT, Particle Filter (PF and the averaging Intrinsic Mode Function (aIMF algorithm were used to compare filtering and smoothing performance. The aIMF algorithm demonstrated high noise reduction among the performance of these filters.

  9. Application of the θ-method to a telegraphic model of fluid flow in a dual-porosity medium

    Science.gov (United States)

    González-Calderón, Alfredo; Vivas-Cruz, Luis X.; Herrera-Hernández, Erik César

    2018-01-01

    This work focuses mainly on the study of numerical solutions, which are obtained using the θ-method, of a generalized Warren and Root model that includes a second-order wave-like equation in its formulation. The solutions approximately describe the single-phase hydraulic head in fractures by considering the finite velocity of propagation by means of a Cattaneo-like equation. The corresponding discretized model is obtained by utilizing a non-uniform grid and a non-uniform time step. A simple relationship is proposed to give the time-step distribution. Convergence is analyzed by comparing results from explicit, fully implicit, and Crank-Nicolson schemes with exact solutions: a telegraphic model of fluid flow in a single-porosity reservoir with relaxation dynamics, the Warren and Root model, and our studied model, which is solved with the inverse Laplace transform. We find that the flux and the hydraulic head have spurious oscillations that most often appear in small-time solutions but are attenuated as the solution time progresses. Furthermore, we show that the finite difference method is unable to reproduce the exact flux at time zero. Obtaining results for oilfield production times, which are in the order of months in real units, is only feasible using parallel implicit schemes. In addition, we propose simple parallel algorithms for the memory flux and for the explicit scheme.

  10. Arbitrary-step randomly delayed robust filter with application to boost phase tracking

    Science.gov (United States)

    Qin, Wutao; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang

    2018-04-01

    The conventional filters such as extended Kalman filter, unscented Kalman filter and cubature Kalman filter assume that the measurement is available in real-time and the measurement noise is Gaussian white noise. But in practice, both two assumptions are invalid. To solve this problem, a novel algorithm is proposed by taking the following four steps. At first, the measurement model is modified by the Bernoulli random variables to describe the random delay. Then, the expression of predicted measurement and covariance are reformulated, which could get rid of the restriction that the maximum number of delay must be one or two and the assumption that probabilities of Bernoulli random variables taking the value one are equal. Next, the arbitrary-step randomly delayed high-degree cubature Kalman filter is derived based on the 5th-degree spherical-radial rule and the reformulated expressions. Finally, the arbitrary-step randomly delayed high-degree cubature Kalman filter is modified to the arbitrary-step randomly delayed high-degree cubature Huber-based filter based on the Huber technique, which is essentially an M-estimator. Therefore, the proposed filter is not only robust to the randomly delayed measurements, but robust to the glint noise. The application to the boost phase tracking example demonstrate the superiority of the proposed algorithms.

  11. Selected papers on noise and stochastic processes

    CERN Document Server

    1954-01-01

    Six classic papers on stochastic process, selected to meet the needs of physicists, applied mathematicians, and engineers. Contents: 1.Chandrasekhar, S.: Stochastic Problems in Physics and Astronomy. 2. Uhlenbeck, G. E. and Ornstein, L. S.: On the Theory of the Browninan Motion. 3. Ming Chen Wang and Uhlenbeck, G. E.: On the Theory of the Browninan Motion II. 4. Rice, S. O.: Mathematical Analysis of Random Noise. 5. Kac, Mark: Random Walk and the Theory of Brownian Motion. 6. Doob, J. L.: The Brownian Movement and Stochastic Equations. Unabridged republication of the Dover reprint (1954). Pre

  12. Study on the ratio of signal to noise for single photon resolution time spectrometer

    International Nuclear Information System (INIS)

    Wang Zhaomin; Huang Shengli; Xu Zizong; Wu Chong

    2001-01-01

    The ratio of signal to noise for single photon resolution time spectrometer and their influence factors were studied. A method to depress the background, to shorten the measurement time and to increase the ratio of signal to noise was discussed. Results show that ratio of signal to noise is proportional to solid angle of detector to source and detection efficiency, and inverse proportional to electronics noise. Choose the activity of the source was important for decreasing of random coincidence counting. To use a coincidence gate and a discriminator of single photon were an effective way of increasing measurement accuracy and detection efficiency

  13. Exploring conservative islands using correlated and uncorrelated noise

    Science.gov (United States)

    da Silva, Rafael M.; Manchein, Cesar; Beims, Marcus W.

    2018-02-01

    In this work, noise is used to analyze the penetration of regular islands in conservative dynamical systems. For this purpose we use the standard map choosing nonlinearity parameters for which a mixed phase space is present. The random variable which simulates noise assumes three distributions, namely equally distributed, normal or Gaussian, and power law (obtained from the same standard map but for other parameters). To investigate the penetration process and explore distinct dynamical behaviors which may occur, we use recurrence time statistics (RTS), Lyapunov exponents and the occupation rate of the phase space. Our main findings are as follows: (i) the standard deviations of the distributions are the most relevant quantity to induce the penetration; (ii) the penetration of islands induce power-law decays in the RTS as a consequence of enhanced trapping; (iii) for the power-law correlated noise an algebraic decay of the RTS is observed, even though sticky motion is absent; and (iv) although strong noise intensities induce an ergodic-like behavior with exponential decays of RTS, the largest Lyapunov exponent is reminiscent of the regular islands.

  14. Evidence of Non-extensivity in Earth's Ambient Noise

    Science.gov (United States)

    Koutalonis, Ioannis; Vallianatos, Filippos

    2017-12-01

    The study of ambient seismic noise is one of the important scientific and practical research challenges, due to its use in a number of geophysical applications. In this work, we describe Earth's ambient noise fluctuations in terms of non-extensive statistical physics. We found that Earth's ambient noise increments follow the q-Gaussian distribution. This indicates that Earth's ambient noise's fluctuations are not random and present long-term memory effects that could be described in terms of Tsallis entropy. Our results suggest that q values depend on the time length used and that the non-extensive parameter, q, converges to value q → 1 for short-time windows and a saturation value of q ≈ 1.33 for longer ones. The results are discussed from the point of view of superstatistics introduced by Beck [Contin Mech Thermodyn 16(3):293-304, 2004] and connects the q values with the system's degrees of freedom. Our work indicates that the converged (maximum) value is q = 1.33 and is related to 5 degrees of freedom.

  15. Extracting Earth's Elastic Wave Response from Noise Measurements

    Science.gov (United States)

    Snieder, Roel; Larose, Eric

    2013-05-01

    Recent research has shown that noise can be turned from a nuisance into a useful seismic source. In seismology and other fields in science and engineering, the estimation of the system response from noise measurements has proven to be a powerful technique. To convey the essence of the method, we first treat the simplest case of a homogeneous medium to show how noise measurements can be used to estimate waves that propagate between sensors. We provide an overview of physics research—dating back more than 100 years—showing that random field fluctuations contain information about the system response. This principle has found extensive use in surface-wave seismology but can also be applied to the estimation of body waves. Because noise provides continuous illumination of the subsurface, the extracted response is ideally suited for time-lapse monitoring. We present examples of time-lapse monitoring as applied to the softening of soil after the 2011 Tohoku-oki earthquake, the detection of a precursor to a landslide, and temporal changes in the lunar soil.

  16. A Multi-Stage Method for Connecting Participatory Sensing and Noise Simulations

    Directory of Open Access Journals (Sweden)

    Mingyuan Hu

    2015-01-01

    Full Text Available Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment, and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1 spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2 multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3 dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic

  17. Correlation analysis between the current fluctuation characteristics and the conductive filament morphology of HfO2-based memristor

    Science.gov (United States)

    Li, Yi; Yin, Kang-Sheng; Zhang, Mei-Yun; Cheng, Long; Lu, Ke; Long, Shi-Bing; Zhou, Yaxiong; Wang, Zhuorui; Xue, Kan-Hao; Liu, Ming; Miao, Xiang-Shui

    2017-11-01

    Memristors are attracting considerable interest for their prospective applications in nonvolatile memory, neuromorphic computing, and in-memory computing. However, the nature of resistance switching is still under debate, and current fluctuation in memristors is one of the critical concerns for stable performance. In this work, random telegraph noise (RTN) as the indication of current instabilities in distinct resistance states of the Pt/Ti/HfO2/W memristor is thoroughly investigated. Standard two-level digital-like RTN, multilevel current instabilities with non-correlation/correlation defects, and irreversible current transitions are observed and analyzed. The dependence of RTN on the resistance and read bias reveals that the current fluctuation depends strongly on the morphology and evolution of the conductive filament composed of oxygen vacancies. Our results link the current fluctuation behaviors to the evolution of the conductive filament and will guide continuous optimization of memristive devices.

  18. Origin of the current discretization in deep reset states of an Al2O3/Cu-based conductive-bridging memory, and impact on state level and variability

    Science.gov (United States)

    Belmonte, A.; Degraeve, R.; Fantini, A.; Kim, W.; Houssa, M.; Jurczak, M.; Goux, L.

    2014-06-01

    In this paper, we develop a Quantum-Point-Contact (QPC) model describing the state conduction in a W/Al2O3/TiW/Cu Conductive-Bridging Memory cell (CBRAM). The model allows describing both the voltage- and the temperature-dependence of the conduction. For deep current levels, a resistance component is added in series to the point-contact constriction to account for electron scattering in the residual filament. The fitting of single-particle perturbation also allowed to estimate the number and effective size of the conduction-controlling particles in the QPC constriction. The results clearly point to smaller particles for CBRAM (Cu particles) as compared to oxide-based resistive RAM involving oxygen-vacancy defects, which is discussed as a possible origin of deeper reset level obtained in CBRAM. We also evidence a beneficial impact of this smaller particle size on lower Random-Telegraph-Noise amplitude measured on CBRAM devices.

  19. Looking for the Signal: A guide to iterative noise and artefact removal in X-ray tomographic reconstructions of porous geomaterials

    Science.gov (United States)

    Bruns, S.; Stipp, S. L. S.; Sørensen, H. O.

    2017-07-01

    X-ray micro- and nanotomography has evolved into a quantitative analysis tool rather than a mere qualitative visualization technique for the study of porous natural materials. Tomographic reconstructions are subject to noise that has to be handled by image filters prior to quantitative analysis. Typically, denoising filters are designed to handle random noise, such as Gaussian or Poisson noise. In tomographic reconstructions, noise has been projected from Radon space to Euclidean space, i.e. post reconstruction noise cannot be expected to be random but to be correlated. Reconstruction artefacts, such as streak or ring artefacts, aggravate the filtering process so algorithms performing well with random noise are not guaranteed to provide satisfactory results for X-ray tomography reconstructions. With sufficient image resolution, the crystalline origin of most geomaterials results in tomography images of objects that are untextured. We developed a denoising framework for these kinds of samples that combines a noise level estimate with iterative nonlocal means denoising. This allows splitting the denoising task into several weak denoising subtasks where the later filtering steps provide a controlled level of texture removal. We describe a hands-on explanation for the use of this iterative denoising approach and the validity and quality of the image enhancement filter was evaluated in a benchmarking experiment with noise footprints of a varying level of correlation and residual artefacts. They were extracted from real tomography reconstructions. We found that our denoising solutions were superior to other denoising algorithms, over a broad range of contrast-to-noise ratios on artificial piecewise constant signals.

  20. Surprisingly rational: probability theory plus noise explains biases in judgment.

    Science.gov (United States)

    Costello, Fintan; Watts, Paul

    2014-07-01

    The systematic biases seen in people's probability judgments are typically taken as evidence that people do not use the rules of probability theory when reasoning about probability but instead use heuristics, which sometimes yield reasonable judgments and sometimes yield systematic biases. This view has had a major impact in economics, law, medicine, and other fields; indeed, the idea that people cannot reason with probabilities has become a truism. We present a simple alternative to this view, where people reason about probability according to probability theory but are subject to random variation or noise in the reasoning process. In this account the effect of noise is canceled for some probabilistic expressions. Analyzing data from 2 experiments, we find that, for these expressions, people's probability judgments are strikingly close to those required by probability theory. For other expressions, this account produces systematic deviations in probability estimates. These deviations explain 4 reliable biases in human probabilistic reasoning (conservatism, subadditivity, conjunction, and disjunction fallacies). These results suggest that people's probability judgments embody the rules of probability theory and that biases in those judgments are due to the effects of random noise. (c) 2014 APA, all rights reserved.

  1. Investigation of noise in gear transmissions by the method of mathematical smoothing of experiments

    Science.gov (United States)

    Sheftel, B. T.; Lipskiy, G. K.; Ananov, P. P.; Chernenko, I. K.

    1973-01-01

    A rotatable central component smoothing method is used to analyze rotating gear noise spectra. A matrix is formulated in which the randomized rows correspond to various tests and the columns to factor values. Canonical analysis of the obtained regression equation permits the calculation of optimal speed and load at a previous assigned noise level.

  2. Road traffic noise: self-reported noise annoyance versus GIS modelled road traffic noise exposure.

    Science.gov (United States)

    Birk, Matthias; Ivina, Olga; von Klot, Stephanie; Babisch, Wolfgang; Heinrich, Joachim

    2011-11-01

    self-reported road traffic noise annoyance is commonly used in epidemiological studies for assessment of potential health effects. Alternatively, some studies have used geographic information system (GIS) modelled exposure to road traffic noise as an objective parameter. The aim of this study was to analyse the association between noise exposure due to neighbouring road traffic and the noise annoyance of adults, taking other determinants into consideration. parents of 951 Munich children from the two German birth cohorts GINIplus and LISAplus reported their annoyance due to road traffic noise at home. GIS modelled road traffic noise exposure (L(den), maximum within a 50 m buffer) from the noise map of the city of Munich was available for all families. GIS-based calculated distance to the closest major road (≥10,000 vehicles per day) and questionnaire based-information about family income, parental education and the type of the street of residence were explored for their potential influence. An ordered logit regression model was applied. The noise levels (L(den)) and the reported noise annoyance were compared with an established exposure-response function. the correlation between noise annoyance and noise exposure (L(den)) was fair (Spearman correlation r(s) = 0.37). The distance to a major road and the type of street were strong predictors for the noise annoyance. The annoyance modelled by the established exposure-response function and that estimated by the ordered logit model were moderately associated (Pearson's correlation r(p) = 0.50). road traffic noise annoyance was associated with GIS modelled neighbouring road traffic noise exposure (L(den)). The distance to a major road and the type of street were additional explanatory factors of the noise annoyance appraisal.

  3. Influence of Spatial and Chromatic Noise on Luminance Discrimination.

    Science.gov (United States)

    Miquilini, Leticia; Walker, Natalie A; Odigie, Erika A; Guimarães, Diego Leite; Salomão, Railson Cruz; Lacerda, Eliza Maria Costa Brito; Cortes, Maria Izabel Tentes; de Lima Silveira, Luiz Carlos; Fitzgerald, Malinda E C; Ventura, Dora Fix; Souza, Givago Silva

    2017-12-05

    Pseudoisochromatic figures are designed to base discrimination of a chromatic target from a background solely on the chromatic differences. This is accomplished by the introduction of luminance and spatial noise thereby eliminating these two dimensions as cues. The inverse rationale could also be applied to luminance discrimination, if spatial and chromatic noise are used to mask those cues. In this current study estimate of luminance contrast thresholds were conducted using a novel stimulus, based on the use of chromatic and spatial noise to mask the use of these cues in a luminance discrimination task. This was accomplished by presenting stimuli composed of a mosaic of circles colored randomly. A Landolt-C target differed from the background only by the luminance. The luminance contrast thresholds were estimated for different chromatic noise saturation conditions and compared to luminance contrast thresholds estimated using the same target in a non-mosaic stimulus. Moreover, the influence of the chromatic content in the noise on the luminance contrast threshold was also investigated. Luminance contrast threshold was dependent on the chromaticity noise strength. It was 10-fold higher than thresholds estimated from non-mosaic stimulus, but they were independent of colour space location in which the noise was modulated. The present study introduces a new method to investigate luminance vision intended for both basic science and clinical applications.

  4. Judgments of aircraft noise in a traffic noise background

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  5. Noise characteristics of single-walled carbon nanotube network transistors

    International Nuclear Information System (INIS)

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-01-01

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors

  6. Impact of environmental noise on growth and neuropsychological development of newborn rats.

    Science.gov (United States)

    Zheng, Yanyan; Meng, Meng; Zhao, Congmin; Liao, Wei; Zhang, Yuping; Wang, Liyan; Wen, Enyi

    2014-05-01

    We aimed to investigate the effects of environmental noise exposure on the growth and neuropsychological development in neonatal rats. Twenty-four postnatal 7-day-old Sprague-Dawley rats were randomly assigned into control, high-noise and reduced noise groups. The rats in the high-noise group were exposed to 90 dB white noise, and those in the control group were grown under standard condition, while those in the reduced noise group were exposed to standard condition with sound-absorbing cotton. Ten, 15, and 20 days post noise exposure, both the body weight and length of the rats in high-noise group were lower than those in the control and reduced noise groups, respectively. The secretion of growth hormone was significantly decreased in the rats exposed to high noise environment, compared to those exposed to standard condition and reduced noise. More interestingly, the swimming distance was apparently increased and the swimming speed was significantly decreased in high-noise group compared with those in control and reduced noise groups. Importantly, the mRNA and protein levels of SYP in the rats hippocampus were significantly decreased in high-noise group compare with those in control and reduced noise groups. Similarly, the positive expression of SYP in the CA1 region of hippocampus was also significantly decreased in the high noise group rats. In conclusion, our results demonstrated that high noise exposure could decrease the production of growth hormone and SYP in neonatal rats, which may retard the growth of weight and length and the capability of learning and memory. Copyright © 2014 Wiley Periodicals, Inc.

  7. How additive noise generates a phantom attractor in a model with cubic nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Bashkirtseva, Irina; Ryashko, Lev, E-mail: lev.ryashko@urfu.ru

    2016-10-07

    Two-dimensional nonlinear system forced by the additive noise is studied. We show that an increasing noise shifts random states and localizes them in a zone far from deterministic attractors. This phenomenon of the generation of the new “phantom” attractor is investigated on the base of probability density functions, mean values and variances of random states. We show that increasing noise results in the qualitative changes of the form of pdf, sharp shifts of mean values, and spikes of the variance. To clarify this phenomenon mathematically, we use the fast–slow decomposition and averaging over the fast variable. For the dynamics of the mean value of the slow variable, a deterministic equation is derived. It is shown that equilibria and the saddle-node bifurcation point of this deterministic equation well describe the stochastic phenomenon of “phantom” attractor in the initial two-dimensional stochastic system. - Highlights: • Two-dimensional nonlinear system with cubic nonlinearity is studied. • Additive noise generates a new phantom attractor. • By averaging over the fast variable one-dimensional equation is derived. • Phantom attractor appearance is analyzed by bifurcation analysis of this equation.

  8. Interplay of Gene Expression Noise and Ultrasensitive Dynamics Affects Bacterial Operon Organization

    Science.gov (United States)

    Ray, J. Christian J; Igoshin, Oleg A.

    2012-01-01

    Bacterial chromosomes are organized into polycistronic cotranscribed operons, but the evolutionary pressures maintaining them are unclear. We hypothesized that operons alter gene expression noise characteristics, resulting in selection for or against maintaining operons depending on network architecture. Mathematical models for 6 functional classes of network modules showed that three classes exhibited decreased noise and 3 exhibited increased noise with same-operon cotranscription of interacting proteins. Noise reduction was often associated with a decreased chance of reaching an ultrasensitive threshold. Stochastic simulations of the lac operon demonstrated that the predicted effects of transcriptional coupling hold for a complex network module. We employed bioinformatic analysis to find overrepresentation of noise-minimizing operon organization compared with randomized controls. Among constitutively expressed physically interacting protein pairs, higher coupling frequencies appeared at lower expression levels, where noise effects are expected to be dominant. Our results thereby suggest an important role for gene expression noise, in many cases interacting with an ultrasensitive switch, in maintaining or selecting for operons in bacterial chromosomes. PMID:22956903

  9. Environmental noise pollution and risk of preeclampsia.

    Science.gov (United States)

    Auger, Nathalie; Duplaix, Mathilde; Bilodeau-Bertrand, Marianne; Lo, Ernest; Smargiassi, Audrey

    2018-08-01

    Environmental noise exposure is associated with a greater risk of hypertension, but the link with preeclampsia, a hypertensive disorder of pregnancy, is unclear. We sought to determine the relationship between environmental noise pollution and risk of preeclampsia during pregnancy. We analyzed a population-based cohort comprising 269,263 deliveries on the island of Montreal, Canada between 2000 and 2013. We obtained total environmental noise pollution measurements (LA eq24 , L den , L night ) from land use regression models, and assigned noise levels to each woman based on the residential postal code. We computed odds ratios (OR) and 95% confidence intervals (CI) for the association of noise with preeclampsia in mixed logistic regression models with participants as a random effect, and adjusted for air pollution, neighbourhood walkability, maternal age, parity, multiple pregnancy, comorbidity, socioeconomic deprivation, and year of delivery. We assessed whether noise exposure was more strongly associated with severe or early onset preeclampsia than mild or late onset preeclampsia. Prevalence of preeclampsia was higher for women exposed to elevated environmental noise pollution levels (LA eq24h  ≥ 65 dB(A) = 37.9 per 1000 vs. <50 dB(A) = 27.9 per 1000). Compared with 50 dB(A), an LA eq24h of 65.0 dB(A) was not significantly associated the risk of preeclampsia (OR 1.09, 95% CI 0.99-1.20). Associations were however present with severe (OR 1.29, 95% CI 1.09-1.54) and early onset (OR 1.71, 95% CI 1.20-2.43) preeclampsia, with results consistent across all noise indicators. The associations were much weaker or absent for mild and late preeclampsia. Environmental noise pollution may be a novel risk factor for pregnancy-related hypertension, particularly more severe variants of preeclampsia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Homogenization of Doppler broadening in spin-noise spectroscopy

    Science.gov (United States)

    Petrov, M. Yu.; Ryzhov, I. I.; Smirnov, D. S.; Belyaev, L. Yu.; Potekhin, R. A.; Glazov, M. M.; Kulyasov, V. N.; Kozlov, G. G.; Aleksandrov, E. B.; Zapasskii, V. S.

    2018-03-01

    The spin-noise spectroscopy, being a nonperturbative linear optics tool, is still reputed to reveal a number of capabilities specific to nonlinear optics techniques. The effect of the Doppler broadening homogenization discovered in this work essentially widens these unique properties of spin-noise spectroscopy. We investigate spin noise of a classical system—cesium atoms vapor with admixture of buffer gas—by measuring the spin-induced Faraday rotation fluctuations in the region of D 2 line. The line, under our experimental conditions, is strongly inhomogeneously broadened due to the Doppler effect. Despite that, optical spectrum of the spin-noise power has the shape typical for the homogeneously broadened line with a dip at the line center. This fact is in stark contrast with the results of previous studies of inhomogeneous quantum dot ensembles and Doppler broadened atomic systems. In addition, the two-color spin-noise measurements have shown, in a highly spectacular way, that fluctuations of the Faraday rotation within the line are either correlated or anticorrelated depending on whether the two wavelengths lie on the same side or on different sides of the resonance. The experimental data are interpreted in the frame of the developed theoretical model which takes into account both kinetics and spin dynamics of Cs atoms. It is shown that the unexpected behavior of the Faraday rotation noise spectra and effective homogenization of the optical transition in the spin-noise measurements are related to smallness of the momentum relaxation time of the atoms as compared with their spin-relaxation time. Our findings demonstrate abilities of spin-noise spectroscopy for studying dynamic properties of inhomogeneously broadened ensembles of randomly moving spins.

  11. Stochastic Dynamics of a Time-Delayed Ecosystem Driven by Poisson White Noise Excitation

    Directory of Open Access Journals (Sweden)

    Wantao Jia

    2018-02-01

    Full Text Available We investigate the stochastic dynamics of a prey-predator type ecosystem with time delay and the discrete random environmental fluctuations. In this model, the delay effect is represented by a time delay parameter and the effect of the environmental randomness is modeled as Poisson white noise. The stochastic averaging method and the perturbation method are applied to calculate the approximate stationary probability density functions for both predator and prey populations. The influences of system parameters and the Poisson white noises are investigated in detail based on the approximate stationary probability density functions. It is found that, increasing time delay parameter as well as the mean arrival rate and the variance of the amplitude of the Poisson white noise will enhance the fluctuations of the prey and predator population. While the larger value of self-competition parameter will reduce the fluctuation of the system. Furthermore, the results from Monte Carlo simulation are also obtained to show the effectiveness of the results from averaging method.

  12. An investigation of excess noise in transition-edge sensors on a solid silicon substrate

    International Nuclear Information System (INIS)

    Crowder, S.G.; Lindeman, M.A.; Anderson, M.B.; Bandler, S.R.; Bilgri, N.; Bruijn, M.P.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Germeau, A.; Hoevers, H.F.C.; Iyomoto, N.; Kelly, R.; Kilbourne, C.A.; Lai, T.; Man, J.; McCammon, D.; Nelms, K.L.; Porter, F.S.; Rocks, L.; Saab, T.; Sadleir, J.; Vidugiris, G.

    2006-01-01

    Transition-edge sensors (TESs) exhibit two major types of excess noise above the expected and unavoidable thermodynamic fluctuation noise (TFN) to the heat sink and Johnson noise. High-resistance TESs such as those made by the Netherlands Institute for Space Research (SRON) show excess noise consistent with internal TFN (ITFN) caused by random energy transport within the TES itself while low resistance TESs show an excess voltage noise of unknown origin seemingly unrelated to temperature fluctuations. Running a high-resistance TES on a high thermal conductivity substrate should suppress ITFN and allow detection of any excess voltage noise. We tested two TESs on a solid silicon substrate fabricated by SRON of a relatively high normal state resistance of ∼200 mΩ. After determining a linear model of the TES response to noise for the devices, we found little excess TFN and little excess voltage noise for bias currents of up to ∼20 μA

  13. Process sensors characterization based on noise analysis technique and artificial intelligence

    International Nuclear Information System (INIS)

    Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos

    2005-01-01

    The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)

  14. Process sensors characterization based on noise analysis technique and artificial intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Roberto N. de; Perillo, Sergio R.P.; Santos, Roberto C. dos [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)]. E-mail: rnavarro@ipen.br; sperillo@ipen.br; rcsantos@ipen.br

    2005-07-01

    The time response of pressure and temperature sensors from the Reactor Protection System (RPS) is a requirement that must be satisfied in nuclear power plants, furthermore is an indicative of its degradation and its remaining life. The nuclear power industry and others have been eager to implement smart sensor technologies and digital instrumentation concepts to reduce manpower and effort currently spent on testing and calibration. Process parameters fluctuations during normal operation of a reactor are caused by random variations in neutron flux, heat transfer and other sources. The output sensor noise can be considered as the response of the system to an input representing the statistical nature of the underlying process which can be modeled using a time series model. Since the noise signal measurements are influenced by many factors, such as location of sensors, extraneous noise interference, and randomness in temperature and pressure fluctuation - the quantitative estimate of the time response using autoregressive noise modeling is subject to error. This technique has been used as means of sensor monitoring. In this work a set of pressure sensors installed in one experimental loop adapted from a flow calibration setup is used to test and analyze signals in a new approach using artificial intelligence techniques. A set of measurements of dynamic signals in different experimental conditions is used to distinguish and identify underlying process sources. A methodology that uses Blind Separation of Sources with a neural networks scheme is being developed to improve time response estimate reliability in noise analysis. (author)

  15. Evolution of a Fluctuating Population in a Randomly Switching Environment.

    Science.gov (United States)

    Wienand, Karl; Frey, Erwin; Mobilia, Mauro

    2017-10-13

    Environment plays a fundamental role in the competition for resources, and hence in the evolution of populations. Here, we study a well-mixed, finite population consisting of two strains competing for the limited resources provided by an environment that randomly switches between states of abundance and scarcity. Assuming that one strain grows slightly faster than the other, we consider two scenarios-one of pure resource competition, and one in which one strain provides a public good-and investigate how environmental randomness (external noise) coupled to demographic (internal) noise determines the population's fixation properties and size distribution. By analytical means and simulations, we show that these coupled sources of noise can significantly enhance the fixation probability of the slower-growing species. We also show that the population size distribution can be unimodal, bimodal, or multimodal and undergoes noise-induced transitions between these regimes when the rate of switching matches the population's growth rate.

  16. Stochastic resonance and noise delayed extinction in a model of two competing species

    Science.gov (United States)

    Valenti, D.; Fiasconaro, A.; Spagnolo, B.

    2004-01-01

    We study the role of the noise in the dynamics of two competing species. We consider generalized Lotka-Volterra equations in the presence of a multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence of a periodic driving term, which accounts for the environment temperature variation. We find noise-induced periodic oscillations of the species concentrations and stochastic resonance phenomenon. We find also a nonmonotonic behavior of the mean extinction time of one of the two competing species as a function of the additive noise intensity.

  17. Effects on Performance and Work Quality due to Low Frequency Ventilation Noise

    Science.gov (United States)

    Persson Waye, K.; Rylander, R.; Benton, S.; Leventhall, H. G.

    1997-08-01

    A pilot study was carried out to assess method evaluating effects of low frequency noise on performance. Of special interest was to study objective and subjective effects over time. Two ventilation noises were used, one of a predominantly mid frequency character and the other of a predominantly low frequency character. Both had an NC value of 35. For the study, 50 students were recruited and 30 selected on the basis of subjective reports of pressure on the eardrum after exposure to a low frequency noise. Of these, 14 randomly selected subjects aged 21 and 34 took part. The subjects performed three computerized cognitive tests in the mid frequency or the low frequency noise condition alternatively. Tests I and II were performed together with a secondary task.Questionnaires were used to evaluate subjective symptoms, effects on mood and estimated interference with the test results due to temperature, light and noise. The results showed that the subjective estimations of noise interference with performance were higher for the low frequency noise (psocial orientation (pstudied. The results further indicate that the NC curves do not fully assess the negative effects of low frequency noise on work performance.

  18. The physics of randomness and regularities for languages (lifetimes, family trees, and the second languages); in terms of random matrices

    OpenAIRE

    Tuncay, Caglar

    2007-01-01

    The physics of randomness and regularities for languages (mother tongues) and their lifetimes and family trees and for the second languages are studied in terms of two opposite processes; random multiplicative noise [1], and fragmentation [2], where the original model is given in the matrix format. We start with a random initial world, and come out with the regularities, which mimic various empirical data [3] for the present languages.

  19. Coherence Resonance and Noise-Induced Synchronization in Hindmarsh-Rose Neural Network with Different Topologies

    International Nuclear Information System (INIS)

    Wei Duqu; Luo Xiaoshu

    2007-01-01

    In this paper, we investigate coherence resonance (CR) and noise-induced synchronization in Hindmarsh-Rose (HR) neural network with three different types of topologies: regular, random, and small-world. It is found that the additive noise can induce CR in HR neural network with different topologies and its coherence is optimized by a proper noise level. It is also found that as coupling strength increases the plateau in the measure of coherence curve becomes broadened and the effects of network topology is more pronounced simultaneously. Moreover, we find that increasing the probability p of the network topology leads to an enhancement of noise-induced synchronization in HR neurons network.

  20. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    Science.gov (United States)

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-05-31

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  1. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    Directory of Open Access Journals (Sweden)

    Chong Shen

    2016-05-01

    Full Text Available The different noise components in a dual-mass micro-electromechanical system (MEMS gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN, electronic-thermal noise (ETN, flicker noise (FN and Coriolis signal in-phase noise (IPN. The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD and time-frequency peak filtering (TFPF. There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods.

  2. Quantum I/f noise in infrared detectors and scanning tunneling microscopes

    Science.gov (United States)

    Truong, Amanda Marie

    Noise is, by definition, any random and persistent disturbance, which interferes with the clarity of a signal. Modern electronic devices are designed to limit noise, and in most cases the classical forms of noise have been eliminated or greatly reduced through careful design. However, there is a fundamental, quite unavoidable type of noise, called quantum l/f noise, which occurs at low frequencies and is a fundamental consequence of the discrete nature of the charge carriers themselves. This quantum l/f noise is present in any physical cross section or process rate, such as carrier mobility, diffusion rates and scattering processes. Although quantum l/f noise has been observed for nearly a century, there has been much debate over its origin and formulation. But as modern electronic devices require greater levels of performance and detection, the l/f noise phenomenon has moved to the forefront, becoming the subject of intense research. Here, for the first time, the quantum l/f fluctuations present in both the dark current of the Quantum Well Intersubband Photodetector and the tunneling current of the Scanning Tunneling Microscope are investigated. Using the quantum l/f theory, the quantum l/f noise occurring in each of these devices is formulated. The theoretical noise results are then compared with the experimental findings of various authors with very good agreement. This important work provides a foundation for understanding quantum l/f noise and its causes in the QWIP and STM devices, and could ultimately lead to improved technology and noise reduction in these devices and others.

  3. Resonant Activation in a Stochastic Hodgkin-Huxley Model: Interplay between noise and suprathreshold driving effect

    DEFF Research Database (Denmark)

    Pankratova, Evgeniya; Polovinkin, A.V.; Mosekilde, Erik

    2005-01-01

    The paper considers an excitable Hodgkin-Huxley system subjected to a strong periodic forcing in the presence of random noise. The influence of the forcing frequency on the response of the system is examined in the realm of suprathreshold amplitudes. Our results confirm that the presence of noise...... a minimum as functions of the forcing frequency. The destructive influence of noise on the interspike interval can also be reduced. With driving signals in a certain frequency range, the system can show stable periodic spiking even for relatively large noise intensities. Outside this frequency range, noise...... of similar intensity destroys the regularity of the spike trains by suppressing the generation of some of the spikes....

  4. Impact of cyclostationarity on fan broadband noise prediction

    Science.gov (United States)

    Wohlbrandt, A.; Kissner, C.; Guérin, S.

    2018-04-01

    One of the dominant noise sources of modern Ultra High Bypass Ratio (UHBR) engines is the interaction of the rotor wakes with the leading edges of the stator vanes in the fan stage. While the tonal components of this noise generation mechanism are fairly well understood by now, the broadband components are not. This calls to further the understanding of the broadband noise generation in the fan stage. This article introduces a new extension to the Random Particle Mesh (RPM) method, which accommodates in-depth studies of the impact of cyclostationary wake characteristics on the broadband noise in the fan stage. The RPM method is used to synthesize a turbulence field in the stator domain using a URANS simulation characterized by time-periodic turbulence and mean flow. The rotor-stator interaction noise is predicted by a two-dimensional CAA computation of the stator cascade. The impact of cyclostationarity is decomposed into various effects, which are separately investigated. This leads to the finding that the periodic turbulent kinetic energy (TKE) and periodic flow have only a negligible effect on the radiated sound power. The impact of the periodic integral length scale (TLS) is, however, substantial. The limits of a stationary representation of the TLS are demonstrated making this new extension to the RPM method indispensable when background and wake TKE are of comparable level. Good agreement of the predictions with measurements obtained from the 2015 AIAA Fan Broadband Noise Prediction Workshop are also shown.

  5. Fast noise level estimation algorithm based on principal component analysis transform and nonlinear rectification

    Science.gov (United States)

    Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling

    2018-01-01

    We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.

  6. Framing sound: Using expectations to reduce environmental noise annoyance.

    Science.gov (United States)

    Crichton, Fiona; Dodd, George; Schmid, Gian; Petrie, Keith J

    2015-10-01

    Annoyance reactions to environmental noise, such as wind turbine sound, have public health implications given associations between annoyance and symptoms related to psychological distress. In the case of wind farms, factors contributing to noise annoyance have been theorised to include wind turbine sound characteristics, the noise sensitivity of residents, and contextual aspects, such as receiving information creating negative expectations about sound exposure. The experimental aim was to assess whether receiving positive or negative expectations about wind farm sound would differentially influence annoyance reactions during exposure to wind farm sound, and also influence associations between perceived noise sensitivity and noise annoyance. Sixty volunteers were randomly assigned to receive either negative or positive expectations about wind farm sound. Participants in the negative expectation group viewed a presentation which incorporated internet material indicating that exposure to wind turbine sound, particularly infrasound, might present a health risk. Positive expectation participants viewed a DVD which framed wind farm sound positively and included internet information about the health benefits of infrasound exposure. Participants were then simultaneously exposed to sub-audible infrasound and audible wind farm sound during two 7 min exposure sessions, during which they assessed their experience of annoyance. Positive expectation participants were significantly less annoyed than negative expectation participants, while noise sensitivity only predicted annoyance in the negative group. Findings suggest accessing negative information about sound is likely to trigger annoyance, particularly in noise sensitive people and, importantly, portraying sound positively may reduce annoyance reactions, even in noise sensitive individuals. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Assessment of Noise and Associated Health Impacts at Selected Secondary Schools in Ibadan, Nigeria

    International Nuclear Information System (INIS)

    Ana, G.R.E.E.; Brown, G.E.; Sridhar, M.K.C.; Shendell, D.G.; Shendell, D.G.; Shendell, D.G.

    2010-01-01

    Background. Most schools in Ibadan, Nigeria, are located near major roads (mobile line sources). We conducted an initial assessment of noise levels and adverse noise-related health and learning effects. Methods. For this descriptive, cross-sectional study, four schools were selected randomly from eight participating in overall project. We administered 200 questionnaires, 50 per school, assessing health and learning-related outcomes. Noise levels (A-weighted decibels, dBA) were measured with calibrated sound level meters. Traffic density was assessed for school with the highest measured dBA. Observational checklists assessed noise control parameters and building physical attributes. Results. Short-term, cross-sectional school-day noise levels ranged 68.3-84.7 dBA. Over 60% of respondents reported that vehicular traffic was major source of noise, and over 70% complained being disturbed by noise. Three schools reported tiredness, and one school lack of concentration, as the most prevalent noise-related health problems. Conclusion. Secondary school occupants in Ibadan, Nigeria were potentially affected by exposure to noise from mobile line sources.

  8. A genome-wide analysis of promoter-mediated phenotypic noise in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Olin K Silander

    2012-01-01

    Full Text Available Gene expression is subject to random perturbations that lead to fluctuations in the rate of protein production. As a consequence, for any given protein, genetically identical organisms living in a constant environment will contain different amounts of that particular protein, resulting in different phenotypes. This phenomenon is known as "phenotypic noise." In bacterial systems, previous studies have shown that, for specific genes, both transcriptional and translational processes affect phenotypic noise. Here, we focus on how the promoter regions of genes affect noise and ask whether levels of promoter-mediated noise are correlated with genes' functional attributes, using data for over 60% of all promoters in Escherichia coli. We find that essential genes and genes with a high degree of evolutionary conservation have promoters that confer low levels of noise. We also find that the level of noise cannot be attributed to the evolutionary time that different genes have spent in the genome of E. coli. In contrast to previous results in eukaryotes, we find no association between promoter-mediated noise and gene expression plasticity. These results are consistent with the hypothesis that, in bacteria, natural selection can act to reduce gene expression noise and that some of this noise is controlled through the sequence of the promoter region alone.

  9. Studies on multiplication effect of noises of PPD, and a proposal of a new structure to improve the performance

    Energy Technology Data Exchange (ETDEWEB)

    Oide, H., E-mail: oide@icepp.s.u-tokyo.ac.j [Department of Physics, University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033 (Japan); Murase, T.; Otono, H. [Department of Physics, University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033 (Japan); Yamashita, S. [ICEPP, University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033 (Japan)

    2010-11-01

    Pixelated photon detectors (PPDs) are arrayed APDs operated in Geiger-mode. Multi-pixel photon counter (MPPC) is a PPD produced by Hamamatsu Photonics K.K. We performed measurement of total noise rate, random noise rate, after-pulsing, crosstalk, and relative photon detection efficiency for a 1600 px MPPC. The explosive increase of total noise rate to over-voltage is able to be understood of multiplication effect of after-pulsing and crosstalk. Considering the electric field structure of MPPC (p-on-n type) and Geiger-efficiency as a function of the position of initial pair creation, these characteristics are all able to be understood. One suggestion for p-on-n type PPD from these results is narrowing the depletion layer below the multiplication layer to reduce random noise and after-pulsing. Another proposal is to put additional buffer capacitance parallel to the diode to accomplish higher gain with lower over-voltage simultaneously with lower noise rate.

  10. Studies on multiplication effect of noises of PPD, and a proposal of a new structure to improve the performance

    International Nuclear Information System (INIS)

    Oide, H.; Murase, T.; Otono, H.; Yamashita, S.

    2010-01-01

    Pixelated photon detectors (PPDs) are arrayed APDs operated in Geiger-mode. Multi-pixel photon counter (MPPC) is a PPD produced by Hamamatsu Photonics K.K. We performed measurement of total noise rate, random noise rate, after-pulsing, crosstalk, and relative photon detection efficiency for a 1600 px MPPC. The explosive increase of total noise rate to over-voltage is able to be understood of multiplication effect of after-pulsing and crosstalk. Considering the electric field structure of MPPC (p-on-n type) and Geiger-efficiency as a function of the position of initial pair creation, these characteristics are all able to be understood. One suggestion for p-on-n type PPD from these results is narrowing the depletion layer below the multiplication layer to reduce random noise and after-pulsing. Another proposal is to put additional buffer capacitance parallel to the diode to accomplish higher gain with lower over-voltage simultaneously with lower noise rate.

  11. Hybrid colored noise process with space-dependent switching rates

    Science.gov (United States)

    Bressloff, Paul C.; Lawley, Sean D.

    2017-07-01

    A fundamental issue in the theory of continuous stochastic process is the interpretation of multiplicative white noise, which is often referred to as the Itô-Stratonovich dilemma. From a physical perspective, this reflects the need to introduce additional constraints in order to specify the nature of the noise, whereas from a mathematical perspective it reflects an ambiguity in the formulation of stochastic differential equations (SDEs). Recently, we have identified a mechanism for obtaining an Itô SDE based on a form of temporal disorder. Motivated by switching processes in molecular biology, we considered a Brownian particle that randomly switches between two distinct conformational states with different diffusivities. In each state, the particle undergoes normal diffusion (additive noise) so there is no ambiguity in the interpretation of the noise. However, if the switching rates depend on position, then in the fast switching limit one obtains Brownian motion with a space-dependent diffusivity of the Itô form. In this paper, we extend our theory to include colored additive noise. We show that the nature of the effective multiplicative noise process obtained by taking both the white-noise limit (κ →0 ) and fast switching limit (ɛ →0 ) depends on the order the two limits are taken. If the white-noise limit is taken first, then we obtain Itô, and if the fast switching limit is taken first, then we obtain Stratonovich. Moreover, the form of the effective diffusion coefficient differs in the two cases. The latter result holds even in the case of space-independent transition rates, where one obtains additive noise processes with different diffusion coefficients. Finally, we show that yet another form of multiplicative noise is obtained in the simultaneous limit ɛ ,κ →0 with ɛ /κ2 fixed.

  12. Noise and fluctuations an introduction

    CERN Document Server

    MacDonald, D K C

    2006-01-01

    An understanding of fluctuations and their role is both useful and fundamental to the study of physics. This concise study of random processes offers graduate students and research physicists a survey that encompasses both the relationship of Brownian Movement with statistical mechanics and the problem of irreversible processes. It outlines the basics of the physics involved, without the strictures of mathematical rigor.The three-part treatment starts with a general survey of Brownian Movement, including electrical Brownian Movement and ""shot-noise,"" Part two explores correlation, frequency

  13. Direct-reading dial for noise temperature and noise resistance

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1967-01-01

    An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance.......An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance....

  14. Stochastic bifurcation in a model of love with colored noise

    Science.gov (United States)

    Yue, Xiaokui; Dai, Honghua; Yuan, Jianping

    2015-07-01

    In this paper, we wish to examine the stochastic bifurcation induced by multiplicative Gaussian colored noise in a dynamical model of love where the random factor is used to describe the complexity and unpredictability of psychological systems. First, the dynamics in deterministic love-triangle model are considered briefly including equilibrium points and their stability, chaotic behaviors and chaotic attractors. Then, the influences of Gaussian colored noise with different parameters are explored such as the phase plots, top Lyapunov exponents, stationary probability density function (PDF) and stochastic bifurcation. The stochastic P-bifurcation through a qualitative change of the stationary PDF will be observed and bifurcation diagram on parameter plane of correlation time and noise intensity is presented to find the bifurcation behaviors in detail. Finally, the top Lyapunov exponent is computed to determine the D-bifurcation when the noise intensity achieves to a critical value. By comparison, we find there is no connection between two kinds of stochastic bifurcation.

  15. Magnetoelectric coupling of a magnetoelectric flux gate sensor in vibration noise circumstance

    Directory of Open Access Journals (Sweden)

    Zhaoqiang Chu

    2018-01-01

    Full Text Available A magnetoelectric (ME flux gate sensor (MEFGS consisting of piezoelectric PMN-PT single crystals and ferromagnetic amorphous alloy ribbon in a self-differential configuration is featured with the ability of weak magnetic anomaly detection. Here, we further investigated its ME coupling and magnetic field detection performance in vibration noise circumstance, including constant frequency, impact, and random vibration noise. Experimental results show that the ME coupling coefficient of MEFGS is as high as 5700 V/cm*Oe at resonant frequency, which is several orders magnitude higher than previously reported differential ME sensors. It was also found that under constant and impact vibration noise circumstance, the noise reduction and attenuation factor of MEFGS are over 17 and 85.7%, respectively. This work is important for practical application of MEFGS in real environment.

  16. Noise frame duration, masking potency and whiteness of temporal noise.

    Science.gov (United States)

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  17. Dynamics of two competing species in the presence of Lévy noise sources

    Science.gov (United States)

    La Cognata, A.; Valenti, D.; Dubkov, A. A.; Spagnolo, B.

    2010-07-01

    We consider a Lotka-Volterra system of two competing species subject to multiplicative α -stable Lévy noise. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence both of a periodic driving term and an additive α -stable Lévy noise. We study the species dynamics, which is characterized by two different regimes, exclusion of one species and coexistence of both. We find quasiperiodic oscillations and stochastic resonance phenomenon in the dynamics of the competing species, analyzing the role of the Lévy noise sources.

  18. Random networks of Boolean cellular automata

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Enrique [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1990-01-01

    Some recent results about random networks of Boolean automata -the Kauffman model- are reviewed. The structure of configuration space is explored. Ultrametricity between cycles is analyzed and the effects of noise in the dynamics are studied. (Author).

  19. Random networks of Boolean cellular automata

    International Nuclear Information System (INIS)

    Miranda, Enrique

    1990-01-01

    Some recent results about random networks of Boolean automata -the Kauffman model- are reviewed. The structure of configuration space is explored. Ultrametricity between cycles is analyzed and the effects of noise in the dynamics are studied. (Author)

  20. Secure Image Encryption Based On a Chua Chaotic Noise Generator

    Directory of Open Access Journals (Sweden)

    A. S. Andreatos

    2013-10-01

    Full Text Available This paper presents a secure image cryptography telecom system based on a Chua's circuit chaotic noise generator. A chaotic system based on synchronised Master–Slave Chua's circuits has been used as a chaotic true random number generator (CTRNG. Chaotic systems present unpredictable and complex behaviour. This characteristic, together with the dependence on the initial conditions as well as the tolerance of the circuit components, make CTRNGs ideal for cryptography. In the proposed system, the transmitter mixes an input image with chaotic noise produced by a CTRNG. Using thresholding techniques, the chaotic signal is converted to a true random bit sequence. The receiver must be able to reproduce exactly the same chaotic noise in order to subtract it from the received signal. This becomes possible with synchronisation between the two Chua's circuits: through the use of specific techniques, the trajectory of the Slave chaotic system can be bound to that of the Master circuit producing (almost identical behaviour. Additional blocks have been used in order to make the system highly parameterisable and robust against common attacks. The whole system is simulated in Matlab. Simulation results demonstrate satisfactory performance, as well as, robustness against cryptanalysis. The system works with both greyscale and colour jpg images.

  1. Efficient Incorporation of Markov Random Fields in Change Detection

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Nielsen, Allan Aasbjerg; Carstensen, Jens Michael

    2009-01-01

    of noise, implying that the pixel-wise classifier is also noisy. There is thus a need for incorporating local homogeneity constraints into such a change detection framework. For this modelling task Markov Random Fields are suitable. Markov Random Fields have, however, previously been plagued by lack...

  2. Emergence of the Green’s Functions from Noise and Passive Acoustic Remote Sensing of Ocean Dynamics

    Science.gov (United States)

    2009-09-30

    have quantified errors in the eikonal estimates retrieved from the noise cross-correlation function. These errors stem from non-uniformity of the...random sources distribution or, in other words, from the noise field not being perfectly diffuse (Godin, 2009g). Our results refer to the eikonal

  3. Complex noise suppression using a sparse representation and 3D filtering of images

    Science.gov (United States)

    Kravchenko, V. F.; Ponomaryov, V. I.; Pustovoit, V. I.; Palacios-Enriquez, A.

    2017-08-01

    A novel method for the filtering of images corrupted by complex noise composed of randomly distributed impulses and additive Gaussian noise has been substantiated for the first time. The method consists of three main stages: the detection and filtering of pixels corrupted by impulsive noise, the subsequent image processing to suppress the additive noise based on 3D filtering and a sparse representation of signals in a basis of wavelets, and the concluding image processing procedure to clean the final image of the errors emerged at the previous stages. A physical interpretation of the filtering method under complex noise conditions is given. A filtering block diagram has been developed in accordance with the novel approach. Simulations of the novel image filtering method have shown an advantage of the proposed filtering scheme in terms of generally recognized criteria, such as the structural similarity index measure and the peak signal-to-noise ratio, and when visually comparing the filtered images.

  4. Fast accurate MEG source localization using a multilayer perceptron trained with real brain noise

    International Nuclear Information System (INIS)

    Jun, Sung Chan; Pearlmutter, Barak A.; Nolte, Guido

    2002-01-01

    Iterative gradient methods such as Levenberg-Marquardt (LM) are in widespread use for source localization from electroencephalographic (EEG) and magnetoencephalographic (MEG) signals. Unfortunately, LM depends sensitively on the initial guess, necessitating repeated runs. This, combined with LM's high per-step cost, makes its computational burden quite high. To reduce this burden, we trained a multilayer perceptron (MLP) as a real-time localizer. We used an analytical model of quasistatic electromagnetic propagation through a spherical head to map randomly chosen dipoles to sensor activities according to the sensor geometry of a 4D Neuroimaging Neuromag-122 MEG system, and trained a MLP to invert this mapping in the absence of noise or in the presence of various sorts of noise such as white Gaussian noise, correlated noise, or real brain noise. A MLP structure was chosen to trade off computation and accuracy. This MLP was trained four times, with each type of noise. We measured the effects of initial guesses on LM performance, which motivated a hybrid MLP-start-LM method, in which the trained MLP initializes LM. We also compared the localization performance of LM, MLPs, and hybrid MLP-start-LMs for realistic brain signals. Trained MLPs are much faster than other methods, while the hybrid MLP-start-LMs are faster and more accurate than fixed-4-start-LM. In particular, the hybrid MLP-start-LM initialized by a MLP trained with the real brain noise dataset is 60 times faster and is comparable in accuracy to random-20-start-LM, and this hybrid system (localization error: 0.28 cm, computation time: 36 ms) shows almost as good performance as optimal-1-start-LM (localization error: 0.23 cm, computation time: 22 ms), which initializes LM with the correct dipole location. MLPs trained with noise perform better than the MLP trained without noise, and the MLP trained with real brain noise is almost as good an initial guesser for LM as the correct dipole location. (author) )

  5. On randomly interrupted diffusion

    International Nuclear Information System (INIS)

    Luczka, J.

    1993-01-01

    Processes driven by randomly interrupted Gaussian white noise are considered. An evolution equation for single-event probability distributions in presented. Stationary states are considered as a solution of a second-order ordinary differential equation with two imposed conditions. A linear model is analyzed and its stationary distributions are explicitly given. (author). 10 refs

  6. Active noise control in a duct to cancel broadband noise

    Science.gov (United States)

    Chen, Kuan-Chun; Chang, Cheng-Yuan; Kuo, Sen M.

    2017-09-01

    The paper presents cancelling duct noises by using the active noise control (ANC) techniques. We use the single channel feed forward algorithm with feedback neutralization to realize ANC. Several kinds of ducts noises including tonal noises, sweep tonal signals, and white noise had investigated. Experimental results show that the proposed ANC system can cancel these noises in a PVC duct very well. The noise reduction of white noise can be up to 20 dB.

  7. Stationary response of multi-degree-of-freedom vibro-impact systems to Poisson white noises

    International Nuclear Information System (INIS)

    Wu, Y.; Zhu, W.Q.

    2008-01-01

    The stationary response of multi-degree-of-freedom (MDOF) vibro-impact (VI) systems to random pulse trains is studied. The system is formulated as a stochastically excited and dissipated Hamiltonian system. The constraints are modeled as non-linear springs according to the Hertz contact law. The random pulse trains are modeled as Poisson white noises. The approximate stationary probability density function (PDF) for the response of MDOF dissipated Hamiltonian systems to Poisson white noises is obtained by solving the fourth-order generalized Fokker-Planck-Kolmogorov (FPK) equation using perturbation approach. As examples, two-degree-of-freedom (2DOF) VI systems under external and parametric Poisson white noise excitations, respectively, are investigated. The validity of the proposed approach is confirmed by using the results obtained from Monte Carlo simulation. It is shown that the non-Gaussian behaviour depends on the product of the mean arrival rate of the impulses and the relaxation time of the oscillator

  8. Development of Trivia Game for speech understanding in background noise.

    Science.gov (United States)

    Schwartz, Kathryn; Ringleb, Stacie I; Sandberg, Hilary; Raymer, Anastasia; Watson, Ginger S

    2015-01-01

    Listening in noise is an everyday activity and poses a challenge for many people. To improve the ability to understand speech in noise, a computerized auditory rehabilitation game was developed. In Trivia Game players are challenged to answer trivia questions spoken aloud. As players progress through the game, the level of background noise increases. A study using Trivia Game was conducted as a proof-of-concept investigation in healthy participants. College students with normal hearing were randomly assigned to a control (n = 13) or a treatment (n = 14) group. Treatment participants played Trivia Game 12 times over a 4-week period. All participants completed objective (auditory-only and audiovisual formats) and subjective listening in noise measures at baseline and 4 weeks later. There were no statistical differences between the groups at baseline. At post-test, the treatment group significantly improved their overall speech understanding in noise in the audiovisual condition and reported significant benefits in their functional listening abilities. Playing Trivia Game improved speech understanding in noise in healthy listeners. Significant findings for the audiovisual condition suggest that participants improved face-reading abilities. Trivia Game may be a platform for investigating changes in speech understanding in individuals with sensory, linguistic and cognitive impairments.

  9. Probability theory plus noise: Replies to Crupi and Tentori (2016) and to Nilsson, Juslin, and Winman (2016).

    Science.gov (United States)

    Costello, Fintan; Watts, Paul

    2016-01-01

    A standard assumption in much of current psychology is that people do not reason about probability using the rules of probability theory but instead use various heuristics or "rules of thumb," which can produce systematic reasoning biases. In Costello and Watts (2014), we showed that a number of these biases can be explained by a model where people reason according to probability theory but are subject to random noise. More importantly, that model also predicted agreement with probability theory for certain expressions that cancel the effects of random noise: Experimental results strongly confirmed this prediction, showing that probabilistic reasoning is simultaneously systematically biased and "surprisingly rational." In their commentaries on that paper, both Crupi and Tentori (2016) and Nilsson, Juslin, and Winman (2016) point to various experimental results that, they suggest, our model cannot explain. In this reply, we show that our probability theory plus noise model can in fact explain every one of the results identified by these authors. This gives a degree of additional support to the view that people's probability judgments embody the rational rules of probability theory and that biases in those judgments can be explained as simply effects of random noise. (c) 2015 APA, all rights reserved).

  10. The influence of CT image noise on proton range calculation in radiotherapy planning

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V; Paige, Sandra L

    2010-01-01

    The purpose of this note is to evaluate the relationship between the stochastic errors in CT numbers and the standard deviation of the computed proton beam range in radiotherapy planning. The stochastic voxel-to-voxel variation in CT numbers called 'noise,' may be due to signal registration, processing and numerical image reconstruction technique. Noise in CT images may cause a deviation in the computed proton range from the physical proton range, even assuming that the error due to CT number-stopping power calibration is removed. To obtain the probability density function (PDF) of the computed proton range, we have used the continuing slowing down approximation (CSDA) and the uncorrelated white Gaussian noise along the proton path. The model of white noise was accepted because for the slice-based fan-beam CT scanner; the power-spectrum properties apply only to the axial (x, y) domain and the noise is uncorrelated in the z domain. However, the possible influence of the noise power spectrum on the standard deviation of the range should be investigated in the future. A random number generator was utilized for noise simulation and this procedure was iteratively repeated to obtain convergence of range PDF, which approached a Gaussian distribution. We showed that the standard deviation of the range, σ, increases linearly with the initial proton energy, computational grid size and standard deviation of the voxel values. The 95% confidence interval width of the range PDF, which is defined as 4σ, may reach 0.6 cm for the initial proton energy of 200 MeV, computational grid 0.25 cm and 5% standard deviation of CT voxel values. Our results show that the range uncertainty due to random errors in CT numbers may be significant and comparable to the uncertainties due to calibration of CT numbers. (note)

  11. Blocking-state influence on shot noise and conductance in quantum dots

    Science.gov (United States)

    Harabula, M.-C.; Ranjan, V.; Haller, R.; Fülöp, G.; Schönenberger, C.

    2018-03-01

    Quantum dots (QDs) investigated through electron transport measurements often exhibit varying, state-dependent tunnel couplings to the leads. Under specific conditions, weakly coupled states can result in a strong suppression of the electrical current, and they are correspondingly called blocking states. Using the combination of conductance and shot noise measurements, we investigate blocking states in carbon nanotube (CNT) QDs. We report negative differential conductance and super-Poissonian noise. The enhanced noise is the signature of electron bunching, which originates from random switches between the strongly and weakly conducting states of the QD. Negative differential conductance appears here when the blocking state is an excited state. In this case, at the threshold voltage where the blocking state becomes populated, the current is reduced. Using a master equation approach, we provide numerical simulations reproducing both the conductance and the shot noise pattern observed in our measurements.

  12. Quantum dynamics manipulation using optimal control theory in the presence of laser field noise

    Science.gov (United States)

    Kumar, Praveen; Malinovskaya, Svetlana A.

    2010-08-01

    We discuss recent advances in optimal control theory (OCT) related to the investigation of the impact of control field noise on controllability of quantum dynamics. Two numerical methods, the gradient method and the iteration method, are paid particular attention. We analyze the problem of designing noisy control fields to maximize the vibrational transition probability in diatomic quantum systems, e.g. the HF and OH molecules. White noise is used as an additive random variable in the amplitude of the control field. It is demonstrated that the convergence is faster in the presence of noise and population transfer is increased by 0.04% for small values of noise compared to the field amplitude.

  13. Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

    DEFF Research Database (Denmark)

    Reick, Sebastian; Mølmer, Klaus; Alt, Wolfgang

    2010-01-01

    We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from ...

  14. A new approach to modelling radiation noise in CCD's

    International Nuclear Information System (INIS)

    Chugg, A.; Hopkinson, G.

    1998-01-01

    The energy depositions reported by Monte Carlo electron-photon irradiation transport codes are subject to a random error due to the finite number of particle histories used to generate the results. These statistical variations, normally a nuisance, may also be identified with the real radiation noise effects experienced by CCD pixels in persistent radiation environments. This paper explores the practicability of such radiation noise modelling by applying the ACCEPT code from the ITS suite to the case of a shielded CCD exposed to an electron flux. The results are compared with those obtained in a subsequent electron irradiation of the CCD by a Van de Graaff accelerator

  15. Transform Domain Robust Variable Step Size Griffiths' Adaptive Algorithm for Noise Cancellation in ECG

    Science.gov (United States)

    Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.

    2011-12-01

    The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.

  16. Pseudo random signal processing theory and application

    CERN Document Server

    Zepernick, Hans-Jurgen

    2013-01-01

    In recent years, pseudo random signal processing has proven to be a critical enabler of modern communication, information, security and measurement systems. The signal's pseudo random, noise-like properties make it vitally important as a tool for protecting against interference, alleviating multipath propagation and allowing the potential of sharing bandwidth with other users. Taking a practical approach to the topic, this text provides a comprehensive and systematic guide to understanding and using pseudo random signals. Covering theoretical principles, design methodologies and applications

  17. Sounds and Noises. A Position Paper on Noise Pollution.

    Science.gov (United States)

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  18. Noise Enhances Action Potential Generation in Mouse Sensory Neurons via Stochastic Resonance.

    Science.gov (United States)

    Onorato, Irene; D'Alessandro, Giuseppina; Di Castro, Maria Amalia; Renzi, Massimiliano; Dobrowolny, Gabriella; Musarò, Antonio; Salvetti, Marco; Limatola, Cristina; Crisanti, Andrea; Grassi, Francesca

    2016-01-01

    Noise can enhance perception of tactile and proprioceptive stimuli by stochastic resonance processes. However, the mechanisms underlying this general phenomenon remain to be characterized. Here we studied how externally applied noise influences action potential firing in mouse primary sensory neurons of dorsal root ganglia, modelling a basic process in sensory perception. Since noisy mechanical stimuli may cause stochastic fluctuations in receptor potential, we examined the effects of sub-threshold depolarizing current steps with superimposed random fluctuations. We performed whole cell patch clamp recordings in cultured neurons of mouse dorsal root ganglia. Noise was added either before and during the step, or during the depolarizing step only, to focus onto the specific effects of external noise on action potential generation. In both cases, step + noise stimuli triggered significantly more action potentials than steps alone. The normalized power norm had a clear peak at intermediate noise levels, demonstrating that the phenomenon is driven by stochastic resonance. Spikes evoked in step + noise trials occur earlier and show faster rise time as compared to the occasional ones elicited by steps alone. These data suggest that external noise enhances, via stochastic resonance, the recruitment of transient voltage-gated Na channels, responsible for action potential firing in response to rapid step-wise depolarizing currents.

  19. Quantifying the Effects of Noise on Diffuse Interface Models: Cahn-Hilliard-Cook equations

    Science.gov (United States)

    Pfeifer, Spencer; Ganapathysubramanian, Baskar

    2015-03-01

    We present an investigation into the dynamics of phase separation through numerical simulations of the Cahn-Hilliard-Cook (CHC) equation. This model is an extension of the well-known Cahn- Hilliard equation, perturbed by an additive white noise. Studies have shown that random fluctuations are critical for proper resolution of physical phenomena. This is especially true for phase critical systems. We explore the transient behavior of the solution space for varying levels of noise. This is enabled by our massively scalable finite element-based numerical framework. We briefly examine the interplay between noise level and discretization (spatial and temporal) in obtaining statistically consistent solutions. We show that the added noise accelerates progress towards phase separation, but retards dynamics throughout subsequent coarsening. We identify a scaling exponent relating morphology metrics with the level of noise. We observe a very clear scaling effect of finite domain size, which is observed to be offset by increasing levels of noise. Domain scaling reveals a clear microstructural asymmetry at various stages of the evolution for lower noise levels. In contrast, higher noise levels tend to produce more uniform morphologies.

  20. Non-Stoichiometric SixN Metal-Oxide-Semiconductor Field-Effect Transistor for Compact Random Number Generator with 0.3 Mbit/s Generation Rate

    Science.gov (United States)

    Matsumoto, Mari; Ohba, Ryuji; Yasuda, Shin-ichi; Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2008-08-01

    The demand for random numbers for security applications is increasing. A conventional random number generator using thermal noise can generate unpredictable high-quality random numbers, but the circuit is extremely large because of large amplifier circuit for a small thermal signal. On the other hand, a pseudo-random number generator is small but the quality of randomness is bad. For a small circuit and a high quality of randomness, we purpose a non-stoichiometric SixN metal-oxide-semiconductor field-effect transistor (MOSFET) noise source device. This device generates a very large noise signal without an amplifier circuit. As a result, it is shown that, utilizing a SiN MOSFET, we can attain a compact random number generator with a high generation rate near 1 Mbit/s, which is suitable for almost all security applications.

  1. Does noise from wind turbines change due to age?

    International Nuclear Information System (INIS)

    Andersen, B.; Jakobsen, J.

    1995-06-01

    It has been discussed whether the noise from a wind turbine increases due to wear of the mechanical parts or to pollution of the rotor blades. If this is so it should be taken into consideration at the design stage. The noise from wind turbines that had been measured several years before was measured again, and results were compared. A number of modifications of the same wind turbine was made throughout a period of two years during which noise was measured several times. No evidence that noise increases in accordance with the age of the windmill was found. A 75 kW wind turbine seems to have an unchanged A-weighted source strength L WA after a period of 6 years. The level of the tones in the noise from the large generator engaged had increased slightly. The noise from operation of the small generator showed a pronounced increase of one tone (approximately 10 dB), while two other tones were largely unchanged. In the case of periodic measurements of the noise from a 300 kW wind turbine, the gearbox tone noise was found to change markedly, without any obvious pattern. The large, apparently random, fluctuations mask any tendency towards changes of the tone level with time. Repeated measurements of four identical 100 kW wind turbines, show a general tendency towards an increase of the A-weighted source strength (L WA ). The increase of L WA between 1 and 2.7 dB, was found mainly in the frequency range 800 Hz to 3 kHz. The level of the third octave band, which includes a weak gearbox tone (315 Hz), seemed unchanged. Other measurements indicate a constant level of noise during the first three years of operation. (AB)

  2. Assessment of the noise annoyance among subway train conductors in Tehran, Iran.

    Science.gov (United States)

    Hamidi, Mansoureh; Kavousi, Amir; Zaheri, Somayeh; Hamadani, Abolfazl; Mirkazemi, Roksana

    2014-01-01

    Subway transportation system is a new phenomenon in Iran. Noise annoyance interferes with the individual's task performance, and the required alertness in the driving of subway trains. This is the first study conducted to measure the level of noise and noise annoyance among conductors of subway organization in Tehran, Iran. This cross sectional study was conducted among 167 randomly selected train conductors. Information related to noise annoyance was collected by using a self-administered questionnaire. The dosimetry and sound metering was done for the conductors and inside the cabins. There were 41 sound metering measuring samples inside the conductors' cabin, and there were 12 samples of conductors' noise exposure. The results of sound level meter showed that the mean Leq was 73.0 dBA ± 8.7 dBA and the dosimetry mean measured Leq was 82.1 dBA ± 6.8 dBA. 80% of conductors were very annoyed/annoyed by noise in their work place. 53.9% of conductors reported that noise affected their work performance and 63.5% reported that noise causes that they lose their concentration. The noise related to movement of train wheels on rail was reported as the worst by 83.2% followed by the noise of brakes (74.3%) and the ventilation noise (71.9%). 56.9% of conductors reported that they are suffering from sleeplessness, 40.1% from tinnitus and 80.2% feeling fatigue and sleepy. The study results showed the high level of noise and noise annoyance among train conductors and the poor health outcome of their exposure to this level of noise.

  3. Magnetic field induced random pulse trains of magnetic and acoustic noises in martensitic single-crystal Ni2MnGa

    Science.gov (United States)

    Daróczi, Lajos; Piros, Eszter; Tóth, László Z.; Beke, Dezső L.

    2017-07-01

    Jerky magnetic and acoustic noises were evoked in a single variant martensitic Ni2MnGa single crystal (produced by uniaxial compression) by application of an external magnetic field along the hard magnetization direction. It is shown that after reaching the detwinning threshold, spontaneous reorientation of martensite variants (twins) leads not only to acoustic emission but magnetic two-directional noises as well. At small magnetic fields, below the above threshold, unidirectional magnetic emission is also observed and attributed to a Barkhausen-type noise due to magnetic domain wall motions during magnetization along the hard direction. After the above first run, in cycles of decreasing and increasing magnetic field, at low-field values, weak, unidirectional Barkhausen noise is detected and attributed to the discontinuous motion of domain walls during magnetization along the easy magnetization direction. The magnetic noise is also measured by constraining the sample in the same initial variant state along the hard direction and, after the unidirectional noise (as obtained also in the first run), a two-directional noise package is developed and it is attributed to domain rotations. From the statistical analysis of the above noises, the critical exponents, characterizing the power-law behavior, are calculated and compared with each other and with the literature data. Time correlations within the magnetic as well as acoustic signals lead to a common scaled power function (with β =-1.25 exponent) for both types of signals.

  4. Power-law Exponent in Multiplicative Langevin Equation with Temporally Correlated Noise

    Science.gov (United States)

    Morita, Satoru

    2018-05-01

    Power-law distributions are ubiquitous in nature. Random multiplicative processes are a basic model for the generation of power-law distributions. For discrete-time systems, the power-law exponent is known to decrease as the autocorrelation time of the multiplier increases. However, for continuous-time systems, it is not yet clear how the temporal correlation affects the power-law behavior. Herein, we analytically investigated a multiplicative Langevin equation with colored noise. We show that the power-law exponent depends on the details of the multiplicative noise, in contrast to the case of discrete-time systems.

  5. Distinguishing deterministic and noise components in ELM time series

    International Nuclear Information System (INIS)

    Zvejnieks, G.; Kuzovkov, V.N

    2004-01-01

    Full text: One of the main problems in the preliminary data analysis is distinguishing the deterministic and noise components in the experimental signals. For example, in plasma physics the question arises analyzing edge localized modes (ELMs): is observed ELM behavior governed by a complicate deterministic chaos or just by random processes. We have developed methodology based on financial engineering principles, which allows us to distinguish deterministic and noise components. We extended the linear auto regression method (AR) by including the non-linearity (NAR method). As a starting point we have chosen the nonlinearity in the polynomial form, however, the NAR method can be extended to any other type of non-linear functions. The best polynomial model describing the experimental ELM time series was selected using Bayesian Information Criterion (BIC). With this method we have analyzed type I ELM behavior in a subset of ASDEX Upgrade shots. Obtained results indicate that a linear AR model can describe the ELM behavior. In turn, it means that type I ELM behavior is of a relaxation or random type

  6. The effects of meaningful irrelevant speech and road traffic noise on teachers' attention, episodic and semantic memory.

    Science.gov (United States)

    Enmarker, Ingela

    2004-11-01

    The aim of the present experiment was to examine the effects of meaningful irrelevant speech and road traffic noise on attention, episodic and semantic memory, and also to examine whether the noise effects were age-dependent. A total of 96 male and female teachers in the age range of 35-45 and 55-65 years were randomly assigned to a silent or the two noise conditions. Noise effects found in episodic memory were limited to a meaningful text, where cued recall contrary to expectations was equally impaired by the two types of noise. However, meaningful irrelevant speech also deteriorated recognition of the text, whereas road traffic noise caused no decrement. Retrieval from two word fluency tests in semantic memory showed strong effects of noise exposure, one affected by meaningful irrelevant speech and the other by road traffic noise. The results implied that both acoustic variation and the semantic interference could be of importance for noise impairments. The expected age-dependent noise effects did not show up.

  7. Nodule detection in digital chest radiography: Part of image background acting as pure noise

    International Nuclear Information System (INIS)

    Baath, M.; Haakansson, M.; Boerjesson, S.; Kheddache, S.; Grahn, A.; Bochud, F. O.; Verdun, F. R.; Maansson, L. G.

    2005-01-01

    There are several factors that influence the radiologist's ability to detect a specific structure/lesion in a radiograph. Three factors that are commonly known to be of major importance are the signal itself, the system noise and the projected anatomy. The aim of this study was to determine to what extent the image background acts as pure noise for the detection of subtle lung nodules in five different regions of the chest. A receiver operating characteristic (ROC) study with five observers was conducted on two different sets of images, clinical chest X-ray images and images with a similar power spectrum as the clinical images but with a random phase spectrum, resulting in an image background containing pure noise. Simulated designer nodules with a full-width-at-fifth-maximum of 10 mm but with varying contrasts were added to the images. As a measure of the part of the image background that acts as pure noise, the ratio between the contrast needed to obtain an area under the ROC curve of 0.80 in the clinical images to that in the random-phase images was used. The ratio ranged from 0.40 (in the lateral pulmonary regions) to 0.83 (in the hilar regions) indicating that there was a large difference between different regions regarding to what extent the image background acted as pure noise; and that in the hilar regions the image background almost completely acted as pure noise for the detection of 10 mm nodules. (authors)

  8. Prevalence of noise induced hearing loss in textile industries in ...

    African Journals Online (AJOL)

    This cross sectional study measured the prevalence of Noise Induced Hearing Loss (NIHL) in textile industries in Dar Es Salaam city and Morogoro municipality. Data were collected from 125 employees randomly selected from each of the textile factory mill in each region through structured questionnaires and audiogram ...

  9. Environmental Noise Could Promote Stochastic Local Stability of Behavioral Diversity Evolution

    Science.gov (United States)

    Zheng, Xiu-Deng; Li, Cong; Lessard, Sabin; Tao, Yi

    2018-05-01

    In this Letter, we investigate stochastic stability in a two-phenotype evolutionary game model for an infinite, well-mixed population undergoing discrete, nonoverlapping generations. We assume that the fitness of a phenotype is an exponential function of its expected payoff following random pairwise interactions whose outcomes randomly fluctuate with time. We show that the stochastic local stability of a constant interior equilibrium can be promoted by the random environmental noise even if the system may display a complicated nonlinear dynamics. This result provides a new perspective for a better understanding of how environmental fluctuations may contribute to the evolution of behavioral diversity.

  10. Residential traffic noise exposure and vestibular schwannoma - a Danish case-control study.

    Science.gov (United States)

    Roswall, Nina; Stangerup, Sven-Eric; Cayé-Thomasen, Per; Schüz, Joachim; Johansen, Christoffer; Jensen, Steen Solvang; Raaschou-Nielsen, Ole; Sørensen, Mette

    2017-10-01

    Few risk factors for sporadic vestibular schwannoma (VS) are known. Several studies have proposed an increased risk with occupational noise exposure, whereas no studies have investigated residential traffic noise exposure as a risk factor. The present study investigated if residential traffic noise was associated with vestibular schwannoma in a large, population-based Danish case-control study. We identified 1454 VS cases, age above 30 years at diagnosis, between 1990 and 2007. For each case, we selected two random population controls, matched on sex and year of birth. Road and railway traffic noise at the residence was calculated for all present and historical addresses between 1987 and index date. Associations between traffic noise and risk for VS were estimated using conditional logistic regression, adjusted for education, disposable personal income, cohabitation status, railway noise exposure, municipal population density, and municipal income. A two-year time-weighted mean road traffic noise exposure was associated with an adjusted odds ratio of 0.92 (0.82-1.03) for developing VS, per 10 dB increment. There was no clear trend in categorical analyses. Similarly, linear and categorical analyses of residential railway noise did not suggest an association. We found no interaction with demographics, year of diagnosis, individual and municipal socioeconomic variables, and railway noise exposure. The results did not differ by tumor side, spread or size. The present study does not suggest an association between residential traffic noise and VS.

  11. Noise-induced hearing loss: a recreational noise perspective.

    Science.gov (United States)

    Ivory, Robert; Kane, Rebecca; Diaz, Rodney C

    2014-10-01

    This review will discuss the real-world risk factors involved in noise-induced hearing loss as a result of common and popular recreational activities prone to mid and high levels of noise exposure. Although there are currently no interventional measures available to reverse or mitigate preexisting hearing loss from noise, we discuss the vital importance of hearing loss prevention from noise exposure avoidance and reduction. Despite a seeming understanding of the effects of noise exposure from various recreational activities and devices, a large percentage of the general public who is at risk of such noise-induced hearing loss still chooses to refrain from using hearing protection instruments. While occupational exposures pose the greatest traditional risk to hearing conservation in selected workers, recreational risk factors for noise-induced hearing loss may be more insidious in overall effect given the indifferent attitude of much of the general public and particularly our youths toward hearing protection during recreational activities. Active counseling regarding the consequences of excessive noise exposure and the potential benefits to hearing from usage of hearing protection instruments is critical to providing best possible care in the hearing health professions.

  12. The Protective Effect of Conditioning on Noise-Induced Hearing Loss Is Frequency-Dependent

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2012-10-01

    Full Text Available We compared the extent of temporary threshold shift (TTS and hair cell loss following high level 4 kHz noise exposure with those preconditioned with moderate level 1 and 4 kHz octave band noise. Fifteen Male albino guinea pigs (300- 350 g in weight were randomly allocated into three groups: those exposed to 4 kHz octave band noise at 102 dB SPL (group 1, n=5; those conditioned with 1 kHz octave band noise at 85 dB SPL, 6 hours per day for 5 days, then exposed to noise (group 2, n=5; those conditioned with 4 kHz octave band noise at 85 dB SPL, then exposed to noise (group 3, n=5. An hour and one week after noise exposure, threshold shifts were evaluated by auditory-evoked brainstem response (ABR and then animals were euthanized for histological evaluation. We found that TTS and cochlear damage caused by noise exposure were significantly reduced by 1 kHz and 4 kHz conditioning (P<0.001. We also showed that 4 kHz protocol attenuates noise- induced TTS but no significant TTS reduction occurred by 1 kHz conditioning. Both protocol protected noise-induced cochlear damage. We concluded that lower tone conditioning could not protect against higher tone temporary noise-induced hearing loss, thus conditioning is a local acting and frequency-dependent phenomenon.

  13. Renexin as a rescue regimen for noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    So Young Park

    2014-01-01

    Full Text Available Renexin, a compound of cilostazol and ginkgo biloba extract, has been reported to produce neuroprotective effects through antioxidant, antiplatelet, and vasodilatory mechanisms. This study was designed to investigate the protective effects of renexin on hearing, the organ of Corti (OC, and medial olivocochlear efferents against noise-induced damage. C57BL/6 mice were exposed to 110 dB SPL white noise for 60 min and then randomly divided into three groups: high- and low-dose renexin-treated groups and noise only group. Renexin were administered for 7 days: 90 mg/kg to the low-dose, and 180 mg/kg to the high-dose groups. All mice, including the controls underwent hearing tests on postnoise day 8 and were killed for cochlear harvest. We compared the hearing thresholds and morphology of the OC and cochlear efferents across the groups. The renexin-treated groups recovered from the immediate threshold shifts in a dose-dependent manner, while the noise group showed a permanent hearing loss. The renexin-treated ears demonstrated less degeneration of the OC. The diameters of the efferent terminals labeled with α-synuclein were preserved in the high-dose renexin-treated group. In the western blot assay of the cochlear homogenates, the treated groups displayed stronger expressions of α-synuclein than the noise and control groups, which may indicate that noise-induced enhanced activity of the cochlear efferent system was protected by renexin. Our results suggest that pharmacologic treatment with renexin is hopeful to reduce or prevent noise-induced hearing loss as a rescue regimen after noise exposure.

  14. Random ordinary differential equations and their numerical solution

    CERN Document Server

    Han, Xiaoying

    2017-01-01

    This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs).   RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems.  They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor ...

  15. Variational Bayesian labeled multi-Bernoulli filter with unknown sensor noise statistics

    Directory of Open Access Journals (Sweden)

    Qiu Hao

    2016-10-01

    Full Text Available It is difficult to build accurate model for measurement noise covariance in complex backgrounds. For the scenarios of unknown sensor noise variances, an adaptive multi-target tracking algorithm based on labeled random finite set and variational Bayesian (VB approximation is proposed. The variational approximation technique is introduced to the labeled multi-Bernoulli (LMB filter to jointly estimate the states of targets and sensor noise variances. Simulation results show that the proposed method can give unbiased estimation of cardinality and has better performance than the VB probability hypothesis density (VB-PHD filter and the VB cardinality balanced multi-target multi-Bernoulli (VB-CBMeMBer filter in harsh situations. The simulations also confirm the robustness of the proposed method against the time-varying noise variances. The computational complexity of proposed method is higher than the VB-PHD and VB-CBMeMBer in extreme cases, while the mean execution times of the three methods are close when targets are well separated.

  16. Stochastic Evolution Equations Driven by Fractional Noises

    Science.gov (United States)

    2016-11-28

    paper is to establish the weak convergence, in the topology of the Skorohod space, of the ν-symmetric Riemann sums for functionals of the fractional...stochastic heat equation with fractional-colored noise: existence of the solution. ALEA Lat. Am. J. Probab. Math . Stat. 4 (2008), 57–87. [8] P. Carmona, Y...Hu: Strong disorder implies strong localization for directed polymers in a random environment. ALEA Lat. Am. J. Probab. Math . Stat. 2 (2006), 217

  17. Use of active noise cancellation devices in caregivers in the intensive care unit.

    Science.gov (United States)

    Akhtar, S; Weigle, C G; Cheng, E Y; Toohill, R; Berens, R J

    2000-04-01

    Recent development of noise cancellation devices may offer relief from noise in the intensive care unit environment. This study was conducted to evaluate the effect of noise cancellation devices on subjective hearing assessment by caregivers in the intensive care units. Randomized, double-blind. Adult medical intensive care unit and pediatric intensive care unit of a teaching hospital. Caregivers of patients, including nurses, parents, respiratory therapists, and nursing assistants from a medical intensive care unit and pediatric intensive care, were enrolled in the study. Each participant was asked to wear the headphones, functional or nonfunctional noise cancellation devices, for a minimum of 30 mins. Subjective ambient noise level was assessed on a 10-point visual analog scale (VAS) before and during headphone use by each participant. Headphone comfort and the preference of the caregiver to wear the headphone were also evaluated on a 10-point VAS. Simultaneously, objective measurement of noise was done with a sound level meter using the decibel-A scale and at each of nine octave bands at each bedspace. The functional headphones significantly reduced the subjective assessment of noise by 2 (out of 10) VAS points (p noise profiles, based on decibel-A and octave band assessments. Noise cancellation devices improve subjective assessment of noise in caretakers. The benefit of these devices on hearing loss needs further evaluation in caregivers and critically ill patients.

  18. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise

    NARCIS (Netherlands)

    Salomons, E.M.; Janssen, S.A.

    2011-01-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a

  19. Computer generation of random deviates

    International Nuclear Information System (INIS)

    Cormack, John

    1991-01-01

    The need for random deviates arises in many scientific applications. In medical physics, Monte Carlo simulations have been used in radiology, radiation therapy and nuclear medicine. Specific instances include the modelling of x-ray scattering processes and the addition of random noise to images or curves in order to assess the effects of various processing procedures. Reliable sources of random deviates with statistical properties indistinguishable from true random deviates are a fundamental necessity for such tasks. This paper provides a review of computer algorithms which can be used to generate uniform random deviates and other distributions of interest to medical physicists, along with a few caveats relating to various problems and pitfalls which can occur. Source code listings for the generators discussed (in FORTRAN, Turbo-PASCAL and Data General ASSEMBLER) are available on request from the authors. 27 refs., 3 tabs., 5 figs

  20. Experimental study of a quantum random-number generator based on two independent lasers

    Science.gov (United States)

    Sun, Shi-Hai; Xu, Feihu

    2017-12-01

    A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.

  1. The Analysis and Suppression of the spike noise in vibrator record

    Science.gov (United States)

    Jia, H.; Jiang, T.; Xu, X.; Ge, L.; Lin, J.; Yang, Z.

    2013-12-01

    During the seismic exploration with vibrator, seismic recording systems have often been affected by random spike noise in the background, which leads to strong data distortions as a result of the cross-correlation processing of the vibrator method. Partial or total loss of the desired seismic information is possible if no automatic spike reduction is available in the field prior to correlation of the field record. Generally speaking, original record of vibrator is uncorrelated data, in which the signal is non-wavelet form. In order to obtain the seismic record similar to explosive source, the signal of uncorrelated data needs to use the correlation algorithm to compress into wavelet form. The correlation process results in that the interference of spike in correlated data is not only being suppressed, but also being expanded. So the spike noise suppression of vibrator is indispensable. According to numerical simulation results, the effect of spike in the vibrator record is mainly affected by the amplitude and proportional points in the uncorrelated record. When the spike noise ratio in uncorrelated record reaches 1.5% and the average amplitude exceeds 200, it will make the SNR(signal-to-noise ratio) of the correlated record lower than 0dB, so that it is difficult to separate the signal. While the amplitude and ratio is determined by the intensity of background noise. Therefore, when the noise level is strong, in order to improve SNR of the seismic data, the uncorrelated record of vibrator need to take necessary steps to suppress spike noise. For the sake of reducing the influence of the spike noise, we need to make the detection and suppression of spike noise process for the uncorrelated record. Because vibrator works by inputting sweep signal into the underground long time, ideally, the peak and valley values of each trace have little change. On the basis of the peak and valley values, we can get a reference amplitude value. Then the spike can be detected and

  2. Effects of a traffic noise background on judgements of aircraft noise

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1974-01-01

    A study was conducted in which subjects judged aircraft noises in the presence of road traffic background noise. Two different techniques for presenting the background noises were evaluated. For one technique, the background noise was continuous over the whole of a test session. For the other, the background noise was changed with each aircraft noise. A range of aircraft noise levels and traffic noise levels were presented to simulate typical indoor levels.

  3. Evaluation of noise pollution in oil extracting region of Lavan and the effect of noise enclosure on noise abatement

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2007-09-01

    Full Text Available Background and aims   Overexposure to industrial noise pollution induce hearing loss workers. Occupational hearing loss may cause interference whit oral communication, so it may  increase the risk of occupational accidents in workplace as well as affects whit social activities.  This study was conducted on Lavan Island, are of oil extracting regions in the south of Iran. The  object of this study was to evaluate noise pollution and determining the effect of noise enclosure  on noise abatement.   Methods   The noise sources were recognized and noise pressure level was measured by CEL- 440. Noise dose of the exposed workers in high level noise area were measured by CEL 272.   Results   Major noise sources were gas turbines, diesel generators, compressors, fans and gas containing pips, noise contour map revealers that noise level were higher than the recommended national exposure limit. The results of workers noise dose show that their noise exposure were  higher than the recommended value, (p<0.001. Finally, by using the results of noise frequency  analysis of different noise sources, the noise pressure level of each sources was determined in   terms of enclosing them.   Conclusion   By enclosing the noise sources, noise pressure levels can be lowered douse to  acceptable levels but limitation of applying enclosure should be regarded.  

  4. Noise cancellation properties of displacement noise free interferometer

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kawamura, Seiji; Nishizawa, Atsushi; Chen Yanbei

    2010-01-01

    We have demonstrated the practical feasibility of a displacement- and frequency-noise-free laser interferometer (DFI) by partially implementing a recently proposed optical configuration using bi-directional Mach-Zehnder interferometers (MZIs). The noise cancellation efficiency was evaluated by comparing the displacement noise spectrum of the MZIs and the DFI, demonstrating up to 50 dB of noise cancellation. In addition, the possible extension of DFI as QND device is explored.

  5. Doing the Impossible: A Note on Induction and the Experience of Randomness.

    Science.gov (United States)

    Lopes, Lola L.

    1982-01-01

    The process of induction is formulated as a problem in detecting nonrandomness, or pattern, against a background of randomness, or noise. Experimental and philosophical approaches to human conceptions of randomness are contrasted. The relation between induction and the experience of randomness is discussed in terms of signal-detection theory.…

  6. Force induced unzipping of DNA with long range correlated noise

    International Nuclear Information System (INIS)

    Lam, Pui-Man; Zhen, Yi

    2011-01-01

    We derive and solve a Fokker–Planck equation for the stationary distribution of the free energy, in a model of unzipping of double-stranded DNA under external force. The autocorrelation function of the random DNA sequence can be of a general form, including long range correlations. In the case of Ornstein–Uhlenbeck noise, characterized by a finite correlation length, our result reduces to the exact result of Allahverdyan et al, with the average number of unzipped base pairs going as (X) ∼ 1/f 2 in the white noise limit, where f is the deviation from the critical force. In the case of long range correlated noise, where the integrated autocorrelation is divergent, we find that (X) is finite at f = 0, with its value decreasing as the correlations become of longer range. This shows that long range correlations actually stabilize the DNA sequence against unzipping. Our result is also in agreement with the findings of Allahverdyan et al obtained using numerical generation of the long range correlated noise

  7. Polarized ensembles of random pure states

    Science.gov (United States)

    Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe

    2013-08-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise.

  8. Diffusion by extrinsic noise in the kicked Harper map

    International Nuclear Information System (INIS)

    Park, Gunyoung; Chang, C. S.

    2001-01-01

    A significantly improved analytic understanding of the extrinsically driven diffusion process is presented in a nonlinear dynamical system in which the phase space is divided into periodic two-dimensional tiles of regular motion, separated by a connected separatrix network (web) [previously studied by A. J. Lichtenberg and Blake P. Wood, Phys. Rev. Lett. >62, 2213 (1989)]. The system is represented by the usual 'kicked Harper map' with added extrinsic noise terms. Three different diffusion regimes are found depending upon the strength of the extrinsic perturbation l relative to the web and regular motions. When the extrinsic noise is dominant over the intrinsic stochasticity and the regular rotation motions in the tile, diffusion obeys the random phase scaling l 2 . When the extrinsic noise is dominant over the intrinsic stochasticity, but weaker than the regular rotation motion, the diffusion scales as lK 1/2 , where K is the strength of the intrinsic kick. These findings agree well with numerical simulation results. When the extrinsic noise process is weaker than the stochastic web process, we analytically reproduce the well-known numerical result: The web diffusion is reduced by the ratio of phase-space areas of intrinsic to extrinsic stochasticity

  9. Dynamics of double-well Bose–Einstein condensates subject to external Gaussian white noise

    International Nuclear Information System (INIS)

    Zheng Hanlei; Hao Yajiang; Gu Qiang

    2013-01-01

    Dynamical properties of the Bose–Einstein condensate in a double-well potential subject to Gaussian white noise are investigated by numerically solving the time-dependent Gross–Pitaevskii equation. The Gaussian white noise is used to describe influence of the random environmental disturbance on the double-well condensate. Dynamical evolutions from three different initial states, the Josephson oscillation state, the running phase and π-mode macroscopic quantum self-trapping states, are considered. It is shown that the system is rather robust with respect to the weak noise whose strength is small and change rate is high. If the evolution time is sufficiently long, the weak noise will finally drive the system to evolve from high-energy states to low-energy states, but in a manner rather different from the energy-dissipation effect. In the presence of strong noise with either large strength or slow change rate, the double-well condensate may exhibit very irregular dynamical behaviours. (paper)

  10. Moment Lyapunov Exponent and Stochastic Stability of Binary Airfoil under Combined Harmonic and Non-Gaussian Colored Noise Excitations

    Science.gov (United States)

    Hu, D. L.; Liu, X. B.

    Both periodic loading and random forces commonly co-exist in real engineering applications. However, the dynamic behavior, especially dynamic stability of systems under parametric periodic and random excitations has been reported little in the literature. In this study, the moment Lyapunov exponent and stochastic stability of binary airfoil under combined harmonic and non-Gaussian colored noise excitations are investigated. The noise is simplified to an Ornstein-Uhlenbeck process by applying the path-integral method. Via the singular perturbation method, the second-order expansions of the moment Lyapunov exponent are obtained, which agree well with the results obtained by the Monte Carlo simulation. Finally, the effects of the noise and parametric resonance (such as subharmonic resonance and combination additive resonance) on the stochastic stability of the binary airfoil system are discussed.

  11. Masking potency and whiteness of noise at various noise check sizes.

    Science.gov (United States)

    Kukkonen, H; Rovamo, J; Näsänen, R

    1995-02-01

    The masking effect of spatial noise can be increased by increasing either the rms contrast or check size of noise. In this study, the authors investigated the largest noise check size that still mimics the effect of white noise in grating detection and how it depends on the bandwidth and spatial frequency of a grating. The authors measured contrast energy thresholds, E, for vertical cosine gratings at various spatial frequencies and bandwidths. Gratings were embedded in two-dimensional spatial noise. The side length of the square noise checks was varied in the experiments. The spectral density, N(0,0), of white spatial noise at zero frequency was calculated by multiplying the noise check area by the rms contrast of noise squared. The physical signal-to-noise ratio at threshold [E/N(0,0)]0.5 was initially constant but then started to decrease. The largest noise check that still produced a constant physical signal-to-noise ratio at threshold was directly proportional to the spatial frequency. When expressed as a fraction of grating cycle, the largest noise check size depended only on stimulus bandwidth. The smallest number of noise checks per grating cycle needed to mimic the effect of white noise decreased from 4.2 to 2.6 when the number of grating cycles increased from 1 to 64. Spatial noise can be regarded as white in grating detection if there are at least four square noise checks per grating cycle at all spatial frequencies.

  12. Interventions to prevent occupational noise-induced hearing loss: a Cochrane systematic review

    NARCIS (Netherlands)

    Verbeek, Jos H.; Kateman, Erik; Morata, Thais C.; Dreschler, Wouter A.; Mischke, Christina

    2014-01-01

    To assess the effectiveness of interventions for preventing occupational noise exposure or hearing loss compared to no intervention or alternative interventions. We searched biomedical databases up to 25 January 2012 for randomized controlled trials (RCT), controlled before-after studies and

  13. Estimation of noise-free variance to measure heterogeneity.

    Directory of Open Access Journals (Sweden)

    Tilo Winkler

    Full Text Available Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV(2. The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CV(r(2 for comparison with our estimate of noise-free or 'true' heterogeneity (CV(t(2. We found that CV(t(2 was only 5.4% higher than CV(r2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using (13NN-saline injection. The mean CV(t(2 was 0.10 (range: 0.03-0.30, while the mean CV(2 including noise was 0.24 (range: 0.10-0.59. CV(t(2 was in average 41.5% of the CV(2 measured including noise (range: 17.8-71.2%. The reproducibility of CV(t(2 was evaluated using three repeated PET scans from five subjects. Individual CV(t(2 were within 16% of each subject's mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CV(t(2 in PET scans, and may be useful for similar statistical problems in experimental data.

  14. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    Science.gov (United States)

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  15. Role of the noise on the transient dynamics of an ecosystem of interacting species

    Science.gov (United States)

    Spagnolo, B.; La Barbera, A.

    2002-11-01

    We analyze the transient dynamics of an ecosystem described by generalized Lotka-Volterra equations in the presence of a multiplicative noise and a random interaction parameter between the species. We consider specifically three cases: (i) two competing species, (ii) three interacting species (one predator-two preys), (iii) n-interacting species. The interaction parameter in case (i) is a stochastic process which obeys a stochastic differential equation. We find noise delayed extinction of one of two species, which is akin to the noise-enhanced stability phenomenon. Other two noise-induced effects found are temporal oscillations and spatial patterns of the two competing species. In case (ii) the noise induces correlated spatial patterns of the predator and of the two preys concentrations. Finally, in case (iii) we find the asymptotic behavior of the time average of the ith population when the ecosystem is composed of a great number of interacting species.

  16. Measurement and analyses of spectral noise power in computed tomography; Medida y analisis del espectro de potencias del ruido en imagenes de tomografia computarizada

    Energy Technology Data Exchange (ETDEWEB)

    Castro Tejero, P.; Garayoa Roca, J.

    2014-07-01

    Noise is an important feature of image quality. The standard deviation of pixel value in a uniform region has been frequently used as a metric to characterize noise. However, this measure does not provide any information about the noise spatial distribution. A more complete description is given by the Noise Power Spectrum (NPS) which provides both the amount and the spatial correlation of noise. The objective of the present work is to present a methodology and a computing tool to obtain the NPS, in order to analyze its components and study their behaviour for computed tomography (TC) images. Our results show that the major contribution to NPS is a random source for all the explored working conditions. The structural component is constrained to the low frequency region, where it can be as important as the random component. Moreover, we observe that the reconstruction filter and the acquisition technique, axial or helical, have a clear impact on the image noise. (Author)

  17. Environmental noise and noise modelling-some aspects in Malaysian development

    International Nuclear Information System (INIS)

    Leong, Mohd Salman; Mohd Shafiek bin Hj Yaacob

    1994-01-01

    Environmental noise is of growing concern in Malaysia with the increasing awareness of the need for an environmental quality consistent with improved quality of life. While noise is one of the several elements in an Environmental Impact Assessment report, the degree of emphasis in the assessment is not as thorough as other aspects in the EIA study. The measurements, prediction (if at all any), and evaluation tended to be superficial. The paper presents a summary of correct noise descriptors and annoyance assessment parameters appropriate for the evaluation of environmental noise. The paper further highlights current inadequacies in the Environmental Quality Act for noise pollution, and annoyance assessment. Some examples of local noise pollution are presented. A discussion on environmental noise modelling is presented. Examples illustrating environmental noise modelling for a mining operation and a power station are given. It is the authors' recommendation that environmental noise modelling be made mandatory in all EIA studies such that a more definitive assessment could be realised

  18. Sub-1-V-60 nm vertical body channel MOSFET-based six-transistor static random access memory array with wide noise margin and excellent power delay product and its optimization with the cell ratio on static random access memory cell

    Science.gov (United States)

    Ogasawara, Ryosuke; Endoh, Tetsuo

    2018-04-01

    In this study, with the aim to achieve a wide noise margin and an excellent power delay product (PDP), a vertical body channel (BC)-MOSFET-based six-transistor (6T) static random access memory (SRAM) array is evaluated by changing the number of pillars in each part of a SRAM cell, that is, by changing the cell ratio in the SRAM cell. This 60 nm vertical BC-MOSFET-based 6T SRAM array realizes 0.84 V operation under the best PDP and up to 31% improvement of PDP compared with the 6T SRAM array based on a 90 nm planar MOSFET whose gate length and channel width are the same as those of the 60 nm vertical BC-MOSFET. Additionally, the vertical BC-MOSFET-based 6T SRAM array achieves an 8.8% wider read static noise margin (RSNM), a 16% wider write margin (WM), and an 89% smaller leakage. Moreover, it is shown that changing the cell ratio brings larger improvements of RSNM, WM, and write time in the vertical BC-MOSFET-based 6T SRAM array.

  19. MMSE Estimator for Children’s Speech with Car and Weather Noise

    Science.gov (United States)

    Sayuthi, V.

    2018-04-01

    Previous research mentioned that most people need and use vehicles for various purposes, in this recent time and future, as a means of traveling. Many ways can be done in a vehicle, such as for enjoying entertainment, and doing work, so vehicles not just only as a means of traveling. In this study, we will examine the children’s speech from a girl in the vehicle that affected by noise disturbances from the sound source of car noise and the weather sound noise around it, in this case, the rainy weather noise. Vehicle sounds may be from car engine or car air conditioner. The minimum mean square error (MMSE) estimator is used as an attempt to obtain or detect the children’s clear speech by representing simulation research as random process signal that factored by the autocorrelation of both the child’s voice and the disturbance noise signal. This MMSE estimator can be considered as wiener filter as the clear sound are reconstructed again. We expected that the results of this study can help as the basis for development of entertainment or communication technology for passengers of vehicles in the future, particularly using MMSE estimators.

  20. Annoyance of low frequency noise and traffic noise

    DEFF Research Database (Denmark)

    Mortensen, F.R.; Poulsen, Torben

    2001-01-01

    The annoyance of different low frequency noise sources was determined and compared to the annoyance from traffic noise. Twenty-two subjects participated in laboratory listening tests. The sounds were presented by loudspeakers in a listening room and the spectra of the low frequency noises were...

  1. Gaussian white noise excited elasto-Plastic oscillator of several degrees of freedom

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Randrup-thomsen, Søren

    1996-01-01

    this restriction the obtained Slepian model results fit well with the results obtained by direct response simulations. Also it is observed that the restriction gets less importance for decreasing intensity of the white noise excitation. Keywords: Random vibrations, Slepian models, MDOF elasto-plastic oscillator......The Slepian model process method has turned out to be a powerful tool to obtain accurate approximations to the long run probability distributions of the plastic displacements of a one degree of freedom linear elastic-ideal plastic oscillator (EPO) subject to stationary Gaussian white noise...

  2. Perturbation Solutions for Random Linear Structural Systems subject to Random Excitation using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    perturbation method using stochastic differential equations. The joint statistical moments entering the perturbation solution are determined by considering an augmented dynamic system with state variables made up of the displacement and velocity vector and their first and second derivatives with respect......The paper deals with the first and second order statistical moments of the response of linear systems with random parameters subject to random excitation modelled as white-noise multiplied by an envelope function with random parameters. The method of analysis is basically a second order...... to the random parameters of the problem. Equations for partial derivatives are obtained from the partial differentiation of the equations of motion. The zero time-lag joint statistical moment equations for the augmented state vector are derived from the Itô differential formula. General formulation is given...

  3. Evaluating noise abatement measures using strategic noise maps

    NARCIS (Netherlands)

    Borst, H.C.; Miedema, H.M.E.; Laan, W.P.N. van der; Lohman, W.J.A.

    2006-01-01

    Noise annoyance due to transportation is widespread in industrialized countries and in urban areas in the developing countries. The European Noise Directive (END) requires an assessment of the noise situation as well as the formulation of action plans for the reduction of the number of people

  4. Enhancing Security of Double Random Phase Encoding Based on Random S-Box

    Science.gov (United States)

    Girija, R.; Singh, Hukum

    2018-06-01

    In this paper, we propose a novel asymmetric cryptosystem for double random phase encoding (DRPE) using random S-Box. While utilising S-Box separately is not reliable and DRPE does not support non-linearity, so, our system unites the effectiveness of S-Box with an asymmetric system of DRPE (through Fourier transform). The uniqueness of proposed cryptosystem lies on employing high sensitivity dynamic S-Box for our DRPE system. The randomness and scalability achieved due to applied technique is an additional feature of the proposed solution. The firmness of random S-Box is investigated in terms of performance parameters such as non-linearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. S-Boxes convey nonlinearity to cryptosystems which is a significant parameter and very essential for DRPE. The strength of proposed cryptosystem has been analysed using various parameters such as MSE, PSNR, correlation coefficient analysis, noise analysis, SVD analysis, etc. Experimental results are conferred in detail to exhibit proposed cryptosystem is highly secure.

  5. Polarized ensembles of random pure states

    International Nuclear Information System (INIS)

    Cunden, Fabio Deelan; Facchi, Paolo; Florio, Giuseppe

    2013-01-01

    A new family of polarized ensembles of random pure states is presented. These ensembles are obtained by linear superposition of two random pure states with suitable distributions, and are quite manageable. We will use the obtained results for two purposes: on the one hand we will be able to derive an efficient strategy for sampling states from isopurity manifolds. On the other, we will characterize the deviation of a pure quantum state from separability under the influence of noise. (paper)

  6. Phase noise measurements with a cryogenic power-splitter to minimize the cross-spectral collapse effect

    Science.gov (United States)

    Hati, Archita; Nelson, Craig W.; Pappas, David P.; Howe, David A.

    2017-11-01

    The cross-spectrum noise measurement technique enables enhanced resolution of spectral measurements. However, it has disadvantages, namely, increased complexity, inability of making real-time measurements, and bias due to the "cross-spectral collapse" (CSC) effect. The CSC can occur when the spectral density of a random process under investigation approaches the thermal noise of the power splitter. This effect can severely bias results due to a differential measurement between the investigated noise and the anti-correlated (phase-inverted) noise of the power splitter. In this paper, we report an accurate measurement of the phase noise of a thermally limited electronic oscillator operating at room temperature (300 K) without significant CSC bias. We mitigated the problem by cooling the power splitter to liquid helium temperature (4 K). We quantify errors of greater than 1 dB that occur when the thermal noise of the oscillator at room temperature is measured with the power splitter at temperatures above 77 K.

  7. Noise annoys: effects of noise on breeding great tits depend on personality but not on noise characteristics

    NARCIS (Netherlands)

    Naguib, M.; Van Oers, K.; Braakhuis, A.; Griffioen, M.; De Goede, P.; Waas, J.R.

    2013-01-01

    Anthropogenic noise can have serious implications for animals, especially when they communicate acoustically. Yet, the impacts of noise may depend not only on noise characteristics but also on an individual's coping style or personality. We tested whether noise is more disturbing if it masks

  8. Random forcing of geostrophic motion in rotating stratified turbulence

    Science.gov (United States)

    Waite, Michael L.

    2017-12-01

    Random forcing of geostrophic motion is a common approach in idealized simulations of rotating stratified turbulence. Such forcing represents the injection of energy into large-scale balanced motion, and the resulting breakdown of quasi-geostrophic turbulence into inertia-gravity waves and stratified turbulence can shed light on the turbulent cascade processes of the atmospheric mesoscale. White noise forcing is commonly employed, which excites all frequencies equally, including frequencies much higher than the natural frequencies of large-scale vortices. In this paper, the effects of these high frequencies in the forcing are investigated. Geostrophic motion is randomly forced with red noise over a range of decorrelation time scales τ, from a few time steps to twice the large-scale vortex time scale. It is found that short τ (i.e., nearly white noise) results in about 46% more gravity wave energy than longer τ, despite the fact that waves are not directly forced. We argue that this effect is due to wave-vortex interactions, through which the high frequencies in the forcing are able to excite waves at their natural frequencies. It is concluded that white noise forcing should be avoided, even if it is only applied to the geostrophic motion, when a careful investigation of spontaneous wave generation is needed.

  9. Aging and Barkhausen Noise in the Relaxor Ferroelectric SBN:La and PMN/PT

    Science.gov (United States)

    Chao, Lambert K.; Colla, Eugene V.; Weissman, M. B.

    2003-03-01

    Relaxor ferroelectrics form a diverse class of materials which exhibit frequency-dependent freezing into a disordered state. The relation to other cooperative glassy freezing, such as in spin glasses, remain uncertain. Previous aging investigations on several relaxors already indicate diverse behavior (E.V. Colla phet al., Phys. Rev. B 63, 134107 (2001)). We present results on aging behavior on PMN/PT (90/10) and SBN:La. SBN:La, believed to fit a random-field Ising model, exhibits complicated aging behavior with a low-temperature regime lacking the memory effects characteristic of spin-glass-like aging seen in the perovskites PMN and PMN/PT. Further information on the glassy freezing is provided via Barkhausen noise experiments using a balanced capacitance bridge technique capable of measuring random noise despite a large systematic background signal [E.V. Colla phet al., Phys. Rev. Lett. 88 017601 (2002).].

  10. Progressive evolution and a measure for its noise-dependent complexity

    Science.gov (United States)

    Fussy, Siegfried; Grössing, Gerhard; Schwabl, Herbert

    1999-03-01

    A recently introduced model of macroevolution is studied on two different levels of systems analysis. Firstly, the systems dynamics and properties, above all the growth of complexity of the evolutionary units during the long-term evolution, are discussed, and, secondly, the complexity of the model itself, i.e. the richness of its various features, is studied with regard to a control parameter representing a background noise within the systems dynamics. The same is done with a randomized version of the model. The model is based on a normalized one-dimensional coupled map lattice with locally interacting sites representing different species. The evolution of the sites' values representing the fitness of the species is governed by a usual diffusion rule and an additional memory- or random-based feedback loop. The introduction of a realistic background noise limiting the range of the feedback operation yields a pattern signature in fitness space with a distribution of temporal boost/mutation distances similar to a punctuated equilibrium behavior. Furthermore, the behavior of the mean lifetimes of "high" fitness values is correlated with the resolution-like parameter ɛ via a power law, a phenomenon called "fractal evolution." Based on simple functional properties of the power law, an additional feedback loop is introduced to use the intrinsic fluctuations of the whole fitness landscape as a driving force to change adaptively the systems resolution. On long-term scales, the dynamical system properties exhibit a clear tendency towards progressive evolution potentials for each species. For both model versions, the memory-based and the random-based one, we achieve some basic mechanisms of evolutionary dynamics like coevolution, punctuated equilibrium with regard to internal or external changes during evolution, coordinated stasis for groups of species, and self-organized growth of complexity for all evolutionary units of the array leading to a kind of "Red

  11. A Survey of the Relationship Between Noised Pollution, Honey and Vitamin E and Plasma Level of Blood Sexual Hormones in Noise-Exposed Rats

    Directory of Open Access Journals (Sweden)

    Kenani

    2015-02-01

    Full Text Available Background This study was conducted to examine the efficacy of honey and vitamin E on fertilization capacity of noise-exposed rats by assessing whether the plasma sexual hormones levels i.e. follicle stimulating hormone (FSH, luteinizing hormone (LH and testosterone are altered in relation with noise stress. Objectives Therefore, this study aimed to evaluate the effects of honey and vitamin E on the levels of sex hormones and male fertilization capacity of noise-exposed rats. Materials and Methods This study targeted 24 male rats that were randomly divided into four equal groups including the control group that were not exposed to noise and experimental groups 1, 2 and 3 that were the untreated, honey treated and vitamin E treated groups, respectively; all of which were exposed to noise for 50 days. Next, in order to measure serum sexual hormones, blood samples of experimental and control groups were taken and analyzed. Also in order to investigate the fertility capacity of rats, the male rats of all groups were coupled with female rats. Results The results showed that in the male rats exposed to the noise stress, the levels of FSH and LH rose and the testosterone secretion fell sharply compared to not exposed rats. Additionally, the continuing effects of noise stress injury could reduce the weight of the fetus and the number of live fetuses and survival rate of the fetus. However, honey and vitamin E improved serum testosterone concentration, while declined plasma FSH and LH secretion in noise-exposed rats and enhanced fertility rate by increasing the rate of healthy alive fetuses. Conclusions It seems that noise pollution has harmful effects on the fertility of males. Also these findings may suggest the use of a natural curative approach rather than pharmaceutical drugs to optimize both neuroendocrine gonadal axis and testicular integrity induced by pathogenesis stress, and enhance fertility capacity in men.

  12. Noise in attractor networks in the brain produced by graded firing rate representations

    OpenAIRE

    Webb, Tristan J.; Rolls, Edmund T; Deco, Gustavo; Feng, Jianfeng

    2011-01-01

    Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate\\ud probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as\\ud decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given\\ud mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribut...

  13. Analytically exploiting noise correlations inside the feedback loop to improve locked-oscillator performance

    CSIR Research Space (South Africa)

    Sastrawan, J

    2016-08-01

    Full Text Available (2016) Analytically exploiting noise correlations inside the feedback loop to improve locked-oscillator performance J. Sastrawan,1 C. Jones,1 I. Akhalwaya,2 H. Uys,2 and M. J. Biercuk1,* 1ARC Centre for Engineered Quantum Systems, School of Physics...) that probes and is locked to the atomic transition. The LO frequencymay evolve randomly in time due to intrinsic noise processes in the underlying hardware [10,11], leading to time-varying deviations of the LO frequency from that of the stable atomic reference...

  14. The effects of noise reduction technologies on the acceptance of background noise.

    Science.gov (United States)

    Lowery, Kristy Jones; Plyler, Patrick N

    2013-09-01

    Directional microphones (D-Mics) and digital noise reduction (DNR) algorithms are used in hearing aids to reduce the negative effects of background noise on performance. Directional microphones attenuate sounds arriving from anywhere other than the front of the listener while DNR attenuates sounds with physical characteristics of noise. Although both noise reduction technologies are currently available in hearing aids, it is unclear if the use of these technologies in isolation or together affects acceptance of noise and/or preference for the end user when used in various types of background noise. The purpose of the research was to determine the effects of D-Mic, DNR, or the combination of D-Mic and DNR on acceptance of noise and preference when listening in various types of background noise. An experimental study in which subjects were exposed to a repeated measures design was utilized. Thirty adult listeners with mild sloping to moderately severe sensorineural hearing loss participated (mean age 67 yr). Acceptable noise levels (ANLs) were obtained using no noise reduction technologies, D-Mic only, DNR only, and the combination of the two technologies (Combo) for three different background noises (single-talker speech, speech-shaped noise, and multitalker babble) for each listener. In addition, preference rankings of the noise reduction technologies were obtained within each background noise (1 = best, 3 = worst). ANL values were significantly better for each noise reduction technology than baseline; and benefit increased significantly from DNR to D-Mic to Combo. Listeners with higher (worse) baseline ANLs received more benefit from noise reduction technologies than listeners with lower (better) baseline ANLs. Neither ANL values nor ANL benefit values were significantly affected by background noise type; however, ANL benefit with D-Mic and Combo was similar when speech-like noise was present while ANL benefit was greatest for Combo when speech spectrum noise was

  15. Community noise

    Science.gov (United States)

    Bragdon, C. R.

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  16. Scaling law of resistance fluctuations in stationary random resistor networks

    Science.gov (United States)

    Pennetta; Trefan; Reggiani

    2000-12-11

    In a random resistor network we consider the simultaneous evolution of two competing random processes consisting in breaking and recovering the elementary resistors with probabilities W(D) and W(R). The condition W(R)>W(D)/(1+W(D)) leads to a stationary state, while in the opposite case, the broken resistor fraction reaches the percolation threshold p(c). We study the resistance noise of this system under stationary conditions by Monte Carlo simulations. The variance of resistance fluctuations is found to follow a scaling law |p-p(c)|(-kappa(0)) with kappa(0) = 5.5. The proposed model relates quantitatively the defectiveness of a disordered media with its electrical and excess-noise characteristics.

  17. Reduction method for residual stress of welded joint using random vibration

    International Nuclear Information System (INIS)

    Aoki, Shigeru; Nishimura, Tadashi; Hiroi, Tetsumaro

    2005-01-01

    Welded joints are used for construction of many structures. Residual stress is induced near the bead caused by locally given heat. Tensile residual stress on the surface may reduce fatigue strength. In this paper, a new method for reduction of residual stress using vibration during welding is proposed. As vibrational load, random vibration, white noise and filtered white noise are used. Two thin plates are butt-welded. Residual stress is measured with a paralleled beam X-ray diffractometer with scintillation counter after removing quenched scale chemically. It is concluded that tensile residual stress near the bead is reduced by using random vibration during welding

  18. Decision-Based Marginal Total Variation Diffusion for Impulsive Noise Removal in Color Images

    Directory of Open Access Journals (Sweden)

    Hongyao Deng

    2017-01-01

    Full Text Available Impulsive noise removal for color images usually employs vector median filter, switching median filter, the total variation L1 method, and variants. These approaches, however, often introduce excessive smoothing and can result in extensive visual feature blurring and thus are suitable only for images with low density noise. A marginal method to reduce impulsive noise is proposed in this paper that overcomes this limitation that is based on the following facts: (i each channel in a color image is contaminated independently, and contaminative components are independent and identically distributed; (ii in a natural image the gradients of different components of a pixel are similar to one another. This method divides components into different categories based on different noise characteristics. If an image is corrupted by salt-and-pepper noise, the components are divided into the corrupted and the noise-free components; if the image is corrupted by random-valued impulses, the components are divided into the corrupted, noise-free, and the possibly corrupted components. Components falling into different categories are processed differently. If a component is corrupted, modified total variation diffusion is applied; if it is possibly corrupted, scaled total variation diffusion is applied; otherwise, the component is left unchanged. Simulation results demonstrate its effectiveness.

  19. [Protective effect of indirect activator of calcium pump on noise-induced hearing loss].

    Science.gov (United States)

    Liu, Jun; Yu, Ning; Han, Dongyi; Yang, Weiyan; Li, Xingqi

    2002-12-01

    To investigate the possible protective effect of phorbol-12-myristate-13-acetate (PMA), an activator of protein kinase C (PKC) and indirect activator of Ca2+ pump, on noise-induced hearing loss (NIHL). Twenty guinea pigs were divided randomly into two groups, and then perfused with artificial perilymph solutions in one group and with artificial perilymph solutions containing 3 mumol/L PMA in the other one, respectively. All animals were exposed with 100 dB SPL white noise for 2 hours. Cochlear microphonics (CM) and compound action potential (CAP) were recorded from the round window (RW) before noise exposure and 2 hours after noise exposure. There was no significant difference in CAP threshold and CM amplitude between two groups before noise exposure. A significant difference was observed in CAP threshold and CM amplitude between two groups after noise exposure. The amplitude of CM decreased and the threshold of CAP increased in both group after noise exposure, but in the PMA group the decrease of the amplitude of CM was higher while the increase of threshold of CAP lower than that in control (P < 0.05). PMA might have partly protective effect on NIHL. These findings indirectly proved that intracellular Ca2+ overload might involve in the mechanism of NIHL.

  20. Listening to Sentences in Noise: Revealing Binaural Hearing Challenges in Patients with Schizophrenia.

    Science.gov (United States)

    Abdul Wahab, Noor Alaudin; Zakaria, Mohd Normani; Abdul Rahman, Abdul Hamid; Sidek, Dinsuhaimi; Wahab, Suzaily

    2017-11-01

    The present, case-control, study investigates binaural hearing performance in schizophrenia patients towards sentences presented in quiet and noise. Participants were twenty-one healthy controls and sixteen schizophrenia patients with normal peripheral auditory functions. The binaural hearing was examined in four listening conditions by using the Malay version of hearing in noise test. The syntactically and semantically correct sentences were presented via headphones to the randomly selected subjects. In each condition, the adaptively obtained reception thresholds for speech (RTS) were used to determine RTS noise composite and spatial release from masking. Schizophrenia patients demonstrated significantly higher mean RTS value relative to healthy controls (p=0.018). The large effect size found in three listening conditions, i.e., in quiet (d=1.07), noise right (d=0.88) and noise composite (d=0.90) indicates statistically significant difference between the groups. However, noise front and noise left conditions show medium (d=0.61) and small (d=0.50) effect size respectively. No statistical difference between groups was noted in regards to spatial release from masking on right (p=0.305) and left (p=0.970) ear. The present findings suggest an abnormal unilateral auditory processing in central auditory pathway in schizophrenia patients. Future studies to explore the role of binaural and spatial auditory processing were recommended.

  1. Measurement and analysis of the neutron noise of the pool research reactor at IPEN

    International Nuclear Information System (INIS)

    Simoes, Graciete Pedro

    1979-01-01

    Variations in the neutron density or power of a nuclear reactor (the neutron noise) operating at nominally constant power are generally random and can only be described in terms of statistical parameters. Random variations in the power of a power reactor are produced by one or more driving functions. In this work the neutron noise of the pool reactor IEAR-1 (2 MW nominal power) has been studied using two compensated ionization chambers ( Westinghouse VJL6377) and related to three possible-driving functions, namely vibration of the control bar and reactor support bridge and the temperature of the water entering the core. The CIC detectors were located in rigid tubes in turn positively located in the reactor lattice plate. Conventional accelerometers were used. Temperature measurements were made with a NiCr/Ni thermocouple (wire diam ∼ 0.2mm) located 10 mm above the top of a fuel element. Although the correlation between the measured neutron signals was high ( > 0,4) for frequencies in the range 0 to 10 Hz no resonances were identified in the neutron noise. A significant correlation (> 0,4) between the control bar acceleration and the neutron flux was obtained in the frequency range 0 to 10 Hz. The measured correlation between the neutron noise and both the bridge vibration and the reactor water inlet temperature was insignificant. (author)

  2. Calculation of the ex-core neutron noise induced by fuel vibrations in PWRs

    International Nuclear Information System (INIS)

    Tran Hoai Nam; Cao Van Chung; Hoang Thanh Phi Hung; Hoang Van Khanh

    2015-01-01

    Calculation of the neutron noise induced by fuel assembly vibrations in two pressurized water reactor (PWR) cores has been performed to investigate the effect of cycle burnup on the properties of the ex-core detector noise. Pendular vibrations of individual fuel assemblies were assumed to occur at different locations in the core. The auto power spectra density (APSD) of the ex-core detector noise was evaluated with the assumption of stochastic vibrations along a random two-dimensional trajectory. The results show that no general monotonic variation of APSD was found. The increase of APSD occurs predominantly for peripheral assemblies. Assuming simultaneous vibrations of a number of fuel assemblies uniformly distributed over the core with the more realistic perturbation model, the effect of the peripheral assemblies will dominate and the increase of the amplitude of the ex-core neutron noise with burnup can be confirmed. (author)

  3. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    Science.gov (United States)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  4. Report on inter-noise 99; Inter-noise 99 sanka hokok

    Energy Technology Data Exchange (ETDEWEB)

    Koike, H. [Japan Automobile Research Institute Inc., Tsukuba (Japan)

    2000-04-01

    Inter-Noise (International Congress on Noise Control Engineering) is a society on noise/vibration and the control technology. Inter-Noise 99 was held on December 6, 7 and 8, 1999, at Fort Lauderdale, Florida, the U.S. The theme was Noise Control in the New Millennium. The number of the participants registered was 555 (151 from the U.S., 89 from Japan, 248 from European countries, and 69 from Asian/other countries). Dr. Harold Marshall gave a keynote lecture titled Noise Control by Design in the 21st Century - An Architectural Acoustic Perspective. From a standpoint of architectural acoustics, he stated the perspective, subjects, and course of the technical development pertaining to technologies needed in the 21st century. The papers read are mostly from the following fields: measuring technology, military exercise noise, modeling, forecast and simulation, aerodynamic/underwater sound, etc. In the session on the tire noise where the author read a paper, 14 papers were read. The number of the papers read was more than that in 1998, probably influenced by the tire noise regulation in Europe and Japan. (translated by NEDO)

  5. Noise frame duration, masking potency and whiteness of temporal noise

    OpenAIRE

    Kukkonen, Helja; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antii

    2002-01-01

    PURPOSE. Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. \\ud \\ud METHODS. Contrast energy thresho...

  6. Reducing visitor noise levels at Muir Woods National Monument using experimental management.

    Science.gov (United States)

    Stack, David W; Peter, Newman; Manning, Robert E; Fristrup, Kurt M

    2011-03-01

    Noise impacts resources and visitor experience in many protected natural areas, and visitors can be the dominant source of noise. This experimental study tested the efficacy and acceptability of signs asking visitors to be quiet at Muir Woods National Monument, California. Signs declaring a "quiet zone" (at the park's Cathedral Grove) or a "quiet day" (throughout the park) were posted on a randomized schedule that included control days (no signs). Visitor surveys were conducted to measure the cognitive and behavioral responses of visitors to the signs and test the acceptability of these management practices to visitors. Visitors were highly supportive of these management practices and reported that they consciously limited the amount of noise they produced. Sound level measurements showed substantial decreases on days when signs were posted. © 2011 Acoustical Society of America

  7. International symposium on cavitation and multiphase flow noise - 1986

    International Nuclear Information System (INIS)

    Arndt, R.E.A.; Billet, M.L.; Blake, W.K.

    1986-01-01

    This book presents the papers given at a symposium on multiphase flow and cavitation. Topics considered at the conference included the development of a cavitation-free sodium pump for a breeder reactor, the stochastic behavior (randomness) of acoustic pressure pulses in the near-subcavitating range, cavitation monitoring of two axial-flow hydroturbines, and noise generated by cavitation in orifice plates with some gaseous effects

  8. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  9. The role of Urbis' noise and noise effects maps in local policy

    NARCIS (Netherlands)

    Borst, H.C.

    2001-01-01

    An important aspect of the EU noise policy is mapping of noise and noise effects and the formulation of noise action plans. In the Netherlands, due to the new policy on noise (MIG), the municipalities will be responsible for the formulation of a local noise policy. An instrument for the assessment

  10. Data Assimilation by Conditioning of Driving Noise on Future Observations

    KAUST Repository

    Lee, Wonjung

    2014-08-01

    Conventional recursive filtering approaches, designed for quantifying the state of an evolving stochastic dynamical system with intermittent observations, use a sequence of i) an uncertainty propagation step followed by ii) a step where the associated data is assimilated using Bayes\\' rule. Alternatively, the order of the steps can be switched to i) one step ahead data assimilation followed by ii) uncertainty propagation. In this paper, we apply this smoothing-based sequential filter to systems driven by random noise, however with the conditioning on future observation not only to the system variable but to the driving noise. Our research reveals that, for the nonlinear filtering problem, the conditioned driving noise is biased by a nonzero mean and in turn pushes forward the filtering solution in time closer to the true state when it drives the system. As a result our proposed method can yield a more accurate approximate solution for the state estimation problem. © 1991-2012 IEEE.

  11. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  12. Analysis of Noise Mechanisms in Cell-Size Control.

    Science.gov (United States)

    Modi, Saurabh; Vargas-Garcia, Cesar Augusto; Ghusinga, Khem Raj; Singh, Abhyudai

    2017-06-06

    At the single-cell level, noise arises from multiple sources, such as inherent stochasticity of biomolecular processes, random partitioning of resources at division, and fluctuations in cellular growth rates. How these diverse noise mechanisms combine to drive variations in cell size within an isoclonal population is not well understood. Here, we investigate the contributions of different noise sources in well-known paradigms of cell-size control, such as adder (division occurs after adding a fixed size from birth), sizer (division occurs after reaching a size threshold), and timer (division occurs after a fixed time from birth). Analysis reveals that variation in cell size is most sensitive to errors in partitioning of volume among daughter cells, and not surprisingly, this process is well regulated among microbes. Moreover, depending on the dominant noise mechanism, different size-control strategies (or a combination of them) provide efficient buffering of size variations. We further explore mixer models of size control, where a timer phase precedes/follows an adder, as has been proposed in Caulobacter crescentus. Although mixing a timer and an adder can sometimes attenuate size variations, it invariably leads to higher-order moments growing unboundedly over time. This results in a power-law distribution for the cell size, with an exponent that depends inversely on the noise in the timer phase. Consistent with theory, we find evidence of power-law statistics in the tail of C. crescentus cell-size distribution, although there is a discrepancy between the observed power-law exponent and that predicted from the noise parameters. The discrepancy, however, is removed after data reveal that the size added by individual newborns in the adder phase itself exhibits power-law statistics. Taken together, this study provides key insights into the role of noise mechanisms in size homeostasis, and suggests an inextricable link between timer-based models of size control and

  13. Radiation and noise exposures elicit biological and behavioural effects in the rat

    International Nuclear Information System (INIS)

    Trivedi, A.; Michaud, D.S.; Ferrarotto, C.; Keith, S.E.; Miller, S.M.; Bowers, W.J.; Kumarathsan, P.

    2003-01-01

    The presence of radiation and noise is ubiquitous in a living environment. Therefore, the effect of these sources alone and together on the body has the potential for public health consequences. We have examined the physiological and behavioural effects of separate and combined exposures to radiation and noise in adult male Sprague-Dawley rats. For three weeks animals were exposed to the following conditions: 1) daily exposure to x-rays (cumulative whole body dose = 5Gy); 2) random intermittent noise band-limited between 400Hz-20 kHz; 2 h/day 90 dB lin and 3) combined exposures. Control animals were housed under ambient noise conditions (∼ 55-60 dBA) and sham-exposed to x-rays. The mean body weight gain (initial avg. ∼ 250g) appeared to be affected by the treatments; control (88g); noise (76g); radiation (60g) and noise/radiation (43g). Compared to control and noise only animals, plasma levels of 8-hydroxy-2'-deoxyguanosine increased significantly in animals exposed to both radiation alone and radiation with noise, while big-endothelin-1 was significantly reduced in both groups exposed to radiation. There were no noticeable changes in the levels of adrenocorticotrophic hormone and the variability in plasma norepinephrine and epinephrine precluded conclusions with respect to changes in sympathetic activity. No groups showed any consistent changes in plasma levels of interleukin-1, corticotrophin releasing hormone or urocortin. Plasma corticosterone increased in animals exposed to only noise, but this hormone was significantly reduced in animals exposed to only radiation. Behavioural endpoints revealed that startle amplitude (105dB) was highest in animals exposed to only noise and lowest in animals exposed to both noise and radiation, compared to the control animals. These results suggest that radiation exposure might alter systems activated by stressor exposure and/or act independently to influence health outcomes

  14. Phase noise in RF and microwave amplifiers.

    Science.gov (United States)

    Boudot, Rodolphe; Rubiola, Enrico

    2012-12-01

    Understanding amplifier phase noise is a critical issue in many fields of engineering and physics, such as oscillators, frequency synthesis, telecommunication, radar, and spectroscopy; in the emerging domain of microwave photonics; and in exotic fields, such as radio astronomy, particle accelerators, etc. Focusing on the two main types of base noise in amplifiers, white and flicker, the power spectral density of the random phase φ(t) is Sφ(f) = b(0) + b(-1)/f. White phase noise results from adding white noise to the RF spectrum in the carrier region. For a given RF noise level, b(0) is proportional to the reciprocal of the carrier power P(0). By contrast, flicker results from a near-dc 1/f noise-present in all electronic devices-which modulates the carrier through some parametric effect in the semiconductor. Thus, b(-1) is a parameter of the amplifier, constant in a wide range of P(0). The consequences are the following: Connecting m equal amplifiers in parallel, b(-1) is 1/m times that of one device. Cascading m equal amplifiers, b(-1) is m times that of one amplifier. Recirculating the signal in an amplifier so that the gain increases by a power of m (a factor of m in decibels) as a result of positive feedback (regeneration), we find that b(-1) is m(2) times that of the amplifier alone. The feedforward amplifier exhibits extremely low b(-1) because the carrier is ideally nulled at the input of its internal error amplifier. Starting with an extensive review of the literature, this article introduces a system-oriented model which describes the phase flickering. Several amplifier architectures (cascaded, parallel, etc.) are analyzed systematically, deriving the phase noise from the general model. There follow numerous measurements of amplifiers using different technologies, including some old samples, and in a wide frequency range (HF to microwaves), which validate the theory. In turn, theory and results provide design guidelines and give suggestions for CAD and

  15. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    International Nuclear Information System (INIS)

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta

    2015-01-01

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping

  16. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta, E-mail: paulo.zannin@pesquisador.cnpq.br

    2015-02-15

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping.

  17. Behavioural and biochemical stress responses of Palinurus elephas after exposure to boat noise pollution in tank.

    Science.gov (United States)

    Filiciotto, Francesco; Vazzana, Mirella; Celi, Monica; Maccarrone, Vincenzo; Ceraulo, Maria; Buffa, Gaspare; Di Stefano, Vincenzo; Mazzola, Salvatore; Buscaino, Giuseppa

    2014-07-15

    This study examined the effects of boat noise on the behavioural and biochemical parameters of the Mediterranean spiny lobster (Palinurus elephas). The experiment was conducted in a tank equipped with a video and audio recording system. 18 experimental trials, assigned to boat noise and control conditions, were performed using lobsters in single and group of 4 specimens. After a 1h habituation period, we audio- and video-recorded the lobsters for 1h. During the experimental phase, the animals assigned to the boat groups were exposed to boat noise pollution (a random sequence of boat noises). Exposure to the noise produced significant variations in locomotor behaviours and haemolymphatic parameters. Our results indicate that the lobsters exposed to boat noises increased significantly their locomotor activities and haemolymphatic bioindicator of stressful conditions such as glucose, total proteins, Hsp70 expression and THC when tested both singly and in groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Behavior observation of major noise sources in critical care wards.

    Science.gov (United States)

    Xie, Hui; Kang, Jian; Mills, Gary H

    2013-12-01

    This study aimed to investigate the behavior patterns of typical noise sources in critical care wards and relate their patterns to health care environment in which the sources adapt themselves in several different forms. An effective observation approach was designed for noise behavior in the critical care environment. Five descriptors have been identified for the behavior observations, namely, interval, frequency, duration, perceived loudness, and location. Both the single-bed and the multiple-bed wards at the selected Critical Care Department were randomly observed for 3 inconsecutive nights, from 11:30 pm to 7:00 am the following morning. The Matlab distribution fitting tool was applied afterward to plot several types of distributions and estimate the corresponding parameters. The lognormal distribution was considered the most appropriate statistical distribution for noise behaviors in terms of the interval and duration patterns. The turning of patients by staff was closely related to the increasing occurrences of noises. Among the observed noises, talking was identified with the highest frequency, shortest intervals, and the longest durations, followed by monitor alarms. The perceived loudness of talking in the nighttime wards was classified into 3 levels (raised, normal, and low). Most people engaged in verbal communication in the single-bed wards that occurred around the Entrance Zone, whereas talking in the multiple-bed wards was more likely to be situated in the Staff Work Zone. As expected, more occurrences of noises along with longer duration were observed in multiple-bed wards rather than single-bed wards. "Monitor plus ventilator alarms" was the most commonly observed combination of multiple noises. © 2013 Elsevier Inc. All rights reserved.

  19. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Sidles, John A; Jacky, Jonathan P [Department of Orthopaedics and Sports Medicine, Box 356500, School of Medicine, University of Washington, Seattle, WA, 98195 (United States); Garbini, Joseph L; Malcomb, Joseph R; Williamson, Austin M [Department of Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); Harrell, Lee E [Department of Physics, US Military Academy, West Point, NY 10996 (United States); Hero, Alfred O [Department of Electrical Engineering, University of Michigan, MI 49931 (United States); Norman, Anthony G [Department of Bioengineering, University of Washington, Seattle, WA 98195 (United States)], E-mail: sidles@u.washington.edu

    2009-06-15

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kaehler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kaehlerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kaehler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  20. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    International Nuclear Information System (INIS)

    Sidles, John A; Jacky, Jonathan P; Garbini, Joseph L; Malcomb, Joseph R; Williamson, Austin M; Harrell, Lee E; Hero, Alfred O; Norman, Anthony G

    2009-01-01

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kaehler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kaehlerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kaehler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candes-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  1. Practical recipes for the model order reduction, dynamical simulation and compressive sampling of large-scale open quantum systems

    Science.gov (United States)

    Sidles, John A.; Garbini, Joseph L.; Harrell, Lee E.; Hero, Alfred O.; Jacky, Jonathan P.; Malcomb, Joseph R.; Norman, Anthony G.; Williamson, Austin M.

    2009-06-01

    Practical recipes are presented for simulating high-temperature and nonequilibrium quantum spin systems that are continuously measured and controlled. The notion of a spin system is broadly conceived, in order to encompass macroscopic test masses as the limiting case of large-j spins. The simulation technique has three stages: first the deliberate introduction of noise into the simulation, then the conversion of that noise into an equivalent continuous measurement and control process, and finally, projection of the trajectory onto state-space manifolds having reduced dimensionality and possessing a Kähler potential of multilinear algebraic form. These state-spaces can be regarded as ruled algebraic varieties upon which a projective quantum model order reduction (MOR) is performed. The Riemannian sectional curvature of ruled Kählerian varieties is analyzed, and proved to be non-positive upon all sections that contain a rule. These manifolds are shown to contain Slater determinants as a special case and their identity with Grassmannian varieties is demonstrated. The resulting simulation formalism is used to construct a positive P-representation for the thermal density matrix. Single-spin detection by magnetic resonance force microscopy (MRFM) is simulated, and the data statistics are shown to be those of a random telegraph signal with additive white noise. Larger-scale spin-dust models are simulated, having no spatial symmetry and no spatial ordering; the high-fidelity projection of numerically computed quantum trajectories onto low dimensionality Kähler state-space manifolds is demonstrated. The reconstruction of quantum trajectories from sparse random projections is demonstrated, the onset of Donoho-Stodden breakdown at the Candès-Tao sparsity limit is observed, a deterministic construction for sampling matrices is given and methods for quantum state optimization by Dantzig selection are given.

  2. Detector point of view of reactor internal vibrations under Gaussian coloured random forces - the problem of fitting neutron noise experimental data

    International Nuclear Information System (INIS)

    Arnal, R.S.; Martin, G.V.; Gonzalez, J.L.M.-C.

    1988-01-01

    This paper studies the local vibrations of reactor components driven by Gaussian coloured and white forces, when nonlinear vibrations arise. We study also the important problem of noise sources, modelization and the noise propagation through the neutron field using the discrete ordinates transport theory. Finally, we study the effect of the neutron field upon the PSD (power spectral density) of the noise source and we analyse the problem of fitting neutron noise experimental data to perform pattern recognition analysis. (author)

  3. Music and ambient operating room noise in patients undergoing spinal anesthesia.

    Science.gov (United States)

    Ayoub, Chakib M; Rizk, Laudi B; Yaacoub, Chadi I; Gaal, Dorothy; Kain, Zeev N

    2005-05-01

    Previous studies have indicated that music decreases intraoperative sedative requirements in patients undergoing surgical procedures under regional anesthesia. In this study we sought to determine whether this decrease in sedative requirements results from music or from eliminating operating room (OR) noise. A secondary aim of the study was to examine the relationship of response to intraoperative music and participants' culture (i.e., American versus Lebanese). Eighty adults (36 American and 54 Lebanese) undergoing urological procedures with spinal anesthesia and patient-controlled IV propofol sedation were randomly assigned to intraoperative music, white noise, or OR noise. We found that, controlling for ambient OR noise, intraoperative music decreases propofol requirements (0.004 +/- 0.002 mg . kg(-1) . min(-1) versus 0.014 +/- 0.004 mg . kg(-1) . min(-1) versus 0.012 +/- 0.002 mg . kg(-1) . min(-1); P = 0.026). We also found that, regardless of group assignment, Lebanese patients used less propofol as compared with American patients (0.005 +/- 0.001 mg . kg(-1) . min(-1) versus 0.017 +/- 0.003 mg . kg(-1) . min(-1); P = 0.001) and that, in both sites, patients in the music group required less propofol (P noise, intraoperative music decreases propofol requirements of both Lebanese and American patients who undergo urological surgery under spinal anesthesia.

  4. Adaptive EMG noise reduction in ECG signals using noise level approximation

    Science.gov (United States)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  5. The Assessment of Noise Exposure and Noise Annoyance at a Petrochemical Company

    Directory of Open Access Journals (Sweden)

    S. Farhang Dehghan

    2013-12-01

    .Conclusion: Based on the obtained results of investigating the noise level (objective exposure as well as the noise annoyance (subjective exposure at the studied company, it is necessary to adopt the management –technical noise reduction measures at manufacturing sectors as the personal noise exposure and environmental noise exposure and also noise personal exposure of administrative staff can be decreased.

  6. Noise pollution resources compendium

    Science.gov (United States)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  7. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  8. Delay-induced stochastic bifurcations in a bistable system under white noise

    International Nuclear Information System (INIS)

    Sun, Zhongkui; Fu, Jin; Xu, Wei; Xiao, Yuzhu

    2015-01-01

    In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses

  9. Delay-induced stochastic bifurcations in a bistable system under white noise

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhongkui, E-mail: sunzk@nwpu.edu.cn; Fu, Jin; Xu, Wei [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); Xiao, Yuzhu [Department of Mathematics and Information Science, Chang' an University, Xi' an 710086 (China)

    2015-08-15

    In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochastic P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.

  10. SDE based regression for random PDEs

    KAUST Repository

    Bayer, Christian

    2016-01-01

    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.

  11. SDE based regression for random PDEs

    KAUST Repository

    Bayer, Christian

    2016-01-06

    A simulation based method for the numerical solution of PDE with random coefficients is presented. By the Feynman-Kac formula, the solution can be represented as conditional expectation of a functional of a corresponding stochastic differential equation driven by independent noise. A time discretization of the SDE for a set of points in the domain and a subsequent Monte Carlo regression lead to an approximation of the global solution of the random PDE. We provide an initial error and complexity analysis of the proposed method along with numerical examples illustrating its behaviour.

  12. Low noise constant current source for bias dependent noise measurements

    International Nuclear Information System (INIS)

    Talukdar, D.; Bose, Suvendu; Bardhan, K. K.; Chakraborty, R. K.

    2011-01-01

    A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 μA to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noise voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.

  13. The importance of railway noise in France

    CERN Document Server

    Maurin, M

    1979-01-01

    A national survey on environmental nuisances due to all forms of transport was made in France during 1977. From among the data gathered, it is possible to extract results concerning the impact of nuisance due to railways, partly from results of questionnaires and partly from results of acoustical measurements. Interviews and measurements were made in several towns, at randomly selected dwellings. Rail and air transport noise nuisance impacts appeared to be of comparable importance, with that of road transport very much larger than either. (0 refs).

  14. Proceedings of the 2009 spring noise conference : noise awareness : supporting sound partnerships

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for industry, government, public, academics and acoustical professionals to discuss innovations in environmental and occupational noise identification, measurement, regulation and control. In addition to raising awareness about expanding noise issues, the conference objectives were to promote responsible industrial development and to identify strategies for reducing workplace noise exposure. The papers focused on research, developments and case studies and highlighted current issues and advancements in technology and software. Speakers from around the world discussed topics ranging from occupational noise issues to low frequency. The 8 sessions were entitled: (1) plenary session, (2) architecture, community planning and public health: effects of noise and noise control, (3) modeling, measurement and technology; (4) noise awareness and education: public, occupational and industrial, (5) regulations and economics: bylaws, legislation and the economics of noise control; (6) student papers, (7) vibration, industrial noise, transportation noise and occupational noise control, and (8) lunch speakers. The conference featured 46 presentations, of which 19 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  15. Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure

    Science.gov (United States)

    Bright, Molly G.; Murphy, Kevin

    2015-01-01

    Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed by 24, 12, 6, or only 3 head motion parameters demonstrated network structure typically associated with functional connectivity, and certain networks were discernable in the variance extracted by as few as 2 physiologic regressors. Simulated nuisance regressors, unrelated to the true data noise, also removed variance with network structure, indicating that any group of regressors that randomly sample variance may remove highly structured “signal” as well as “noise.” Furthermore, to support this we demonstrate that random sampling of the original data variance continues to exhibit robust network structure, even when as few as 10% of the original volumes are considered. Finally, we examine the diminishing returns of increasing the number of nuisance regressors used in pre-processing, showing that excessive use of motion regressors may do little better than chance in removing variance within a functional network. It remains an open challenge to understand the balance between the benefits and confounds of noise correction using nuisance regressors. PMID:25862264

  16. Spiking sychronization regulated by noise in three types of Hodgkin—Huxley neuronal networks

    International Nuclear Information System (INIS)

    Zhang Zheng-Zhen; Zeng Shang-You; Tang Wen-Yan; Hu Jin-Lin; Zeng Shao-Wen; Ning Wei-Lian; Qiu Yi; Wu Hui-Si

    2012-01-01

    In this paper, we study spiking synchronization in three different types of Hodgkin—Huxley neuronal networks, which are the small-world, regular, and random neuronal networks. All the neurons are subjected to subthreshold stimulus and external noise. It is found that in each of all the neuronal networks there is an optimal strength of noise to induce the maximal spiking synchronization. We further demonstrate that in each of the neuronal networks there is a range of synaptic conductance to induce the effect that an optimal strength of noise maximizes the spiking synchronization. Only when the magnitude of the synaptic conductance is moderate, will the effect be considerable. However, if the synaptic conductance is small or large, the effect vanishes. As the connections between neurons increase, the synaptic conductance to maximize the effect decreases. Therefore, we show quantitatively that the noise-induced maximal synchronization in the Hodgkin—Huxley neuronal network is a general effect, regardless of the specific type of neuronal network

  17. Auditory detection of an increment in the rate of a random process

    International Nuclear Information System (INIS)

    Brown, W.S.; Emmerich, D.S.

    1994-01-01

    Recent experiments have presented listeners with complex tonal stimuli consisting of components with values (i.e., intensities or frequencies) randomly sampled from probability distributions [e.g., R. A. Lutfi, J. Acoust. Soc. Am. 86, 934--944 (1989)]. In the present experiment, brief tones were presented at intervals corresponding to the intensity of a random process. Specifically, the intervals between tones were randomly selected from exponential probability functions. Listeners were asked to decide whether tones presented during a defined observation interval represented a ''noise'' process alone or the ''noise'' with a ''signal'' process added to it. The number of tones occurring in any observation interval is a Poisson variable; receiver operating characteristics (ROCs) arising from Poisson processes have been considered by Egan [Signal Detection Theory and ROC Analysis (Academic, New York, 1975)]. Several sets of noise and signal intensities and observation interval durations were selected which were expected to yield equivalent performance. Rating ROCs were generated based on subjects' responses in a single-interval, yes--no task. The performance levels achieved by listeners and the effects of intensity and duration are compared to those predicted for an ideal observer

  18. A method of signal transmission path analysis for multivariate random processes

    International Nuclear Information System (INIS)

    Oguma, Ritsuo

    1984-04-01

    A method for noise analysis called ''STP (signal transmission path) analysis'' is presentd as a tool to identify noise sources and their propagation paths in multivariate random proceses. Basic idea of the analysis is to identify, via time series analysis, effective network for the signal power transmission among variables in the system and to make use of its information to the noise analysis. In the present paper, we accomplish this through two steps of signal processings; first, we estimate, using noise power contribution analysis, variables which have large contribution to the power spectrum of interest, and then evaluate the STPs for each pair of variables to identify STPs which play significant role for the generated noise to transmit to the variable under evaluation. The latter part of the analysis is executed through comparison of partial coherence function and newly introduced partial noise power contribution function. This paper presents the procedure of the STP analysis and demonstrates, using simulation data as well as Borssele PWR noise data, its effectiveness for investigation of noise generation and propagation mechanisms. (author)

  19. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    Science.gov (United States)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  20. Classical noise, quantum noise and secure communication

    International Nuclear Information System (INIS)

    Tannous, C; Langlois, J

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems. (review)

  1. A comparison of the effects of solvent and noise exposure on hearing, together and separately

    Directory of Open Access Journals (Sweden)

    Ilhan Unlu

    2014-01-01

    Full Text Available The objective of the present study was to assess the effects of occupational exposure to noise and organic solvents on hearing loss in bus and truck plant workers. Our case control study contained 469 workers from a bus and truck plant divided into three groups. The first group contained workers exposed to only noise; the second group contained workers exposed to both noise and mixture solvents at a permissible level; and the third group included workers exposed to permissible levels of solvents. The control group (Group 4 included 119 individuals selected randomly, persons who were not exposed to noise and solvents. These groups were compared in terms of each individual′s frequency hearing loss in both ears. Our study demonstrates that combined exposure to mixed solvents and noise can exacerbate hearing loss in workers. Hence, a suitable hearing protection program is advised that would contain short-interval audiometric examinations and efficient hearing protectors.

  2. Unambiguous range-Doppler LADAR processing using 2 giga-sample-per-second noise waveforms

    International Nuclear Information System (INIS)

    Cole, Z.; Roos, P.A.; Berg, T.; Kaylor, B.; Merkel, K.D.; Babbitt, W.R.; Reibel, R.R.

    2007-01-01

    We demonstrate sub-nanosecond range and unambiguous sub-50-Hz Doppler resolved laser radar (LADAR) measurements using spectral holographic processing in rare-earth ion doped crystals. The demonstration utilizes pseudo-random-noise 2 giga-sample-per-second baseband waveforms modulated onto an optical carrier

  3. Unambiguous range-Doppler LADAR processing using 2 giga-sample-per-second noise waveforms

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Z. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States)]. E-mail: cole@s2corporation.com; Roos, P.A. [Spectrum Lab, Montana State University, P.O. Box 173510, Bozeman, MT 59717 (United States); Berg, T. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Kaylor, B. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Merkel, K.D. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, P.O. Box 173510, Bozeman, MT 59717 (United States); Reibel, R.R. [S2 Corporation, 2310 University Way 4-1, Bozeman, MT 59715 (United States)

    2007-11-15

    We demonstrate sub-nanosecond range and unambiguous sub-50-Hz Doppler resolved laser radar (LADAR) measurements using spectral holographic processing in rare-earth ion doped crystals. The demonstration utilizes pseudo-random-noise 2 giga-sample-per-second baseband waveforms modulated onto an optical carrier.

  4. Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen; Wilson, Joshua [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Jin, Jidong [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Du, Lulu; Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China); Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); School of Physics, Shandong University, Jinan 250100 (China)

    2015-08-31

    The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant of 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.

  5. Effect of Ascorbic Acid on Noise Induced Hearing Loss in Rats

    Directory of Open Access Journals (Sweden)

    Ziba Loukzadeh

    2015-07-01

    Full Text Available Introduction: After presbycusis, noise-induced hearing loss is the second most common cause of acquired hearing loss. Numerous studies have shown that high-intensity noise exposure increases free radical species; therefore, use of antioxidants to detoxify the free radicals can prevent cellular damage in the cochlea. We studied the potential hearing protective effect of different doses of ascorbic acid administered prior to noise exposure in rats.   Materials and Methods: Twenty-four male albino Wistar rats were randomly allocated into four groups: groups A, B, and C received 1250, 250, and 50 mg/kg/day of ascorbic acid, respectively, and group D acted as the control group. After 14 days of ascorbic acid administration, the rats were exposed to noise (105 dB sound pressure level for 2 h. Distortion product otoacoustic emissions (DPOAE were recorded prior to starting the ascorbic acid as baseline and 1 h after the noise exposure.   Results: The amplitude decrease was 14.99 dB for group A, 16.11 dB for group B, 28.82 dB for group C, and 29.91 dB for the control group. Moderate and high doses of ascorbic acid significantly reduced the transient threshold shift in the rats.   Conclusion:  The results of present study support the concept of cochlea protection by antioxidant agents. This dose-dependent protective effect was shown through the use of ascorbic acid treatment prior to noise exposure.

  6. Assessment of noise in the airplane cabin environment.

    Science.gov (United States)

    Zevitas, Christopher D; Spengler, John D; Jones, Byron; McNeely, Eileen; Coull, Brent; Cao, Xiaodong; Loo, Sin Ming; Hard, Anna-Kate; Allen, Joseph G

    2018-03-15

    To measure sound levels in the aircraft cabin during different phases of flight. Sound level was measured on 200 flights, representing six aircraft groups using continuous monitors. A linear mixed-effects model with random intercept was used to test for significant differences in mean sound level by aircraft model and across each flight phase as well as by flight phase, airplane type, measurement location and proximity to engine noise. Mean sound levels across all flight phases and aircraft groups ranged from 37.6 to >110 dB(A) with a median of 83.5 dB(A). Significant differences in noise levels were also observed based on proximity to the engines and between aircraft with fuselage- and wing mounted engines. Nine flights (4.5%) exceeded the recommended 8-h TWA exposure limit of 85 dB(A) by the NIOSH and ACGIH approach, three flights (1.5%) exceeded the 8-h TWA action level of 85 dB(A) by the OSHA approach, and none of the flights exceeded the 8-h TWA action level of 90 dB(A) by the OSHA PEL approach. Additional characterization studies, including personal noise dosimetry, are necessary to document accurate occupational exposures in the aircraft cabin environment and identify appropriate response actions. FAA should consider applying the more health-protective NIOSH/ACGIH occupational noise recommendations to the aircraft cabin environment.

  7. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    Science.gov (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  8. Analysis of axial compressive loaded beam under random support excitations

    Science.gov (United States)

    Xiao, Wensheng; Wang, Fengde; Liu, Jian

    2017-12-01

    An analytical procedure to investigate the response spectrum of a uniform Bernoulli-Euler beam with axial compressive load subjected to random support excitations is implemented based on the Mindlin-Goodman method and the mode superposition method in the frequency domain. The random response spectrum of the simply supported beam subjected to white noise excitation and to Pierson-Moskowitz spectrum excitation is investigated, and the characteristics of the response spectrum are further explored. Moreover, the effect of axial compressive load is studied and a method to determine the axial load is proposed. The research results show that the response spectrum mainly consists of the beam's additional displacement response spectrum when the excitation is white noise; however, the quasi-static displacement response spectrum is the main component when the excitation is the Pierson-Moskowitz spectrum. Under white noise excitation, the amplitude of the power spectral density function decreased as the axial compressive load increased, while the frequency band of the vibration response spectrum increased with the increase of axial compressive load.

  9. Rating environmental noise on the basis of noise maps

    NARCIS (Netherlands)

    Miedema, H.M.E.; Borst, H.C.

    2006-01-01

    A system that rates noise on the basis of noise maps has been developed which is based on empirical exposure-response relationships, so that effects in the community will be lower if the system gives a better rating. It is consistent with noise metrics and effect endpoint chosen in the EU, i.e., it

  10. Yesterday's noise - today's signal

    International Nuclear Information System (INIS)

    Serdula, K.J.

    1978-01-01

    Plant performance can be improved by noise analysis. This paper describes noise characteristics, imposed noise and response functions, a case history of cost benefits derived from application of noise analysis techniques, areas for application of noise analysis techniques with special reference to the Gentilly-1 nuclear generating station, and the validity of noise measurement results. (E.C.B.)

  11. Noise suppression in duct

    International Nuclear Information System (INIS)

    Ahmed, A.; Barfeh, M.A.G.

    2001-01-01

    In air-conditioning system the noise generated by supply fan is carried by conditioned air through the ductwork. The noise created in ductwork run may be transmission, regenerative and ductborne. Transmission noise is fan noise, regenerative noise is due to turbulence in flow and ductborne noise is the noise radiating from duct to surroundings. Some noise is attenuated in ducts also but if noise level is high then it needs to be attenuated. A simple mitre bend can attenuate-noise. This principle is extended to V and M-shape ducts with inside lining of fibreglass, which gave maximum attenuation of 77 dB and 62 dB respectively corresponding to 8 kHz frequency as compared to mitre, bend giving maximum 18 dB attenuation. Sound level meter measured sound levels with octave band filter and tests were conducted in anechoic room. A V-shape attenuator can be used at fan outlet and high frequency noise can be minimized greatly. (author)

  12. Dynamic behaviour and neutron noise in molten salt reactors with circulating perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Pazsit, I.; Dykin, V. [Chalmers Univ. of Tech., Nuclear Engineering, Goteborg (Sweden)

    2014-07-01

    This paper concerns the calculation of the neutron noise induced in Molten Salt Reactors (MSR) by the random fluctuations in space and time of the molten fuel cross sections which travel together with the fuel and pass the core region. The effect of such fluctuations was already discussed in several publications. The novelty of the present paper is that it takes into account that in addition to the delayed neutron precursors, also the cross section perturbations themselves, whose passing through the core induces the in-core neutron noise, return to the core inlet via the external loop from the core exit. The corresponding theory is developed, and some quantitative investigations are made of the characteristics of the noise, which can be attributed to the recirculation of the perturbation to the core. It is shown that the effect of the returning of the perturbations, even though it is also associated with a temporal decay, has a much stronger effect on the neutron noise spectra than that of the recirculation of the delayed neutron precursors. (author)

  13. Dynamic behaviour and neutron noise in molten salt reactors with circulating perturbations

    International Nuclear Information System (INIS)

    Pazsit, I.; Dykin, V.

    2014-01-01

    This paper concerns the calculation of the neutron noise induced in Molten Salt Reactors (MSR) by the random fluctuations in space and time of the molten fuel cross sections which travel together with the fuel and pass the core region. The effect of such fluctuations was already discussed in several publications. The novelty of the present paper is that it takes into account that in addition to the delayed neutron precursors, also the cross section perturbations themselves, whose passing through the core induces the in-core neutron noise, return to the core inlet via the external loop from the core exit. The corresponding theory is developed, and some quantitative investigations are made of the characteristics of the noise, which can be attributed to the recirculation of the perturbation to the core. It is shown that the effect of the returning of the perturbations, even though it is also associated with a temporal decay, has a much stronger effect on the neutron noise spectra than that of the recirculation of the delayed neutron precursors. (author)

  14. Characterization and synthesis of random acceleration vibration specifications

    NARCIS (Netherlands)

    Wijker, Jacob J; Ellenbroek, Marcellinus Hermannus Maria; de Boer, Andries; Papadrakakis, M.; Lagaros, N.D.; Plevris, V.

    2013-01-01

    Random acceleration vibration specifications for subsystems, i.e. instruments, equipment, are most times based on measurement during acoustic noise tests on system level, i.e. a spacecraft and measured by accelerometers, placed in the neighborhood of the interface between spacecraft and subsystem.

  15. Spectral Estimation by the Random Dec Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Jensen, Jacob L.; Krenk, Steen

    1990-01-01

    This paper contains an empirical study of the accuracy of the Random Dec (RDD) technique. Realizations of the response from a single-degree-of-freedom system loaded by white noise are simulated using an ARMA model. The Autocorrelation function is estimated using the RDD technique and the estimated...

  16. Spectral Estimation by the Random DEC Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Jensen, J. Laigaard; Krenk, S.

    This paper contains an empirical study of the accuracy of the Random Dec (RDD) technique. Realizations of the response from a single-degree-of-freedom system loaded by white noise are simulated using an ARMA model. The Autocorrelation function is estimated using the RDD technique and the estimated...

  17. Estimation of Poisson noise in spatial domain

    Science.gov (United States)

    Švihlík, Jan; Fliegel, Karel; Vítek, Stanislav; Kukal, Jaromír.; Krbcová, Zuzana

    2017-09-01

    This paper deals with modeling of astronomical images in the spatial domain. We consider astronomical light images contaminated by the dark current which is modeled by Poisson random process. Dark frame image maps the thermally generated charge of the CCD sensor. In this paper, we solve the problem of an addition of two Poisson random variables. At first, the noise analysis of images obtained from the astronomical camera is performed. It allows estimating parameters of the Poisson probability mass functions in every pixel of the acquired dark frame. Then the resulting distributions of the light image can be found. If the distributions of the light image pixels are identified, then the denoising algorithm can be applied. The performance of the Bayesian approach in the spatial domain is compared with the direct approach based on the method of moments and the dark frame subtraction.

  18. On the maximal noise for stochastic and QCD travelling waves

    International Nuclear Information System (INIS)

    Peschanski, Robi

    2008-01-01

    Using the relation of a set of nonlinear Langevin equations to reaction-diffusion processes, we note the existence of a maximal strength of the noise for the stochastic travelling wave solutions of these equations. Its determination is obtained using the field-theoretical analysis of branching-annihilation random walks near the directed percolation transition. We study its consequence for the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation. For the related Langevin equation modeling the quantum chromodynamic nonlinear evolution of gluon density with rapidity, the physical maximal-noise limit may appear before the directed percolation transition, due to a shift in the travelling-wave speed. In this regime, an exact solution is known from a coalescence process. Universality and other open problems and applications are discussed in the outlook

  19. Study of pseudo noise CW diode laser for ranging applications

    Science.gov (United States)

    Lee, Hyo S.; Ramaswami, Ravi

    1992-01-01

    A new Pseudo Random Noise (PN) modulated CW diode laser radar system is being developed for real time ranging of targets at both close and large distances (greater than 10 KM) to satisy a wide range of applications: from robotics to future space applications. Results from computer modeling and statistical analysis, along with some preliminary data obtained from a prototype system, are presented. The received signal is averaged for a short time to recover the target response function. It is found that even with uncooperative targets, based on the design parameters used (200-mW laser and 20-cm receiver), accurate ranging is possible up to about 15 KM, beyond which signal to noise ratio (SNR) becomes too small for real time analog detection.

  20. Stochastic Optimal Estimation with Fuzzy Random Variables and Fuzzy Kalman Filtering

    Institute of Scientific and Technical Information of China (English)

    FENG Yu-hu

    2005-01-01

    By constructing a mean-square performance index in the case of fuzzy random variable, the optimal estimation theorem for unknown fuzzy state using the fuzzy observation data are given. The state and output of linear discrete-time dynamic fuzzy system with Gaussian noise are Gaussian fuzzy random variable sequences. An approach to fuzzy Kalman filtering is discussed. Fuzzy Kalman filtering contains two parts: a real-valued non-random recurrence equation and the standard Kalman filtering.