WorldWideScience

Sample records for noise improves collective

  1. Two-party quantum key agreement protocols under collective noise channel

    Science.gov (United States)

    Gao, Hao; Chen, Xiao-Guang; Qian, Song-Rong

    2018-06-01

    Recently, quantum communication has become a very popular research field. The quantum key agreement (QKA) plays an important role in the field of quantum communication, based on its unconditional security in terms of theory. Among all kinds of QKA protocols, QKA protocols resisting collective noise are widely being studied. In this paper, we propose improved two-party QKA protocols resisting collective noise and present a feasible plan for information reconciliation. Our protocols' qubit efficiency has achieved 26.67%, which is the best among all the two-party QKA protocols against collective noise, thus showing that our protocol can improve the transmission efficiency of quantum key agreement.

  2. Improved CEEMDAN-wavelet transform de-noising method and its application in well logging noise reduction

    Science.gov (United States)

    Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi

    2018-06-01

    The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.

  3. Study of improving signal-noise ratio for fluorescence channel

    Science.gov (United States)

    Wang, Guoqing; Li, Xin; Lou, Yue; Chen, Dong; Zhao, Xin; Wang, Ran; Yan, Debao; Zhao, Qi

    2017-10-01

    Laser-induced fluorescence(LIFS), which is one of most effective discrimination methods to identify the material at the molecular level by inducing fluorescence spectrum, has been popularized for its fast and accurate probe's results. According to the research, violet laser or ultraviolet laser is always used as excitation light source. While, There is no atmospheric window for violet laser and ultraviolet laser, causing laser attenuation along its propagation path. What's worse, as the laser reaching sample, part of the light is reflected. That is, excitation laser really react on sample to produce fluorescence is very poor, leading to weak fluorescence mingled with the background light collected by LIFS' processing unit, when it used outdoor. In order to spread LIFS to remote probing under the complex background, study of improving signal-noise ratio for fluorescence channel is a meaningful work. Enhancing the fluorescence intensity and inhibiting background light both can improve fluorescence' signal-noise ratio. In this article, three different approaches of inhibiting background light are discussed to improve the signal-noise ratio of LIFS. The first method is increasing fluorescence excitation area in the proportion of LIFS' collecting field by expanding laser beam, if the collecting filed is fixed. The second one is changing field angle base to accommodate laser divergence angle. The third one is setting a very narrow gating circuit to control acquisition circuit, which is shortly open only when fluorescence arriving. At some level, these methods all can reduce the background light. But after discussion, the third one is best with adding gating acquisition circuit to acquisition circuit instead of changing light path, which is effective and economic.

  4. Production of enhanced beam halos via collective modes and colored noise

    Directory of Open Access Journals (Sweden)

    Ioannis V. Sideris

    2004-10-01

    Full Text Available We investigate how collective modes and colored noise conspire to produce a beam halo with much larger amplitude than could be generated by either phenomenon separately. The collective modes are lowest-order radial eigenmodes calculated self-consistently for a configuration corresponding to a direct-current, cylindrically symmetric, warm-fluid Kapchinskij-Vladimirskij equilibrium. The colored noise arises from unavoidable machine errors and influences the internal space-charge force. Its presence quickly launches statistically rare particles to ever-growing amplitudes by continually kicking them back into phase with the collective-mode oscillations. The halo amplitude is essentially the same for purely radial orbits as for orbits that are initially purely azimuthal; orbital angular momentum has no statistically significant impact. Factors that do have an impact include the amplitudes of the collective modes and the strength and autocorrelation time of the colored noise. The underlying dynamics ensues because the noise breaks the Kolmogorov-Arnol’d-Moser tori that otherwise would confine the beam. These tori are fragile; even very weak noise will eventually break them, though the time scale for their disintegration depends on the noise strength. Both collective modes and noise are therefore centrally important to the dynamics of halo formation in real beams.

  5. Multi-server blind quantum computation over collective-noise channels

    Science.gov (United States)

    Xiao, Min; Liu, Lin; Song, Xiuli

    2018-03-01

    Blind quantum computation (BQC) enables ordinary clients to securely outsource their computation task to costly quantum servers. Besides two essential properties, namely correctness and blindness, practical BQC protocols also should make clients as classical as possible and tolerate faults from nonideal quantum channel. In this paper, using logical Bell states as quantum resource, we propose multi-server BQC protocols over collective-dephasing noise channel and collective-rotation noise channel, respectively. The proposed protocols permit completely or almost classical client, meet the correctness and blindness requirements of BQC protocol, and are typically practical BQC protocols.

  6. Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise

    International Nuclear Information System (INIS)

    Wang Chao; Liu Jian-Wei; Shang Tao; Chen Xiu-Bo; Bi Ya-Gang

    2015-01-01

    This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel. (paper)

  7. An improved two-way continuous-variable quantum key distribution protocol with added noise in homodyne detection

    International Nuclear Information System (INIS)

    Sun Maozhu; Peng Xiang; Guo Hong

    2013-01-01

    We propose an improved two-way continuous-variable quantum key distribution (CV QKD) protocol by adding proper random noise on the receiver’s homodyne detection, the security of which is analysed against general collective attacks. The simulation result under the collective entangling cloner attack indicates that despite the correlation between two-way channels decreasing the secret key rate relative to the uncorrelated channels slightly, the performance of the two-way protocol is still far beyond that of the one-way protocols. Importantly, the added noise in detection is beneficial for the secret key rate and the tolerable excess noise of this two-way protocol. With the reasonable reconciliation efficiency of 90%, the two-way CV QKD with added noise allows the distribution of secret keys over 60 km fibre distance. (paper)

  8. Training to Improve Hearing Speech in Noise: Biological Mechanisms

    Science.gov (United States)

    Song, Judy H.; Skoe, Erika; Banai, Karen

    2012-01-01

    We investigated training-related improvements in listening in noise and the biological mechanisms mediating these improvements. Training-related malleability was examined using a program that incorporates cognitively based listening exercises to improve speech-in-noise perception. Before and after training, auditory brainstem responses to a speech syllable were recorded in quiet and multitalker noise from adults who ranged in their speech-in-noise perceptual ability. Controls did not undergo training but were tested at intervals equivalent to the trained subjects. Trained subjects exhibited significant improvements in speech-in-noise perception that were retained 6 months later. Subcortical responses in noise demonstrated training-related enhancements in the encoding of pitch-related cues (the fundamental frequency and the second harmonic), particularly for the time-varying portion of the syllable that is most vulnerable to perceptual disruption (the formant transition region). Subjects with the largest strength of pitch encoding at pretest showed the greatest perceptual improvement. Controls exhibited neither neurophysiological nor perceptual changes. We provide the first demonstration that short-term training can improve the neural representation of cues important for speech-in-noise perception. These results implicate and delineate biological mechanisms contributing to learning success, and they provide a conceptual advance to our understanding of the kind of training experiences that can influence sensory processing in adulthood. PMID:21799207

  9. Fault-tolerant controlled quantum secure direct communication over a collective quantum noise channel

    International Nuclear Information System (INIS)

    Yang, Chun-Wei; Hwang, Tzonelih; Tsai, Chia-Wei

    2014-01-01

    This work proposes controlled quantum secure direct communication (CQSDC) over an ideal channel. Based on the proposed CQSDC, two fault-tolerant CQSDC protocols that are robust under two kinds of collective noises, collective-dephasing noise and collective-rotation noise, respectively, are constructed. Due to the use of quantum entanglement of the Bell state (or logical Bell state) as well as dense coding, the proposed protocols provide easier implementation as well as better qubit efficiency than other CQSDC protocols. Furthermore, the proposed protocols are also free from correlation-elicitation attack and other well-known attacks. (paper)

  10. Efficient quantum entanglement distribution over an arbitrary collective-noise channel

    Science.gov (United States)

    Sheng, Yu-Bo; Deng, Fu-Guo

    2010-04-01

    We present an efficient quantum entanglement distribution over an arbitrary collective-noise channel. The basic idea in the present scheme is that two parties in quantum communication first transmit the entangled states in the frequency degree of freedom which suffers little from the noise in an optical fiber. After the two parties share the photon pairs, they add some operations and equipments to transfer the frequency entanglement of pairs into the polarization entanglement with the success probability of 100%. Finally, they can get maximally entangled polarization states with polarization independent wavelength division multiplexers and quantum frequency up-conversion which can erase distinguishability for frequency. Compared with conventional entanglement purification protocols, the present scheme works in a deterministic way in principle. Surprisingly, the collective noise leads to an additional advantage.

  11. Enhancing the entanglement of a teleported state by local collective noises

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xueyuan; Gu Ying; Gong Qihuang; Guo Guangcan, E-mail: ygu@pku.edu.cn [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)

    2011-04-14

    We show that the entanglement of the two-qubit teleported state via a class of four-qubit entangled channel states can be increased by collective amplitude damping locally acting on one part of the channel state. Specifically, we compare the entanglement contained in the output state of teleportation before and after the action of the collective amplitude damping on the channel state, and show that for a wide range of input entangled two-qubit states, the local decoherence can result in an increase in the output entanglement. In this process, the average fidelity of the teleportation is also increased. Our result reveals that some quantum properties of the four-qubit channel state are definitely improved in the process of enhancing the fidelity by local noise.

  12. Working memory training to improve speech perception in noise across languages.

    Science.gov (United States)

    Ingvalson, Erin M; Dhar, Sumitrajit; Wong, Patrick C M; Liu, Hanjun

    2015-06-01

    Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners.

  13. Improvement of airfoil trailing edge bluntness noise model

    Directory of Open Access Journals (Sweden)

    Wei Jun Zhu

    2016-02-01

    Full Text Available In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989. It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed that this was caused by a lack in the model to predict accurately noise from blunt trailing edges. For more physical understanding of bluntness noise generation, in this study, we also use an advanced in-house developed high-order computational aero-acoustic technique to investigate the details associated with trailing edge bluntness noise. The results from the numerical model form the basis for an improved Brooks, Pope, and Marcolini trailing edge bluntness noise model.

  14. Lidar signal-to-noise ratio improvements: Considerations and techniques

    Science.gov (United States)

    Hassebo, Yasser Y.

    minimize detected sky background noise while maintaining maximum lidar signal throughput. Measurements, carried at 532 nm, show as much as a factor of 10 improvement in SNR and the attainable lidar range up to 34% over conventional un-polarized schemes. For vertically pointing lidars, the largest improvements are limited to the early morning and late afternoon hours, while for lidars scanning azimuthally and in elevation at angles other than vertical, significant improvements are achievable over more extended time periods. Observed changes in SNR improvements were also related to relative humidity and modification of underlying aerosol microphysics. A second, distinct objective of this research was to utilize multiwavelength lidar techniques to separate plume and cloud particles. Choice of the study location and time for this work was driven mainly by the availability of satellite data collected by NASA INTEX-NA and NOAA NEAQS experiment over New York City on July 21, 2004 in support of MODIS imagery. The lidar results identify smoke plumes over New York City and validate the plume source origin location using NOAA-HYSPLIT back trajectory analysis. Surface measurements, at the time, from in-situ particle counters are presented and show no enhanced PM2.5 loading. This result is supported by lidar measurements, which confirm that nearly all of the aerosol plumes are located above the normal aerosol boundary layer showing that satellite measurements are often incomplete and are not sufficient for assessing surface air quality.

  15. Collaborative noise data collected from smartphones

    Directory of Open Access Journals (Sweden)

    Erwan Bocher

    2017-10-01

    The noise data that are acquired by volunteers around the world (citizen observations, are organized in three files, containing the path of measures (a set of points, standardized noise indicators, noise description and other useful variables (GPS accuracy, speed…. These data can be very relevant later to propose an environmental noise evaluation, through simple or complex treatments.

  16. On the nature of data collection for soft-tissue image-to-physical organ registration: a noise characterization study

    Science.gov (United States)

    Collins, Jarrod A.; Heiselman, Jon S.; Weis, Jared A.; Clements, Logan W.; Simpson, Amber L.; Jarnagin, William R.; Miga, Michael I.

    2017-03-01

    In image-guided liver surgery (IGLS), sparse representations of the anterior organ surface may be collected intraoperatively to drive image-to-physical space registration. Soft tissue deformation represents a significant source of error for IGLS techniques. This work investigates the impact of surface data quality on current surface based IGLS registration methods. In this work, we characterize the robustness of our IGLS registration methods to noise in organ surface digitization. We study this within a novel human-to-phantom data framework that allows a rapid evaluation of clinically realistic data and noise patterns on a fully characterized hepatic deformation phantom. Additionally, we implement a surface data resampling strategy that is designed to decrease the impact of differences in surface acquisition. For this analysis, n=5 cases of clinical intraoperative data consisting of organ surface and salient feature digitizations from open liver resection were collected and analyzed within our human-to-phantom validation framework. As expected, results indicate that increasing levels of noise in surface acquisition cause registration fidelity to deteriorate. With respect to rigid registration using the raw and resampled data at clinically realistic levels of noise (i.e. a magnitude of 1.5 mm), resampling improved TRE by 21%. In terms of nonrigid registration, registrations using resampled data outperformed the raw data result by 14% at clinically realistic levels and were less susceptible to noise across the range of noise investigated. These results demonstrate the types of analyses our novel human-to-phantom validation framework can provide and indicate the considerable benefits of resampling strategies.

  17. Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise

    International Nuclear Information System (INIS)

    Chang Yan; Zhang Shi-Bin; Yan Li-Li; Han Gui-Hua

    2015-01-01

    Higher channel capacity and security are difficult to reach in a noisy channel. The loss of photons and the distortion of the qubit state are caused by noise. To solve these problems, in our study, a hyperentangled Bell state is used to design faithful deterministic secure quantum communication and authentication protocol over collective-rotation and collective-dephasing noisy channel, which doubles the channel capacity compared with using an ordinary Bell state as a carrier; a logical hyperentangled Bell state immune to collective-rotation and collective-dephasing noise is constructed. The secret message is divided into several parts to transmit, however the identity strings of Alice and Bob are reused. Unitary operations are not used. (paper)

  18. Fault-Tolerate Three-Party Quantum Secret Sharing over a Collective-Noise Channel

    International Nuclear Information System (INIS)

    Li Chun-Yan; Li Yan-Song

    2011-01-01

    We present a fault-tolerate three-party quantum secret sharing (QSS) scheme over a collective-noise channel. Decoherence-free subspaces are used to tolerate two noise modes, a collective-dephasing channel and a collective-rotating channel, respectively. In this scheme, the boss uses two physical qubits to construct a logical qubit which acts as a quantum channel to transmit one bit information to her two agents. The agents can get the information of the private key established by the boss only if they collaborate. The boss Alice encodes information with two unitary operations. Only single-photon measurements are required to rebuilt Alice's information and detect the security by the agents Bob and Charlie, not Bell-state measurements. Moreover, Almost all of the photons are used to distribute information, and its success efficiency approaches 100% in theory. (general)

  19. A review of noise data collection at the central and south west wind farm in Texas

    Energy Technology Data Exchange (ETDEWEB)

    Moroz, E. [Univ. of Texas, El Paso, TX (United States)

    1996-12-31

    Evaluation of data collected over a 1-year period from a 6 MW wind farm is presented in the paper. Noise propagation prediction methods are compared with each other and with field data. Three forms of regulating noise are also compared: minimum separation distance, absolute noise limit, and relative noise limit.Relative noise limits were found to offer the most comprehensive approach to regulating noise and to allow each location to be treated independently. A hemispherical spreading model appears to be a useful planning tool. 11 refs., 4 tabs.

  20. Improvement of intelligibility of ideal binary-masked noisy speech by adding background noise.

    Science.gov (United States)

    Cao, Shuyang; Li, Liang; Wu, Xihong

    2011-04-01

    When a target-speech/masker mixture is processed with the signal-separation technique, ideal binary mask (IBM), intelligibility of target speech is remarkably improved in both normal-hearing listeners and hearing-impaired listeners. Intelligibility of speech can also be improved by filling in speech gaps with un-modulated broadband noise. This study investigated whether intelligibility of target speech in the IBM-treated target-speech/masker mixture can be further improved by adding a broadband-noise background. The results of this study show that following the IBM manipulation, which remarkably released target speech from speech-spectrum noise, foreign-speech, or native-speech masking (experiment 1), adding a broadband-noise background with the signal-to-noise ratio no less than 4 dB significantly improved intelligibility of target speech when the masker was either noise (experiment 2) or speech (experiment 3). The results suggest that since adding the noise background shallows the areas of silence in the time-frequency domain of the IBM-treated target-speech/masker mixture, the abruption of transient changes in the mixture is smoothed and the perceived continuity of target-speech components becomes enhanced, leading to improved target-speech intelligibility. The findings are useful for advancing computational auditory scene analysis, hearing-aid/cochlear-implant designs, and understanding of speech perception under "cocktail-party" conditions.

  1. Improved virtual channel noise model for transform domain Wyner-Ziv video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren

    2009-01-01

    Distributed video coding (DVC) has been proposed as a new video coding paradigm to deal with lossy source coding using side information to exploit the statistics at the decoder to reduce computational demands at the encoder. A virtual channel noise model is utilized at the decoder to estimate...... the noise distribution between the side information frame and the original frame. This is one of the most important aspects influencing the coding performance of DVC. Noise models with different granularity have been proposed. In this paper, an improved noise model for transform domain Wyner-Ziv video...... coding is proposed, which utilizes cross-band correlation to estimate the Laplacian parameters more accurately. Experimental results show that the proposed noise model can improve the rate-distortion (RD) performance....

  2. Developmental Mechanisms Underlying Improved Contrast Thresholds for Discriminations of Orientation Signals Embedded in Noise

    Directory of Open Access Journals (Sweden)

    Seong Taek eJeon

    2014-09-01

    Full Text Available We combined an external noise paradigm with an efficient procedure for obtaining contrast thresholds (Lesmes et al., 2006 in order to model developmental changes during childhood. Specifically, we measured the contrast thresholds of 5-, 7-, 9-year-olds and adults (n = 20/age in a two alternative forced-choice orientation discrimination task over a wide range of external noise levels and at three levels of accuracy. Overall, as age increased, contrast thresholds decreased over the entire range of external noise levels tested. The decrease was greatest between 5 and 7 years of age. The reduction in threshold after age 5 was greater in the high than the low external noise region, a pattern implying greater tolerance to the irrelevant background noise as children became older. To model the mechanisms underlying these developmental changes in terms of internal noise components, we adapted the original perceptual template model (Lu and Dosher, 1998 and normalized the magnitude of performance changes against the performance of 5-year-olds. The resulting model provided an excellent fit (r2 = 0.985 to the contrast thresholds at multiple levels of accuracy (60, 75, and 90% across a wide range of external noise levels. The improvements in contrast thresholds with age were best modelled by a combination of reductions in internal additive noise, reductions in internal multiplicative noise, and improvements in excluding external noise by template retuning. In line with the data, the improvement was greatest between 5 and 7 years of age, accompanied by a 39% reduction in additive noise, 71% reduction in multiplicative noise, and 45% improvement in external noise exclusion. The modelled improvements likely reflect developmental changes at the cortical level, rather than changes in front-end structural properties (Kiorpes et al., 2003.

  3. Three-Stage Quantum Cryptography Protocol under Collective-Rotation Noise

    Directory of Open Access Journals (Sweden)

    Linsen Wu

    2015-05-01

    Full Text Available Information security is increasingly important as society migrates to the information age. Classical cryptography widely used nowadays is based on computational complexity, which means that it assumes that solving some particular mathematical problems is hard on a classical computer. With the development of supercomputers and, potentially, quantum computers, classical cryptography has more and more potential risks. Quantum cryptography provides a solution which is based on the Heisenberg uncertainty principle and no-cloning theorem. While BB84-based quantum protocols are only secure when a single photon is used in communication, the three-stage quantum protocol is multi-photon tolerant. However, existing analyses assume perfect noiseless channels. In this paper, a multi-photon analysis is performed for the three-stage quantum protocol under the collective-rotation noise model. The analysis provides insights into the impact of the noise level on a three-stage quantum cryptography system.

  4. Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise.

    Science.gov (United States)

    Zhang, Jiachao; Hirakawa, Keigo

    2017-04-01

    This paper describes a study aimed at comparing the real image sensor noise distribution to the models of noise often assumed in image denoising designs. A quantile analysis in pixel, wavelet transform, and variance stabilization domains reveal that the tails of Poisson, signal-dependent Gaussian, and Poisson-Gaussian models are too short to capture real sensor noise behavior. A new Poisson mixture noise model is proposed to correct the mismatch of tail behavior. Based on the fact that noise model mismatch results in image denoising that undersmoothes real sensor data, we propose a mixture of Poisson denoising method to remove the denoising artifacts without affecting image details, such as edge and textures. Experiments with real sensor data verify that denoising for real image sensor data is indeed improved by this new technique.

  5. Improved prediction of aerodynamic noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Guidati, G.; Bareiss, R.; Wagner, S. [Univ. of Stuttgart, Inst. of Aerodynamics and Gasdynamics, Stuttgart (Germany)

    1997-12-31

    This paper focuses on an improved prediction model for inflow-turbulence noise which takes the true airfoil shape into account. Predictions are compared to the results of acoustic measurements on three 2D-models of 0.25 m chord. Two of the models have NACA-636xx airfoils of 12% and 18% relative thickness. The third airfoil was acoustically optimized by using the new prediction model. In the experiments the turbulence intensity of the flow was strongly increased by mounting a grid with 60 mm wide meshes and 12 mm thick rods onto the tunnel exhaust nozzle. The sound radiated from the airfoil was distinguished by the tunnel background noise by using an acoustic antenna consisting of a cross array of 36 microphones in total. An application of a standard beam-forming algorithm allows to determine how much noise is radiated from different parts of the models. This procedure normally results in a peak at the leading and trailing edge of the airfoil. The strength of the leading-edge peak is taken as the source strength for inflow-turbulence noise. (LN) 14 refs.

  6. SII-Based Speech Prepocessing for Intelligibility Improvement in Noise

    DEFF Research Database (Denmark)

    Taal, Cees H.; Jensen, Jesper

    2013-01-01

    filter sets certain frequency bands to zero when they do not contribute to intelligibility anymore. Experiments show large intelligibility improvements with the proposed method when used in stationary speech-shaped noise. However, it was also found that the method does not perform well for speech...... corrupted by a competing speaker. This is due to the fact that the SII is not a reliable intelligibility predictor for fluctuating noise sources. MATLAB code is provided....

  7. Nonlinearly stacked low noise turbofan stator

    Science.gov (United States)

    Schuster, William B. (Inventor); Nolcheff, Nick A. (Inventor); Gunaraj, John A. (Inventor); Kontos, Karen B. (Inventor); Weir, Donald S. (Inventor)

    2009-01-01

    A nonlinearly stacked low noise turbofan stator vane having a characteristic curve that is characterized by a nonlinear sweep and a nonlinear lean is provided. The stator is in an axial fan or compressor turbomachinery stage that is comprised of a collection of vanes whose highly three-dimensional shape is selected to reduce rotor-stator and rotor-strut interaction noise while maintaining the aerodynamic and mechanical performance of the vane. The nonlinearly stacked low noise turbofan stator vane reduces noise associated with the fan stage of turbomachinery to improve environmental compatibility.

  8. Improving the accuracy of smart devices to measure noise exposure.

    Science.gov (United States)

    Roberts, Benjamin; Kardous, Chucri; Neitzel, Richard

    2016-11-01

    Occupational noise exposure is one of the most frequent hazards present in the workplace; up to 22 million workers have potentially hazardous noise exposures in the U.S. As a result, noise-induced hearing loss is one of the most common occupational injuries in the U.S. Workers in manufacturing, construction, and the military are at the highest risk for hearing loss. Despite the large number of people exposed to high levels of noise at work, many occupations have not been adequately evaluated for noise exposure. The objective of this experiment was to investigate whether or not iOS smartphones and other smart devices (Apple iPhones and iPods) could be used as reliable instruments to measure noise exposures. For this experiment three different types of microphones were tested with a single model of iPod and three generations of iPhones: the internal microphones on the device, a low-end lapel microphone, and a high-end lapel microphone marketed as being compliant with the International Electrotechnical Commission's (IEC) standard for a Class 2-microphone. All possible combinations of microphones and noise measurement applications were tested in a controlled environment using several different levels of pink noise ranging from 60-100 dBA. Results were compared to simultaneous measurements made using a Type 1 sound level measurement system. Analysis of variance and Tukey's honest significant difference (HSD) test were used to determine if the results differed by microphone or noise measurement application. Levels measured with external microphones combined with certain noise measurement applications did not differ significantly from levels measured with the Type 1 sound measurement system. Results showed that it may be possible to use iOS smartphones and smart devices, with specific combinations of measurement applications and calibrated external microphones, to collect reliable, occupational noise exposure data under certain conditions and within the limitations of the

  9. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Lai, J.; Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-03-15

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T{sub e} and n{sub e} fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained.

  10. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems.

    Science.gov (United States)

    Lai, J; Domier, C W; Luhmann, N C

    2014-03-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T(e) and n(e) fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ~60,000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50-75 GHz), significant improvement of noise temperature from the current 60,000 K to measured 4000 K has been obtained.

  11. Noise temperature improvement for magnetic fusion plasma millimeter wave imaging systems

    International Nuclear Information System (INIS)

    Lai, J.; Domier, C. W.; Luhmann, N. C.

    2014-01-01

    Significant progress has been made in the imaging and visualization of magnetohydrodynamic and microturbulence phenomena in magnetic fusion plasmas [B. Tobias et al., Plasma Fusion Res. 6, 2106042 (2011)]. Of particular importance have been microwave electron cyclotron emission imaging and microwave imaging reflectometry systems for imaging T e and n e fluctuations. These instruments have employed heterodyne receiver arrays with Schottky diode mixer elements directly connected to individual antennas. Consequently, the noise temperature has been strongly determined by the conversion loss with typical noise temperatures of ∼60 000 K. However, this can be significantly improved by making use of recent advances in Monolithic Microwave Integrated Circuit chip low noise amplifiers to insert a pre-amplifier in front of the Schottky diode mixer element. In a proof-of-principle design at V-Band (50–75 GHz), significant improvement of noise temperature from the current 60 000 K to measured 4000 K has been obtained

  12. Microseismic Event Location Improvement Using Adaptive Filtering for Noise Attenuation

    Science.gov (United States)

    de Santana, F. L., Sr.; do Nascimento, A. F.; Leandro, W. P. D. N., Sr.; de Carvalho, B. M., Sr.

    2017-12-01

    In this work we show how adaptive filtering noise suppression improves the effectiveness of the Source Scanning Algorithm (SSA; Kao & Shan, 2004) in microseism location in the context of fracking operations. The SSA discretizes the time and region of interest in a 4D vector and, for each grid point and origin time, a brigthness value (seismogram stacking) is calculated. For a given set of velocity model parameters, when origin time and hypocenter of the seismic event are correct, a maximum value for coherence (or brightness) is achieved. The result is displayed on brightness maps for each origin time. Location methods such as SSA are most effective when the noise present in the seismograms is incoherent, however, the method may present false positives when the noise present in the data is coherent as occurs in fracking operations. To remove from the seismograms, the coherent noise from the pump and engines used in the operation, we use an adaptive filter. As the noise reference, we use the seismogram recorded at the station closest to the machinery employed. Our methodology was tested on semi-synthetic data. The microseismic was represented by Ricker pulses (with central frequency of 30Hz) on synthetics seismograms, and to simulate real seismograms on a surface microseismic monitoring situation, we added real noise recorded in a fracking operation to these synthetics seismograms. The results show that after the filtering of the seismograms, we were able to improve our detection threshold and to achieve a better resolution on the brightness maps of the located events.

  13. Performance Improvement of Raman Distributed Temperature System by Using Noise Suppression

    Science.gov (United States)

    Li, Jian; Li, Yunting; Zhang, Mingjiang; Liu, Yi; Zhang, Jianzhong; Yan, Baoqiang; Wang, Dong; Jin, Baoquan

    2018-06-01

    In Raman distributed temperature system, the key factor for performance improvement is noise suppression, which seriously affects the sensing distance and temperature accuracy. Therefore, we propose and experimentally demonstrate dynamic noise difference algorithm and wavelet transform modulus maximum (WTMM) to de-noising Raman anti-Stokes signal. Experimental results show that the sensing distance can increase from 3 km to 11.5 km and the temperature accuracy increases to 1.58 °C at the sensing distance of 10.4 km.

  14. Broad-band Gausssian noise is most effective in improving motor performance and is most pleasant

    Directory of Open Access Journals (Sweden)

    Carlos eTrenado

    2014-02-01

    Full Text Available Modern attempts to improve human performance focus on stochastic resonance (SR. SR is a phenomenon in nonlinear systems characterized by a response increase of the system induced by a particular level of input noise. Recently, we reported that an optimum level of 0-15 Hz Gaussian noise applied to the human index finger improved static isometric force compensation. A possible explanation was a better sensorimotor integration caused by increase in sensitivity of peripheral receptors and/or of internal SR. The present study in 10 subjects compares SR effects in the performance of the same motor task and on pleasantness, by applying three Gaussian noises chosen on the sensitivity of the fingertip receptors (0-15 Hz mostly for Merkel receptors, 250-300 Hz for Pacini corpuscules and 0-300 Hz for all. We document that only the 0-300 Hz noise induced SR effect during the transitory phase of the task. In contrast, the motor performance was improved during the stationary phase for all three noise frequency bandwidths. This improvement was stronger for 0-300 Hz and 250-300 Hz than for 0-15 Hz noise. Further, we found higher degree of pleasantness for 0-300 Hz and 250-300 Hz noise bandwidths than for 0-15 Hz. Thus, we show that the most appropriate Gaussian noise that could be used in haptic gloves is the 0-300 Hz, as it improved motor performance during both stationary and transitory phases. In addition, this noise had the highest degree of pleasantness and thus reveals that the glabrous skin can also forward pleasant sensations. These new findings provide worthy information for neurorehabilitation.

  15. Low-Arousal Speech Noise Improves Performance in N-Back Task: An ERP Study

    Science.gov (United States)

    Zhang, Dandan; Jin, Yi; Luo, Yuejia

    2013-01-01

    The relationship between noise and human performance is a crucial topic in ergonomic research. However, the brain dynamics of the emotional arousal effects of background noises are still unclear. The current study employed meaningless speech noises in the n-back working memory task to explore the changes of event-related potentials (ERPs) elicited by the noises with low arousal level vs. high arousal level. We found that the memory performance in low arousal condition were improved compared with the silent and the high arousal conditions; participants responded more quickly and had larger P2 and P3 amplitudes in low arousal condition while the performance and ERP components showed no significant difference between high arousal and silent conditions. These findings suggested that the emotional arousal dimension of background noises had a significant influence on human working memory performance, and that this effect was independent of the acoustic characteristics of noises (e.g., intensity) and the meaning of speech materials. The current findings improve our understanding of background noise effects on human performance and lay the ground for the investigation of patients with attention deficits. PMID:24204607

  16. Low-arousal speech noise improves performance in N-back task: an ERP study.

    Science.gov (United States)

    Han, Longzhu; Liu, Yunzhe; Zhang, Dandan; Jin, Yi; Luo, Yuejia

    2013-01-01

    The relationship between noise and human performance is a crucial topic in ergonomic research. However, the brain dynamics of the emotional arousal effects of background noises are still unclear. The current study employed meaningless speech noises in the n-back working memory task to explore the changes of event-related potentials (ERPs) elicited by the noises with low arousal level vs. high arousal level. We found that the memory performance in low arousal condition were improved compared with the silent and the high arousal conditions; participants responded more quickly and had larger P2 and P3 amplitudes in low arousal condition while the performance and ERP components showed no significant difference between high arousal and silent conditions. These findings suggested that the emotional arousal dimension of background noises had a significant influence on human working memory performance, and that this effect was independent of the acoustic characteristics of noises (e.g., intensity) and the meaning of speech materials. The current findings improve our understanding of background noise effects on human performance and lay the ground for the investigation of patients with attention deficits.

  17. Low-arousal speech noise improves performance in N-back task: an ERP study.

    Directory of Open Access Journals (Sweden)

    Longzhu Han

    Full Text Available The relationship between noise and human performance is a crucial topic in ergonomic research. However, the brain dynamics of the emotional arousal effects of background noises are still unclear. The current study employed meaningless speech noises in the n-back working memory task to explore the changes of event-related potentials (ERPs elicited by the noises with low arousal level vs. high arousal level. We found that the memory performance in low arousal condition were improved compared with the silent and the high arousal conditions; participants responded more quickly and had larger P2 and P3 amplitudes in low arousal condition while the performance and ERP components showed no significant difference between high arousal and silent conditions. These findings suggested that the emotional arousal dimension of background noises had a significant influence on human working memory performance, and that this effect was independent of the acoustic characteristics of noises (e.g., intensity and the meaning of speech materials. The current findings improve our understanding of background noise effects on human performance and lay the ground for the investigation of patients with attention deficits.

  18. Submultiple Data Collection to Explore Spectroscopic Instrument Instabilities Shows that Much of the "Noise" is not Stochastic.

    Science.gov (United States)

    Meuse, Curtis W; Filliben, James J; Rubinson, Kenneth A

    2018-04-17

    As has long been understood, the noise on a spectrometric signal can be reduced by averaging over time, and the averaged noise is expected to decrease as t 1/2 , the square root of the data collection time. However, with contemporary capability for fast data collection and storage, we can retain and access a great deal more information about a signal train than just its average over time. During the same collection time, we can record the signal averaged over much shorter, equal, fixed periods. This is, then, the set of signals over submultiples of the total collection time. With a sufficiently large set of submultiples, the distribution of the signal's fluctuations over the submultiple periods of the data stream can be acquired at each wavelength (or frequency). From the autocorrelations of submultiple sets, we find only some fraction of these fluctuations consist of stochastic noise. Part of the fluctuations are what we call "fast drift", which is defined as drift over a time shorter than the complete measurement period of the average spectrum. In effect, what is usually assumed to be stochastic noise has a significant component of fast drift due to changes of conditions in the spectroscopic system. In addition, we show that the extreme values of the fluctuation of the signals are usually not balanced (equal magnitudes, equal probabilities) on either side of the mean or median without an inconveniently long measurement time; the data is almost inevitably biased. In other words, the unbalanced data is collected in an unbalanced manner around the mean, and so the median provides a better measure of the true spectrum. As is shown here, by using the medians of these distributions, the signal-to-noise of the spectrum can be increased and sampling bias reduced. The effect of this submultiple median data treatment is demonstrated for infrared, circular dichroism, and Raman spectrometry.

  19. Improving speech perception in noise with current focusing in cochlear implant users.

    Science.gov (United States)

    Srinivasan, Arthi G; Padilla, Monica; Shannon, Robert V; Landsberger, David M

    2013-05-01

    Cochlear implant (CI) users typically have excellent speech recognition in quiet but struggle with understanding speech in noise. It is thought that broad current spread from stimulating electrodes causes adjacent electrodes to activate overlapping populations of neurons which results in interactions across adjacent channels. Current focusing has been studied as a way to reduce spread of excitation, and therefore, reduce channel interactions. In particular, partial tripolar stimulation has been shown to reduce spread of excitation relative to monopolar stimulation. However, the crucial question is whether this benefit translates to improvements in speech perception. In this study, we compared speech perception in noise with experimental monopolar and partial tripolar speech processing strategies. The two strategies were matched in terms of number of active electrodes, microphone, filterbanks, stimulation rate and loudness (although both strategies used a lower stimulation rate than typical clinical strategies). The results of this study showed a significant improvement in speech perception in noise with partial tripolar stimulation. All subjects benefited from the current focused speech processing strategy. There was a mean improvement in speech recognition threshold of 2.7 dB in a digits in noise task and a mean improvement of 3 dB in a sentences in noise task with partial tripolar stimulation relative to monopolar stimulation. Although the experimental monopolar strategy was worse than the clinical, presumably due to different microphones, frequency allocations and stimulation rates, the experimental partial-tripolar strategy, which had the same changes, showed no acute deficit relative to the clinical. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Improvement of Accuracy for Background Noise Estimation Method Based on TPE-AE

    Science.gov (United States)

    Itai, Akitoshi; Yasukawa, Hiroshi

    This paper proposes a method of a background noise estimation based on the tensor product expansion with a median and a Monte carlo simulation. We have shown that a tensor product expansion with absolute error method is effective to estimate a background noise, however, a background noise might not be estimated by using conventional method properly. In this paper, it is shown that the estimate accuracy can be improved by using proposed methods.

  1. Improving the quality of a collective signal in a consumer EEG headset.

    Directory of Open Access Journals (Sweden)

    Alejandro Morán

    Full Text Available This work focuses on the experimental data analysis of electroencephalography (EEG data, in which multiple sensors are recording oscillatory voltage time series. The EEG data analyzed in this manuscript has been acquired using a low-cost commercial headset, the Emotiv EPOC+. Our goal is to compare different techniques for the optimal estimation of collective rhythms from EEG data. To this end, a traditional method such as the principal component analysis (PCA is compared to more recent approaches to extract a collective rhythm from phase-synchronized data. Here, we extend the work by Schwabedal and Kantz (PRL 116, 104101 (2016 evaluating the performance of the Kosambi-Hilbert torsion (KHT method to extract a collective rhythm from multivariate oscillatory time series and compare it to results obtained from PCA. The KHT method takes advantage of the singular value decomposition algorithm and accounts for possible phase lags among different time series and allows to focus the analysis on a specific spectral band, optimally amplifying the signal-to-noise ratio of a common rhythm. We evaluate the performance of these methods for two particular sets of data: EEG data recorded with closed eyes and EEG data recorded while observing a screen flickering at 15 Hz. We found an improvement in the signal-to-noise ratio of the collective signal for the KHT over the PCA, particularly when random temporal shifts are added to the channels.

  2. An improved algorithm of laser spot center detection in strong noise background

    Science.gov (United States)

    Zhang, Le; Wang, Qianqian; Cui, Xutai; Zhao, Yu; Peng, Zhong

    2018-01-01

    Laser spot center detection is demanded in many applications. The common algorithms for laser spot center detection such as centroid and Hough transform method have poor anti-interference ability and low detection accuracy in the condition of strong background noise. In this paper, firstly, the median filtering was used to remove the noise while preserving the edge details of the image. Secondly, the binarization of the laser facula image was carried out to extract target image from background. Then the morphological filtering was performed to eliminate the noise points inside and outside the spot. At last, the edge of pretreated facula image was extracted and the laser spot center was obtained by using the circle fitting method. In the foundation of the circle fitting algorithm, the improved algorithm added median filtering, morphological filtering and other processing methods. This method could effectively filter background noise through theoretical analysis and experimental verification, which enhanced the anti-interference ability of laser spot center detection and also improved the detection accuracy.

  3. Speech perception for adult cochlear implant recipients in a realistic background noise: effectiveness of preprocessing strategies and external options for improving speech recognition in noise.

    Science.gov (United States)

    Gifford, René H; Revit, Lawrence J

    2010-01-01

    Although cochlear implant patients are achieving increasingly higher levels of performance, speech perception in noise continues to be problematic. The newest generations of implant speech processors are equipped with preprocessing and/or external accessories that are purported to improve listening in noise. Most speech perception measures in the clinical setting, however, do not provide a close approximation to real-world listening environments. To assess speech perception for adult cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE) array in order to determine whether commercially available preprocessing strategies and/or external accessories yield improved sentence recognition in noise. Single-subject, repeated-measures design with two groups of participants: Advanced Bionics and Cochlear Corporation recipients. Thirty-four subjects, ranging in age from 18 to 90 yr (mean 54.5 yr), participated in this prospective study. Fourteen subjects were Advanced Bionics recipients, and 20 subjects were Cochlear Corporation recipients. Speech reception thresholds (SRTs) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the subjects' preferred listening programs as well as with the addition of either Beam preprocessing (Cochlear Corporation) or the T-Mic accessory option (Advanced Bionics). In Experiment 1, adaptive SRTs with the Hearing in Noise Test sentences were obtained for all 34 subjects. For Cochlear Corporation recipients, SRTs were obtained with their preferred everyday listening program as well as with the addition of Focus preprocessing. For Advanced Bionics recipients, SRTs were obtained with the integrated behind-the-ear (BTE) mic as well as with the T-Mic. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the preprocessing strategy or external accessory in reducing the SRT in noise. In addition

  4. Evaluation of Low-Noise, Improved-Bearing-Contact Spiral Bevel Gears

    National Research Council Canada - National Science Library

    Lewicki, Davide

    2003-01-01

    .... Experimental tests were performed on the OH-58D helicopter main-rotor transmission in the NASA Glenn 500-hp Helicopter Transmission Test Stand Low-noise, improved-bearing- contact spiral-bevel gears...

  5. When noise is beneficial for sensory encoding: Noise adaptation can improve face processing.

    Science.gov (United States)

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Redies, Christoph; Németh, Kornél; Kovács, Gyula

    2017-10-01

    The presence of noise usually impairs the processing of a stimulus. Here, we studied the effects of noise on face processing and show, for the first time, that adaptation to noise patterns has beneficial effects on face perception. We used noiseless faces that were either surrounded by random noise or presented on a uniform background as stimuli. In addition, the faces were either preceded by noise adaptors or not. Moreover, we varied the statistics of the noise so that its spectral slope either matched that of the faces or it was steeper or shallower. Results of parallel ERP recordings showed that the background noise reduces the amplitude of the face-evoked N170, indicating less intensive face processing. Adaptation to a noise pattern, however, led to reduced P1 and enhanced N170 amplitudes as well as to a better behavioral performance in two of the three noise conditions. This effect was also augmented by the presence of background noise around the target stimuli. Additionally, the spectral slope of the noise pattern affected the size of the P1, N170 and P2 amplitudes. We reason that the observed effects are due to the selective adaptation of noise-sensitive neurons present in the face-processing cortical areas, which may enhance the signal-to-noise-ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Improved noise-adding radiometer for microwave receivers

    Science.gov (United States)

    Batelaan, P. D.; Stelzried, C. T.; Goldstein, R. M.

    1973-01-01

    Use of input switch and noise reference standard is avoided by using noise-adding technique. Excess noise from solid state noise-diode is coupled into receiver through directional coupler and square-wave modulated at low rate. High sensitivity receivers for radioastronomy applications are utilized with greater confidence in stability of radiometer.

  7. The Security Analysis of Two-Step Quantum Direct Communication Protocol in Collective-Rotation Noise Channel

    International Nuclear Information System (INIS)

    Li Jian; Sun Feng-Qi; Pan Ze-Shi; Nie Jin-Rui; Chen Yan-Hua; Yuan Kai-Guo

    2015-01-01

    To analyze the security of two-step quantum direct communication protocol (QDCP) by using Einstein–Podolsky–Rosen pair proposed by Deng et al. [Phys. Rev. A 68 (2003) 042317] in collective-rotation noise channel, an excellent model of noise analysis is proposed. In the security analysis, the method of the entropy theory is introduced, and is compared with QDCP, an error rate point Q 0 (M : (Q 0 , 1.0)) is given. In different noise levels, if Eve wants to obtain the same amount of information, the error rate Q is distinguishable. The larger the noise level ϵ is, the larger the error rate Q is. When the noise level ϵ is lower than 11%, the high error rate is 0.153 without eavesdropping. Lastly, the security of the proposed protocol is discussed. It turns out that the quantum channel will be safe when Q < 0.153. Similarly, if error rate Q > 0.153 = Q 0 , eavesdropping information I > 1, which means that there exist eavesdroppers in the quantum channel, and the quantum channel will not be safe anymore. (paper)

  8. Remote vibrotactile noise improves light touch sensation in stroke survivors' fingertips via stochastic resonance.

    Science.gov (United States)

    Enders, Leah R; Hur, Pilwon; Johnson, Michelle J; Seo, Na Jin

    2013-10-11

    Stroke rehabilitation does not often integrate both sensory and motor recovery. While subthreshold noise was shown to enhance sensory signal detection at the site of noise application, having a noise-generating device at the fingertip to enhance fingertip sensation and potentially enhance dexterity for stroke survivors is impractical, since the device would interfere with object manipulation. This study determined if remote application of subthreshold vibrotactile noise (away from the fingertips) improves fingertip tactile sensation with potential to enhance dexterity for stroke survivors. Index finger and thumb pad sensation was measured for ten stroke survivors with fingertip sensory deficit using the Semmes-Weinstein Monofilament and Two-Point Discrimination Tests. Sensation scores were measured with noise applied at one of three intensities (40%, 60%, 80% of the sensory threshold) to one of four locations of the paretic upper extremity (dorsal hand proximal to the index finger knuckle, dorsal hand proximal to the thumb knuckle, dorsal wrist, volar wrist) in a random order, as well as without noise at beginning (Pre) and end (Post) of the testing session. Vibrotactile noise of all intensities and locations instantaneously and significantly improved Monofilament scores of the index fingertip and thumb tip (p sensation, independent of noise location and intensity. Vibrotactile noise at the wrist and dorsal hand may have enhanced the fingertips' light touch sensation via stochastic resonance and interneuronal connections. While long-term benefits of noise in stroke patients warrants further investigation, this result demonstrates potential that a wearable device applying vibrotactile noise at the wrist could enhance sensation and grip ability without interfering with object manipulation in everyday tasks.

  9. Balanced detection for self-mixing interferometry to improve signal-to-noise ratio

    Science.gov (United States)

    Zhao, Changming; Norgia, Michele; Li, Kun

    2018-01-01

    We apply balanced detection to self-mixing interferometry for displacement and vibration measurement, using two photodiodes for implementing a differential acquisition. The method is based on the phase opposition of the self-mixing signal measured between the two laser diode facet outputs. The balanced signal obtained by enlarging the self-mixing signal, also by canceling of the common-due noises mainly due to disturbances on laser supply and transimpedance amplifier. Experimental results demonstrate the signal-to-noise ratio significantly improves, with almost twice signals enhancement and more than half noise decreasing. This method allows for more robust, longer-distance measurement systems, especially using fringe-counting.

  10. Data Quality Assurance for Supersonic Jet Noise Measurements

    Science.gov (United States)

    Brown, Clifford A.; Henderson, Brenda S.; Bridges, James E.

    2010-01-01

    The noise created by a supersonic aircraft is a primary concern in the design of future high-speed planes. The jet noise reduction technologies required on these aircraft will be developed using scale-models mounted to experimental jet rigs designed to simulate the exhaust gases from a full-scale jet engine. The jet noise data collected in these experiments must accurately predict the noise levels produced by the full-scale hardware in order to be a useful development tool. A methodology has been adopted at the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory to insure the quality of the supersonic jet noise data acquired from the facility s High Flow Jet Exit Rig so that it can be used to develop future nozzle technologies that reduce supersonic jet noise. The methodology relies on mitigating extraneous noise sources, examining the impact of measurement location on the acoustic results, and investigating the facility independence of the measurements. The methodology is documented here as a basis for validating future improvements and its limitations are noted so that they do not affect the data analysis. Maintaining a high quality jet noise laboratory is an ongoing process. By carefully examining the data produced and continually following this methodology, data quality can be maintained and improved over time.

  11. Improved Kalman Filter Method for Measurement Noise Reduction in Multi Sensor RFID Systems

    Directory of Open Access Journals (Sweden)

    Min Chul Kim

    2011-10-01

    Full Text Available Recently, the range of available Radio Frequency Identification (RFID tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less Mean Squared Error (MSE than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  12. Improved Kalman filter method for measurement noise reduction in multi sensor RFID systems.

    Science.gov (United States)

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available radio frequency identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less mean squared error (MSE) than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  13. Security analysis of the “Ping–Pong” quantum communication protocol in the presence of collective-rotation noise

    International Nuclear Information System (INIS)

    Li, Jian; Li, Lingyun; Jin, Haifei; Li, Ruifan

    2013-01-01

    Environmental noise is inevitable in non-isolated systems. It is, therefore, necessary to analyze the security of the “Ping–Pong” protocol in a noisy environment. An excellent model for collective-rotation noise is introduced, and information theoretical methods are applied to analyze the security of this protocol. If noise level ε is lower than 11%, an eavesdropper can gain some, but not all, information freely without being detected. Otherwise, the protocol becomes insecure. We conclude that the use of ‘Ping–Pong’ protocol as a quantum secure direct communication (QSDC) protocol is quasi-secure, as declared by the original author when ε⩽11%.

  14. Security analysis of the “Ping–Pong” quantum communication protocol in the presence of collective-rotation noise

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Li, Lingyun, E-mail: lilingyun@bupt.edu.cn; Jin, Haifei; Li, Ruifan

    2013-11-22

    Environmental noise is inevitable in non-isolated systems. It is, therefore, necessary to analyze the security of the “Ping–Pong” protocol in a noisy environment. An excellent model for collective-rotation noise is introduced, and information theoretical methods are applied to analyze the security of this protocol. If noise level ε is lower than 11%, an eavesdropper can gain some, but not all, information freely without being detected. Otherwise, the protocol becomes insecure. We conclude that the use of ‘Ping–Pong’ protocol as a quantum secure direct communication (QSDC) protocol is quasi-secure, as declared by the original author when ε⩽11%.

  15. Existing Noise Level at Railway Stations in Malaysia

    Directory of Open Access Journals (Sweden)

    Shahidan Shahiron

    2017-01-01

    Full Text Available Railway transportation known as one of the most environmental friendly transportation mode. However, the significance problems of railway transportation are noise pollution and negatively impact the wellbeing of the whole community. Unfortunately, there has been lack of public awareness about the noise level produce by the railway transportation in Malaysia. This study investigates the noise level produced by railway transportation in Malaysia specifically by Keretapi Tanah Melayu Berhad (KTMB. Methods of collecting existing noise level at railway stations in Malaysia are briefly discussed in this study. The finding indicates that the noise level produced by the railway transportation in Malaysia which is by KTMB is considered as dangerous to human being and also exceed the noise limit that has been assigned by Department of Environment Ministry of Natural Resources and Environment of Malaysia. A better noise barrier and improved material should be developed to mitigate the existing noise level produced by railway transportations in Malaysia.

  16. Improved surface-wave retrieval from ambient seismic noise by multi-dimensional deconvolution

    Science.gov (United States)

    Wapenaar, Kees; Ruigrok, Elmer; van der Neut, Joost; Draganov, Deyan

    2011-01-01

    The methodology of surface-wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface-wave Green's function. A point-spread function, derived from the same ambient noise field, quantifies the smearing in space and time of the virtual source of the Green's function. By multidimensionally deconvolving the retrieved Green's function by the point-spread function, the virtual source becomes better focussed in space and time and hence the accuracy of the retrieved surface-wave Green's function may improve significantly. We illustrate this at the hand of a numerical example and discuss the advantages and limitations of this new methodology.

  17. Assessment of traffic noise levels in urban areas using different soft computing techniques.

    Science.gov (United States)

    Tomić, J; Bogojević, N; Pljakić, M; Šumarac-Pavlović, D

    2016-10-01

    Available traffic noise prediction models are usually based on regression analysis of experimental data, and this paper presents the application of soft computing techniques in traffic noise prediction. Two mathematical models are proposed and their predictions are compared to data collected by traffic noise monitoring in urban areas, as well as to predictions of commonly used traffic noise models. The results show that application of evolutionary algorithms and neural networks may improve process of development, as well as accuracy of traffic noise prediction.

  18. Improvement of road noise by reduction of acoustic radiation from body panels; Panel no hoshaon teigen ni yoru road noise no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kamura, T; Utsunomiya, A; Sugihara, T; Tobita, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    This paper describes road noise reduction methods accomplished by reducing acoustic power radiated from body panels. Fundamental study of acoustic and dynamic characteristics with rectangular panels revealed following results: (1) The lower stiffness panel had lower radiation efficiency and made damping materials work more effective to reduce the acoustic power. (2) The acoustic power was also reduced by designing the panel so that it can generate the vibration of (2, 2) mode, which has the lowest radiation efficiency, in road noise frequency region. By applying these methods to a vehicle floor, we confirmed the improvement of road noise performance. 3 refs., 12 figs.

  19. Improved proprioceptive function by application of subsensory electrical noise: Effects of aging and task-demand.

    Science.gov (United States)

    Toledo, Diana R; Barela, José A; Kohn, André F

    2017-09-01

    The application of subsensory noise stimulation over the lower limbs has been shown to improve proprioception and postural control under certain conditions. Whereas the effect specificity seems to depend on several factors, studies are still needed to determine the appropriate method for training and rehabilitation purposes. In the current study, we investigated whether the application of subsensory electrical noise over the legs improves proprioceptive function in young and older adults. We aimed to provide evidence that stronger and age-related differential effects occur in more demanding tasks. Proprioceptive function was initially assessed by testing the detection of passive ankle movement (kinesthetic perception) in twenty-eight subjects (14 young and 14 older adults). Thereafter, postural control was assessed during tasks with different sensory challenges: i) by removing visual information (eyes closed) and; ii) by moving the visual scene (moving room paradigm). Tests performed with the application of electrical noise stimulation were compared to those performed without noise. The results showed that electrical noise applied over the legs led to a reduction in the response time to kinesthetic perception in both young and older adults. On the other hand, the magnitude of postural sway was reduced by noise stimulation only during a more challenging task, namely, when the optical flow was changing in an unpredictable (nonperiodic) manner. No differential effects of stimulation between groups were observed. These findings suggest that the relevance of proprioceptive inputs in tasks with different challenges, but not the subjects' age, is a determining factor for sensorimotor improvements due to electrical noise stimulation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Signal Amplification Technique (SAT): an approach for improving resolution and reducing image noise in computed tomography

    International Nuclear Information System (INIS)

    Phelps, M.E.; Huang, S.C.; Hoffman, E.J.; Plummer, D.; Carson, R.

    1981-01-01

    Spatial resolution improvements in computed tomography (CT) have been limited by the large and unique error propagation properties of this technique. The desire to provide maximum image resolution has resulted in the use of reconstruction filter functions designed to produce tomographic images with resolution as close as possible to the intrinsic detector resolution. Thus, many CT systems produce images with excessive noise with the system resolution determined by the detector resolution rather than the reconstruction algorithm. CT is a rigorous mathematical technique which applies an increasing amplification to increasing spatial frequencies in the measured data. This mathematical approach to spatial frequency amplification cannot distinguish between signal and noise and therefore both are amplified equally. We report here a method in which tomographic resolution is improved by using very small detectors to selectively amplify the signal and not noise. Thus, this approach is referred to as the signal amplification technique (SAT). SAT can provide dramatic improvements in image resolution without increases in statistical noise or dose because increases in the cutoff frequency of the reconstruction algorithm are not required to improve image resolution. Alternatively, in cases where image counts are low, such as in rapid dynamic or receptor studies, statistical noise can be reduced by lowering the cutoff frequency while still maintaining the best possible image resolution. A possible system design for a positron CT system with SAT is described

  1. Improving Signal-to-Noise Ratio in Susceptibility Weighted Imaging: A Novel Multicomponent Non-Local Approach.

    Directory of Open Access Journals (Sweden)

    Pasquale Borrelli

    Full Text Available In susceptibility-weighted imaging (SWI, the high resolution required to obtain a proper contrast generation leads to a reduced signal-to-noise ratio (SNR. The application of a denoising filter to produce images with higher SNR and still preserve small structures from excessive blurring is therefore extremely desirable. However, as the distributions of magnitude and phase noise may introduce biases during image restoration, the application of a denoising filter is non-trivial. Taking advantage of the potential multispectral nature of MR images, a multicomponent approach using a Non-Local Means (MNLM denoising filter may perform better than a component-by-component image restoration method. Here we present a new MNLM-based method (Multicomponent-Imaginary-Real-SWI, hereafter MIR-SWI to produce SWI images with high SNR and improved conspicuity. Both qualitative and quantitative comparisons of MIR-SWI with the original SWI scheme and previously proposed SWI restoring pipelines showed that MIR-SWI fared consistently better than the other approaches. Noise removal with MIR-SWI also provided improvement in contrast-to-noise ratio (CNR and vessel conspicuity at higher factors of phase mask multiplications than the one suggested in the literature for SWI vessel imaging. We conclude that a proper handling of noise in the complex MR dataset may lead to improved image quality for SWI data.

  2. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation.

    Science.gov (United States)

    Wu, Juan; Xu, Yong; Ma, Jun

    2017-01-01

    As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.

  3. Lévy noise improves the electrical activity in a neuron under electromagnetic radiation.

    Directory of Open Access Journals (Sweden)

    Juan Wu

    Full Text Available As the fluctuations of the internal bioelectricity of nervous system is various and complex, the external electromagnetic radiation induced by magnet flux on membrane can be described by the non-Gaussian type distribution of Lévy noise. Thus, the electrical activities in an improved Hindmarsh-Rose model excited by the external electromagnetic radiation of Lévy noise are investigated and some interesting modes of the electrical activities are exhibited. The external electromagnetic radiation of Lévy noise leads to the mode transition of the electrical activities and spatial phase, such as from the rest state to the firing state, from the spiking state to the spiking state with more spikes, and from the spiking state to the bursting state. Then the time points of the firing state versus Lévy noise intensity are depicted. The increasing of Lévy noise intensity heightens the neuron firing. Also the stationary probability distribution functions of the membrane potential of the neuron induced by the external electromagnetic radiation of Lévy noise with different intensity, stability index and skewness papremeters are analyzed. Moreover, through the positive largest Lyapunov exponent, the parameter regions of chaotic electrical mode of the neuron induced by the external electromagnetic radiation of Lévy noise distribution are detected.

  4. Research Plans for Improving Understanding of Effects of Very Low-Frequency Noise of Heavy Lift Rotorcraft

    Science.gov (United States)

    Fidell, Sanford; Horonieff, Richard D.; Schmitz, Fredric H.

    2010-01-01

    This report reviews the English-language technical literature on infrasonic and low-frequency noise effects; identifies the most salient effects of noise produced by a future large civil tiltrotor aircraft on crew, passengers, and communities near landing areas; and recommends research needed to improve understanding of the effects of such noise on passengers, crew, and residents of areas near landing pads.

  5. Improved Noise Minimum Statistics Estimation Algorithm for Using in a Speech-Passing Noise-Rejecting Headset

    Directory of Open Access Journals (Sweden)

    Seyedtabaee Saeed

    2010-01-01

    Full Text Available This paper deals with configuration of an algorithm to be used in a speech-passing angle grinder noise-canceling headset. Angle grinder noise is annoying and interrupts ordinary oral communication. Meaning that, low SNR noisy condition is ahead. Since variation in angle grinder working condition changes noise statistics, the noise will be nonstationary with possible jumps in its power. Studies are conducted for picking an appropriate algorithm. A modified version of the well-known spectral subtraction shows superior performance against alternate methods. Noise estimation is calculated through a multi-band fast adapting scheme. The algorithm is adapted very quickly to the non-stationary noise environment while inflecting minimum musical noise and speech distortion on the processed signal. Objective and subjective measures illustrating the performance of the proposed method are introduced.

  6. The effects of noise reduction technologies on the acceptance of background noise.

    Science.gov (United States)

    Lowery, Kristy Jones; Plyler, Patrick N

    2013-09-01

    present. Listeners preferred the hearing aid settings that resulted in the best ANL value. Noise reduction technologies improved ANL for each noise type, and the amount of improvement was related to the baseline ANL value. Improving an ANL with noise reduction technologies is noticeable to listeners, at least when examined in this laboratory setting, and listeners prefer noise reduction technologies that improved their ability to accept noise. American Academy of Audiology.

  7. Use of a hybrid iterative reconstruction technique to reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography.

    Science.gov (United States)

    Kligerman, Seth; Mehta, Dhruv; Farnadesh, Mahmmoudreza; Jeudy, Jean; Olsen, Kathryn; White, Charles

    2013-01-01

    To determine whether an iterative reconstruction (IR) technique (iDose, Philips Healthcare) can reduce image noise and improve image quality in obese patients undergoing computed tomographic pulmonary angiography (CTPA). The study was Health Insurance Portability and Accountability Act compliant and approved by our institutional review board. A total of 33 obese patients (average body mass index: 42.7) underwent CTPA studies following standard departmental protocols. The data were reconstructed with filtered back projection (FBP) and 3 iDose strengths (iDoseL1, iDoseL3, and iDoseL5) for a total of 132 studies. FBP data were collected from 33 controls (average body mass index: 22) undergoing CTPA. Regions of interest were drawn at 6 identical levels in the pulmonary artery (PA), from the main PA to a subsegmental branch, in both the control group and study groups using each algorithm. Noise and attenuation were measured at all PA levels. Three thoracic radiologists graded each study on a scale of 1 (very poor) to 5 (ideal) by 4 categories: image quality, noise, PA enhancement, and "plastic" appearance. Statistical analysis was performed using an unpaired t test, 1-way analysis of variance, and linear weighted κ. Compared with the control group, there was significantly higher noise with FBP, iDoseL1, and iDoseL3 algorithms (Pnoise in the control group and iDoseL5 algorithm in the study group. Analysis within the study group showed a significant and progressive decrease in noise and increase in the contrast-to-noise ratio as the level of IR was increased (Pnoise and PA enhancement with increasing levels of iDose. The use of an IR technique leads to qualitative and quantitative improvements in image noise and image quality in obese patients undergoing CTPA.

  8. White noise improves learning by modulating activity in dopaminergic midbrain regions and right superior temporal sulcus.

    Science.gov (United States)

    Rausch, Vanessa H; Bauch, Eva M; Bunzeck, Nico

    2014-07-01

    In neural systems, information processing can be facilitated by adding an optimal level of white noise. Although this phenomenon, the so-called stochastic resonance, has traditionally been linked with perception, recent evidence indicates that white noise may also exert positive effects on cognitive functions, such as learning and memory. The underlying neural mechanisms, however, remain unclear. Here, on the basis of recent theories, we tested the hypothesis that auditory white noise, when presented during the encoding of scene images, enhances subsequent recognition memory performance and modulates activity within the dopaminergic midbrain (i.e., substantia nigra/ventral tegmental area, SN/VTA). Indeed, in a behavioral experiment, we can show in healthy humans that auditory white noise-but not control sounds, such as a sinus tone-slightly improves recognition memory. In an fMRI experiment, white noise selectively enhances stimulus-driven phasic activity in the SN/VTA and auditory cortex. Moreover, it induces stronger connectivity between SN/VTA and right STS, which, in addition, exhibited a positive correlation with subsequent memory improvement by white noise. Our results suggest that the beneficial effects of auditory white noise on learning depend on dopaminergic neuromodulation and enhanced connectivity between midbrain regions and the STS-a key player in attention modulation. Moreover, they indicate that white noise could be particularly useful to facilitate learning in conditions where changes of the mesolimbic system are causally related to memory deficits including healthy and pathological aging.

  9. Improvement of the accuracy of noise measurements by the two-amplifier correlation method.

    Science.gov (United States)

    Pellegrini, B; Basso, G; Fiori, G; Macucci, M; Maione, I A; Marconcini, P

    2013-10-01

    We present a novel method for device noise measurement, based on a two-channel cross-correlation technique and a direct "in situ" measurement of the transimpedance of the device under test (DUT), which allows improved accuracy with respect to what is available in the literature, in particular when the DUT is a nonlinear device. Detailed analytical expressions for the total residual noise are derived, and an experimental investigation of the increased accuracy provided by the method is performed.

  10. Improvement of airfoil trailing edge bluntness noise model

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2016-01-01

    In this article, airfoil trailing edge bluntness noise is investigated using both computational aero-acoustic and semi-empirical approach. For engineering purposes, one of the most commonly used prediction tools for trailing edge noise are based on semi-empirical approaches, for example, the Brooks......, Pope, and Marcolini airfoil noise prediction model developed by Brooks, Pope, and Marcolini (NASA Reference Publication 1218, 1989). It was found in previous study that the Brooks, Pope, and Marcolini model tends to over-predict noise at high frequencies. Furthermore, it was observed...

  11. Measurements of noise immission from wind turbines at receptor locations: Use of a vertical microphone board to improve the signal-to-noise ratio

    International Nuclear Information System (INIS)

    Fegeant, Olivier

    1999-01-01

    The growing interest in wind energy has increased the need of accuracy in wind turbine noise immission measurements and thus, the need of new measurement techniques. This paper shows that mounting the microphone on a vertical board improves the signal-to-noise ratio over the whole frequency range compared to the free microphone technique. Indeed, the wind turbine is perceived two times noisier by the microphone due to the signal reflection by the board while, in addition, the wind noise is reduced. Furthermore, the board shielding effect allows the measurements to be carried out in the presence of reflecting surfaces such as building facades

  12. Improvement of the noise figure of the CEBAF switched electrode electronics BPM system

    International Nuclear Information System (INIS)

    Powers, T.

    1998-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a high-intensity continuous wave electron accelerator for nuclear physics located at Thomas Jefferson National Accelerator Facility. A beam energy of 4 GeV is achieved by recirculating the electron beam five times through two anti-parallel 400 MeV linacs. In the linacs, where there is recirculated beam, the BPM specifications must be met for beam intensities between 1 and 100 μA. In the transport lines the BPM specifications must be met for beam intensities between 100 nA and 200 μA. To avoid a complete redesign of the existing electronics, we investigated ways to improve the noise figure of the linac BPM switched-electrode electronics (SEE) so that they could be used in the transport lines. We found that the out-of-band noise contributed significantly to the overall system noise figure. This paper will focus on the source of the excessive out-of-band noise and how it was reduced. The development, commissioning and operational results of this low noise variant of the linac style SEE BPMs as well as techniques for determining the noise figure of the rf chain will also be presented. copyright 1998 American Institute of Physics

  13. Improvement in perception of image sharpness through the addition of noise and its relationship with memory texture

    Science.gov (United States)

    Wan, Xiazi; Kobayashi, Hiroyuki; Aoki, Naokazu

    2015-03-01

    In a preceding study, we investigated the effects of image noise on the perception of image sharpness using white noise, and one- and two-dimensional single-frequency sinusoidal patterns as stimuli. This study extends our preceding study by evaluating natural color images, rather than black-and-white patterns. The results showed that the effect of noise in improving image sharpness perception is more evident in blurred images than in sharp images. This is consistent with the results of the preceding study. In another preceding study, we proposed "memory texture" to explain the preferred granularity of images, as a concept similar to "memory color" for preferred color reproduction. We observed individual differences in type of memory texture for each object, that is, white or 1/f noise. This study discusses the relationship between improvement of sharpness perception by adding noise, and the memory texture, following its individual differences. We found that memory texture is one of the elements that affect sharpness perception.

  14. Robust Multiparty Quantum Secret Key Sharing Over Two Collective-Noise Channels via Three-Photon Mixed States

    International Nuclear Information System (INIS)

    Wang Zhangyin; Yuan Hao; Gao Gan; Shi Shouhua

    2006-01-01

    We present a robust (n,n)-threshold scheme for multiparty quantum secret sharing of key over two collective-noise channels (i.e., the collective dephasing channel and the collective rotating channel) via three-photon mixed states. In our scheme, only if all the sharers collaborate together can they establish a joint key with the message sender and extract the secret message from the sender's encrypted message. This scheme can be implemented using only a Bell singlet, a one-qubit state and polarization identification of single photon, so it is completely feasible according to the present-day technique.

  15. Noise Reduction of Steel Cord Conveyor Belt Defect Electromagnetic Signal by Combined Use of Improved Wavelet and EMD

    Directory of Open Access Journals (Sweden)

    Hong-Wei Ma

    2016-09-01

    Full Text Available In order to reduce the noise of a defect electromagnetic signal of the steel cord conveyor belt used in coal mines, a new signal noise reduction method by combined use of the improved threshold wavelet and Empirical Mode Decomposition (EMD is proposed. Firstly, the denoising method based on the improved threshold wavelet is applied to reduce the noise of a defect electromagnetic signal obtained by an electromagnetic testing system. Then, the EMD is used to decompose the denoised signal and then the effective Intrinsic Mode Function (IMF is extracted by the dominant eigenvalue strategy. Finally, the signal reconstruction is carried out by utilizing the obtained IMF. In order to verify the proposed noise reduction method, the experiments are carried out in two cases including the defective joint and steel wire rope break. The experimental results show that the proposed method in this paper obtains the higher Signal to Noise Ratio (SNR for the defect electromagnetic signal noise reduction of steel cord conveyor belts.

  16. Intrinsic low pass filtering improves signal-to-noise ratio in critical-point flexure biosensors

    International Nuclear Information System (INIS)

    Jain, Ankit; Alam, Muhammad Ashraful

    2014-01-01

    A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find that a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.

  17. Aerodynamic noise prediction of a Horizontal Axis Wind Turbine using Improved Delayed Detached Eddy Simulation and acoustic analogy

    International Nuclear Information System (INIS)

    Ghasemian, Masoud; Nejat, Amir

    2015-01-01

    Highlights: • The noise predictions are performed by Ffowcs Williams and Hawkings method. • There is a direct relation between the radiated noise and the wind speed. • The tonal peaks in the sound spectra match with the blade passing frequency. • The quadrupole noises have negligible effect on the low frequency noises. - Abstract: This paper presents the results of the aerodynamic and aero-acoustic prediction of the flow field around the National Renewable Energy Laboratory Phase VI wind turbine. The Improved Delayed Detached Eddy Simulation turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is carried out using the Ffowcs Williams and Hawkings acoustic analogy. Simulations are performed for three different inflow conditions, U = 7, 10, 15 m/s. The capability of the Improved Delayed Detached Eddy Simulation turbulence model in massive separation is verified with available experimental data for pressure coefficient. The broadband noises of the turbulent boundary layers and the tonal noises due to the blade passing frequency are predicted via flow field noise simulation. The contribution of the thickness, loading and quadrupole noises are investigated, separately. The results indicated that there is a direct relation between the strength of the radiated noise and the wind speed. Furthermore, the effect of the receiver location on the Overall Sound Pressure Level is investigated

  18. A Dynamically Focusing Cochlear Implant Strategy Can Improve Vowel Identification in Noise.

    Science.gov (United States)

    Arenberg, Julie G; Parkinson, Wendy S; Litvak, Leonid; Chen, Chen; Kreft, Heather A; Oxenham, Andrew J

    2018-03-09

    The standard, monopolar (MP) electrode configuration used in commercially available cochlear implants (CI) creates a broad electrical field, which can lead to unwanted channel interactions. Use of more focused configurations, such as tripolar and phased array, has led to mixed results for improving speech understanding. The purpose of the present study was to assess the efficacy of a physiologically inspired configuration called dynamic focusing, using focused tripolar stimulation at low levels and less focused stimulation at high levels. Dynamic focusing may better mimic cochlear excitation patterns in normal acoustic hearing, while reducing the current levels necessary to achieve sufficient loudness at high levels. Twenty postlingually deafened adult CI users participated in the study. Speech perception was assessed in quiet and in a four-talker babble background noise. Speech stimuli were closed-set spondees in noise, and medial vowels at 50 and 60 dB SPL in quiet and in noise. The signal to noise ratio was adjusted individually such that performance was between 40 and 60% correct with the MP strategy. Subjects were fitted with three experimental strategies matched for pulse duration, pulse rate, filter settings, and loudness on a channel-by-channel basis. The strategies included 14 channels programmed in MP, fixed partial tripolar (σ = 0.8), and dynamic partial tripolar (σ at 0.8 at threshold and 0.5 at the most comfortable level). Fifteen minutes of listening experience was provided with each strategy before testing. Sound quality ratings were also obtained. Speech perception performance for vowel identification in quiet at 50 and 60 dB SPL and for spondees in noise was similar for the three tested strategies. However, performance on vowel identification in noise was significantly better for listeners using the dynamic focusing strategy. Sound quality ratings were similar for the three strategies. Some subjects obtained more benefit than others, with some

  19. Analytically exploiting noise correlations inside the feedback loop to improve locked-oscillator performance

    CSIR Research Space (South Africa)

    Sastrawan, J

    2016-08-01

    Full Text Available (2016) Analytically exploiting noise correlations inside the feedback loop to improve locked-oscillator performance J. Sastrawan,1 C. Jones,1 I. Akhalwaya,2 H. Uys,2 and M. J. Biercuk1,* 1ARC Centre for Engineered Quantum Systems, School of Physics...) that probes and is locked to the atomic transition. The LO frequencymay evolve randomly in time due to intrinsic noise processes in the underlying hardware [10,11], leading to time-varying deviations of the LO frequency from that of the stable atomic reference...

  20. Improving the use of principal component analysis to reduce physiological noise and motion artifacts to increase the sensitivity of task-based fMRI.

    Science.gov (United States)

    Soltysik, David A; Thomasson, David; Rajan, Sunder; Biassou, Nadia

    2015-02-15

    Functional magnetic resonance imaging (fMRI) time series are subject to corruption by many noise sources, especially physiological noise and motion. Researchers have developed many methods to reduce physiological noise, including RETROICOR, which retroactively removes cardiac and respiratory waveforms collected during the scan, and CompCor, which applies principal components analysis (PCA) to remove physiological noise components without any physiological monitoring during the scan. We developed four variants of the CompCor method. The optimized CompCor method applies PCA to time series in a noise mask, but orthogonalizes each component to the BOLD response waveform and uses an algorithm to determine a favorable number of components to use as "nuisance regressors." Whole brain component correction (WCompCor) is similar, except that it applies PCA to time-series throughout the whole brain. Low-pass component correction (LCompCor) identifies low-pass filtered components throughout the brain, while high-pass component correction (HCompCor) identifies high-pass filtered components. We compared the new methods with the original CompCor method by examining the resulting functional contrast-to-noise ratio (CNR), sensitivity, and specificity. (1) The optimized CompCor method increased the CNR and sensitivity compared to the original CompCor method and (2) the application of WCompCor yielded the best improvement in the CNR and sensitivity. The sensitivity of the optimized CompCor, WCompCor, and LCompCor methods exceeded that of the original CompCor method. However, regressing noise signals showed a paradoxical consequence of reducing specificity for all noise reduction methods attempted. Published by Elsevier B.V.

  1. An Anomalous Noise Events Detector for Dynamic Road Traffic Noise Mapping in Real-Life Urban and Suburban Environments

    Directory of Open Access Journals (Sweden)

    Joan Claudi Socoró

    2017-10-01

    Full Text Available One of the main aspects affecting the quality of life of people living in urban and suburban areas is their continued exposure to high Road Traffic Noise (RTN levels. Until now, noise measurements in cities have been performed by professionals, recording data in certain locations to build a noise map afterwards. However, the deployment of Wireless Acoustic Sensor Networks (WASN has enabled automatic noise mapping in smart cities. In order to obtain a reliable picture of the RTN levels affecting citizens, Anomalous Noise Events (ANE unrelated to road traffic should be removed from the noise map computation. To this aim, this paper introduces an Anomalous Noise Event Detector (ANED designed to differentiate between RTN and ANE in real time within a predefined interval running on the distributed low-cost acoustic sensors of a WASN. The proposed ANED follows a two-class audio event detection and classification approach, instead of multi-class or one-class classification schemes, taking advantage of the collection of representative acoustic data in real-life environments. The experiments conducted within the DYNAMAP project, implemented on ARM-based acoustic sensors, show the feasibility of the proposal both in terms of computational cost and classification performance using standard Mel cepstral coefficients and Gaussian Mixture Models (GMM. The two-class GMM core classifier relatively improves the baseline universal GMM one-class classifier F1 measure by 18.7% and 31.8% for suburban and urban environments, respectively, within the 1-s integration interval. Nevertheless, according to the results, the classification performance of the current ANED implementation still has room for improvement.

  2. Computer-based auditory phoneme discrimination training improves speech recognition in noise in experienced adult cochlear implant listeners.

    Science.gov (United States)

    Schumann, Annette; Serman, Maja; Gefeller, Olaf; Hoppe, Ulrich

    2015-03-01

    Specific computer-based auditory training may be a useful completion in the rehabilitation process for cochlear implant (CI) listeners to achieve sufficient speech intelligibility. This study evaluated the effectiveness of a computerized, phoneme-discrimination training programme. The study employed a pretest-post-test design; participants were randomly assigned to the training or control group. Over a period of three weeks, the training group was instructed to train in phoneme discrimination via computer, twice a week. Sentence recognition in different noise conditions (moderate to difficult) was tested pre- and post-training, and six months after the training was completed. The control group was tested and retested within one month. Twenty-seven adult CI listeners who had been using cochlear implants for more than two years participated in the programme; 15 adults in the training group, 12 adults in the control group. Besides significant improvements for the trained phoneme-identification task, a generalized training effect was noted via significantly improved sentence recognition in moderate noise. No significant changes were noted in the difficult noise conditions. Improved performance was maintained over an extended period. Phoneme-discrimination training improves experienced CI listeners' speech perception in noise. Additional research is needed to optimize auditory training for individual benefit.

  3. Yesterday's noise - today's signal

    International Nuclear Information System (INIS)

    Serdula, K.J.

    1978-01-01

    Plant performance can be improved by noise analysis. This paper describes noise characteristics, imposed noise and response functions, a case history of cost benefits derived from application of noise analysis techniques, areas for application of noise analysis techniques with special reference to the Gentilly-1 nuclear generating station, and the validity of noise measurement results. (E.C.B.)

  4. Improved GIS-based Methods for Traffic Noise Impact Assessment

    DEFF Research Database (Denmark)

    Nielsen, Otto Anker; Bloch, Karsten Sand

    1996-01-01

    When vector-based GIS-packages are used for traffic noise impact assessments, the buffer-technique is usually employed for the study: 1. For each road segment buffer-zones representing different noise-intervals are generated, 2. The buffers from all road segments are smoothed together, and 3....... The number of buildings within the buffers are enumerated. This technique provides an inaccurate assessment of the noise diffusion since it does not correct for buildings barrier and reflection to noise. The paper presents the results from a research project where the traditional noise buffer technique...... was compared with a new method which includes these corrections. Both methods follow the Common Nordic Noise Calculation Model, although the traditional buffer technique ignores parts of the model. The basis for the work was a digital map of roads and building polygons, combined with a traffic- and road...

  5. Regional improvement of signal-to-noise and contrast-to-noise ratios in dual-screen CR chest imaging - a phantom study

    International Nuclear Information System (INIS)

    Liu Xinming; Shaw, Chris C.

    2001-01-01

    The improvement of signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) in dual-screen computed radiography (CR) has been investigated for various regions in images of an anthropomorphic chest phantom. With the dual-screen CR technique, two image plates are placed in a cassette and exposed together during imaging. The exposed plates are separately scanned to form a front image and a back image, which are then registered and superimposed to form a composite image with improved SNRs and CNRs. The improvement can be optimized by applying specifically selected weighting factors during superimposition. In this study, dual-screen CR images of an anthropomorphic chest phantom were acquired and formed with four different combinations of standard resolution (ST) and high-resolution (HR) screens: ST-ST, ST-HR, HR-ST, and HR-HR. SNRs and their improvements were measured and compared over twelve representative regions-of-interest (ROIs) in these images. A 19.1%-45.7% increase of the SNR was observed, depending on the ROI and screen combination used. The optimal weighting factors were found to vary by only 4.5%-12.4%. Largest improvement was found in the lung field for all screen combinations. Improvement of CNRs was investigated over two ROIs in the lung field using the rib bones as the contrast objects and a 29.2%-43.9% improvement of the CNR was observed. Among the four screen combinations, ST-ST resulted in the most SNR and CNR improvement, followed in order by HR-ST, HR-HR, and ST-HR. The HR-ST combination yielded the lowest spatial variation of the optimal weighting factors with improved SNRs and CNRs close to those of the ST-ST combination

  6. Practical Ranges of Loudness Levels of Various Types of Environmental Noise, Including Traffic Noise, Aircraft Noise, and Industrial Noise

    Directory of Open Access Journals (Sweden)

    Sabine A. Janssen

    2011-05-01

    Full Text Available In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A‑weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  7. Decoupling Research on Flexible Tactile Sensors Interfered by White Gaussian Noise Using Improved Radical Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Feilu Wang

    2014-04-01

    Full Text Available Research on tactile sensors to enhance their flexibility and ability of multi- dimensional information detection is a key issue to develop humanoid robots. In view of that the tactile sensor is often affected by noise, this paper adds different white Gaussian noises (WGN into the ideal model of flexible tactile sensors based on conductive rubber purposely, then improves the standard radial basis function neural network (RNFNN to deal with the noises. The modified RBFNN is applied to approximate and decouple the mapping relationship between row-column resistance with WGNs and three-dimensional deformation. Numerical experiments demonstrate that the decoupling result of the deformation for the sensor is quite good. The results show that the improved RBFNN which doesn’t rely on the mathematical model of the system has good anti-noise ability and robustness.

  8. Measuring collections effort improves cash performance.

    Science.gov (United States)

    Shutts, Joe

    2009-09-01

    Having a satisfied work force can lead to an improved collections effort. Hiring the right people and training them ensures employee engagement. Measuring collections effort and offering incentives is key to revenue cycle success.

  9. Adaptive EMG noise reduction in ECG signals using noise level approximation

    Science.gov (United States)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  10. Improved Separation of Tone and Broadband Noise Components from Open Rotor Acoustic Data

    Directory of Open Access Journals (Sweden)

    Dave Sree

    2016-09-01

    Full Text Available The term “open rotor” refers to unducted counter-rotating dual rotors or propellers used for propulsion. The noise generated by an open rotor is very complicated and requires special techniques for its analysis. The determination of its tone and broadband components is vital for properly assessing the noise control parameters and also for validating open rotor noise prediction codes. The data analysis technique developed by Sree for processing raw acoustic data of open rotors has been modified to yield much better results of tone and broadband separation particularly for the case when the two rotor speeds are approximately the same. The modified algorithm is found to eliminate most or all of the “spikes” previously observed in the broadband spectra computed from the original algorithm. A full description of the modified algorithm and examples of improved results from its application are presented in this paper.

  11. Asynchronous Advanced Encryption Standard Hardware with Random Noise Injection for Improved Side-Channel Attack Resistance

    Directory of Open Access Journals (Sweden)

    Siva Kotipalli

    2014-01-01

    (SCA resistance. These designs are based on a delay-insensitive (DI logic paradigm known as null convention logic (NCL, which supports useful properties for resisting SCAs including dual-rail encoding, clock-free operation, and monotonic transitions. Potential benefits include reduced and more uniform switching activities and reduced signal-to-noise (SNR ratio. A novel method to further augment NCL AES hardware with random voltage scaling technique is also presented for additional security. Thereby, the proposed components leak significantly less side-channel information than conventional clocked approaches. To quantitatively verify such improvements, functional verification and WASSO (weighted average simultaneous switching output analysis have been carried out on both conventional synchronous approach and the proposed NCL based approach using Mentor Graphics ModelSim and Xilinx simulation tools. Hardware implementation has been carried out on both designs exploiting a specified side-channel attack standard evaluation FPGA board, called SASEBO-GII, and the corresponding power waveforms for both designs have been collected. Along with the results of software simulations, we have analyzed the collected waveforms to validate the claims related to benefits of the proposed cryptohardware design approach.

  12. Noise effect in an improved conjugate gradient algorithm to invert particle size distribution and the algorithm amendment.

    Science.gov (United States)

    Wei, Yongjie; Ge, Baozhen; Wei, Yaolin

    2009-03-20

    In general, model-independent algorithms are sensitive to noise during laser particle size measurement. An improved conjugate gradient algorithm (ICGA) that can be used to invert particle size distribution (PSD) from diffraction data is presented. By use of the ICGA to invert simulated data with multiplicative or additive noise, we determined that additive noise is the main factor that induces distorted results. Thus the ICGA is amended by introduction of an iteration step-adjusting parameter and is used experimentally on simulated data and some samples. The experimental results show that the sensitivity of the ICGA to noise is reduced and the inverted results are in accord with the real PSD.

  13. Improving ambient noise cross-correlations in the noisy ocean bottom environment of the Juan de Fuca plate

    Science.gov (United States)

    Tian, Ye; Ritzwoller, Michael H.

    2017-09-01

    Ambient noise tomography exploits seismic ground motions that propagate coherently over long interstation distances. Such ground motions provide information about the medium of propagation that is recoverable from interstation cross-correlations. Local noise sources, which are particularly strong in ocean bottom environments, corrupt ambient noise cross-correlations and compromise the effectiveness of ambient noise tomography. Based on 62 ocean bottom seismometers (OBSs) located on Juan de Fuca (JdF) plate from the Cascadia Initiative experiment and 40 continental stations near the coast of the western United States obtained in 2011 and 2012, we attempt to reduce the effects of local noise on vertical component seismic records across the plate and onto US continent. The goal is to provide better interstation cross-correlations for use in ambient noise tomography and the study of ambient noise directionality. As shown in previous studies, tilt and compliance noise are major sources of noise that contaminate the vertical channels of the OBSs and such noise can be greatly reduced by exploiting information on the horizontal components and the differential pressure gauge records, respectively. We find that ambient noise cross-correlations involving OBSs are of significantly higher signal-to-noise ratio at periods greater than 10 s after reducing these types of noise, particularly in shallow water environments where tilt and compliance noise are especially strong. The reduction of tilt and compliance noise promises to improve the accuracy and spatial extent of ambient noise tomography, allowing measurements based on coherently propagating ambient noise to be made at stations in the shallower parts of the JdF plate and at longer periods than in previous studies. In addition such local noise reduction produces better estimates of the azimuthal content of ambient noise.

  14. Traffic noise in Hyderabad city. part I: road traffic noise

    International Nuclear Information System (INIS)

    Shaikh, G.H.; Shaikh, Q.

    2000-01-01

    Traffic noise survey was conducted at 20 sites in different areas and localities in Hyderabad city and each site noise data was collected continuously from 0800 to 2000 h. The data was analyzed for L/sub A99/, L/sub A90/, L/sub A50/, L/sub 10/ and L/sub A1/, and approximate values of L/sub Aeq12h/ were evaluated for each site. The results are discussed with reference to some criteria for community annoyance and means and ways to limit high-level traffic noise are suggested. (author)

  15. Realistic camera noise modeling with application to improved HDR synthesis

    Science.gov (United States)

    Goossens, Bart; Luong, Hiêp; Aelterman, Jan; Pižurica, Aleksandra; Philips, Wilfried

    2012-12-01

    Due to the ongoing miniaturization of digital camera sensors and the steady increase of the "number of megapixels", individual sensor elements of the camera become more sensitive to noise, even deteriorating the final image quality. To go around this problem, sophisticated processing algorithms in the devices, can help to maximally exploit the knowledge on the sensor characteristics (e.g., in terms of noise), and offer a better image reconstruction. Although a lot of research focuses on rather simplistic noise models, such as stationary additive white Gaussian noise, only limited attention has gone to more realistic digital camera noise models. In this article, we first present a digital camera noise model that takes several processing steps in the camera into account, such as sensor signal amplification, clipping, post-processing,.. We then apply this noise model to the reconstruction problem of high dynamic range (HDR) images from a small set of low dynamic range (LDR) exposures of a static scene. In literature, HDR reconstruction is mostly performed by computing a weighted average, in which the weights are directly related to the observer pixel intensities of the LDR image. In this work, we derive a Bayesian probabilistic formulation of a weighting function that is near-optimal in the MSE sense (or SNR sense) of the reconstructed HDR image, by assuming exponentially distributed irradiance values. We define the weighting function as the probability that the observed pixel intensity is approximately unbiased. The weighting function can be directly computed based on the noise model parameters, which gives rise to different symmetric and asymmetric shapes when electronic noise or photon noise is dominant. We also explain how to deal with the case that some of the noise model parameters are unknown and explain how the camera response function can be estimated using the presented noise model. Finally, experimental results are provided to support our findings.

  16. More noise, please: How cultural overprinting in the urban environment can be exploited for improved subsurface imaging (Invited)

    Science.gov (United States)

    Weiss, C. J.

    2009-12-01

    A long standing issue for geophysical imaging methods revolves around the proper treatment of "noise": Defining what noise is; separating "noise" for "signal"; filtering and suppressing noise; and recently, challenging the prevailing view that noise is a nuisance to see if, instead, it may contribute favorably toward improving subsurface imaging fidelity. This last point is particularly relevant to geophysical imaging in the urban environment where noise sources are abundant, complex, and logistical constraints on geophysical field procedures prohibit a crude "turning up the volume" approach to simply drown out the noise with powerful sources of electromagnetic and seismic energy. In this contribution I explore the concept passive geophysical imaging which uses uncorrelated ambient noise as the source of geophysical imaging energy to be used in the urban environment. Examples will be presented from seismic and ground penetrating radar methods, in addition to new theoretical results bearing on the feasibility of low-frequency electromagnetic induction techniques.

  17. Increasing the Signal to Noise Ratio in a Chemistry Laboratory ...

    African Journals Online (AJOL)

    Increasing the Signal to Noise Ratio in a Chemistry Laboratory - Improving a Practical for Academic Development Students. ... Analysis of data collected in 2001 shows that the changes made a significant impact on the effectiveness of the laboratory session. South African Journal of Chemistry Vol.56 2003: 47-53 ...

  18. Faithful One-way Trip Deterministic Secure Quantum Communication Scheme Against Collective Rotating Noise Based on Order Rearrangement of Photon Pairs

    Science.gov (United States)

    Yuan, Hao; Zhang, Qin; Hong, Liang; Yin, Wen-jie; Xu, Dong

    2014-08-01

    We present a novel scheme for deterministic secure quantum communication (DSQC) over collective rotating noisy channel. Four special two-qubit states are found can constitute a noise-free subspaces, and so are utilized as quantum information carriers. In this scheme, the information carriers transmite over the quantum channel only one time, which can effectively reduce the influence of other noise existing in quantum channel. The information receiver need only perform two single-photon collective measurements to decode the secret messages, which can make the present scheme more convenient in practical application. It will be showed that our scheme has a relatively high information capacity and intrisic efficiency. Foremostly, the decoy photon pair checking technique and the order rearrangement of photon pairs technique guarantee that the present scheme is unconditionally secure.

  19. Evaluation of noise limits to improve image processing in soft X-ray projection microscopy.

    Science.gov (United States)

    Jamsranjav, Erdenetogtokh; Kuge, Kenichi; Ito, Atsushi; Kinjo, Yasuhito; Shiina, Tatsuo

    2017-03-03

    Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.

  20. An adaptive grid to improve the efficiency and accuracy of modelling underwater noise from shipping

    Science.gov (United States)

    Trigg, Leah; Chen, Feng; Shapiro, Georgy; Ingram, Simon; Embling, Clare

    2017-04-01

    represents a 2 to 5-fold increase in efficiency. The 5 km grid reduces the number of model executions further to 1024. However, over the first 25 km the 5 km grid produces errors of up to 13.8 dB when compared to the highly accurate but inefficient 1 km grid. The newly developed adaptive grid generates much smaller errors of less than 0.5 dB while demonstrating high computational efficiency. Our results show that the adaptive grid provides the ability to retain the accuracy of noise level predictions and improve the efficiency of the modelling process. This can help safeguard sensitive marine ecosystems from noise pollution by improving the underwater noise predictions that inform management activities. References Shapiro, G., Chen, F., Thain, R., 2014. The Effect of Ocean Fronts on Acoustic Wave Propagation in a Shallow Sea, Journal of Marine System, 139: 217 - 226. http://dx.doi.org/10.1016/j.jmarsys.2014.06.007.

  1. Environmental noise and noise modelling-some aspects in Malaysian development

    International Nuclear Information System (INIS)

    Leong, Mohd Salman; Mohd Shafiek bin Hj Yaacob

    1994-01-01

    Environmental noise is of growing concern in Malaysia with the increasing awareness of the need for an environmental quality consistent with improved quality of life. While noise is one of the several elements in an Environmental Impact Assessment report, the degree of emphasis in the assessment is not as thorough as other aspects in the EIA study. The measurements, prediction (if at all any), and evaluation tended to be superficial. The paper presents a summary of correct noise descriptors and annoyance assessment parameters appropriate for the evaluation of environmental noise. The paper further highlights current inadequacies in the Environmental Quality Act for noise pollution, and annoyance assessment. Some examples of local noise pollution are presented. A discussion on environmental noise modelling is presented. Examples illustrating environmental noise modelling for a mining operation and a power station are given. It is the authors' recommendation that environmental noise modelling be made mandatory in all EIA studies such that a more definitive assessment could be realised

  2. The Efficacy of Short-term Gated Audiovisual Speech Training for Improving Auditory Sentence Identification in Noise in Elderly Hearing Aid Users

    Science.gov (United States)

    Moradi, Shahram; Wahlin, Anna; Hällgren, Mathias; Rönnberg, Jerker; Lidestam, Björn

    2017-01-01

    This study aimed to examine the efficacy and maintenance of short-term (one-session) gated audiovisual speech training for improving auditory sentence identification in noise in experienced elderly hearing-aid users. Twenty-five hearing aid users (16 men and 9 women), with an average age of 70.8 years, were randomly divided into an experimental (audiovisual training, n = 14) and a control (auditory training, n = 11) group. Participants underwent gated speech identification tasks comprising Swedish consonants and words presented at 65 dB sound pressure level with a 0 dB signal-to-noise ratio (steady-state broadband noise), in audiovisual or auditory-only training conditions. The Hearing-in-Noise Test was employed to measure participants’ auditory sentence identification in noise before the training (pre-test), promptly after training (post-test), and 1 month after training (one-month follow-up). The results showed that audiovisual training improved auditory sentence identification in noise promptly after the training (post-test vs. pre-test scores); furthermore, this improvement was maintained 1 month after the training (one-month follow-up vs. pre-test scores). Such improvement was not observed in the control group, neither promptly after the training nor at the one-month follow-up. However, no significant between-groups difference nor an interaction between groups and session was observed. Conclusion: Audiovisual training may be considered in aural rehabilitation of hearing aid users to improve listening capabilities in noisy conditions. However, the lack of a significant between-groups effect (audiovisual vs. auditory) or an interaction between group and session calls for further research. PMID:28348542

  3. Improved Broadband Liner Optimization Applied to the Advanced Noise Control Fan

    Science.gov (United States)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.; Ayle, Earl; Ichihashi, Fumitaka

    2014-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more desirable. This paper describes improvements to a previously established broadband acoustic liner optimization process using the Advanced Noise Control Fan rig as a demonstrator. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom designs are carried through design, fabrication, and testing to validate the efficacy of the design process. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of these liner designs. This study also provides an application for demonstrating the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  4. Noise Gating Solar Images

    Science.gov (United States)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  5. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.

    Science.gov (United States)

    Lai, Ying-Hui; Tsao, Yu; Lu, Xugang; Chen, Fei; Su, Yu-Ting; Chen, Kuang-Chao; Chen, Yu-Hsuan; Chen, Li-Ching; Po-Hung Li, Lieber; Lee, Chin-Hui

    2018-01-20

    for the key speech envelope information, thus, improving speech recognition more effectively for Mandarin CI recipients. The results suggest that the proposed deep learning-based NR approach can potentially be integrated into existing CI signal processors to overcome the degradation of speech perception caused by noise.

  6. Reactor noise monitoring device

    International Nuclear Information System (INIS)

    Yamanaka, Hiroto.

    1990-01-01

    The present invention concerns a reactor noise monitoring device by detecting abnormal sounds in background noises. Vibration sounds detected by accelerometers are applied to a loose parts detector. The detector generates high alarm if there are sudden impact sounds in the background noises and applies output signals to an accumulation device. If there is slight impact sounds in the vicinity of any of the accelerometers, the accumulation device accumulates the abnormal sounds assumed to be generated from an identical site while synchronizing the waveforms for all of the channels. Then, the device outputs signals in which the background noises are cancelled, as detection signals. Therefore, S/N ratio can be improved and the abnormal sounds contained in the background noises can be detected, to thereby improve the accuracy for estimating the position where the abnormal sounds are generated. (I.S.)

  7. Road Traffic Noise Pollution Analysis for Cernavoda City

    Science.gov (United States)

    Manea, L.; Manea, A.; Florea, D.; Tarulescu, S.

    2017-10-01

    In the present paper was studied the noise pollution in Cernavodă city. The noise measurements were made for nine intersections from different city areas. Noise measurements were taken for three chosen routes with high population density, heavy traffic, commercial and residential buildings. Average, maximum and minimum values were collected and compared with standards. The impact of road traffic noise on the community depends on various factors such as road location and design, land use planning measures, building design, traffic composition, driver behaviour and the relief. In the study area 9 locations are identified to measure noise level. By using sound level meter noise levels are measured at different peak sessions i.e. morning, afternoon and evening. The presented values were collected for evening rush hour.

  8. Jet Noise Reduction by Microjets - A Parametric Study

    Science.gov (United States)

    Zaman, K. B. M. Q.

    2010-01-01

    The effect of injecting tiny secondary jets (microjets ) on the radiated noise from a subsonic primary jet is studied experimentally. The microjets are injected on to the primary jet near the nozzle exit with variable port geometry, working fluid and driving pressure. A clear noise reduction is observed that improves with increasing jet pressure. It is found that smaller diameter ports with higher driving pressure, but involving less thrust and mass fraction, can produce better noise reduction. A collection of data from the present as well as past experiments is examined in an attempt to correlate the noise reduction with the operating parameters. The results indicate that turbulent mixing noise reduction, as monitored by OASPL at a shallow angle, correlates with the ratio of jet to primary jet driving pressures normalized by the ratio of corresponding diameters (p d /pjD). With gaseous injection, the spectral amplitudes decrease at lower frequencies while an increase is noted at higher frequencies. It is apparent that this amplitude crossover is at least partly due to shock-associated noise from the underexpanded jets themselves. Such crossover is not seen with water injection since the flow in that case is incompressible and there is no shock-associated noise. Centerline velocity data show that larger noise reduction is accompanied by faster jet decay as well as significant reduction in turbulence intensities. While a physical understanding of the dependence of noise reduction on p d /pjD remains unclear, given this correlation, an analysis explains the observed dependence of the effect on various other parameters.

  9. Acoustic noise improves motor learning in spontaneously hypertensive rats, a rat model of attention deficit hyperactivity disorder.

    Science.gov (United States)

    Söderlund, Göran B W; Eckernäs, Daniel; Holmblad, Olof; Bergquist, Filip

    2015-03-01

    The spontaneously hypertensive (SH) rat model of ADHD displays impaired motor learning. We used this characteristic to study if the recently described acoustic noise benefit in learning in children with ADHD is also observed in the SH rat model. SH rats and a Wistar control strain were trained in skilled reach and rotarod running under either ambient noise or in 75 dBA white noise. In other animals the effect of methylphenidate (MPH) on motor learning was assessed with the same paradigms. To determine if acoustic noise influenced spontaneous motor activity, the effect of acoustic noise was also determined in the open field activity paradigm. We confirm impaired motor learning in the SH rat compared to Wistar SCA controls. Acoustic noise restored motor learning in SH rats learning the Montoya reach test and the rotarod test, but had no influence on learning in Wistar rats. Noise had no effect on open field activity in SH rats, but increased corner time in Wistar. MPH completely restored rotarod learning and performance but did not improve skilled reach in the SH rat. It is suggested that the acoustic noise benefit previously reported in children with ADHD is shared by the SH rat model of ADHD, and the effect is in the same range as that of stimulant treatment. Acoustic noise may be useful as a non-pharmacological alternative to stimulant medication in the treatment of ADHD. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Improving occupational conditions in coal preparation plants considering noise factor. [USSR

    Energy Technology Data Exchange (ETDEWEB)

    Zhurbinskii, L.F.; Shabel' nikova, E.V.; Sidorov, E.G.

    1985-11-01

    Three research institutes (IOTT, UkrNIIugleobogashchenie and KuzNIIugleobogashchenie) investigated health hazards associated with noise in coal preparation plants in the Donbass, Kuzbass and Karaganda basins. Investigations showed that there is a close correlation of noise pollution with rate of illness (heart diseases, nervous system diseases, alimentary duct diseases, respiratory diseases and diseases of the auditory organs). An equation which describes the correlation is derived. Correlation coefficient (ranging from 0.75 to 0.94) for each of 4 types of diseases was determined. Analyses showed that reducing noise level from 95 to 85 dB caused a decrease in rate of illness ranging from 2.5 to 3.0 times. Absenteeism due to illness decreased 1.5 to 2.0 times. Investigations also showed that accident rate is influenced by noise level. About 30% of accidents fell on working places with increased noise level. About 10% of accidents fell on working places with noise level of about 85 dB and from 3 to 4% accidents on working places with noise level of about 70 dB. Methods for noise pollution control in coal preparation plants in the USSR are evaluated. Effects of coal transport and handling on noise pollution in coal preparation plants are analyzed.

  11. Traffic noise in Hyderabad city, part-II. vehicular contribution to road traffic noise

    International Nuclear Information System (INIS)

    Sheikh, G.H.

    2001-01-01

    The results of a road traffic noise survey carried out in Hyderabad city showed that the levels of traffic noise in the City are alarmingly high and much beyond the comfortable limits. There, in order to investigate the level of the noise emitted by different types of vehicles plying on the city roads and to assess their individual contribution to high level traffic noise, studies have been carried out on the measurement of noise emitted by motorcycles, buses, auto-rickshaws, and motor vehicle horns as they normally move on the city roads. The data collected has been analyzed for L/sub v99/, L/sub v90/, L/sub v50/, L/sub v10/ and L/sub v1/ and results are discussed with reference to the existing motor vehicle rules in Pakistan and motor vehicle noise emission limits set by the EEC and other developed countries. Some suggestion have also been made to limit high level traffic noise. (author)

  12. VOLUNTARY NOISE MAPPING FOR SMART CITY

    Directory of Open Access Journals (Sweden)

    V. Poslončec-Petrić

    2016-09-01

    Full Text Available One of the main concept objectives of smart cities is to create a quality living environment that is long-term sustainable and economically justified. In that context, modern cities are aware of the exposure to various forms of physical and non-physical pollution that needs to be remediated, eliminated or reduced. To achieve that it is necessary to quality determine the sources and reasons of each pollution. The most prominent examples of physical pollution that affects the quality of life of citizens in cities are light and noise pollution. Noise pollution or noise, is mostly the consequence of road and rail traffic in cities and it directly affects the health of citizens. Traffic control, reduction of peak congestion, dispersion and traffic redirection or building protective barriers, are ways that cities use to reduce the amount of noise or its effects. To make these measures efficient it is necessary to obtain the information related to the level of noise in certain areas, streets, cities. To achieve this, smart cities use noise mapping. The city of Zagreb since 2012, participates in the i-SCOPE project (interoperable Smart City services trough Open Platform for urban Ecosystems. i-SCOPE delivers an open platform on top of which it develops, three "smart city" services: optimization of energy consumption through a service for accurate assessment of solar energy potential and energy loss at building level, environmental monitoring through a real-time environmental noise mapping service leveraging citizen's involvement will who act as distributed sensors city-wide measuring noise levels through an application on their mobile phones and improved inclusion and personal mobility of aging and diversely able citizens through an accurate personal routing service. The students of Faculty of Geodesy University of Zagreb, who enrolled in the course Thematic Cartography, were actively involved in the voluntary data acquisition in order to monitor the

  13. Voluntary Noise Mapping for Smart City

    Science.gov (United States)

    Poslončec-Petrić, V.; Vuković, V.; Frangeš, S.; Bačić, Ž.

    2016-09-01

    One of the main concept objectives of smart cities is to create a quality living environment that is long-term sustainable and economically justified. In that context, modern cities are aware of the exposure to various forms of physical and non-physical pollution that needs to be remediated, eliminated or reduced. To achieve that it is necessary to quality determine the sources and reasons of each pollution. The most prominent examples of physical pollution that affects the quality of life of citizens in cities are light and noise pollution. Noise pollution or noise, is mostly the consequence of road and rail traffic in cities and it directly affects the health of citizens. Traffic control, reduction of peak congestion, dispersion and traffic redirection or building protective barriers, are ways that cities use to reduce the amount of noise or its effects. To make these measures efficient it is necessary to obtain the information related to the level of noise in certain areas, streets, cities. To achieve this, smart cities use noise mapping. The city of Zagreb since 2012, participates in the i-SCOPE project (interoperable Smart City services trough Open Platform for urban Ecosystems). i-SCOPE delivers an open platform on top of which it develops, three "smart city" services: optimization of energy consumption through a service for accurate assessment of solar energy potential and energy loss at building level, environmental monitoring through a real-time environmental noise mapping service leveraging citizen's involvement will who act as distributed sensors city-wide measuring noise levels through an application on their mobile phones and improved inclusion and personal mobility of aging and diversely able citizens through an accurate personal routing service. The students of Faculty of Geodesy University of Zagreb, who enrolled in the course Thematic Cartography, were actively involved in the voluntary data acquisition in order to monitor the noise in real time

  14. Recommendations for improved assessment of noise impacts on wildlife

    Science.gov (United States)

    Larry L. Pater; Teryl G. Grubb; David K. Delaney

    2009-01-01

    Research to determine noise impacts on animals benefits from methodology that adequately describes the acoustical stimulus as well as the resulting biological responses. We present acoustical considerations and research techniques that we have found to be useful. These include acoustical definitions and noise measurement techniques that conform to standardized...

  15. Development of a noise annoyance sensitivity scale

    Science.gov (United States)

    Bregman, H. L.; Pearson, R. G.

    1972-01-01

    Examining the problem of noise pollution from the psychological rather than the engineering view, a test of human sensitivity to noise was developed against the criterion of noise annoyance. Test development evolved from a previous study in which biographical, attitudinal, and personality data was collected on a sample of 166 subjects drawn from the adult community of Raleigh. Analysis revealed that only a small subset of the data collected was predictive of noise annoyance. Item analysis yielded 74 predictive items that composed the preliminary noise sensitivity test. This was administered to a sample of 80 adults who later rate the annoyance value of six sounds (equated in terms of peak sound pressure level) presented in a simulated home, living-room environment. A predictive model involving 20 test items was developed using multiple regression techniques, and an item weighting scheme was evaluated.

  16. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

    Science.gov (United States)

    Yang, Sejung; Lee, Byung-Uk

    2015-01-01

    In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138

  17. A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    Science.gov (United States)

    Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.

    2011-01-01

    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.

  18. Estimation of background noise level on seismic station using statistical analysis for improved analysis accuracy

    Science.gov (United States)

    Han, S. M.; Hahm, I.

    2015-12-01

    We evaluated the background noise level of seismic stations in order to collect the observation data of high quality and produce accurate seismic information. Determining of the background noise level was used PSD (Power Spectral Density) method by McNamara and Buland (2004) in this study. This method that used long-term data is influenced by not only innate electronic noise of sensor and a pulse wave resulting from stabilizing but also missing data and controlled by the specified frequency which is affected by the irregular signals without site characteristics. It is hard and inefficient to implement process that filters out the abnormal signal within the automated system. To solve these problems, we devised a method for extracting the data which normally distributed with 90 to 99% confidence intervals at each period. The availability of the method was verified using 62-seismic stations with broadband and short-period sensors operated by the KMA (Korea Meteorological Administration). Evaluation standards were NHNM (New High Noise Model) and NLNM (New Low Noise Model) published by the USGS (United States Geological Survey). It was designed based on the western United States. However, Korean Peninsula surrounded by the ocean on three sides has a complicated geological structure and a high population density. So, we re-designed an appropriate model in Korean peninsula by statistically combined result. The important feature is that secondary-microseism peak appeared at a higher frequency band. Acknowledgements: This research was carried out as a part of "Research for the Meteorological and Earthquake Observation Technology and Its Application" supported by the 2015 National Institute of Meteorological Research (NIMR) in the Korea Meteorological Administration.

  19. On common noise-induced synchronization in complex networks with state-dependent noise diffusion processes

    Science.gov (United States)

    Russo, Giovanni; Shorten, Robert

    2018-04-01

    This paper is concerned with the study of common noise-induced synchronization phenomena in complex networks of diffusively coupled nonlinear systems. We consider the case where common noise propagation depends on the network state and, as a result, the noise diffusion process at the nodes depends on the state of the network. For such networks, we present an algebraic sufficient condition for the onset of synchronization, which depends on the network topology, the dynamics at the nodes, the coupling strength and the noise diffusion. Our result explicitly shows that certain noise diffusion processes can drive an unsynchronized network towards synchronization. In order to illustrate the effectiveness of our result, we consider two applications: collective decision processes and synchronization of chaotic systems. We explicitly show that, in the former application, a sufficiently large noise can drive a population towards a common decision, while, in the latter, we show how common noise can synchronize a network of Lorentz chaotic systems.

  20. Charge collection efficiency in a semiconductor radiation detector with a non-constant electric field

    International Nuclear Information System (INIS)

    Shah, K.S.; Lund, J.C.; Olschner, F.

    1990-01-01

    The development of improved semiconductor radiation detectors would be facilitated by a quantitative model that predicts the performance of these detectors as a function of material characteristics and device operating parameters. An accurate prediction of the pulse height spectrum from a radiation detector can be made if both the noise and the charge collection properties of the detector are understood. The noise characteristics of semiconductor radiation detectors have been extensively studied. The effect of noise can be closely simulated by convoluting the noise-free pulse height spectrum with a Gaussian function. Distortion of semiconductor detector's pulse height spectrum from charge collection effects is more complex than the effects of noise and is more difficult to predict. To compute these distortions it is necessary to know how the charge collection efficiency η varies as a function of position within the detector x. These effects are shown. This problem has been previously solved for planar detectors with a constant electric field, for the case of spherical detectors, and for coaxial detectors. In this paper the authors describe a more general solution to the charge collection problem which includes the case of a non-constant electric field in a planar geometry

  1. Noise data management using commercially available data-base software

    International Nuclear Information System (INIS)

    Damiano, B.; Thie, J.A.

    1988-01-01

    A data base has been created using commercially available software to manage the data collected by an automated noise data acquisition system operated by Oak Ridge National Laboratory at the Fast Flux Test Facility (FFTF). The data base was created to store, organize, and retrieve selected features of the nuclear and process signal noise data, because the large volume of data collected by the automated system makes manual data handling and interpretation based on visual examination of noise signatures impractical. Compared with manual data handling, use of the data base allows the automatically collected data to be utilized more fully and effectively. The FFTF noise data base uses the Oracle Relational Data Base Management System implemented on a desktop personal computer

  2. Time Delay Mechanical-noise Cancellation (TDMC) to Provide Order of Magnitude Improvements in Radio Science Observations

    Science.gov (United States)

    Atkinson, D. H.; Babuscia, A.; Lazio, J.; Asmar, S.

    2017-12-01

    Many Radio Science investigations, including the determinations of planetary masses, measurements of planetary atmospheres, studies of the solar wind, and solar system tests of relativistic gravity, rely heavily on precision Doppler tracking. Recent and currently proposed missions such as VERITAS, Bepi Colombo, Juno have shown that the largest error source in the precision Doppler tracking data is noise in the Doppler system. This noise is attributed to un-modeled motions of the ground antenna's phase center and is commonly referred to as "antenna mechanical noise." Attempting to reduce this mechanical noise has proven difficult since the deep space communications antennas utilize large steel structures that are already optimized for mechanical stability. Armstrong et al. (2008) have demonstrated the Time Delay Mechanical-noise Cancellation (TDMC) concept using Goldstone DSN antennas (70 m & 34 m) and the Cassinispacecraft to show that the mechanical noise of the 70 m antenna could be suppressed when two-way Doppler tracking from the 70 m antenna and the receive-only Doppler data from the smaller, stiffer 34 m antenna were combined with suitable delays. The proof-of-concept confirmed that the mechanical noise in the final Doppler observable was reduced to that of the stiffer, more stable antenna. Caltech's Owens Valley Radio Observatory (OVRO) near Bishop, CA now has six 10.4 m diameter antennas, a consequence of the closure of Combined Array for Research in Millimeter Astronomy (CARMA). In principle, a 10 m antenna can lead to an order-of-magnitude improvement for the mechanical noise correction, as the smaller dish offers better mechanical stability compared to a DSN 34-m antenna. These antennas also have existing Ka-band receiving systems, and preliminary discussions with the OVRO staff suggest that much of the existing signal path could be used for Radio Science observations.

  3. An improved probe noise approach for acoustic feedback cancellation

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2012-01-01

    The perhaps most challenging problem in acoustic feedback cancellation using adaptive filters is the bias problem. It is well-known that a probe noise approach can effectively prevent this problem. However, when the probe noise must be inaudible and the steady-state error of the adaptive filter...... expressions for its system behavior, and through a simulation experiment in an acoustic feedback cancellation system....

  4. A Novel Recurrent Neural Network for Manipulator Control With Improved Noise Tolerance.

    Science.gov (United States)

    Li, Shuai; Wang, Huanqing; Rafique, Muhammad Usman

    2017-04-12

    In this paper, we propose a novel recurrent neural network to resolve the redundancy of manipulators for efficient kinematic control in the presence of noises in a polynomial type. Leveraging the high-order derivative properties of polynomial noises, a deliberately devised neural network is proposed to eliminate the impact of noises and recover the accurate tracking of desired trajectories in workspace. Rigorous analysis shows that the proposed neural law stabilizes the system dynamics and the position tracking error converges to zero in the presence of noises. Extensive simulations verify the theoretical results. Numerical comparisons show that existing dual neural solutions lose stability when exposed to large constant noises or time-varying noises. In contrast, the proposed approach works well and has a low tracking error comparable to noise-free situations.

  5. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    Science.gov (United States)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  6. Random noise can help to improve synchronization of excimer laser pulses.

    Science.gov (United States)

    Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János

    2016-02-01

    Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications.

  7. Gating in time domain as a tool for improving the signal-to-noise ratio of beam transfer function measurements

    CERN Document Server

    Oeftiger, U; Caspers, Fritz

    1992-01-01

    For the measurement of Beam Transfer Functions the signal-to-noise ratio is of great importance. In order to get a reasonable quality of the measured data one may apply averaging and smoothing. In the following another technique called time gating to improve the quality of the measurement will be described. By this technique the measurement data are Fourier transformed and then modified in time domain. Tune gating suppresses signal contributions that are correlated to a time interval when no interesting information is expected. Afterivards an inverse Fourier transform leads to data in frequency domain with an improved signal to noise ratio.

  8. CT colonography at low tube potential: using iterative reconstruction to decrease noise

    International Nuclear Information System (INIS)

    Chang, K.J.; Heisler, M.A.; Mahesh, M.; Baird, G.L.; Mayo-Smith, W.W.

    2015-01-01

    Aim: To determine the level of iterative reconstruction required to reduce increased image noise associated with low tube potential computed tomography (CT). Materials and methods: Fifty patients underwent CT colonography with a supine scan at 120 kVp and a prone scan at 100 kVp with other scan parameters unchanged. Both scans were reconstructed with filtered back projection (FBP) and increasing levels of adaptive statistical iterative reconstruction (ASiR) at 30%, 60%, and 90%. Mean noise, soft tissue and tagged fluid attenuation, contrast, and contrast-to-noise ratio (CNR) were collected from reconstructions at both 120 and 100 kVp and compared using a generalised linear mixed model. Results: Decreasing tube potential from 120 to 100 kVp significantly increased image noise by 30–34% and tagged fluid attenuation by 120 HU at all ASiR levels (p<0.0001, all measures). Increasing ASiR from 0% (FBP) to 30%, 60%, and 90% resulted in significant decreases in noise and increases in CNR at both tube potentials (p<0.001, all comparisons). Compared to 120 kVp FBP, ASiR greater than 30% at 100 kVp yielded similar or lower image noise. Conclusions: Iterative reconstruction adequately compensates for increased image noise associated with low tube potential imaging while improving CNR. An ASiR level of approximately 50% at 100 kVp yields similar noise to 120 kVp without ASiR. -- Highlights: •Peak kilovoltage (kVp) can be reduced to decrease radiation dose and increase contrast attenuation at a cost of increased image noise. •Utilizing iterative reconstruction can decrease image noise and increase contrast to noise ratio (CNR) independent of kVp. •Iterative reconstruction adequately compensates for increased image noise associated with low dose low kVp imaging while improving CNR. •An ASiR level of approximately 50% at 100 kVp yields similar noise to 120 kVp without ASiR

  9. Improvement in the Accuracy of Flux Measurement of Radio Sources by Exploiting an Arithmetic Pattern in Photon Bunching Noise

    Energy Technology Data Exchange (ETDEWEB)

    Lieu, Richard [Department of Physics, University of Alabama, Huntsville, AL 35899 (United States)

    2017-07-20

    A hierarchy of statistics of increasing sophistication and accuracy is proposed to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level with the help of high-precision computers to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the signal-limited bolometric flux measurement of a radio source.

  10. Improvement in the accuracy of flux measurement of radio sources by exploiting an arithmetic pattern in photon bunching noise

    Science.gov (United States)

    Lieu, Richard

    2018-01-01

    A hierarchy of statistics of increasing sophistication and accuracy is proposed, to exploit an interesting and fundamental arithmetic structure in the photon bunching noise of incoherent light of large photon occupation number, with the purpose of suppressing the noise and rendering a more reliable and unbiased measurement of the light intensity. The method does not require any new hardware, rather it operates at the software level, with the help of high precision computers, to reprocess the intensity time series of the incident light to create a new series with smaller bunching noise coherence length. The ultimate accuracy improvement of this method of flux measurement is limited by the timing resolution of the detector and the photon occupation number of the beam (the higher the photon number the better the performance). The principal application is accuracy improvement in the bolometric flux measurement of a radio source.

  11. Noise characterization of oil and gas operations.

    Science.gov (United States)

    Radtke, Cameron; Autenrieth, Daniel A; Lipsey, Tiffany; Brazile, William J

    2017-08-01

    In cooperation with The Colorado Oil and Gas Conservation Commission, researchers at Colorado State University performed area noise monitoring at 23 oil and gas sites throughout Northern Colorado. The goals of this study were to: (1) measure and compare the noise levels for the different phases of oil and gas development sites; (2) evaluate the effectiveness of noise barriers; and (3) determine if noise levels exceeded the Colorado Oil and Gas Conservation Commission noise limits. The four phases of oil and gas development include drilling, hydraulic fracturing, completion and production. Noise measurements were collected using the A- and C-weighted sound scales. Octave band analysis was also performed to characterize the frequency spectra of the noise measurements.  Noise measurements were collected using noise dosimeters and a hand-held sound-level meter at specified distances from the development sites in each cardinal direction. At 350 ft (107 m), drilling, hydraulic fracturing, and completion sites without noise barriers exceeded the maximum permissible noise levels for residential and commercial zones (55 dBA and 60 dBA, respectively). In addition, drilling and hydraulic fracturing sites with noise barriers exceeded the maximum permissible noise level for residential zones (55 dBA). However, during drilling, hydraulic fracturing, and completion operations, oil producers are allowed an exception to the noise permissible limits in that they only must comply with the industrial noise limit (80 dBA). It is stated in Rule 604.c.(2)A. that: "Operations involving pipeline or gas facility installation or maintenance, the use of a drilling rig, completion rig, workover rig, or stimulation is subject to the maximum permissible noise levels for industrial zones (80dBA)." [8] Production sites were within the Colorado Oil and Gas Conservation Commission permissible noise level criteria for all zones. At 350 ft (107 m) from the noise source, all drilling

  12. Performance improvement planning : developing effective billing and collection practices

    OpenAIRE

    anonymous

    2008-01-01

    Effective billing and collection systems are a critical component for ensuring the viability of a service provider. Improving billing and collection activities has an immediate impact on the revenue streams of a service provider that can, in turn, help the service provider in improving services. However, while effective billing and collection practices depend on many internal factors (including customer databases, the extent of metered and unmetered service provision, tariff and billing struc...

  13. Sound quality measures for speech in noise through a commercial hearing aid implementing digital noise reduction.

    Science.gov (United States)

    Ricketts, Todd A; Hornsby, Benjamin W Y

    2005-05-01

    This brief report discusses the affect of digital noise reduction (DNR) processing on aided speech recognition and sound quality measures in 14 adults fitted with a commercial hearing aid. Measures of speech recognition and sound quality were obtained in two different speech-in-noise conditions (71 dBA speech, +6 dB SNR and 75 dBA speech, +1 dB SNR). The results revealed that the presence or absence of DNR processing did not impact speech recognition in noise (either positively or negatively). Paired comparisons of sound quality for the same speech in noise signals, however, revealed a strong preference for DNR processing. These data suggest that at least one implementation of DNR processing is capable of providing improved sound quality, for speech in noise, in the absence of improved speech recognition.

  14. Novel noise reduction filter for improving visibility of early computed tomography signs of hyperacute stroke. Evaluation of the filter's performance. Preliminary clinical experience

    International Nuclear Information System (INIS)

    Takahashi, Noriyuki; Ishii, Kiyoshi; Lee, Y.; Tsai, D.Y.

    2007-01-01

    The aim of this study was to evaluate the performance of a novel noise reduction filter for improving the visibility of early computed tomography (CT) signs of hyperacute stroke on nonenhanced CT images. Fourteen patients with a middle cerebral artery occlusion within 4.5 h after onset were evaluated. The signal-to-noise ratio (SNR) of the processed images with the noise reduction filter and that of original images were measured. Two neuroradiologists visually rated all the processed and original images on the visibility of normal and abnormal gray-white matter interfaces. The SNR value of the processed images was approximately eight times as high as that of the original images, and a 87% reduction of noise was achieved using this technique. For the visual assessment, the results showed that the visibility of normal gray-white matter interface and that of the loss of the gray-white matter interface were significantly improved using the proposed method (P<0.05). The noise reduction filter proposed in the present study has the potential to improve the visibility of early CT signs of hyperacute stroke on nonenhanced CT images. (author)

  15. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise.

    Science.gov (United States)

    Zhan, Feibiao; Liu, Shenquan

    2017-01-01

    Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L) model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI) and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  16. Response of Electrical Activity in an Improved Neuron Model under Electromagnetic Radiation and Noise

    Directory of Open Access Journals (Sweden)

    Feibiao Zhan

    2017-11-01

    Full Text Available Electrical activities are ubiquitous neuronal bioelectric phenomena, which have many different modes to encode the expression of biological information, and constitute the whole process of signal propagation between neurons. Therefore, we focus on the electrical activities of neurons, which is also causing widespread concern among neuroscientists. In this paper, we mainly investigate the electrical activities of the Morris-Lecar (M-L model with electromagnetic radiation or Gaussian white noise, which can restore the authenticity of neurons in realistic neural network. First, we explore dynamical response of the whole system with electromagnetic induction (EMI and Gaussian white noise. We find that there are slight differences in the discharge behaviors via comparing the response of original system with that of improved system, and electromagnetic induction can transform bursting or spiking state to quiescent state and vice versa. Furthermore, we research bursting transition mode and the corresponding periodic solution mechanism for the isolated neuron model with electromagnetic induction by using one-parameter and bi-parameters bifurcation analysis. Finally, we analyze the effects of Gaussian white noise on the original system and coupled system, which is conducive to understand the actual discharge properties of realistic neurons.

  17. Quality Improvement Initiative to Reduce Pediatric Intensive Care Unit Noise Pollution With the Use of a Pediatric Delirium Bundle.

    Science.gov (United States)

    Kawai, Yu; Weatherhead, Jeffrey R; Traube, Chani; Owens, Tonie A; Shaw, Brenda E; Fraser, Erin J; Scott, Annette M; Wojczynski, Melody R; Slaman, Kristen L; Cassidy, Patty M; Baker, Laura A; Shellhaas, Renee A; Dahmer, Mary K; Shever, Leah L; Malas, Nasuh M; Niedner, Matthew F

    2017-01-01

    Noise pollution in pediatric intensive care units (PICU) contributes to poor sleep and may increase risk of developing delirium. The Environmental Protection Agency (EPA) recommends noise pollution, to develop a delirium bundle targeted at reducing noise, and to assess the effect of the bundle on nocturnal noise pollution. This is a QI initiative at an academic PICU. Thirty-five sound sensors were installed in patient bed spaces, hallways, and common areas. The pediatric delirium bundle was implemented in 8 pilot patients (40 patient ICU days) while 108 non-pilot patients received usual care over a 28-day period. A total of 20,609 hourly dB readings were collected. Hourly minimum, average, and maximum dB of all occupied bed spaces demonstrated medians [interquartile range] of 48.0 [39.0-53.0], 52.8 [48.1-56.2] and 67.0 [63.5-70.5] dB, respectively. Bed spaces were louder during the day (10AM to 4PM) than at night (11PM to 5AM) (53.5 [49.0-56.8] vs. 51.3 [46.0-55.3] dB, P noise pollution exists in our PICU, and utilizing the pediatric delirium bundle led to a significant noise reduction that can be perceived as half the loudness with hourly nighttime average dB meeting the EPA standards when compliant with the bundle.

  18. Approximations to camera sensor noise

    Science.gov (United States)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  19. Suitable or optimal noise benefits in signal detection

    International Nuclear Information System (INIS)

    Liu, Shujun; Yang, Ting; Tang, Mingchun; Wang, Pin; Zhang, Xinzheng

    2016-01-01

    Highlights: • Six intervals of additive noises divided according to the two constraints. • Derivation of the suitable additive noise to meet the two constraints. • Formulation of the suitable noise for improvability or nonimprovability. • Optimal noises to minimize P FA , maximize P D and maximize the overall improvement. - Abstract: We present an effective way to generate the suitable or the optimal additive noises which can achieve the three goals of the noise enhanced detectability, i.e., the maximum detection probability (P D ), the minimum false alarm probability (P FA ) and the maximum overall improvement of P D and P FA , without increasing P FA and decreasing P D in a binary hypothesis testing problem. The mechanism of our method is that we divide the discrete vectors into six intervals and choose the useful or partial useful vectors from these intervals to form the additive noise according to different requirements. The form of the optimal noise is derived and proven as a randomization of no more than two discrete vectors in our way. Moreover, how to choose suitable and optimal noises from the six intervals are given. Finally, numerous examples are presented to illustrate the theoretical analysis, where the background noises are Gaussian, symmetric and asymmetric Gaussian mixture noise, respectively.

  20. The impact of a noise reduction quality improvement project upon sound levels in the open-unit-design neonatal intensive care unit.

    Science.gov (United States)

    Liu, W F

    2010-07-01

    To decrease measured sound levels in the neonatal intensive care unit through implementation of human factor and minor design modification strategies. Prospective time series. Two open-unit-design neonatal centers. Implementation of a coordinated program of noise reduction strategies did not result in any measurable improvement in levels of loudness or quiet. Two centers, using primarily human behavior noise reduction strategies, were unable to demonstrate measurable improvements in sound levels within the occupied open-unit-design neonatal intensive care unit.

  1. Proceedings of the 1986 international conference on noise control engineering. Volume 1

    International Nuclear Information System (INIS)

    Lotz, R.

    1986-01-01

    These proceedings collect papers on noise pollution. Topics include: noise sources, noise of chain conveyors in mining, control of noise sources in power plants, noise control elements, vibration, a method of noise control in a nuclear power plant, biological effects of noise, statistical audio dosimetry, and power house noise control

  2. Improved Kalman Filter Method for Measurement Noise Reduction in Multi Sensor RFID Systems

    OpenAIRE

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available Radio Frequency Identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Perf...

  3. Noise levels in Damascus city

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Maslmani, Y.

    2004-01-01

    Outdoor noise levels were measured at 22 sites in Damascus city. Sound level meter model NC-10 with a 20-140 dBA selectable range was used in the current investigation. At each site noise data were collected from 7 to 21 o'clock. The results showed that the noise levels were higher than WHO (World Health Organization) standard by 5-24.7 dB, 10-16 dB, 10-11 dB and 12-17 dB in residential, commercial, Commercial-industrial, and Heavy traffic streets respectively. Indoor and outdoor noise levels in some hospitals were higher than WHO standard by 15-28 dB and 19-23 dB respectively. The study showed that the authorities administration must take necessary procedures to reduce the noise levels in residential regions and in the regions surrounding the hospitals. (author)

  4. Analysis of sharpness increase by image noise

    Science.gov (United States)

    Kurihara, Takehito; Aoki, Naokazu; Kobayashi, Hiroyuki

    2009-02-01

    Motivated by the reported increase in sharpness by image noise, we investigated how noise affects sharpness perception. We first used natural images of tree bark with different amounts of noise to see whether noise enhances sharpness. Although the result showed sharpness decreased as noise amount increased, some observers seemed to perceive more sharpness with increasing noise, while the others did not. We next used 1D and 2D uni-frequency patterns as stimuli in an attempt to reduce such variability in the judgment. The result showed, for higher frequency stimuli, sharpness decreased as the noise amount increased, while sharpness of the lower frequency stimuli increased at a certain noise level. From this result, we thought image noise might reduce sharpness at edges, but be able to improve sharpness of lower frequency component or texture in image. To prove this prediction, we experimented again with the natural image used in the first experiment. Stimuli were made by applying noise separately to edge or to texture part of the image. The result showed noise, when added to edge region, only decreased sharpness, whereas when added to texture, could improve sharpness. We think it is the interaction between noise and texture that sharpens image.

  5. Travelling Bubble Cavitation and Resulting Noise.

    Science.gov (United States)

    1981-03-02

    pp. 22-26, 1968. 16. Il’ichev, V. I. "Statistical Model of the Onset of Hydrodynamic Cavitation Noise," Sixth All-Union Acoustic Conference...Collected Papers, Moscow, 1968. 17. Lyamshev, L. M. "On the Theory of Hydrodynamic Cavitation Noise," Soviet Physics-Acoustics, Vol. 15, pp. 494-498, 1970. 18

  6. Health effects of traffic noise

    Energy Technology Data Exchange (ETDEWEB)

    Ising, H; Dienel, D; Guenther, T; Markert, B

    1980-11-01

    In 57 test persons having worked 1 day under traffic noise (Leq = 85 dB(A) and 1 day without noise (Leq < 50 dB(A)), blood pressure and pulse frequency were measured at 1 h intervals and total urine was collected during working hours. Additionally, blood was sampled at the end of each working day. Psychological parameters were assessed by means of questionnaires. Statistically significant reactions to noise were found in the following fields: 1. Ergonomics: decrease of working quality; 2. Psychology: increase of psychical tension; 3. Blood circulation: increase of blood pressure and pulse frequency; 4. Biochemistry: increase of epinephrine, cAMP, urine and serum Mg, protein, cholesterol plus decrease of erythrocyte Na, and renin. Hypothetical mechanisms of the action of traffic noise are discussed.

  7. Complex diffusion process for noise reduction

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan; Barari, A.

    2014-01-01

    equations (PDEs) in image restoration and de-noising prompted many researchers to search for an improvement in the technique. In this paper, a new method is presented for signal de-noising, based on PDEs and Schrodinger equations, named as complex diffusion process (CDP). This method assumes that variations...... for signal de-noising. To evaluate the performance of the proposed method, a number of experiments have been performed using Sinusoid, multi-component and FM signals cluttered with noise. The results indicate that the proposed method outperforms the approaches for signal de-noising known in prior art....

  8. Severe difficulties with word recognition in noise after platinum chemotherapy in childhood, and improvements with open-fitting hearing-aids.

    Science.gov (United States)

    Einarsson, Einar-Jón; Petersen, Hannes; Wiebe, Thomas; Fransson, Per-Anders; Magnusson, Måns; Moëll, Christian

    2011-10-01

    To investigate word recognition in noise in subjects treated in childhood with chemotherapy, study benefits of open-fitting hearing-aids for word recognition, and investigate whether self-reported hearing-handicap corresponded to subjects' word recognition ability. Subjects diagnosed with cancer and treated with platinum-based chemotherapy in childhood underwent audiometric evaluations. Fifteen subjects (eight females and seven males) fulfilled the criteria set for the study, and four of those received customized open-fitting hearing-aids. Subjects with cisplatin-induced ototoxicity had severe difficulties recognizing words in noise, and scored as low as 54% below reference scores standardized for age and degree of hearing loss. Hearing-impaired subjects' self-reported hearing-handicap correlated significantly with word recognition in a quiet environment but not in noise. Word recognition in noise improved markedly (up to 46%) with hearing-aids, and the self-reported hearing-handicap and disability score were reduced by more than 50%. This study demonstrates the importance of testing word recognition in noise in subjects treated with platinum-based chemotherapy in childhood, and to use specific custom-made questionnaires to evaluate the experienced hearing-handicap. Open-fitting hearing-aids are a good alternative for subjects suffering from poor word recognition in noise.

  9. Enhanced Core Noise Modeling for Turbofan Engines

    Science.gov (United States)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  10. Improving speech-in-noise recognition for children with hearing loss: potential effects of language abilities, binaural summation, and head shadow.

    Science.gov (United States)

    Nittrouer, Susan; Caldwell-Tarr, Amanda; Tarr, Eric; Lowenstein, Joanna H; Rice, Caitlin; Moberly, Aaron C

    2013-08-01

    This study examined speech recognition in noise for children with hearing loss, compared it to recognition for children with normal hearing, and examined mechanisms that might explain variance in children's abilities to recognize speech in noise. Word recognition was measured in two levels of noise, both when the speech and noise were co-located in front and when the noise came separately from one side. Four mechanisms were examined as factors possibly explaining variance: vocabulary knowledge, sensitivity to phonological structure, binaural summation, and head shadow. Participants were 113 eight-year-old children. Forty-eight had normal hearing (NH) and 65 had hearing loss: 18 with hearing aids (HAs), 19 with one cochlear implant (CI), and 28 with two CIs. Phonological sensitivity explained a significant amount of between-groups variance in speech-in-noise recognition. Little evidence of binaural summation was found. Head shadow was similar in magnitude for children with NH and with CIs, regardless of whether they wore one or two CIs. Children with HAs showed reduced head shadow effects. These outcomes suggest that in order to improve speech-in-noise recognition for children with hearing loss, intervention needs to be comprehensive, focusing on both language abilities and auditory mechanisms.

  11. Comparison of Speech Perception in Background Noise with Acceptance of Background Noise in Aided and Unaided Conditions.

    Science.gov (United States)

    Nabelek, Anna K.; Tampas, Joanna W.; Burchfield, Samuel B.

    2004-01-01

    l, speech perception in noiseBackground noise is a significant factor influencing hearing-aid satisfaction and is a major reason for rejection of hearing aids. Attempts have been made by previous researchers to relate the use of hearing aids to speech perception in noise (SPIN), with an expectation of improved speech perception followed by an…

  12. Objective measures of listening effort: effects of background noise and noise reduction.

    Science.gov (United States)

    Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin

    2009-10-01

    This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. To address this, the hypothesis tested here is that the positive effects of NR might be to reduce cognitive effort directed toward speech reception, making it available for other tasks. Normal-hearing individuals participated in 2 dual-task experiments, in which 1 task was to report sentences or words in noise set to various signal-to-noise ratios. Secondary tasks involved either holding words in short-term memory or responding in a complex visual reaction-time task. At low values of signal-to-noise ratio, although NR had no positive effect on speech reception thresholds, it led to better performance on the word-memory task and quicker responses in visual reaction times. Results from both dual tasks support the hypothesis that NR reduces listening effort and frees up cognitive resources for other tasks. Future hearing aid research should incorporate objective measurements of cognitive benefits.

  13. Aerodynamic Noise Generated by Shinkansen Cars

    Science.gov (United States)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  14. Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack

    Science.gov (United States)

    Sun, Ying; Wen, Qiao-yan; Zhu, Fu-chen

    2010-01-01

    The security of the multiparty quantum secret sharing protocol presented by Zhang [Z.J. Zhang, Physica A, 361 (2006) 233] is analyzed. It is shown that this protocol is vulnerable to the insider attack since eavesdropping detection is performed only when all states arrive at the last agent. We propose an attack strategy and give an improved version of the original protocol. The improved protocol is robust and has the same traits with the original one.

  15. Noise estimation for remote sensing image data analysis

    Science.gov (United States)

    Du, Qian

    2004-01-01

    Noise estimation does not receive much attention in remote sensing society. It may be because normally noise is not large enough to impair image analysis result. Noise estimation is also very challenging due to the randomness nature of the noise (for random noise) and the difficulty of separating the noise component from the signal in each specific location. We review and propose seven different types of methods to estimate noise variance and noise covariance matrix in a remotely sensed image. In the experiment, it is demonstrated that a good noise estimate can improve the performance of an algorithm via noise whitening if this algorithm assumes white noise.

  16. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Science.gov (United States)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  17. A Spatial Data Infrastructure for Environmental Noise Data in Europe.

    Science.gov (United States)

    Abramic, Andrej; Kotsev, Alexander; Cetl, Vlado; Kephalopoulos, Stylianos; Paviotti, Marco

    2017-07-06

    Access to high quality data is essential in order to better understand the environmental and health impact of noise in an increasingly urbanised world. This paper analyses how recent developments of spatial data infrastructures in Europe can significantly improve the utilization of data and streamline reporting on a pan-European scale. The Infrastructure for Spatial Information in the European Community (INSPIRE), and Environmental Noise Directive (END) described in this manuscript provide principles for data management that, once applied, would lead to a better understanding of the state of environmental noise. Furthermore, shared, harmonised and easily discoverable environmental spatial data, required by the INSPIRE, would also support the data collection needed for the assessment and development of strategic noise maps. Action plans designed by the EU Member States to reduce noise and mitigate related effects can be shared to the public through already established nodes of the European spatial data infrastructure. Finally, data flows regarding reporting on the state of environment and END implementation to the European level can benefit by applying a decentralised e-reporting service oriented infrastructure. This would allow reported data to be maintained, frequently updated and enable pooling of information from/to other relevant and interrelated domains such as air quality, transportation, human health, population, marine environment or biodiversity. We describe those processes and provide a use case in which noise data from two neighbouring European countries are mapped to common data specifications, defined by INSPIRE, thus ensuring interoperability and harmonisation.

  18. Fast flux test facility noise data management

    International Nuclear Information System (INIS)

    Thie, J.A.

    1988-01-01

    An extensive collection of spectra from an automated data collection system at the Fast Flux Facility has features from neutron data extracted and managed by database software. Inquiry techniques, including screening, applied to database results show the influences of control rods on wideband noise and, more generally, abilities to detect diverse types of off-normal noise. Uncovering a temporary 0.1-Hz resonance shift gave additional diagnostic information on a 13-Hz mechanical motion characterized by the interference of two resonances. The latter phenomenon is discussed generically for possible application to other reactor types. (author)

  19. 11th International Workshop on Railway Noise

    CERN Document Server

    Anderson, David; Gautier, Pierre-Etienne; Iida, Masanobu; Nelson, James; Thompson, David; Tielkes, Thorsten; Towers, David; Vos, Paul

    2015-01-01

    The book reports on the 11th International Workshop on Railway Noise, held on 9 – 13 September, 2013, in Uddevalla, Sweden. The event, which was jointly organized by the Competence Centre Chalmers Railway Mechanics (CHARMEC) and the Departments of Applied Mechanics and Applied Acoustics at Chalmers University of Technology in Gothenburg, Sweden, covered a broad range of topics in the field of railway noise and vibration, including: prospects, legal regulations and perceptions; wheel and rail noise; prediction, measurements and monitoring; ground-borne vibration; squeal noise and structure-borne noise; and aerodynamic noise generated by high-speed trains. Further topics included: resilient track forms; grinding, corrugation and roughness; and interior noise and sound barriers. This book, which consists of a collection of peer-reviewed papers originally submitted to the workshop, not only provides readers with an overview of the latest developments in the field, but also offers scientists and engineers essent...

  20. The effects of noise-bandwidth, noise-fringe duration, and temporal signal location on the binaural masking-level difference.

    Science.gov (United States)

    Yasin, Ifat; Henning, G Bruce

    2012-07-01

    The effects of forward and backward noise fringes on binaural signal detectability were investigated. Masked thresholds for a 12-ms, 250-Hz, sinusoidal signal masked by Gaussian noise, centered at 250 Hz, with bandwidths from 3 to 201 Hz, were obtained in N(0)S(0) and N(0)S(π) configurations. The signal was (a) temporally centered in a 12-ms noise burst (no fringe), (b) presented at the start of a 600-ms noise burst (backward fringe), or (c) temporally centered in a 600-ms noise burst (forward-plus-backward fringe). For noise bandwidths between 3 and 75 Hz, detection in N(0)S(0) improved with the addition of a backward fringe, improving further with an additional forward fringe; there was little improvement in N(0)S(π). The binaural masking-level difference (BMLD) increased from 0 to 8 dB with a forward-plus-backward fringe as noise bandwidths increased to 100 Hz, increasing slightly to 10 dB at 201 Hz. This two-stage increase was less pronounced with a backward fringe. With no fringe, the BMLD was about 10-14 dB at all bandwidths. Performance appears to result from the interaction of across-time and across-frequency listening strategies and the possible effects of gain reduction and suppression, which combine in complex ways. Current binaural models are, as yet, unable to account fully for these effects.

  1. Evaluating Performances of Traffic Noise Models | Oyedepo ...

    African Journals Online (AJOL)

    Traffic noise in decibel dB(A) were measured at six locations using 407780A Integrating Sound Level Meter, while spot speed and traffic volume were collected with cine-camera. The predicted sound exposure level (SEL) was evaluated using Burgess, British and FWHA model. The average noise level obtained are 77.64 ...

  2. Phase Noise Compensation for OFDM Systems

    Science.gov (United States)

    Leshem, Amir; Yemini, Michal

    2017-11-01

    We describe a low complexity method for time domain compensation of phase noise in OFDM systems. We extend existing methods in several respects. First we suggest using the Karhunen-Lo\\'{e}ve representation of the phase noise process to estimate the phase noise. We then derive an improved datadirected choice of basis elements for LS phase noise estimation and present its total least square counterpart problem. The proposed method helps overcome one of the major weaknesses of OFDM systems. We also generalize the time domain phase noise compensation to the multiuser MIMO context. Finally we present simulation results using both simulated and measured phased noise. We quantify the tracking performance in the presence of residual carrier offset.

  3. How to improve a critical performance for an ExoMars 2020 Scientific Instrument (RLS). Raman Laser Spectrometer Signal to Noise Ratio (SNR) Optimization

    Science.gov (United States)

    Canora, C. P.; Moral, A. G.; Rull, F.; Maurice, S.; Hutchinson, I.; Ramos, G.; López-Reyes, G.; Belenguer, T.; Canchal, R.; Prieto, J. A. R.; Rodriguez, P.; Santamaria, P.; Berrocal, A.; Colombo, M.; Gallago, P.; Seoane, L.; Quintana, C.; Ibarmia, S.; Zafra, J.; Saiz, J.; Santiago, A.; Marin, A.; Gordillo, C.; Escribano, D.; Sanz-Palominoa, M.

    2017-09-01

    The Raman Laser Spectrometer (RLS) is one of the Pasteur Payload instruments, within the ESA's Aurora Exploration Programme, ExoMars mission. Raman spectroscopy is based on the analysis of spectral fingerprints due to the inelastic scattering of light when interacting with matter. RLS is composed by Units: SPU (Spectrometer Unit), iOH (Internal Optical Head), and ICEU (Instrument Control and Excitation Unit) and the harnesses (EH and OH). The iOH focuses the excitation laser on the samples and collects the Raman emission from the sample via SPU (CCD) and the video data (analog) is received, digitalizing it and transmiting it to the processor module (ICEU). The main sources of noise arise from the sample, the background, and the instrument (Laser, CCD, focuss, acquisition parameters, operation control). In this last case the sources are mainly perturbations from the optics, dark signal and readout noise. Also flicker noise arising from laser emission fluctuations can be considered as instrument noise. In order to evaluate the SNR of a Raman instrument in a practical manner it is useful to perform end-to-end measurements on given standards samples. These measurements have to be compared with radiometric simulations using Raman efficiency values from literature and taking into account the different instrumental contributions to the SNR. The RLS EQM instrument performances results and its functionalities have been demonstrated in accordance with the science expectations. The Instrument obtained SNR performances in the RLS EQM will be compared experimentally and via analysis, with the Instrument Radiometric Model tool. The characterization process for SNR optimization is still on going. The operational parameters and RLS algorithms (fluorescence removal and acquisition parameters estimation) will be improved in future models (EQM-2) until FM Model delivery.

  4. Environmental noise forecasting based on support vector machine

    Science.gov (United States)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  5. Novel Acoustic Feedback Cancellation Approaches In Hearing Aid Applications Using Probe Noise and Probe Noise Enhancement

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2012-01-01

    . In many cases, this bias problem causes the cancellation system to fail. The traditional probe noise approach, where a noise signal is added to the loudspeaker signal can, in theory, prevent the bias. However, in practice, the probe noise level must often be so high that the noise is clearly audible...... and annoying; this makes the traditional probe noise approach less useful in practical applications. In this work, we explain theoretically the decreased convergence rate when using low-level probe noise in the traditional approach, before we propose and study analytically two new probe noise approaches...... the proposed approaches much more attractive in practical applications. We demonstrate this through a simulation experiment with audio signals in a hearing aid acoustic feedback cancellation system, where the convergence rate is improved by as much as a factor of 10....

  6. Developing noise control strategies for entire railway networks

    Science.gov (United States)

    Oertli, Jakob

    2006-06-01

    The EU Environmental Noise Directive (2002/49) requires member states to deliver noise maps to the commission by 2007 and action plans by 2008 both for agglomerations as well as for major roads, railways and airports. Noise mitigation projects resulting from action plans are usually very expensive and therefore may threaten the economic viability of the railways in the current harsh competitive transport market, thus hindering sustainable transport policies. It is therefore of vital interest that the action plans and the resulting projects are designed in the most cost-effective way possible. The EU and Union of Railways (UIC) sponsored project Strategies and Tools to Assess and Implement noise Reducing measures for Railway Systems (STAIRRS) recognized this need and developed a tool, with which such optimal solutions can be obtained for entire railway networks. Since data collection is the most expensive part of the analysis, noise mapping data is ideally collected in such a way that it can be used for the calculation of the different scenarios, from which the most cost-effective action plans are chosen. The paper shows how the STAIRRS tool is used for this purpose and how cost-effectiveness considerations have led to optimal railway noise mitigation strategies in Switzerland and have given a basis for noise related decision making in Luxembourg.

  7. Noise exposure during ambulance flights and repatriation operations.

    Science.gov (United States)

    Küpper, Thomas E; Zimmer, Bernd; Conrad, Gerson; Jansing, Paul; Hardt, Aline

    2010-01-01

    Although ambulance flights are routine work and thousands of employees work in repatriation organizations, there is no data on noise exposure which may be used for preventive advice. We investigated the noise exposure of crews working in ambulance flight organizations for international patient repatriation to get the data for specific guidelines concerning noise protection. Noise levels inside Learjet 35A, the aircraft type which is most often used for repatriation operations, were collected from locations where flight crews typically spend their time. A sound level meter class 1 meeting the DIN IEC 651 requirements was used for noise measurements, but several factors during the real flight situations caused a measurement error of ~3%. Therefore, the results fulfill the specifications for class 2. The data was collected during several real repatriation operations and was combined with the flight data (hours per day) regarding the personnel to evaluate the occupationally encountered equivalent noise level according to DIN 45645-2. The measured noise levels were safely just below the 85 dB(A) threshold and should not induce permanent threshold shifts, provided that additional high noise exposure by non-occupational or private activities was avoided. As the levels of the noise produced by the engines outside the cabin are significantly above the 85 dB(A) threshold, the doors of the aircraft must be kept closed while the engines are running, and any activity performed outside the aircraft - or with the doors opened while the engines are running - must be done with adequate noise protection. The new EU noise directive (2003/10/EG) states that protective equipment must be made available to the aircrew to protect their hearing, though its use is not mandatory.

  8. Improving Collective Estimations Using Resistance to Social Influence.

    Directory of Open Access Journals (Sweden)

    Gabriel Madirolas

    2015-11-01

    Full Text Available Groups can make precise collective estimations in cases like the weight of an object or the number of items in a volume. However, in others tasks, for example those requiring memory or mental calculation, subjects often give estimations with large deviations from factual values. Allowing members of the group to communicate their estimations has the additional perverse effect of shifting individual estimations even closer to the biased collective estimation. Here we show that this negative effect of social interactions can be turned into a method to improve collective estimations. We first obtained a statistical model of how humans change their estimation when receiving the estimates made by other individuals. We confirmed using existing experimental data its prediction that individuals use the weighted geometric mean of private and social estimations. We then used this result and the fact that each individual uses a different value of the social weight to devise a method that extracts the subgroups resisting social influence. We found that these subgroups of individuals resisting social influence can make very large improvements in group estimations. This is in contrast to methods using the confidence that each individual declares, for which we find no improvement in group estimations. Also, our proposed method does not need to use historical data to weight individuals by performance. These results show the benefits of using the individual characteristics of the members in a group to better extract collective wisdom.

  9. Improving Collective Estimations Using Resistance to Social Influence.

    Science.gov (United States)

    Madirolas, Gabriel; de Polavieja, Gonzalo G

    2015-11-01

    Groups can make precise collective estimations in cases like the weight of an object or the number of items in a volume. However, in others tasks, for example those requiring memory or mental calculation, subjects often give estimations with large deviations from factual values. Allowing members of the group to communicate their estimations has the additional perverse effect of shifting individual estimations even closer to the biased collective estimation. Here we show that this negative effect of social interactions can be turned into a method to improve collective estimations. We first obtained a statistical model of how humans change their estimation when receiving the estimates made by other individuals. We confirmed using existing experimental data its prediction that individuals use the weighted geometric mean of private and social estimations. We then used this result and the fact that each individual uses a different value of the social weight to devise a method that extracts the subgroups resisting social influence. We found that these subgroups of individuals resisting social influence can make very large improvements in group estimations. This is in contrast to methods using the confidence that each individual declares, for which we find no improvement in group estimations. Also, our proposed method does not need to use historical data to weight individuals by performance. These results show the benefits of using the individual characteristics of the members in a group to better extract collective wisdom.

  10. Observations and modeling of seismic background noise

    Science.gov (United States)

    Peterson, Jon R.

    1993-01-01

    The preparation of this report had two purposes. One was to present a catalog of seismic background noise spectra obtained from a worldwide network of seismograph stations. The other purpose was to refine and document models of seismic background noise that have been in use for several years. The second objective was, in fact, the principal reason that this study was initiated and influenced the procedures used in collecting and processing the data.With a single exception, all of the data used in this study were extracted from the digital data archive at the U.S. Geological Survey's Albuquerque Seismological Laboratory (ASL). This archive dates from 1972 when ASL first began deploying digital seismograph systems and collecting and distributing digital data under the sponsorship of the Defense Advanced Research Projects Agency (DARPA). There have been many changes and additions to the global seismograph networks during the past twenty years, but perhaps none as significant as the current deployment of very broadband seismographs by the U.S. Geological Survey (USGS) and the University of California San Diego (UCSD) under the scientific direction of the IRIS consortium. The new data acquisition systems have extended the bandwidth and resolution of seismic recording, and they utilize high-density recording media that permit the continuous recording of broadband data. The data improvements and continuous recording greatly benefit and simplify surveys of seismic background noise.Although there are many other sources of digital data, the ASL archive data were used almost exclusively because of accessibility and because the data systems and their calibration are well documented for the most part. Fortunately, the ASL archive contains high-quality data from other stations in addition to those deployed by the USGS. Included are data from UCSD IRIS/IDA stations, the Regional Seismic Test Network (RSTN) deployed by Sandia National Laboratories (SNL), and the TERRAscope network

  11. Background noise spectra of global seismic stations

    Energy Technology Data Exchange (ETDEWEB)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefits those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.

  12. An Optimization Study on Listening Experiments to Improve the Comparability of Annoyance Ratings of Noise Samples from Different Experimental Sample Sets.

    Science.gov (United States)

    Di, Guoqing; Lu, Kuanguang; Shi, Xiaofan

    2018-03-08

    Annoyance ratings obtained from listening experiments are widely used in studies on health effect of environmental noise. In listening experiments, participants usually give the annoyance rating of each noise sample according to its relative annoyance degree among all samples in the experimental sample set if there are no reference sound samples, which leads to poor comparability between experimental results obtained from different experimental sample sets. To solve this problem, this study proposed to add several pink noise samples with certain loudness levels into experimental sample sets as reference sound samples. On this basis, the standard curve between logarithmic mean annoyance and loudness level of pink noise was used to calibrate the experimental results and the calibration procedures were described in detail. Furthermore, as a case study, six different types of noise sample sets were selected to conduct listening experiments using this method to examine the applicability of it. Results showed that the differences in the annoyance ratings of each identical noise sample from different experimental sample sets were markedly decreased after calibration. The determination coefficient ( R ²) of linear fitting functions between psychoacoustic annoyance (PA) and mean annoyance (MA) of noise samples from different experimental sample sets increased obviously after calibration. The case study indicated that the method above is applicable to calibrating annoyance ratings obtained from different types of noise sample sets. After calibration, the comparability of annoyance ratings of noise samples from different experimental sample sets can be distinctly improved.

  13. Music training improves speech-in-noise perception: Longitudinal evidence from a community-based music program.

    Science.gov (United States)

    Slater, Jessica; Skoe, Erika; Strait, Dana L; O'Connell, Samantha; Thompson, Elaine; Kraus, Nina

    2015-09-15

    Music training may strengthen auditory skills that help children not only in musical performance but in everyday communication. Comparisons of musicians and non-musicians across the lifespan have provided some evidence for a "musician advantage" in understanding speech in noise, although reports have been mixed. Controlled longitudinal studies are essential to disentangle effects of training from pre-existing differences, and to determine how much music training is necessary to confer benefits. We followed a cohort of elementary school children for 2 years, assessing their ability to perceive speech in noise before and after musical training. After the initial assessment, participants were randomly assigned to one of two groups: one group began music training right away and completed 2 years of training, while the second group waited a year and then received 1 year of music training. Outcomes provide the first longitudinal evidence that speech-in-noise perception improves after 2 years of group music training. The children were enrolled in an established and successful community-based music program and followed the standard curriculum, therefore these findings provide an important link between laboratory-based research and real-world assessment of the impact of music training on everyday communication skills. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Improved multi-microphone noise reduction preserving binaural cues

    NARCIS (Netherlands)

    Koutrouvelis, A.; Hendriks, R.C.; Jensen, J; Heusdens, R.; Dong, Min; Zheng, Thomas Fang

    2016-01-01

    We propose a new multi-microphone noise reduction technique for binaural cue preservation of the desired source and the interferers. This method is based on the linearly constrained minimum variance (LCMV) framework, where the constraints are used for the binaural cue preservation of the desired

  15. Improvement of two-way continuous variable quantum cryptography by using additional noise

    International Nuclear Information System (INIS)

    Wang Minjie; Pan Wei

    2010-01-01

    The performance of quantum key distribution such as one-way continuous variable protocols, can be increased by adding some noise on the reference side of error correction in the error-correction phase. For this reason, we here study this possibility in the case of two-way continuous variable system. Finally, the numerical results show that the using of additional noise gives two-way schemes better security performance in terms of secret key rates and resistance to channel excess noise.

  16. Honey and Vitamin E Restore the Plasma Level of Gonadal Hormones and Improve the Fertilization Capacity in Noise-Stressed Rats

    Directory of Open Access Journals (Sweden)

    Rajabzadeh Asghar

    2015-04-01

    Full Text Available Objective: Noise as a natural teratogenic factor affects the body systems including the reproductive organ to reduce the fertility rate and fetus health. Honey and vitamin E as natural antioxidants protects the sperm released from the reproductive system. This study was conducted to examine the efficacy of honey and vitamin E on fertilization capacity in noise-exposed rats by assessing plasma sexual hormones levels i.e., follicle-stimulating hormone (FSH, luteinizing hormone (LH, and testosterone, altered in relation with noise stress. Materials and Methods: This study was targeted the 24 male rats that randomly were divided into four equal groups including one control group (unexposed to noise stress and three experimental groups pre-induced with noise stress for 50 days and then divided as: no treated, honey and vitamin E treated groups, respectively. Then, the blood samples of experimental and control groups were taken, and the serum level of the sexual hormones was analyzed. Finally, to investigate the fertility capacity of rats, the male rats of all groups were coupled with the female ones. Results: Our results showed that FSH and LH level in noise stressed male rats raised, and the testosterone secretion decreased compared to the control group. Moreover, noise stress injury could reduce weight and the survival rate of the fetus. However, the honey and vitamin E improved the testosterone concentration, declined the plasma FSH and LH level in noise - exposed rats and enhanced the fertility rate. Conclusion: These findings may also spell out a natural curative approach rather than pharmaceutical drugs to optimize of neuroendocrine gonadal axis and testicular integrity induced by pathogenesis stress, i.e., noise and enhance the male fertility capacity.

  17. Musical noise reduction using an adaptive filter

    Science.gov (United States)

    Hanada, Takeshi; Murakami, Takahiro; Ishida, Yoshihisa; Hoya, Tetsuya

    2003-10-01

    This paper presents a method for reducing a particular noise (musical noise). The musical noise is artificially produced by Spectral Subtraction (SS), which is one of the most conventional methods for speech enhancement. The musical noise is the tin-like sound and annoying in human auditory. We know that the duration of the musical noise is considerably short in comparison with that of speech, and that the frequency components of the musical noise are random and isolated. In the ordinary SS-based methods, the musical noise is removed by the post-processing. However, the output of the ordinary post-processing is delayed since the post-processing uses the succeeding frames. In order to improve this problem, we propose a novel method using an adaptive filter. In the proposed system, the observed noisy signal is used as the input signal to the adaptive filter and the output of SS is used as the reference signal. In this paper we exploit the normalized LMS (Least Mean Square) algorithm for the adaptive filter. Simulation results show that the proposed method has improved the intelligibility of the enhanced speech in comparison with the conventional method.

  18. Noise in CdZnTe detectors

    International Nuclear Information System (INIS)

    Luke, P. N.; Amman, M.; Lee, J. S.; Manfredi, P. F.

    2000-01-01

    Noise in CdZnTe devices with different electrode configurations was investigated. Measurements on devices with guard-ring electrode structures showed that surface leakage current does not produce any significant noise. The parallel white noise component of the devices appeared to be generated by the bulk current alone, even though the surface current was substantially higher. This implies that reducing the surface leakage current of a CdZnTe detector may not necessarily result in a significant improvement in noise performance. The noise generated by the bulk current is also observed to be below full shot noise. This partial suppression of shot noise may be the result of Coulomb interaction between carriers or carrier trapping. Devices with coplanar strip electrodes were observed to produce a 1/f noise term at the preamplifier output. Higher levels of this 1/f noise were observed with decreasing gap widths between electrodes. The level of this 1/f noise appeared to be independent of bias voltage and leakage current but was substantially reduced after certain surface treatments

  19. Noise suppression by noise

    OpenAIRE

    Vilar, J. M. G. (José M. G.), 1972-; Rubí Capaceti, José Miguel

    2001-01-01

    We have analyzed the interplay between an externally added noise and the intrinsic noise of systems that relax fast towards a stationary state, and found that increasing the intensity of the external noise can reduce the total noise of the system. We have established a general criterion for the appearance of this phenomenon and discussed two examples in detail.

  20. Rotary Compressor Noise Analysis Using Mechanisms and Electromagnetics Coupled Approach

    OpenAIRE

    Chung, Jinah; Lee, Uiyoon; Lee, Jeongbae; Lee, Unseop; Han, Eunsil; Yoon, Jinhwan

    2016-01-01

    This research is conducted to investigate noise source and design low noise compressors. For improving energy efficiency, the rotary compressor with variable speed brushless DC motor is increasingly adopted for appliances. However brushless DC motor makes more compressor vibration than constant speed motor compressor at high speed operating condition. Therefore it is necessary to reduce noise and vibration for improving air conditioner quality. In this study, compressor’s noise and vibrat...

  1. A proposal for improving the noise floor of the gravitational wave antenna Niobe

    CERN Document Server

    Ribeiro, K L; Blair, D G; Tobar, M E; Aguiar, O D; Frajuca, C

    2002-01-01

    The gravity wave detector at the University of Western Australia is based on a bending flap of 0.45 kg tuned near the fundamental resonant frequency of a 1.5 tonne resonant bar of 710 Hz. The displacement of the bending flap is monitored with a 9.5 GHz superconducting re-entrant cavity transducer. The performance of the transducer is related to the development of a low-noise microwave pump oscillator to drive the transducer. In this study we describe how to improve the quality of the existing microwave pump oscillator using a second servo frequency control system.

  2. What Do Contrast Threshold Equivalent Noise Studies Actually Measure? Noise vs. Nonlinearity in Different Masking Paradigms.

    Directory of Open Access Journals (Sweden)

    Alex S Baldwin

    Full Text Available The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system's input has on its output one can estimate the variance of this internal noise. By applying this simple "linear amplifier" model to the human visual system, one can entirely explain an observer's detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system's internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity. Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF. We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies.

  3. Enhancing the management of the noise level using six sigma method: a case study on the machining industry

    Science.gov (United States)

    Rimantho, D.; Hanantya, M. W.

    2017-12-01

    The hearing disorder is caused by noises in the workplace, it has been a concern for numerous researchers. This study aims to improve the performance of the management of the noise level by applying the six sigma method. Data collection is done directly by using a sound level meter. In addition, several key informants also used in order to gather information related to the problem. The results showed the values of Cp and Cpk on the entire department are still below the recommended value. Moreover, the results also showed the potential failure (DPMO) approximately 115,260.6 and equivalent to the Sigma value is approximately 2.70. Furthermore, the highest value of the RPN in FMEA analysis is the workers not wear factor of earplug which is about 56. Thus, it is necessary to make enhancements to the process of managing the noise level in the framework of continuous improvement.

  4. Model-driven approach to data collection and reporting for quality improvement.

    Science.gov (United States)

    Curcin, Vasa; Woodcock, Thomas; Poots, Alan J; Majeed, Azeem; Bell, Derek

    2014-12-01

    Continuous data collection and analysis have been shown essential to achieving improvement in healthcare. However, the data required for local improvement initiatives are often not readily available from hospital Electronic Health Record (EHR) systems or not routinely collected. Furthermore, improvement teams are often restricted in time and funding thus requiring inexpensive and rapid tools to support their work. Hence, the informatics challenge in healthcare local improvement initiatives consists of providing a mechanism for rapid modelling of the local domain by non-informatics experts, including performance metric definitions, and grounded in established improvement techniques. We investigate the feasibility of a model-driven software approach to address this challenge, whereby an improvement model designed by a team is used to automatically generate required electronic data collection instruments and reporting tools. To that goal, we have designed a generic Improvement Data Model (IDM) to capture the data items and quality measures relevant to the project, and constructed Web Improvement Support in Healthcare (WISH), a prototype tool that takes user-generated IDM models and creates a data schema, data collection web interfaces, and a set of live reports, based on Statistical Process Control (SPC) for use by improvement teams. The software has been successfully used in over 50 improvement projects, with more than 700 users. We present in detail the experiences of one of those initiatives, Chronic Obstructive Pulmonary Disease project in Northwest London hospitals. The specific challenges of improvement in healthcare are analysed and the benefits and limitations of the approach are discussed. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Noise from wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Fegeant, Olivier [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences

    2002-02-01

    A rapid growth of installed wind power capacity is expected in the next few years. However, the siting of wind turbines on a large scale raises concerns about their environmental impact, notably with respect to noise. To this end, variable speed wind turbines offer a promising solution for applications in densely populated areas like the European countries, as this design would enable an efficient utilisation of the masking effect due to ambient noise. In rural and recreational areas where wind turbines are sited, the ambient noise originates from the action of wind on the vegetation and about the listener's ear (pseudo-noise). It shows a wind speed dependence similar to that of the noise from a variable speed wind turbine and can therefore mask the latter for a wide range of conditions. However, a problem inherent to the design of these machines is their proclivity to pure tone generation, because of the enhanced difficulty of avoiding structural resonances in the mechanical parts. Pure tones are deemed highly annoying and are severely regulated by most noise policies. In relation to this problem, the vibration transmission of structure-borne sound to the tower of the turbine is investigated, in particular when the tower is stiffened at its upper end. Furthermore, since noise annoyance due to wind turbine is mostly a masking issue, the wind-related sources of ambient noise are studied and their masking potentials assessed. With this aim, prediction models for wind-induced vegetation noise and pseudo-noise have been developed. Finally, closely related to the effect of masking, is the difficulty, regularly encountered by local authorities and wind farm developers, to measure noise immission from wind turbines. A new measurement technique has thus been developed in the course of this work. Through improving the signal-to-noise ratio between wind turbine noise and ambient noise, the new technique yields more accurate measurement results.

  6. Noise study in laboratories with exhaust fans

    International Nuclear Information System (INIS)

    Shaikh, G.H.; Hashmi, R.; Shareef, A.

    2005-01-01

    Noise study has been carried out in 25 laboratories fitted with exhaust fans. We have studied A- Weighted equivalent sound pressure levels (dB(A) LAeJ and equivalent octave band sound pressure levels (dB L/sub eq/ in each of the laboratories surveyed. The data collected has been analyzed for Preferred Speech Interference Levels (PSIL). The results show that the interior noise levels in these laboratories vary from 59.6 to 72.2 dB(A) L/sub Aeq/, which are very high and much beyond the interior noise limits recommended for laboratories. Some ways and means to limit emission of high-level noise from exhaust fans are also discussed. (author)

  7. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  8. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation.

    Science.gov (United States)

    Hu, Yi

    2010-05-01

    Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.

  9. Collective stochastic coherence in recurrent neuronal networks

    Science.gov (United States)

    Sancristóbal, Belén; Rebollo, Beatriz; Boada, Pol; Sanchez-Vives, Maria V.; Garcia-Ojalvo, Jordi

    2016-09-01

    Recurrent networks of dynamic elements frequently exhibit emergent collective oscillations, which can show substantial regularity even when the individual elements are considerably noisy. How noise-induced dynamics at the local level coexists with regular oscillations at the global level is still unclear. Here we show that a combination of stochastic recurrence-based initiation with deterministic refractoriness in an excitable network can reconcile these two features, leading to maximum collective coherence for an intermediate noise level. We report this behaviour in the slow oscillation regime exhibited by a cerebral cortex network under dynamical conditions resembling slow-wave sleep and anaesthesia. Computational analysis of a biologically realistic network model reveals that an intermediate level of background noise leads to quasi-regular dynamics. We verify this prediction experimentally in cortical slices subject to varying amounts of extracellular potassium, which modulates neuronal excitability and thus synaptic noise. The model also predicts that this effectively regular state should exhibit noise-induced memory of the spatial propagation profile of the collective oscillations, which is also verified experimentally. Taken together, these results allow us to construe the high regularity observed experimentally in the brain as an instance of collective stochastic coherence.

  10. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    Science.gov (United States)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  11. Noise power spectrum of the fixed pattern noise in digital radiography detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Sik, E-mail: dskim@hufs.ac.kr [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Kim, Eun [R& D Center, DRTECH Co., Gyeonggi-do 13558 (Korea, Republic of)

    2016-06-15

    Purpose: The fixed pattern noise in radiography image detectors is caused by various sources. Multiple readout circuits with gate drivers and charge amplifiers are used to efficiently acquire the pixel voltage signals. However, the multiple circuits are not identical and thus yield nonuniform system gains. Nonuniform sensitivities are also produced from local variations in the charge collection elements. Furthermore, in phosphor-based detectors, the optical scattering at the top surface of the columnar CsI growth, the grain boundaries, and the disorder structure causes spatial sensitivity variations. These nonuniform gains or sensitivities cause fixed pattern noise and degrade the detector performance, even though the noise problem can be partially alleviated by using gain correction techniques. Hence, in order to develop good detectors, comparative analysis of the energy spectrum of the fixed pattern noise is important. Methods: In order to observe the energy spectrum of the fixed pattern noise, a normalized noise power spectrum (NNPS) of the fixed pattern noise is considered in this paper. Since the fixed pattern noise is mainly caused by the nonuniform gains, we call the spectrum the gain NNPS. We first asymptotically observe the gain NNPS and then formulate two relationships to calculate the gain NNPS based on a nonuniform-gain model. Since the gain NNPS values are quite low compared to the usual NNPS, measuring such a low NNPS value is difficult. By using the average of the uniform exposure images, a robust measuring method for the gain NNPS is proposed in this paper. Results: By using the proposed measuring method, the gain NNPS curves of several prototypes of general radiography and mammography detectors were measured to analyze their fixed pattern noise properties. We notice that a direct detector, which is based on the a-Se photoconductor, showed lower gain NNPS than the indirect-detector case, which is based on the CsI scintillator. By comparing the gain

  12. Improved surface?wave retrieval from ambient seismic noise by multi?dimensional deconvolution

    NARCIS (Netherlands)

    Wapenaar, C.P.A.; Ruigrok, E.N.; Van der Neut, J.R.; Draganov, D.S.

    2011-01-01

    The methodology of surface?wave retrieval from ambient seismic noise by crosscorrelation relies on the assumption that the noise field is equipartitioned. Deviations from equipartitioning degrade the accuracy of the retrieved surface?wave Green's function. A point?spread function, derived from the

  13. Characterization of noise in different industrial workstations

    Science.gov (United States)

    Correia, Aldina; Lopes, Miguel; de Almeida, M. Fátima

    2017-11-01

    The damage caused by noise in workers' health is well known. The European Agency for Safety and Health at Work presented in 2005 a summary of main effects of workplace noise, defining the loss of hearing as the principal effect of noise exposure, however, it can also exacerbate stress and increase the risk of accidents. The problem to be addressed is this work is about noise analysis, performed under the PREVENIR program. The data was collected in industrial workplaces from 280 Portuguese industrial companies distributed by different sectors. The program was implemented between 2005 and 2011. The aim of this work is identify differences of intensity of noise exposure between these industrial sectors in different workplaces, using inference techniques. The existence of significance differences between average levels of Equivalent Sound Level (LAeq,TdB(A)) are verified using ANOVA.

  14. Collective Trust: Why Schools Can't Improve without It

    Science.gov (United States)

    Forsyth, Patrick B.; Adams, Curt M.; Hoy, Wayne K.

    2011-01-01

    The culmination of nearly three decades of research, "Collective Trust" offers new insight and practical knowledge on the social construction of trust for school improvement. The authors argue that "collective trust" is not merely an average trust score for a group, but rather an independent concept with distinctive origins and consequences. The…

  15. Low frequency noise in semiconductor detectors

    International Nuclear Information System (INIS)

    Stojanovic, M.; Marjanovic, N.

    1998-01-01

    Noise characteristics of surface-barrier detectors based on Au contacts on n-Si were measured and analyzed. The metal layers were deposited by evaporation to 40-100 nm thickness. Standard surface-barrier detectors based on Au/Si structures are known to have favorable characteristics, but they tend to degrade with aging and under severe working conditions. Degradation is particularly related to the increase in noise level, leakage current and the reduction of detector efficiency and resolution. Therefore, practical applications of surface-barrier detectors demand their constant upgrading. Improvements of detector properties are concentrated mainly on the front surface and front (rectifying) contact. The aim was to improve the noise characteristics of the surface-barrier structures and retain the favorable detector properties of the Au/Si system. (authors)

  16. Maturational changes in ear advantage for monaural word recognition in noise among listeners with central auditory processing disorders

    Directory of Open Access Journals (Sweden)

    Mohsin Ahmed Shaikh

    2017-02-01

    Full Text Available This study aimed to investigate differences between ears in performance on a monaural word recognition in noise test among individuals across a broad range of ages assessed for (CAPD. Word recognition scores in quiet and in speech noise were collected retrospectively from the medical files of 107 individuals between the ages of 7 and 30 years who were diagnosed with (CAPD. No ear advantage was found on the word recognition in noise task in groups less than ten years. Performance in both ears was equally poor. Right ear performance improved across age groups, with scores of individuals above age 10 years falling within the normal range. In contrast, left ear performance remained essentially stable and in the impaired range across all age groups. Findings indicate poor left hemispheric dominance for speech perception in noise in children below the age of 10 years with (CAPD. However, a right ear advantage on this monaural speech in noise task was observed for individuals 10 years and older.

  17. The use of cochlear's SCAN and wireless microphones to improve speech understanding in noise with the Nucleus6® CP900 processor.

    Science.gov (United States)

    De Ceulaer, Geert; Pascoal, David; Vanpoucke, Filiep; Govaerts, Paul J

    2017-11-01

    The newest Nucleus CI processor, the CP900, has two new options to improve speech-in-noise perception: (1) use of an adaptive directional microphone (SCAN mode) and (2) wireless connection to MiniMic1 and MiniMic2 wireless remote microphones. An analysis was made of the absolute and relative benefits of these technologies in a real-world mimicking test situation. Speech perception was tested using an adaptive speech-in-noise test (sentences-in-babble noise). In session A, SRTs were measured in three conditions: (1) Clinical Map, (2) SCAN and (3) MiniMic1. Each was assessed for three distances between speakers and CI recipient: 1 m, 2 m and 3 m. In session B, the benefit of the use of MiniMic2 was compared to benefit of MiniMic1 at 3 m. A group of 13 adult CP900 recipients participated. SCAN and MiniMic1 improved performance compared to the standard microphone with a median improvement in SRT of 2.7-3.9 dB for SCAN at 1 m and 3 m, respectively, and 4.7-10.9 dB for the MiniMic1. MiniMic1 improvements were significant. MiniMic2 showed an improvement in SRT of 22.2 dB compared to 10.0 dB for MiniMic1 (3 m). Digital wireless transmission systems (i.e. MiniMic) offer a statistically and clinically significant improvement in speech perception in challenging, realistic listening conditions.

  18. Digitally controlled active noise reduction with integrated speech communication

    NARCIS (Netherlands)

    Steeneken, H.J.M.; Verhave, J.A.

    2004-01-01

    Active noise reduction is a successful addition to passive ear-defenders for improvement of the sound attenuation at low frequencies. Design and assessment methods are discussed, focused on subjective and objective attenuation measurements, stability, and high noise level applications. Active noise

  19. Facilitation of Retention by White Noise

    Science.gov (United States)

    Baumeister, Alfred A.; Kistler, Doris

    1975-01-01

    This study attempted to determine if white noise (an arousing stimulus), when presented at the time of recall, facilitates performance of second and fifth grade students, and if this effect generalizes across different kinds of learning tasks. Findings indicate that white noise produces improvements in performance in both age groups. (GO)

  20. Noise and Quality of Life

    Directory of Open Access Journals (Sweden)

    Michael D. Seidman

    2010-10-01

    Full Text Available Noise is defined as an unwanted sound or a combination of sounds that has adverse effects on health. These effects can manifest in the form of physiologic damage or psychological harm through a variety of mechanisms. Chronic noise exposure can cause permanent threshold shifts and loss of hearing in specific frequency ranges. Noise induced hearing loss (NIHL is thought to be one of the major causes of preventable hearing loss. Approximately 10 million adults and 5.2 million children in the US are already suffering from irreversible noise induced hearing impairment and thirty million more are exposed to dangerous levels of noise each day. The mechanisms of NIHL have yet to be fully identified, but many studies have enhanced our understanding of this process. The role of oxidative stress in NIHL has been extensively studied. There is compelling data to suggest that this damage may be mitigated through the implementation of several strategies including anti-oxidant, anti-ICAM 1 Ab, and anti JNK intervention. The psychological effects of noise are usually not well characterized and often ignored. However, their effect can be equally devastating and may include hypertension, tachycardia, increased cortisol release and increased physiologic stress. Collectively, these effects can have severe adverse consequences on daily living and globally on economic production. This article will review the physiologic and psychologic consequences of noise and its effect on quality of life.

  1. Objective Measures of Listening Effort: Effects of Background Noise and Noise Reduction

    Science.gov (United States)

    Sarampalis, Anastasios; Kalluri, Sridhar; Edwards, Brent; Hafter, Ervin

    2009-01-01

    Purpose: This work is aimed at addressing a seeming contradiction related to the use of noise-reduction (NR) algorithms in hearing aids. The problem is that although some listeners claim a subjective improvement from NR, it has not been shown to improve speech intelligibility, often even making it worse. Method: To address this, the hypothesis…

  2. Self-masking noise subtraction (SMNS) in digital X-ray tomosynthesis for the improvement of tomographic image quality

    International Nuclear Information System (INIS)

    Oh, J.E.; Cho, H.S.; Choi, S.I.; Park, Y.O.; Lee, M.S.; Cho, H.M.; Yang, Y.J.; Je, U.K.; Woo, T.H.; Lee, H.K.

    2011-01-01

    In this paper, we proposed a simple and effective reconstruction algorithm, the so-called self-masking noise subtraction (SMNS), in digital X-ray tomosynthesis to reduce the tomographic blur that is inherent in the conventional tomosynthesis based upon the shift-and-add (SAA) method. Using the SAA and the SMNS algorithms, we investigated the influence of tomographic parameters such as tomographic angle (θ) and angle step (Δθ) on the image quality, measuring the signal-difference-to-noise ratio (SDNR). Our simulation results show that the proposed algorithm seems to be efficient in reducing the tomographic blur and, thus, improving image sharpness. We expect the simulation results to be useful for the optimal design of a digital X-ray tomosynthesis system for our ongoing application of nondestructive testing (NDT).

  3. Improved Scheduling Mechanisms for Synchronous Information and Energy Transmission.

    Science.gov (United States)

    Qin, Danyang; Yang, Songxiang; Zhang, Yan; Ma, Jingya; Ding, Qun

    2017-06-09

    Wireless energy collecting technology can effectively reduce the network time overhead and prolong the wireless sensor network (WSN) lifetime. However, the traditional energy collecting technology cannot achieve the balance between ergodic channel capacity and average collected energy. In order to solve the problem of the network transmission efficiency and the limited energy of wireless devices, three improved scheduling mechanisms are proposed: improved signal noise ratio (SNR) scheduling mechanism (IS2M), improved N-SNR scheduling mechanism (INS2M) and an improved Equal Throughput scheduling mechanism (IETSM) for different channel conditions to improve the whole network performance. Meanwhile, the average collected energy of single users and the ergodic channel capacity of three scheduling mechanisms can be obtained through the order statistical theory in Rayleig, Ricean, Nakagami- m and Weibull fading channels. It is concluded that the proposed scheduling mechanisms can achieve better balance between energy collection and data transmission, so as to provide a new solution to realize synchronous information and energy transmission for WSNs.

  4. Hearing aid noise suppression and working memory function

    DEFF Research Database (Denmark)

    Neher, Tobias; Wagener, Kirsten C.; Fischer, Rosa-Linde

    2018-01-01

    OBJECTIVE: Research findings concerning the relation between benefit from hearing aid (HA) noise suppression and working memory function are inconsistent. The current study thus investigated the effects of three noise suppression algorithms on auditory working memory and the relation with reading......-to-noise ratio (SNR) improvement. Auditory working memory was assessed at +6 dB SNR using listening span and N-back paradigms. STUDY SAMPLE: Twenty experienced HA users ages 55-80 with large differences in reading span. RESULTS: For the listening span measurements, there was an influence of HA setting....... CONCLUSIONS: HA noise suppression may affect the recognition and recall of speech at positive SNRs, irrespective of individual reading span. Future work should improve the reliability of the auditory working memory measurements....

  5. Noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Mariola Sliwinska-Kowalska

    2012-01-01

    Full Text Available Noise-induced hearing loss (NIHL still remains a problem in developed countries, despite reduced occupational noise exposure, strict standards for hearing protection and extensive public health awareness campaigns. Therefore NIHL continues to be the focus of noise research activities. This paper summarizes progress achieved recently in our knowledge of NIHL. It includes papers published between the years 2008-2011 (in English, which were identified by a literature search of accessible medical and other relevant databases. A substantial part of this research has been concerned with the risk of NIHL in the entertainment sector, particularly in professional, orchestral musicians. There are also constant concerns regarding noise exposure and hearing risk in "hard to control" occupations, such as farming and construction work. Although occupational noise has decreased since the early 1980s, the number of young people subject to social noise exposure has tripled. If the exposure limits from the Noise at Work Regulations are applied, discotheque music, rock concerts, as well as music from personal music players are associated with the risk of hearing loss in teenagers and young adults. Several recent research studies have increased the understanding of the pathomechanisms of acoustic trauma, the genetics of NIHL, as well as possible dietary and pharmacologic otoprotection in acoustic trauma. The results of these studies are very promising and offer grounds to expect that targeted therapies might help prevent the loss of sensory hair cells and protect the hearing of noise-exposed individuals. These studies emphasize the need to launch an improved noise exposure policy for hearing protection along with developing more efficient norms of NIHL risk assessment.

  6. Improved Density Based Spatial Clustering of Applications of Noise Clustering Algorithm for Knowledge Discovery in Spatial Data

    Directory of Open Access Journals (Sweden)

    Arvind Sharma

    2016-01-01

    Full Text Available There are many techniques available in the field of data mining and its subfield spatial data mining is to understand relationships between data objects. Data objects related with spatial features are called spatial databases. These relationships can be used for prediction and trend detection between spatial and nonspatial objects for social and scientific reasons. A huge data set may be collected from different sources as satellite images, X-rays, medical images, traffic cameras, and GIS system. To handle this large amount of data and set relationship between them in a certain manner with certain results is our primary purpose of this paper. This paper gives a complete process to understand how spatial data is different from other kinds of data sets and how it is refined to apply to get useful results and set trends to predict geographic information system and spatial data mining process. In this paper a new improved algorithm for clustering is designed because role of clustering is very indispensable in spatial data mining process. Clustering methods are useful in various fields of human life such as GIS (Geographic Information System, GPS (Global Positioning System, weather forecasting, air traffic controller, water treatment, area selection, cost estimation, planning of rural and urban areas, remote sensing, and VLSI designing. This paper presents study of various clustering methods and algorithms and an improved algorithm of DBSCAN as IDBSCAN (Improved Density Based Spatial Clustering of Application of Noise. The algorithm is designed by addition of some important attributes which are responsible for generation of better clusters from existing data sets in comparison of other methods.

  7. Occupational Noise Reduction in CNC Striping Process

    Science.gov (United States)

    Mahmad Khairai, Kamarulzaman; Shamime Salleh, Nurul; Razlan Yusoff, Ahmad

    2018-03-01

    Occupational noise hearing loss with high level exposure is common occupational hazards. In CNC striping process, employee that exposed to high noise level for a long time as 8-hour contributes to hearing loss, create physical and psychological stress that reduce productivity. In this paper, CNC stripping process with high level noises are measured and reduced to the permissible noise exposure. First condition is all machines shutting down and second condition when all CNC machine under operations. For both conditions, noise exposures were measured to evaluate the noise problems and sources. After improvement made, the noise exposures were measured to evaluate the effectiveness of reduction. The initial average noise level at the first condition is 95.797 dB (A). After the pneumatic system with leakage was solved, the noise reduced to 55.517 dB (A). The average noise level at the second condition is 109.340 dB (A). After six machines were gathered at one area and cover that area with plastic curtain, the noise reduced to 95.209 dB (A). In conclusion, the noise level exposure in CNC striping machine is high and exceed the permissible noise exposure can be reduced to acceptable levels. The reduction of noise level in CNC striping processes enhanced productivity in the industry.

  8. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    Science.gov (United States)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  9. Computational reduction of specimen noise to enable improved thermography characterization of flaws in graphite polymer composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-05-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  10. Computational Reduction of Specimen Noise to Enable Improved Thermography Characterization of Flaws in Graphite Polymer Composites

    Science.gov (United States)

    Winfree, William P.; Howell, Patricia A.; Zalameda, Joseph N.

    2014-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites are often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These result in a "noise" floor that increases the difficulty of detecting and characterizing deeper flaws. A method is presented for computationally removing a significant amount of the "noise" from near surface porosity by diffusing the early time response, then subtracting it from subsequent responses. Simulations of the thermal response of a composite are utilized in defining the limitations of the technique. This method for reducing the data is shown to give considerable improvement characterizing both the size and depth of damage. Examples are shown for data acquired on specimens with fabricated delaminations and impact damage.

  11. Mapping Urban Environmental Noise Using Smartphones

    Directory of Open Access Journals (Sweden)

    Jinbo Zuo

    2016-10-01

    Full Text Available Noise mapping is an effective method of visualizing and accessing noise pollution. In this paper, a noise-mapping method based on smartphones to effectively and easily measure environmental noise is proposed. By using this method, a noise map of an entire area can be created using limited measurement data. To achieve the measurement with certain precision, a set of methods was designed to calibrate the smartphones. Measuring noise with mobile phones is different from the traditional static observations. The users may be moving at any time. Therefore, a method of attaching an additional microphone with a windscreen is proposed to reduce the wind effect. However, covering an entire area is impossible. Therefore, an interpolation method is needed to achieve full coverage of the area. To reduce the influence of spatial heterogeneity and improve the precision of noise mapping, a region-based noise-mapping method is proposed in this paper, which is based on the distribution of noise in different region types tagged by volunteers, to interpolate and combine them to create a noise map. To validate the effect of the method, a comparison of the interpolation results was made to analyse our method and the ordinary Kriging method. The result shows that our method is more accurate in reflecting the local distribution of noise and has better interpolation precision. We believe that the proposed noise-mapping method is a feasible and low-cost noise-mapping solution.

  12. Effects of background noise on total noise annoyance

    Science.gov (United States)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  13. Helicopter internal noise control: Three case histories

    Science.gov (United States)

    Edwards, B. D.; Cox, C. R.

    1978-01-01

    Case histories are described in which measurable improvements in the cabin noise environments of the Bell 214B, 206B, and 222 were realized. These case histories trace the noise control efforts followed in each vehicle. Among the design approaches considered, the addition of a fluid pulsation damper in a hydraulic system and the installation of elastomeric engine mounts are highlighted. It is concluded that substantial weight savings result when the major interior noise sources are controlled by design, both in altering the noise producing mechanism and interrupting the sound transmission paths.

  14. Waveform correlation and coherence of short-period seismic noise within Gauribidanur array with implications for event detection

    International Nuclear Information System (INIS)

    Bhadauria, Y.S.; Arora, S.K.

    1995-01-01

    In continuation with our effort to model the short-period micro seismic noise at the seismic array at Gauribidanur (GBA), we have examined in detail time-correlation and spectral coherence of the noise field within the array space. This has implications of maximum possible improvement in signal-to-noise ratio (SNR) relevant to event detection. The basis of this study is about a hundred representative wide-band noise samples collected from GBA throughout the year 1992. Both time-structured correlation as well as coherence of the noise waveforms are found to be practically independent of the inter element distances within the array, and they exhibit strong temporal and spectral stability. It turns out that the noise is largely incoherent at frequencies ranging upwards from 2 Hz; the coherency coefficient tends to increase in the lower frequency range attaining a maximum of 0.6 close to 0.5 Hz. While the maximum absolute cross-correlation also diminishes with increasing frequency, the zero-lag cross-correlation is found to be insensitive to frequency filtering regardless of the pass band. An extremely small value of -0.01 of the zero-lag correlation and a comparatively higher year-round average estimate at 0.15 of the maximum absolute time-lagged correlation yields an SNR improvement varying between a probable high of 4.1 and a low of 2.3 for the full 20-element array. 19 refs., 6 figs

  15. Alpha particle collective Thomson scattering in TFTR

    International Nuclear Information System (INIS)

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J.; Bindslev, H.

    1993-01-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques

  16. Maximizing noise energy for noise-masking studies.

    Science.gov (United States)

    Jules Étienne, Cédric; Arleo, Angelo; Allard, Rémy

    2017-08-01

    Noise-masking experiments are widely used to investigate visual functions. To be useful, noise generally needs to be strong enough to noticeably impair performance, but under some conditions, noise does not impair performance even when its contrast approaches the maximal displayable limit of 100 %. To extend the usefulness of noise-masking paradigms over a wider range of conditions, the present study developed a noise with great masking strength. There are two typical ways of increasing masking strength without exceeding the limited contrast range: use binary noise instead of Gaussian noise or filter out frequencies that are not relevant to the task (i.e., which can be removed without affecting performance). The present study combined these two approaches to further increase masking strength. We show that binarizing the noise after the filtering process substantially increases the energy at frequencies within the pass-band of the filter given equated total contrast ranges. A validation experiment showed that similar performances were obtained using binarized-filtered noise and filtered noise (given equated noise energy at the frequencies within the pass-band) suggesting that the binarization operation, which substantially reduced the contrast range, had no significant impact on performance. We conclude that binarized-filtered noise (and more generally, truncated-filtered noise) can substantially increase the energy of the noise at frequencies within the pass-band. Thus, given a limited contrast range, binarized-filtered noise can display higher energy levels than Gaussian noise and thereby widen the range of conditions over which noise-masking paradigms can be useful.

  17. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  18. Longitudinal Schottky noise of intense beam

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1990-01-01

    Some phenomena, which can be observed in the longitudinal Schottky spectra in storage ring with electron cooling as well as some technical details, which can be useful for the models of fitting are reviewed. Results shows that both the spectra and the power of the Schottky noise of the coasting beam are very sensitive to collective behaviour of the beam. This can be used for fitting of Schottky noise measurements and recalculation of beam parameters, parameters of cooling device. 9 refs.; 4 figs

  19. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  20. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs.

    Science.gov (United States)

    Zhang, Chunxi; Wang, Lu; Gao, Shuang; Lin, Tie; Li, Xianmu

    2017-10-17

    Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors' noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn't white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  1. Noise reduction with complex bilateral filter.

    Science.gov (United States)

    Matsumoto, Mitsuharu

    2017-12-01

    This study introduces a noise reduction technique that uses a complex bilateral filter. A bilateral filter is a nonlinear filter originally developed for images that can reduce noise while preserving edge information. It is an attractive filter and has been used in many applications in image processing. When it is applied to an acoustical signal, small-amplitude noise is reduced while the speech signal is preserved. However, a bilateral filter cannot handle noise with relatively large amplitudes owing to its innate characteristics. In this study, the noisy signal is transformed into the time-frequency domain and the filter is improved to handle complex spectra. The high-amplitude noise is reduced in the time-frequency domain via the proposed filter. The features and the potential of the proposed filter are also confirmed through experiments.

  2. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Pasquinelli, Ralph J.; /Fermilab

    2001-12-18

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  3. Debuncher Momentum Cooling Systems Signal to Noise Measurements

    International Nuclear Information System (INIS)

    Pasquinelli, Ralph J.

    2001-01-01

    The Debuncher Momentum cooling systems were carefully measured for signal to noise. It was observed that cooling performance was not optimum. Closer inspection shows that the installed front-end bandpass filters are wider than the pickup response. (The original filters were specified to be wider so that none of the available bandwidth would be clipped.) The end result is excess noise is amplified and passed onto the kickers unimpeded, hence, reducing the achievable system gain. From this data, new filters should be designed to improve performance. New system bandwidths are specified on the data figures. Also included are the transfer function measurements that clearly show adjacent band response. In band 4 upper, the adjacent lobes are strong and out of phase. This is also degrading the system performance. The correlation between spectrum analyzer signal to noise and network analyzer system transfer functions is very strong. The table below has a calculation of expected improvement of front noise reduction by means of building new front-end bandpass filters. The calculation is based on a flat input noise spectrum and is a linear estimation of improvement. The listed 3dB bandwidths of the original filters are from measured data. The expected bandwidth is taken from the linear spectrum analyzer plots and is closer to a 10 dB bandwidth making the percentage improvement conservative. The signal to noise measurements are taken with circulating pbars in the Debuncher. One cooling system was measured at a time with all others off. Beam currents are below ten microamperes.

  4. A simulation to study the feasibility of improving the temporal resolution of LAGEOS geodynamic solutions by using a sequential process noise filter

    Science.gov (United States)

    Hartman, Brian Davis

    1995-01-01

    resolution of solutions obtained from standard sequential filtering methods and process noise sequential filtering methods shows that the accuracy is significantly improved using process noise. The results show that the positional accuracy of the orbit is improved as well. The temporal resolution of the resulting solutions are detailed, and conclusions drawn about the results. Benefits and drawbacks of using process noise filtering in this type of scenario are also identified.

  5. ON THE USE OF SHOT NOISE FOR PHOTON COUNTING

    Energy Technology Data Exchange (ETDEWEB)

    Zmuidzinas, Jonas, E-mail: jonas@caltech.edu [Division of Physics, Mathematics, and Astronomy, California Institute Institute of Technology, Pasadena, CA 91125 (United States)

    2015-11-01

    Lieu et al. have recently claimed that it is possible to substantially improve the sensitivity of radio-astronomical observations. In essence, their proposal is to make use of the intensity of the photon shot noise as a measure of the photon arrival rate. Lieu et al. provide a detailed quantum-mechanical calculation of a proposed measurement scheme that uses two detectors and conclude that this scheme avoids the sensitivity degradation that is associated with photon bunching. If correct, this result could have a profound impact on radio astronomy. Here I present a detailed analysis of the sensitivity attainable using shot-noise measurement schemes that use either one or two detectors, and demonstrate that neither scheme can avoid the photon bunching penalty. I perform both semiclassical and fully quantum calculations of the sensitivity, obtaining consistent results, and provide a formal proof of the equivalence of these two approaches. These direct calculations are furthermore shown to be consistent with an indirect argument based on a correlation method that establishes an independent limit to the sensitivity of shot-noise measurement schemes. Furthermore, these calculations are directly applicable to the regime of interest identified by Lieu et al. Collectively, these results conclusively demonstrate that the photon-bunching sensitivity penalty applies to shot-noise measurement schemes just as it does to ordinary photon counting, in contradiction to the fundamental claim made by Lieu et al. The source of this contradiction is traced to a logical fallacy in their argument.

  6. Noise reduction in long‐period seismograms by way of array summing

    Science.gov (United States)

    Ringler, Adam; Wilson, David; Storm, Tyler; Marshall, Benjamin T.; Hutt, Charles R.; Holland, Austin

    2016-01-01

    Long‐period (>100  s period) seismic data can often be dominated by instrumental noise as well as local site noise. When multiple collocated sensors are installed at a single site, it is possible to improve the overall station noise levels by applying stacking methods to their traces. We look at the noise reduction in long‐period seismic data by applying the time–frequency phase‐weighted stacking method of Schimmel and Gallart (2007) as well as the phase‐weighted stacking (PWS) method of Schimmel and Paulssen (1997) to four collocated broadband sensors installed in the quiet Albuquerque Seismological Laboratory underground vault. We show that such stacking methods can improve vertical noise levels by as much as 10 dB over the mean background noise levels at 400 s period, suggesting that greater improvements could be achieved with an array involving multiple sensors. We also apply this method to reduce local incoherent noise on horizontal seismic records of the 2 March 2016 Mw 7.8 Sumatra earthquake, where the incoherent noise levels at very long periods are similar in amplitude to the earthquake signal. To maximize the coherency, we apply the PWS method to horizontal data where relative azimuths between collocated sensors are estimated and compared with a simpler linear stack with no azimuthal rotation. Such methods could help reduce noise levels at various seismic stations where multiple high‐quality sensors have been deployed. Such small arrays may also provide a solution to improving long‐period noise levels at Global Seismographic Network stations.

  7. Active Noise Control for Dishwasher noise

    Science.gov (United States)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  8. A trade-off analysis design tool. Aircraft interior noise-motion/passenger satisfaction model

    Science.gov (United States)

    Jacobson, I. D.

    1977-01-01

    A design tool was developed to enhance aircraft passenger satisfaction. The effect of aircraft interior motion and noise on passenger comfort and satisfaction was modelled. Effects of individual aircraft noise sources were accounted for, and the impact of noise on passenger activities and noise levels to safeguard passenger hearing were investigated. The motion noise effect models provide a means for tradeoff analyses between noise and motion variables, and also provide a framework for optimizing noise reduction among noise sources. Data for the models were collected onboard commercial aircraft flights and specially scheduled tests.

  9. Development of a noise prediction model based on advanced fuzzy approaches in typical industrial workrooms.

    Science.gov (United States)

    Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir

    2014-01-01

    Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.

  10. Noise level estimation in weakly nonlinear slowly time-varying systems

    International Nuclear Information System (INIS)

    Aerts, J R M; Dirckx, J J J; Lataire, J; Pintelon, R

    2008-01-01

    Recently, a method using multisine excitation was proposed for estimating the frequency response, the nonlinear distortions and the disturbing noise of weakly nonlinear time-invariant systems. This method has been demonstrated on the measurement of nonlinear distortions in the vibration of acoustically driven systems such as a latex membrane, which is a good example of a time-invariant system [1]. However, not all systems are perfectly time invariant, e.g. biomechanical systems. This time variation can be misinterpreted as an elevated noise floor, and the classical noise estimation method gives a wrong result. Two improved methods to retrieve the correct noise information from the measurements are presented. Both of them make use of multisine excitations. First, it is demonstrated that the improved methods give the same result as the classical noise estimation method when applied to a time-invariant system (high-quality microphone membrane). Next, it is demonstrated that the new methods clearly give an improved estimate of the noise level on time-varying systems. As an application example results for the vibration response of an eardrum are shown

  11. Development of a Voice Activity Controlled Noise Canceller

    Science.gov (United States)

    Abid Noor, Ali O.; Samad, Salina Abdul; Hussain, Aini

    2012-01-01

    In this paper, a variable threshold voice activity detector (VAD) is developed to control the operation of a two-sensor adaptive noise canceller (ANC). The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE) convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods. PMID:22778667

  12. Development of a Voice Activity Controlled Noise Canceller

    Directory of Open Access Journals (Sweden)

    Aini Hussain

    2012-05-01

    Full Text Available In this paper, a variable threshold voice activity detector (VAD is developed to control the operation of a two-sensor adaptive noise canceller (ANC. The VAD prohibits the reference input of the ANC from containing some strength of actual speech signal during adaptation periods. The novelty of this approach resides in using the residual output from the noise canceller to control the decisions made by the VAD. Thresholds of full-band energy and zero-crossing features are adjusted according to the residual output of the adaptive filter. Performance evaluation of the proposed approach is quoted in terms of signal to noise ratio improvements as well mean square error (MSE convergence of the ANC. The new approach showed an improved noise cancellation performance when tested under several types of environmental noise. Furthermore, the computational power of the adaptive process is reduced since the output of the adaptive filter is efficiently calculated only during non-speech periods.

  13. Noise emissions of cooling towers; Geraeuschemissionen von Kuehltuermen

    Energy Technology Data Exchange (ETDEWEB)

    Hinkelmann, Dirk [Mueller-BBM GmbH, Gelsenkirchen (Germany)

    2013-09-01

    Cooling towers are often large structures with high sound emission. The impact of water drops on the water surface in the collecting basin leads to the generation of middle- and high-frequency noise that is emitted via the air intake opening and the outlet. In forced-draft cooling towers, additional noise is generated by drives and fans. The sound emissions can be predicted by means of empirical calculation models. In this way, noise control measures can be taken into account already at an early phase of planning. Different, proven measures for reduction of sound emissions are taken depending on cooling tower design. Regulations on noise acceptance testing for cooling towers are given in various standards. (orig.)

  14. The study for installing noise barrier on highway route no.9

    Directory of Open Access Journals (Sweden)

    Jiradecha Chaddanai

    2018-01-01

    Full Text Available Highway Route No. 9 is a Bangkok bypass motorway that aims to alleviate traffic congestion in greater Bangkok areas. Presently, it is found a rapid expansion of new communities residing along both side of Highway No. 9. To lessen the noise level, Department of Highways installed the noise barrier on the sensitive locations. However, people from communities living on both sides of highway still demand some additional noise pollution improvement. To improve the efficiency of using noise barriers and to promote environmental and social quality for the people on the sensitive communities along the highway route, the Department of Highways, therefore, designs a new technique for installing noise barrier on the sensitive areas, i.e. education institutions, temple, residential area. In addition, the mathematic model is applied to 12 selected locations of sensitive areas for monitoring the effectiveness of the new installation technique. The mathematic model is used for predict the future noise level after installation of noise barrier in year 2037. The results confirm that the appropriate height and width of noise barrier can improve the comfortable of the people on the sensitive area.

  15. Noise disturbance in open-plan study environments: a field study on noise sources, student tasks and room acoustic parameters.

    Science.gov (United States)

    Braat-Eggen, P Ella; van Heijst, Anne; Hornikx, Maarten; Kohlrausch, Armin

    2017-09-01

    The aim of this study is to gain more insight in the assessment of noise in open-plan study environments and to reveal correlations between noise disturbance experienced by students and the noise sources they perceive, the tasks they perform and the acoustic parameters of the open-plan study environment they work in. Data were collected in five open-plan study environments at universities in the Netherlands. A questionnaire was used to investigate student tasks, perceived sound sources and their perceived disturbance, and sound measurements were performed to determine the room acoustic parameters. This study shows that 38% of the surveyed students are disturbed by background noise in an open-plan study environment. Students are mostly disturbed by speech when performing complex cognitive tasks like studying for an exam, reading and writing. Significant but weak correlations were found between the room acoustic parameters and noise disturbance of students. Practitioner Summary: A field study was conducted to gain more insight in the assessment of noise in open-plan study environments at universities in the Netherlands. More than one third of the students was disturbed by noise. An interaction effect was found for task type, source type and room acoustic parameters.

  16. Suppression of 3D coherent noise by areal geophone array; Menteki jushinki array ni yoru sanjigen coherent noise no yokusei

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, R; Nakagami, K; Tanaka, H [Japan National Oil Corp., Tokyo (Japan). Technology Research Center

    1996-05-01

    For improving the quality of data collected by reflection seismic exploration, a lattice was deployed at one point of a traverse line, and the data therefrom were used to study the 3D coherent noise suppression effect of the areal array. The test was conducted at a Japan National Oil Corporation test field in Kashiwazaki City, Niigata Prefecture. The deployed lattice had 144 vibration receiving points arrayed at intervals of 8m composing an areal array, and 187 vibration generating points arrayed at intervals of 20m extending over 6.5km. Data was collected at the vibration receiving points in the lattice, each point acting independently from the others, and processed for the composition of a large areal array, with the said data from plural vibration receiving points added up therein. As the result of analysis of the records covering the data collected at the receiving points in the lattice, it is noted that an enlarged areal array leads to a higher S/N ratio and that different reflection waves are emphasized when the array direction is changed. 1 ref., 6 figs.

  17. Development of Trivia Game for speech understanding in background noise.

    Science.gov (United States)

    Schwartz, Kathryn; Ringleb, Stacie I; Sandberg, Hilary; Raymer, Anastasia; Watson, Ginger S

    2015-01-01

    Listening in noise is an everyday activity and poses a challenge for many people. To improve the ability to understand speech in noise, a computerized auditory rehabilitation game was developed. In Trivia Game players are challenged to answer trivia questions spoken aloud. As players progress through the game, the level of background noise increases. A study using Trivia Game was conducted as a proof-of-concept investigation in healthy participants. College students with normal hearing were randomly assigned to a control (n = 13) or a treatment (n = 14) group. Treatment participants played Trivia Game 12 times over a 4-week period. All participants completed objective (auditory-only and audiovisual formats) and subjective listening in noise measures at baseline and 4 weeks later. There were no statistical differences between the groups at baseline. At post-test, the treatment group significantly improved their overall speech understanding in noise in the audiovisual condition and reported significant benefits in their functional listening abilities. Playing Trivia Game improved speech understanding in noise in healthy listeners. Significant findings for the audiovisual condition suggest that participants improved face-reading abilities. Trivia Game may be a platform for investigating changes in speech understanding in individuals with sensory, linguistic and cognitive impairments.

  18. Modeling vehicle interior noise exposure dose on freeways: Considering weaving segment designs and engine operation.

    Science.gov (United States)

    Li, Qing; Qiao, Fengxiang; Yu, Lei; Shi, Junqing

    2017-07-05

    Vehicle interior noise functions at the dominant frequencies of 500 Hz below and around 800 Hz, which fall into the bands that may impair hearing. Recent studies demonstrated that freeway commuters are chronically exposed to vehicle interior noise, bearing the risk of hearing impairment. The interior noise evaluation process is mostly conducted in a laboratory environment. The test results and the developed noise models may underestimate or ignore the noise effects from dynamic traffic and road conditions and configuration. However, the interior noise is highly associated with vehicle maneuvering. The vehicle maneuvering on a freeway weaving segment is more complex because of its nature of conflicting areas. This research is intended to explore the risk of the interior noise exposure on freeway weaving segments for freeway commuters and to improve the interior noise estimation by constructing a decision tree learning-based noise exposure dose (NED) model, considering weaving segment designs and engine operation. On-road driving tests were conducted on 12 subjects on State Highway 288 in Houston, Texas. On-board Diagnosis (OBD) II, a smartphone-based roughness app, and a digital sound meter were used to collect vehicle maneuvering and engine information, International Roughness Index, and interior noise levels, respectively. Eleven variables were obtainable from the driving tests, including the length and type of a weaving segment, serving as predictors. The importance of the predictors was estimated by their out-of-bag-permuted predictor delta errors. The hazardous exposure level of the interior noise on weaving segments was quantified to hazard quotient, NED, and daily noise exposure level, respectively. Results showed that the risk of hearing impairment on freeway is acceptable; the interior noise level is the most sensitive to the pavement roughness and is subject to freeway configuration and traffic conditions. The constructed NED model shows high predictive

  19. An improved method based on wavelet coefficient correlation to filter noise in Doppler ultrasound blood flow signals

    Science.gov (United States)

    Wan, Renzhi; Zu, Yunxiao; Shao, Lin

    2018-04-01

    The blood echo signal maintained through Medical ultrasound Doppler devices would always include vascular wall pulsation signal .The traditional method to de-noise wall signal is using high-pass filter, which will also remove the lowfrequency part of the blood flow signal. Some scholars put forward a method based on region selective reduction, which at first estimates of the wall pulsation signals and then removes the wall signal from the mixed signal. Apparently, this method uses the correlation between wavelet coefficients to distinguish blood signal from wall signal, but in fact it is a kind of wavelet threshold de-noising method, whose effect is not so much ideal. In order to maintain a better effect, this paper proposes an improved method based on wavelet coefficient correlation to separate blood signal and wall signal, and simulates the algorithm by computer to verify its validity.

  20. Description of Anomalous Noise Events for Reliable Dynamic Traffic Noise Mapping in Real-Life Urban and Suburban Soundscapes

    Directory of Open Access Journals (Sweden)

    Francesc Alías

    2017-02-01

    Full Text Available Traffic noise is one of the main pollutants in urban and suburban areas. European authorities have driven several initiatives to study, prevent and reduce the effects of exposure of population to traffic. Recent technological advances have allowed the dynamic computation of noise levels by means of Wireless Acoustic Sensor Networks (WASN such as that developed within the European LIFE DYNAMAP project. Those WASN should be capable of detecting and discarding non-desired sound sources from road traffic noise, denoted as anomalous noise events (ANE, in order to generate reliable noise level maps. Due to the local, occasional and diverse nature of ANE, some works have opted to artificially build ANE databases at the cost of misrepresentation. This work presents the production and analysis of a real-life environmental audio database in two urban and suburban areas specifically conceived for anomalous noise events’ collection. A total of 9 h 8 min of labelled audio data is obtained differentiating among road traffic noise, background city noise and ANE. After delimiting their boundaries manually, the acoustic salience of the ANE samples is automatically computed as a contextual signal-to-noise ratio (SNR. The analysis of the real-life environmental database shows high diversity of ANEs in terms of occurrences, durations and SNRs, as well as confirming both the expected differences between the urban and suburban soundscapes in terms of occurrences and SNRs, and the rare nature of ANE.

  1. Inference of physical phenomena from FFTF [Fast Flux Test Facility] noise analysis

    International Nuclear Information System (INIS)

    Thie, J.A.; Damiano, B.; Campbell, L.R.

    1989-01-01

    The source of features observed in noise spectra collected by an automated data collection system operated by the Oak Ridge National Laboratory at the Fast Flux Test Facility (FFTF) can be identified using a methodology based on careful data observation and intuition. When a large collection of data is available, as in this case, automatic pattern recognition and parameter storage and retrieval using a data base can be used to extract useful information. However, results can be limited to empirical signature comparison monitoring unless an effort is made to determine the noise sources. This paper describes the identification of several FFTF noise data phenomena and suggests how this understanding may lead to new or enhanced monitoring. 13 refs., 4 figs

  2. Improving the signal-to-noise ratio in ultrasound-modulated optical tomography by a lock-in amplifier

    Science.gov (United States)

    Zhu, Lili; Wu, Jingping; Lin, Guimin; Hu, Liangjun; Li, Hui

    2016-10-01

    With high spatial resolution of ultrasonic location and high sensitivity of optical detection, ultrasound-modulated optical tomography (UOT) is a promising noninvasive biological tissue imaging technology. In biological tissue, the ultrasound-modulated light signals are very weak and are overwhelmed by the strong unmodulated light signals. It is a difficulty and key to efficiently pick out the weak modulated light from strong unmodulated light in UOT. Under the effect of an ultrasonic field, the scattering light intensity presents a periodic variation as the ultrasonic frequency changes. So the modulated light signals would be escape from the high unmodulated light signals, when the modulated light signals and the ultrasonic signal are processed cross correlation operation by a lock-in amplifier and without a chopper. Experimental results indicated that the signal-to-noise ratio of UOT is significantly improved by a lock-in amplifier, and the higher the repetition frequency of pulsed ultrasonic wave, the better the signal-to-noise ratio of UOT.

  3. Reducing Statistical Noise in Airborne Gamma-Ray Data

    DEFF Research Database (Denmark)

    Hovgaard, Jens; Grasty, R. L.

    1997-01-01

    By using the Noise Adjusted Singular Value Decomposition (NASVD) technique it is possible to reconstruct the measured airborne gamma-ray spectra with a noise content that is significant smaller than the noise contained in the original measured spectra. The method can be used for improving the out...... the output of the data processing for example mapping of Th, U, and K distribution....

  4. Correlation techniques for the improvement of signal-to-noise ratio in measurements with stochastic processes

    CERN Document Server

    Reddy, V R; Reddy, T G; Reddy, P Y; Reddy, K R

    2003-01-01

    An AC modulation technique is described to convert stochastic signal variations into an amplitude variation and its retrieval through Fourier analysis. It is shown that this AC detection of signals of stochastic processes when processed through auto- and cross-correlation techniques improve the signal-to-noise ratio; the correlation techniques serve a similar purpose of frequency and phase filtering as that of phase-sensitive detection. A few model calculations applied to nuclear spectroscopy measurements such as Angular Correlations, Mossbauer spectroscopy and Pulse Height Analysis reveal considerable improvement in the sensitivity of signal detection. Experimental implementation of the technique is presented in terms of amplitude variations of harmonics representing the derivatives of normal spectra. Improved detection sensitivity to spectral variations is shown to be significant. These correlation techniques are general and can be made applicable to all the fields of particle counting where measurements ar...

  5. Notched audiograms and noise exposure history in older adults.

    Science.gov (United States)

    Nondahl, David M; Shi, Xiaoyu; Cruickshanks, Karen J; Dalton, Dayna S; Tweed, Ted S; Wiley, Terry L; Carmichael, Lakeesha L

    2009-12-01

    Using data from a population-based cohort study, we compared four published algorithms for identifying notched audiograms and compared their resulting classifications with noise exposure history. Four algorithms: (1) , (2) , (3) , and (4) were used to identify notched audiograms. Audiometric evaluations were collected as a part of the 10-yr follow-up examinations of the Epidemiology of Hearing Loss Study, in Beaver Dam, WI (2003-2005, N = 2395). Detailed noise exposure histories were collected by interview at the baseline examination (1993-1995) and updated at subsequent visits. An extensive history of occupational noise exposure, participation in noisy hobbies, and firearm usage was used to evaluate consistency of the notch classifications with the history of noise exposure. The prevalence of notched audiograms varied greatly by definition (31.7, 25.9, 47.2, and 11.7% for methods 1, 2, 3, and 4, respectively). In this cohort, a history of noise exposure was common (56.2% for occupational noise, 71.7% for noisy hobbies, 13.4% for firearms, and 81.2% for any of these three sources). Among participants with a notched audiogram, almost one-third did not have a history of occupational noise exposure (31.4, 33.0, 32.5, and 28.1% for methods 1, 2, 3, and 4, respectively), and approximately 11% did not have a history of exposure to any of the three sources of noise (11.5, 13.6, 10.3, and 7.6%). Discordance was greater in women than in men. These results suggest that there is a poor agreement across existing algorithms for audiometric notches. In addition, notches can occur in the absence of a positive noise history. In the absence of an objective consensus definition of a notched audiogram and in light of the degree of discordance in women between noise history and notches by each of these algorithms, researchers should be cautious about classifying noise-induced hearing loss by notched audiograms.

  6. Peripheral tactile sensory perception of older adults improved using subsensory electrical noise stimulation.

    Science.gov (United States)

    Breen, Paul P; Serrador, Jorge M; O'Tuathail, Claire; Quinlan, Leo R; McIntosh, Caroline; ÓLaighin, Gearóid

    2016-08-01

    Loss of tactile sensory function is common with aging and can lead to numbness and difficulty with balance and gait. In previous work we found that subsensory electrical noise stimulation (SENS) applied to the tibial nerve improved tactile perception in the soles of the feet of healthy adults. In this work we aimed to determine if SENS remained effective in an older adult population with significant levels of sensory loss. Older adult subjects (N=8, female = 4, aged 65-80) had SENS applied via surface electrodes placed proximally to the medial and lateral malleoli. Vibration perception thresholds (VPTs) were assessed in six conditions, two control conditions (no SENS) and four SENS conditions (zero mean ±15µA, 30µA, 45µA and 60µA SD). VPT was assessed at three sites on the plantar aspect of the foot. Vibration perception was significantly improved in the presence of ±30µA SENS and by 16.2±2.4% (mean ± s.e.m.) when optimised for each subject. The improvement in perception was similar across all VPT test sites. Copyright © 2016 IPEM. All rights reserved.

  7. Research on noise and vibration reduction at DB to improve the environmental friendliness of railway traffic

    Science.gov (United States)

    Schulte-Werning, B.; Beier, M.; Degen, K. G.; Stiebel, D.

    2006-06-01

    One of the most prominent keywords relating to the environmental friendliness of railway traffic is noise reduction. Thus, the research and development programme "Low Noise Railway" of Deutsche Bahn (DB) is under way to treat the noise of the vehicles and infrastructure. The noise reduction of the trains and the rail/wheel system are being tackled within several projects. The direct noise experienced by railway-lineside residents due to train movements on the track can be reduced by minimising the sound radiation directly at the source. This is the first-choice solution, as it proves to be the most effective countermeasure regarding a cost-benefit relation. The limit values for the noise emission as specified in the technical specification for interoperability are an essential criterion to be confirmed during the procurement process of railway vehicles. A recently developed acoustical quality management scheme establishes systematic noise management to complete the vehicle procurement process in the phases of concept, design, construction and manufacturing. In freight traffic quiet railway wheels for block brake operation will play an important role in the future to meet the goal of a low-noise railway system. A first attempt to realise successfully the low-noise potential of such optimised wheels was performed, even if with mixed results. To show ways of reducing the noise of the cooling ventilation in locomotives, DB is a partner in a development project led by Siemens. A notable 8 dB(A) noise reduction was measured. Concerning bridge noise, a project was started based on an effective and cost-efficient combination of experiments and simulations in order to develop specifications for the construction of generic low-noise bridges.

  8. Noise analysis of a digital radiography system

    International Nuclear Information System (INIS)

    Arnold, B.A.; Scheibe, P.O.

    1984-01-01

    The sources of noise in a digital video subtraction angiography system were identified and analyzed. Signal-to-noise ratios of digital radiography systems were measured using the digital image data recorded in the computer. The major sources of noise include quantum noise, TV camera electronic noise, quantization noise from the analog-to-digital converter, time jitter, structure noise in the image intensifier, and video recorder electronic noise. A new noise source was identified, which results from the interplay of fixed pattern noise and the lack of image registration. This type of noise may result from image-intensifier structure noise in combination with TV camera time jitter or recorder time jitter. A similar noise source is generated from the interplay of patient absorption inhomogeneities and patient motion or image re-registration. Signal-to-noise ratios were measured for a variety of experimental conditions using subtracted digital images. Image-intensifier structure noise was shown to be a dominant noise source in unsubtracted images at medium to high radiation exposure levels. A total-system signal-to-noise ratio (SNR) of 750:1 was measured for an input exposure of 1 mR/frame at the image intensifier input. The effect of scattered radiation on subtracted image SNR was found to be greater than previously reported. The detail SNR was found to vary approximately as one plus the scatter degradation factor. Quantization error noise with 8-bit image processors (signal-to-noise ratio of 890:1) was shown to be of increased importance after recent improvements in TV cameras. The results of the analysis are useful both in the design of future digital radiography systems and the selection of optimum clinical techniques

  9. Fault-tolerant quantum cryptographic protocols with collective detection over the collective amplitude damping channel

    International Nuclear Information System (INIS)

    Huang, Wei; Su, Qi; Li, Yan-Bing; Sun, Ying

    2014-01-01

    In this paper, a quantum key distribution (QKD) protocol, which can be immune to collective amplitude damping noise, is proposed with collective detection strategy. Then a multi-party quantum secret sharing (MQSS) protocol and a quantum private comparison (QPC) protocol are introduced as two applications of the proposed QKD protocol. Except for one participant who is responsible for preparing and measuring quantum states, the rest of the users in each of these protocols only need to perform certain unitary operations due to the utilization of collective detection. Therefore, in addition to the advantage of being secure against collective amplitude damping noise, the proposed protocols still have the advantages of higher qubit efficiency and lower cost for implementation. Moreover, the security of these protocols is guaranteed by theorems on quantum operation discrimination. (papers)

  10. Noise pollution from wind turbine gears loudness of structural noise sources related to gears

    International Nuclear Information System (INIS)

    Crone, A.

    1995-04-01

    The purpose of the project has been to develop a method for determination of the structure-borne noise source strength of the gearbox in a typical modern Danish wind turbine construction, with special reference to the tonal noise emission form the turbines. Through study and evaluation of eight potential methods, a simple method has ben formulated. The method is based on measurements of the free vibration velocity level on the gearbox in a load test bed. The relation between this source strength measure and the gearbox related noise from wind turbines has been documented by measurements made during the project together with earlier measurements. The method is intended as a tool for the wind turbine manufacturer, for control of the gearbox related noise from the wind turbines, due to structure-borne noise from the gearbox. It may be used for preparation of specifications to the gearbox manufacturer on test procedure and acceptable source strength levels. Also, it may be used for evaluation of the transmission and radiation of gearbox related noise, for example in order to uncover weaknesses in a prototype turbine. Suggestions for adaptation and evolution of the method has been given, thereby improving the strength of the method for the individual wind turbine manufacturer. (au) 19 refs

  11. Jet engine noise and infrared plume correlation field campaign

    Science.gov (United States)

    Cunio, Phillip M.; Weber, Reed A.; Knobel, Kimberly R.; Smith, Christine; Draudt, Andy

    2015-09-01

    Jet engine noise can be a health hazard and environmental pollutant, particularly affecting personnel working in close proximity to jet engines, such as airline mechanics. Mitigating noise could reduce the potential for hearing loss in runway workers; however, there exists a very complex relationship between jet engine design parameters, operating conditions, and resultant noise power levels, and understanding and characterizing this relationship is a key step in mitigating jet engine noise effects. We demonstrate initial results highlighting the utility of high-speed imaging (hypertemporal imaging) in correlating the infrared signatures of jet engines with acoustic noise. This paper builds on prior theoretical analysis of jet engine infrared signatures and their potential relationships to jet engine acoustic emissions. This previous work identified the region of the jet plume most likely to emit both in infrared and in acoustic domains, and it prompted the investigation of wave packets as a physical construct tying together acoustic and infrared energy emissions. As a means of verifying these assertions, a field campaign to collect relevant data was proposed, and data collection was carried out with a bank of infrared instruments imaging a T700 turboshaft engine undergoing routine operational testing. The detection of hypertemporal signatures in association with acoustic signatures of jet engines enables the use of a new domain in characterizing jet engine noise. This may in turn enable new methods of predicting or mitigating jet engine noise, which could lead to socioeconomic benefits for airlines and other operators of large numbers of jet engines.

  12. Newborn physiological responses to noise in the neonatal unit.

    Science.gov (United States)

    Cardoso, Sandra Maria Schefer; Kozlowski, Lorena de Cássia; Lacerda, Adriana Bender Moreira de; Marques, Jair Mendes; Ribas, Angela

    2015-01-01

    The incorporation of technologies in the care of infants has contributed to increased survival; however, this has turned neonatal unit into a noisy environment. To evaluate the physiological and functional effects resulting from the exposure to noise on low-weight newborns in incubators in a neonatal unit. Prospective, observational, quantitative, exploratory, descriptive study. The adopted statistical method included tables of frequency, descriptive statistics, and Student's t-test, with a 0.05 level of significance. As data collection tools, the environmental noise and the noise inside of the incubator were evaluated, and the Assessment of Preterm Infant Behavior scale was used to assess premature newborn behavior and projected specifically to document the neurobehavioral functioning of preterm infants. The data collection occurred from September of 2012 to April of 2013; 61 low-weight newborns admitted in the neonatal unit and in incubators were observed. Significant differences in the variables heart rate and oxygen saturation were noted when newborns were exposed to noise. Low-weight neonates in incubators present physiological alterations when facing discomfort caused by environmental noise in neonatal units. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. Applying dynamic data collection to improve dry electrode system performance for a P300-based brain-computer interface

    Science.gov (United States)

    Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.

    2016-12-01

    Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.

  14. Influence of background noise on the performance in the odor sensitivity task: effects of noise type and extraversion.

    Science.gov (United States)

    Seo, Han-Seok; Hähner, Antje; Gudziol, Volker; Scheibe, Mandy; Hummel, Thomas

    2012-10-01

    Recent research demonstrated that background noise relative to silence impaired subjects' performance in a cognitively driven odor discrimination test. The current study aimed to investigate whether the background noise can also modulate performance in an odor sensitivity task that is less cognitively loaded. Previous studies have shown that the effect of background noise on task performance can be different in relation to degree of extraversion and/or type of noise. Accordingly, we wanted to examine whether the influence of background noise on the odor sensitivity task can be altered as a function of the type of background noise (i.e., nonverbal vs. verbal noise) and the degree of extraversion (i.e., introvert vs. extrovert group). Subjects were asked to conduct an odor sensitivity task in the presence of either nonverbal noise (e.g., party sound) or verbal noise (e.g., audio book), or silence. Overall, the subjects' mean performance in the odor sensitivity task was not significantly different across three auditory conditions. However, with regard to the odor sensitivity task, a significant interaction emerged between the type of background noise and the degree of extraversion. Specifically, verbal noise relative to silence significantly impaired or improved the performance of the odor sensitivity task in the introvert or extrovert group, respectively; the differential effect of introversion/extraversion was not observed in the nonverbal noise-induced task performance. In conclusion, our findings provide new empirical evidence that type of background noise and degree of extraversion play an important role in modulating the effect of background noise on subjects' performance in an odor sensitivity task.

  15. Noise properties of semiconductor waveguides with alternating sections of saturable gain and absorption

    DEFF Research Database (Denmark)

    Öhman, Filip; Bischoff, Svend; Tromborg, Bjarne

    We investigate the dynamical noise properties of saturable semiconductor devices for optical signal processing. A trade-off between noise redistribution and extinction ratio improvement has to be made for all-optical regeneration.......We investigate the dynamical noise properties of saturable semiconductor devices for optical signal processing. A trade-off between noise redistribution and extinction ratio improvement has to be made for all-optical regeneration....

  16. Innovative Technique for Noise Reduction in Spacecraft Doppler Tracking for Planetary Interior Studies

    Science.gov (United States)

    Notaro, V.; Armstrong, J. W.; Asmar, S.; Di Ruscio, A.; Iess, L.; Mariani, M., Jr.

    2017-12-01

    Precise measurements of spacecraft range rate, enabled by two-way microwave links, are used in radio science experiments for planetary geodesy including the determination of planetary gravitational fields for the purpose of modeling the interior structure. The final accuracies in the estimated gravity harmonic coefficients depend almost linearly on the Doppler noise in the link. We ran simulations to evaluate the accuracy improvement attainable in the estimation of the gravity harmonic coefficients of Venus (with a representative orbiter) and Mercury (with the BepiColombo spacecraft), using our proposed innovative noise-cancellation technique. We showed how the use of an additional, smaller and stiffer, receiving-only antenna could reduce the leading noise sources in a Ka-band two-way link such as tropospheric and antenna mechanical noises. This is achieved through a suitable linear combination (LC) of Doppler observables collected at the two antennas at different times. In our simulations, we considered a two-way link either from NASA's DSS 25 antenna in California or from ESA's DSA-3 antenna in Malargüe (Argentina). Moreover, we selected the 12-m Atacama Pathfinder EXperiment (APEX) in Chile as the three-way antenna and developed its tropospheric noise model using available atmospheric data and mechanical stability specifications. For an 8-hour Venus orbiter tracking pass in Chajnantor's winter/night conditions, the accuracy of the simulated LC Doppler observable at 10-s integration time is 6 mm/s, to be compared to 23 mm/s for the two-way link. For BepiColombo, we obtained 16.5 mm/s and 35 mm/s, respectively for the LC and two-way links. The benefits are even larger at longer time scales. Numerical simulations indicate that such noise reduction would provide significant improvements in the determination of Venus's and Mercury's gravity field coefficients. If implemented, this noise-reducing technique will be valuable for planetary geodesy missions, where the

  17. Pilot task-based assessment of noise levels among firefighters.

    Science.gov (United States)

    Neitzel, Rl; Hong, O; Quinlan, P; Hulea, R

    2013-11-01

    Over one million American firefighters are routinely exposed to various occupational hazards agents. While efforts have been made to identify and reduce some causes of injuries and illnesses among firefighters, relatively little has been done to evaluate and understand occupational noise exposures in this group. The purpose of this pilot study was to apply a task-based noise exposure assessment methodology to firefighting operations to evaluate potential noise exposure sources, and to use collected task-based noise levels to create noise exposure estimates for evaluation of risk of noise-induced hearing loss by comparison to the 8-hr and 24-hr recommended exposure limits (RELs) for noise of 85 and 80.3 dBA, respectively. Task-based noise exposures (n=100 measurements) were measured in three different fire departments (a rural department in Southeast Michigan and suburban and urban departments in Northern California). These levels were then combined with time-at-task information collected from firefighters to estimate 8-hr noise exposures for the rural and suburban fire departments (n=6 estimates for each department). Data from 24-hr dosimetry measurements and crude self-reported activity categories from the urban fire department (n=4 measurements) were used to create 24-hr exposure estimates to evaluate the bias associated with the task-based estimates. Task-based noise levels were found to range from 82-109 dBA, with the highest levels resulting from use of saws and pneumatic chisels. Some short (e.g., 30 min) sequences of common tasks were found to result in nearly an entire allowable daily exposure. The majority of estimated 8-hr and 24-hr exposures exceeded the relevant recommended exposure limit. Predicted 24-hr exposures showed substantial imprecision in some cases, suggesting the need for increased task specificity. The results indicate potential for overexposure to noise from a variety of firefighting tasks and equipment, and suggest a need for further

  18. Noise Pollution--An Overlooked Issue in the Science Curriculum.

    Science.gov (United States)

    Treagust, David F.; Kam, Goh Ah

    1985-01-01

    Discusses the need for including noise pollution in the science curriculum and describes 10 activities for improving students' awareness and understanding of and concern for noise and its effects. (Author/JN)

  19. Estimating annoyance to calculated wind turbine shadow flicker is improved when variables associated with wind turbine noise exposure are considered.

    Science.gov (United States)

    Voicescu, Sonia A; Michaud, David S; Feder, Katya; Marro, Leonora; Than, John; Guay, Mireille; Denning, Allison; Bower, Tara; van den Berg, Frits; Broner, Norm; Lavigne, Eric

    2016-03-01

    The Community Noise and Health Study conducted by Health Canada included randomly selected participants aged 18-79 yrs (606 males, 632 females, response rate 78.9%), living between 0.25 and 11.22 km from operational wind turbines. Annoyance to wind turbine noise (WTN) and other features, including shadow flicker (SF) was assessed. The current analysis reports on the degree to which estimating high annoyance to wind turbine shadow flicker (HAWTSF) was improved when variables known to be related to WTN exposure were also considered. As SF exposure increased [calculated as maximum minutes per day (SFm)], HAWTSF increased from 3.8% at 0 ≤ SFm wind turbine-related features, concern for physical safety, and noise sensitivity. Reported dizziness was also retained in the final model at p = 0.0581. Study findings add to the growing science base in this area and may be helpful in identifying factors associated with community reactions to SF exposure from wind turbines.

  20. A Baseband Ultra-Low Noise SiGe:C BiCMOS 0.25 µm Amplifier And Its Application For An On-Chip Phase-Noise Measurement Circuit

    OpenAIRE

    Godet , Sylvain; Tournier , Éric; Llopis , Olivier; Cathelin , Andreia; Juyon , Julien

    2009-01-01

    4 pages; International audience; The design and realization of an ultra-low noise operational amplifier is presented. Its applications are integrated low-frequency noise measurements in electronic devices and on-chip phase-noise measurement circuit. This paper discusses the SiGe:C BiCMOS 0.25 µm design improvements used for low noise applications. The proposed three-stage operational amplifier uses parallel bipolar transistor connection as input differential pair for low noise behavior. This ...

  1. Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil ''noise''

    International Nuclear Information System (INIS)

    Escadafal, R.; Huete, A.

    1991-01-01

    The variations of near-infrared red reflectance ratios of ten aridic soil samples were correlated with a ''redness index'' computed from red and green spectral bands. These variations have been shown to limit the performances of vegetation indices (NDVI and SAVI) in discriminating low vegetation covers. The redness index is used to adjust for this ''soil noise''. Dala simulated for vegetation densities of 5 to 15% cover showed that the sensitivity of the corrected vegetation indices was significantly improved. Specifically, the ''noise-corrected'' SAVI was able to assess vegetation amounts with an error four times smaller than the uncorrected NDVI. These promising results should lead to a significant improvement in assessing biomass in arid lands from remotely sensed data. (author) [fr

  2. Applications of aero-acoustic analysis to wind turbine noise control

    International Nuclear Information System (INIS)

    Lowson, M.V.

    1992-01-01

    Wind turbine noise generation mechanisms are essentially equivalent to the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. Basic sources for the wind turbine noise radiation process are defined, and their significance assessed. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. (author)

  3. Applications of aero-acoustic analysis to wind turbine noise control

    International Nuclear Information System (INIS)

    Lowson, M.

    1993-01-01

    Wind turbine noise generation mechanisms are essentially equivalent to the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. Basic sources for the wind turbine noise radiation process are defined, and their significance assessed. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. (author)

  4. An automatic classifier of emotions built from entropy of noise.

    Science.gov (United States)

    Ferreira, Jacqueline; Brás, Susana; Silva, Carlos F; Soares, Sandra C

    2017-04-01

    The electrocardiogram (ECG) signal has been widely used to study the physiological substrates of emotion. However, searching for better filtering techniques in order to obtain a signal with better quality and with the maximum relevant information remains an important issue for researchers in this field. Signal processing is largely performed for ECG analysis and interpretation, but this process can be susceptible to error in the delineation phase. In addition, it can lead to the loss of important information that is usually considered as noise and, consequently, discarded from the analysis. The goal of this study was to evaluate if the ECG noise allows for the classification of emotions, while using its entropy as an input in a decision tree classifier. We collected the ECG signal from 25 healthy participants while they were presented with videos eliciting negative (fear and disgust) and neutral emotions. The results indicated that the neutral condition showed a perfect identification (100%), whereas the classification of negative emotions indicated good identification performances (60% of sensitivity and 80% of specificity). These results suggest that the entropy of noise contains relevant information that can be useful to improve the analysis of the physiological correlates of emotion. © 2016 Society for Psychophysiological Research.

  5. Reducing Brain Signal Noise in the Prediction of Economic Choices: A Case Study in Neuroeconomics

    Directory of Open Access Journals (Sweden)

    Raanju R. Sundararajan

    2017-12-01

    Full Text Available In order to reduce the noise of brain signals, neuroeconomic experiments typically aggregate data from hundreds of trials collected from a few individuals. This contrasts with the principle of simple and controlled designs in experimental and behavioral economics. We use a frequency domain variant of the stationary subspace analysis (SSA technique, denoted as DSSA, to filter out the noise (nonstationary sources in EEG brain signals. The nonstationary sources in the brain signal are associated with variations in the mental state that are unrelated to the experimental task. DSSA is a powerful tool for reducing the number of trials needed from each participant in neuroeconomic experiments and also for improving the prediction performance of an economic choice task. For a single trial, when DSSA is used as a noise reduction technique, the prediction model in a food snack choice experiment has an increase in overall accuracy by around 10% and in sensitivity and specificity by around 20% and in AUC by around 30%, respectively.

  6. Edge enhancement and noise suppression for infrared image based on feature analysis

    Science.gov (United States)

    Jiang, Meng

    2018-06-01

    Infrared images are often suffering from background noise, blurred edges, few details and low signal-to-noise ratios. To improve infrared image quality, it is essential to suppress noise and enhance edges simultaneously. To realize it in this paper, we propose a novel algorithm based on feature analysis in shearlet domain. Firstly, as one of multi-scale geometric analysis (MGA), we introduce the theory and superiority of shearlet transform. Secondly, after analyzing the defects of traditional thresholding technique to suppress noise, we propose a novel feature extraction distinguishing image structures from noise well and use it to improve the traditional thresholding technique. Thirdly, with computing the correlations between neighboring shearlet coefficients, the feature attribute maps identifying the weak detail and strong edges are completed to improve the generalized unsharped masking (GUM). At last, experiment results with infrared images captured in different scenes demonstrate that the proposed algorithm suppresses noise efficiently and enhances image edges adaptively.

  7. Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection

    Science.gov (United States)

    Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu

    2018-05-01

    A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault

  8. Road traffic noise: self-reported noise annoyance versus GIS modelled road traffic noise exposure.

    Science.gov (United States)

    Birk, Matthias; Ivina, Olga; von Klot, Stephanie; Babisch, Wolfgang; Heinrich, Joachim

    2011-11-01

    self-reported road traffic noise annoyance is commonly used in epidemiological studies for assessment of potential health effects. Alternatively, some studies have used geographic information system (GIS) modelled exposure to road traffic noise as an objective parameter. The aim of this study was to analyse the association between noise exposure due to neighbouring road traffic and the noise annoyance of adults, taking other determinants into consideration. parents of 951 Munich children from the two German birth cohorts GINIplus and LISAplus reported their annoyance due to road traffic noise at home. GIS modelled road traffic noise exposure (L(den), maximum within a 50 m buffer) from the noise map of the city of Munich was available for all families. GIS-based calculated distance to the closest major road (≥10,000 vehicles per day) and questionnaire based-information about family income, parental education and the type of the street of residence were explored for their potential influence. An ordered logit regression model was applied. The noise levels (L(den)) and the reported noise annoyance were compared with an established exposure-response function. the correlation between noise annoyance and noise exposure (L(den)) was fair (Spearman correlation r(s) = 0.37). The distance to a major road and the type of street were strong predictors for the noise annoyance. The annoyance modelled by the established exposure-response function and that estimated by the ordered logit model were moderately associated (Pearson's correlation r(p) = 0.50). road traffic noise annoyance was associated with GIS modelled neighbouring road traffic noise exposure (L(den)). The distance to a major road and the type of street were additional explanatory factors of the noise annoyance appraisal.

  9. Green noise wall construction and evaluation : executive summary report.

    Science.gov (United States)

    2011-09-01

    Over the years, considerable research has been : performed towards effective and practical noise : abatement measures. Some of these techniques include : traffic management, use of quieter and noise absorbing : pavement surfaces, improving land use a...

  10. Improvement of material decomposition and image quality in dual-energy radiography by reducing image noise

    International Nuclear Information System (INIS)

    Lee, D.; Choi, S.; Kim, H.; Kim, H.-J.; Kim, Y.-S.; Choi, S.; Lee, H.; Jo, B.D.; Jeon, P.-H.; Kim, H.; Kim, D.

    2016-01-01

    Although digital radiography has been widely used for screening human anatomical structures in clinical situations, it has several limitations due to anatomical overlapping. To resolve this problem, dual-energy imaging techniques, which provide a method for decomposing overlying anatomical structures, have been suggested as alternative imaging techniques. Previous studies have reported several dual-energy techniques, each resulting in different image qualities. In this study, we compared three dual-energy techniques: simple log subtraction (SLS), simple smoothing of a high-energy image (SSH), and anti-correlated noise reduction (ACNR) with respect to material thickness quantification and image quality. To evaluate dual-energy radiography, we conducted Monte Carlo simulation and experimental phantom studies. The Geant 4 Application for Tomographic Emission (GATE) v 6.0 and tungsten anode spectral model using interpolation polynomials (TASMIP) codes were used for simulation studies and digital radiography, and human chest phantoms were used for experimental studies. The results of the simulation study showed improved image contrast-to-noise ratio (CNR) and coefficient of variation (COV) values and bone thickness estimation accuracy by applying the ACNR and SSH methods. Furthermore, the chest phantom images showed better image quality with the SSH and ACNR methods compared to the SLS method. In particular, the bone texture characteristics were well-described by applying the SSH and ACNR methods. In conclusion, the SSH and ACNR methods improved the accuracy of material quantification and image quality in dual-energy radiography compared to SLS. Our results can contribute to better diagnostic capabilities of dual-energy images and accurate material quantification in various clinical situations.

  11. Judgments of aircraft noise in a traffic noise background

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  12. Influence of changes in surface layer properties on tire/pavement noise

    NARCIS (Netherlands)

    Li, M.; Van Keulen, W.; Ceylan, H.; Van de Ven, M.F.C.; Molenaar, A.A.A.

    2013-01-01

    This paper investigates changes in tire/pavement noise caused by variations in the road surface characteristics. This research is based on the analysis of noise and surface characteristics collected from sections with 25 mm thickness thin layer surfacings in the Netherlands. Investigations are first

  13. Active noise canceling system for mechanically cooled germanium radiation detectors

    Science.gov (United States)

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  14. Noise removal for medical X-ray images in wavelet domain

    International Nuclear Information System (INIS)

    Wang, Ling; Lu, Jianming; Li, Yeqiu; Yahagi, Takashi; Okamoto, Takahide

    2006-01-01

    Many important problems in engineering and science are well-modeled by Poisson noise, the noise of medical X-ray image is Poisson noise. In this paper, we propose a method of noise removal for degraded medical X-ray image using improved preprocessing and improved BayesShrink (IBS) method in wavelet domain. Firstly, we pre-process the medical X-ray image, Secondly, we apply the Daubechies (db) wavelet transform to medical X-ray image to acquire scaling and wavelet coefficients. Thirdly, we apply the proposed IBS method to process wavelet coefficients. Finally, we compute the inverse wavelet transform for the thresholded coefficeints. Experimental results show that the proposed method always outperforms traditional methods. (author)

  15. Use of local noise power spectrum and wavelet analysis in quantitative image quality assurance for EPIDs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soyoung [Department of Radiation Oncology, University Hospitals Case and Medical Center, Cleveland, Ohio 44106 (United States); Yan, Guanghua; Bassett, Philip; Samant, Sanjiv, E-mail: samant@ufl.edu [Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, Florida 32608 (United States); Gopal, Arun [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201 (United States)

    2016-09-15

    Purpose: To investigate the use of local noise power spectrum (NPS) to characterize image noise and wavelet analysis to isolate defective pixels and inter-subpanel flat-fielding artifacts for quantitative quality assurance (QA) of electronic portal imaging devices (EPIDs). Methods: A total of 93 image sets including custom-made bar-pattern images and open exposure images were collected from four iViewGT a-Si EPID systems over three years. Global quantitative metrics such as modulation transform function (MTF), NPS, and detective quantum efficiency (DQE) were computed for each image set. Local NPS was also calculated for individual subpanels by sampling region of interests within each subpanel of the EPID. The 1D NPS, obtained by radially averaging the 2D NPS, was fitted to a power-law function. The r-square value of the linear regression analysis was used as a singular metric to characterize the noise properties of individual subpanels of the EPID. The sensitivity of the local NPS was first compared with the global quantitative metrics using historical image sets. It was then compared with two commonly used commercial QA systems with images collected after applying two different EPID calibration methods (single-level gain and multilevel gain). To detect isolated defective pixels and inter-subpanel flat-fielding artifacts, Haar wavelet transform was applied on the images. Results: Global quantitative metrics including MTF, NPS, and DQE showed little change over the period of data collection. On the contrary, a strong correlation between the local NPS (r-square values) and the variation of the EPID noise condition was observed. The local NPS analysis indicated image quality improvement with the r-square values increased from 0.80 ± 0.03 (before calibration) to 0.85 ± 0.03 (after single-level gain calibration) and to 0.96 ± 0.03 (after multilevel gain calibration), while the commercial QA systems failed to distinguish the image quality improvement between the two

  16. Reduction of noise influence during the periodical inspection of the nuclear power plant

    International Nuclear Information System (INIS)

    Hikono, Masaru

    2002-01-01

    At the nuclear power plant under the regular inspection, the sound level and the worker's impression of the environmental noises were measured. The environmental noise was the level with a possibility to cause the noise-induced deafness and have the psychological influence on the workers such as ''Get irritated''. These results imply the necessity of the noise countermeasure. For the noise influence relaxation, we examined the effectiveness of ear protections (e.g., ear plugs) and the intelligibility improvement of the paging system, prepared the noise management manual and the educational leaflet for the support of worker's self-defense. The results of the examinations showed that ear plug was effective especially in the high-noise environment and that the improvement of paging system increased the intelligibility. (author)

  17. Designing a Sustainable Noise Mapping System Based on Citizen Scientists Smartphone Sensor Data.

    Directory of Open Access Journals (Sweden)

    Eunyoung Shim

    Full Text Available In this study, we attempted to assess the feasibility of collecting population health data via mobile devices. Specifically, we constructed noise maps based on sound information monitored by individuals' smartphones. We designed a sustainable way of creating noise maps that can overcome the shortcomings of existing station-based noise-monitoring systems. Three hundred and nine Seoul residents aged 20-49 years who used Android-based smartphones were recruited, and the subjects installed a special application that we developed for this study. This application collected information on sound and geographical location every 10 min for 7 days. Using GIS, we were able to construct various types of noise maps of Seoul (e.g., daytime/nighttime and weekdays/weekends using the information on sound and geographical location obtained via the users' smartphones. Despite the public health importance of noise management, a number of countries and cities lack a sustainable system to monitor noise. This pilot study showed the possibility of using the smartphones of citizen scientists as an economical and sustainable way of monitoring noise, particularly in an urban context in developing countries.

  18. The Ageing Effect of Mechanical Joints on the Tyre/Joint Noises Monitored by a Control Vehicle Method without Traffic Disturbance

    Directory of Open Access Journals (Sweden)

    C. K. Wong

    2013-01-01

    Full Text Available This paper studies the ageing effect of mechanical joints reflecting from the tyre/joint impacting noise by measuring the vehicle structure-borne noise change. Field data is collected applying two measurement methods suitable for newly installed and existing old expansion joints. The measurement methodology is improved by designing and applying a trailer for equipment installation. The main advantage of this method is not to disturb existing traffic by lane closure for measurement. Field measurements were conducted regularly for a study period up to 16 months after new joint replacement to monitor the variation of the structure-borne noise change inside a test vehicle while passing through mechanical joints. Empirical relationship is developed based on the field data of the roadside airborne noise change and the vehicle structure-borne noise change. The roadside tyre/joint noises could be converted using calibrated empirical formula. Key result findings include the following. (1 The vehicle structure-borne noise change is found smallest during the 3rd–6th months even lower than that measured when a new joint is installed. The structure-borne noise change then keeps increasing afterwards till the end of the study period. (2 Similar observations are found in all study cases incorporating various mechanical joint types and test vehicle types.

  19. Assessment and prediction of wind turbine noise

    International Nuclear Information System (INIS)

    Lowson, M.V.

    1993-01-01

    The significance of basic aerodynamic noise sources for wind turbine noise are assessed, using information on the aero-acoustic mechanisms of other rotors, which have been studied in depth for many years. From the analysis, areas of potential improvement in wind turbine noise prediction are defined. Suggestions are made for approaches to wind turbine noise control which separate the noise problems at cut-in from those at rated power. Some of these offer the possibility of noise reduction without unfavourable effects on performance. Based on this analysis, a new model for prediction of wind turbine noise is presented and comparisons made between prediction and experiment. The model is based on well established aeroacoustic theory and published laboratory data for the two principal sources, inflow turbulence and boundary layer trailing edge interaction. The new method gives good agreement with experiment with the case studied so far. Parametric trends and sensitivities for the model are presented. Comparisons with previous prediction methods are also given. A consequence of the new model is to put more emphasis on boundary layer trailing edge interaction as a noise source. There are prospects for reducing noise from this source detail changes to the wind turbine design. (author)

  20. Optimal Noise Enhanced Signal Detection in a Unified Framework

    Directory of Open Access Journals (Sweden)

    Ting Yang

    2016-06-01

    Full Text Available In this paper, a new framework for variable detectors is formulated in order to solve different noise enhanced signal detection optimal problems, where six different disjoint sets of detector and discrete vector pairs are defined according to the two inequality-constraints on detection and false-alarm probabilities. Then theorems and algorithms constructed based on the new framework are presented to search the optimal noise enhanced solutions to maximize the relative improvements of the detection and the false-alarm probabilities, respectively. Further, the optimal noise enhanced solution of the maximum overall improvement is obtained based on the new framework and the relationship among the three maximums is presented. In addition, the sufficient conditions for improvability or non-improvability under the two certain constraints are given. Finally, numerous examples are presented to illustrate the theoretical results and the proofs of the main theorems are given in the Appendix.

  1. The Use of the Kurtosis-Adjusted Cumulative Noise Exposure Metric in Evaluating the Hearing Loss Risk for Complex Noise.

    Science.gov (United States)

    Xie, Hong-Wei; Qiu, Wei; Heyer, Nicholas J; Zhang, Mei-Bian; Zhang, Peng; Zhao, Yi-Ming; Hamernik, Roger P

    2016-01-01

    matric. Multiple linear regression analysis among complex exposed workers demonstrated that the correlation between HTL3,4,6 and CNE controlling for age was improved when using the kurtosis-adjusted CNE compared with the unadjusted CNE (R = 0.386 versus 0.350) and that noise accounted for a greater proportion of hearing loss. In addition, although dose-response curves for AHFNIHL were distinctly different when using unadjusted CNE, they overlapped when using the kurtosis-adjusted CNE. For the same exposure level, the prevalence of NIHL is greater in workers exposed to complex noise environments than in workers exposed to a continuous noise. Kurtosis adjustment of CNE improved the correlation with NIHL and provided a single metric for dose-response effects across different types of noise. The kurtosis-adjusted CNE may be a reasonable candidate for use in NIHL risk assessment across a wide variety of noise environments.

  2. The effects of acoustical refurbishment of classrooms on teachers’ perceived noise exposure and noise-related health symptoms

    DEFF Research Database (Denmark)

    Kristiansen, Jesper; Lund, Søren Peter; Persson, Roger

    2015-01-01

    lessons with circa 2 dB(A) in both schools. Conclusion: The acoustical refurbishment was associated with a reduction in classroom reverberation time and activity sound levels in both schools. The acoustical refurbishment was associated with a reduction in the teachers’ perceived noise exposure...... of RT and activity sound levels were measured before and after refurbishment. Data on perceived noise exposure, disturbance attributed to different noise sources, voice symptoms, and fatigue after work were collected over a year in a total of six consecutive questionnaires. Results: Refurbished......, the mean classroom reverberation time was 0.68 (school A) and 0.57 (school B) and 0.55 s in sham refurbished classrooms. After refurbishment, the RT was approximately 0.4 s in both schools. Activity sound level measurements confirmed that the intervention had reduced the equivalent sound levels during...

  3. Introduction to noise-resilient computing

    CERN Document Server

    Yanushkevich, Svetlana N; Tangim, Golam

    2013-01-01

    Noise abatement is the key problem of small-scaled circuit design. New computational paradigms are needed -- as these circuits shrink, they become very vulnerable to noise and soft errors. In this lecture, we present a probabilistic computation framework for improving the resiliency of logic gates and circuits under random conditions induced by voltage or current fluctuation. Among many probabilistic techniques for modeling such devices, only a few models satisfy the requirements of efficient hardware implementation -- specifically, Boltzman machines and Markov Random Field (MRF) models. These

  4. Effects of occupational noise exposure on changes in blood pressure of workers

    Directory of Open Access Journals (Sweden)

    Hossein Ali Yousefi Rizi

    2013-01-01

    Full Text Available    BACKGROUND: In most industries, workers are exposed to loud noise. Noise is considered as a nonspecific biological stressor that have adverse effects on human physiology. It is associated with hypertension which is in turn one of the most important preventable risk factors of cardiovascular disorders. This study aimed to evaluate the effects of noise on changes of workers' blood pressure.    METHODS: This cross-sectional study was performed on 90 individuals who were exposed to noise at one of the industries in Isfahan, Iran. Noise levels (in dBA were measured by means of a sound level meter. Data was collected using a demographic questionnaire and physical examination. Blood pressure was measured by a sphygmomanometer at workplace. The collected data was analyzed by t-tests.    RESULTS: The workers aged 31.5 ± 5.2 years and were exposed to mean noise level of 97.5 ± 10.1 dBA which was significantly above the standard level (85 dBA.The relationships between blood pressure, heart rate, and noise level were not significant. However, Pearson’s correlation indicated systolic blood pressure to have significant correlations with age (correlation coefficient = 0.302 and work experience (correlation coefficient = 0.299.    CONCLUSION: Workers exposed to noise levels above the standard, especially in the metal industry but their blood pressures haven’t any associated with noise. it mention that any changes in blood pressure resulting from occupational noise are likely to be small, careful controls, large sample sizes, and long time exposure to noise would be take to identify significant effects.       Keywords: Noise Exposure, Blood Pressure, Young Workers, Cardiovascular Disease, Metal Industries

  5. Shinkansen noise: Research and achievements in countermeasures for Shinkansen noise

    Science.gov (United States)

    Kikuchi, I.

    1988-01-01

    In 1982, the Tohoku and Joetsu Shinkansen lines were opened. The result is the present Shinkansen network that runs through Japan from north to south, leading to a remarkable improvement in railway services, together with the provision of new, efficient connections with conventional lines. Since the opening of the Tokaido Shinkansen, the high utility of the Shinkansen as a high speed, large volume, and safe mode of transport has been gaining a high reputation. On the other hand, social demands for environmental preservation increased in strength with the advent of the period of Japan's high economic growth. Such demands were posed in the form of complaints about air and water pollution and noise from transportation. The problems of noise and vibration from Shinkansen train operation were posed mainly in relation to railway viaducts in urban areas. The Japanese National Railways (JNR) has made all-out efforts in technical development for noise reduction, obtained many achievements, and put them into practical use one by one on the Shinkansen lines. In the early stage of studies, there were many virgin areas for JNR staff, such as measurement technology, estimation methods, and noise alleviation technology. With the start of full-scale testing at a general test center in 1975, various studies and the development of effective measures made a great step forward. In March 1985, the maximum speed on the Tohoku Shinkansen was increased to 240 km/h, enhancing the Shinkansen reputation and resulting in a considerable growth of traffic. As a matter of course, new measures for noise reduction were taken for this line. In view of the history and results of voluminous studies over many years on the Shinkansen noise problem, and also of the roles and surrounding conditions of the Shinkansen as a mode of transport, however, new tasks are being posed concerning such aspects as how to accomplish environmental preservation in the future.

  6. Short wavelength limits of current shot noise suppression

    International Nuclear Information System (INIS)

    Nause, Ariel; Dyunin, Egor; Gover, Avraham

    2014-01-01

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect

  7. Short wavelength limits of current shot noise suppression

    Energy Technology Data Exchange (ETDEWEB)

    Nause, Ariel, E-mail: arielnau@post.tau.ac.il [Faculty of Exact Sciences, Department of Physics, Tel Aviv University, Tel Aviv (Israel); Dyunin, Egor; Gover, Avraham [Faculty of Engineering, Department of Physical Electronics, Tel Aviv University, Tel Aviv (Israel)

    2014-08-15

    Shot noise in electron beam was assumed to be one of the features beyond control of accelerator physics. Current results attained in experiments at Accelerator Test Facility in Brookhaven and Linac Coherent Light Source in Stanford suggest that the control of the shot noise in electron beam (and therefore of spontaneous radiation and Self Amplified Spontaneous Emission of Free Electron Lasers) is feasible at least in the visible range of the spectrum. Here, we present a general linear formulation for collective micro-dynamics of e-beam noise and its control. Specifically, we compare two schemes for current noise suppression: a quarter plasma wavelength drift section and a combined drift/dispersive (transverse magnetic field) section. We examine and compare their limits of applicability at short wavelengths via considerations of electron phase-spread and the related Landau damping effect.

  8. Effects of secondary loudspeaker properties on broadband feedforward active duct noise control.

    Science.gov (United States)

    Chan, Yum-Ji; Huang, Lixi; Lam, James

    2013-07-01

    Dependence of the performance of feedforward active duct noise control on secondary loudspeaker parameters is investigated. Noise reduction performance can be improved if the force factor of the secondary loudspeaker is higher. For example, broadband noise reduction improvement up to 1.6 dB is predicted by increasing the force factor by 50%. In addition, a secondary loudspeaker with a larger force factor was found to have quicker convergence in the adaptive algorithm in experiment. In simulations, noise reduction is improved in using an adaptive algorithm by using a secondary loudspeaker with a heavier moving mass. It is predicted that an extra broadband noise reduction of more than 7 dB can be gained using an adaptive filter if the force factor, moving mass and coil inductance of a commercially available loudspeaker are doubled. Methods to increase the force factor beyond those of commercially available loudspeakers are proposed.

  9. An inductorless wideband LNA with a new noise canceling technique

    OpenAIRE

    MOGHADAM, POURIA PAZHOUHESH; ABRISHAMIFAR, ADIB

    2017-01-01

    An inductorless wideband low-noise amplifier (LNA) employing a new noise canceling technique for multistandard applications is presented. The main amplifier has a cascode common gate structure, which provides good input impedance matching and isolation. The proposed noise canceling technique not only improves the noise figure and power gain but also embeds a g$_{m}$-boosting technique in itself, which reduces the power consumption of the main amplifier. Using current-steering and ...

  10. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    Science.gov (United States)

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  11. Reduction of noise influence during the periodical inspection of the nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Hikono, Masaru [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    At the nuclear power plant under the regular inspection, the sound level and the worker's impression of the environmental noises were measured. The environmental noise was the level with a possibility to cause the noise-induced deafness and have the psychological influence on the workers such as ''Get irritated''. These results imply the necessity of the noise countermeasure. For the noise influence relaxation, we examined the effectiveness of ear protections (e.g., ear plugs) and the intelligibility improvement of the paging system, prepared the noise management manual and the educational leaflet for the support of worker's self-defense. The results of the examinations showed that ear plug was effective especially in the high-noise environment and that the improvement of paging system increased the intelligibility. (author)

  12. Near-source noise suppression of AMT by compressive sensing and mathematical morphology filtering

    Science.gov (United States)

    Li, Guang; Xiao, Xiao; Tang, Jing-Tian; Li, Jin; Zhu, Hui-Jie; Zhou, Cong; Yan, Fa-Bao

    2017-12-01

    In deep mineral exploration, the acquisition of audio magnetotelluric (AMT) data is severely affected by ambient noise near the observation sites; This near-field noise restricts investigation depths. Mathematical morphological filtering (MMF) proved effective in suppressing large-scale strong and variably shaped noise, typically low-frequency noise, but can not deal with pulse noise of AMT data. We combine compressive sensing and MMF. First, we use MMF to suppress the large-scale strong ambient noise; second, we use the improved orthogonal match pursuit (IOMP) algorithm to remove the residual pulse noise. To remove the noise and protect the useful AMT signal, a redundant dictionary that matches with spikes and is insensitive to the useful signal is designed. Synthetic and field data from the Luzong field suggest that the proposed method suppresses the near-source noise and preserves the signal well; thus, better results are obtained that improve the output of either MMF or IOMP.

  13. Relationship between noise, dose, and pitch in cardiac multi-detector row CT.

    Science.gov (United States)

    Primak, Andrew N; McCollough, Cynthia H; Bruesewitz, Michael R; Zhang, Jie; Fletcher, Joel G

    2006-01-01

    In spiral computed tomography (CT), dose is always inversely proportional to pitch. However, the relationship between noise and pitch (and hence noise and dose) depends on the scanner type (single vs multi-detector row) and reconstruction mode (cardiac vs noncardiac). In single detector row spiral CT, noise is independent of pitch. Conversely, in noncardiac multi-detector row CT, noise depends on pitch because the spiral interpolation algorithm makes use of redundant data from different detector rows to decrease noise for pitch values less than 1 (and increase noise for pitch values > 1). However, in cardiac spiral CT, redundant data cannot be used because such data averaging would degrade the temporal resolution. Therefore, the behavior of noise versus pitch returns to the single detector row paradigm, with noise being independent of pitch. Consequently, since faster rotation times require lower pitch values in cardiac multi-detector row CT, dose is increased without a commensurate decrease in noise. Thus, the use of faster rotation times will improve temporal resolution, not alter noise, and increase dose. For a particular application, the higher dose resulting from faster rotation speeds should be justified by the clinical benefits of the improved temporal resolution. RSNA, 2006

  14. Noise diagnostic: An advanced technique in Cuba

    International Nuclear Information System (INIS)

    Aguilar, O.

    1992-01-01

    This paper examines the main steps of the noise analysis technique implementation in our country from 1988. The review identifies two main areas, improvements of Nuclear Power Plant operational surveillance techniques and non-nuclear industrial applications. Also reported are some of the on going researches programs including projects on noise analysis instrumentation developments at the Higher Institute for Nuclear Sciences and Technology

  15. Inter-symbol interference and beat noise in flexible data-rate coherent OCDMA and the BER improvement by using optical thresholding.

    Science.gov (United States)

    Wang, Xu; Wada, Naoya; Kitayama, Ken-Ichi

    2005-12-26

    Impairments of inter-symbol interference and beat noise in coherent time-spreading optical code-division-multiple-access are investigated theoretically and experimentally by sweeping the data-rate from 622 Mbps up to 10 Gbps with 511-chip superstructured fiber Bragg grating. The BER improvement by using optical thresholding technique has been verified in the experiment.

  16. Direct-reading dial for noise temperature and noise resistance

    DEFF Research Database (Denmark)

    Diamond, J.M.

    1967-01-01

    An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance.......An attenuator arrangement for a noise generator is described. The scheme permits direct reading of both noise resistance and noise temperature¿the latter with a choice of source resistance....

  17. Improving data collection, documentation, and workflow in a dementia screening study.

    Science.gov (United States)

    Read, Kevin B; LaPolla, Fred Willie Zametkin; Tolea, Magdalena I; Galvin, James E; Surkis, Alisa

    2017-04-01

    A clinical study team performing three multicultural dementia screening studies identified the need to improve data management practices and facilitate data sharing. A collaboration was initiated with librarians as part of the National Library of Medicine (NLM) informationist supplement program. The librarians identified areas for improvement in the studies' data collection, entry, and processing workflows. The librarians' role in this project was to meet needs expressed by the study team around improving data collection and processing workflows to increase study efficiency and ensure data quality. The librarians addressed the data collection, entry, and processing weaknesses through standardizing and renaming variables, creating an electronic data capture system using REDCap, and developing well-documented, reproducible data processing workflows. NLM informationist supplements provide librarians with valuable experience in collaborating with study teams to address their data needs. For this project, the librarians gained skills in project management, REDCap, and understanding of the challenges and specifics of a clinical research study. However, the time and effort required to provide targeted and intensive support for one study team was not scalable to the library's broader user community.

  18. Arduino-based noise robust online heart-rate detection.

    Science.gov (United States)

    Das, Sangita; Pal, Saurabh; Mitra, Madhuchhanda

    2017-04-01

    This paper introduces a noise robust real time heart rate detection system from electrocardiogram (ECG) data. An online data acquisition system is developed to collect ECG signals from human subjects. Heart rate is detected using window-based autocorrelation peak localisation technique. A low-cost Arduino UNO board is used to implement the complete automated process. The performance of the system is compared with PC-based heart rate detection technique. Accuracy of the system is validated through simulated noisy ECG data with various levels of signal to noise ratio (SNR). The mean percentage error of detected heart rate is found to be 0.72% for the noisy database with five different noise levels.

  19. Stochastic memory: getting memory out of noise

    Science.gov (United States)

    Stotland, Alexander; di Ventra, Massimiliano

    2011-03-01

    Memory circuit elements, namely memristors, memcapacitors and meminductors, can store information without the need of a power source. These systems are generally defined in terms of deterministic equations of motion for the state variables that are responsible for memory. However, in real systems noise sources can never be eliminated completely. One would then expect noise to be detrimental for memory. Here, we show that under specific conditions on the noise intensity memory can actually be enhanced. We illustrate this phenomenon using a physical model of a memristor in which the addition of white noise into the state variable equation improves the memory and helps the operation of the system. We discuss under which conditions this effect can be realized experimentally, discuss its implications on existing memory systems discussed in the literature, and also analyze the effects of colored noise. Work supported in part by NSF.

  20. An intervention for noise control of blast furnace in steel industry.

    Science.gov (United States)

    Golmohammadi, Rostam; Giahi, Omid; Aliabadi, Mohsen; Darvishi, Ebrahim

    2014-01-01

    Noise pollution is currently a major health risk factor for workers in industries. The aim of this study was to investigate noise pollution and implement a control intervention plan for blast furnace in a steel industry. The measurement of sound pressure level (SPL) along with frequency analysis was done with the sound-level-meter Cell-450. Personal noise exposure was performed using dosimeter TES-1345 calibrated with CEL-282. Before planning noise controls, acoustic insulation properties of the furnace control unit and workers' rest room were assessed. Control room and workers' rest room were redesigned in order to improve acoustical condition. The SPL before intervention around the Blast Furnace was 90.3 dB (L) and its dominant frequency was 4000 Hz. Besides, noise transmission loss of the control and rest rooms were 10.3 dB and 4.2 dB, respectively. After intervention, noise reduction rates in the control and rest rooms were 27.4 dB and 27.7 dB, respectively. The workers' noise dose before and after the intervention was 240% and less than 100%, respectively. Improvement the workroom acoustic conditions through noise insulation can be considered effective method for preventing workers exposure to harmful noise.

  1. Noise frame duration, masking potency and whiteness of temporal noise.

    Science.gov (United States)

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  2. Beneficial role of noise in artificial neural networks

    International Nuclear Information System (INIS)

    Monterola, Christopher; Saloma, Caesar; Zapotocky, Martin

    2008-01-01

    We demonstrate enhancement of neural networks efficacy to recognize frequency encoded signals and/or to categorize spatial patterns of neural activity as a result of noise addition. For temporal information recovery, noise directly added to the receiving neurons allow instantaneous improvement of signal-to-noise ratio [Monterola and Saloma, Phys. Rev. Lett. 2002]. For spatial patterns however, recurrence is necessary to extend and homogenize the operating range of a feed-forward neural network [Monterola and Zapotocky, Phys. Rev. E 2005]. Finally, using the size of the basin of attraction of the networks learned patterns (dynamical fixed points), a procedure for estimating the optimal noise is demonstrated

  3. Noise-robust speech triage.

    Science.gov (United States)

    Bartos, Anthony L; Cipr, Tomas; Nelson, Douglas J; Schwarz, Petr; Banowetz, John; Jerabek, Ladislav

    2018-04-01

    A method is presented in which conventional speech algorithms are applied, with no modifications, to improve their performance in extremely noisy environments. It has been demonstrated that, for eigen-channel algorithms, pre-training multiple speaker identification (SID) models at a lattice of signal-to-noise-ratio (SNR) levels and then performing SID using the appropriate SNR dependent model was successful in mitigating noise at all SNR levels. In those tests, it was found that SID performance was optimized when the SNR of the testing and training data were close or identical. In this current effort multiple i-vector algorithms were used, greatly improving both processing throughput and equal error rate classification accuracy. Using identical approaches in the same noisy environment, performance of SID, language identification, gender identification, and diarization were significantly improved. A critical factor in this improvement is speech activity detection (SAD) that performs reliably in extremely noisy environments, where the speech itself is barely audible. To optimize SAD operation at all SNR levels, two algorithms were employed. The first maximized detection probability at low levels (-10 dB ≤ SNR < +10 dB) using just the voiced speech envelope, and the second exploited features extracted from the original speech to improve overall accuracy at higher quality levels (SNR ≥ +10 dB).

  4. Ambient noise levels in the Taiwan region

    Science.gov (United States)

    Liang, W.; Liu, C.; Chen, R.; Huang, B.; Wu, F. T.; Wang, C.

    2008-12-01

    To characterize the island-wide background seismic noise in Taiwan, we estimate the power spectral density (PSD) at broadband stations of both the BATS (Broadband Array in Taiwan for Seismology) and the TAIGER experiment (Apr. 2006~Apr. 2008) for periods ranging from ~0.2 to 100 seconds. A new approach to calculate the probability density functions of noise power (PDFs, MaNamara and Buland, 2004) is used in this study. The results indicate that the cultural noise at higher frequencies is significant at populated area, which shows diurnal and weekly variation as what we expected. The noise power for microseisms centered at a period of ~5 seconds around the western costal plain show ~20dB higher than what observed at eastern Taiwan. This observation supports the inference that the coastal regions having narrow shelf with irregular coastlines are know to be especially efficient at radiating the predominat microseisms. Results from the linear array across central Taiwan demonstrate that the average noise power is quietest at the eastern Central Range. We have mapped the PDF mode for stations at various periods to see the spatial distribution of ambient noise levels, which could be used as the basic information for future station siting. Temporal variation of noise PSD is also present to provide a quantitative description of the seismic data quality collected by both BATS and TAIGER experiment. Some operational problems like base tilt, sensitivity change can be identified easily as well.

  5. Noise and communication: A three-year update

    Directory of Open Access Journals (Sweden)

    Anthony J Brammer

    2012-01-01

    Full Text Available Noise is omnipresent and impacts us all in many aspects of daily living. Noise can interfere with communication not only in industrial workplaces, but also in other work settings (e.g. open-plan offices, construction, and mining and within buildings (e.g. residences, arenas, and schools. The interference of noise with communication can have significant social consequences, especially for persons with hearing loss, and may compromise safety (e.g. failure to perceive auditory warning signals, influence worker productivity and learning in children, affect health (e.g. vocal pathology, noise-induced hearing loss, compromise speech privacy, and impact social participation by the elderly. For workers, attempts have been made to: 1 Better define the auditory performance needed to function effectively and to directly measure these abilities when assessing Auditory Fitness for Duty, 2 design hearing protection devices that can improve speech understanding while offering adequate protection against loud noises, and 3 improve speech privacy in open-plan offices. As the elderly are particularly vulnerable to the effects of noise, an understanding of the interplay between auditory, cognitive, and social factors and its effect on speech communication and social participation is also critical. Classroom acoustics and speech intelligibility in children have also gained renewed interest because of the importance of effective speech comprehension in noise on learning. Finally, substantial work has been made in developing models aimed at better predicting speech intelligibility. Despite progress in various fields, the design of alarm signals continues to lag behind advancements in knowledge. This summary of the last three years′ research highlights some of the most recent issues for the workplace, for older adults, and for children, as well as the effectiveness of warning sounds and models for predicting speech intelligibility. Suggestions for future work are

  6. Noise and communication: a three-year update.

    Science.gov (United States)

    Brammer, Anthony J; Laroche, Chantal

    2012-01-01

    Noise is omnipresent and impacts us all in many aspects of daily living. Noise can interfere with communication not only in industrial workplaces, but also in other work settings (e.g. open-plan offices, construction, and mining) and within buildings (e.g. residences, arenas, and schools). The interference of noise with communication can have significant social consequences, especially for persons with hearing loss, and may compromise safety (e.g. failure to perceive auditory warning signals), influence worker productivity and learning in children, affect health (e.g. vocal pathology, noise-induced hearing loss), compromise speech privacy, and impact social participation by the elderly. For workers, attempts have been made to: 1) Better define the auditory performance needed to function effectively and to directly measure these abilities when assessing Auditory Fitness for Duty, 2) design hearing protection devices that can improve speech understanding while offering adequate protection against loud noises, and 3) improve speech privacy in open-plan offices. As the elderly are particularly vulnerable to the effects of noise, an understanding of the interplay between auditory, cognitive, and social factors and its effect on speech communication and social participation is also critical. Classroom acoustics and speech intelligibility in children have also gained renewed interest because of the importance of effective speech comprehension in noise on learning. Finally, substantial work has been made in developing models aimed at better predicting speech intelligibility. Despite progress in various fields, the design of alarm signals continues to lag behind advancements in knowledge. This summary of the last three years' research highlights some of the most recent issues for the workplace, for older adults, and for children, as well as the effectiveness of warning sounds and models for predicting speech intelligibility. Suggestions for future work are also discussed.

  7. High-speed noise-free optical quantum memory

    Science.gov (United States)

    Kaczmarek, K. T.; Ledingham, P. M.; Brecht, B.; Thomas, S. E.; Thekkadath, G. S.; Lazo-Arjona, O.; Munns, J. H. D.; Poem, E.; Feizpour, A.; Saunders, D. J.; Nunn, J.; Walmsley, I. A.

    2018-04-01

    Optical quantum memories are devices that store and recall quantum light and are vital to the realization of future photonic quantum networks. To date, much effort has been put into improving storage times and efficiencies of such devices to enable long-distance communications. However, less attention has been devoted to building quantum memories which add zero noise to the output. Even small additional noise can render the memory classical by destroying the fragile quantum signatures of the stored light. Therefore, noise performance is a critical parameter for all quantum memories. Here we introduce an intrinsically noise-free quantum memory protocol based on two-photon off-resonant cascaded absorption (ORCA). We demonstrate successful storage of GHz-bandwidth heralded single photons in a warm atomic vapor with no added noise, confirmed by the unaltered photon-number statistics upon recall. Our ORCA memory meets the stringent noise requirements for quantum memories while combining high-speed and room-temperature operation with technical simplicity, and therefore is immediately applicable to low-latency quantum networks.

  8. Active noise control in a duct to cancel broadband noise

    Science.gov (United States)

    Chen, Kuan-Chun; Chang, Cheng-Yuan; Kuo, Sen M.

    2017-09-01

    The paper presents cancelling duct noises by using the active noise control (ANC) techniques. We use the single channel feed forward algorithm with feedback neutralization to realize ANC. Several kinds of ducts noises including tonal noises, sweep tonal signals, and white noise had investigated. Experimental results show that the proposed ANC system can cancel these noises in a PVC duct very well. The noise reduction of white noise can be up to 20 dB.

  9. The effects of background white noise on memory performance in inattentive school children

    Directory of Open Access Journals (Sweden)

    Sikström Sverker

    2010-09-01

    Full Text Available Abstract Background Noise is typically conceived of as being detrimental for cognitive performance; however, a recent computational model based on the concepts of stochastic resonance and dopamine related internal noise postulates that a moderate amount of auditive noise benefit individuals in hypodopaminergic states. On the basis of this model we predicted that inattentive children would be enhanced by adding background white noise while attentive children's performance would deteriorate. Methods Fifty-one secondary school pupils carried out an episodic verbal free recall test in two noise conditions. In the high noise condition, verb-noun sentences were presented during auditory background noise (white noise, 78 dB, and in the low noise condition sentences were presented without noise. Results Exposure to background noise improved performance for inattentive children and worsened performance for attentive children and eliminated episodic memory differences between attentive and inattentive school children. Conclusions Consistent with the model, our data show that cognitive performance can be moderated by external background white noise stimulation in a non-clinical group of inattentive participants. This finding needs replicating in a larger sample using more noise levels but if replicated has great practical applications by offering a non-invasive way to improve school results in children with attentional problems.

  10. The effects of background white noise on memory performance in inattentive school children.

    Science.gov (United States)

    Söderlund, Göran B W; Sikström, Sverker; Loftesnes, Jan M; Sonuga-Barke, Edmund J

    2010-09-29

    Noise is typically conceived of as being detrimental for cognitive performance; however, a recent computational model based on the concepts of stochastic resonance and dopamine related internal noise postulates that a moderate amount of auditive noise benefit individuals in hypodopaminergic states. On the basis of this model we predicted that inattentive children would be enhanced by adding background white noise while attentive children's performance would deteriorate. Fifty-one secondary school pupils carried out an episodic verbal free recall test in two noise conditions. In the high noise condition, verb-noun sentences were presented during auditory background noise (white noise, 78 dB), and in the low noise condition sentences were presented without noise. Exposure to background noise improved performance for inattentive children and worsened performance for attentive children and eliminated episodic memory differences between attentive and inattentive school children. Consistent with the model, our data show that cognitive performance can be moderated by external background white noise stimulation in a non-clinical group of inattentive participants. This finding needs replicating in a larger sample using more noise levels but if replicated has great practical applications by offering a non-invasive way to improve school results in children with attentional problems.

  11. Ultra-low noise miniaturized neural amplifier with hardware averaging.

    Science.gov (United States)

    Dweiri, Yazan M; Eggers, Thomas; McCallum, Grant; Durand, Dominique M

    2015-08-01

    Peripheral nerves carry neural signals that could be used to control hybrid bionic systems. Cuff electrodes provide a robust and stable interface but the recorded signal amplitude is small (concept of hardware averaging to nerve recordings obtained with cuff electrodes. An optimization procedure is developed to minimize noise and power simultaneously. The novel design was based on existing neural amplifiers (Intan Technologies, LLC) and is validated with signals obtained from the FINE in chronic dog experiments. We showed that hardware averaging leads to a reduction in the total recording noise by a factor of 1/√N or less depending on the source resistance. Chronic recording of physiological activity with FINE using the presented design showed significant improvement on the recorded baseline noise with at least two parallel operation transconductance amplifiers leading to a 46.1% reduction at N = 8. The functionality of these recordings was quantified by the SNR improvement and shown to be significant for N = 3 or more. The present design was shown to be capable of generating hardware averaging on noise improvement for neural recording with cuff electrodes, and can accommodate the presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  12. Complexity in White Noise Analysis

    Science.gov (United States)

    Hida, Takeyuki

    We restrict our attention to random complex systems and discuss degree their degree of complexity based on a white noise. The white noise is realized as the time derivative of a Brownian motion B(t), and denoted by Ḃ(t). The collection {Ḃ(t)}, is a system of idealized elementary variables and at the same time the system is a stochastic representation of the time t, in other words it is time-oriented. Having expressed the given evolutional random phenomena in question in terms of the Ḃ(t), we introduce the notion of spectral multiplicity, which describes how much the phenomena are complex. The multiplicity is the number of cyclic subspaces that are spanned by the given random phenomena. Each cyclic subspace has further structure. Typical property is multiple Markov property, although this property appears only particular cases. As a related property, in fact as a characteristic of a complex system, one can speak of the time reversibility and irreversibility of certain random phenomena in terms of the white noise. We expect an irreversible random complex system may be decomposed into reversible systems.

  13. Towards full waveform ambient noise inversion

    Science.gov (United States)

    Sager, Korbinian; Ermert, Laura; Boehm, Christian; Fichtner, Andreas

    2018-01-01

    In this work we investigate fundamentals of a method—referred to as full waveform ambient noise inversion—that improves the resolution of tomographic images by extracting waveform information from interstation correlation functions that cannot be used without knowing the distribution of noise sources. The fundamental idea is to drop the principle of Green function retrieval and to establish correlation functions as self-consistent observables in seismology. This involves the following steps: (1) We introduce an operator-based formulation of the forward problem of computing correlation functions. It is valid for arbitrary distributions of noise sources in both space and frequency, and for any type of medium, including 3-D elastic, heterogeneous and attenuating media. In addition, the formulation allows us to keep the derivations independent of time and frequency domain and it facilitates the application of adjoint techniques, which we use to derive efficient expressions to compute first and also second derivatives. The latter are essential for a resolution analysis that accounts for intra- and interparameter trade-offs. (2) In a forward modelling study we investigate the effect of noise sources and structure on different observables. Traveltimes are hardly affected by heterogeneous noise source distributions. On the other hand, the amplitude asymmetry of correlations is at least to first order insensitive to unmodelled Earth structure. Energy and waveform differences are sensitive to both structure and the distribution of noise sources. (3) We design and implement an appropriate inversion scheme, where the extraction of waveform information is successively increased. We demonstrate that full waveform ambient noise inversion has the potential to go beyond ambient noise tomography based on Green function retrieval and to refine noise source location, which is essential for a better understanding of noise generation. Inherent trade-offs between source and structure

  14. Phase Noise Tolerant QPSK Receiver Using Phase Sensitive Wavelength Conversion

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Xu, Jing; Lei, Lei

    2013-01-01

    A novel QPSK receiver based on a phase noise reduction pre-stage exploiting PSA in a HNLF and balanced detection is presented. Receiver sensitivity improvement over a conventional balanced receiver is demonstrated.......A novel QPSK receiver based on a phase noise reduction pre-stage exploiting PSA in a HNLF and balanced detection is presented. Receiver sensitivity improvement over a conventional balanced receiver is demonstrated....

  15. Stochastic resonance: noise-enhanced order

    International Nuclear Information System (INIS)

    Anishchenko, Vadim S; Neiman, Arkady B; Moss, F; Shimansky-Geier, L

    1999-01-01

    Stochastic resonance (SR) provides a glaring example of a noise-induced transition in a nonlinear system driven by an information signal and noise simultaneously. In the regime of SR some characteristics of the information signal (amplification factor, signal-to-noise ratio, the degrees of coherence and of order, etc.) at the output of the system are significantly improved at a certain optimal noise level. SR is realized only in nonlinear systems for which a noise-intensity-controlled characteristic time becomes available. In the present review the physical mechanism and methods of theoretical description of SR are briefly discussed. SR features determined by the structure of the information signal, noise statistics and properties of particular systems with SR are studied. A nontrivial phenomenon of stochastic synchronization defined as locking of the instantaneous phase and switching frequency of a bistable system by external periodic force is analyzed in detail. Stochastic synchronization is explored in single and coupled bistable oscillators, including ensembles. The effects of SR and stochastic synchronization of ensembles of stochastic resonators are studied both with and without coupling between the elements. SR is considered in dynamical and nondynamical (threshold) systems. The SR effect is analyzed from the viewpoint of information and entropy characteristics of the signal, which determine the degree of order or self-organization in the system. Applications of the SR concept to explaining the results of a series of biological experiments are discussed. (reviews of topical problems)

  16. Stochastic resonance: noise-enhanced order

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, Vadim S; Neiman, Arkady B [N.G. Chernyshevskii Saratov State University, Saratov (Russian Federation); Moss, F [Department of Physics and Astronomy, University of Missouri at St. Louis (United States); Shimansky-Geier, L [Humboldt University at Berlin (Germany)

    1999-01-31

    Stochastic resonance (SR) provides a glaring example of a noise-induced transition in a nonlinear system driven by an information signal and noise simultaneously. In the regime of SR some characteristics of the information signal (amplification factor, signal-to-noise ratio, the degrees of coherence and of order, etc.) at the output of the system are significantly improved at a certain optimal noise level. SR is realized only in nonlinear systems for which a noise-intensity-controlled characteristic time becomes available. In the present review the physical mechanism and methods of theoretical description of SR are briefly discussed. SR features determined by the structure of the information signal, noise statistics and properties of particular systems with SR are studied. A nontrivial phenomenon of stochastic synchronization defined as locking of the instantaneous phase and switching frequency of a bistable system by external periodic force is analyzed in detail. Stochastic synchronization is explored in single and coupled bistable oscillators, including ensembles. The effects of SR and stochastic synchronization of ensembles of stochastic resonators are studied both with and without coupling between the elements. SR is considered in dynamical and nondynamical (threshold) systems. The SR effect is analyzed from the viewpoint of information and entropy characteristics of the signal, which determine the degree of order or self-organization in the system. Applications of the SR concept to explaining the results of a series of biological experiments are discussed. (reviews of topical problems)

  17. Sounds and Noises. A Position Paper on Noise Pollution.

    Science.gov (United States)

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  18. Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    Commissioning studies of the CMS hadron calorimeter have identified sporadic uncharacteristic noise and a small number of malfunctioning calorimeter channels. Algorithms have been developed to identify and address these problems in the data. The methods have been tested on cosmic ray muon data, calorimeter noise data, and single beam data collected with CMS in 2008. The noise rejection algorithms can be applied to LHC collision data at the trigger level or in the offline analysis. The application of the algorithms at the trigger level is shown to remove 90% of noise events with fake missing transverse energy above 100 GeV, which is sufficient for the CMS physics trigger operation.

  19. The Global Seismographic Network (GSN): Deployment of Next Generation VBB Borehole Sensors and Improving Overall Network Noise Performance

    Science.gov (United States)

    Hafner, K.; Davis, P.; Wilson, D.; Sumy, D.

    2017-12-01

    The Global Seismographic Network (GSN) recently received delivery of the next generation Very Broadband (VBB) borehole sensors purchased through funding from the DOE. Deployment of these sensors will be underway during the end of summer and fall of 2017 and they will eventually replace the aging KS54000 sensors at approximately one-third of the GSN network stations. We will present the latest methods of deploying these sensors in the existing deep boreholes. To achieve lower noise performance at some sites, emplacement in shallow boreholes might result in lower noise performance for the existing site conditions. In some cases shallow borehole installations may be adapted to vault stations (which make up two thirds of the network), as a means of reducing tilt-induced signals on the horizontal components. The GSN is creating a prioritized list of equipment upgrades at selected stations with the ultimate goal of optimizing overall network data availability and noise performance. For an overview of the performance of the current GSN relative to selected set of metrics, we are utilizing data quality metrics and Probability Density Functions (PDFs)) generated by the IRIS Data Management Centers' (DMC) MUSTANG (Modular Utility for Statistical Knowledge Gathering) and LASSO (Latest Assessment of Seismic Station Observations) tools. We will present our metric analysis of GSN performance in 2016, and show the improvements at GSN sites resulting from recent instrumentation and infrastructure upgrades.

  20. Partial removal of correlated noise in thermal imagery

    International Nuclear Information System (INIS)

    Borel, C.C.; Cooke, B.J.; Laubscher, B.E.

    1996-01-01

    Correlated noise occurs in many imaging systems such as scanners and push-broom imagers. The sources of correlated noise can be from the detectors, pre-amplifiers and sampling circuits. Correlated noise appears as streaking along the scan direction of a scanner or in the along track direction of a push-broom imager. We have developed algorithms to simulate correlated noise and pre-filter to reduce the amount of streaking while not destroying the scene content. The pre- filter in the Fourier domain consists of the product of two filters. One filter models the correlated noise spectrum, the other is a windowing function e.g. Gaussian or Hanning window with variable width to block high frequency noise away from the origin of the Fourier Transform of the image data. We have optimized the filter parameters for various scenes and find improvements of the RMS error of the original minus the pre-filtered noisy image

  1. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.

    Science.gov (United States)

    Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey

    2017-09-01

    Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by

  2. Effect of blade flutter and electrical loading on small wind turbine noise

    Science.gov (United States)

    The effect of blade flutter and electrical loading on the noise level of two different size wind turbines was investigated at the Conservation and Production Research Laboratory (CPRL) near Bushland, TX. Noise and performance data were collected on two blade designs tested on a wind turbine rated a...

  3. A Noise Reduction Preprocessor for Mobile Voice Communication

    Directory of Open Access Journals (Sweden)

    Rainer Martin

    2004-07-01

    Full Text Available We describe a speech enhancement algorithm which leads to significant quality and intelligibility improvements when used as a preprocessor to a low bit rate speech coder. This algorithm was developed in conjunction with the mixed excitation linear prediction (MELP coder which, by itself, is highly susceptible to environmental noise. The paper presents novel as well as known speech and noise estimation techniques and combines them into a highly effective speech enhancement system. The algorithm is based on short-time spectral amplitude estimation, soft-decision gain modification, tracking of the a priori probability of speech absence, and minimum statistics noise power estimation. Special emphasis is placed on enhancing the performance of the preprocessor in nonstationary noise environments.

  4. Effects of measurement noise on modal parameter identification

    International Nuclear Information System (INIS)

    Dorvash, S; Pakzad, S N

    2012-01-01

    In the past decade, much research has been conducted on data-driven structural health monitoring (SHM) algorithms with use of sensor measurements. A fundamental step in this SHM application is to identify the dynamic characteristics of structures. Despite the significant efforts devoted to development and enhancement of the modal parameter identification algorithms, there are still substantial uncertainties in the results obtained in real-life deployments. One of the sources of uncertainties in the results is the existence of noise in the measurement data. Depending on the subsequent application of the system identification, the level of uncertainty in the results and, consequently, the level of noise contamination can be very important. As an effort towards understanding the effect of measurement noise on the modal identification, this paper presents parameters that quantify the effects of measurement noise on the modal identification process and determine their influence on the accuracy of results. The performance of these parameters is validated by a numerically simulated example. They are then used to investigate the accuracy of identified modal properties of the Golden Gate Bridge using ambient data collected by wireless sensors. The vibration monitoring tests of the Golden Gate Bridge provided two synchronized data sets collected by two different sensor types. The influence of the sensor noise level on the accuracy of results is investigated throughout this work and it is shown that high quality sensors provide more accurate results as the physical contribution of response in their measured data is significantly higher. Additionally, higher purity and consistency of modal parameters, identified by higher quality sensors, is observed in the results. (paper)

  5. Reduction of noise in the neonatal intensive care unit using sound-activated noise meters.

    Science.gov (United States)

    Wang, D; Aubertin, C; Barrowman, N; Moreau, K; Dunn, S; Harrold, J

    2014-11-01

    To determine if sound-activated noise meters providing direct audit and visual feedback can reduce sound levels in a level 3 neonatal intensive care unit (NICU). Sound levels (in dB) were compared between a 2-month period with noise meters present but without visual signal fluctuation and a subsequent 2 months with the noise meters providing direct audit and visual feedback. There was a significant increase in the percentage of time the sound level in the NICU was below 50 dB across all patient care areas (9.9%, 8.9% and 7.3%). This improvement was not observed in the desk area where there are no admitted patients. There was no change in the percentage of time the NICU was below 45 or 55 dB. Sound-activated noise meters seem effective in reducing sound levels in patient care areas. Conversations may have moved to non-patient care areas preventing a similar change there. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Digital signal processing for the Johnson noise thermometry: a time series analysis of the Johnson noise

    International Nuclear Information System (INIS)

    Moon, Byung Soo; Hwang, In Koo; Chung, Chong Eun; Kwon, Kee Choon; David, E. H.; Kisner, R.A.

    2004-06-01

    In this report, we first proved that a random signal obtained by taking the sum of a set of signal frequency signals generates a continuous Markov process. We used this random signal to simulate the Johnson noise and verified that the Johnson noise thermometry can be used to improve the measurements of the reactor coolant temperature within an accuracy of below 0.14%. Secondly, by using this random signal we determined the optimal sampling rate when the frequency band of the Johnson noise signal is given. Also the results of our examination on how good the linearity of the Johnson noise is and how large the relative error of the temperature could become when the temperature increases are described. Thirdly, the results of our analysis on a set of the Johnson noise signal blocks taken from a simple electric circuit are described. We showed that the properties of the continuous Markov process are satisfied even when some channel noises are present. Finally, we describe the algorithm we devised to handle the problem of the time lag in the long-term average or the moving average in a transient state. The algorithm is based on the Haar wavelet and is to estimate the transient temperature that has much smaller time delay. We have shown that the algorithm can track the transient temperature successfully

  7. Improvement of two-way continuous-variable quantum key distribution using optical amplifiers

    International Nuclear Information System (INIS)

    Zhang, Yi-Chen; Yu, Song; Gu, Wanyi; Li, Zhengyu; Sun, Maozhu; Peng, Xiang; Guo, Hong; Weedbrook, Christian

    2014-01-01

    The imperfections of a receiver's detector affect the performance of two-way continuous-variable (CV) quantum key distribution (QKD) protocols and are difficult to adjust in practical situations. We propose a method to improve the performance of two-way CV-QKD by adding a parameter-adjustable optical amplifier at the receiver. A security analysis is derived against a two-mode collective entangling cloner attack. Our simulations show that the proposed method can improve the performance of protocols as long as the inherent noise of the amplifier is lower than a critical value, defined as the tolerable amplifier noise. Furthermore, the optimal performance can approach the scenario where a perfect detector is used. (paper)

  8. Noise control of radiological monitoring equipment

    International Nuclear Information System (INIS)

    Rubick, R.D.; Stevens, W.W.; Burke, L.L.

    1998-01-01

    Although vacuum pumps on continuous air monitors (CAMs) do not produce noise levels above regulatory limits, engineering controls were used to establish a safer work environment. Operations performed in areas where CAMs are located are highly specialized and require precision work when handling nuclear materials, heavy metals, and inert gases. Traditional methods for controlling noise such as enclosing or isolating the source and the use of personal protection equipment were evaluated. An innovative solution was found by retrofitting CAMs with air powered multistage ejectors pumps. By allowing the air to expand in several chambers to create a vacuum, one can eliminate the noise hazard altogether. In facilities with adequate pressurized air, use of these improved ejector pumps may be a cost-effective replacement for noisy vacuum pumps. A workplace designed or engineered with noise levels as low as possible or as close to background adds to increased concentration, attention to detail, and increased production

  9. A Survey of Blue-Noise Sampling and Its Applications

    KAUST Repository

    Yan, Dongming; Guo, Jian-Wei; Wang, Bin; Zhang, Xiao-Peng; Wonka, Peter

    2015-01-01

    In this paper, we survey recent approaches to blue-noise sampling and discuss their beneficial applications. We discuss the sampling algorithms that use points as sampling primitives and classify the sampling algorithms based on various aspects, e.g., the sampling domain and the type of algorithm. We demonstrate several well-known applications that can be improved by recent blue-noise sampling techniques, as well as some new applications such as dynamic sampling and blue-noise remeshing.

  10. A Survey of Blue-Noise Sampling and Its Applications

    KAUST Repository

    Yan, Dongming

    2015-05-05

    In this paper, we survey recent approaches to blue-noise sampling and discuss their beneficial applications. We discuss the sampling algorithms that use points as sampling primitives and classify the sampling algorithms based on various aspects, e.g., the sampling domain and the type of algorithm. We demonstrate several well-known applications that can be improved by recent blue-noise sampling techniques, as well as some new applications such as dynamic sampling and blue-noise remeshing.

  11. Environmental noise management in the area of opencast mines

    Directory of Open Access Journals (Sweden)

    Lilić Nikola

    2017-01-01

    Full Text Available Environmental noise constitutes a threat regarding disturbance and deterioration of quality of living. There are numerous sources of environmental noise, among others mine objects, traffic roads etc. In Serbian practice open cast mines are commonly in vicinity of residential areas, which is the case of the Field C open cast coal mine and the Barosevac settlement. More complexity is added to noise management in such conditions through additional noise sources, not directly linked to mine objects and activities, such as local or regional roads. This paper describes an approach to noise management for the purpose of environmental noise impact reduction, from both traffic and industrial sources, related to the project Environmental Improvement Project in Kolubara Mine Basin in Barosevac settlement, as a part of acquisition of new Excavator-belt Conveyor-Stacker (ECS system.

  12. The impact of auditory white noise on semantic priming.

    Science.gov (United States)

    Angwin, Anthony J; Wilson, Wayne J; Copland, David A; Barry, Robert J; Myatt, Grace; Arnott, Wendy L

    2018-04-10

    It has been proposed that white noise can improve cognitive performance for some individuals, particularly those with lower attention, and that this effect may be mediated by dopaminergic circuitry. Given existing evidence that semantic priming is modulated by dopamine, this study investigated whether white noise can facilitate semantic priming. Seventy-eight adults completed an auditory semantic priming task with and without white noise, at either a short or long inter-stimulus interval (ISI). Measures of both direct and indirect semantic priming were examined. Analysis of the results revealed significant direct and indirect priming effects at each ISI in noise and silence, however noise significantly reduced the magnitude of indirect priming. Analyses of subgroups with higher versus lower attention revealed a reduction to indirect priming in noise relative to silence for participants with lower executive and orienting attention. These findings suggest that white noise focuses automatic spreading activation, which may be driven by modulation of dopaminergic circuitry. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. 2-GHz band man-made noise evaluation for cryogenic receiver front-end

    Energy Technology Data Exchange (ETDEWEB)

    Narahashi, S; Satoh, K; Suzuki, Y [Research Laboratories, NTT DoCoMo, Inc., 3-5 Hikari-no-oka, Yokosuka, Kanagawa 239-8536 (Japan); Mimura, T [Intellectual Property Department, NTT DoCoMo, Inc., 2-11-1 Nagatacho, Chiyoda, Tokyo 100-6150 (Japan); Nojima, T [Graduate School of Information Science and Technology, Hokkaido University, Nishi 9, Kita 14, Kita, Sapporo 060-0808 (Japan)], E-mail: narahashi@nttdocomo.co.jp

    2008-02-01

    This paper presents measured results of man-made noise in urban and suburban areas in the 2-GHz band with amplitude probability distribution (APD) in order to evaluate the impact of man-made noise on an experimental cryogenic receiver front-end (CRFE). The CRFE comprises a high-temperature superconducting filter, cryogenically-cooled low-noise amplifier, and highly reliable cryostat that is very compact. The CRFE is anticipated to be an effective way to achieve efficient frequency utilization and to improve the sensitivity of mobile base station receivers. It is important to measure the characteristics of the man-made noise in typical cellular base station antenna environments and confirm their impact on the CRFE reception with APD because if man-made noise has a stronger effect than thermal noise, the CRFE would fail to offer any improvement in sensitivity. The measured results suggest that the contribution of man-made noise in the 2-GHz band can be ignored as far as the wideband code division multiple access (W-CDMA) system is concerned.

  14. Improved stochastic resonance algorithm for enhancement of signal-to-noise ratio of high-performance liquid chromatographic signal

    International Nuclear Information System (INIS)

    Xie Shaofei; Xiang Bingren; Deng Haishan; Xiang Suyun; Lu Jun

    2007-01-01

    Based on the theory of stochastic resonance, an improved stochastic resonance algorithm with a new criterion for optimizing system parameters to enhance signal-to-noise ratio (SNR) of HPLC/UV chromatographic signal for trace analysis was presented in this study. Compared with the conventional criterion in stochastic resonance, the proposed one can ensure satisfactory SNR as well as good peak shape of chromatographic peak in output signal. Application of the criterion to experimental weak signals of HPLC/UV was investigated and the results showed an excellent quantitative relationship between different concentrations and responses

  15. Noise-induced hearing loss: a recreational noise perspective.

    Science.gov (United States)

    Ivory, Robert; Kane, Rebecca; Diaz, Rodney C

    2014-10-01

    This review will discuss the real-world risk factors involved in noise-induced hearing loss as a result of common and popular recreational activities prone to mid and high levels of noise exposure. Although there are currently no interventional measures available to reverse or mitigate preexisting hearing loss from noise, we discuss the vital importance of hearing loss prevention from noise exposure avoidance and reduction. Despite a seeming understanding of the effects of noise exposure from various recreational activities and devices, a large percentage of the general public who is at risk of such noise-induced hearing loss still chooses to refrain from using hearing protection instruments. While occupational exposures pose the greatest traditional risk to hearing conservation in selected workers, recreational risk factors for noise-induced hearing loss may be more insidious in overall effect given the indifferent attitude of much of the general public and particularly our youths toward hearing protection during recreational activities. Active counseling regarding the consequences of excessive noise exposure and the potential benefits to hearing from usage of hearing protection instruments is critical to providing best possible care in the hearing health professions.

  16. Joint models for noise annoyance and willingness to pay for road noise reduction

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Bue Bjørner, Thomas

    2006-01-01

    Recent contingent valuation (CV) studies of the willingness to pay (WTP) for road noise reduction have used stated annoyance as an independent variable. We argue that this may be inappropriate due to potential endogeneity bias. Instead, an alternative model is proposed that treats both WTP...... and annoyance as endogenous variables in a simultaneous equation model as a combination of a linear regression with an ordered probit with correlated error terms and possibly common parameters. Thus, information on stated annoyance is utilised to estimate WTP with increased efficiency. Application of the model...... to a dataset from Copenhagen indicates a potential for improving the precision of the estimate of WTP for noise reduction with CV data....

  17. Efficacy of TRT Using Noise Presentation from Mobile Phone.

    Science.gov (United States)

    Noorain Alam, Md; Gupta, Manish; Munjal, Sanjay; Panda, Naresh K

    2017-09-01

    The purpose of tinnitus retraining therapy (TRT) is to induce habituation, first of the reaction to the tinnitus signal, and subsequently to habituate the perception of tinnitus itself. Habituation of sound is achieved through sound treatment which involves the use of low-level broadband noise mainly through noise maskers. Noise maskers are costly hence there is a need to find an alternate source of noise like MP3 and mobile phones. The goal of present study was to find out whether persons with tinnitus may be successfully treated with TRT using sound treatment from the noise presented through mobile phones. Total 30 male adult patients with tinnitus were enrolled for TRT. TRT comprised of two activities i.e. directive counseling and sound treatment. The most efficient noise stimulus was tape recorded by presenting the noise in the sound field using speakers and was recorded using a digital tape recorder. The recorded noise was saved to the mobile phone of the person with tinnitus and was asked to play it using hands-free at the level which was just audible for the duration of 3-4 hours per day. The Tinnitus interview forms were used to measure: (1) Percentage awareness of tinnitus, (2) Percentage of the time it caused distress and (3) Number of life factors affected. After 6 months these measurements were repeated and an improvement score of 40% was taken as criteria for the significant success of TRT. Out of 30 patients, 25 could continue coming for follow up sessions. Out of these 25 patients, 17 patients (68%) showed significant improvement. The sound treatment may be provided with the help mobile phones, which is a cheaper substitute for costly noise maskers.

  18. Effects of noise overexposure on distortion product otoacoustic emissions

    DEFF Research Database (Denmark)

    de Toro, Miguel Angel Aranda

    are assumed to be equally hazardous for our hearing. Nevertheless, the standard allows adding a +5dB penalty to impulsive and tonal noises based on the presumption that they might pose a higher risk of hearing loss. This PhD thesis investigates the effect of different occupational noise exposures......The risk of noise-induced hearing loss (NIHL) at the workplace can be predicted according to the International Standard ISO 1999:1990. The standard is applicable to all types of noise and it is based on measurements of the total acoustic energy (LEX,8ℎ). Therefore, noises with equal energy...... may be more appropriate for tonal exposures. This presentation will also address methodological aspects of DPOAE measurements that might improve hearing diagnosis and detection of hearing loss....

  19. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.

    Science.gov (United States)

    Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T

    2017-04-03

    We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities 200 nm bandwidth.

  20. Statistics of A-weighted road traffic noise levels in shielded urban areas

    NARCIS (Netherlands)

    Forssén, J.; Hornikx, M.C.J.

    2006-01-01

    In the context of community noise and its negative effects, the noise descriptors used are usually long-term equivalent levels and, sometimes, maximum levels. An improved description could be achieved by including the time variations of the noise. Here, the time variations of A-weighted road traffic

  1. Influence of Internal and External Noise on Spontaneous Visuomotor Synchronization.

    Science.gov (United States)

    Varlet, Manuel; Schmidt, R C; Richardson, Michael J

    2016-01-01

    Historically, movement noise or variability is considered to be an undesirable property of biological motor systems. In particular, noise is typically assumed to degrade the emergence and stability of rhythmic motor synchronization. Recently, however, it has been suggested that small levels of noise might actually improve the functioning of motor systems and facilitate their adaptation to environmental events. Here, the authors investigated whether noise can facilitate spontaneous rhythmic visuomotor synchronization. They examined the influence of internal noise in the rhythmic limb movements of participants and external noise in the movement of an oscillating visual stimulus on the occurrence of spontaneous synchronization. By indexing the natural frequency variability of participants and manipulating the frequency variability of the visual stimulus, the authors demonstrated that both internal and external noise degrade synchronization when the participants' and stimulus movement frequencies are similar, but can actually facilitate synchronization when the frequencies are different. Furthermore, the two kinds of noise interact with each other. Internal noise facilitates synchronization only when external noise is minimal and vice versa. Too much internal and external noise together degrades synchronization. These findings open new perspectives for better understanding the role of noise in human rhythmic coordination.

  2. Instrument Variables for Reducing Noise in Parallel MRI Reconstruction

    Directory of Open Access Journals (Sweden)

    Yuchou Chang

    2017-01-01

    Full Text Available Generalized autocalibrating partially parallel acquisition (GRAPPA has been a widely used parallel MRI technique. However, noise deteriorates the reconstructed image when reduction factor increases or even at low reduction factor for some noisy datasets. Noise, initially generated from scanner, propagates noise-related errors during fitting and interpolation procedures of GRAPPA to distort the final reconstructed image quality. The basic idea we proposed to improve GRAPPA is to remove noise from a system identification perspective. In this paper, we first analyze the GRAPPA noise problem from a noisy input-output system perspective; then, a new framework based on errors-in-variables (EIV model is developed for analyzing noise generation mechanism in GRAPPA and designing a concrete method—instrument variables (IV GRAPPA to remove noise. The proposed EIV framework provides possibilities that noiseless GRAPPA reconstruction could be achieved by existing methods that solve EIV problem other than IV method. Experimental results show that the proposed reconstruction algorithm can better remove the noise compared to the conventional GRAPPA, as validated with both of phantom and in vivo brain data.

  3. Improving the signal-to-noise ratio in mass and ion kinetic energy spectrometers

    International Nuclear Information System (INIS)

    Brenton, A.G.; Beynon, J.H.; Morgan, R.P.

    1979-01-01

    The signal-to-noise ratio in mass and ion kinetic energy spectrometers is limited by noise generated from the presence of scattered ions and neutrals. Methods of eliminating this are illustrated with reference to the ZAB-2F instrument manufactured by VG-Micromass Ltd. It is estimated that after the modifications the instrument is capable, on a routine basis, of measuring peaks corresponding to the arrival of ions at a rate of the order of 1 ion s -1 . (Auth.)

  4. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise

    NARCIS (Netherlands)

    Salomons, E.M.; Janssen, S.A.

    2011-01-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a

  5. Simulation on a car interior aerodynamic noise control based on statistical energy analysis

    Science.gov (United States)

    Chen, Xin; Wang, Dengfeng; Ma, Zhengdong

    2012-09-01

    How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.

  6. EUDP Project: Low Noise Airfoil - Final Report

    DEFF Research Database (Denmark)

    This document summarizes the scientific results achieved during the EUDP-funded project `Low-Noise Airfoil'. The goals of this project are, on one side to develop a measurement technique that permits the evaluation of trailing edge noise in a classical aerodynamic wind tunnel, and on the other side...... to develop and implement a design procedure to manufacture airfoil profiles with low noise emission. The project involved two experimental campaigns: one in the LM Wind Power wind tunnel, a classical aerodynamic wind tunnel, in Lunderskov (DK), the second one in the Virginia Tech Stability Wind Tunnel....... In particular, the so-called TNO trailing edge noise model could be significantly improved by introducing turbulence anisotropy in its formulation, as well as the influence of the boundary layer mean pressure gradient. This two characteristics are inherent to airfoil flows but were neglected in the original...

  7. Core component vibration monitoring in BWRs using neutron noise

    International Nuclear Information System (INIS)

    Fry, D.N.; Robinson, J.C.; Kryter, R.C.; Cole, O.C.

    1975-01-01

    Neutron noise from in-core fission detectors in a BWR was investigated to determine its effectiveness as a monitor of mechanical vibrations of core components. In this study the general properties of BWR neutron noise were characterized, and a signal enhancement method was implemented to improve the measurement sensitivity. (auth)

  8. Effects of a traffic noise background on judgements of aircraft noise

    Science.gov (United States)

    Powell, C. A.; Rice, C. G.

    1974-01-01

    A study was conducted in which subjects judged aircraft noises in the presence of road traffic background noise. Two different techniques for presenting the background noises were evaluated. For one technique, the background noise was continuous over the whole of a test session. For the other, the background noise was changed with each aircraft noise. A range of aircraft noise levels and traffic noise levels were presented to simulate typical indoor levels.

  9. Evaluation of noise pollution in oil extracting region of Lavan and the effect of noise enclosure on noise abatement

    Directory of Open Access Journals (Sweden)

    F. Golbabaei

    2007-09-01

    Full Text Available Background and aims   Overexposure to industrial noise pollution induce hearing loss workers. Occupational hearing loss may cause interference whit oral communication, so it may  increase the risk of occupational accidents in workplace as well as affects whit social activities.  This study was conducted on Lavan Island, are of oil extracting regions in the south of Iran. The  object of this study was to evaluate noise pollution and determining the effect of noise enclosure  on noise abatement.   Methods   The noise sources were recognized and noise pressure level was measured by CEL- 440. Noise dose of the exposed workers in high level noise area were measured by CEL 272.   Results   Major noise sources were gas turbines, diesel generators, compressors, fans and gas containing pips, noise contour map revealers that noise level were higher than the recommended national exposure limit. The results of workers noise dose show that their noise exposure were  higher than the recommended value, (p<0.001. Finally, by using the results of noise frequency  analysis of different noise sources, the noise pressure level of each sources was determined in   terms of enclosing them.   Conclusion   By enclosing the noise sources, noise pressure levels can be lowered douse to  acceptable levels but limitation of applying enclosure should be regarded.  

  10. Noise cancellation properties of displacement noise free interferometer

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kawamura, Seiji; Nishizawa, Atsushi; Chen Yanbei

    2010-01-01

    We have demonstrated the practical feasibility of a displacement- and frequency-noise-free laser interferometer (DFI) by partially implementing a recently proposed optical configuration using bi-directional Mach-Zehnder interferometers (MZIs). The noise cancellation efficiency was evaluated by comparing the displacement noise spectrum of the MZIs and the DFI, demonstrating up to 50 dB of noise cancellation. In addition, the possible extension of DFI as QND device is explored.

  11. Noise and vibration improvement technologies for engines; Engine ni okeru soon shindo kaizen gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Kuzuoka, H.; Maeda, R. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1999-02-01

    This is an outline of recent measurement and simulation technology for reduction of engine noise and vibration. We can recognize correct phenomenon by visualization of noise and vibration phenomena using new measurement technology. And we can create optimum countermeasures using new simulation technology In this report, examples of application of these technology in the development of NEO-DI engines are provided. (author)

  12. Masking potency and whiteness of noise at various noise check sizes.

    Science.gov (United States)

    Kukkonen, H; Rovamo, J; Näsänen, R

    1995-02-01

    The masking effect of spatial noise can be increased by increasing either the rms contrast or check size of noise. In this study, the authors investigated the largest noise check size that still mimics the effect of white noise in grating detection and how it depends on the bandwidth and spatial frequency of a grating. The authors measured contrast energy thresholds, E, for vertical cosine gratings at various spatial frequencies and bandwidths. Gratings were embedded in two-dimensional spatial noise. The side length of the square noise checks was varied in the experiments. The spectral density, N(0,0), of white spatial noise at zero frequency was calculated by multiplying the noise check area by the rms contrast of noise squared. The physical signal-to-noise ratio at threshold [E/N(0,0)]0.5 was initially constant but then started to decrease. The largest noise check that still produced a constant physical signal-to-noise ratio at threshold was directly proportional to the spatial frequency. When expressed as a fraction of grating cycle, the largest noise check size depended only on stimulus bandwidth. The smallest number of noise checks per grating cycle needed to mimic the effect of white noise decreased from 4.2 to 2.6 when the number of grating cycles increased from 1 to 64. Spatial noise can be regarded as white in grating detection if there are at least four square noise checks per grating cycle at all spatial frequencies.

  13. Noise, stress, and annoyance in a pediatric intensive care unit.

    Science.gov (United States)

    Morrison, Wynne E; Haas, Ellen C; Shaffner, Donald H; Garrett, Elizabeth S; Fackler, James C

    2003-01-01

    To measure and describe hospital noise and determine whether noise can be correlated with nursing stress measured by questionnaire, salivary amylase, and heart rate. Cohort observational study. Tertiary care center pediatric intensive care unit. Registered nurses working in the unit. None. Eleven nurse volunteers were recruited. An audiogram, questionnaire data, salivary amylase, and heart rate were collected in a quiet room. Each nurse was observed for a 3-hr period during patient care. Heart rate and sound level were recorded continuously; saliva samples and stress/annoyance ratings were collected every 30 mins. Variables assessed as potential confounders were years of nursing experience, caffeine intake, patients' Pediatric Risk of Mortality Score, shift assignment, and room assignment. Data were analyzed by random effects multiple linear regression using Stata 6.0. The average daytime sound level was 61 dB(A), nighttime 59 dB(A). Higher average sound levels significantly predicted higher heart rates (p =.014). Other significant predictors of tachycardia were higher caffeine intake, less nursing experience, and daytime shift. Ninety percent of the variability in heart rate was explained by the regression equation. Amylase measurements showed a large variability and were not significantly affected by noise levels. Higher average sound levels were also predictive of greater subjective stress (p =.021) and annoyance (p =.016). In this small study, noise was shown to correlate with several measures of stress including tachycardia and annoyance ratings. Further studies of interventions to reduce noise are essential.

  14. An Application of Reassigned Time-Frequency Representations for Seismic Noise/Signal Decomposition

    Science.gov (United States)

    Mousavi, S. M.; Langston, C. A.

    2016-12-01

    Seismic data recorded by surface arrays are often strongly contaminated by unwanted noise. This background noise makes the detection of small magnitude events difficult. An automatic method for seismic noise/signal decomposition is presented based upon an enhanced time-frequency representation. Synchrosqueezing is a time-frequency reassignment method aimed at sharpening a time-frequency picture. Noise can be distinguished from the signal and suppressed more easily in this reassigned domain. The threshold level is estimated using a general cross validation approach that does not rely on any prior knowledge about the noise level. Efficiency of thresholding has been improved by adding a pre-processing step based on higher order statistics and a post-processing step based on adaptive hard-thresholding. In doing so, both accuracy and speed of the denoising have been improved compared to our previous algorithms (Mousavi and Langston, 2016a, 2016b; Mousavi et al., 2016). The proposed algorithm can either kill the noise (either white or colored) and keep the signal or kill the signal and keep the noise. Hence, It can be used in either normal denoising applications or in ambient noise studies. Application of the proposed method on synthetic and real seismic data shows the effectiveness of the method for denoising/designaling of local microseismic, and ocean bottom seismic data. References: Mousavi, S.M., C. A. Langston., and S. P. Horton (2016), Automatic Microseismic Denoising and Onset Detection Using the Synchrosqueezed-Continuous Wavelet Transform. Geophysics. 81, V341-V355, doi: 10.1190/GEO2015-0598.1. Mousavi, S.M., and C. A. Langston (2016a), Hybrid Seismic Denoising Using Higher-Order Statistics and Improved Wavelet Block Thresholding. Bull. Seismol. Soc. Am., 106, doi: 10.1785/0120150345. Mousavi, S.M., and C.A. Langston (2016b), Adaptive noise estimation and suppression for improving microseismic event detection, Journal of Applied Geophysics., doi: http

  15. Non-Markovian noise

    International Nuclear Information System (INIS)

    Fulinski, A.

    1994-01-01

    The properties of non-Markovian noises with exponentially correlated memory are discussed. Considered are dichotomic noise, white shot noise, Gaussian white noise, and Gaussian colored noise. The stationary correlation functions of the non-Markovian versions of these noises are given by linear combinations of two or three exponential functions (colored noises) or of the δ function and exponential function (white noises). The non-Markovian white noises are well defined only when the kernel of the non-Markovian master equation contains a nonzero admixture of a Markovian term. Approximate equations governing the probability densities for processes driven by such non-Markovian noises are derived, including non-Markovian versions of the Fokker-Planck equation and the telegrapher's equation. As an example, it is shown how the non-Markovian nature changes the behavior of the driven linear process

  16. Background noise exerts diverse effects on the cortical encoding of foreground sounds.

    Science.gov (United States)

    Malone, B J; Heiser, Marc A; Beitel, Ralph E; Schreiner, Christoph E

    2017-08-01

    In natural listening conditions, many sounds must be detected and identified in the context of competing sound sources, which function as background noise. Traditionally, noise is thought to degrade the cortical representation of sounds by suppressing responses and increasing response variability. However, recent studies of neural network models and brain slices have shown that background synaptic noise can improve the detection of signals. Because acoustic noise affects the synaptic background activity of cortical networks, it may improve the cortical responses to signals. We used spike train decoding techniques to determine the functional effects of a continuous white noise background on the responses of clusters of neurons in auditory cortex to foreground signals, specifically frequency-modulated sweeps (FMs) of different velocities, directions, and amplitudes. Whereas the addition of noise progressively suppressed the FM responses of some cortical sites in the core fields with decreasing signal-to-noise ratios (SNRs), the stimulus representation remained robust or was even significantly enhanced at specific SNRs in many others. Even though the background noise level was typically not explicitly encoded in cortical responses, significant information about noise context could be decoded from cortical responses on the basis of how the neural representation of the foreground sweeps was affected. These findings demonstrate significant diversity in signal in noise processing even within the core auditory fields that could support noise-robust hearing across a wide range of listening conditions. NEW & NOTEWORTHY The ability to detect and discriminate sounds in background noise is critical for our ability to communicate. The neural basis of robust perceptual performance in noise is not well understood. We identified neuronal populations in core auditory cortex of squirrel monkeys that differ in how they process foreground signals in background noise and that may

  17. Optimal Colored Noise for Estimating Phase Response Curves

    Science.gov (United States)

    Morinaga, Kazuhiko; Miyata, Ryota; Aonishi, Toru

    2015-09-01

    The phase response curve (PRC) is an important measure representing the interaction between oscillatory elements. To understand synchrony in biological systems, many research groups have sought to measure PRCs directly from biological cells including neurons. Ermentrout et al. and Ota et al. showed that PRCs can be identified through measurement of white-noise spike-triggered averages. The disadvantage of this method is that one has to collect more than ten-thousand spikes to ensure the accuracy of the estimate. In this paper, to achieve a more accurate estimation of PRCs with a limited sample size, we use colored noise, which has recently drawn attention because of its unique effect on dynamical systems. We numerically show that there is an optimal colored noise to estimate PRCs in the most rigorous fashion.

  18. Fluorescence detection using optical waveguide collection device with high efficiency on assembly of nitrogen vacancy centers in diamond

    Science.gov (United States)

    Zhang, Shaowen; Ma, Zongmin; Qin, Li; Fu, Yueping; Shi, Yunbo; Liu, Jun; Li, Yan Jun

    2018-01-01

    In this letter, we propose a fluorescence waveguide excitation and collection (FWEC) method that allows for an excess of 45% collection efficiency of pump photons into optically detected magnetic resonance. The FWEC system used can collect fluorescence 96 times higher than the confocal system under spin manipulation with a microwave. Furthermore, the signal-to-noise ratio (SNR) of the FWEC system is improved 9 times compared with that of the confocal system. In addition, the increase in contrast observed using the FWEC system shows that the integration of the system is much improved with 3D printing technology. Thus, this research has a great potential application in subsequent magnetic detection and quantum optics.

  19. White noise enhances new-word learning in healthy adults.

    Science.gov (United States)

    Angwin, Anthony J; Wilson, Wayne J; Arnott, Wendy L; Signorini, Annabelle; Barry, Robert J; Copland, David A

    2017-10-12

    Research suggests that listening to white noise may improve some aspects of cognitive performance in individuals with lower attention. This study investigated the impact of white noise on new word learning in healthy young adults, and whether this effect was mediated by executive attention skills. Eighty participants completed a single training session to learn the names of twenty novel objects. The session comprised 5 learning phases, each followed by a recall test. A final recognition test was also administered. Half the participants listened to white noise during the learning phases, and half completed the learning in silence. The noise group demonstrated superior recall accuracy over time, which was not impacted by participant attentional capacity. Recognition accuracy was near ceiling for both groups. These findings suggest that white noise has the capacity to enhance lexical acquisition.

  20. Spatial-temporal noise reduction method optimized for real-time implementation

    Science.gov (United States)

    Romanenko, I. V.; Edirisinghe, E. A.; Larkin, D.

    2013-02-01

    Image de-noising in the spatial-temporal domain has been a problem studied in-depth in the field of digital image processing. However complexity of algorithms often leads to high hardware resource usage, or computational complexity and memory bandwidth issues, making their practical use impossible. In our research we attempt to solve these issues with an optimized implementation of a practical spatial-temporal de-noising algorithm. Spatial-temporal filtering was performed in Bayer RAW data space, which allowed us to benefit from predictable sensor noise characteristics and reduce memory bandwidth requirements. The proposed algorithm efficiently removes different kinds of noise in a wide range of signal to noise ratios. In our algorithm the local motion compensation is performed in Bayer RAW data space, while preserving the resolution and effectively improving the signal to noise ratios of moving objects. The main challenge for the use of spatial-temporal noise reduction algorithms in video applications is the compromise between the quality of the motion prediction and the complexity of the algorithm and required memory bandwidth. In photo and video applications it is very important that moving objects should stay sharp, while the noise is efficiently removed in both the static background and moving objects. Another important use case is the case when background is also non-static as well as the foreground where objects are also moving. Taking into account the achievable improvement in PSNR (on the level of the best known noise reduction techniques, like VBM3D) and low algorithmic complexity, enabling its practical use in commercial video applications, the results of our research can be very valuable.

  1. Noise emission corrections at intersections based on microscopic traffic simulation

    NARCIS (Netherlands)

    Coensel, B.de; Vanhove, F.; Logghe, S.; Wilmink, I.; Botteldooren, D.

    2006-01-01

    One of the goals of the European IMAGINE project, is to formulate strategies to improve traffic modelling for application in noise mapping. It is well known that the specific deceleration and acceleration dynamics of traffic at junctions can influence local noise emission. However, macroscopic

  2. Evaluation of Adaptive Noise Management Technologies for School-Age Children with Hearing Loss.

    Science.gov (United States)

    Wolfe, Jace; Duke, Mila; Schafer, Erin; Jones, Christine; Rakita, Lori

    2017-05-01

    Children with hearing loss experience significant difficulty understanding speech in noisy and reverberant situations. Adaptive noise management technologies, such as fully adaptive directional microphones and digital noise reduction, have the potential to improve communication in noise for children with hearing aids. However, there are no published studies evaluating the potential benefits children receive from the use of adaptive noise management technologies in simulated real-world environments as well as in daily situations. The objective of this study was to compare speech recognition, speech intelligibility ratings (SIRs), and sound preferences of children using hearing aids equipped with and without adaptive noise management technologies. A single-group, repeated measures design was used to evaluate performance differences obtained in four simulated environments. In each simulated environment, participants were tested in a basic listening program with minimal noise management features, a manual program designed for that scene, and the hearing instruments' adaptive operating system that steered hearing instrument parameterization based on the characteristics of the environment. Twelve children with mild to moderately severe sensorineural hearing loss. Speech recognition and SIRs were evaluated in three hearing aid programs with and without noise management technologies across two different test sessions and various listening environments. Also, the participants' perceptual hearing performance in daily real-world listening situations with two of the hearing aid programs was evaluated during a four- to six-week field trial that took place between the two laboratory sessions. On average, the use of adaptive noise management technology improved sentence recognition in noise for speech presented in front of the participant but resulted in a decrement in performance for signals arriving from behind when the participant was facing forward. However, the improvement

  3. Flue gas conditioning for improved particle collection in electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Durham, M.D.

    1993-04-16

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of [le] 10 [mu]m dia.

  4. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    Science.gov (United States)

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  5. Patients' perception of noise in the operating room-a descriptive and analytic cross-sectional study

    DEFF Research Database (Denmark)

    Hasfeldt, Dorthe; Maindal, Helle Terkildsen; Toft, Palle

    2014-01-01

    in the OR before anesthesia, the correlation between the actual noise levels and the patient's perception of noise, and if there are particular patient subgroups that are especially vulnerable to noise. DESIGN: This cross-sectional study was performed within a mixed descriptive and analytical design, including 120...... patients (60 acute/60 elective) undergoing general anesthesia for orthopaedic surgery. METHODS: Data collection consisted of registration of demographic variables and measurements of noise levels in the OR combined with a questionnaire. FINDINGS: Results showed that 10% of the patients perceived noise...... levels in the OR as very high and experienced the noise as annoying, disruptive, and stressful. There was no correlation between the actual noise levels to which patients were exposed and their perception of noise. Acute patients perceived significantly more noise than elective patients (P

  6. Ensemble empirical mode decomposition based fluorescence spectral noise reduction for low concentration PAHs

    Science.gov (United States)

    Wang, Shu-tao; Yang, Xue-ying; Kong, De-ming; Wang, Yu-tian

    2017-11-01

    A new noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed to improve the detection effect for fluorescence spectra. Polycyclic aromatic hydrocarbons (PAHs) pollutants, as a kind of important current environmental pollution source, are highly oncogenic. Using the fluorescence spectroscopy method, the PAHs pollutants can be detected. However, instrument will produce noise in the experiment. Weak fluorescent signals can be affected by noise, so we propose a way to denoise and improve the detection effect. Firstly, we use fluorescence spectrometer to detect PAHs to obtain fluorescence spectra. Subsequently, noises are reduced by EEMD algorithm. Finally, the experiment results show the proposed method is feasible.

  7. The ecological and evolutionary consequences of noise-induced acoustic habitat loss

    Science.gov (United States)

    Tennessen, Jennifer Beissinger

    Anthropogenic threats are facilitating rapid environmental change and exerting novel pressures on the integrity of ecological patterns and processes. Currently, habitat loss is the leading factor contributing to global biodiversity loss. Noise created by human activities is nearly ubiquitous in terrestrial and marine systems, and causes acoustic habitat loss by interfering with species' abilities to freely send and receive critical acoustic biological information. My dissertation investigates how novel sounds from human activities affect ecological and evolutionary processes in space and time in marine and terrestrial systems, and how species may cope with this emerging novel pressure. Using species from both marine and terrestrial systems, I present results from a theoretical investigation, and four acoustic playback experiments combining laboratory studies and field trials, that reveal a range of eco-evolutionary consequences of noiseinduced acoustic habitat loss. First, I use sound propagation modeling to assess how marine shipping noise reduces communication space between mother-calf pairs of North Atlantic right whales (Eubalaena glacialis ), an important unit of an endangered species. I show that shipping noise poses significant challenges for mother-calf pairs, but that vocal compensation strategies can substantially improve communication space. Next, in a series of acoustic playback experiments I show that road traffic noise impairs breeding migration behavior and physiology of wood frogs (Lithobates sylvaticus ). This work reveals the first evidence that traffic noise elicits a physiological stress response and suppresses production of antimicrobial peptides (a component of the innate immune response) in anurans. Further, wood frogs from populations with a history of inhabiting noisy sites mounted reduced physiological stress responses to continuous traffic noise exposure. This research using wood frogs suggests that chronic traffic noise exposure has

  8. Annoyance of low frequency noise and traffic noise

    DEFF Research Database (Denmark)

    Mortensen, F.R.; Poulsen, Torben

    2001-01-01

    The annoyance of different low frequency noise sources was determined and compared to the annoyance from traffic noise. Twenty-two subjects participated in laboratory listening tests. The sounds were presented by loudspeakers in a listening room and the spectra of the low frequency noises were...

  9. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  10. Noise propagation in resolution modeled PET imaging and its impact on detectability

    International Nuclear Information System (INIS)

    Rahmim, Arman; Tang, Jing

    2013-01-01

    Positron emission tomography imaging is affected by a number of resolution degrading phenomena, including positron range, photon non-collinearity and inter-crystal blurring. An approach to this issue is to model some or all of these effects within the image reconstruction task, referred to as resolution modeling (RM). This approach is commonly observed to yield images of higher resolution and subsequently contrast, and can be thought of as improving the modulation transfer function. Nonetheless, RM can substantially alter the noise distribution. In this work, we utilize noise propagation models in order to accurately characterize the noise texture of reconstructed images in the presence of RM. Furthermore we consider the task of lesion or defect detection, which is highly determined by the noise distribution as quantified using the noise power spectrum. Ultimately, we use this framework to demonstrate why conventional trade-off analyses (e.g. contrast versus noise, using simplistic noise metrics) do not provide a complete picture of the impact of RM and that improved performance of RM according to such analyses does not necessarily translate to the superiority of RM in detection task performance. (paper)

  11. Low-noise mid-IR upconversion detector for improved IR-degenerate four-wave mixing gas sensing

    DEFF Research Database (Denmark)

    Høgstedt, Lasse; Dam, Jeppe Seidelin; Sahlberg, Anna-Lena

    2014-01-01

    -to-noise ratio. The two detectors are compared for the detection of a coherent degenerate four-wave mixing (DFWM) signal in the mid-infrared, and applied to measure trace-level acetylene in a gas flow at atmospheric pressure, probing its fundamental rovibrational transitions. In addition to lower noise...

  12. Dynamical noise filter and conditional entropy analysis in chaos synchronization.

    Science.gov (United States)

    Wang, Jiao; Lai, C-H

    2006-06-01

    It is shown that, in a chaotic synchronization system whose driving signal is exposed to channel noise, the estimation of the drive system states can be greatly improved by applying the dynamical noise filtering to the response system states. If the noise is bounded in a certain range, the estimation errors, i.e., the difference between the filtered responding states and the driving states, can be made arbitrarily small. This property can be used in designing an alternative digital communication scheme. An analysis based on the conditional entropy justifies the application of dynamical noise filtering in generating quality synchronization.

  13. Regression of non-linear coupling of noise in LIGO detectors

    Science.gov (United States)

    Da Silva Costa, C. F.; Billman, C.; Effler, A.; Klimenko, S.; Cheng, H.-P.

    2018-03-01

    In 2015, after their upgrade, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors started acquiring data. The effort to improve their sensitivity has never stopped since then. The goal to achieve design sensitivity is challenging. Environmental and instrumental noise couple to the detector output with different, linear and non-linear, coupling mechanisms. The noise regression method we use is based on the Wiener–Kolmogorov filter, which uses witness channels to make noise predictions. We present here how this method helped to determine complex non-linear noise couplings in the output mode cleaner and in the mirror suspension system of the LIGO detector.

  14. Evaluating noise abatement measures using strategic noise maps

    NARCIS (Netherlands)

    Borst, H.C.; Miedema, H.M.E.; Laan, W.P.N. van der; Lohman, W.J.A.

    2006-01-01

    Noise annoyance due to transportation is widespread in industrialized countries and in urban areas in the developing countries. The European Noise Directive (END) requires an assessment of the noise situation as well as the formulation of action plans for the reduction of the number of people

  15. The effect of noise correlations in populations of diversely tuned neurons.

    Science.gov (United States)

    Ecker, Alexander S; Berens, Philipp; Tolias, Andreas S; Bethge, Matthias

    2011-10-05

    The amount of information encoded by networks of neurons critically depends on the correlation structure of their activity. Neurons with similar stimulus preferences tend to have higher noise correlations than others. In homogeneous populations of neurons, this limited range correlation structure is highly detrimental to the accuracy of a population code. Therefore, reduced spike count correlations under attention, after adaptation, or after learning have been interpreted as evidence for a more efficient population code. Here, we analyze the role of limited range correlations in more realistic, heterogeneous population models. We use Fisher information and maximum-likelihood decoding to show that reduced correlations do not necessarily improve encoding accuracy. In fact, in populations with more than a few hundred neurons, increasing the level of limited range correlations can substantially improve encoding accuracy. We found that this improvement results from a decrease in noise entropy that is associated with increasing correlations if the marginal distributions are unchanged. Surprisingly, for constant noise entropy and in the limit of large populations, the encoding accuracy is independent of both structure and magnitude of noise correlations.

  16. Effect of flow parameters on flare stack generator noise

    International Nuclear Information System (INIS)

    Dinn, T.S.

    1998-01-01

    The SoundPLAN Computer Noise Model was used to determine the general effect of flare noise in a community adjacent to a petrochemical plant. Tests were conducted to determine the effect of process flow conditions and the pulsating flame on the flare stack generator noise from both a refinery flare and process flare. Flaring under normal plant operations, the flaring of fuel gas and the flaring of hydrogen were the three conditions that were tested. It was shown that the steam flow rate was the determining factor in the flare stack generated noise. Variations in the water seal level in the flare line surge tank increased or decreased the gas flowrate, which resulted in a pulsating flame. The period and amplitude of the pulsating noise from the flare stacks was determined by measuring several parameters. Flare stack noise oscillations were found to be greater for the process flare than for the refinery flare stack. It was suggested that minimizing the amount of steam fed to the flare and improving the burner design would minimize noise. 2 tabs., 6 figs

  17. Effect of Asymmetric Potential and Gaussian Colored Noise on Stochastic Resonance

    International Nuclear Information System (INIS)

    Han Yinxia; Li Jinghui; Chen Shigang

    2005-01-01

    The phenomenon of stochastic resonance (SR) in a bistable nonlinear system is studied when the system is driven by the asymmetric potential and additive Gaussian colored noise. Using the unified colored noise approximation method, the additive Gaussian colored noise can be simplified to additive Gaussian white noise. The signal-to-noise ratio (SNR) is calculated according to the generalized two-state theory (shown in [H.S. Wio and S. Bouzat, Brazilian J. Phys. 29 (1999) 136]). We find that the SNR increases with the proximity of a to zero. In addition, the correlation time τ between the additive Gaussian colored noise is also an ingredient to improve SR. The shorter the correlation time τ between the Gaussian additive colored noise is, the higher of the peak value of SNR.

  18. Two-antenna GNSS Aided-INS Alignment Using Adaptive Control of Filter Noise Covariance

    Directory of Open Access Journals (Sweden)

    HAO Yushi

    2018-04-01

    Full Text Available This paper developed a theory of INS fine alignment in order to restrain the divergence of yaw angle,two antennas GNSS aided-INS integrated alignment algorithm was utilized.An attitude error measurement equation was conducted based on the relationship between baseline vectors calculated by two sensors and attitude error.The algorithm was executed by EKF using adaptive control of filter noise covariance.The experimental results showed that stability of the integrated system was improved under the system noise covariance adaptive control mechanism;The measurement noise covariance adaptive control mechanism can reduce the influence of measurement noise and improve the alignment absolute accuracy;Further improvement was achieved under the condition of minim bias of baseline length.The accuracy of roll and pitch was 0.02°,the accuracy of yaw was 0.04°.

  19. Flow and Noise Control: Review and Assessment of Future Directions

    Science.gov (United States)

    Thomas, Russell H.; Choudhari, Meelan M.; Joslin, Ronald D.

    2002-01-01

    Technologies for developing radically new aerovehicles that would combine quantum leaps in cost, safety, and performance benefits with environmental friendliness have appeared on the horizon. This report provides both an assessment of the current state-of-the-art in flow and noise control and a vision for the potential gains to be made, in terms of performance benefit for civil and military aircraft and a unique potential for noise reduction, via future advances in flow and noise technologies. This report outlines specific areas of research that will enable the breakthroughs necessary to bring this vision to reality. Recent developments in many topics within flow and noise control are reviewed. The flow control overview provides succinct summaries of various approaches for drag reduction and improved maneuvering. Both exterior and interior noise problems are examined, including dominant noise sources, physics of noise generation and propagation, and both established and proposed concepts for noise reduction. Synergy between flow and noise control is a focus and, more broadly, the need to pursue research in a more concurrent approach involving multiple disciplines. Also discussed are emerging technologies such as nanotechnology that may have a significant impact on the progress of flow and noise control.

  20. Using Public Participation to Improve MELs Energy Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Iris (Hoi Ying); Kloss, Margarita; Brown, Rich; Meier, Alan

    2014-03-11

    Miscellaneous Electric Loads (MELs) have proliferated in the last decade, and comprise an increasing share of building energy consumption. Because of the diversity of MELs and our lack of understanding about how people use them, large-scale data collection is needed to inform meaningful energy reduction strategies. Traditional methods of data collection, however, usually incur high labor and metering equipment expenses. As an alternative, this paper investigates the feasibility of crowdsourcing data collection to satisfy at least part of the data collection needs with acceptable accuracy. This study assessed the reliability and accuracy of crowdsourced data, by recruiting over 20 volunteers (from the 2012 Lawrence Berkeley Lab, Open House event) to test our crowdsourcing protocol. The protocol asked volunteers to perform the following tasks for three test products with increasing complexity - record power meter and product characteristics, identify all power settings available, and report the measured power. Based on our collected data and analysis, we concluded that volunteers performed reasonably well for devices with functionalities with which they are familiar, and might not produce highly accurate field measurements for complex devices. Accuracy will likely improve when participants are measuring the power used by devices in their home which they know how to operate, by providing more specific instructions including instructional videos. When integrated with existing programs such as the Home Energy Saver tool, crowdsourcing data collection from individual homeowners has the potential to generate a substantial amount of information about MELs energy use in homes.

  1. Representation of neutron noise data using neural networks

    International Nuclear Information System (INIS)

    Korsah, K.; Damiano, B.; Wood, R.T.

    1992-01-01

    This paper describes a neural network-based method of representing neutron noise spectra using a model developed at the Oak Ridge National Laboratory (ORNL). The backpropagation neural network learned to represent neutron noise data in terms of four descriptors, and the network response matched calculated values to within 3.5 percent. These preliminary results are encouraging, and further research is directed towards the application of neural networks in a diagnostics system for the identification of the causes of changes in structural spectral resonances. This work is part of our current investigation of advanced technologies such as expert systems and neural networks for neutron noise data reduction, analysis, and interpretation. The objective is to improve the state-of-the-art of noise analysis as a diagnostic tool for nuclear power plants and other mechanical systems

  2. A strategy for optimizing staffing to improve the timeliness of inpatient phlebotomy collections.

    Science.gov (United States)

    Morrison, Aileen P; Tanasijevic, Milenko J; Torrence-Hill, Joi N; Goonan, Ellen M; Gustafson, Michael L; Melanson, Stacy E F

    2011-12-01

    The timely availability of inpatient test results is a key to physician satisfaction with the clinical laboratory, and in an institution with a phlebotomy service may depend on the timeliness of blood collections. In response to safety reports filed for delayed phlebotomy collections, we applied Lean principles to the inpatient phlebotomy service at our institution. Our goal was to improve service without using additional resources by optimizing our staffing model. To evaluate the effect of a new phlebotomy staffing model on the timeliness of inpatient phlebotomy collections. We compared the median time of morning blood collections and average number of safety reports filed for delayed phlebotomy collections during a 6-month preimplementation period and 5-month postimplementation period. The median time of morning collections was 17 minutes earlier after implementation (7:42 am preimplementation; interquartile range, 6:27-8:48 am; versus 7:25 am postimplementation; interquartile range, 6:20-8:26 am). The frequency of safety reports filed for delayed collections decreased 80% from 10.6 per 30 days to 2.2 per 30 days. Reallocating staff to match the pattern of demand for phlebotomy collections throughout the day represents a strategy for improving the performance of an inpatient phlebotomy service.

  3. Noise exposure in marching bands

    Science.gov (United States)

    Keefe, Joseph

    2005-09-01

    Previous studies involving orchestras have shown that music ensembles can produce hazardous noise levels. There are no similar data for marching bands and pep bands. In order to evaluate the noise levels produced by marching and pep bands, 1/3-octave-band sound-pressure levels were measured while these groups rehearsed and performed. Data were collected while marching with the bands to ensure a realistic environment. Comparing these data to OSHA and NIOSH criteria, marching and pep band exposures often exceed safe values. For typical exposures, OSHA doses range from 11% to 295%, while NIOSH doses range from 35% to 3055%. Exposures that would be considered hazardous in the workplace are common in marching and pep bands; students and band directors should take steps to recognize the risk posed by various instruments and various locations, and should implement hearing conservation efforts.

  4. Occupational Hearing Loss from Non-Gaussian Noise.

    Science.gov (United States)

    Suter, Alice H

    2017-08-01

    Noise levels are truly continuous in relatively few occupations, with some degree of intermittency the most common condition. The sound levels of intermittent noise are often referred to as non-Gaussian in that they are not normally distributed in the time domain. In some conditions, intermittent noise affects the ear differently from continuous noise, and it is this assumption that underlies the selection of the 5-dB exchange rate (ER). The scientific and professional communities have debated this assumption over recent decades. This monograph explores the effect of non-Gaussian noise on the auditory system. It begins by summarizing an earlier report by the same author concentrating on the subject of the ER. The conclusions of the earlier report supported the more conservative 3-dB ER with possible adjustments to the permissible exposure limit for certain working conditions. The current document has expanded on the earlier report in light of the relevant research accomplished in the intervening decades. Although some of the animal research has supported the mitigating effect of intermittency, a closer look at many of these studies reveals certain weaknesses, along with the fact that these noise exposures were not usually representative of the conditions under which people actually work. The more recent animal research on complex noise shows that intermittencies do not protect the cochlea and that many of the previous assumptions about the ameliorative effect of intermittencies are no longer valid, lending further support to the 3-dB ER. The neurologic effects of noise on hearing have gained increasing attention in recent years because of improvements in microscopy and immunostaining techniques. Animal experiments showing damage to auditory synapses from noise exposures previously considered harmless may signify the need for a more conservative approach to the assessment of noise-induced hearing loss and consequently the practice of hearing conservation programs.

  5. Noise annoys: effects of noise on breeding great tits depend on personality but not on noise characteristics

    NARCIS (Netherlands)

    Naguib, M.; Van Oers, K.; Braakhuis, A.; Griffioen, M.; De Goede, P.; Waas, J.R.

    2013-01-01

    Anthropogenic noise can have serious implications for animals, especially when they communicate acoustically. Yet, the impacts of noise may depend not only on noise characteristics but also on an individual's coping style or personality. We tested whether noise is more disturbing if it masks

  6. Linear signal noise summer accurately determines and controls S/N ratio

    Science.gov (United States)

    Sundry, J. L.

    1966-01-01

    Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

  7. A Shearlet-based algorithm for quantum noise removal in low-dose CT images

    Science.gov (United States)

    Zhang, Aguan; Jiang, Huiqin; Ma, Ling; Liu, Yumin; Yang, Xiaopeng

    2016-03-01

    Low-dose CT (LDCT) scanning is a potential way to reduce the radiation exposure of X-ray in the population. It is necessary to improve the quality of low-dose CT images. In this paper, we propose an effective algorithm for quantum noise removal in LDCT images using shearlet transform. Because the quantum noise can be simulated by Poisson process, we first transform the quantum noise by using anscombe variance stabilizing transform (VST), producing an approximately Gaussian noise with unitary variance. Second, the non-noise shearlet coefficients are obtained by adaptive hard-threshold processing in shearlet domain. Third, we reconstruct the de-noised image using the inverse shearlet transform. Finally, an anscombe inverse transform is applied to the de-noised image, which can produce the improved image. The main contribution is to combine the anscombe VST with the shearlet transform. By this way, edge coefficients and noise coefficients can be separated from high frequency sub-bands effectively. A number of experiments are performed over some LDCT images by using the proposed method. Both quantitative and visual results show that the proposed method can effectively reduce the quantum noise while enhancing the subtle details. It has certain value in clinical application.

  8. Self-Consistent Theory of Shot Noise Suppression in Ballistic Conductors

    Science.gov (United States)

    Bulashenko, O. M.; Rubí, J. M.; Kochelap, V. A.

    making use of a combination of two already realized techniques: a hot-electron spectrometer [3,4] which allows one to analyze different energy groups of electrons collected at the contact and shot-noise measurements [5,6]. Such "shot noise reduction spectroscopy" allows one to measure the novel phenomena. In particular, we predict the (anti)correlation of the "tangent" electrons having the energy close to the potential barrier height, to all other electron energy groups collected at the receiving contact.

  9. Noise and correlations in a microwave-mechanical-optical transducer

    Science.gov (United States)

    Higginbotham, Andrew P.; Burns, Peter S.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond W.; Regal, Cindy A.; Lehnert, Konrad W.

    Viewed as resources for quantum information processing, microwave and optical fields offer complementary strengths. We simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. In previous work, this system was operated as a classical converter between microwave and optical signals at 4 K, operating with 10% efficiency and 1500 photons of added noise. To improve noise performance, we now operate the converter at 0.1 K. We have observed order-of-magnitude improvement in noise performance, and quantified effects from undesired interactions between the laser and superconducting circuit. Correlations between the microwave and optical fields have also been investigated, serving as a precursor to upcoming quantum operation. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.

  10. Does a Structured Data Collection Form Improve The Accuracy of ...

    African Journals Online (AJOL)

    and multiple etiologies for similar presentation. Standardized forms may harmonize the initial assessment, improve accuracy of diagnosis and enhance outcomes. Objectives: To determine the extent to which use of a structured data collection form (SDCF) affected the diagnostic accuracy of AAP. Methodology: A before and ...

  11. Moment stability for a predator–prey model with parametric dichotomous noises

    International Nuclear Information System (INIS)

    Jin Yan-Fei

    2015-01-01

    In this paper, we investigate the solution moment stability for a Harrison-type predator–prey model with parametric dichotomous noises. Using the Shapiro–Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses. (paper)

  12. The Impact of Concurrent Noise on Visual Search in Children With ADHD.

    Science.gov (United States)

    Allen, Rosemary; Pammer, Kristen

    2015-09-22

    The purpose of this study was to investigate the impact of a concurrent "white noise" stimulus on selective attention in children with ADHD. Participants were 33 children aged 7 to 14 years, who had been previously diagnosed with ADHD. All children completed a computer-based conjunction search task under two noise conditions: a classroom noise condition and a classroom noise + white noise condition. The white noise stimulus was sounds of rain, administered using an iPhone application called Sleep Machine. There were no overall differences between conditions for target detection accuracy, mean reaction time (RT), or reaction time variability (SD). The impact of white noise on visual search depended on children's medication status. White noise may improve task engagement for non-medicated children. White noise may be beneficial for task performance when used as an adjunct to medication. © The Author(s) 2015.

  13. Automatic physiological waveform processing for FMRI noise correction and analysis.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2008-03-01

    Full Text Available Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.

  14. On the improvement of blood sample collection at clinical laboratories.

    Science.gov (United States)

    Grasas, Alex; Ramalhinho, Helena; Pessoa, Luciana S; Resende, Mauricio G C; Caballé, Imma; Barba, Nuria

    2014-01-09

    Blood samples are usually collected daily from different collection points, such hospitals and health centers, and transported to a core laboratory for testing. This paper presents a project to improve the collection routes of two of the largest clinical laboratories in Spain. These routes must be designed in a cost-efficient manner while satisfying two important constraints: (i) two-hour time windows between collection and delivery, and (ii) vehicle capacity. A heuristic method based on a genetic algorithm has been designed to solve the problem of blood sample collection. The user enters the following information for each collection point: postal address, average collecting time, and average demand (in thermal containers). After implementing the algorithm using C programming, this is run and, in few seconds, it obtains optimal (or near-optimal) collection routes that specify the collection sequence for each vehicle. Different scenarios using various types of vehicles have been considered. Unless new collection points are added or problem parameters are changed substantially, routes need to be designed only once. The two laboratories in this study previously planned routes manually for 43 and 74 collection points, respectively. These routes were covered by an external carrier company. With the implementation of this algorithm, the number of routes could be reduced from ten to seven in one laboratory and from twelve to nine in the other, which represents significant annual savings in transportation costs. The algorithm presented can be easily implemented in other laboratories that face this type of problem, and it is particularly interesting and useful as the number of collection points increases. The method designs blood collection routes with reduced costs that meet the time and capacity constraints of the problem.

  15. An improved method for predicting the effects of flight on jet mixing noise

    Science.gov (United States)

    Stone, J. R.

    1979-01-01

    A method for predicting the effects of flight on jet mixing noise has been developed on the basis of the jet noise theory of Ffowcs-Williams (1963) and data derived from model-jet/free-jet simulated flight tests. Predicted and experimental values are compared for the J85 turbojet engine on the Bertin Aerotrain, the low-bypass refanned JT8D engine on a DC-9, and the high-bypass JT9D engine on a DC-10. Over the jet velocity range from 280 to 680 m/sec, the predictions show a standard deviation of 1.5 dB.

  16. Using Public Participation to Improve MELs Energy Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Kloss, Margarita; Cheung, Iris [Hoi; Brown, Richard; Meier, Alan

    2014-08-11

    Miscellaneous and electronic loads (MELs) comprise an increasing share of building energy consumption. Large-scale data collection is needed to inform meaningful energy reduction strategies because of the diversity of MELs and our lack of understanding about how people use them. Traditional methods of data collection, however, usually incur high labor and metering equipment expenses. As an alternative, this paper investigates the feasibility of crowdsourcing data collection to satisfy at least part of the data collection needs with acceptable accuracy. We assessed the reliability and accuracy of crowd-sourced data by recruiting 18 volunteers and testing our crowdsourcing protocol. The protocol asked volunteers to perform measurement tasks for three MELs devices of increasing complexity 1) record power meter and MELs product characteristics, 2) identify and measure all power modes available, and 3) report the measured power. Volunteers performed reasonably well for devices with functionalities with which they were familiar, but many could not correctly identify all available power modes in complex devices. Accuracy may improve when participants measure the power used by familiar devices in their home, or by providing more specific instructions, e.g. videos. Furthermore, crowdsourcing data collection from individual homeowners has the potential to generate valuable information about MELs energy use in homes when integrated with existing programs such as Home Energy Saver and Building America.

  17. Instanton glass generated by noise in a Josephson-junction array.

    Science.gov (United States)

    Chudnovsky, E M

    2009-09-25

    We compute the correlation function of a superconducting order parameter in a continuous model of a two-dimensional Josephson-junction array in the presence of a weak Gaussian noise. When the Josephson coupling is large compared to the charging energy, the correlations in the Euclidian space decay exponentially at low temperatures regardless of the strength of the noise. We interpret such a state as a collective Cooper-pair insulator and argue that it resembles properties of disordered superconducting films.

  18. Passive coherent discriminator using phase diversity for the simultaneous measurement of frequency noise and intensity noise of a continuous-wave laser

    Science.gov (United States)

    Michaud-Belleau, V.; Bergeron, H.; Light, P. S.; Hébert, N. B.; Deschênes, J. D.; Luiten, A. N.; Genest, J.

    2016-10-01

    The frequency noise and intensity noise of a laser set the performance limits in many modern photonics applications and, consequently, must often be characterized. As lasers continue to improve, the measurement of these noises however becomes increasingly challenging. Current approaches for the characterization of very high-performance lasers often call for a second laser with equal or higher performance to the one that is to be measured, an incoherent interferometer having an extremely long delay-arm, or an interferometer that relies on an active device. These instrumental features can be impractical or problematic under certain experimental conditions. As an alternative, this paper presents an entirely passive coherent interferometer that employs an optical 90° hybrid coupler to perform in-phase and quadrature detection. We demonstrate the technique by measuring the frequency noise power spectral density of a highly-stable 192 THz (1560 nm) fiber laser over five frequency decades. Simultaneously, we are able to measure its relative intensity noise power spectral density and characterize the correlation between its amplitude noise and phase noise. We correct some common misconceptions through a detailed theoretical analysis and demonstrate the necessity to account for normal imperfections of the optical 90° hybrid coupler. We finally conclude that this passive coherent discriminator is suitable for reliable and simple noise characterization of highly-stable lasers, with bandwidth and dynamic range benefits but susceptibility to additive noise contamination.

  19. IMPROVEMENT OF METHODS FOR HYDROBIOLOGICAL RESEARCH AND MODIFICATION OF STANDARD TOOLS FOR SAMPLE COLLECTION

    Directory of Open Access Journals (Sweden)

    M. M. Aligadjiev

    2015-01-01

    Full Text Available Aim. The paper discusses the improvement of methods of hydrobiological studies by modifying tools for plankton and benthic samples collecting. Methods. In order to improve the standard methods of hydro-biological research, we have developed tools for sampling zooplankton and benthic environment of the Caspian Sea. Results. Long-term practice of selecting hydrobiological samples in the Caspian Sea shows that it is required to complete the modernization of the sampling tools used to collect hydrobiological material. With the introduction of Azov and Black Sea invasive comb jelly named Mnemiopsis leidyi A. Agassiz to the Caspian Sea there is a need to collect plankton samples without disturbing its integrity. Tools for collecting benthic fauna do not always give a complete picture of the state of benthic ecosystems because of the lack of visual site selection for sampling. Moreover, while sampling by dredge there is a probable loss of the samples, especially in areas with difficult terrain. Conclusion. We propose to modify a small model of Upstein net (applied in shallow water to collect zooplankton samples with an upper inverted cone that will significantly improve the catchability of the net in theCaspian Sea. Bottom sampler can be improved by installing a video camera for visual inspection of the bottom topography, and use sensors to determine tilt of the dredge and the position of the valves of the bucket. 

  20. Community noise

    Science.gov (United States)

    Bragdon, C. R.

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  1. Noise suppressed partial volume correction for cardiac SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Chung; Liu, Chi, E-mail: chi.liu@yale.edu [Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520 (United States); Liu, Hui [Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520 and Key Laboratory of Particle and Radiation Imaging (Tsinghua University), Ministry of Education, Beijing 100084 (China); Grobshtein, Yariv [GE Healthcare, Haifa 3910101 (Israel); Stacy, Mitchel R. [Department of Internal Medicine, Yale University, New Haven, Connecticut 06520 (United States); Sinusas, Albert J. [Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut 06520 and Department of Internal Medicine, Yale University, New Haven, Connecticut 06520 (United States)

    2016-09-15

    Purpose: Partial volume correction (PVC) methods typically improve quantification at the expense of increased image noise and reduced reproducibility. In this study, the authors developed a novel voxel-based PVC method that incorporates anatomical knowledge to improve quantification while suppressing noise for cardiac SPECT/CT imaging. Methods: In the proposed method, the SPECT images were first reconstructed using anatomical-based maximum a posteriori (AMAP) with Bowsher’s prior to penalize noise while preserving boundaries. A sequential voxel-by-voxel PVC approach (Yang’s method) was then applied on the AMAP reconstruction using a template response. This template response was obtained by forward projecting a template derived from a contrast-enhanced CT image, and then reconstructed using AMAP to model the partial volume effects (PVEs) introduced by both the system resolution and the smoothing applied during reconstruction. To evaluate the proposed noise suppressed PVC (NS-PVC), the authors first simulated two types of cardiac SPECT studies: a {sup 99m}Tc-tetrofosmin myocardial perfusion scan and a {sup 99m}Tc-labeled red blood cell (RBC) scan on a dedicated cardiac multiple pinhole SPECT/CT at both high and low count levels. The authors then applied the proposed method on a canine equilibrium blood pool study following injection with {sup 99m}Tc-RBCs at different count levels by rebinning the list-mode data into shorter acquisitions. The proposed method was compared to MLEM reconstruction without PVC, two conventional PVC methods, including Yang’s method and multitarget correction (MTC) applied on the MLEM reconstruction, and AMAP reconstruction without PVC. Results: The results showed that the Yang’s method improved quantification, however, yielded increased noise and reduced reproducibility in the regions with higher activity. MTC corrected for PVE on high count data with amplified noise, although yielded the worst performance among all the methods

  2. Comparison between hybrid feedforward-feedback, feedforward, and feedback structures for active noise control of fMRI noise.

    Science.gov (United States)

    Reddy, Rajiv M; Panahi, Issa M S

    2008-01-01

    The performance of FIR feedforward, IIR feedforward, FIR feedback, hybrid FIR feedforward--FIR feedback, and hybrid IIR feedforward - FIR feedback structures for active noise control (ANC) are compared for an fMRI noise application. The filtered-input normalized least squares (FxNLMS) algorithm is used to update the coefficients of the adaptive filters in all these structures. Realistic primary and secondary paths of an fMRI bore are used by estimating them on a half cylindrical acrylic bore of 0.76 m (D)x1.52 m (L). Detailed results of the performance of the ANC system are presented in the paper for each of these structures. We find that the IIR feedforward structure produces most of the performance improvement in the hybrid IIR feedforward - FIR feedback structure and adding the feedback structure becomes almost redundant in the case of fMRI noise.

  3. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    Science.gov (United States)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  4. Report on inter-noise 99; Inter-noise 99 sanka hokok

    Energy Technology Data Exchange (ETDEWEB)

    Koike, H. [Japan Automobile Research Institute Inc., Tsukuba (Japan)

    2000-04-01

    Inter-Noise (International Congress on Noise Control Engineering) is a society on noise/vibration and the control technology. Inter-Noise 99 was held on December 6, 7 and 8, 1999, at Fort Lauderdale, Florida, the U.S. The theme was Noise Control in the New Millennium. The number of the participants registered was 555 (151 from the U.S., 89 from Japan, 248 from European countries, and 69 from Asian/other countries). Dr. Harold Marshall gave a keynote lecture titled Noise Control by Design in the 21st Century - An Architectural Acoustic Perspective. From a standpoint of architectural acoustics, he stated the perspective, subjects, and course of the technical development pertaining to technologies needed in the 21st century. The papers read are mostly from the following fields: measuring technology, military exercise noise, modeling, forecast and simulation, aerodynamic/underwater sound, etc. In the session on the tire noise where the author read a paper, 14 papers were read. The number of the papers read was more than that in 1998, probably influenced by the tire noise regulation in Europe and Japan. (translated by NEDO)

  5. Noise frame duration, masking potency and whiteness of temporal noise

    OpenAIRE

    Kukkonen, Helja; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antii

    2002-01-01

    PURPOSE. Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. \\ud \\ud METHODS. Contrast energy thresho...

  6. Wind turbines - generating noise or electricity?

    International Nuclear Information System (INIS)

    Russell, Eric

    1999-01-01

    Wind turbine technology has made great strides in the past few years. Annual energy output is up by two orders of magnitude and nacelle weight and noise has been halved. Computational fluid dynamics has paid a part in advancing knowledge of air flow and turbulence around wind generators. Current research is focused on how to increase turbine size and improve efficiency. A problem is that while larger wind turbines will produce cheaper electricity, the noise problem will mean that the number of acceptable sites will decrease. The biggest wind generators will need about 800 m clearance from the nearest house. (UK)

  7. Noise

    Science.gov (United States)

    Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...

  8. Neuropsychological and neurophysiological benefits from white noise in children with and without ADHD.

    Science.gov (United States)

    Baijot, Simon; Slama, Hichem; Söderlund, Göran; Dan, Bernard; Deltenre, Paul; Colin, Cécile; Deconinck, Nicolas

    2016-03-15

    Optimal stimulation theory and moderate brain arousal (MBA) model hypothesize that extra-task stimulation (e.g. white noise) could improve cognitive functions of children with attention-deficit/hyperactivity disorder (ADHD). We investigate benefits of white noise on attention and inhibition in children with and without ADHD (7-12 years old), both at behavioral and at neurophysiological levels. Thirty children with and without ADHD performed a visual cued Go/Nogo task in two conditions (white noise or no-noise exposure), in which behavioral and P300 (mean amplitudes) data were analyzed. Spontaneous eye-blink rates were also recorded and participants went through neuropsychological assessment. Two separate analyses were conducted with each child separately assigned into two groups (1) ADHD or typically developing children (TDC), and (2) noise beneficiaries or non-beneficiaries according to the observed performance during the experiment. This latest categorization, based on a new index we called "Noise Benefits Index" (NBI), was proposed to determine a neuropsychological profile positively sensitive to noise. Noise exposure reduced omission rate in children with ADHD, who were no longer different from TDC. Eye-blink rate was higher in children with ADHD but was not modulated by white noise. NBI indicated a significant relationship between ADHD and noise benefit. Strong correlations were observed between noise benefit and neuropsychological weaknesses in vigilance and inhibition. Participants who benefited from noise had an increased Go P300 in the noise condition. The improvement of children with ADHD with white noise supports both optimal stimulation theory and MBA model. However, eye-blink rate results question the dopaminergic hypothesis in the latter. The NBI evidenced a profile positively sensitive to noise, related with ADHD, and associated with weaker cognitive control.

  9. New parameters in adaptive testing of ferromagnetic materials utilizing magnetic Barkhausen noise

    International Nuclear Information System (INIS)

    Pal’a, Jozef; Ušák, Elemír

    2016-01-01

    A new method of magnetic Barkhausen noise (MBN) measurement and optimization of the measured data processing with respect to non-destructive evaluation of ferromagnetic materials was tested. Using this method we tried to found, if it is possible to enhance sensitivity and stability of measurement results by replacing the traditional MBN parameter (root mean square) with some new parameter. In the tested method, a complex set of the MBN from minor hysteresis loops is measured. Afterward, the MBN data are collected into suitably designed matrices and optimal parameters of MBN with respect to maximum sensitivity to the evaluated variable are searched. The method was verified on plastically deformed steel samples. It was shown that the proposed measuring method and measured data processing bring an improvement of the sensitivity to the evaluated variable when comparing with measuring traditional MBN parameter. Moreover, we found a parameter of MBN, which is highly resistant to the changes of applied field amplitude and at the same time it is noticeably more sensitive to the evaluated variable. - Highlights: • We test an adaptive magnetic Barkhausen noise method. • The method utilizes measuring a complex set of Barkhausen noise signals. • We define new matrices of parameters for this method. • The pulse density is highly resistant to changes in applied field amplitude.

  10. Autonomous data acquisition system for Paks NPP process noise signals

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Czibok, T.; Dezso, Z.; Horvath, Cs.

    2005-01-01

    A prototype of a new concept noise diagnostics data acquisition system has been developed recently to renew the aged present system. This new system is capable of collecting the whole available noise signal set simultaneously. Signal plugging and data acquisition are performed by autonomous systems (installed at each reactor unit) that are controlled through the standard plant network from a central computer installed at a suitable location. Experts can use this central unit to process and archive data series downloaded from the reactor units. This central unit also provides selected noise diagnostics information for other departments. The paper describes the hardware and software architecture of the new system in detail, emphasising the potential benefits of the new approach. (author)

  11. Precomputing Process Noise Covariance for Onboard Sequential Filters

    Science.gov (United States)

    Olson, Corwin G.; Russell, Ryan P.; Carpenter, J. Russell

    2017-01-01

    Process noise is often used in estimation filters to account for unmodeled and mismodeled accelerations in the dynamics. The process noise covariance acts to inflate the state covariance over propagation intervals, increasing the uncertainty in the state. In scenarios where the acceleration errors change significantly over time, the standard process noise covariance approach can fail to provide effective representation of the state and its uncertainty. Consider covariance analysis techniques provide a method to precompute a process noise covariance profile along a reference trajectory using known model parameter uncertainties. The process noise covariance profile allows significantly improved state estimation and uncertainty representation over the traditional formulation. As a result, estimation performance on par with the consider filter is achieved for trajectories near the reference trajectory without the additional computational cost of the consider filter. The new formulation also has the potential to significantly reduce the trial-and-error tuning currently required of navigation analysts. A linear estimation problem as described in several previous consider covariance analysis studies is used to demonstrate the effectiveness of the precomputed process noise covariance, as well as a nonlinear descent scenario at the asteroid Bennu with optical navigation.

  12. Hearing aid noise suppression and working memory function

    DEFF Research Database (Denmark)

    Neher, Tobias; Wagener, Kirsten C.; Fischer, Rosa-Linde

    2018-01-01

    OBJECTIVE: Research findings concerning the relation between benefit from hearing aid (HA) noise suppression and working memory function are inconsistent. The current study thus investigated the effects of three noise suppression algorithms on auditory working memory and the relation with reading......-to-noise ratio (SNR) improvement. Auditory working memory was assessed at +6 dB SNR using listening span and N-back paradigms. STUDY SAMPLE: Twenty experienced HA users ages 55-80 with large differences in reading span. RESULTS: For the listening span measurements, there was an influence of HA setting...... on sentence-final word recognition and recall, with the directional microphones leading to ~6% better performance than the single-channel noise reduction. For the N-back measurements, there was substantial test-retest variability and no influence of HA setting. No interactions with reading span were found...

  13. A multi-time-step noise reduction method for measuring velocity statistics from particle tracking velocimetry

    Science.gov (United States)

    Machicoane, Nathanaël; López-Caballero, Miguel; Bourgoin, Mickael; Aliseda, Alberto; Volk, Romain

    2017-10-01

    We present a method to improve the accuracy of velocity measurements for fluid flow or particles immersed in it, based on a multi-time-step approach that allows for cancellation of noise in the velocity measurements. Improved velocity statistics, a critical element in turbulent flow measurements, can be computed from the combination of the velocity moments computed using standard particle tracking velocimetry (PTV) or particle image velocimetry (PIV) techniques for data sets that have been collected over different values of time intervals between images. This method produces Eulerian velocity fields and Lagrangian velocity statistics with much lower noise levels compared to standard PIV or PTV measurements, without the need of filtering and/or windowing. Particle displacement between two frames is computed for multiple different time-step values between frames in a canonical experiment of homogeneous isotropic turbulence. The second order velocity structure function of the flow is computed with the new method and compared to results from traditional measurement techniques in the literature. Increased accuracy is also demonstrated by comparing the dissipation rate of turbulent kinetic energy measured from this function against previously validated measurements.

  14. The role of Urbis' noise and noise effects maps in local policy

    NARCIS (Netherlands)

    Borst, H.C.

    2001-01-01

    An important aspect of the EU noise policy is mapping of noise and noise effects and the formulation of noise action plans. In the Netherlands, due to the new policy on noise (MIG), the municipalities will be responsible for the formulation of a local noise policy. An instrument for the assessment

  15. Noise from wind turbines. Final report of project JOU2-CT92-0124

    International Nuclear Information System (INIS)

    Van der Borg, N.; Andersen, B.; Mackinnon, A.; Klug, H.; Theofiloyannakos, D.

    1995-04-01

    Part of the planning procedure for the erection of a wind turbine or a wind farm is the prediction of the acoustic noise due to the wind turbine(s) at the nearest dwelling. The noise is normally predicted using the acoustic characteristics of the regarded wind turbine as measured on a wind turbine of equal make and model and using a general noise propagation model. Both inputs introduce uncertainties in the predicted noise level: (a) turbines of equal make and model may have different acoustic characteristics; (b) the acoustic characteristics of a turbine may change in time - from day to day (repeatability of the measurement), - during the years (ageing of the turbine); (c) the general propagation model does not take into account the effects of source elevation and wind. The project aimed at the quantification of these uncertainties and at the development of a wind turbine noise propagation model. Statistical information has been collected on the individual differences of the sound power and tonality of turbines of equal make and model by measuring 6 different types of wind turbines. Of each type 5 individual turbines have been measured (total 30 turbines). Additionally the sound power of a series of 4 wind turbines and of a series of 29 wind turbines (from earlier measurements) have been introduced into the project. Statistical information has been collected on the day to day variations of the sound power and tonality of wind turbines by measuring 3 different turbines 5 times (total 15 measurements). Statistical information has been collected on the effect of ageing on the sound power and tonality of wind turbines by the repeated measurement of 5 wind turbines that have been measured in an identical situation 3 to 7 years earlier. A method for the prediction of wind turbine noise propagation has been developed based on measurements of sound propagation from an elevated noise source and theoretical calculations. (Abstract Truncated)

  16. Noise in Optical Amplifiers

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1997-01-01

    Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived.......Noise in optical amplifiers is discussed on the basis of photons and electromagntic fields. Formulas for quantum noise from spontaneous emission, signal-spontaneous beat noise and spontaneous-spontaneous beat noise are derived....

  17. Noise Reduction Efforts for Special Operations C-130 Aircraft Using Active Synchrophaser Control

    National Research Council Canada - National Science Library

    Hammond, Daryl; McKinley, Richard; Hale, Bill

    1998-01-01

    .... A more complicated approach uses an active noise cancellation (ANC) system, which offers improved performance that can augment passive methods to significantly reduce both internal and external aircraft noise...

  18. Association between community noise and adiposity in patients with cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Angel M Dzhambov

    2017-01-01

    Full Text Available Introduction: This study aimed to explore the effect of community noise on body mass index (BMI and waist circumference (WC in patients with cardiovascular disease (CVD. Materials and Methods: A representative sample of 132 patients from three tertiary hospitals in the city of Plovdiv, Bulgaria was collected. Anthropometric measurements were linked to global noise annoyance (GNA based on different residential noise annoyances, day–evening–night (Lden, and nighttime (Lnight road traffic noise exposure. Noise map Lden and Lnight were determined at the living room and bedroom façades, respectively, and further corrected to indoor exposure based on the window-opening frequency and soundproofing insulation. Results and Discussion: Results showed that BMI and WC increased (non-significantly per 5 dB. The effect of indoor noise was stronger in comparison with that of outdoor noise. For indoor Lden, the effect was more pronounced in men, those with diabetes, family history of diabetes, high noise sensitivity, using solid fuel/gas for domestic heating/cooking, and living on the first floor. As regards indoor Lnight, its effect was more pronounced in those with low socioeconomic status, hearing loss, and using solid fuel/gas for domestic heating/cooking. GNA was associated with lower BMI and WC. Conclusion: Road traffic noise was associated with an increase in adiposity in some potentially vulnerable patients with CVD.

  19. Modeling Noise Sources and Propagation in External Gear Pumps

    Directory of Open Access Journals (Sweden)

    Sangbeom Woo

    2017-07-01

    Full Text Available As a key component in power transfer, positive displacement machines often represent the major source of noise in hydraulic systems. Thus, investigation into the sources of noise and discovering strategies to reduce noise is a key part of improving the performance of current hydraulic systems, as well as applying fluid power systems to a wider range of applications. The present work aims at developing modeling techniques on the topic of noise generation caused by external gear pumps for high pressure applications, which can be useful and effective in investigating the interaction between noise sources and radiated noise and establishing the design guide for a quiet pump. In particular, this study classifies the internal noise sources into four types of effective load functions and, in the proposed model, these load functions are applied to the corresponding areas of the pump case in a realistic way. Vibration and sound radiation can then be predicted using a combined finite element and boundary element vibro-acoustic model. The radiated sound power and sound pressure for the different operating conditions are presented as the main outcomes of the acoustic model. The noise prediction was validated through comparison with the experimentally measured sound power levels.

  20. Improving health care quality and safety: the role of collective learning.

    Science.gov (United States)

    Singer, Sara J; Benzer, Justin K; Hamdan, Sami U

    2015-01-01

    Despite decades of effort to improve quality and safety in health care, this goal feels increasingly elusive. Successful examples of improvement are infrequently replicated. This scoping review synthesizes 76 empirical or conceptual studies (out of 1208 originally screened) addressing learning in quality or safety improvement, that were published in selected health care and management journals between January 2000 and December 2014 to deepen understanding of the role that collective learning plays in quality and safety improvement. We categorize learning activities using a theoretical model that shows how leadership and environmental factors support collective learning processes and practices, and in turn team and organizational improvement outcomes. By focusing on quality and safety improvement, our review elaborates the premise of learning theory that leadership, environment, and processes combine to create conditions that promote learning. Specifically, we found that learning for quality and safety improvement includes experimentation (including deliberate experimentation, improvisation, learning from failures, exploration, and exploitation), internal and external knowledge acquisition, performance monitoring and comparison, and training. Supportive learning environments are characterized by team characteristics like psychological safety, appreciation of differences, openness to new ideas social motivation, and team autonomy; team contextual factors including learning resources like time for reflection, access to knowledge, organizational capabilities; incentives; and organizational culture, strategy, and structure; and external environmental factors including institutional pressures, environmental dynamism and competitiveness and learning collaboratives. Lastly learning in the context of quality and safety improvement requires leadership that reinforces learning through actions and behaviors that affect people, such as coaching and trust building, and through

  1. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    International Nuclear Information System (INIS)

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta

    2015-01-01

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping

  2. Evaluation of noise pollution in urban traffic hubs—Noise maps and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, Paulo Eduardo Kirrian; Zannin, Paulo Henrique Trombetta, E-mail: paulo.zannin@pesquisador.cnpq.br

    2015-02-15

    A study was made of some of the main traffic hubs in a Latin American metropolis, in order to determine the presence or absence of noise by means of noise measurements and acoustic mapping. To characterize noise in the evaluated road stretches, 232 measurements were taken at different points. The Predictor software package was used for the noise mapping calculations. Noise sensitive areas, e.g., hospitals, were identified in the evaluated road stretches. Noise maps were calculated for two hospitals, showing the current levels of noise that reach their facades. Hypothetical scenarios were simulated by making changes in the composition of traffic and total number of vehicles, and an assessment was made of the potential influence of these modifications in reducing the noise levels reaching the facades of the buildings in question. The simulations indicated that a 50% reduction in total traffic flow, or a 50% reduction in heavy vehicle traffic flow, would reduce the noise levels by about 3 dB(A). - Highlights: • Evaluation of noise pollution in urban traffic hubs • Street systems • Environmental noise impacts • Noise mapping.

  3. Cross-band noise model refinement for transform domain Wyner–Ziv video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren

    2012-01-01

    TDWZ video coding trails that of conventional video coding solutions, mainly due to the quality of side information, inaccurate noise modeling and loss in the final coding step. The major goal of this paper is to enhance the accuracy of the noise modeling, which is one of the most important aspects...... influencing the coding performance of DVC. A TDWZ video decoder with a novel cross-band based adaptive noise model is proposed, and a noise residue refinement scheme is introduced to successively update the estimated noise residue for noise modeling after each bit-plane. Experimental results show...... that the proposed noise model and noise residue refinement scheme can improve the rate-distortion (RD) performance of TDWZ video coding significantly. The quality of the side information modeling is also evaluated by a measure of the ideal code length....

  4. Noise from wind turbines. Guideline from the Environmental Protection Agency no. 1, 2012; Stoej fra vindmoeller

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    Wind turbines erected in Denmark, both on land and offshore, must observe noise limits in accordance with the Statutory Order no. 1284 of 15 December 2011. The noise limits apply to collective noise and are set for both weak winds, when noise is found to be most annoying, and stronger winds. The noise limits do not mean that noise is inaudible. They have been laid down to ensure that no significant disturbance is experienced. As most complaints from citizens are related to wind turbines on land and as the local governments are the controlling authorities, the present guideline is aimed at the local governments' administration of wind turbines. (LN)

  5. The design and research of anti-color-noise chaos M-ary communication system

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yongqing, E-mail: fuyongqing@hrbeu.edu.cn; Li, Xingyuan; Li, Yanan [College of information and Communication Engineering, Harbin Engineering University, Harbin 150001 (China); Zhang, Lin [College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001 (China)

    2016-03-15

    Previously a novel chaos M-ary digital communication method based on spatiotemporal chaos Hamilton oscillator has been proposed. Without chaos synchronization circumstance, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-white-noise performance compared with traditional communication method. In this paper, the channel noise influence on chaotic modulation signals and the construction problem of anti-color-noise chaotic M-ary communication system are studied. The formula of zone partition demodulator’s boundary in additive white Gaussian noise is derived, besides, the problem about how to determine the boundary of zone partition demodulator in additive color noise is deeply studied; Then an approach on constructing anti-color-noise chaos M-ary communication system is proposed, in which a pre-distortion filter is added after the chaos baseband modulator in the transmitter and whitening filter is added before zone partition demodulator in the receiver. Finally, the chaos M-ary communication system based on Hamilton oscillator is constructed and simulated in different channel noise. The result shows that the proposed method in this paper can improve the anti-color-noise performance of the whole communication system compared with the former system, and it has better anti-fading and resisting disturbance performance than Quadrature Phase Shift Keying system.

  6. The design and research of anti-color-noise chaos M-ary communication system

    International Nuclear Information System (INIS)

    Fu, Yongqing; Li, Xingyuan; Li, Yanan; Zhang, Lin

    2016-01-01

    Previously a novel chaos M-ary digital communication method based on spatiotemporal chaos Hamilton oscillator has been proposed. Without chaos synchronization circumstance, it has performance improvement in bandwidth efficiency, transmission efficiency and anti-white-noise performance compared with traditional communication method. In this paper, the channel noise influence on chaotic modulation signals and the construction problem of anti-color-noise chaotic M-ary communication system are studied. The formula of zone partition demodulator’s boundary in additive white Gaussian noise is derived, besides, the problem about how to determine the boundary of zone partition demodulator in additive color noise is deeply studied; Then an approach on constructing anti-color-noise chaos M-ary communication system is proposed, in which a pre-distortion filter is added after the chaos baseband modulator in the transmitter and whitening filter is added before zone partition demodulator in the receiver. Finally, the chaos M-ary communication system based on Hamilton oscillator is constructed and simulated in different channel noise. The result shows that the proposed method in this paper can improve the anti-color-noise performance of the whole communication system compared with the former system, and it has better anti-fading and resisting disturbance performance than Quadrature Phase Shift Keying system.

  7. Moment stability for a predator-prey model with parametric dichotomous noises

    Science.gov (United States)

    Jin, Yan-Fei

    2015-06-01

    In this paper, we investigate the solution moment stability for a Harrison-type predator-prey model with parametric dichotomous noises. Using the Shapiro-Loginov formula, the equations for the first-order and second-order moments are obtained and the corresponding stable conditions are given. It is found that the solution moment stability depends on the noise intensity and correlation time of noise. The first-order and second-order moments become unstable with the decrease of correlation time. That is, the dichotomous noise can improve the solution moment stability with respect to Gaussian white noise. Finally, some numerical results are presented to verify the theoretical analyses. Project supported by the National Natural Science Foundation of China (Grant No. 11272051).

  8. An excess noise measurement system for weak responsivity avalanche photodiodes

    Science.gov (United States)

    Qiao, Liang; Dimler, Simon J.; Baharuddin, Aina N. A. P.; Green, James E.; David, John P. R.

    2018-06-01

    A system for measuring, with reduced photocurrent, the excess noise associated with the gain in avalanche photodiodes (APDs), using a transimpedance amplifier front-end and based on phase-sensitive detection is described. The system can reliably measure the excess noise power of devices, even when the un-multiplied photocurrent is low (~10 nA). This is more than one order of magnitude better than previously reported systems and represents a significantly better noise signal to noise ratio. This improvement in performance has been achieved by increasing the value of the feedback resistor and reducing the op-amp bandwidth. The ability to characterise APD performance with such low photocurrents enables the use of low power light sources such as light emitting diode rather than lasers to investigate the APD noise performance.

  9. Transient threshold shift after gunshot noise exposure.

    Science.gov (United States)

    Saedi, B; Ghasemi, M; Motiee, M; Mojtahed, M; Safavi, A

    2013-01-01

    Many people, such as soldiers, are routinely exposed to gunshot noise during target practice. It is suspected that this high-intensity noise may affect audition through repeated Transient Threshold Shifts (TTS); it can also mechanically alter auditory components such as waves. This study investigates the scope of gunshot noise from the AK-47 rifle (Kalashnikov) and the impact on the shooters' audition. Forty soldiers (80 ears) were recruited in this study. They were all young and being exposed to gunshot noise for the first time. Gunshot characteristics were measured before exposure. The soldiers underwent auditory evaluation with Pure Tone Audiometry (PTA) and Oto-Acoustic Emission (OAE) once before exposure and immediately (less than one hour) after exposure. The AK-47 gunshot noise pressure level varied between L(AIm) = 73.7 dBA to L(AIm) = 111.4 dBA. Fourteen participants had subclinical hearing impairment in their pre-exposure evaluation; this number increased to 16 after the exposure. Six months post-exposure and later, the number of cases with impairment had fallen to eight (improvement in 50%). Both pre- and post-exposure OAE results were within normal values, while PTA results indicated a significant threshold alteration only at 6 kHz. The results of this study confirm that exposure to gunshot noise with no ear protection can represent a significant hazard for auditory function, especially at higher frequencies.

  10. Improving health care quality and safety: the role of collective learning

    Directory of Open Access Journals (Sweden)

    Singer SJ

    2015-11-01

    Full Text Available Sara J Singer,1–4 Justin K Benzer,4–6 Sami U Hamdan4,6 1Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA, USA; 2Department of Medicine, Harvard Medical School, Boston, MA, USA; 3Mongan Institute for Health Policy, Massachusetts General Hospital, Boston, MA, USA; 4Center for Healthcare Organization and Implementation Research, VA Boston Healthcare System, Boston, MA, USA; 5VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA; 6Department of Health Policy and Management, Boston University School of Public Health, Boston, MA, USA Abstract: Despite decades of effort to improve quality and safety in health care, this goal feels increasingly elusive. Successful examples of improvement are infrequently replicated. This scoping review synthesizes 76 empirical or conceptual studies (out of 1208 originally screened addressing learning in quality or safety improvement, that were published in selected health care and management journals between January 2000 and December 2014 to deepen understanding of the role that collective learning plays in quality and safety improvement. We categorize learning activities using a theoretical model that shows how leadership and environmental factors support collective learning processes and practices, and in turn team and organizational improvement outcomes. By focusing on quality and safety improvement, our review elaborates the premise of learning theory that leadership, environment, and processes combine to create conditions that promote learning. Specifically, we found that learning for quality and safety improvement includes experimentation (including deliberate experimentation, improvisation, learning from failures, exploration, and exploitation, internal and external knowledge acquisition, performance monitoring and comparison, and training. Supportive learning environments are characterized by team characteristics like psychological

  11. Humans, Fish, and Whales: How Right Whales Modify Calling Behavior in Response to Shifting Background Noise Conditions.

    Science.gov (United States)

    Parks, Susan E; Groch, Karina; Flores, Paulo; Sousa-Lima, Renata; Urazghildiiev, Ildar R

    2016-01-01

    This study investigates the role of behavioral plasticity in the variation of sound production of southern right whales (Eubalaena australis) in response to changes in the ambient background noise conditions. Data were collected from southern right whales in Brazilian waters in October and November 2011. The goal of this study was to quantify differences in right whale vocalizations recorded in low background noise as a control, fish chorus noise, and vessel noise. Variation in call parameters were detected among the three background noise conditions and have implications for future studies of noise effects on whale sound production.

  12. An Improved Method for Collection of Cerebrospinal Fluid from Anesthetized Mice

    DEFF Research Database (Denmark)

    Lim, Nastasia K-H; Moestrup, Visse Theresia Skov; Zhang, Xiao

    2017-01-01

    a technique that improves on current methods of collection to minimize contamination from blood and allow for the abundant collection of CSF (on average 10-15 µL can be collected). This technique can be used with other dissection methods for tissue collection from mice, as it does not impact any tissues......The cerebrospinal fluid (CSF) is a valuable body fluid for analysis in neuroscience research. It is one of the fluids in closest contact with the central nervous system and thus, can be used to analyze the diseased state of the brain or spinal cord without directly accessing these tissues. However......, in mice it is difficult to obtain from the cisterna magna due to its closeness to blood vessels, which often contaminate samples. The area for CSF collection in mice is also difficult to dissect to and often only small samples are obtained (maximum of 5-7 µL or less). This protocol describes in detail...

  13. Cavitation noise studies on marine propellers

    Science.gov (United States)

    Sharma, S. D.; Mani, K.; Arakeri, V. H.

    1990-04-01

    Experimental observations are described of cavitation inception and noise from five model propellers, three basic and two modified, tested in the open jet section of the Indian Institute of Science high-speed water tunnel facility. Extensive experiments on the three basic propellers of different design, which included visualization of cavitation and measurements of noise, showed that the dominant type of cavitation was in the form of tip vortex cavitation, accompanied by leading edge suction side sheet cavitation in its close vicinity, and the resultant noise depended on parameters such as the advance coefficient, the cavitation number, and the propeller geometry. Of these, advance coefficient was found to have the maximum influence not only on cavitation noise but also on the inception of cavitation. Noise levels and frequencies of spectra obtained from all the three basic propellers at conditions near inception and different advance coefficient values, when plotted in the normalized form as suggested by Blake, resulted in a universal spectrum which would be useful for predicting cavitation noise at prototype scales when a limited extent of cavitation is expected in the same form as observed on the present models. In an attempt to delay the onset of tip vortex cavitation, the blades of two of the three basic propellers were modified by drilling small holes in the tip and leading edge areas. Studies on the modified propellers showed that the effectiveness of the blade modification was apparently stronger at low advance coefficient values and depended on the blade sectional profile. Measurements of cavitation noise indicated that the modification also improved the acoustic performance of the propellers as it resulted in a complete attenuation of the low-frequency spectral peaks, which were prominent with the basic propellers. In addition to the above studies, which were conducted under uniform flow conditions, one of the basic propellers was tested in the simulated

  14. The Assessment of Noise Exposure and Noise Annoyance at a Petrochemical Company

    Directory of Open Access Journals (Sweden)

    S. Farhang Dehghan

    2013-12-01

    .Conclusion: Based on the obtained results of investigating the noise level (objective exposure as well as the noise annoyance (subjective exposure at the studied company, it is necessary to adopt the management –technical noise reduction measures at manufacturing sectors as the personal noise exposure and environmental noise exposure and also noise personal exposure of administrative staff can be decreased.

  15. Market Analysis of Soundproof and Noise Reduction Plate

    Directory of Open Access Journals (Sweden)

    Chang Heyu

    2017-01-01

    Full Text Available Since the reform and opening up, China has a booming economy development, transportation industry as an important part of the economic processes has made a considerable progress, and continue to promote the rapid economic development. At the end of 2012, China's highway mileage has reached 4.238 million km and highway mileage ranks first in the world. Transportation in promoting rapid economic development, but also brings the traffic noise which has a tremendous influence on residents’ daily life, and this influence has gradually deepening and widening, in this situation the production of noise reduction panel gradually emerged. In this paper, a noise barriers manufacturer’ business model in Beijing Daxing District and analyze existing data will be analyzed, it will give much guidance and reference for a new noise reduction factory. The study has shown that plant will target all levels of government departments in charge of roads and the property of management department of residence as our customer groups, increasing technological innovation and improving product quality to establish a more extensive business relationships, and gradually formed noise barriers market competitiveness.

  16. Musical Training during Early Childhood Enhances the Neural Encoding of Speech in Noise

    Science.gov (United States)

    Strait, Dana L.; Parbery-Clark, Alexandra; Hittner, Emily; Kraus, Nina

    2012-01-01

    For children, learning often occurs in the presence of background noise. As such, there is growing desire to improve a child's access to a target signal in noise. Given adult musicians' perceptual and neural speech-in-noise enhancements, we asked whether similar effects are present in musically-trained children. We assessed the perception and…

  17. Noise pollution resources compendium

    Science.gov (United States)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  18. Solar noise storms

    CERN Document Server

    Elgaroy, E O

    2013-01-01

    Solar Noise Storms examines the properties and features of solar noise storm phenomenon. The book also presents some theories that can be used to gain a better understanding of the phenomenon. The coverage of the text includes topics that cover the features and behavior of noise storms, such as the observable features of noise storms; the relationship between noise storms and the observable features on the sun; and ordered behavior of storm bursts in the time-frequency plane. The book also covers the spectrum, polarization, and directivity of noise storms. The text will be of great use to astr

  19. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M. [Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States) and Department of Biomedical Engineering, University of California, Davis, Davis, California, 95616 (United States)

    2010-07-15

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.

  20. Description of the Tile Calorimeter noise with increasing Pile-up for $\\sqrt{s}=7\\,\\rm{TeV}$ data collected during 2011

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    In this note the noise in the Tile calorimeter is investigated with special attention to the pile-up effect. A full survey of the TileCal cells is performed, based both on pseudorapidity, bunch position in a train and number of interactions per bunch crossing. Several periods of 2011 data collected by the ATLAS experiment at $\\sqrt{s}=7\\,\\rm{TeV}$ were used in the analysis. Just one run from each data-taking period corresponding to different pile-up conditions was examined. The data were recorded by zero bias trigger. The Monte Carlo simulation was reweighted to the pile-up conditions of the data. This study contributes to a better knowledge of the Tile Calorimeter response and performance under increasing pile-up conditions.

  1. Effects of directional microphone and adaptive multichannel noise reduction algorithm on cochlear implant performance.

    Science.gov (United States)

    Chung, King; Zeng, Fan-Gang; Acker, Kyle N

    2006-10-01

    Although cochlear implant (CI) users have enjoyed good speech recognition in quiet, they still have difficulties understanding speech in noise. We conducted three experiments to determine whether a directional microphone and an adaptive multichannel noise reduction algorithm could enhance CI performance in noise and whether Speech Transmission Index (STI) can be used to predict CI performance in various acoustic and signal processing conditions. In Experiment I, CI users listened to speech in noise processed by 4 hearing aid settings: omni-directional microphone, omni-directional microphone plus noise reduction, directional microphone, and directional microphone plus noise reduction. The directional microphone significantly improved speech recognition in noise. Both directional microphone and noise reduction algorithm improved overall preference. In Experiment II, normal hearing individuals listened to the recorded speech produced by 4- or 8-channel CI simulations. The 8-channel simulation yielded similar speech recognition results as in Experiment I, whereas the 4-channel simulation produced no significant difference among the 4 settings. In Experiment III, we examined the relationship between STIs and speech recognition. The results suggested that STI could predict actual and simulated CI speech intelligibility with acoustic degradation and the directional microphone, but not the noise reduction algorithm. Implications for intelligibility enhancement are discussed.

  2. Low noise constant current source for bias dependent noise measurements

    International Nuclear Information System (INIS)

    Talukdar, D.; Bose, Suvendu; Bardhan, K. K.; Chakraborty, R. K.

    2011-01-01

    A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 μA to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noise voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.

  3. Origin and Reduction of 1 /f Magnetic Flux Noise in Superconducting Devices

    Science.gov (United States)

    Kumar, P.; Sendelbach, S.; Beck, M. A.; Freeland, J. W.; Wang, Zhe; Wang, Hui; Yu, Clare C.; Wu, R. Q.; Pappas, D. P.; McDermott, R.

    2016-10-01

    Magnetic flux noise is a dominant source of dephasing and energy relaxation in superconducting qubits. The noise power spectral density varies with frequency as 1 /fα, with α ≲1 , and spans 13 orders of magnitude. Recent work indicates that the noise is from unpaired magnetic defects on the surfaces of the superconducting devices. Here, we demonstrate that adsorbed molecular O2 is the dominant contributor to magnetism in superconducting thin films. We show that this magnetism can be reduced by appropriate surface treatment or improvement in the sample vacuum environment. We observe a suppression of static spin susceptibility by more than an order of magnitude and a suppression of 1 /f magnetic flux noise power spectral density of up to a factor of 5. These advances open the door to the realization of superconducting qubits with improved quantum coherence.

  4. How Might People Near National Roads Be Affected by Traffic Noise as Electric Vehicles Increase in Number? A Laboratory Study of Subjective Evaluations of Environmental Noise.

    Science.gov (United States)

    Walker, Ian; Kennedy, John; Martin, Susanna; Rice, Henry

    2016-01-01

    We face a likely shift to electric vehicles (EVs) but the environmental and human consequences of this are not yet well understood. Simulated auditory traffic scenes were synthesized from recordings of real conventional and EVs. These sounded similar to what might be heard by a person near a major national road. Versions of the simulation had 0%, 20%, 40%, 60%, 80% and 100% EVs. Participants heard the auditory scenes in random order, rating each on five perceptual dimensions such as pleasant-unpleasant and relaxing-stressful. Ratings of traffic noise were, overall, towards the negative end of these scales, but improved significantly when there were high proportions of EVs in the traffic mix, particularly when there were 80% or 100% EVs. This suggests a shift towards a high proportion of EVs is likely to improve the subjective experiences of people exposed to traffic noise from major roads. The effects were not a simple result of EVs being quieter: ratings of bandpass-filtered versions of the recordings suggested that people's perceptions of traffic noise were specifically influenced by energy in the 500-2000 Hz band. Engineering countermeasures to reduce noise in this band might be effective for improving the subjective experience of people living or working near major roads, even for conventional vehicles; energy in the 0-100 Hz band was particularly associated with people identifying sound as 'quiet' and, again, this might feed into engineering to reduce the impact of traffic noise on people.

  5. Quantum and Private Capacities of Low-Noise Channels

    Science.gov (United States)

    Leditzky, Felix; Leung, Debbie; Smith, Graeme

    2018-04-01

    We determine both the quantum and the private capacities of low-noise quantum channels to leading orders in the channel's distance to the perfect channel. It has been an open problem for more than 20 yr to determine the capacities of some of these low-noise channels such as the depolarizing channel. We also show that both capacities are equal to the single-letter coherent information of the channel, again to leading orders. We thus find that, in the low-noise regime, superadditivity and degenerate codes have a negligible benefit for the quantum capacity, and shielding does not improve the private capacity beyond the quantum capacity, in stark contrast to the situation when noisier channels are considered.

  6. Perceptual learning improves visual performance in juvenile amblyopia.

    Science.gov (United States)

    Li, Roger W; Young, Karen G; Hoenig, Pia; Levi, Dennis M

    2005-09-01

    To determine whether practicing a position-discrimination task improves visual performance in children with amblyopia and to determine the mechanism(s) of improvement. Five children (age range, 7-10 years) with amblyopia practiced a positional acuity task in which they had to judge which of three pairs of lines was misaligned. Positional noise was produced by distributing the individual patches of each line segment according to a Gaussian probability function. Observers were trained at three noise levels (including 0), with each observer performing between 3000 and 4000 responses in 7 to 10 sessions. Trial-by-trial feedback was provided. Four of the five observers showed significant improvement in positional acuity. In those four observers, on average, positional acuity with no noise improved by approximately 32% and with high noise by approximately 26%. A position-averaging model was used to parse the improvement into an increase in efficiency or a decrease in equivalent input noise. Two observers showed increased efficiency (51% and 117% improvements) with no significant change in equivalent input noise across sessions. The other two observers showed both a decrease in equivalent input noise (18% and 29%) and an increase in efficiency (17% and 71%). All five observers showed substantial improvement in Snellen acuity (approximately 26%) after practice. Perceptual learning can improve visual performance in amblyopic children. The improvement can be parsed into two important factors: decreased equivalent input noise and increased efficiency. Perceptual learning techniques may add an effective new method to the armamentarium of amblyopia treatments.

  7. Trust-based collective view prediction

    CERN Document Server

    Luo, Tiejian; Xu, Guandong; Zhou, Jia

    2013-01-01

    Collective view prediction is to judge the opinions of an active web user based on unknown elements by referring to the collective mind of the whole community. Content-based recommendation and collaborative filtering are two mainstream collective view prediction techniques. They generate predictions by analyzing the text features of the target object or the similarity of users' past behaviors. Still, these techniques are vulnerable to the artificially-injected noise data, because they are not able to judge the reliability and credibility of the information sources. Trust-based Collective View

  8. Community response to construction noise in three central cities of Zhejiang province, China.

    Science.gov (United States)

    Liu, Yong; Xia, Bo; Cui, Caiyun; Skitmore, Martin

    2017-11-01

    As a common source of environmental noise in China and many developing countries worldwide, construction work provokes many complaints and deterioration in acoustic climate quality. This paper describes research to obtain an improved understanding of people's community response to, and evaluation of, construction noise in three central cities of Zhejiang province, China. This involved carrying out a social survey using standard questionnaires developed by the International Commission on Biological Effects of Noise (ICBEN). A dose-response relationship model is established using a quadratic polynomial regression analysis based on construction noise exposure measurements from 40 construction sites in Hangzhou, Ningbo and Wenzhou. The results of the study indicate that the majority of people have a negative attitude to construction noise; the noise ranges between 60 dB and 80 dB (compared with 50 dB-70 dB traffic noise in Tianjin), with the percentage of highly annoyed people affected increasing from 15%-20% to 30%-40% over the range. There also different levels of annoyance depending on the time of day, and the location and activities of those affected. Other cultural differences are also apparent both between Ningbo/Wenzhou and the more urbane citizens of Hangzhou, and the Chinese people and their more noise-tolerant EU and Vietnam counterparts. The findings of this study provide a new perspective for the study of construction noise that can help local governments have an improved understanding of how residents react to construction noise for the purpose of selecting construction noise-mitigation projects and introducing construction noise-control regulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Novel Oversampling Technique for Improving Signal-to-Quantization Noise Ratio on Accelerometer-Based Smart Jerk Sensors in CNC Applications.

    Science.gov (United States)

    Rangel-Magdaleno, Jose J; Romero-Troncoso, Rene J; Osornio-Rios, Roque A; Cabal-Yepez, Eduardo

    2009-01-01

    Jerk monitoring, defined as the first derivative of acceleration, has become a major issue in computerized numeric controlled (CNC) machines. Several works highlight the necessity of measuring jerk in a reliable way for improving production processes. Nowadays, the computation of jerk is done by finite differences of the acceleration signal, computed at the Nyquist rate, which leads to low signal-to-quantization noise ratio (SQNR) during the estimation. The novelty of this work is the development of a smart sensor for jerk monitoring from a standard accelerometer, which has improved SQNR. The proposal is based on oversampling techniques that give a better estimation of jerk than that produced by a Nyquist-rate differentiator. Simulations and experimental results are presented to show the overall methodology performance.

  10. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    OpenAIRE

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.; Yu, Guoqiang

    2013-01-01

    The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measure...

  11. Proceedings of the 2009 spring noise conference : noise awareness : supporting sound partnerships

    International Nuclear Information System (INIS)

    2009-01-01

    This conference provided a forum for industry, government, public, academics and acoustical professionals to discuss innovations in environmental and occupational noise identification, measurement, regulation and control. In addition to raising awareness about expanding noise issues, the conference objectives were to promote responsible industrial development and to identify strategies for reducing workplace noise exposure. The papers focused on research, developments and case studies and highlighted current issues and advancements in technology and software. Speakers from around the world discussed topics ranging from occupational noise issues to low frequency. The 8 sessions were entitled: (1) plenary session, (2) architecture, community planning and public health: effects of noise and noise control, (3) modeling, measurement and technology; (4) noise awareness and education: public, occupational and industrial, (5) regulations and economics: bylaws, legislation and the economics of noise control; (6) student papers, (7) vibration, industrial noise, transportation noise and occupational noise control, and (8) lunch speakers. The conference featured 46 presentations, of which 19 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  12. Noise in strong laser-atom interactions: Phase telegraph noise

    International Nuclear Information System (INIS)

    Eberly, J.H.; Wodkiewicz, K.; Shore, B.W.

    1984-01-01

    We discuss strong laser-atom interactions that are subjected to jump-type (random telegraph) random-phase noise. Physically, the jumps may arise from laser fluctuations, from collisions of various kinds, or from other external forces. Our discussion is carried out in two stages. First, direct and partially heuristic calculations determine the laser spectrum and also give a third-order differential equation for the average inversion of a two-level atom on resonance. At this stage a number of general features of the interaction are able to be studied easily. The optical analog of motional narrowing, for example, is clearly predicted. Second, we show that the theory of generalized Poisson processes allows laser-atom interactions in the presence of random telegraph noise of all kinds (not only phase noise) to be treated systematically, by means of a master equation first used in the context of quantum optics by Burshtein. We use the Burshtein equation to obtain an exact expression for the two-level atom's steady-state resonance fluorescence spectrum, when the exciting laser exhibits phase telegraph noise. Some comparisons are made with results obtained from other noise models. Detailed treatments of the effects ofmly jumps, or as a model of finite laser bandwidth effects, in which the laser frequency exhibits random jumps. We show that these two types of frequency noise can be distinguished in light-scattering spectra. We also discuss examples which demonstrate both temporal and spectral motional narrowing, nonexponential correlations, and non-Lorentzian spectra. Its exact solubility in finite terms makes the frequency-telegraph noise model an attractive alternative to the white-noise Ornstein-Uhlenbeck frequency noise model which has been previously applied to laser-atom interactions

  13. Blood Pressure of Jordanian Workers Chronically Exposed to Noise in Industrial Plants

    Directory of Open Access Journals (Sweden)

    Saed Nserat

    2017-10-01

    Full Text Available Background: Occupational studies investigating the association between blood pressure and noise exposure are almost lacking in the Eastern Mediterranean Region countries. Objective: To determine the association between occupational exposure to high level of noise and blood pressure among a group of workers in Jordan. Methods: All workers who had been exposing to noise for at least 3 years in 3 plants in Madaba governorate in Jordan were included in this cross-sectional study. A structured questionnaire was used to collect data. The occupational noise level was measured with a portable calibrated sound meter. Results: We studied 191 male workers, of whom 145 (75.9% were exposed to a noise level higher than the permissible limit of 85 dBA. The mean systolic blood pressure (SBP and diastolic blood pressure (DBP and the prevalence of hypertension were significantly higher among those exposed to higher noise level. In multivariate analysis, workers exposed to high level of noise had a significantly higher odds of hypertension compared to those exposed to noise level lower than the permissible limit (OR 4.7, 95% CI 1.6 to 13.8. The odds of hypertension increased by 17% (95% CI 10% to 30% for each dB increase in noise intensity. Conclusion: Exposure to high level of noise is associated with elevated blood pressure.

  14. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    Science.gov (United States)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  15. Classical noise, quantum noise and secure communication

    International Nuclear Information System (INIS)

    Tannous, C; Langlois, J

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems. (review)

  16. Subjective annoyance caused by indoor low-level and low frequency noise and control method

    Institute of Scientific and Technical Information of China (English)

    DI Guo-qing; ZHANG Bang-jun; SHANG Qi

    2005-01-01

    The influence of low-level noise has not been widely noticed. This paper discovered that low-level and low frequency noise(Aweighted equivalent level Leq < 45 dB) causes higher probability of subjective annoyance. The fuzzy mathematic principle was applied to deal with the threshold level of subjective annoyance from noise in this study; there is preferable relationship between the indoor noise and noise annoyance at low frequency noise level. Study indicated at the same centered noise level, the change of annoyance probability is mainly caused by the change of the frequency spectrum characteristic of the indoor noise. Under low noise level environment, without change of the medium-low frequency noise, the slight increase of medium-high frequency noise level with the help of noise sheltering effect can significantly reduce the noise annoyance. This discovery brings a new resolution on how to improve the environmental quality of working or living places. A noise control model is given in this study according to the acoustic analysis.

  17. Noise, Worker Perception, and Worker Concentration in Timber Harvesting Activity

    Directory of Open Access Journals (Sweden)

    Efi Yuliati Yovi

    2012-01-01

    Full Text Available Timber harvesting activities are unquestionably related with high risk of work accidents and health disorders.Such activities were not only burdened the workers with heavy physical workloads due to uneasy workingenvironment, and massive work materials and tools, but also physiopsychologically burdened workers as theywere imposed with both mechanical and acoustic vibrations (noise produced by the chainsaw. However,  it is acommon practice that most of the workers still ignored the importance of the use of noise reduction devices suchas earmuff or ear plug.  This study was aimed to reveal the factual effects of noise on work concentration of theworkers to provide a scientific basis in supporting efforts in improving workers’ attitude.  The results confirmedthat chainsaw might produce noise during operation.  Noise intensities received by both right and left ears werenot significantly different, indicating that left-handed and normal workers received similar degree of noise inboth side of ears. Further, results also showed that there was a significant difference on the perception and workconcentration of chainsaw operators versus sedentary people to the noise.  These findings proved that hearingability of chainsaw operators had declined due to frequent noise exposure.Keywords: timber harvesting, physio-psychological disorder, noise, chainsaw

  18. Noise and its reduction in graphene based nanopore devices

    International Nuclear Information System (INIS)

    Kumar, Ashvani; Park, Kyeong-Beom; Kim, Hyun-Mi; Kim, Ki-Bum

    2013-01-01

    Ionic current fluctuations in graphene nanopore devices are a ubiquitous phenomenon and are responsible for degraded spatial and temporal resolution. Here, we descriptively investigate the impact of different substrate materials (Si and quartz) and membrane thicknesses on noise characteristics of graphene nanopore devices. To mitigate the membrane fluctuations and pin-hole defects, a SiN x membrane is transferred onto the substrate and a pore of approximately 70 nm in diameter is perforated prior to the graphene transfer. Comprehensive noise study reveals that the few layer graphene transferred onto the quartz substrate possesses low noise level and higher signal to noise ratio as compared to single layer graphene, without deteriorating the spatial resolution. The findings here point to improvement of graphene based nanopore devices for exciting opportunities in future single-molecule genomic screening devices. (paper)

  19. Stochastic resonance in a delayed triple-well potential driven by correlated noises.

    Science.gov (United States)

    Xu, Pengfei; Jin, Yanfei; Xiao, Shaomin

    2017-11-01

    In this paper, we investigate stochastic resonance (SR) in a delayed triple-well potential subject to correlated noises and a harmonic signal. The stationary probability density, together with the response amplitude of the system, is obtained by using the small time delay approximation. It is found that the time delay, noise intensities, and the cross-correlation between noises can induce the occurrence of the transition. Moreover, the appropriate choice of noise intensities and time delay can improve the output of the system, enhance the SR effect, and lead to the phenomenon of noise enhanced stability. Especially, the stochastic multi-resonance phenomenon is observed when the multiplicative and additive noises are correlated. Finally, the theoretical results are well verified through numerical simulations.

  20. Noise and vibration in friction systems

    CERN Document Server

    Sergienko, Vladimir P

    2015-01-01

    The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.

  1. Design and test of aircraft engine isolators for reduced interior noise

    Science.gov (United States)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  2. Collective fluctuations in networks of noisy components

    International Nuclear Information System (INIS)

    Masuda, Naoki; Kawamura, Yoji; Kori, Hiroshi

    2010-01-01

    Collective dynamics result from interactions among noisy dynamical components. Examples include heartbeats, circadian rhythms and various pattern formations. Because of noise in each component, collective dynamics inevitably involve fluctuations, which may crucially affect the functioning of the system. However, the relation between the fluctuations in isolated individual components and those in collective dynamics is not clear. Here, we study a linear dynamical system of networked components subjected to independent Gaussian noise and analytically show that the connectivity of networks determines the intensity of fluctuations in the collective dynamics. Remarkably, in general directed networks including scale-free networks, the fluctuations decrease more slowly with system size than the standard law stated by the central limit theorem. They even remain finite for a large system size when global directionality of the network exists. Moreover, such non-trivial behavior appears even in undirected networks when nonlinear dynamical systems are considered. We demonstrate it with a coupled oscillator system.

  3. Measurement of quantum noise in a single-electron transistor near the quantum limit

    Science.gov (United States)

    Xue, W. W.; Ji, Z.; Pan, Feng; Stettenheim, Joel; Blencowe, M. P.; Rimberg, A. J.

    2009-09-01

    Quantum measurement has challenged physicists for almost a century. Classically, there is no lower bound on the noise a measurement may add. Quantum mechanically, however, measuring a system necessarily perturbs it. When applied to electrical amplifiers, this means that improved sensitivity requires increased backaction that itself contributes noise. The result is a strict quantum limit on added amplifier noise. To approach this limit, a quantum-limited amplifier must possess an ideal balance between sensitivity and backaction; furthermore, its noise must dominate that of subsequent classical amplifiers. Here, we report the first complete and quantitative measurement of the quantum noise of a superconducting single-electron transistor (S-SET) near a double Cooper-pair resonance predicted to have the right combination of sensitivity and backaction. A simultaneous measurement of our S-SET's charge sensitivity indicates that it operates within a factor of 3.6 of the quantum limit, a fourfold improvement over the nearest comparable results.

  4. Total Variation Based Parameter-Free Model for Impulse Noise Removal

    DEFF Research Database (Denmark)

    Sciacchitano, Federica; Dong, Yiqiu; Andersen, Martin Skovgaard

    2017-01-01

    We propose a new two-phase method for reconstruction of blurred images corrupted by impulse noise. In the first phase, we use a noise detector to identify the pixels that are contaminated by noise, and then, in the second phase, we reconstruct the noisy pixels by solving an equality constrained...... total variation minimization problem that preserves the exact values of the noise-free pixels. For images that are only corrupted by impulse noise (i. e., not blurred) we apply the semismooth Newton's method to a reduced problem, and if the images are also blurred, we solve the equality constrained...... reconstruction problem using a first-order primal-dual algorithm. The proposed model improves the computational efficiency (in the denoising case) and has the advantage of being regularization parameter-free. Our numerical results suggest that the method is competitive in terms of its restoration capabilities...

  5. An improved affine projection algorithm for active noise cancellation

    Science.gov (United States)

    Zhang, Congyan; Wang, Mingjiang; Han, Yufei; Sun, Yunzhuo

    2017-08-01

    Affine projection algorithm is a signal reuse algorithm, and it has a good convergence rate compared to other traditional adaptive filtering algorithm. There are two factors that affect the performance of the algorithm, which are step factor and the projection length. In the paper, we propose a new variable step size affine projection algorithm (VSS-APA). It dynamically changes the step size according to certain rules, so that it can get smaller steady-state error and faster convergence speed. Simulation results can prove that its performance is superior to the traditional affine projection algorithm and in the active noise control (ANC) applications, the new algorithm can get very good results.

  6. Ambient Noise in an Urbanized Tidal Channel

    Science.gov (United States)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  7. Database of air and noise pollution in Lebanon. Final report

    International Nuclear Information System (INIS)

    Chaaban, Farid; Ayoub, George

    1996-01-01

    The growing global public concern over deteriorating air quality and greenhouse gases emissions released from various combustion processes, and particularly power plants and transportation system, led governments and local authorities, especially in industrialised countries into taking these issues seriously and establishing standards to reduce air pollution down to acceptable levels, (clean air act, earth summit,...). The transportation sector has another unwanted product, noise pollution caused by different segments of this sector including the noise produced by the engine, tires noise and exhaust noise, in addition to the noise product by private standby generals operating during electricity cut-off periods. To be able to estimate the environmental impacts of the national power plants and the transportation sector, it is necessary to collect enough data (samples of lead emissions, SO 2 concentration, sulfur dioxide, nitrogen oxides, hydrocarbons, ozone and carbon monoxide) using specified planning procedures. These samples will then be analyzed and the results will be compared to international standards to assess the implication of these pollutants. For this purpose, the proposed project is aimed at developing data base, over a period of two or more years, for air and noise pollution based on results to be obtained from extensive sampling procedure and under different atmospheric conditions (author)

  8. Synchronisation of networked Kuramoto oscillators under stable Lévy noise

    Science.gov (United States)

    Kalloniatis, Alexander C.; Roberts, Dale O.

    2017-01-01

    We study the Kuramoto model on several classes of network topologies examining the dynamics under the influence of Lévy noise. Such noise exhibits heavier tails than Gaussian and allows us to understand how 'shocks' influence the individual oscillator and collective system behaviour. Skewed α-stable Lévy noise, equivalent to fractional diffusion perturbations, are considered. We perform numerical simulations for Erdős-Rényi (ER) and Barabási-Albert (BA) scale free networks of size N = 1000 while varying the Lévy index α for the noise. We find that synchrony now assumes a surprising variety of forms, not seen for Gaussian-type noise, and changing with α: a noise-generated drift, a smooth α dependence of the point of cross-over of ER and BA networks in the degree of synchronisation, and a severe loss of synchronisation at low values of α. We also show that this robustness of the BA network across most values of α can also be understood as a consequence of the Laplacian of the graph working within the fractional Fokker-Planck equation of the linearised system, close to synchrony, with both eigenvalues and eigenvectors alternately contributing in different regimes of α.

  9. Engineering to Control Noise, Loading, and Optimal Operating Points

    International Nuclear Information System (INIS)

    Mitchell R. Swartz

    2000-01-01

    Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems

  10. Noise detection during heart sound recording using periodicity signatures

    International Nuclear Information System (INIS)

    Kumar, D; Carvalho, P; Paiva, R P; Henriques, J; Antunes, M

    2011-01-01

    Heart sound is a valuable biosignal for diagnosis of a large set of cardiac diseases. Ambient and physiological noise interference is one of the most usual and highly probable incidents during heart sound acquisition. It tends to change the morphological characteristics of heart sound that may carry important information for heart disease diagnosis. In this paper, we propose a new method applicable in real time to detect ambient and internal body noises manifested in heart sound during acquisition. The algorithm is developed on the basis of the periodic nature of heart sounds and physiologically inspired criteria. A small segment of uncontaminated heart sound exhibiting periodicity in time as well as in the time-frequency domain is first detected and applied as a reference signal in discriminating noise from the sound. The proposed technique has been tested with a database of heart sounds collected from 71 subjects with several types of heart disease inducing several noises during recording. The achieved average sensitivity and specificity are 95.88% and 97.56%, respectively

  11. The noise factor in railway locomotives.

    Science.gov (United States)

    Rotter, T

    1982-09-01

    This article concerns the problem of acoustic work conditions on railway locomotives. The objective results of sonometric surveys in locomotive cabins are compared with subject data received from locomotive crews obtained by means of a specific questionnaire 'The Subjective Estimation of Noise'. The analysis touched 9 type of locomotives; steam, diesel and electric engines. We asked drivers of different age groups and with varying lengths of professional service for their opinions The aim of the investigation was to determine the following points: 1. to analyse the drivers' subjective estimation of the noise in the locomotive cabins; 2. to define length of time for which the driver remains under the influence of the noise after finishing work; 3. to investigate the question of perception and understanding of sounds and vocal signals used in the locomotive. These problems are a small part of the general plan to improve work conditions on the Polish National Railways.

  12. Relating the Structure of Noise Correlations in Macaque Primary Visual Cortex to Decoder Performance

    Directory of Open Access Journals (Sweden)

    Or P. Mendels

    2018-03-01

    Full Text Available Noise correlations in neuronal responses can have a strong influence on the information available in large populations. In addition, the structure of noise correlations may have a great impact on the utility of different algorithms to extract this information that may depend on the specific algorithm, and hence may affect our understanding of population codes in the brain. Thus, a better understanding of the structure of noise correlations and their interplay with different readout algorithms is required. Here we use eigendecomposition to investigate the structure of noise correlations in populations of about 50–100 simultaneously recorded neurons in the primary visual cortex of anesthetized monkeys, and we relate this structure to the performance of two common decoders: the population vector and the optimal linear estimator. Our analysis reveals a non-trivial correlation structure, in which the eigenvalue spectrum is composed of several distinct large eigenvalues that represent different shared modes of fluctuation extending over most of the population, and a semi-continuous tail. The largest eigenvalue represents a uniform collective mode of fluctuation. The second and third eigenvalues typically show either a clear functional (i.e., dependent on the preferred orientation of the neurons or spatial structure (i.e., dependent on the physical position of the neurons. We find that the number of shared modes increases with the population size, being roughly 10% of that size. Furthermore, we find that the noise in each of these collective modes grows linearly with the population. This linear growth of correlated noise power can have limiting effects on the utility of averaging neuronal responses across large populations, depending on the readout. Specifically, the collective modes of fluctuation limit the accuracy of the population vector but not of the optimal linear estimator.

  13. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    Science.gov (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  14. Background noise model development for seismic stations of KMA

    Science.gov (United States)

    Jeon, Youngsoo

    2010-05-01

    The background noise recorded at seismometer is exist at any seismic signal due to the natural phenomena of the medium which the signal passed through. Reducing the seismic noise is very important to improve the data quality in seismic studies. But, the most important aspect of reducing seismic noise is to find the appropriate place before installing the seismometer. For this reason, NIMR(National Institution of Meteorological Researches) starts to develop a model of standard background noise for the broadband seismic stations of the KMA(Korea Meteorological Administration) using a continuous data set obtained from 13 broadband stations during the period of 2007 and 2008. We also developed the model using short period seismic data from 10 stations at the year of 2009. The method of Mcmara and Buland(2004) is applied to analyse background noise of Korean Peninsula. The fact that borehole seismometer records show low noise level at frequency range greater than 1 Hz compared with that of records at the surface indicate that the cultural noise of inland Korean Peninsula should be considered to process the seismic data set. Reducing Double Frequency peak also should be regarded because the Korean Peninsula surrounded by the seas from eastern, western and southern part. The development of KMA background model shows that the Peterson model(1993) is not applicable to fit the background noise signal generated from Korean Peninsula.

  15. Rating environmental noise on the basis of noise maps

    NARCIS (Netherlands)

    Miedema, H.M.E.; Borst, H.C.

    2006-01-01

    A system that rates noise on the basis of noise maps has been developed which is based on empirical exposure-response relationships, so that effects in the community will be lower if the system gives a better rating. It is consistent with noise metrics and effect endpoint chosen in the EU, i.e., it

  16. Implicit Talker Training Improves Comprehension of Auditory Speech in Noise

    Directory of Open Access Journals (Sweden)

    Jens Kreitewolf

    2017-09-01

    Full Text Available Previous studies have shown that listeners are better able to understand speech when they are familiar with the talker’s voice. In most of these studies, talker familiarity was ensured by explicit voice training; that is, listeners learned to identify the familiar talkers. In the real world, however, the characteristics of familiar talkers are learned incidentally, through communication. The present study investigated whether speech comprehension benefits from implicit voice training; that is, through exposure to talkers’ voices without listeners explicitly trying to identify them. During four training sessions, listeners heard short sentences containing a single verb (e.g., “he writes”, spoken by one talker. The sentences were mixed with noise, and listeners identified the verb within each sentence while their speech-reception thresholds (SRT were measured. In a final test session, listeners performed the same task, but this time they heard different sentences spoken by the familiar talker and three unfamiliar talkers. Familiar and unfamiliar talkers were counterbalanced across listeners. Half of the listeners performed a test session in which the four talkers were presented in separate blocks (blocked paradigm. For the other half, talkers varied randomly from trial to trial (interleaved paradigm. The results showed that listeners had lower SRT when the speech was produced by the familiar talker than the unfamiliar talkers. The type of talker presentation (blocked vs. interleaved had no effect on this familiarity benefit. These findings suggest that listeners implicitly learn talker-specific information during a speech-comprehension task, and exploit this information to improve the comprehension of novel speech material from familiar talkers.

  17. Assessment of the noise annoyance among subway train conductors in Tehran, Iran.

    Science.gov (United States)

    Hamidi, Mansoureh; Kavousi, Amir; Zaheri, Somayeh; Hamadani, Abolfazl; Mirkazemi, Roksana

    2014-01-01

    Subway transportation system is a new phenomenon in Iran. Noise annoyance interferes with the individual's task performance, and the required alertness in the driving of subway trains. This is the first study conducted to measure the level of noise and noise annoyance among conductors of subway organization in Tehran, Iran. This cross sectional study was conducted among 167 randomly selected train conductors. Information related to noise annoyance was collected by using a self-administered questionnaire. The dosimetry and sound metering was done for the conductors and inside the cabins. There were 41 sound metering measuring samples inside the conductors' cabin, and there were 12 samples of conductors' noise exposure. The results of sound level meter showed that the mean Leq was 73.0 dBA ± 8.7 dBA and the dosimetry mean measured Leq was 82.1 dBA ± 6.8 dBA. 80% of conductors were very annoyed/annoyed by noise in their work place. 53.9% of conductors reported that noise affected their work performance and 63.5% reported that noise causes that they lose their concentration. The noise related to movement of train wheels on rail was reported as the worst by 83.2% followed by the noise of brakes (74.3%) and the ventilation noise (71.9%). 56.9% of conductors reported that they are suffering from sleeplessness, 40.1% from tinnitus and 80.2% feeling fatigue and sleepy. The study results showed the high level of noise and noise annoyance among train conductors and the poor health outcome of their exposure to this level of noise.

  18. Active noise control in fuselage design

    NARCIS (Netherlands)

    Krakers, L.A.; Tooren, M.J.L. van; Beukers, A.; Berkhof, A.P.; Goeje, M.P. de

    2003-01-01

    To achieve comfortable noise levels inside the passenger cabin, sound damping measures have to be taken to improve the sound insulation properties of the bare airframe. Usually the sound insulation requirements of a passenger cabin are met after the mechanical design of the fuselage structure is

  19. Noise suppression in duct

    International Nuclear Information System (INIS)

    Ahmed, A.; Barfeh, M.A.G.

    2001-01-01

    In air-conditioning system the noise generated by supply fan is carried by conditioned air through the ductwork. The noise created in ductwork run may be transmission, regenerative and ductborne. Transmission noise is fan noise, regenerative noise is due to turbulence in flow and ductborne noise is the noise radiating from duct to surroundings. Some noise is attenuated in ducts also but if noise level is high then it needs to be attenuated. A simple mitre bend can attenuate-noise. This principle is extended to V and M-shape ducts with inside lining of fibreglass, which gave maximum attenuation of 77 dB and 62 dB respectively corresponding to 8 kHz frequency as compared to mitre, bend giving maximum 18 dB attenuation. Sound level meter measured sound levels with octave band filter and tests were conducted in anechoic room. A V-shape attenuator can be used at fan outlet and high frequency noise can be minimized greatly. (author)

  20. Improving Remote Species Identification through Efficient Training Data Collection

    Directory of Open Access Journals (Sweden)

    Claire A. Baldeck

    2014-03-01

    Full Text Available Plant species identification and mapping based on remotely-sensed spectral signatures is a challenging task with the potential to contribute enormously to ecological studies. Success in this task rests upon the appropriate collection and use of costly field-based training data, and researchers are in need of ways to improve collection efficiency based on quantitative evidence. Using imaging spectrometer data collected by the Carnegie Airborne Observatory for hundreds of field-identified tree crowns in Kruger National Park, South Africa, we developed woody plant species classification models and evaluated how classification accuracy increases with increasing numbers of training crowns. First, we show that classification accuracy must be estimated while respecting the crown as the basic unit of data; otherwise, accuracy will be overestimated and the amount of training data needed to perform successful classification will be underestimated. We found that classification accuracy and the number of training crowns needed to perform successful classification varied depending on the number and spectral separability of species in the model. We also used a modified Michaelis-Menten function to describe the empirical relationship between training crowns and model accuracy, and show how this function may be useful for predicting accuracy. This framework can assist researchers in designing field campaigns to maximize the efficiency of field data collection, and thus the amount of biodiversity information gained from remote species identification models.

  1. Low noise signal-to-noise ratio enhancing readout circuit for current-mediated active pixel sensors

    International Nuclear Information System (INIS)

    Ottaviani, Tony; Karim, Karim S.; Nathan, Arokia; Rowlands, John A.

    2006-01-01

    Diagnostic digital fluoroscopic applications continuously expose patients to low doses of x-ray radiation, posing a challenge to both the digital imaging pixel and readout electronics when amplifying small signal x-ray inputs. Traditional switch-based amorphous silicon imaging solutions, for instance, have produced poor signal-to-noise ratios (SNRs) at low exposure levels owing to noise sources from the pixel readout circuitry. Current-mediated amorphous silicon pixels are an improvement over conventional pixel amplifiers with an enhanced SNR across the same low-exposure range, but whose output also becomes nonlinear with increasing dosage. A low-noise SNR enhancing readout circuit has been developed that enhances the charge gain of the current-mediated active pixel sensor (C-APS). The solution takes advantage of the current-mediated approach, primarily integrating the signal input at the desired frequency necessary for large-area imaging, while adding minimal noise to the signal readout. Experimental data indicates that the readout circuit can detect pixel outputs over a large bandwidth suitable for real-time digital diagnostic x-ray fluoroscopy. Results from hardware testing indicate that the minimum achievable C-APS output current that can be discerned at the digital fluoroscopic output from the enhanced SNR readout circuit is 0.341 nA. The results serve to highlight the applicability of amorphous silicon current-mediated pixel amplifiers for large-area flat panel x-ray imagers

  2. Noise-Canceling Helmet Audio System

    Science.gov (United States)

    Seibert, Marc A.; Culotta, Anthony J.

    2007-01-01

    A prototype helmet audio system has been developed to improve voice communication for the wearer in a noisy environment. The system was originally intended to be used in a space suit, wherein noise generated by airflow of the spacesuit life-support system can make it difficult for remote listeners to understand the astronaut s speech and can interfere with the astronaut s attempt to issue vocal commands to a voice-controlled robot. The system could be adapted to terrestrial use in helmets of protective suits that are typically worn in noisy settings: examples include biohazard, fire, rescue, and diving suits. The system (see figure) includes an array of microphones and small loudspeakers mounted at fixed positions in a helmet, amplifiers and signal-routing circuitry, and a commercial digital signal processor (DSP). Notwithstanding the fixed positions of the microphones and loudspeakers, the system can accommodate itself to any normal motion of the wearer s head within the helmet. The system operates in conjunction with a radio transceiver. An audio signal arriving via the transceiver intended to be heard by the wearer is adjusted in volume and otherwise conditioned and sent to the loudspeakers. The wearer s speech is collected by the microphones, the outputs of which are logically combined (phased) so as to form a microphone- array directional sensitivity pattern that discriminates in favor of sounds coming from vicinity of the wearer s mouth and against sounds coming from elsewhere. In the DSP, digitized samples of the microphone outputs are processed to filter out airflow noise and to eliminate feedback from the loudspeakers to the microphones. The resulting conditioned version of the wearer s speech signal is sent to the transceiver.

  3. The Effects of Different Types of Environmental Noise on Academic Performance and Perceived Task Difficulty in Adolescents With ADHD.

    Science.gov (United States)

    Batho, Lauren P; Martinussen, Rhonda; Wiener, Judith

    2015-07-28

    To examine the effects of environmental noises (speech and white noise) relative to a no noise control condition on the performance and difficulty ratings of youth with ADHD (N = 52) on academic tasks. Reading performance was measured by an oral retell (reading accuracy) and the time spent reading. Writing performance was measured through the proportion of correct writing sequences (writing accuracy) and the total words written on an essay. Participants in the white noise condition took less time to read the passage and wrote more words on the essay compared with participants in the other conditions, though white noise did not improve academic accuracy. The participants in the babble condition rated the tasks as most difficult. Although white noise appears to improve reading time and writing fluency, the findings suggest that white noise does not improve performance accuracy. Educational implications are discussed. © 2015 SAGE Publications.

  4. A Multi-Stage Method for Connecting Participatory Sensing and Noise Simulations

    Directory of Open Access Journals (Sweden)

    Mingyuan Hu

    2015-01-01

    Full Text Available Most simulation-based noise maps are important for official noise assessment but lack local noise characteristics. The main reasons for this lack of information are that official noise simulations only provide information about expected noise levels, which is limited by the use of large-scale monitoring of noise sources, and are updated infrequently. With the emergence of smart cities and ubiquitous sensing, the possible improvements enabled by sensing technologies provide the possibility to resolve this problem. This study proposed an integrated methodology to propel participatory sensing from its current random and distributed sampling origins to professional noise simulation. The aims of this study were to effectively organize the participatory noise data, to dynamically refine the granularity of the noise features on road segments (e.g., different portions of a road segment, and then to provide a reasonable spatio-temporal data foundation to support noise simulations, which can be of help to researchers in understanding how participatory sensing can play a role in smart cities. This study first discusses the potential limitations of the current participatory sensing and simulation-based official noise maps. Next, we explain how participatory noise data can contribute to a simulation-based noise map by providing (1 spatial matching of the participatory noise data to the virtual partitions at a more microscopic level of road networks; (2 multi-temporal scale noise estimations at the spatial level of virtual partitions; and (3 dynamic aggregation of virtual partitions by comparing the noise values at the relevant temporal scale to form a dynamic segmentation of each road segment to support multiple spatio-temporal noise simulations. In this case study, we demonstrate how this method could play a significant role in a simulation-based noise map. Together, these results demonstrate the potential benefits of participatory noise data as dynamic

  5. Noise in the passenger cars of high-speed trains.

    Science.gov (United States)

    Hong, Joo Young; Cha, Yongwon; Jeon, Jin Yong

    2015-12-01

    The aim of this study is to investigate the effects of both room acoustic conditions and spectral characteristics of noises on acoustic discomfort in a high-speed train's passenger car. Measurement of interior noises in a high-speed train was performed when the train was operating at speeds of 100 km/h and 300 km/h. Acoustic discomfort caused by interior noises was evaluated by paired comparison methods based on the variation of reverberation time (RT) in a passenger car and the spectral differences in interior noises. The effect of RT on acoustic discomfort was not significant, whereas acoustic discomfort significantly varied depending on spectral differences in noise. Acoustic discomfort increased with increment of the sound pressure level (SPL) ratio at high frequencies, and variation in high-frequency noise components were described using sharpness. Just noticeable differences of SPL with low- and high-frequency components were determined to be 3.7 and 2.9 dB, respectively. This indicates that subjects were more sensitive to differences in SPLs at the high-frequency range than differences at the low-frequency range. These results support that, for interior noises, reduction in SPLs at high frequencies would significantly contribute to improved acoustic quality in passenger cars of high-speed trains.

  6. Auditory white noise reduces age-related fluctuations in balance.

    Science.gov (United States)

    Ross, J M; Will, O J; McGann, Z; Balasubramaniam, R

    2016-09-06

    Fall prevention technologies have the potential to improve the lives of older adults. Because of the multisensory nature of human balance control, sensory therapies, including some involving tactile and auditory noise, are being explored that might reduce increased balance variability due to typical age-related sensory declines. Auditory white noise has previously been shown to reduce postural sway variability in healthy young adults. In the present experiment, we examined this treatment in young adults and typically aging older adults. We measured postural sway of healthy young adults and adults over the age of 65 years during silence and auditory white noise, with and without vision. Our results show reduced postural sway variability in young and older adults with auditory noise, even in the absence of vision. We show that vision and noise can reduce sway variability for both feedback-based and exploratory balance processes. In addition, we show changes with auditory noise in nonlinear patterns of sway in older adults that reflect what is more typical of young adults, and these changes did not interfere with the typical random walk behavior of sway. Our results suggest that auditory noise might be valuable for therapeutic and rehabilitative purposes in older adults with typical age-related balance variability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Validations and improvements of airfoil trailing-edge noise prediction models using detailed experimental data

    DEFF Research Database (Denmark)

    Kamruzzaman, M.; Lutz, Th.; Würz, W.

    2012-01-01

    This paper describes an extensive assessment and a step by step validation of different turbulent boundary-layer trailing-edge noise prediction schemes developed within the European Union funded wind energy project UpWind. To validate prediction models, measurements of turbulent boundary-layer pr...... with measurements in the frequency region higher than 1 kHz, whereas they over-predict the sound pressure level in the low-frequency region. Copyright © 2011 John Wiley & Sons, Ltd.......-layer properties such as two-point turbulent velocity correlations, the spectra of the associated wall pressure fluctuations and the emitted trailing-edge far-field noise were performed in the laminar wind tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The measurements were...... carried out for a NACA 643-418 airfoil, at Re  =  2.5 ×106, angle of attack of −6° to 6°. Numerical results of different prediction schemes are extensively validated and discussed elaborately. The investigations on the TNO-Blake noise prediction model show that the numerical wall pressure fluctuation...

  8. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling

    OpenAIRE

    Bruccoleri, F.; Klumperink, Eric A.M.; Nauta, Bram

    2004-01-01

    Known elementary wide-band amplifiers suffer from a fundamental tradeoff between noise figure (NF) and source impedance matching, which limits the NF to values typically above 3 dB. Global negative feedback can be used to break this tradeoff, however, at the price of potential instability. In contrast, this paper presents a feedforward noise-canceling technique, which allows for simultaneous noise and impedance matching, while canceling the noise and distortion contributions of the matching d...

  9. Noise evaluation of automotive A/C compressor

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, Sameh M.; Khalil, Mohamed I.; Abouel-seoud, Shawki A. [Automotive and Tractors Dept., Faculty of Engineering, Helwan University, Cairo (Egypt)

    2011-07-01

    Passenger compartment's interior noise and thermal performance are essential criteria for the driving comfort of vehicles. The air-conditioning system influences both field of comfort. It creates comfortable thermal conditions. On the other hand, the noise radiation of the air-condition system's components can be annoying. The blower, the air distribution ducts and the registers affect air rush noise. In some cases, the refrigerant flow creates hissing noise. Such noise has a great influence on vehicle acoustical comfort and on overall quality perception of a vehicle Therefore, the acoustic performance of air-condition compressors become more important for passenger comfort. At engine idling and at extreme temperatures the air-condition compressor can be audible as the significant sound source. However, the aim of this paper is to quantify air-borne noise characteristics of vehicle air-condition compressor. A simulated experimental model comprises a small wooden box with dimensions of 0.5 x 0.5 x 0.5 m represented the principle of hemi-anechoic room was designed and acoustic characteristics of the sound field inside the box were determined. The air-condition compressor characteristics parameters considered in this paper are fan position and electric motor speed. In addition, a single number of the air column natural frequency is calculated. The results indicate that significant information can be obtained in order to investigate the vehicle air-condition compressor and consequently improve the vehicle interior quietness.

  10. Improving the Efficiency of Photon Collection by Compton Rescue

    Science.gov (United States)

    2011-03-01

    burnished by vibratory shot peening,” Acta Physica Polonica , vol. A 110, pp. 739–46, 2006. [4] M. Cunningham et al., “First-generation hybrid compact...Department of Defense, or the United States Government. This material is declared a work of the U.S. Government and is not subject to copyright...R. Kowash (Member) Date AFIT/GAP/ENP/11-M10 Abstract A method to improve the efficiency of photon collection in thin planar HPGe de- tectors was

  11. Multireference adaptive noise canceling applied to the EEG.

    Science.gov (United States)

    James, C J; Hagan, M T; Jones, R D; Bones, P J; Carroll, G J

    1997-08-01

    The technique of multireference adaptive noise canceling (MRANC) is applied to enhance transient nonstationarities in the electroeancephalogram (EEG), with the adaptation implemented by means of a multilayer-perception artificial neural network (ANN). The method was applied to recorded EEG segments and the performance on documented nonstationarities recorded. The results show that the neural network (nonlinear) gives an improvement in performance (i.e., signal-to-noise ratio (SNR) of the nonstationarities) compared to a linear implementation of MRANC. In both cases an improvement in the SNR was obtained. The advantage of the spatial filtering aspect of MRANC is highlighted when the performance of MRANC is compared to that of the inverse auto-regressive filtering of the EEG, a purely temporal filter.

  12. Combat aircraft noise

    Science.gov