WorldWideScience

Sample records for noether symmetry approach

  1. Noether symmetry approach in the cosmological alpha-attractors

    Science.gov (United States)

    Kaewkhao, Narakorn; Kanesom, Thanyagamon; Channuie, Phongpichit

    2018-06-01

    In cosmological framework, Noether symmetry technique has revealed a useful tool in order to examine exact solutions. In this work, we first introduce the Jordan-frame Lagrangian and apply the conformal transformation in order to obtain the Lagrangian equivalent to Einstein-frame form. We then analyze the dynamics of the field in the cosmological alpha-attractors using the Noether symmetry approach by focusing on the single field scenario in the Einstein-frame form. We show that with a Noether symmetry the corresponding dynamical system can be completely integrated and the potential exhibited by the symmetry can be exactly obtained. With the proper choice of parameters, the behavior of the scale factor displays an exponential (de Sitter) behavior at the present epoch. Moreover, we discover that the Hubble parameters strongly depends on the initial values of parameters exhibited by the Noether symmetry. Interestingly, it can retardedly evolve and becomes a constant in the present epoch in all cases.

  2. Noether symmetry approach in f(G,T) gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M.F.; Ahmad, Mushtaq [National University of Computer and Emerging Sciences, Lahore Campus (Pakistan)

    2017-01-15

    We explore the recently introduced modified Gauss-Bonnet gravity (Sharif and Ikram in Eur Phys J C 76:640, 2016), f(G,T) pragmatic with G, the Gauss-Bonnet term, and T, the trace of the energy-momentum tensor. Noether symmetry approach has been used to develop some cosmologically viable f(G,T) gravity models. The Noether equations of modified gravity are reported for flat FRW universe. Two specific models have been studied to determine the conserved quantities and exact solutions. In particular, the well known deSitter solution is reconstructed for some specific choice of f(G,T) gravity model. (orig.)

  3. Noether symmetry approach in f(T, B) teleparallel cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Compl. Univ. di Monte S. Angelo, Naples (Italy); INFN, Napoli (Italy)

    2017-02-15

    We consider the cosmology derived from f(T, B) gravity where T is the torsion scalar and B = (2)/(e)∂{sub μ}(eT{sup μ}) a boundary term. In particular we discuss how it is possible to recover, under the same standard, the teleparallel f(T) gravity, the curvature f(R) gravity, and the teleparallel-curvature f(R, T) gravity, which are particular cases of f(T, B). We adopt the Noether Symmetry Approach to study the related dynamical systems and to find cosmological solutions. (orig.)

  4. Noether symmetries of a modified model in teleparallel gravity and a new approach for exact solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tajahmad, Behzad [University of Tabriz, Faculty of Physics, Tabriz (Iran, Islamic Republic of)

    2017-04-15

    In this paper, we present the Noether symmetries of flat FRW spacetime in the context of a new action in teleparallel gravity which we construct based on the f(R) version. This modified action contains a coupling between the scalar field potential and magnetism. Also, we introduce an innovative approach, the beyond Noether symmetry (B.N.S.) approach, for exact solutions which carry more conserved currents than the Noether approach. By data analysis of the exact solutions, obtained from the Noether approach, late-time acceleration and phase crossing are realized, and some deep connections with observational data such as the age of the universe, the present value of the scale factor as well as the state and deceleration parameters are observed. In the B.N.S. approach, we consider the dark energy dominated era. (orig.)

  5. Noether symmetries of a modified model in teleparallel gravity and a new approach for exact solutions

    International Nuclear Information System (INIS)

    Tajahmad, Behzad

    2017-01-01

    In this paper, we present the Noether symmetries of flat FRW spacetime in the context of a new action in teleparallel gravity which we construct based on the f(R) version. This modified action contains a coupling between the scalar field potential and magnetism. Also, we introduce an innovative approach, the beyond Noether symmetry (B.N.S.) approach, for exact solutions which carry more conserved currents than the Noether approach. By data analysis of the exact solutions, obtained from the Noether approach, late-time acceleration and phase crossing are realized, and some deep connections with observational data such as the age of the universe, the present value of the scale factor as well as the state and deceleration parameters are observed. In the B.N.S. approach, we consider the dark energy dominated era. (orig.)

  6. Noether symmetry approach in f(T, B) teleparallel cosmology.

    Science.gov (United States)

    Bahamonde, Sebastian; Capozziello, Salvatore

    2017-01-01

    We consider the cosmology derived from f ( T ,  B ) gravity where T is the torsion scalar and [Formula: see text] a boundary term. In particular we discuss how it is possible to recover, under the same standard, the teleparallel f ( T ) gravity, the curvature f ( R ) gravity, and the teleparallel-curvature f ( R ,  T ) gravity, which are particular cases of f ( T ,  B ). We adopt the Noether Symmetry Approach to study the related dynamical systems and to find cosmological solutions.

  7. String duality transformations in f(R) gravity from Noether symmetry approach

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Compl. Univ. di Monte S. Angelo, Edificio G, Via Cinthia, I-80126, Napoli (Italy); Gionti, Gabriele S.J. [Specola Vaticana, Vatican City, V-00120, Vatican City State (Vatican City State, Holy See); Vernieri, Daniele, E-mail: capozziello@na.inf.it, E-mail: ggionti@as.arizona.edu, E-mail: vernieri@iap.fr [Sorbonne Universités, UPMC Univ Paris 6 et CNRS, UMR 7095, Institut d' Astrophysique de Paris, GReCO, 98bis Bd Arago, 75014 Paris (France)

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians are shown in cases where the duality transformation becomes a parity inversion.

  8. String duality transformations in f(R) gravity from Noether symmetry approach

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; Gionti, Gabriele S.J.; Vernieri, Daniele

    2016-01-01

    We select f(R) gravity models that undergo scale factor duality transformations. As a starting point, we consider the tree-level effective gravitational action of bosonic String Theory coupled with the dilaton field. This theory inherits the Busher's duality of its parent String Theory. Using conformal transformations of the metric tensor, it is possible to map the tree-level dilaton-graviton string effective action into f(R) gravity, relating the dilaton field to the Ricci scalar curvature. Furthermore, the duality can be framed under the standard of Noether symmetries and exact cosmological solutions are derived. Using suitable changes of variables, the string-based f(R) Lagrangians are shown in cases where the duality transformation becomes a parity inversion

  9. Approximate Noether symmetries and collineations for regular perturbative Lagrangians

    Science.gov (United States)

    Paliathanasis, Andronikos; Jamal, Sameerah

    2018-01-01

    Regular perturbative Lagrangians that admit approximate Noether symmetries and approximate conservation laws are studied. Specifically, we investigate the connection between approximate Noether symmetries and collineations of the underlying manifold. In particular we determine the generic Noether symmetry conditions for the approximate point symmetries and we find that for a class of perturbed Lagrangians, Noether symmetries are related to the elements of the Homothetic algebra of the metric which is defined by the unperturbed Lagrangian. Moreover, we discuss how exact symmetries become approximate symmetries. Finally, some applications are presented.

  10. Noether symmetries in Gauss-Bonnet-teleparallel cosmology.

    Science.gov (United States)

    Capozziello, Salvatore; De Laurentis, Mariafelicia; Dialektopoulos, Konstantinos F

    2016-01-01

    A generalized teleparallel cosmological model, [Formula: see text], containing the torsion scalar T and the teleparallel counterpart of the Gauss-Bonnet topological invariant [Formula: see text], is studied in the framework of the Noether symmetry approach. As [Formula: see text] gravity, where [Formula: see text] is the Gauss-Bonnet topological invariant and R is the Ricci curvature scalar, exhausts all the curvature information that one can construct from the Riemann tensor, in the same way, [Formula: see text] contains all the possible information directly related to the torsion tensor. In this paper, we discuss how the Noether symmetry approach allows one to fix the form of the function [Formula: see text] and to derive exact cosmological solutions.

  11. Noether symmetries in Gauss-Bonnet-teleparallel cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Capozziello, Salvatore [Universita' di Napoli' ' Federico II' ' , Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Napoli (Italy); INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Tomsk State Pedagogical University, Tomsk (Russian Federation); De Laurentis, Mariafelicia [INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli (Italy); Tomsk State Pedagogical University, Tomsk (Russian Federation); Goethe University, Institute for Theoretical Physics, Frankfurt (Germany); Laboratory of Theoretical Cosmology, Tomsk State University of Control Systems and Radioelectronics (TUSUR), Tomsk (Russian Federation); Dialektopoulos, Konstantinos F. [Universita' di Napoli' ' Federico II' ' , Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Napoli (Italy); INFN Sezione di Napoli, Complesso Universitario di Monte S. Angelo, Napoli (Italy)

    2016-11-15

    A generalized teleparallel cosmological model, f(T{sub G},T), containing the torsion scalar T and the teleparallel counterpart of the Gauss-Bonnet topological invariant T{sub G}, is studied in the framework of the Noether symmetry approach. As f(G, R) gravity, where G is the Gauss-Bonnet topological invariant and R is the Ricci curvature scalar, exhausts all the curvature information that one can construct from the Riemann tensor, in the same way, f(T{sub G},T) contains all the possible information directly related to the torsion tensor. In this paper, we discuss how the Noether symmetry approach allows one to fix the form of the function f(T{sub G},T) and to derive exact cosmological solutions. (orig.)

  12. Lie and Noether symmetries of systems of complex ordinary ...

    Indian Academy of Sciences (India)

    2014-07-02

    Jul 2, 2014 ... Abstract. The Lie and Noether point symmetry analyses of a kth-order system of m complex ordi- nary differential equations (ODEs) with m dependent variables are performed. The decomposition of complex symmetries of the given system of complex ODEs yields Lie- and Noether-like opera- tors.

  13. Noether symmetries and integrability in time-dependent Hamiltonian mechanics

    Directory of Open Access Journals (Sweden)

    Jovanović Božidar

    2016-01-01

    Full Text Available We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincaré-Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincaré-Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.

  14. Noether symmetries of discrete mechanico–electrical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Xie Fengping; Chen Benyong

    2008-01-01

    This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electrical systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange–Maxwell equations, the discrete analogue of Noether theorems for Lagrange–Maxwell and Lagrange mechanico-electrical systems. Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results. (general)

  15. Using Noether symmetries to specify f(R) gravity

    International Nuclear Information System (INIS)

    Paliathanasis, Andronikos

    2013-01-01

    A detailed study of the modified gravity, f(R) models is performed, using the fact that the Noether point symmetries of these models are geometric symmetries of the mini su-perspace of the theory. It is shown that the requirement that the field equations admit Noether point symmetries selects definite models in a self-consistent way. As an application in Cosmology we consider the Friedman -Robertson-Walker spacetime and show that the only cosmological model which is integrable via Noether point symmetries is the (R b − 2Λ) c model, which generalizes the Lambda Cosmology. Furthermore using the corresponding Noether integrals we compute the analytic form of the main cosmological functions

  16. Locally Hamiltonian systems with symmetry and a generalized Noether's theorem

    International Nuclear Information System (INIS)

    Carinena, J.F.; Ibort, L.A.

    1985-01-01

    An analysis of global aspects of the theory of symmetry groups G of locally Hamiltonian dynamical systems is carried out for particular cases either of the symmetry group, or the differentiable manifold M supporting the symplectic structure, or the action of G on M. In every case it is obtained a generalization of Noether's theorem. It has been looked at the classical Noether's theorem for Lagrangian systems from a modern perspective

  17. Constraining generalized non-local cosmology from Noether symmetries.

    Science.gov (United States)

    Bahamonde, Sebastian; Capozziello, Salvatore; Dialektopoulos, Konstantinos F

    2017-01-01

    We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory.

  18. Constraining generalized non-local cosmology from Noether symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Capozziello, Salvatore [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Gran Sasso Science Institute, L' Aquila (Italy); Complesso di Monte Sant' Angelo, Naples (Italy); INFN Sezione di Napoli, Naples (Italy); Dialektopoulos, Konstantinos F. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso di Monte Sant' Angelo, Naples (Italy); INFN Sezione di Napoli, Naples (Italy)

    2017-11-15

    We study a generalized non-local theory of gravity which, in specific limits, can become either the curvature non-local or teleparallel non-local theory. Using the Noether symmetry approach, we find that the coupling functions coming from the non-local terms are constrained to be either exponential or linear in form. It is well known that in some non-local theories, a certain kind of exponential non-local couplings is needed in order to achieve a renormalizable theory. In this paper, we explicitly show that this kind of coupling does not need to be introduced by hand, instead, it appears naturally from the symmetries of the Lagrangian in flat Friedmann-Robertson-Walker cosmology. Finally, we find de Sitter and power-law cosmological solutions for different non-local theories. The symmetries for the generalized non-local theory are also found and some cosmological solutions are also achieved using the full theory. (orig.)

  19. A late time accelerated FRW model with scalar and vector fields via Noether symmetry

    Directory of Open Access Journals (Sweden)

    Babak Vakili

    2014-11-01

    Full Text Available We study the evolution of a three-dimensional minisuperspace cosmological model by the Noether symmetry approach. The phase space variables turn out to correspond to the scale factor of a flat Friedmann–Robertson–Walker (FRW model, a scalar field with potential function V(ϕ with which the gravity part of the action is minimally coupled and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(ϕ. Then, the Noether symmetry of such a cosmological model is investigated by utilizing the behavior of the corresponding Lagrangian under the infinitesimal generator of the desired symmetry. We explicitly calculate the form of the coupling function between the scalar and the vector fields and also the scalar field potential function for which such symmetry exists. Finally, by means of the corresponding Noether current, we integrate the equations of motion and obtain exact solutions for the scale factor, scalar and vector fields. It is shown that the resulting cosmology is an accelerated expansion universe for which its expansion is due to the presence of the vector field in the early times, while the scalar field is responsible of its late time expansion. Keywords: Noether symmetry, Scalar field cosmology, Vector field cosmology

  20. Noether symmetry for non-minimally coupled fermion fields

    International Nuclear Information System (INIS)

    Souza, Rudinei C de; Kremer, Gilberto M

    2008-01-01

    A cosmological model where a fermion field is non-minimally coupled with the gravitational field is studied. By applying Noether symmetry the possible functions for the potential density of the fermion field and for the coupling are determined. Cosmological solutions are found showing that the non-minimally coupled fermion field behaves as an inflaton describing an inflationary scenario, whereas the minimally coupled fermion field describes a decelerated period, behaving as a standard matter field

  1. Generalized Noether symmetry in f(T) gravity

    International Nuclear Information System (INIS)

    Mohseni Sadjadi, H.

    2012-01-01

    We consider modified teleparallel gravity (f(T) gravity), as a framework to explain the present accelerated expansion of the universe. The matter component is assumed to be cold dark matter. To find the explicit form of the function f, we utilize generalized Noether theorem and use generalized vector fields as variational symmetries of the corresponding Lagrangian. We study the cosmological consequences of the obtained results.

  2. Noether symmetry analysis of anisotropic universe in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, M.F.; Kanwal, Fiza [National University of Computer and Emerging Sciences, Department of Sciences and Humanities, Lahore (Pakistan)

    2017-05-15

    In this paper we study the anisotropic universe using Noether symmetries in modified gravity. In particular, we choose a locally rotationally symmetric Bianchi type-I universe for the analysis in f(R, G) gravity, where R is the Ricci scalar and G is the Gauss-Bonnet invariant. Firstly, a model f(R, G) = f{sub 0}R{sup l} + f{sub 1}G{sup n} is proposed and the corresponding Noether symmetries are investigated. We have also recovered the Noether symmetries for f(R) and f(G) theories of gravity. Secondly, some important cosmological solutions are reconstructed. Exponential and power-law solutions are reported for a well-known f(R, G) model, i.e., f(R, G) = f{sub 0}R{sup n}G{sup 1-n}. Especially, Kasner's solution is recovered and it is anticipated that the familiar de Sitter spacetime giving ΛCDM cosmology may be reconstructed for some suitable value of n. (orig.)

  3. Studying the intervention of an unusual term in f(T) gravity via the Noether symmetry approach. On a new term for gravity actions

    Energy Technology Data Exchange (ETDEWEB)

    Tajahmad, Behzad [University of Tabriz, Faculty of Physics, Tabriz (Iran, Islamic Republic of)

    2017-08-15

    As has been done before, we study an unknown coupling function, i.e. F(φ), together with a function of torsion and also curvature, i.e. f(T) and f(R), generally depending upon a scalar field. In the f(R) case, it comes from quantum correlations and other sources. Now, what if beside this term in f(T) gravity context, we enhance the action through another term which depends upon both scalar field and its derivatives? In this paper, we have added such an unprecedented term in the generic common action of f(T) gravity such that in this new term, an unknown function of torsion has coupled with an unknown function of both scalar field and its derivatives. We explain in detail why we can append such a term. By the Noether symmetry approach, we consider its behavior and effect. We show that it does not produce an anomaly, but rather it works successfully, and numerical analysis of the exact solutions of field equations coincides with all most important observational data, particularly late-time-accelerated expansion. So, this new term may be added to the gravitational actions of f(T) gravity. (orig.)

  4. General scalar-tensor cosmology: analytical solutions via noether symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Massaeli, Erfan; Motaharfar, Meysam; Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-02-15

    We analyze the cosmology of a general scalar-tensor theory which encompasses generalized Brans-Dicke theory, Gauss-Bonnet gravity, non-minimal derivative gravity, generalized Galilean gravity and also the general k-essence type models. Instead of taking into account phenomenological considerations we adopt a Noether symmetry approach, as a physical criterion, to single out the form of undetermined functions in the action. These specified functions symmetrize equations of motion in the simplest possible form which result in exact solutions. Demanding de Sitter, power-law and bouncing universe solutions in the absence and presence of matter density leads to exploring new as well as well-investigated models. We show that there are models for which the dynamics of the system allows a transition from a decelerating phase (matter dominated era) to an accelerating phase (dark energy epoch) and could also lead to general Brans-Dicke with string correction without a self-interaction potential. Furthermore, we classify the models based on a phantom or quintessence dark energy point of view. Finally, we obtain the condition for stability of a de Sitter solution for which the solution is an attractor of the system. (orig.)

  5. Noether and Lie symmetries for charged perfect fluids

    International Nuclear Information System (INIS)

    Kweyama, M C; Govinder, K S; Maharaj, S D

    2011-01-01

    We study the underlying nonlinear partial differential equation that governs the behaviour of spherically symmetric charged fluids in general relativity. We investigate the conditions for the equation to admit a first integral or be reduced to quadratures using symmetry methods for differential equations. A general Noether first integral is found. We also undertake a comprehensive group analysis of the underlying equation using Lie point symmetries. The existence of a Lie symmetry is subject to solving an integro-differential equation in general; we investigate the conditions under which it can be reduced to quadratures. Earlier results for uncharged fluids and particular first integrals for charged matter are regained as special cases of our treatment.

  6. On Noether symmetries and form invariance of mechanico-electrical systems

    International Nuclear Information System (INIS)

    Fu Jingli; Chen Liqun

    2004-01-01

    This Letter focuses on form invariance and Noether symmetries of mechanico-electrical systems. Based on the invariance of Hamiltonian actions for mechanico-electrical systems under the infinitesimal transformation of the coordinates, the electric quantities and the time, the authors present the Noether symmetry transformation, the Noether quasi-symmetry transformation, the generalized Noether quasi-symmetry transformation and the general Killing equations of Lagrange mechanico-electrical systems and Lagrange-Maxwell mechanico-electrical systems. Using the invariance of the differential equations, satisfied by physical quantities, such as Lagrangian, non-potential general forces, under the infinitesimal transformation, the authors propose the definition and criterions of the form invariance for mechanico-electrical systems. The Letter also demonstrates connection between the Noether symmetries and the form invariance of mechanico-electrical systems. An example is designed to illustrate these results

  7. Non-Noether symmetries of Hamiltonian systems with conformable fractional derivatives

    International Nuclear Information System (INIS)

    Wang Lin-Li; Fu Jing-Li

    2016-01-01

    In this paper, we present the fractional Hamilton’s canonical equations and the fractional non-Noether symmetry of Hamilton systems by the conformable fractional derivative. Firstly, the exchanging relationship between isochronous variation and fractional derivatives, and the fractional Hamilton principle of the system under this fractional derivative are proposed. Secondly, the fractional Hamilton’s canonical equations of Hamilton systems based on the Hamilton principle are established. Thirdly, the fractional non-Noether symmetries, non-Noether theorem and non-Noether conserved quantities for the Hamilton systems with the conformable fractional derivatives are obtained. Finally, an example is given to illustrate the results. (paper)

  8. Conformal coupling associated with the Noether symmetry and its connection with the ΛCDM dynamics

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2013-01-01

    The aim of this work is to investigate a non-minimally coupled scalar field model through the Noether symmetry approach, with the radiation, matter and cosmological constant eras being analyzed. The Noether symmetry condition allows a conformal coupling and by means of a change of coordinates in the configuration space the field equations can be reduced to a single equation, which is of the form of the Friedmann equation for the ΛCDM model. In this way, it is formally shown that the dynamical system can furnish solutions with the same form as those of the ΛCDM model, although the theory here considered is physically different from the former. The conserved quantity associated with the Noether symmetry can be related to the kinetic term of the scalar field and could constrain the possible deviations of the model from the ΛCDM picture. Observational constraints on the variation of the gravitational constant can be imposed on the model through the initial condition of the scalar field. (paper)

  9. Pedagogical systematic derivation of Noether point symmetries in special relativistic field theories and extended gravity cosmology

    International Nuclear Information System (INIS)

    Haas, Fernando

    2016-01-01

    A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced. (paper)

  10. Pedagogical systematic derivation of Noether point symmetries in special relativistic field theories and extended gravity cosmology

    Science.gov (United States)

    Haas, Fernando

    2016-11-01

    A didactic and systematic derivation of Noether point symmetries and conserved currents is put forward in special relativistic field theories, without a priori assumptions about the transformation laws. Given the Lagrangian density, the invariance condition develops as a set of partial differential equations determining the symmetry transformation. The solution is provided in the case of real scalar, complex scalar, free electromagnetic, and charged electromagnetic fields. Besides the usual conservation laws, a less popular symmetry is analyzed: the symmetry associated with the linear superposition of solutions, whenever applicable. The role of gauge invariance is emphasized. The case of the charged scalar particle under external electromagnetic fields is considered, and the accompanying Noether point symmetries determined. Noether point symmetries for a dynamical system in extended gravity cosmology are also deduced.

  11. On a kind of Noether symmetries and conservation laws in k-cosymplectic field theory

    International Nuclear Information System (INIS)

    Marrero, Juan Carlos; Roman-Roy, Narciso; Salgado, Modesto; Vilarino, Silvia

    2011-01-01

    This paper is devoted to studying symmetries of certain kinds of k-cosymplectic Hamiltonian systems in first-order classical field theories. Thus, we introduce a particular class of symmetries and study the problem of associating conservation laws to them by means of a suitable generalization of Noether's theorem.

  12. F(R) cosmology via Noether symmetry and Λ-Chaplygin Gas like model

    Science.gov (United States)

    Fazlollahi, H. R.

    2018-06-01

    In this work, we consider f (R) alternative theories of gravity with an eye to Noether symmetry through the gauge theorem. For non-vacuum models, one finds Λ like gravity with energy density of Chaplygin Gas. We also obtain the effective equation of state parameter for corresponding cosmology and scale factor behavior with respect to cosmic time which show that the model provides viable EoS and scale factor with respect to observational data.

  13. Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory

    International Nuclear Information System (INIS)

    Pons, Josep M.

    2011-01-01

    In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincare invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincare symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincare. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincare invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved background.

  14. Noether symmetries and stability of ideal gas solutions in Galileon cosmology

    Science.gov (United States)

    Dimakis, N.; Giacomini, Alex; Jamal, Sameerah; Leon, Genly; Paliathanasis, Andronikos

    2017-03-01

    A class of generalized Galileon cosmological models, which can be described by a pointlike Lagrangian, is considered in order to utilize Noether's theorem to determine conservation laws for the field equations. In the Friedmann-Lemaître-Robertson-Walker universe, the existence of a nontrivial conservation law indicates the integrability of the field equations. Because of the complexity of the latter, we apply the differential invariants approach in order to construct special power-law solutions and study their stability.

  15. Constraining non-minimally coupled tachyon fields by the Noether symmetry

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2009-01-01

    A model for a homogeneous and isotropic Universe whose gravitational sources are a pressureless matter field and a tachyon field non-minimally coupled to the gravitational field is analyzed. The Noether symmetry is used to find expressions for the potential density and for the coupling function, and it is shown that both must be exponential functions of the tachyon field. Two cosmological solutions are investigated: (i) for the early Universe whose only source of gravitational field is a non-minimally coupled tachyon field which behaves as an inflaton and leads to an exponential accelerated expansion and (ii) for the late Universe whose gravitational sources are a pressureless matter field and a non-minimally coupled tachyon field which plays the role of dark energy and is responsible for the decelerated-accelerated transition period.

  16. Noether analysis of the twisted Hopf symmetries of canonical noncommutative spacetimes

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Gubitosi, Giulia; Marciano, Antonino; Martinetti, Pierre; Mercati, Flavio; Briscese, Fabio

    2008-01-01

    We study the twisted Hopf-algebra symmetries of observer-independent canonical spacetime noncommutativity, for which the commutators of the spacetime coordinates take the form [x^ μ ,x^ ν ]=iθ μν with observer-independent (and coordinate-independent) θ μν . We find that it is necessary to introduce nontrivial commutators between transformation parameters and spacetime coordinates, and that the form of these commutators implies that all symmetry transformations must include a translation component. We show that with our noncommutative transformation parameters the Noether analysis of the symmetries is straightforward, and we compare our canonical-noncommutativity results with the structure of the conserved charges and the ''no-pure-boost'' requirement derived in a previous study of κ-Minkowski noncommutativity. We also verify that, while at intermediate stages of the analysis we do find terms that depend on the ordering convention adopted in setting up the Weyl map, the final result for the conserved charges is reassuringly independent of the choice of Weyl map and (the corresponding choice of) star product.

  17. Noether Symmetries and Covariant Conservation Laws in Classical, Relativistic and Quantum Physics

    Directory of Open Access Journals (Sweden)

    Lorenzo Fatibene

    2010-04-01

    Full Text Available We review the Lagrangian formulation of (generalised Noether symmetries in the framework of Calculus of Variations in Jet Bundles, with a special attention to so-called “Natural Theories” and “Gauge-Natural Theories” that include all relevant Field Theories and physical applications (from Mechanics to General Relativity, to Gauge Theories, Supersymmetric Theories, Spinors, etc.. It is discussed how the use of Poincar´e–Cartan forms and decompositions of natural (or gauge-natural variational operators give rise to notions such as “generators of Noether symmetries”, energy and reduced energy flow, Bianchi identities, weak and strong conservation laws, covariant conservation laws, Hamiltonian-like conservation laws (such as, e.g., so-calledADMlaws in General Relativity with emphasis on the physical interpretation of the quantities calculated in specific cases (energy, angular momentum, entropy, etc.. A few substantially new and very recent applications/examples are presented to better show the power of the methods introduced: one in Classical Mechanics (definition of strong conservation laws in a frame-independent setting and a discussion on the way in which conserved quantities depend on the choice of an observer; one in Classical Field Theories (energy and entropy in General Relativity, in its standard formulation, in its spin-frame formulation, in its first order formulation “à la Palatini” and in its extensions to Non-Linear Gravity Theories; one in Quantum Field Theories (applications to conservation laws in Loop Quantum Gravity via spin connections and Barbero–Immirzi connections.

  18. Particle dynamics around time conformal regular black holes via Noether symmetries

    Science.gov (United States)

    Jawad, Abdul; Umair Shahzad, M.

    The time conformal regular black hole (RBH) solutions which are admitting the time conformal factor e𝜖g(t), where g(t) is an arbitrary function of time and 𝜖 is the perturbation parameter are being considered. The approximate Noether symmetries technique is being used for finding the function g(t) which leads to t α. The dynamics of particles around RBHs are also being discussed through symmetry generators which provide approximate energy as well as angular momentum of the particles. In addition, we analyze the motion of neutral and charged particles around two well known RBHs such as charged RBH using Fermi-Dirac distribution and Kehagias-Sftesos asymptotically flat RBH. We obtain the innermost stable circular orbit and corresponding approximate energy and angular momentum. The behavior of effective potential, effective force and escape velocity of the particles in the presence/absence of magnetic field for different values of angular momentum near horizons are also being analyzed. The stable and unstable regions of particle near horizons due to the effect of angular momentum and magnetic field are also explained.

  19. Li(e)nearity [This article brings to light the fact that linearity is by itself a meaningful symmetry in the senses of Lie and Noether.

    International Nuclear Information System (INIS)

    Leone, Raphaël; Haas, Fernando

    2017-01-01

    This article brings to light the fact that linearity is by itself a meaningful symmetry in the senses of Lie and Noether. First, the role played by that ‘linearity symmetry’ in the quadrature of linear second-order differential equations is revisited through the use of adapted variables and the identification of a conserved quantity as Lie invariant. Second, the celebrated Caldirola–Kanai Lagrangian—from which the differential equation is deducible—is shown to be naturally generated by a Jacobi last multiplier inherited from the linearity symmetry. Then, the latter is recognised to be also a Noether one. Finally, the study is extended to higher-order linear differential equations, derivable or not from an action principle. Incidentally, this work can serve as an introduction to the central question of continuous symmetries in physics and mathematics. It has the advantage of being approachable to undergraduate students since the linearity symmetry is by its very nature sufficiently simple to be treatable without any use of Lie generators. (paper)

  20. Noether's stars in f (R) gravity

    Science.gov (United States)

    De Laurentis, Mariafelicia

    2018-05-01

    The Noether Symmetry Approach can be used to construct spherically symmetric solutions in f (R) gravity. Specifically, the Noether conserved quantity is related to the gravitational mass and a gravitational radius that reduces to the Schwarzschild radius in the limit f (R) → R. We show that it is possible to construct the M- R relation for neutron stars depending on the Noether conserved quantity and the associated gravitational radius. This approach enables the recovery of extreme massive stars that could not be stable in the standard Tolman-Oppenheimer-Volkoff based on General Relativity. Examples are given for some power law f (R) gravity models.

  1. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics: II. Noether's theorems and Casimirs

    International Nuclear Information System (INIS)

    Webb, G M; Dasgupta, B; McKenzie, J F; Hu, Q; Zank, G P

    2014-01-01

    Conservation laws in ideal gas dynamics and magnetohydrodynamics (MHD) associated with fluid relabeling symmetries are derived using Noether's first and second theorems. Lie dragged invariants are discussed in terms of the MHD Casimirs. A nonlocal conservation law for fluid helicity applicable for a non-barotropic fluid involving Clebsch variables is derived using Noether's theorem, in conjunction with a fluid relabeling symmetry and a gauge transformation. A nonlocal cross helicity conservation law involving Clebsch potentials, and the MHD energy conservation law are derived by the same method. An Euler–Poincaré variational approach is also used to derive conservation laws associated with fluid relabeling symmetries using Noether's second theorem. (paper)

  2. Second Noether theorem for quasi-Noether systems

    International Nuclear Information System (INIS)

    Rosenhaus, V; Shankar, R

    2016-01-01

    Quasi-Noether differential systems are more general than variational systems and are quite common in mathematical physics. They include practically all differential systems of interest, at least those that have conservation laws. In this paper, we discuss quasi-Noether systems that possess infinite-dimensional (infinite) symmetries involving arbitrary functions of independent variables. For quasi-Noether systems admitting infinite symmetries with arbitrary functions of all independent variables, we state and prove an extension of the second Noether theorem. In addition, we prove that infinite sets of conservation laws involving arbitrary functions of all independent variables are trivial and that the associated differential system is under-determined. We discuss infinite symmetries and infinite conservation laws of two important examples of non-variational quasi-Noether systems: the incompressible Euler equations and the Navier–Stokes equations in vorticity formulation, and we show that the infinite sets of conservation laws involving arbitrary functions of all independent variables are trivial. We also analyze infinite symmetries involving arbitrary functions of not all independent variables, prove that the fluxes of conservation laws in these cases are total divergences on solutions, and demonstrate examples of this situation. (paper)

  3. Equivalent conserved currents and generalized Noether's theorem

    International Nuclear Information System (INIS)

    Gordon, T.J.

    1984-01-01

    A generalized Noether theorem is presented, relating symmetries and equivalence classes of local) conservation laws in classical field theories; this is contrasted with the standard theorem. The concept of a ''Noether'' field theory is introduced, being a theory for which the generalized theorem applies; not only does this include the cases of Lagrangian and Hamiltonian field theories, these structures are ''derived'' from the Noether property in a natural way. The generalized theorem applies to currents and symmetries that contain derivatives of the fields up to an arbitrarily high order

  4. Lagrange and Noether analysis of polarization laws of conservation for electromagnetic field

    International Nuclear Information System (INIS)

    Krivskij, I.Yu.; Simulik, V.M.

    1988-01-01

    Both well-known Bessel-Hagen conservation laws and conservation laws of polarized character are derived for electromagnetic field in the Lagrange approach to electrodynamics in terms of intensities (without using the A μ potentials as variation variables). The laws mentioned are derived according to Noether theorem because symmetry to which such concervation laws correspond is lost during the transition from intensities to potentials. Based on Noether theorem (and its generalization for Naeik's symmetries) and Lagrange function scalar in relation to complete Poincare group in terms of intensity tensor, a convenient formula for calculating and values conserved for electromagnetic field is derived which sets up a physically adequate symmetry operator -conservation law correlation and thus links the presence of conservation laws of polarized character with symmetry properties of Maxwell equations. Adiabaticity of conservation laws of polarized character under the presence of interaction with currents and charges is indicated

  5. On Noethers theorem in quantum field theory

    International Nuclear Information System (INIS)

    Buchholz, D.; Doplicher, S.; Longo, R.

    1985-03-01

    Extending an earlier construction of local generators of symmetries in (S. Doplicher, 1982) to space-time and supersymmetries, we establish a weak form of Noethers theorem in quantum field theory. We also comment on the physical significance of the 'split property', underlying our analysis, and discuss some local aspects of superselection rules following from our results. (orig./HSI)

  6. Symmetry generators in singular theories

    International Nuclear Information System (INIS)

    Lavrov, P.M.; Tyutin, I.V.

    1989-01-01

    It is proved that in the singular nondegenerate theories any symmetry of the lagrangian under non-point transformations of lagrangian variables with the open (in the general case) algebra in the hamiltonian approach generates corresponding transformations of canonical variables the generator of which is the Noether charge with respect to the Dirac brackets. On the surface of all constraints these transformations leave the hamiltonian invariant and the algebra of the Noether charges is closed. As a consequence it is shown that the nilpotent BRST charge operator always exists in gauge theories of the general form (if possible anomalies are not taken into account)

  7. Canonical pseudotensors, Sparling's form and Noether currents

    International Nuclear Information System (INIS)

    Szabados, L.B.

    1991-09-01

    The canonical energy - momentum and spin pseudotensors of the Einstein theory are studied in two ways. First they are studied in the framework of Lagrangian formalism. It is shown, that for first order Lagrangian and rigid basis description the canonical energy - momentum, the canonical spin, and the Noether current are tensorial quantities, and the canonial energy - momentum and spin tensors satisfy the tensorial Belinfante-Rosenfeld equations. Then the differential geometric unification and reformulation of the previous different pseudotensorial approaches is given. Finally, for any vector field on the spacetime an (m-1) form, called the Noether form is defined. (K.A.) 34 refs

  8. Non-Noether conserved quantity for differential equations of motion in the phase space

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A non-Noether conserved quantity for the differential equations of motion of mechanical systems in the phase space is studied. The differential equations of motion of the systems are established and the determining equations of Lie symmetry are given. An existence theorem of non-Noether conserved quantity is obtained. An example is given to illustrate the application of the result.

  9. Infinitesimal symmetries: a computational approach

    International Nuclear Information System (INIS)

    Kersten, P.H.M.

    1985-01-01

    This thesis is concerned with computational aspects in the determination of infinitesimal symmetries and Lie-Baecklund transformations of differential equations. Moreover some problems are calculated explicitly. A brief introduction to some concepts in the theory of symmetries and Lie-Baecklund transformations, relevant for this thesis, are given. The mathematical formalism is shortly reviewed. The jet bundle formulation is chosen, in which, by its algebraic nature, objects can be described very precisely. Consequently it is appropriate for implementation. A number of procedures are discussed, which enable to carry through computations with the help of a computer. These computations are very extensive in practice. The Lie algebras of infinitesimal symmetries of a number of differential equations in Mathematical Physics are established and some of their applications are discussed, i.e., Maxwell equations, nonlinear diffusion equation, nonlinear Schroedinger equation, nonlinear Dirac equations and self dual SU(2) Yang-Mills equations. Lie-Baecklund transformations of Burgers' equation, Classical Boussinesq equation and the Massive Thirring Model are determined. Furthermore, nonlocal Lie-Baecklund transformations of the last equation are derived. (orig.)

  10. Lie-algebra approach to symmetry breaking

    International Nuclear Information System (INIS)

    Anderson, J.T.

    1981-01-01

    A formal Lie-algebra approach to symmetry breaking is studied in an attempt to reduce the arbitrariness of Lagrangian (Hamiltonian) models which include several free parameters and/or ad hoc symmetry groups. From Lie algebra it is shown that the unbroken Lagrangian vacuum symmetry can be identified from a linear function of integers which are Cartan matrix elements. In broken symmetry if the breaking operators form an algebra then the breaking symmetry (or symmetries) can be identified from linear functions of integers characteristic of the breaking symmetries. The results are applied to the Dirac Hamiltonian of a sum of flavored fermions and colored bosons in the absence of dynamical symmetry breaking. In the partially reduced quadratic Hamiltonian the breaking-operator functions are shown to consist of terms of order g 2 , g, and g 0 in the color coupling constants and identified with strong (boson-boson), medium strong (boson-fermion), and fine-structure (fermion-fermion) interactions. The breaking operators include a boson helicity operator in addition to the familiar fermion helicity and ''spin-orbit'' terms. Within the broken vacuum defined by the conventional formalism, the field divergence yields a gauge which is a linear function of Cartan matrix integers and which specifies the vacuum symmetry. We find that the vacuum symmetry is chiral SU(3) x SU(3) and the axial-vector-current divergence gives a PCAC -like function of the Cartan matrix integers which reduces to PCAC for SU(2) x SU(2) breaking. For the mass spectra of the nonets J/sup P/ = 0 - ,1/2 + ,1 - the integer runs through the sequence 3,0,-1,-2, which indicates that the breaking subgroups are the simple Lie groups. Exact axial-vector-current conservation indicates a breaking sum rule which generates octet enhancement. Finally, the second-order breaking terms are obtained from the second-order spin tensor sum of the completely reduced quartic Hamiltonian

  11. Noether's theorem for local gauge transformations

    International Nuclear Information System (INIS)

    Karatas, D.L.; Kowalski, K.L.

    1989-01-01

    The variational methods of classical field theory may be applied to any theory with an action which is invariant under local gauge transformations. What is the significance of the resulting Noether current? This paper examines such currents for both Abelian and non-Abelian gauge theories and provides an explanation for their form and limited range of physical significance on a level accessible to those with a basic knowledge of classical field theory. Several of the more subtle aspects encountered in the application of the residual local gauge symmetry found by Becchi, Rouet, Stora, and Tyutin are also considered in detail in a self-contained manner. 23 refs

  12. The Second Noether Theorem on Time Scales

    Directory of Open Access Journals (Sweden)

    Agnieszka B. Malinowska

    2013-01-01

    Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.

  13. Scale symmetry and virial theorem

    International Nuclear Information System (INIS)

    Westenholz, C. von

    1978-01-01

    Scale symmetry (or dilatation invariance) is discussed in terms of Noether's Theorem expressed in terms of a symmetry group action on phase space endowed with a symplectic structure. The conventional conceptual approach expressing invariance of some Hamiltonian under scale transformations is re-expressed in alternate form by infinitesimal automorphisms of the given symplectic structure. That is, the vector field representing scale transformations leaves the symplectic structure invariant. In this model, the conserved quantity or constant of motion related to scale symmetry is the virial. It is shown that the conventional virial theorem can be derived within this framework

  14. A convolutional approach to reflection symmetry

    DEFF Research Database (Denmark)

    Cicconet, Marcelo; Birodkar, Vighnesh; Lund, Mads

    2017-01-01

    We present a convolutional approach to reflection symmetry detection in 2D. Our model, built on the products of complex-valued wavelet convolutions, simplifies previous edge-based pairwise methods. Being parameter-centered, as opposed to feature-centered, it has certain computational advantages w...

  15. Dynamics symmetries of Hamiltonian system on time scales

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Keke, E-mail: pengkeke88@126.com; Luo, Yiping, E-mail: zjstulyp@126.com [Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  16. Unified Symmetry of Hamilton Systems

    International Nuclear Information System (INIS)

    Xu Xuejun; Qin Maochang; Mei Fengxiang

    2005-01-01

    The definition and the criterion of a unified symmetry for a Hamilton system are presented. The sufficient condition under which the Noether symmetry is a unified symmetry for the system is given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is finally given to illustrate the application of the results.

  17. Classical Noether theory with application to the linearly damped particle

    International Nuclear Information System (INIS)

    Leone, Raphaël; Gourieux, Thierry

    2015-01-01

    This paper provides a modern presentation of Noether’s theory in the realm of classical dynamics, with application to the problem of a particle submitted to both a potential and a linear dissipation. After a review of the close relationships between Noether symmetries and first integrals, we investigate the variational point symmetries of the Lagrangian introduced by Bateman, Caldirola and Kanai. This analysis leads to the determination of all the time-independent potentials allowing such symmetries, in the one-dimensional and the radial cases. Then we develop a symmetry-based transformation of Lagrangians into autonomous others, and apply it to our problem. To be complete, we enlarge the study to Lie point symmetries which we associate logically to the Noether ones. Finally, we succinctly address the issue of a ‘weakened’ Noether’s theory, in connection with ‘on-flows’ symmetries and non-local constant of motions, because it has a direct physical interpretation in our specific problem. Since the Lagrangian we use gives rise to simple calculations, we hope that this work will be of didactic interest to graduate students, and give teaching material as well as food for thought for physicists regarding Noether’s theory and the recent developments around the idea of symmetry in classical mechanics. (paper)

  18. Noether's Theorem and its Inverse of Birkhoffian System in Event Space Based on Herglotz Variational Problem

    Science.gov (United States)

    Tian, X.; Zhang, Y.

    2018-03-01

    Herglotz variational principle, in which the functional is defined by a differential equation, generalizes the classical ones defining the functional by an integral. The principle gives a variational principle description of nonconservative systems even when the Lagrangian is independent of time. This paper focuses on studying the Noether's theorem and its inverse of a Birkhoffian system in event space based on the Herglotz variational problem. Firstly, according to the Herglotz variational principle of a Birkhoffian system, the principle of a Birkhoffian system in event space is established. Secondly, its parametric equations and two basic formulae for the variation of Pfaff-Herglotz action of a Birkhoffian system in event space are obtained. Furthermore, the definition and criteria of Noether symmetry of the Birkhoffian system in event space based on the Herglotz variational problem are given. Then, according to the relationship between the Noether symmetry and conserved quantity, the Noether's theorem is derived. Under classical conditions, Noether's theorem of a Birkhoffian system in event space based on the Herglotz variational problem reduces to the classical ones. In addition, Noether's inverse theorem of the Birkhoffian system in event space based on the Herglotz variational problem is also obtained. In the end of the paper, an example is given to illustrate the application of the results.

  19. Noether identities at the quantum level

    International Nuclear Information System (INIS)

    Li Ziping

    2002-01-01

    Based on the phase-space generating functional of Green function, the canonical Noether identities under the local transformation at the quantum level have been derived. For the gauge-invariant system, the quantal Noether identities in configuration space have been also deduced. It is pointed out that in certain cases the quantal Noether identities may be converted to quantal conservation laws of the system. This method for obtaining the quantal conservation laws is significantly different from the first Noether theorem at the quantum level. The application to non-Abelian CS theories is studied, the quantal conserved BRS and PBRS charges are obtained, and these two conserved charges are totally different

  20. Symmetries of stochastic differential equations: A geometric approach

    Energy Technology Data Exchange (ETDEWEB)

    De Vecchi, Francesco C., E-mail: francesco.devecchi@unimi.it; Ugolini, Stefania, E-mail: stefania.ugolini@unimi.it [Dipartimento di Matematica, Università degli Studi di Milano, via Saldini 50, Milano (Italy); Morando, Paola, E-mail: paola.morando@unimi.it [DISAA, Università degli Studi di Milano, via Celoria 2, Milano (Italy)

    2016-06-15

    A new notion of stochastic transformation is proposed and applied to the study of both weak and strong symmetries of stochastic differential equations (SDEs). The correspondence between an algebra of weak symmetries for a given SDE and an algebra of strong symmetries for a modified SDE is proved under suitable regularity assumptions. This general approach is applied to a stochastic version of a two dimensional symmetric ordinary differential equation and to the case of two dimensional Brownian motion.

  1. Non-Noether Conserved Quantity for Relativistic Nonholonomic System with Variable Mass

    International Nuclear Information System (INIS)

    Qiao Yongfen; Li Renjie; Ma Yongsheng

    2005-01-01

    Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.

  2. Holographic heat current as Noether current

    Science.gov (United States)

    Liu, Hai-Shan; Lü, H.; Pope, C. N.

    2017-09-01

    We employ the Noether procedure to derive a general formula for the radially conserved heat current in AdS planar black holes with certain transverse and traceless perturbations, for a general class of gravity theories. For Einstein gravity, the general higher-order Lovelock gravities and also a class of Horndeski gravities, we derive the boundary stress tensor and show that the resulting boundary heat current matches precisely the bulk Noether current.

  3. Einstein's relativity and beyond: new symmetry approaches

    International Nuclear Information System (INIS)

    Hsu, Jong-Ping

    2007-01-01

    The aim of thid book is, (1) to study and explain relativistic physics and their 4-dimensional symmetry by the logically most simple aspect under application of only one postulate and (2) to give simple generalizations of the Lorentz transformations for reference systems with constant linear accelerations. The fundamental ideas concerning the first point are developed on the base of a home work of a student of physics at the Harvard University. They lead to an unexpectedly affirmative response to the question siscussed since a long time, wether it is possible to construct a relativity theory without reference to the constance of the light velocity. Furthermore the new theory of relativity arising from this hints to the truly universal and fundamental constants of nature and leads to a broader view of relativistic physics. It sheds light on the fact that a 4-dimensional symmetry framework allows different concepts of physical time: among others a common time and Reichenbach's general concept of time. This logically most simple view of relativity allows a natural generalization of physics of particles and fields in inertial systems to non-inertial systems. This book arose on the base of publications of the author in Physics Letters A, Nuovo Cimento B, and Physical Reviews A and D

  4. Unified Symmetry and Conserved Quantities of Mechanical System in Phase Space

    International Nuclear Information System (INIS)

    Fang Jianhui; Ding Ning; Wang Peng

    2006-01-01

    In this paper, a new symmetry and its conserved quantities of a mechanical system in phase space are studied. The definition of this new symmetry, i.e., a unified one is presented, and the criterion of this symmetry is also given. The Noether, the generalized Hojman and the Mei conserved quantities of the unified symmetry of the system are obtained. The unified symmetry contains the Noether, the Lie and the Mei symmetries, and has more generalized significance.

  5. On symmetries and exact solutions of the Einstein–Maxwell field equations via the symmetry approach

    International Nuclear Information System (INIS)

    Kaur, Lakhveer; Gupta, R K

    2013-01-01

    Using the Lie symmetry approach, we have examined herein the system of partial differential equations corresponding to the Einstein–Maxwell equations for a static axially symmetric spacetime. The method used reduces the system of partial differential equations to a system of ordinary differential equations according to the Lie symmetry admitted. In particular, we found the relevant system of ordinary differential equations is all optimal subgroups. The system of ordinary differential equations is further solved in general to obtain exact solutions. Several new physically important families of exact solutions are derived. (paper)

  6. Quantum Numbers and the Eigenfunction Approach to Obtain Symmetry Adapted Functions for Discrete Symmetries

    Directory of Open Access Journals (Sweden)

    Renato Lemus

    2012-11-01

    Full Text Available The eigenfunction approach used for discrete symmetries is deduced from the concept of quantum numbers. We show that the irreducible representations (irreps associated with the eigenfunctions are indeed a shorthand notation for the set of eigenvalues of the class operators (character table. The need of a canonical chain of groups to establish a complete set of commuting operators is emphasized. This analysis allows us to establish in natural form the connection between the quantum numbers and the eigenfunction method proposed by J.Q. Chen to obtain symmetry adapted functions. We then proceed to present a friendly version of the eigenfunction method to project functions.

  7. Emmy Noether the mother of modern algebra

    CERN Document Server

    Tent, M B W

    2008-01-01

    This book, written primarily for the young adult reader, tells the life story of Emmy Noether, the most important female mathematician of our time. Because no one expected her to grow into an important scientist, the records of her early life are sketchy. After all, it was assumed that she would grow up to be a wife and mother. Instead, she was a genius who chose a distinctive path. The author has woven this charming story of Emmy Noether's life around the events that appear in the oral and written records, fleshing out the story with details about life in Germany at the time and what we know

  8. [For the Introduction of a Conceptual Perspective in Mathematics: Dedekind, Noether, van der Waerden].

    Science.gov (United States)

    Koreuber, Mechthild

    2015-09-01

    ,,She [Noether] then appeared as the creator of a new direction in algebra and became the leader, the most consistent and brilliant representative, of a particular mathematical doctrine - of all that is characterized by the term ‚Begriffliche Mathematik‘.“ The aim of this paper is to illuminate this "new direction", which can be characterized as a conceptual [begriffliche] perspective in mathematics, and to comprehend its roots and trace its establishment. Field, ring, ideal, the core concepts of this new direction in mathematical images of knowledge, were conceptualized by Richard Dedekind (1831-1916) within the scope of his number theory research and associated with an understanding of a formation of concepts as a "free creation of the human spirit". They thus stand for an abstract perspective of mathematics in their entirety, described as 'modern algebra' in the 1920s and 1930s, leading to an understanding of mathematics as structural sciences. The establishment of this approach to mathematics, which is based on "general mathematical concepts" [allgemein-mathematische Begriffe], was the success of a cultural movement whose most important protagonists included Emmy Noether (1882-1935) and her pupil Bartel L. van der Waerden (1903-1996). With the use of the term 'conceptual', a perspective is taken in the analysis which allows for developing connections between the thinking of Dedekind, the "working and conceptual methods" [Arbeits- und Auffassungsmethoden] of Noether as well as the methodological approach, represented through the thought space of the Noether School as presented under the term "conceptual world" [Begriffswelt] in the Moderne Algebra of van der Waerden. This essay thus makes a contribution to the history of the introduction of a structural perspective in mathematics, a perspective that is inseparable from the mathematical impact of Noether, her reception of the work of Dedekind and the creative strength of the Noether School.

  9. Symmetry analysis for anisotropic field theories

    International Nuclear Information System (INIS)

    Parra, Lorena; Vergara, J. David

    2012-01-01

    The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.

  10. Symmetry analysis of talus bone: A Geometric morphometric approach.

    Science.gov (United States)

    Islam, K; Dobbe, A; Komeili, A; Duke, K; El-Rich, M; Dhillon, S; Adeeb, S; Jomha, N M

    2014-01-01

    The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139-45.

  11. Generalization of the Noether's identities and application

    International Nuclear Information System (INIS)

    Li Ziping

    1995-01-01

    Starting from the transformation property of the action integral of a system under the local and non-local transformation, we derive the generalized Noether's identities connecting with non-local transformation. The applications of the theory to the Yang-Mills field with high-order derivatives are presented. A new conservative PBRS charge is found which differs from BRS conservative charge. The other conservative charge connecting with non-local transformation is also obtained

  12. Discovering Symmetry in Everyday Environments: A Creative Approach to Teaching Symmetry and Point Groups

    Science.gov (United States)

    Fuchigami, Kei; Schrandt, Matthew; Miessler, Gary L.

    2016-01-01

    A hands-on symmetry project is proposed as an innovative way of teaching point groups to undergraduate chemistry students. Traditionally, courses teaching symmetry require students to identify the point group of a given object. This project asks the reverse: students are instructed to identify an object that matches each point group. Doing so…

  13. On geometric approach to Lie symmetries of differential-difference equations

    International Nuclear Information System (INIS)

    Li Hongjing; Wang Dengshan; Wang Shikun; Wu Ke; Zhao Weizhong

    2008-01-01

    Based upon Cartan's geometric formulation of differential equations, Harrison and Estabrook proposed a geometric approach for the symmetries of differential equations. In this Letter, we extend Harrison and Estabrook's approach to analyze the symmetries of differential-difference equations. The discrete exterior differential technique is applied in our approach. The Lie symmetry of (2+1)-dimensional Toda equation is investigated by means of our approach

  14. Symmetries and conservation laws of the damped harmonic oscillator

    Indian Academy of Sciences (India)

    We work with a formulation of Noether-symmetry analysis which uses the properties of infinitesimal point transformations in the space-time variables to establish the association between symmetries and conservation laws of a dynamical system. Here symmetries are expressed in the form of generators. We have studied the ...

  15. Temperature renormalization group approach to spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Manesis, E.; Sakakibara, S.

    1985-01-01

    We apply renormalization group equations that describe the finite-temperature behavior of Green's functions to investigate thermal properties of spontaneous symmetry breaking. Specifically, in the O(N).O(N) symmetric model we study the change of symmetry breaking patterns with temperature, and show that there always exists the unbroken symmetry phase at high temperature, modifying the naive result of leading order in finite-temperature perturbation theory. (orig.)

  16. Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices

    International Nuclear Information System (INIS)

    Zhao Gang-Ling; Chen Li-Qun; Fu Jing-Li; Hong Fang-Yu

    2013-01-01

    In this paper, Noether symmetry and Mei symmetry of discrete nonholonomic dynamical systems with regular and the irregular lattices are investigated. Firstly, the equations of motion of discrete nonholonomic systems are introduced for regular and irregular lattices. Secondly, for cases of the two lattices, based on the invariance of the Hamiltomian functional under the infinitesimal transformation of time and generalized coordinates, we present the quasi-extremal equation, the discrete analogues of Noether identity, Noether theorems, and the Noether conservation laws of the systems. Thirdly, in cases of the two lattices, we study the Mei symmetry in which we give the discrete analogues of the criterion, the theorem, and the conservative laws of Mei symmetry for the systems. Finally, an example is discussed for the application of the results

  17. A gentilionic approach to quark colours

    International Nuclear Information System (INIS)

    Cattani, M.S.D.; Fernandes, N.C.

    1984-01-01

    An extended form of Noether's theorem enable us to identify the colour quantum number with the eigenvalue of the invariant of the algebra of S sup((3)). In the gentilionic approach, the composition of the S sup((3)) colour with the symmetric quark model seems to constitute an exact symmetry of Nature. It is also argued some general properties and the universality of Gentile statistics. (Author) [pt

  18. Non-local quantal Noether identities and their applications

    International Nuclear Information System (INIS)

    Li Ziping

    2002-01-01

    Based on the phase-space generating functional for a system with a singular high-order Lagrangian, the quantal canonical Noether identities under the local and non-local transformation in phase space for such system have been derived. For a gauge-invariant system with a higher-order Lagrangian, the quantal Noether identities under the local and non-local transformation in configuration space have also been derived. it has been pointed out that in certain cases the quantal Noether identities may be converted to the conservation laws at the quantum level. This algorithm to derive the quantal conservation laws is significantly different from the first quantal Noether theorem. The applications to the non-Abelian CS theories with higher-order derivatives are given. The conserved quantities at the quantum level for some local and non-local transformation are found respectively

  19. Noether charges for self-interacting quantum field theories in curved spacetimes with a Killing-vector

    International Nuclear Information System (INIS)

    Hollands, S.

    2001-01-01

    We consider a self-interacting, perturbative Klein-Gordon quantum field in a curved spacetime admitting a Killing vector field. We show that the action of this spacetime symmetry on interacting field operators can be implemented by a Noether charge which arises, in a certain sense, as a surface integral over the time-component of some interacting Noether current-density associated with the Killing field. The proof of this involves the demonstration of a corresponding set of Ward identities. Our work is based on the perturbative construction by Brunetti and Fredenhagen (Commun. Math. Phys. 208 (2000) 623-661) of self-interacting quantum field theories in general globally hyperbolic spacetimes. (orig.)

  20. Variational principles and symmetries on fibered multisymplectic manifolds

    Directory of Open Access Journals (Sweden)

    Gaset Jordi

    2016-12-01

    Full Text Available The standard techniques of variational calculus are geometrically stated in the ambient of fiber bundles endowed with a (premulti-symplectic structure. Then, for the corresponding variational equations, conserved quantities (or, what is equivalent, conservation laws, symmetries, Cartan (Noether symmetries, gauge symmetries and different versions of Noether's theorem are studied in this ambient. In this way, this constitutes a general geometric framework for all these topics that includes, as special cases, first and higher order field theories and (non-autonomous mechanics.

  1. Master formula approach to broken chiral U(3)xU(3) symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki Kamano

    2010-04-01

    The master formula approach to chiral symmetry breaking proposed by Yamagishi and Zahed is extended to the U_R(3)xU_L(3) group, in which effects of the U_A(1) anomaly and the flavor symmetry breaking m_u \

  2. Creation and development of the universe (symmetry approach)

    International Nuclear Information System (INIS)

    Zheludev, I.S.

    1993-09-01

    The model according to which space subreality and time subreality are created during Big Bang is introduced. The first one is centrosymmetrical, the second anticentrosymmetrical. One to another they are transformed by mutual ''replacement'' space and time. Such subrealities are not antisubrealities and their elementary particles (appeared through Big Bang) are not able to annihilate completely because of symmetry conditions. This leads to the appearance of condensed matter. The model of two subrealities gives the possibility to explain without ''parity violation'' any physical phenomena. Four macroscopic rules of symmetry [scale, corkscrew, gyroscope and right (left) hand] reflect four fundamental interactions of our reality. (author). 10 refs, 16 figs

  3. A broken symmetry ontology: Quantum mechanics as a broken symmetry

    International Nuclear Information System (INIS)

    Buschmann, J.E.

    1988-01-01

    The author proposes a new broken symmetry ontology to be used to analyze the quantum domain. This ontology is motivated and grounded in a critical epistemological analysis, and an analysis of the basic role of symmetry in physics. Concurrently, he is led to consider nonheterogeneous systems, whose logical state space contains equivalence relations not associated with the causal relation. This allows him to find a generalized principle of symmetry and a generalized symmetry-conservation formalisms. In particular, he clarifies the role of Noether's theorem in field theory. He shows how a broken symmetry ontology already operates in a description of the weak interactions. Finally, by showing how a broken symmetry ontology operates in the quantum domain, he accounts for the interpretational problem and the essential incompleteness of quantum mechanics. He proposes that the broken symmetry underlying this ontological domain is broken dilation invariance

  4. Chiral symmetry in the path-integral approach

    International Nuclear Information System (INIS)

    Schaposnik, F.A.

    1987-01-01

    The derivation of anomalous Ward-Takahashi identities related to chiral symmetries in the path-integral framework is presented. Some two-dimensional models in both abelian and non-abelian cases are discussed. The quantization of such theories using Weyl fermions is also presented. (L.C.) [pt

  5. Noether charge, black hole volume, and complexity

    Energy Technology Data Exchange (ETDEWEB)

    Couch, Josiah; Fischler, Willy; Nguyen, Phuc H. [Theory Group, Department of Physics and Texas Cosmology Center,University of Texas at Austin, 2515 Speedway, C1600, Austin, TX 78712-1192 (United States)

    2017-03-23

    In this paper, we study the physical significance of the thermodynamic volumes of AdS black holes using the Noether charge formalism of Iyer and Wald. After applying this formalism to study the extended thermodynamics of a few examples, we discuss how the extended thermodynamics interacts with the recent complexity = action proposal of Brown et al. (CA-duality). We, in particular, discover that their proposal for the late time rate of change of complexity has a nice decomposition in terms of thermodynamic quantities reminiscent of the Smarr relation. This decomposition strongly suggests a geometric, and via CA-duality holographic, interpretation for the thermodynamic volume of an AdS black hole. We go on to discuss the role of thermodynamics in complexity = action for a number of black hole solutions, and then point out the possibility of an alternate proposal, which we dub “complexity = volume 2.0'. In this alternate proposal the complexity would be thought of as the spacetime volume of the Wheeler-DeWitt patch. Finally, we provide evidence that, in certain cases, our proposal for complexity is consistent with the Lloyd bound whereas CA-duality is not.

  6. Symmetry-Adapted Ro-vibrational Basis Functions for Variational Nuclear Motion Calculations: TROVE Approach.

    Science.gov (United States)

    Yurchenko, Sergei N; Yachmenev, Andrey; Ovsyannikov, Roman I

    2017-09-12

    We present a general, numerically motivated approach to the construction of symmetry-adapted basis functions for solving ro-vibrational Schrödinger equations. The approach is based on the property of the Hamiltonian operator to commute with the complete set of symmetry operators and, hence, to reflect the symmetry of the system. The symmetry-adapted ro-vibrational basis set is constructed numerically by solving a set of reduced vibrational eigenvalue problems. In order to assign the irreducible representations associated with these eigenfunctions, their symmetry properties are probed on a grid of molecular geometries with the corresponding symmetry operations. The transformation matrices are reconstructed by solving overdetermined systems of linear equations related to the transformation properties of the corresponding wave functions on the grid. Our method is implemented in the variational approach TROVE and has been successfully applied to many problems covering the most important molecular symmetry groups. Several examples are used to illustrate the procedure, which can be easily applied to different types of coordinates, basis sets, and molecular systems.

  7. Teaching symmetry in the introductory physics curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T.; Lederman, Leon M.

    2000-01-01

    Modern physics is largely defined by fundamental symmetry principles and Noether's Theorem. Yet these are not taught, or rarely mentioned, to beginning students, thus missing an opportunity to reveal that the subject of physics is as lively and contemporary as molecular biology, and as beautiful as the arts. We prescribe a symmetry module to insert into the curriculum, of a week's length.

  8. Emmy Noether and Linear Evolution Equations

    Directory of Open Access Journals (Sweden)

    P. G. L. Leach

    2013-01-01

    Full Text Available Noether’s Theorem relates the Action Integral of a Lagrangian with symmetries which leave it invariant and the first integrals consequent upon the variational principle and the existence of the symmetries. These each have an equivalent in the Schrödinger Equation corresponding to the Lagrangian and by extension to linear evolution equations in general. The implications of these connections are investigated.

  9. Scaling symmetries, conservation laws and action principles in one-dimensional gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2009-01-01

    Scaling symmetries of the planar, one-dimensional gas dynamic equations with adiabatic index γ are used to obtain Lagrangian and Eulerian conservation laws associated with the symmetries. The known Eulerian symmetry operators for the scaling symmetries are converted to the Lagrangian form, in which the Eulerian spatial position of the fluid element is given in terms of the Lagrangian fluid labels. Conditions for a linear combination of the three scaling symmetries to be a divergence or variational symmetry of the action are established. The corresponding Lagrangian and Eulerian form of the conservation laws are determined by application of Noether's theorem. A nonlocal conservation law associated with the scaling symmetries is obtained by applying a nonlocal symmetry operator to the scaling symmetry-conserved vector. An action principle incorporating known conservation laws using Lagrangian constraints is developed. Noether's theorem for the constrained action principle gives the same formulas for the conserved vector as the classical Noether theorem, except that the Lie symmetry vector field now includes the effects of nonlocal potentials. Noether's theorem for the constrained action principle is used to obtain nonlocal conservation laws. The scaling symmetry conservation laws only apply for special forms of the entropy of the gas.

  10. Generally covariant theories: the Noether obstruction for realizing certain space-time diffeomorphisms in phase space

    International Nuclear Information System (INIS)

    Pons, Josep M

    2003-01-01

    Relying on known results of the Noether theory of symmetries extended to constrained systems, it is shown that there exists an obstruction that prevents certain tangent-space diffeomorphisms being projectable to phase space, for generally covariant theories. This main result throws new light on the old fact that the algebra of gauge generators in the phase space of general relativity, or other generally covariant theories, only closes as a soft algebra and not as a Lie algebra. The deep relationship between these two issues is clarified. In particular, we see that the second one may be understood as a side effect of the procedure to solve the first. It is explicitly shown how the adoption of specific metric-dependent diffeomorphisms, as a way to achieve projectability, causes the algebra of gauge generators (constraints) in phase space not to be a Lie algebra -with structure constants - but a soft algebra - with structure functions

  11. A topological approach unveils system invariances and broken symmetries in the brain.

    Science.gov (United States)

    Tozzi, Arturo; Peters, James F

    2016-05-01

    Symmetries are widespread invariances underscoring countless systems, including the brain. A symmetry break occurs when the symmetry is present at one level of observation but is hidden at another level. In such a general framework, a concept from algebraic topology, namely, the Borsuk-Ulam theorem (BUT), comes into play and sheds new light on the general mechanisms of nervous symmetries. The BUT tells us that we can find, on an n-dimensional sphere, a pair of opposite points that have the same encoding on an n - 1 sphere. This mapping makes it possible to describe both antipodal points with a single real-valued vector on a lower dimensional sphere. Here we argue that this topological approach is useful for the evaluation of hidden nervous symmetries. This means that symmetries can be found when evaluating the brain in a proper dimension, although they disappear (are hidden or broken) when we evaluate the same brain only one dimension lower. In conclusion, we provide a topological methodology for the evaluation of the most general features of brain activity, i.e., the symmetries, cast in a physical/biological fashion that has the potential to be operationalized. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Topological extensions of Noether charge algebras carried by Dp-branes

    International Nuclear Information System (INIS)

    Hammer, H.

    1998-01-01

    We derive an extension of the supersymmetry algebra carried by D-branes in a massless type IIA superspace vacuum. We find that the extended algebra contains not only topological charges that probe the presence of compact space-time dimensions but also pieces that measure non-trivial configurations of the gauge field on the world-volume of the brane. Furthermore there are terms that measure the coupling of the non-triviality of the world-volume regarded as a U(1) bundle of the gauge field to possible compact space-time dimensions. In particular, the extended algebra carried by the D2-brane can contain the charge of a Dirac monopole of the gauge field. In the course of this work we derive a set of generalized Gamma-matrix identities that include the ones presently known for the IIA case. In the first part of the paper we give an introduction to the basic notions of Noether current algebras and charge algebras; furthermore we find a theorem that describes in a general context how the presence of a gauge field on the world-volume of an embedded object transforming under the symmetry group on the target space alters the algebra of the Noether charges, which otherwise would be the same as the algebra of the symmetry group. This is a phenomenon recently found by Sorokin and Townsend in the case of the M5-brane, but here we show that it holds quite generally, and in particular also in the case of D-branes. (orig.)

  13. Hamiltonian Noether theorem for gauge systems and two time physics

    International Nuclear Information System (INIS)

    Villanueva, V M; Nieto, J A; Ruiz, L; Silvas, J

    2005-01-01

    The Noether theorem for Hamiltonian constrained systems is revisited. In particular, our review presents a novel method to show that the gauge transformations are generated by the conserved quantities associated with the first class constraints. We apply our results to the relativistic point particle, to the Friedberg et al model and, with special emphasis, to two time physics

  14. From physical symmetries to emergent gauge symmetries

    International Nuclear Information System (INIS)

    Barceló, Carlos; Carballo-Rubio, Raúl; Di Filippo, Francesco; Garay, Luis J.

    2016-01-01

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  15. Benchmarking Density Functional Theory Approaches for the Description of Symmetry-Breaking in Long Polymethine Dyes

    KAUST Repository

    Gieseking, Rebecca L.; Ravva, Mahesh Kumar; Coropceanu, Veaceslav; Bredas, Jean-Luc

    2016-01-01

    in polar solvents. Using an approach based on LRC functionals, a reduction in the crossover length is found with increasing medium dielectric constant, which is related to localization of the excess charge on the end groups. Symmetry-breaking is associated

  16. Noether's theorems applications in mechanics and field theory

    CERN Document Server

    Sardanashvily, Gennadi

    2016-01-01

    The book provides a detailed exposition of the calculus of variations on fibre bundles and graded manifolds. It presents applications in such area's as non-relativistic mechanics, gauge theory, gravitation theory and topological field theory with emphasis on energy and energy-momentum conservation laws. Within this general context the first and second Noether theorems are treated in the very general setting of reducible degenerate graded Lagrangian theory.

  17. Benchmarking Density Functional Theory Approaches for the Description of Symmetry-Breaking in Long Polymethine Dyes

    KAUST Repository

    Gieseking, Rebecca L.

    2016-04-25

    Long polymethines are well-known experimentally to symmetry-break, which dramatically modifies their linear and nonlinear optical properties. Computational modeling could be very useful to provide insight into the symmetry-breaking process, which is not readily available experimentally; however, accurately predicting the crossover point from symmetric to symmetry-broken structures has proven challenging. Here, we benchmark the accuracy of several DFT approaches relative to CCSD(T) geometries. In particular, we compare analogous hybrid and long-range corrected (LRC) functionals to clearly show the influence of the functional exchange term. Although both hybrid and LRC functionals can be tuned to reproduce the CCSD(T) geometries, the LRC functionals are better performing at reproducing the geometry evolution with chain length and provide a finite upper limit for the gas-phase crossover point; these methods also provide good agreement with the experimental crossover points for more complex polymethines in polar solvents. Using an approach based on LRC functionals, a reduction in the crossover length is found with increasing medium dielectric constant, which is related to localization of the excess charge on the end groups. Symmetry-breaking is associated with the appearance of an imaginary frequency of b2 symmetry involving a large change in the degree of bond-length alternation. Examination of the IR spectra show that short, isolated streptocyanines have a mode at ~1200 cm-1 involving a large change in bond-length alternation; as the polymethine length or the medium dielectric increases, the frequency of this mode decreases before becoming imaginary at the crossover point.

  18. Symmetry energy of the nucleus in the relativistic Thomas-Fermi approach with density-dependent parameters

    Science.gov (United States)

    Haddad, S.

    2017-11-01

    The symmetry energy of a nucleus is determined in a local density approximation and integrating over the entire density distribution of the nucleus, calculated utilizing the relativistic density-dependent Thomas-Fermi approach. The symmetry energy is found to decrease with increasing neutron excess in the nucleus. The isovector coupling channel reduces the symmetry energy, and this effect increases with increased neutron excess. The isovector coupling channel increases the symmetry energy integral in ^{40}Ca and reduces it in ^{48}Ca, and the interplay between the isovector and the isoscalar channels of the nuclear force explains this isotope effect.

  19. Two-photon annihilation into octet meson pairs. Symmetry relations in the handbag approach

    International Nuclear Information System (INIS)

    Diehl, M.; Kroll, P.; Regensburg Univ.

    2009-11-01

    We explore the implications of SU(3) flavor symmetry in the soft handbag mechanism for two-photon annihilation into pairs of pseudoscalar octet mesons. In this approach we obtain a good description of the experimental results for all measured channels at high energy, with two complex form factors adjusted to the data. We also predict the cross section for γγ→ηη. (orig.)

  20. Flexible, Symmetry-Directed Approach To Assembling Protein Cages (Publisher’s Version Open Access)

    Science.gov (United States)

    2016-08-01

    construction of enzyme nanoreactors, encapsulation of protein cargos, targeted drug delivery , and polyvalent display of epitopes, where atomic-level precision...Flexible, symmetry-directed approach to assembling protein cages Aaron Sciorea, Min Sub, Philipp Koldeweyc, Joseph D. Eschweilera, Kelsey A. Diffleya...approved June 10, 2016 (received for review April 15, 2016) The assembly of individual protein subunits into large-scale symmet- rical structures is

  1. Einstein-Katz action, variational principle, Noether charges and the thermodynamics of AdS-black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias,Universidad Adolfo Ibáñez, Viña del Mar (Chile); Deruelle, Nathalie; Julié, Félix-Louis [APC, Université Paris Diderot, CNRS, CEA, Observatoire de Paris,Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet,F-75205 Paris CEDEX 13 (France)

    2016-08-08

    In this paper we describe 4-dimensional gravity coupled to scalar and Maxwell fields by the Einstein-Katz action, that is, the covariant version of the “Gamma-Gamma − Gamma-Gamma' part of the Hilbert action supplemented by the divergence of a generalized “Katz vector'. We consider static solutions of Einstein’s equations, parametrized by some integration constants, which describe an ensemble of asymptotically AdS black holes. Instead of the usual Dirichlet boundary conditions, which aim at singling out a specific solution within the ensemble, we impose that the variation of the action vanishes on shell for the broadest possible class of solutions. We will see that, when a long-range scalar “hair' is present, only sub-families of the solutions can obey that criterion. The Katz-Bicak-Lynden-Bell (“KBL') superpotential built on this (generalized) vector will then give straightforwardly the Noether charges associated with the spacetime symmetries (that is, in the static case, the mass). Computing the action on shell, we will see next that the solutions which obey the imposed variational principle, and with Noether charges given by the KBL superpotential, satisfy the Gibbs relation, the Katz vectors playing the role of “counterterms'. Finally, we show on the specific example of dyonic black holes that the sub-class selected by our variational principle satisfies the first law of thermodynamics when their mass is defined by the KBL superpotential.

  2. Noether Current of the Surface Term of Einstein-Hilbert Action, Virasoro Algebra, and Entropy

    Directory of Open Access Journals (Sweden)

    Bibhas Ranjan Majhi

    2013-01-01

    Full Text Available A derivation of Noether current from the surface term of Einstein-Hilbert action is given. We show that the corresponding charge, calculated on the horizon, is related to the Bekenstein-Hawking entropy. Also using the charge, the same entropy is found based on the Virasoro algebra and Cardy formula approach. In this approach, the relevant diffeomorphisms are found by imposing a very simple physical argument: diffeomorphisms keep the horizon structure invariant. This complements similar earlier results (Majhi and Padmanabhan (2012 (arXiv:1204.1422 obtained from York-Gibbons-Hawking surface term. Finally we discuss the technical simplicities and improvements over the earlier attempts and also various important physical implications.

  3. Supervariable Approach to the Nilpotent Symmetries for a Toy Model of the Hodge Theory

    International Nuclear Information System (INIS)

    Malik, R. P.; Bhanja, T.; Shukla, D.

    2016-01-01

    We exploit the standard techniques of the supervariable approach to derive the nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for a toy model of the Hodge theory (i.e., a rigid rotor) and provide the geometrical meaning and interpretation to them. Furthermore, we also derive the nilpotent (anti-)co-BRST symmetry transformations for this theory within the framework of the above supervariable approach. We capture the (anti-)BRST and (anti-)co-BRST invariance of the Lagrangian of our present theory within the framework of augmented supervariable formalism. We also express the (anti-)BRST and (anti-)co-BRST charges in terms of the supervariables (obtained after the application of the (dual-)horizontality conditions and (anti-)BRST and (anti-)co-BRST invariant restrictions) to provide the geometrical interpretations for their nilpotency and anticommutativity properties. The application of the dual-horizontality condition and ensuing proper (i.e., nilpotent and absolutely anticommuting) fermionic (anti-)co-BRST symmetries are completely novel results in our present investigation.

  4. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P.Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also underst...

  5. Symmetries in fundamental physics

    CERN Document Server

    Sundermeyer, Kurt

    2014-01-01

    Over the course of the last century it has become clear that both elementary particle physics and relativity theories are based on the notion of symmetries. These symmetries become manifest in that the "laws of nature" are invariant under spacetime transformations and/or gauge transformations. The consequences of these symmetries were analyzed as early as in 1918 by Emmy Noether on the level of action functionals. Her work did not receive due recognition for nearly half a century, but can today be understood as a recurring theme in classical mechanics, electrodynamics and special relativity, Yang-Mills type quantum field theories, and in general relativity. As a matter of fact, as shown in this monograph, many aspects of physics can be derived solely from symmetry considerations. This substantiates the statement of E.P. Wigner "... if we knew all the laws of nature, or the ultimate Law of nature, the invariance properties of these laws would not furnish us new information." Thanks to Wigner we now also unders...

  6. A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies

    Science.gov (United States)

    Lu, Wei

    2017-09-01

    We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.

  7. Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation

    International Nuclear Information System (INIS)

    Bokhari, Ashfaque H.; Zaman, F. D.; Mahomed, F. M.

    2010-01-01

    The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.

  8. Lie symmetry analysis and reduction for exact solution of (2+1)-dimensional Bogoyavlensky-Konopelchenko equation by geometric approach

    Science.gov (United States)

    Ray, S. Saha

    2018-04-01

    In this paper, the symmetry analysis and similarity reduction of the (2+1)-dimensional Bogoyavlensky-Konopelchenko (B-K) equation are investigated by means of the geometric approach of an invariance group, which is equivalent to the classical Lie symmetry method. Using the extended Harrison and Estabrook’s differential forms approach, the infinitesimal generators for (2+1)-dimensional B-K equation are obtained. Firstly, the vector field associated with the Lie group of transformation is derived. Then the symmetry reduction and the corresponding explicit exact solution of (2+1)-dimensional B-K equation is obtained.

  9. The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models

    International Nuclear Information System (INIS)

    Forger, M.; Mannheim Univ.; Laartz, J.; Schaeper, U.

    1994-01-01

    The recently derived current algrbra of classical non-linear sigma models on arbitrary Riemannian manifolds is extended to include the energy-momentum tensor. It is found that in two dimensions the energy-momentum tensor θ μv , the Noether current j μ associated with the global symmetry of the theory and the composite field j appearing as the coefficient of the Schwinger term in the current algebra, together with the derivatives of j μ and j, generte a closed algebra. The subalgebra generated by the light-cone components of the energy-momentum tensor consists of two commuting copies of the Virasoro algebra, with central charge c=0, reflecting the classical conformal invariance of the theory, but the current algebra part and the semidirect product structure are quite different from the usual Kac-Moody/Sugawara type contruction. (orig.)

  10. Unified Symmetry of Nonholonomic Mechanical Systems with Non-Chetaev's Type Constraints

    International Nuclear Information System (INIS)

    Xia Lili; Li Yuancheng; Hou Qibao; Wang Jing

    2006-01-01

    Based on the total time derivative along the trajectory of the system, the unified symmetry of nonholonomic mechanical system with non-Chetaev's type constraints is studied. The definition and criterion of the unified symmetry of nonholonomic mechanical systems with non-Chetaev's type constraints are given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. Two examples are given to illustrate the application of the results.

  11. Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems

    International Nuclear Information System (INIS)

    Zhang Mingjiang; Fang Jianhui; Lu Kai; Pang Ting; Lin Peng

    2009-01-01

    Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained. (general)

  12. Extended global symmetries of the bosonic string. Their current algebra and anomalies

    International Nuclear Information System (INIS)

    Piguet, O.; Schwarz, D.; Schweda, M.

    1990-01-01

    The quantization of the bosonic string is discussed in a class of general homogeneous gauges. The corresponding bosonic string model may be characterized effectively by three global symmetries: the linearized BRS symmetry, the ghost-number symmetry, and the Lagrange-multiplier-field symmetry. In order to discuss the possible gauge (in)dependence of Noether currents and anomalies consistently, we enlarge these rigid symmetries to extended ones. In addition we construct the local version of the above global symmetries in a systematic way, by introducing appropriate external gauge fields. The possible anomalies are analysed with the help of Wess-Zumino consistency relations. (orig.)

  13. Applications of hidden symmetries to black hole physics

    International Nuclear Information System (INIS)

    Frolov, Valeri

    2011-01-01

    This work is a brief review of applications of hidden symmetries to black hole physics. Symmetry is one of the most important concepts of the science. In physics and mathematics the symmetry allows one to simplify a problem, and often to make it solvable. According to the Noether theorem symmetries are responsible for conservation laws. Besides evident (explicit) spacetime symmetries, responsible for conservation of energy, momentum, and angular momentum of a system, there also exist what is called hidden symmetries, which are connected with higher order in momentum integrals of motion. A remarkable fact is that black holes in four and higher dimensions always possess a set ('tower') of explicit and hidden symmetries which make the equations of motion of particles and light completely integrable. The paper gives a general review of the recently obtained results. The main focus is on understanding why at all black holes have something (symmetry) to hide.

  14. Space-time symmetries and the Yang-Mills gradient flow

    CERN Document Server

    Del Debbio, Luigi; Rago, Antonio

    2013-01-01

    The recent introduction of the gradient flow has provided a new tool to probe the dynamics of quantum field theories. The latest developments have shown how to use the gradient flow for the exploration of symmetries, and the definition of the corresponding renormalized Noether currents. In this paper we introduce infinitesimal translations along the gradient flow for gauge theories, and study the corresponding Ward identities. This approach is readily generalized to the case of gauge theories defined on a lattice, where the regulator breaks translation invariance. The Ward identities in this case lead to a nonperturbative renormalization of the energy-momentum tensor. We discuss an application of this method to the study of dilatations and scale invariance on the lattice.

  15. Symmetry-preserving perturbations of the Bateman Lagrangian and dissipative systems

    Science.gov (United States)

    Campoamor-Stursberg, Rutwig

    2017-03-01

    Perturbations of the classical Bateman Lagrangian preserving a certain subalgebra of Noether symmetries are studied, and conservative perturbations are characterized by the Lie algebra sl(2, ℝ) ⊕ so(2). Non-conservative albeit integrable perturbations are determined by the simple Lie algebra sl(2,ℝ), showing further the relation of the corresponding non-linear systems with the notion of generalized Ermakov systems.

  16. Symmetry-preserving perturbations of the Bateman Lagrangian and dissipative systems

    International Nuclear Information System (INIS)

    Campoamor-Stursberg, Rutwig

    2017-01-01

    Perturbations of the classical Bateman Lagrangian preserving a certain subalgebra of Noether symmetries are studied, and conservative perturbations are characterized by the Lie algebra sl(2, ℝ) ⊕ so(2). Non-conservative albeit integrable perturbations are determined by the simple Lie algebra sl(2,ℝ), showing further the relation of the corresponding non-linear systems with the notion of generalized Ermakov systems.

  17. Symmetry-preserving perturbations of the Bateman Lagrangian and dissipative systems

    Energy Technology Data Exchange (ETDEWEB)

    Campoamor-Stursberg, Rutwig, E-mail: rutwig@ucm.es [Faculted de Ciencias Matematicas Universidad Complutense, Instituto de Matemática Interdisciplinar and Departamento Geometría y Topología (Spain)

    2017-03-15

    Perturbations of the classical Bateman Lagrangian preserving a certain subalgebra of Noether symmetries are studied, and conservative perturbations are characterized by the Lie algebra sl(2, ℝ) ⊕ so(2). Non-conservative albeit integrable perturbations are determined by the simple Lie algebra sl(2,ℝ), showing further the relation of the corresponding non-linear systems with the notion of generalized Ermakov systems.

  18. Symmetries, conservation laws, and time reversibility for Hamiltonian systems with external forces

    NARCIS (Netherlands)

    Schaft, A.J. van der

    1983-01-01

    A system theoretic framework is given for the description of Hamiltonian systems with external forces and partial observations of the state. It is shown how symmetries and conservation laws can be defined within this framework. A generalization of Noether's theorem is obtained. Finally a precise

  19. Canonical quantisation via conditional symmetries of the closed FLRW model coupled to a scalar field

    International Nuclear Information System (INIS)

    Zampeli, Adamantia

    2015-01-01

    We study the classical, quantum and semiclassical solutions of a Robertson-Walker spacetime coupled to a massless scalar field. The Lagrangian of these minisuperspace models is singular and the application of the theory of Noether symmetries is modified to include the conditional symmetries of the corresponding (weakly vanishing) Hamiltonian. These are found to be the simultaneous symmetries of the supermetric and the superpotential. The quantisation is performed adopting the Dirac proposal for constrained systems. The innovation in the approach we use is that the integrals of motion related to the conditional symmetries are promoted to operators together with the Hamiltonian and momentum constraints. These additional conditions imposed on the wave function render the system integrable and it is possible to obtain solutions of the Wheeler-DeWitt equation. Finally, we use the wave function to perform a semiclassical analysis following Bohm and make contact with the classical solution. The analysis starts with a modified Hamilton-Jacobi equation from which the semiclassical momenta are defined. The solutions of the semiclassical equations are then studied and compared to the classical ones in order to understand the nature and behaviour of the classical singularities. (paper)

  20. Symmetry and group theory throughout physics

    Directory of Open Access Journals (Sweden)

    Villain J.

    2012-03-01

    Full Text Available As noticed in 1884 by Pierre Curie [1], physical properties of matter are tightly related to the kind of symmetry of the medium. Group theory is a systematic tool, though not always easy to handle, to exploit symmetry properties, for instance to find the eigenvectors and eigenvalues of an operator. Certain properties (optical activity, piezoelectricity are forbidden in molecules or crystals of high symmetry. A few theorems (Noether, Goldstone establish general relations between physical properties and symmetry. Applications of group theory to condensed matter physics, elementary particle physics, quantum mechanics, electromagnetism are reviewed. Group theory is not only a tool, but also a beautiful construction which casts insight into natural phenomena.

  1. Integrable systems and lie symmetries in classical mechanics

    International Nuclear Information System (INIS)

    Sen, T.

    1986-01-01

    The interrelationship between integrability and symmetries in classical mechanics is studied. Two-dimensional time- and velocity-independent potentials form the domain of the study. It is shown that, contrary to folklore, existence of a single finite symmetry does not ensure integrability. A method due to Darboux is used to construct potentials that admit a time-independent invariant. All potentials admitting invariants linear or quadratic in the momentum coordinates are constructed. These are the only integrable potentials which can be expressed as arbitrary functions of certain arguments. A complete construction of potentials admitting higher-order invariants does not seem possible. However, the necessary general forms for potentials that admit a particular invariant of arbitrary order are found. These invariants must be spherically symmetric in the leading terms. Two kinds of symmetries are studied: point Lie symmetries of the Newtonian equations of motion for conservative potentials, and point Noether symmetries of the action functionals obtained from the standard Lagrangians associated with these potentials. All conservative potentials which admit these symmetries are constructed. The class of potentials admitting Noether symmetries is shown to be a subclass of those admitting Lie symmetries

  2. Lagrange-Noether method for solving second-order differential equations

    Institute of Scientific and Technical Information of China (English)

    Wu Hui-Bin; Wu Run-Heng

    2009-01-01

    The purpose of this paper is to provide a new method called the Lagrange-Noether method for solving second-order differential equations. The method is,firstly,to write the second-order differential equations completely or partially in the form of Lagrange equations,and secondly,to obtain the integrals of the equations by using the Noether theory of the Lagrange system. An example is given to illustrate the application of the result.

  3. Flavor-singlet baryons in the graded symmetry approach to partially quenched QCD

    Science.gov (United States)

    Hall, Jonathan M. M.; Leinweber, Derek B.

    2016-11-01

    Progress in the calculation of the electromagnetic properties of baryon excitations in lattice QCD presents new challenges in the determination of sea-quark loop contributions to matrix elements. A reliable estimation of the sea-quark loop contributions represents a pressing issue in the accurate comparison of lattice QCD results with experiment. In this article, an extension of the graded symmetry approach to partially quenched QCD is presented, which builds on previous theory by explicitly including flavor-singlet baryons in its construction. The formalism takes into account the interactions among both octet and singlet baryons, octet mesons, and their ghost counterparts; the latter enables the isolation of the quark-flow disconnected sea-quark loop contributions. The introduction of flavor-singlet states enables systematic studies of the internal structure of Λ -baryon excitations in lattice QCD, including the topical Λ (1405 ).

  4. Symmetry-projected variational approach to the one-dimensional Hubbard model

    International Nuclear Information System (INIS)

    Schmid, K.W.; Dahm, T.; Margueron, J.; Muether, H.

    2005-01-01

    We apply a variational method devised for the nuclear many-body problem to the one-dimensional Hubbard model with nearest neighbor hopping and periodic boundary conditions. The test wave function consist for each state out of a single Hartree-Fock determinant mixing all the sites (or momenta) as well as the spin projections of the electrons. Total spin and linear momentum are restored by projection methods before the variation. It is demonstrated that this approach reproduces the results of exact diagonalizations for half-filled N=12 and N=14 lattices not only for the energies and occupation numbers of the ground but also of the lowest excited states rather well. Furthermore, a system of ten electrons in an N=12 lattice is investigated and, finally, an N=30 lattice is studied. In addition to energies and occupation numbers we present the spectral functions computed with the help of the symmetry-projected wave functions as well

  5. Connected Green function approach to symmetry breaking in Φ1+14-theory

    International Nuclear Information System (INIS)

    Haeuser, J.M.; Cassing, W.; Peter, A.; Thoma, M.H.

    1995-01-01

    Using the cluster expansions for n-point Green functions we derive a closed set of dynamical equations of motion for connected equal-time Green functions by neglecting all connected functions higher than 4 th order for the λΦ 4 -theory in 1+1 dimensions. We apply the equations to the investigation of spontaneous symmetry breaking, i.e. to the evaluation of the effective potential at temperature T=0. Within our momentum space discretization we obtain a second order phase transition (in agreement with the Simon-Griffith theorem) and a critical coupling of λ crit /4m 2 =2.446 ascompared to a first order phase transition and λ crit /4m 2 =2.568 from the Gaussian effective potential approach. (orig.)

  6. Multivector field formulation of Hamiltonian field theories: equations and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)

    1999-12-03

    We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)

  7. Unified Symmetry of Nonholonomic Mechanical Systems of Non-Chetaev's Type with Unilateral Constraints

    International Nuclear Information System (INIS)

    Xia Lili; Li Yuancheng; Wang Jing; Hou Qibao

    2006-01-01

    The definition and the criterion for a unified symmetry of nonholonomic mechanical systems of non-Chetaev's type with unilateral constraints are presented based on the total time derivative along the trajectory of the system. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is given to illustrate the application of the results.

  8. Functional renormalization group approach to electronic structure calculations for systems without translational symmetry

    Science.gov (United States)

    Seiler, Christian; Evers, Ferdinand

    2016-10-01

    A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.

  9. Augmented Superfield Approach to Non-Yang Symmetries of Jackiw-Pi Model: Novel Observations

    Science.gov (United States)

    Gupta, Saurabh; Kumar, R.

    2013-02-01

    We derive the off-shell nilpotent and absolutely anti-commuting Becchi-Rouet-Stora-Tyutin (BRST) as well as anti-BRST symmetry transformations corresponding to the non-Yang-Mills (NYM) symmetry transformations of (2+1)-dimensional Jackiw-Pi (JP) model within the framework of "augmented" superfield formalism. The Curci-Ferrari (CF) restriction, which is a hallmark of non-Abelian one-form gauge theories, does not appear in this case. One of the novel features of our present investigation is the derivation of proper (anti-)BRST symmetry transformations corresponding to the auxiliary field ρ that cannot be derived by any conventional means.

  10. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  11. Functional approach for pairing in finite systems: How to define restoration of broken symmetries in Energy Density Functional theory?

    International Nuclear Information System (INIS)

    Hupin, G; Lacroix, D; Bender, M

    2011-01-01

    The Multi-Reference Energy Density Functional (MR-EDF) approach (also called configuration mixing or Generator Coordinate Method), that is commonly used to treat pairing in finite nuclei and project onto particle number, is re-analyzed. It is shown that, under certain conditions, the MR-EDF energy can be interpreted as a functional of the one-body density matrix of the projected state with good particle number. Based on this observation, we propose a new approach, called Symmetry-Conserving EDF (SC-EDF), where the breaking and restoration of symmetry are accounted for simultaneously. We show, that such an approach is free from pathologies recently observed in MR-EDF and can be used with a large flexibility on the density dependence of the functional.

  12. Fluid relabelling symmetries, Lie point symmetries and the Lagrangian map in magnetohydrodynamics and gas dynamics

    International Nuclear Information System (INIS)

    Webb, G M; Zank, G P

    2007-01-01

    We explore the role of the Lagrangian map for Lie symmetries in magnetohydrodynamics (MHD) and gas dynamics. By converting the Eulerian Lie point symmetries of the Galilei group to Lagrange label space, in which the Eulerian position coordinate x is regarded as a function of the Lagrange fluid labels x 0 and time t, one finds that there is an infinite class of symmetries in Lagrange label space that map onto each Eulerian Lie point symmetry of the Galilei group. The allowed transformation of the Lagrangian fluid labels x 0 corresponds to a fluid relabelling symmetry, including the case where there is no change in the fluid labels. We also consider a class of three, well-known, scaling symmetries for a gas with a constant adiabatic index γ. These symmetries map onto a modified form of the fluid relabelling symmetry determining equations, with non-zero source terms. We determine under which conditions these symmetries are variational or divergence symmetries of the action, and determine the corresponding Lagrangian and Eulerian conservation laws by use of Noether's theorem. These conservation laws depend on the initial entropy, density and magnetic field of the fluid. We derive the conservation law corresponding to the projective symmetry in gas dynamics, for the case γ = (n + 2)/n, where n is the number of Cartesian space coordinates, and the corresponding result for two-dimensional (2D) MHD, for the case γ = 2. Lie algebraic structures in Lagrange label space corresponding to the symmetries are investigated. The Lie algebraic symmetry relations between the fluid relabelling symmetries in Lagrange label space, and their commutators with a linear combination of the three symmetries with a constant adiabatic index are delineated

  13. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  14. Off-shell Noether current and conserved charge in Horndeski theory

    Directory of Open Access Journals (Sweden)

    Jun-Jin Peng

    2016-01-01

    Full Text Available We derive the off-shell Noether current and potential in the context of Horndeski theory, which is the most general scalar–tensor theory with a Lagrangian containing derivatives up to second order while yielding at most to second-order equations of motion in four dimensions. Then the formulation of conserved charges is proposed on basis of the off-shell Noether potential and the surface term got from the variation of the Lagrangian. As an application, we calculate the conserved charges of black holes in a scalar–tensor theory with non-minimal coupling between derivatives of the scalar field and the Einstein tensor.

  15. Hidden beauty baryon states in the local hidden gauge approach with heavy quark spin symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, C.W.; Oset, E. [Centro Mixto Universidad de Valencia-CSIC, Institutos de Investigacion de Paterna, Departamento de Fisica Teorica and IFIC, Valencia (Spain)

    2013-11-15

    Using a coupled-channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-baryon interaction with hidden beauty and obtain several new states of N around 11 GeV. We consider the basis of states {eta}{sub b} N, {Upsilon};N, B {Lambda}{sub b}, B {Sigma}{sub b}, B{sup *}{Lambda}{sub b}, B{sup *}{Sigma}{sub b}, B{sup *}{Sigma}{sub b}{sup *} and find four basic bound states which correspond to B {Sigma}{sub b}, B {Sigma}{sub b}{sup *}, B{sup *}{Sigma}{sub b} and B{sup *}{Sigma}{sub b}{sup *}, decaying mostly into {eta}{sub b} N and {Upsilon}N and with a binding energy about 50-130 MeV with respect to the thresholds of the corresponding channel. All of them have isospin I = 1/2, and we find no bound states or resonances in I = 3/2. The B {Sigma}{sub b} state appears in J = 1/2, the B {Sigma}{sub b}{sup *} in J = 3/2, the B{sup *}{Sigma}{sub b} appears nearly degenerate in J = 1/2, 3/2 and the B{sup *}{Sigma}{sub b}{sup *} appears nearly degenerate in J = 1/2, 3/2, 5/2. These states have a width from 2-110 MeV, with conservative estimates of uncertainties, except for the one in J = 5/2 which has zero width since it cannot decay into any of the states of the basis chosen. We make generous estimates of the uncertainties and find that within very large margins these states appear bound. (orig.)

  16. Symmetries of Ginsparg-Wilson chiral fermions

    International Nuclear Information System (INIS)

    Mandula, Jeffrey E.

    2009-01-01

    The group structure of the variant chiral symmetry discovered by Luescher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, noncommuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are related to complex energy singularities that violate reflection positivity and impede continuation to Minkowski space.

  17. Symmetry and symmetry breaking

    International Nuclear Information System (INIS)

    Balian, R.; Lambert, D.; Brack, A.; Lachieze-Rey, M.; Emery, E.; Cohen-Tannoudji, G.; Sacquin, Y.

    1999-01-01

    The symmetry concept is a powerful tool for our understanding of the world. It allows a reduction of the volume of information needed to apprehend a subject thoroughly. Moreover this concept does not belong to a particular field, it is involved in the exact sciences but also in artistic matters. Living beings are characterized by a particular asymmetry: the chiral asymmetry. Although this asymmetry is visible in whole organisms, it seems it comes from some molecules that life always produce in one chirality. The weak interaction presents also the chiral asymmetry. The mass of particles comes from the breaking of a fundamental symmetry and the void could be defined as the medium showing as many symmetries as possible. The texts put together in this book show to a great extent how symmetry goes far beyond purely geometrical considerations. Different aspects of symmetry ideas are considered in the following fields: the states of matter, mathematics, biology, the laws of Nature, quantum physics, the universe, and the art of music. (A.C.)

  18. Structure of Symmetry Groups via Cartan's Method: Survey of Four Approaches

    Directory of Open Access Journals (Sweden)

    Oleg I. Morozov

    2005-10-01

    Full Text Available In this review article we discuss four recent methods for computing Maurer-Cartan structure equations of symmetry groups of differential equations. Examples include solution of the contact equivalence problem for linear hyperbolic equations and finding a contact transformation between the generalized Hunter-Saxton equation and the Euler-Poisson equation.

  19. Semiclassical approach to squeezing-like transformations in quantum systems with higher symmetries

    International Nuclear Information System (INIS)

    Klimov, Andrei B; Dinani, Hossein Tavakoli; De Guise, Hubert

    2013-01-01

    We provide a coarse but intuitive classification of squeezing in quantum systems with SU(n) symmetries. This classification is based on the non-equivalent paths (classical trajectories) in the corresponding phase-space. The example of SU(3) is studied in details. (paper)

  20. Systematic approach to indication of powder pattern of orthogonal symmetry crystals

    Energy Technology Data Exchange (ETDEWEB)

    Babenko, N F; Brusentsov, F A [Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR)

    1975-01-01

    Systematic identification of the powder pattern for a crystal of unknown syngony is done stepwise, each of them suppose a definite type of symmetry. Algorithm were developed and programs were compiled (ALGOL-60 for BECM-4 and M-222) for X-ray pattern recognition. Examples illustrating the application of the programme are presented.

  1. Nilpotent symmetries and Curci-Ferrari-type restrictions in 2D non-Abelian gauge theory: Superfield approach

    Science.gov (United States)

    Srinivas, N.; Malik, R. P.

    2017-11-01

    We derive the off-shell nilpotent symmetries of the two (1 + 1)-dimensional (2D) non-Abelian 1-form gauge theory by using the theoretical techniques of the geometrical superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism. For this purpose, we exploit the augmented version of superfield approach (AVSA) and derive theoretically useful nilpotent (anti-)BRST, (anti-)co-BRST symmetries and Curci-Ferrari (CF)-type restrictions for the self-interacting 2D non-Abelian 1-form gauge theory (where there is no interaction with matter fields). The derivation of the (anti-)co-BRST symmetries and all possible CF-type restrictions are completely novel results within the framework of AVSA to BRST formalism where the ordinary 2D non-Abelian theory is generalized onto an appropriately chosen (2, 2)-dimensional supermanifold. The latter is parametrized by the superspace coordinates ZM = (xμ,𝜃,𝜃¯) where xμ (with μ = 0, 1) are the bosonic coordinates and a pair of Grassmannian variables (𝜃,𝜃¯) obey the relationships: 𝜃2 = 𝜃¯2 = 0, 𝜃𝜃¯ + 𝜃¯𝜃 = 0. The topological nature of our 2D theory allows the existence of a tower of CF-type restrictions.

  2. Isospin-symmetry-breaking effects in A∼70 nuclei within beyond-mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Petrovici, A.; Andrei, O. [National Institute for Physics and Nuclear Engineering, R-077125 Bucharest (Romania)

    2015-02-24

    Particular isospin-symmetry-breaking probes including Coulomb energy differences (CED), mirror energy differences (MED), and triplet energy differences (TED) manifest anomalies in the A∼70 isovector triplets of nuclei. The structure of proton-rich nuclei in the A∼70 mass region suggests shape coexistence and competition between pairing correlations in different channels. Recent results concerning the interplay between isospin-mixing and shape-coexistence effects on exotic phenomena in A∼70 nuclei obtained within the beyond-mean-field complex Excited Vampir variational model with symmetry projection before variation using a realistic effective interaction in a relatively large model space are presented. Excited Vampir predictions concerning the Gamow-Teller β decay to the odd-odd N=Z {sup 66}As and {sup 70}Br nuclei correlated with the pair structure analysis in the T=1 and T=0 channel of the involved wave functions are discussed.

  3. Unified Symmetry of Nonholonomic System of Non-Chetaev's Type in Event Space

    International Nuclear Information System (INIS)

    Hou Qibao; Li Yuancheng; Wang Jing; Xia Lili

    2007-01-01

    The unified symmetry of a nonholonomic system of non-Chetaev's type in event space under infinitesimal transformations of group is studied. Firstly, the differential equations of motion of the system are given. Secondly, the definition and the criterion of the unified symmetry for the system are obtained. Thirdly, a new conserved quantity, besides the Noether conserved quantity and the Hojman conserved quantity, is deduced from the unified symmetry of a nonholonomic system of non-Chetaev's type. Finally, an example is given to illustrate the application of the result.

  4. Group analysis and renormgroup symmetries

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.; Shirkov, D.V.

    1996-01-01

    An original regular approach to constructing special type symmetries for boundary-value problems, namely renormgroup symmetries, is presented. Different methods of calculating these symmetries based on modern group analysis are described. An application of the approach to boundary value problems is demonstrated with the help of a simple mathematical model. 35 refs

  5. Comments on the Gauge Fixed BRST Cohomology and the Quantum Noether Method

    CERN Document Server

    Barnich, G; Skenderis, K; Barnich, Glenn; Hurth, Tobias; Skenderis, Kostas

    2004-01-01

    We discuss in detail the relation between the gauge fixed and gauge invariant BRST cohomology. In particular in certain gauges some cohomology classes of the gauge fixed BRST differential do not correspond to gauge invariant observables, and in addition ``accidental'' conserved currents may appear. These correspond 1-1 to observables that become trivial in this gauge. We explicitly show how the gauge fixed BRST cohomology appears in the context of the Quantum Noether Method.

  6. Conserved Noether Currents, Utiyama's Theory of Invariant Variation, and Velocity Dependence in Local Gauge Invariance

    Science.gov (United States)

    Darvas, Gyrgy

    2009-01-01

    The paper discusses the mathematical consequences of the application of derived variables in gauge fields. Physics is aware of several phenomena, which depend first of all on velocities (like e.g., the force caused by charges moving in a magnetic field, or the Lorentz transformation). Applying the property of the second Noether theorem, that allowed generalised variables, this paper extends the article by Al-Kuwari and Taha (1991) with a new conclusion. They concluded that there are no extra conserved currents associated with local gauge invariance. We show, that in a more general case, there are further conserved Noether currents. In its method the paper reconstructs the clue introduced by Utiyama (1956, 1959) and followed by Al-Kuwari and Taha (1991) in the presence of a gauge field that depends on the co-ordinates of the velocity space. In this course we apply certain (but not full) analogies with Mills (1989). We show, that handling the space-time coordinates as implicit variables in the gauge field, reproduces the same results that have been derived in the configuration space (i.e., we do not lose information), while the proposed new treatment gives additional information extending those. The result is an extra conserved Noether current.

  7. A self-consistent mean-field approach to the dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Kunihiro, Teiji; Hatsuda, Tetsuo.

    1984-01-01

    The dynamical symmetry breaking phenomena in the Nambu and Jona-Lasimio model are reexamined in the framework of a self-consistent mean-field (SCMF) theory. First, we formulate the SCMF theory in a lucid manner based on a successful decomposition of the Lagrangian into semiclassical and residual interaction parts by imposing a condition that ''the dangerous term'' in Bogoliubov's sense should vanish. Then, we show that the difference of the energy density between the super and normal phases, the correct expression of which the original authors failed to give, can be readily obtained by applying the SCMF theory. Futhermore, it is shown that the expression thus obtained is identical to that of the effective potential (E.P.) given by the path-integral method with an auxiliary field up to the one loop order in the loop expansion, then one finds a new and simple way to get the E.P. Some numerical results of the E.P. and the dynamically generated mass of fermion are also shown. As another demonstration of the powerfulness of the SCMF theory, we derive, in the Appendix, the energy density of the O(N)-phi 4 model including the higher order corrections in the sense of large N expansion. (author)

  8. On systems having Poincaré and Galileo symmetry

    International Nuclear Information System (INIS)

    Holland, Peter

    2014-01-01

    Using the wave equation in d≥1 space dimensions it is illustrated how dynamical equations may be simultaneously Poincaré and Galileo covariant with respect to different sets of independent variables. This provides a method to obtain dynamics-dependent representations of the kinematical symmetries. When the field is a displacement function both symmetries have a physical interpretation. For d=1 the Lorentz structure is utilized to reveal hitherto unnoticed features of the non-relativistic Chaplygin gas including a relativistic structure with a limiting case that exhibits the Carroll group, and field-dependent symmetries and associated Noether charges. The Lorentz transformations of the potentials naturally associated with the Chaplygin system are given. These results prompt the search for further symmetries and it is shown that the Chaplygin equations support a nonlinear superposition principle. A known spacetime mixing symmetry is shown to decompose into label-time and superposition symmetries. It is shown that a quantum mechanical system in a stationary state behaves as a Chaplygin gas. The extension to d>1 is used to illustrate how the physical significance of the dual symmetries is contingent on the context by showing that Maxwell’s equations exhibit an exact Galileo covariant formulation where Lorentz and gauge transformations are represented by field-dependent symmetries. A natural conceptual and formal framework is provided by the Lagrangian and Eulerian pictures of continuum mechanics

  9. Quasigroup of local-symmetry transformations in constrained theories

    International Nuclear Information System (INIS)

    Chitaya, N.P.; Gogilidze, S.A.; Surovtsev, Yu.S.

    1996-01-01

    In the framework of the generalized Hamiltonian formalism by Dirac, the local symmetries of dynamical systems with first- and second-class constraints are investigated in the general case without restrictions on the algebra of constraints. The method of constructing the generator of local-symmetry transformations is obtained from the requirement for them to map the solutions of the Hamiltonian equations of motion into the solutions of the same equations. It is proved that second-class constraints do not contribute to the transformation law of the local symmetry entirely stipulated by all the first-class constraints (only by them) of an equivalent set passing to which from the initial constraint set is always possible and is presented. A mechanism of occurrence of higher derivatives of coordinates and group parameters in the symmetry transformation law in the Noether second theorem is elucidated. In the latter case it is shown that the obtained transformations of symmetry are canonical in the extended (by Ostrogradsky) phase space. It is thereby shown in the general case that the degeneracy of theories with the first- and second-class constraints is due to their invariance under local-symmetry transformations. It is also shown in the general case that the action functional and the corresponding Hamiltonian equations of motion are invariant under the same quasigroup of local-symmetry transformations. 29 refs

  10. Sequential flavor symmetry breaking

    International Nuclear Information System (INIS)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-01-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  11. Sequential flavor symmetry breaking

    Science.gov (United States)

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-08-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  12. Symmetries and groups in particle physics

    International Nuclear Information System (INIS)

    Scherer, Stefan

    2016-01-01

    The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to

  13. Noether's theorem and Steudel's conserved currents for the sine-Gordon equation

    International Nuclear Information System (INIS)

    Shadwick, W.F.

    1980-01-01

    A version of Noether's theorem appropriate for the extended Hamilton-Cartan formalism for regular first-order Lagrangians is proposed. Steudel's derivation of an infinite collection of conserved currents for the sine-Gordon equation is presented in this context and it is demonstrated that, as a consequence of the commutativity of the sine-Gordon Baecklund transformations, the conserved charges corresponding to these currents are in involution with respect to the natural Poisson bracket provided by the formalism. Thus one obtains the formal 'complete integrability' of the sine-Gordon equation as a consequence of the properties of the Baecklund transformation. (orig.)

  14. Flavour from accidental symmetries

    International Nuclear Information System (INIS)

    Ferretti, Luca; King, Stephen F.; Romanino, Andrea

    2006-01-01

    We consider a new approach to fermion masses and mixings in which no special 'horizontal' dynamics is invoked to account for the hierarchical pattern of charged fermion masses and for the peculiar features of neutrino masses. The hierarchy follows from the vertical, family-independent structure of the model, in particular from the breaking pattern of the Pati-Salam group. The lightness of the first two fermion families can be related to two family symmetries emerging in this context as accidental symmetries

  15. Symmetry witnesses

    Science.gov (United States)

    Aniello, Paolo; Chruściński, Dariusz

    2017-07-01

    A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner’s theorem, the set of pure states—the rank-one projections—is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the sets of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e. reasoning in terms of quantum states, the sets of ‘uniform’ density operators of corresponding fixed rank are symmetry witnesses too.

  16. Use of spatial symmetry in atomic--integral calculations: an efficient permutational approach

    International Nuclear Information System (INIS)

    Rouzo, H.L.

    1979-01-01

    The minimal number of independent nonzero atomic integrals that occur over arbitrarily oriented basis orbitals of the form R(r).Y/sub lm/(Ω) is theoretically derived. The corresponding method can be easily applied to any point group, including the molecular continuous groups C/sub infinity v/ and D/sub infinity h/. On the basis of this (theoretical) lower bound, the efficiency of the permutational approach in generating sets of independent integrals is discussed. It is proved that lobe orbitals are always more efficient than the familiar Cartesian Gaussians, in the sense that GLOS provide the shortest integral lists. Moreover, it appears that the new axial GLOS often lead to a number of integrals, which is the theoretical lower bound previously defined. With AGLOS, the numbers of two-electron integrals to be computed, stored, and processed are divided by factors 2.9 (NH 3 ), 4.2 (C 5 H 5 ), and 3.6 (C 6 H 6 ) with reference to the corresponding CGTOS calculations. Remembering that in the permutational approach, atomic integrals are directly computed without any four-indice transformation, it appears that its utilization in connection with AGLOS provides one of the most powerful tools for treating symmetrical species. 34 references

  17. Harmonic-oscillator pattern arising from an algebraic approach to chiral symmetry

    CERN Document Server

    Buccella, F; Savoy, C A

    1972-01-01

    The Weinberg equation for the (mass)/sup 2/ operator (Q/sub 5//sup +/, (Q/sub 5//sup +/, m/sup 2/))=0, between meson states, is saturated in a perturbative approach. The generator Z of the mixing operators is completely established as Z=(W*M)/sub z/, where W is the W-spin operator and M is the co-ordinate of the three-dimensional harmonic oscillator. In a perturbative expansion of the (mass)/sup 2/ operator, the lowest term consists of two parts, the harmonic-oscillator energy and a spin-orbit coupling of the form (-1)/sup L+1/(L.S+/sup 1///sub 2 /). The resulting (mass)/sup 2/ consists of families of equispaced linearly rising trajectories. (11 refs).

  18. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  19. Quantum Noether identities for non-local transformations in higher-order derivatives theories

    International Nuclear Information System (INIS)

    Li, Z.P.; Long, Z.W.

    2003-01-01

    Based on the phase-space generating functional of the Green function for a system with a regular/singular higher-order Lagrangian, the quantum canonical Noether identities (NIs) under a local and non-local transformation in phase space have been deduced, respectively. For a singular higher-order Lagrangian, one must use an effective canonical action I eff P in quantum canonical NIs instead of the classical I P in classical canonical NIs. The quantum NIs under a local and non-local transformation in configuration space for a gauge-invariant system with a higher-order Lagrangian have also been derived. The above results hold true whether or not the Jacobian of the transformation is equal to unity or not. It has been pointed out that in certain cases the quantum NIs may be converted to conservation laws at the quantum level. This algorithm to derive the quantum conservation laws is significantly different from the quantum first Noether theorem. The applications of our formulation to the Yang-Mills fields and non-Abelian Chern-Simons (CS) theories with higher-order derivatives are given, and the conserved quantities at the quantum level for local and non-local transformations are found, respectively. (orig.)

  20. The {{\\rm{D}}\\bar{{\\rm{D}}}}^{{\\rm{* }}} interaction with isospin zero in an extended hidden gauge symmetry approach

    Science.gov (United States)

    Sun, Bao-Xi; Wan, Da-Ming; Zhao, Si-Yu

    2018-05-01

    The {{{D}}\\bar{{{D}}}}{{* }} interaction via a ρ or ω exchange is constructed within an extended hidden gauge symmetry approach, where the strange quark is replaced by the charm quark in the SU(3) flavor space. With this {{{D}}\\bar{{{D}}}}{{* }} interaction, a bound state slightly lower than the {{{D}}\\bar{{{D}}}}{{* }} threshold is generated dynamically in the isospin zero sector by solving the Bethe-Salpeter equation in the coupled-channel approximation, which might correspond to the X(3872) particle announced by many collaborations. This formulism is also used to study the {{{B}}\\bar{{{B}}}}{{* }} interaction, and a {{{B}}\\bar{{{B}}}}{{* }} bound state with isospin zero is generated dynamically, which has no counterpart listed in the review of the Particle Data Group. Furthermore, the one-pion exchange between the D meson and the {\\bar{{{D}}}}{{* }} is analyzed precisely, and we do not think the one-pion exchange potential need be considered when the Bethe-Salpeter equation is solved.

  1. Electric-magnetic duality as a secondary symmetry

    International Nuclear Information System (INIS)

    Brandt, R.A.; Young, K.

    1980-01-01

    In both the abelian and non-abelian classical point magnetic monopole theories, electric current conservation is a consequence of gauge invariance, but, since there is no magnetic gauge group, magnetic current conservation is not a Noether-type conservation law. In the abelian models, the equations of motion (but not the lagrangian) are invariant to the duality rotations in electric-magnetic charge space, but this is not the case in the non-abelian models. In an attempt to understand these and related points, we introduce a generalization of Noether's theorem. Consider a physical system described by a set of variables THETA and characterized by a lagrangian density L(THETA). A transormation law THETA → G THETA which leaves L invariant leads to a conserved current Jsub(μ)(THETA). We then call G a primary symmetry. A second transformation law THETA → D THETA which leaves the equations of motion, but not L, invariant then leads to another conserved current Jsub(μ)(D THETA). We then call D a secondary symmetra. Our main point is that Jsub(μ) (D THETA) may be conserved even if the equations of motion are not invariant under D. All that is required is that the change of the equations of motion under D is perpendicular (in the field space) to the change of the fields under G. Then we call D an incomplete secondary symmetry. We show that in both the abelian and non-abelian monopole theories, duality is an incomplete secondary symmetry whose associated conservation law is magnetic current conservation. Thus it is the interpretation of duality as a secondary symmetry which explains magnetic current conservation and which generalizes from the abelian theories to the non-abelian ones. This suggests that magnetic current conservation may remain valid in quantum field theory. (orig.)

  2. A symmetry-controlled and face-driven approach for the assembly of cerium-based molecular polyhedra.

    Science.gov (United States)

    Liu, Yang; Lin, Zhihua; He, Cheng; Zhao, Liang; Duan, Chunying

    2010-12-14

    A well-defined Ce-based molecular tetrahedron and a cube-like architecture were achieved via self-assembly by incorporating NOO tridentate chelators into the rationally designed ligands with C(3) or C(2v) symmetries, respectively.

  3. Symmetry of crystals and molecules

    CERN Document Server

    Ladd, Mark

    2014-01-01

    This book successfully combines a thorough treatment of molecular and crystalline symmetry with a simple and informal writing style. By means of familiar examples the author helps to provide the reader with those conceptual tools necessary for the development of a clear understanding of what are often regarded as 'difficult' topics. Christopher Hammond, University of Leeds This book should tell you everything you need to know about crystal and molecular symmetry. Ladd adopts an integrated approach so that the relationships between crystal symmetry, molecular symmetry and features of chemical interest are maintained and reinforced. The theoretical aspects of bonding and symmetry are also well represented, as are symmetry-dependent physical properties and the applications of group theory. The comprehensive coverage will make this book a valuable resource for a broad range of readers.

  4. Universe symmetries

    International Nuclear Information System (INIS)

    Souriau, J.M.

    1984-01-01

    The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe [fr

  5. Ambiguities in the Association Between Symmetries and Conservation Laws in the Presence of Alternative Lagrangian Representations

    International Nuclear Information System (INIS)

    Amitava Choudhuri; Subrata Ghosh; Talukdar, B.

    2011-01-01

    We identify two alternative Lagrangian representations for the damped harmonic oscillator characterised by a frictional coefficient γ. The first one is explicitly time independent while the second one involves time parameter explicitly. With separate attention to both Lagrangians we make use of the Noether theorem to compute the variational symmetries and conservation laws in order to study how association between them changes as one goes from one representation to the other. In the case of time independent representation squeezing symmetry leads to conservation of angular momentum for γ = 0, while for the time-dependent Lagrangian the same conserved quantity results from rotational invariance. The Lie algebra (g) of the symmetry vectors that leaves the action corresponding to the time-independent Lagrangian invariant is semi-simple. On the other hand, g is only a simple Lie algebra for the action characterised by the time-dependent Lagrangian. (authors)

  6. Symmetry of quantum molecular dynamics

    International Nuclear Information System (INIS)

    Burenin, A.V.

    2002-01-01

    The paper reviews the current state-of-art in describing quantum molecular dynamics based on symmetry principles alone. This qualitative approach is of particular interest as the only method currently available for a broad and topical class of problems in the internal dynamics of molecules. Besides, a molecule is a physical system whose collective internal motions are geometrically structured, and its perturbation theory description requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed [ru

  7. Symmetry of quantum intramolecular dynamics

    International Nuclear Information System (INIS)

    Burenin, Alexander V

    2002-01-01

    The paper reviews the current progress in describing quantum intramolecular dynamics using merely symmetry principles as a basis. This closed qualitative approach is of particular interest because it is the only method currently available for a broad class of topical problems in the internal dynamics of molecules. Moreover, a molecule makes a physical system whose collective internal motions are geometrically structured, so that its description by perturbation methods requires a symmetry analysis of this structure. The nature of the geometrical symmetry groups crucial for the closed formulation of the qualitative approach is discussed. In particular, the point group of a molecule is of this type. (methodological notes)

  8. Symmetries and conservation laws in non-Hermitian field theories

    Science.gov (United States)

    Alexandre, Jean; Millington, Peter; Seynaeve, Dries

    2017-09-01

    Anti-Hermitian mass terms are considered, in addition to Hermitian ones, for P T -symmetric complex-scalar and fermionic field theories. In both cases, the Lagrangian can be written in a manifestly symmetric form in terms of the P T -conjugate variables, allowing for an unambiguous definition of the equations of motion. After discussing the resulting constraints on the consistency of the variational procedure, we show that the invariance of a non-Hermitian Lagrangian under a continuous symmetry transformation does not imply the existence of a corresponding conserved current. Conserved currents exist, but these are associated with transformations under which the Lagrangian is not invariant and which reflect the well-known interpretation of P T -symmetric theories in terms of systems with gain and loss. A formal understanding of this unusual feature of non-Hermitian theories requires a careful treatment of Noether's theorem, and we give specific examples for illustration.

  9. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  10. Discrete symmetries in the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Schieren, Roland

    2010-12-02

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z{sup R}{sub 4} symmetry is discovered which solves the {mu}-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z{sup R}{sub 4} is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z{sup R}{sub 4} symmetry and other desirable features. (orig.)

  11. Discrete symmetries in the MSSM

    International Nuclear Information System (INIS)

    Schieren, Roland

    2010-01-01

    The use of discrete symmetries, especially abelian ones, in physics beyond the standard model of particle physics is discussed. A method is developed how a general, abelian, discrete symmetry can be obtained via spontaneous symmetry breaking. In addition, anomalies are treated in the path integral approach with special attention to anomaly cancellation via the Green-Schwarz mechanism. All this is applied to the minimal supersymmetric standard model. A unique Z R 4 symmetry is discovered which solves the μ-problem as well as problems with proton decay and allows to embed the standard model gauge group into a simple group, i.e. the Z R 4 is compatible with grand unification. Also the flavor problem in the context of minimal flavor violation is addressed. Finally, a string theory model is presented which exhibits the mentioned Z R 4 symmetry and other desirable features. (orig.)

  12. Symmetry, phase modulation and nonlinear waves

    CERN Document Server

    Bridges, Thomas J

    2017-01-01

    Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.

  13. Symmetry-improved 2PI approach to the Goldstone-boson IR problem of the SM effective potential

    Directory of Open Access Journals (Sweden)

    Apostolos Pilaftsis

    2016-05-01

    Full Text Available The effective potential of the Standard Model (SM, from three loop order and higher, suffers from infrared (IR divergences arising from quantum effects due to massless would-be Goldstone bosons associated with the longitudinal polarizations of the W± and Z bosons. Such IR pathologies also hinder accurate evaluation of the two-loop threshold corrections to electroweak quantities, such as the vacuum expectation value of the Higgs field. However, these divergences are an artifact of perturbation theory, and therefore need to be consistently resummed in order to obtain an IR-safe effective potential. The so-called Two-Particle-Irreducible (2PI effective action provides a rigorous framework to consistently perform such resummations, without the need to resort to ad hoc subtractions or running into the risk of over-counting contributions. By considering the recently proposed symmetry-improved 2PI formalism, we address the problem of the Goldstone-boson IR divergences of the SM effective potential in the gaugeless limit of the theory. In the same limit, we evaluate the IR-safe symmetry-improved 2PI effective potential, after taking into account quantum loops of chiral fermions, as well as the renormalization of spurious custodially breaking effects triggered by fermionic Yukawa interactions. Finally, we compare our results with those obtained with other methods presented in the literature.

  14. Training symmetry of weight distribution after stroke: a randomized controlled pilot study comparing task-related reach, Bobath and feedback training approaches.

    Science.gov (United States)

    Mudie, M H; Winzeler-Mercay, U; Radwan, S; Lee, L

    2002-09-01

    To determine (1) the most effective of three treatment approaches to retrain seated weight distribution long-term after stroke and (2) whether improvements could be generalized to weight distribution in standing. Inpatient rehabilitation unit. Forty asymmetrical acute stroke subjects were randomly allocated to one of four groups in this pilot study. Changes in weight distribution were compared between the 10 subjects of each of three treatment groups (task-specific reach, Bobath, or Balance Performance Monitor [BPM] feedback training) and a no specific treatment control group. One week of measurement only was followed by two weeks of daily training sessions with the treatment to which the subject was randomly allocated. Measurements were performed using the BPM daily before treatment sessions, two weeks after cessation of treatment and 12 weeks post study. Weight distribution was calculated in terms of mean balance (percentage of total body weight) or the mean of 300 balance points over a 30-s data run. In the short term, the Bobath approach was the most effective treatment for retraining sitting symmetry after stroke (p = 0.004). Training with the BPM and no training were also significant (p = 0.038 and p = 0.035 respectively) and task-specific reach training failed to reach significance (p = 0.26). At 12 weeks post study 83% of the BPM training group, 38% of the task-specific reach group, 29% of the Bobath group and 0% of the untrained group were found to be distributing their weight to both sides. Some generalization of symmetry training in sitting to standing was noted in the BPM training group which appeared to persist long term. Results should be treated with caution due to the small group sizes. However, these preliminary findings suggest that it might be possible to restore postural symmetry in sitting in the early stages of rehabilitation with therapy that focuses on creating an awareness of body position.

  15. A novel approach for craniofacial symmetry evaluation: Using the midsagittal Reference line drawn from “Crista Gali” with NHP technique

    Directory of Open Access Journals (Sweden)

    Morteza Ordobazari

    2013-11-01

    Full Text Available Please cite this article as: Ordobazari M, Naqavi Al-Hosseini AA, Zafarmand H. A novel approach for craniofacial symmetry evaluation: Using the midsagittal Reference line drawn from “Crista Gali” with NHP technique. Novel Biomed 2013;1(2:48-53.Background and objective: The purpose of this study was the determination of midsagittal reference line (MSL for craniofacial asymmetry assessment by drawing a line from Crista gali parallel to the true vertical line in PA cephalometry, using Natural Head Position (NHP technique.Method and Materials: 60 Iranian subjects within the age range of 9-13 years old were selected for this prospective study. Patients referred for orthodontic treatment and ghad no supernumerary or missing teeth, no skeletal anomaly, or any history of orthodontic and jaw surgery with normal occlusion. Posteroanterior cephalometric radiographs (PA Ceph were taken of all subjects with NHP technique. The midsagittal line was also traced parallel to the hanging chain from Crista gali. True horizontal line (THL and true vertical line (TVL were also traced from Crista gali (Cg. Using Cartesian system based upon Cg point (0~0, the craniofacial symmetry was assessed with linear, angular and proportional measurements in PA cephalogam, related to TVL and THL lines, for 10 bilateral (R&L anatomical landmarks. The mean differences of the above measurements in left and right sides were analyzed by T- test.Results: The proportional ratios for all left and right measurements were not statistically significant. This was true for both vertical and horizontal distances. The significant level for MSL drawn from Cg as referred to ANS (0±0.255 and Me points (0.007±0.527 was 0.002 and 0.004, respectively.Conclusion: In posteroanterior cephalometry radiographs taken with NHP method, the MSL drawn from Crista gali is reproducible and reliable up to 96% of the times for facial symmetry diagnosis.

  16. Some symmetries in nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1981-09-01

    Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces

  17. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    International Nuclear Information System (INIS)

    Montesinos, M.; Flores, E.

    2006-01-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  18. The supercharge and superconformal symmetry for N=1 supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.; Nowling, S.R.

    2002-01-01

    The superspace Lagrangian formulation of N=1 supersymmetric quantum mechanics is presented. The general Lagrangian constructed out of chiral and antichiral supercoordinates containing up to two derivatives and with a canonically normalized kinetic energy term describes the motion of a nonrelativistic spin 1/2 particle with Lande g-factor 2 moving in two spatial dimensions under the influence of a static but spatially dependent magnetic field. Noether's theorem is derived for the general case and is used to construct superspace dependent charges whose lowest components give the superconformal generators. The supercoordinates of charges containing an R symmetry charge, the supersymmetry charges and the Hamiltonian are combined to form a supercharge supercoordinate. Superconformal Ward identities for the quantum effective action are derived from the conservation equations and the source of potential symmetry breaking terms are identified

  19. Electric Chern-Simons term, enlarged exotic Galilei symmetry and noncommutative plane

    International Nuclear Information System (INIS)

    Olmo, Mariano A. del; Plyushchay, Mikhail S.

    2006-01-01

    The extended exotic planar model for a charged particle is constructed. It includes a Chern-Simons-like term for a dynamical electric field, but produces usual equations of motion for the particle in background constant uniform electric and magnetic fields. The electric Chern-Simons term is responsible for the noncommutativity of the boost generators in the 10-dimensional enlarged exotic Galilei symmetry algebra of the extended system. The model admits two reduction schemes by the integrals of motion, one of which reproduces the usual formulation for the charged particle in external constant electric and magnetic fields with associated field-deformed Galilei symmetry, whose commuting boost generators are identified with the nonlocal in time Noether charges reduced on-shell. Another reduction scheme, in which electric field transmutes into the commuting space translation generators, extracts from the model a free particle on the noncommutative plane described by the twofold centrally extended Galilei group of the nonrelativistic anyons

  20. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  1. Geometrical approach to fluid models

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Schep, T.J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics

  2. Dynamical systems with first- and second-class constraints. II. Local-symmetry transformations

    International Nuclear Information System (INIS)

    Chitaia, N.P.; Gogilidze, S.A.; Surovtsev, Y.S.

    1997-01-01

    In the framework of the generalized Hamiltonian formalism by Dirac, local symmetries of dynamical systems with first- and second-class constraints are investigated. The method of constructing the generator of local-symmetry transformations is presented both for theories with an algebra of constraints of a special form (a majority of the physically interesting theories) and in the general case without restrictions on the algebra of constraints. It is proven that second-class constraints do not contribute to the transformation law of the local symmetry entirely stipulated by all the first-class constraints. A mechanism of the occurrence of higher derivatives of coordinates and group parameters in the symmetry transformation law in Noether close-quote s second theorem is elucidated. In the latter case it is shown that the obtained transformations of symmetry are canonical in the extended (by Ostrogradsky) phase space. It is thereby shown that in the general case the degeneracy of theories with first- and second-class constraints is due to their invariance under local-symmetry transformations. copyright 1997 The American Physical Society

  3. Mixed-Valence Molecular Unit for Quantum Cellular Automata: Beyond the Born-Oppenheimer Paradigm through the Symmetry-Assisted Vibronic Approach.

    Science.gov (United States)

    Clemente-Juan, Juan Modesto; Palii, Andrew; Coronado, Eugenio; Tsukerblat, Boris

    2016-08-09

    In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes of the electron transfer optical absorption bands and quantitative analysis of the main parameters of tetrameric quantum cells. Here, we go beyond the Born-Oppenheimer paradigm and present a solution of the quantum-mechanical pseudo Jahn-Teller (JT) vibronic problem in bielectronic MV species (exemplified by the tetra-ruthenium complexes) based on the recently developed symmetry-assisted approach.3,4 The mathematical approach to the vibronic eigenproblem takes into consideration the point symmetry basis, and therefore, the total matrix of the JT Hamiltonian is blocked to the maximum extent. The submatrices correspond to the irreducible representations (irreps) of the point group. With this tool, we also extend the theory of the mQCA cell beyond the limit of prevailing Coulomb repulsion in the electronic pair (adopted in ref 2), and therefore, the general pseudo-JT problems for spin-singlet ((1)B1g, 2(1)A1g, (1)B2g, (1)Eu) ⊗ (b1g + eu) and spin-triplet states ((3)A2g, (3)B1g, 2(3)Eu) ⊗ (b1g + eu) in a square-planar bielectronic system are solved. The obtained symmetry-adapted electron-vibrational functions are employed for the calculation of the profiles (shape functions) of the charge transfer absorption bands in the tetrameric MV complexes and for the discussion of the

  4. Symmetries and nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs

  5. The symmetry of man.

    Science.gov (United States)

    Ermolenko, Alexander E; Perepada, Elena A

    2007-01-01

    The paper contains a description of basic regularities in the manifestation of symmetry of human structural organization and its ontogenetic and phylogenetic development. A concept of macrobiocrystalloid with inherent complex symmetry is proposed for the description of the human organism in its integrity. The symmetry can be characterized as two-plane radial (quadrilateral), where the planar symmetry is predominant while the layout of organs of radial symmetry is subordinated to it. Out of the two planes of symmetry (sagittal and horizontal), the sagittal plane is predominant. The symmetry of the chromosome, of the embrio at the early stages of cell cleavage as well as of some organs and systems in their phylogenetic development is described. An hypothesis is postulated that the two-plane symmetry is formed by two mechanisms: a) the impact of morphogenetic fields of the whole crystalloid organism during embriogenesis and, b) genetic mechanisms of the development of chromosomes having two-plane symmetry.

  6. Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry

    Science.gov (United States)

    Moretti, Valter; Oppio, Marco

    As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda-Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the

  7. From symmetries to number theory

    International Nuclear Information System (INIS)

    Tempesta, P.

    2009-01-01

    It is shown that the finite-operator calculus provides a simple formalism useful for constructing symmetry-preserving discretizations of quantum-mechanical integrable models. A related algebraic approach can also be used to define a class of Appell polynomials and of L series.

  8. The Noether-Lefschetz problem and gauge-group-resolved landscapes: F-theory on K3 × K3 as a test case

    Energy Technology Data Exchange (ETDEWEB)

    Braun, A.P. [Department of Mathematics, King’s College,London WC2R 2LS (United Kingdom); Kimura, Y. [Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Watari, T. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo,Kashiwano-ha 5-1-5, 277-8583 (Japan)

    2014-04-07

    Four-form flux in F-theory compactifications not only stabilizes moduli, but gives rise to ensembles of string vacua, providing a scientific basis for a stringy notion of naturalness. Of particular interest in this context is the ability to keep track of algebraic information (such as the gauge group) associated with individual vacua while dealing with statistics. In the present work, we aim to clarify conceptual issues and sharpen methods for this purpose, using compactification on K3×K3 as a test case. Our first approach exploits the connection between the stabilization of complex structure moduli and the Noether-Lefschetz problem. Compactification data for F-theory, however, involve not only a four-fold (with a given complex structure) Y{sub 4} and a flux on it, but also an elliptic fibration morphism Y{sub 4}⟶B{sub 3}, which makes this problem complicated. The heterotic-F-theory duality indicates that elliptic fibration morphisms should be identified modulo isomorphism. Based on this principle, we explain how to count F-theory vacua on K3×K3 while keeping the gauge group information. Mathematical results reviewed/developed in our companion paper are exploited heavily. With applications to more general four-folds in mind, we also clarify how to use Ashok-Denef-Douglas’ theory of the distribution of flux vacua in order to deal with statistics of sub-ensembles tagged by a given set of algebraic/topological information. As a side remark, we extend the heterotic/F-theory duality dictionary on flux quanta and elaborate on its connection to the semistable degeneration of a K3 surface.

  9. Symmetry Properties of Potentiometric Titration Curves.

    Science.gov (United States)

    Macca, Carlo; Bombi, G. Giorgio

    1983-01-01

    Demonstrates how the symmetry properties of titration curves can be efficiently and rigorously treated by means of a simple method, assisted by the use of logarithmic diagrams. Discusses the symmetry properties of several typical titration curves, comparing the graphical approach and an explicit mathematical treatment. (Author/JM)

  10. Origin of family symmetries

    International Nuclear Information System (INIS)

    Nilles, Hans Peter

    2012-04-01

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  11. Origin of family symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-04-15

    Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.

  12. Symmetry, asymmetry and dissymmetry

    International Nuclear Information System (INIS)

    Wackenheim, A.; Zollner, G.

    1987-01-01

    The authors discuss the concept of symmetry and defect of symmetry in radiological imaging and recall the definition of asymmetry (congenital or constitutional) and dissymmetry (acquired). They then describe a rule designed for the cognitive method of automatic evaluation of shape recognition data and propose the use of reversal symmetry [fr

  13. Symmetry and electromagnetism

    International Nuclear Information System (INIS)

    Fuentes Cobas, L.E.; Font Hernandez, R.

    1993-01-01

    An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs

  14. Weak C* Hopf Symmetry

    OpenAIRE

    Rehren, K. -H.

    1996-01-01

    Weak C* Hopf algebras can act as global symmetries in low-dimensional quantum field theories, when braid group statistics prevents group symmetries. Possibilities to construct field algebras with weak C* Hopf symmetry from a given theory of local observables are discussed.

  15. Gauge symmetry breaking

    International Nuclear Information System (INIS)

    Weinberg, S.

    1976-01-01

    The problem of how gauge symmetries of the weak interactions get broken is discussed. Some reasons why such a heirarchy of gauge symmetry breaking is needed, the reason gauge heirarchies do not seem to arise in theories of a given and related type, and the implications of theories with dynamical symmetry breaking, which can exhibit a gauge hierarchy

  16. Chiral symmetry on the lattice

    International Nuclear Information System (INIS)

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model

  17. Hidden Symmetries of Stochastic Models

    Directory of Open Access Journals (Sweden)

    Boyka Aneva

    2007-05-01

    Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.

  18. Symmetry in running.

    Science.gov (United States)

    Raibert, M H

    1986-03-14

    Symmetry plays a key role in simplifying the control of legged robots and in giving them the ability to run and balance. The symmetries studied describe motion of the body and legs in terms of even and odd functions of time. A legged system running with these symmetries travels with a fixed forward speed and a stable upright posture. The symmetries used for controlling legged robots may help in elucidating the legged behavior of animals. Measurements of running in the cat and human show that the feet and body sometimes move as predicted by the even and odd symmetry functions.

  19. Symmetries of Chimera States

    Science.gov (United States)

    Kemeth, Felix P.; Haugland, Sindre W.; Krischer, Katharina

    2018-05-01

    Symmetry broken states arise naturally in oscillatory networks. In this Letter, we investigate chaotic attractors in an ensemble of four mean-coupled Stuart-Landau oscillators with two oscillators being synchronized. We report that these states with partially broken symmetry, so-called chimera states, have different setwise symmetries in the incoherent oscillators, and in particular, some are and some are not invariant under a permutation symmetry on average. This allows for a classification of different chimera states in small networks. We conclude our report with a discussion of related states in spatially extended systems, which seem to inherit the symmetry properties of their counterparts in small networks.

  20. Parastatistics and gauge symmetries

    International Nuclear Information System (INIS)

    Govorkov, A.B.

    1982-01-01

    A possible formulation of gauge symmetries in the Green parafield theory is analysed and the SO(3) gauge symmetry is shown to be on a distinct status. The Greenberg paraquark hypothesis turns out to be not equivalent to the hypothesis of quark colour SU(3)sub(c) symmetry. Specific features of the gauge SO(3) symmetry are discussed, and a possible scheme where it is an exact subgroup of the broken SU(3)sub(c) symmetry is proposed. The direct formulation of the gauge principle for the parafield represented by quaternions is also discussed

  1. Discrete symmetries and their stringy origin

    International Nuclear Information System (INIS)

    Mayorga Pena, Damian Kaloni

    2014-05-01

    Discrete symmetries have proven to be very useful in controlling the phenomenology of theories beyond the standard model. In this work we explore how these symmetries emerge from string compactifications. Our approach is twofold: On the one hand, we consider the heterotic string on orbifold backgrounds. In this case the discrete symmetries can be derived from the orbifold conformal field theory, and it can be shown that they are in close relation with the orbifold geometry. We devote special attention to R-symmetries, which arise from discrete remnants of the Lorentz group in compact space. Further we discuss the physical implications of these symmetries both in the heterotic mini-landscape and in newly constructed models based on the Z 2 x Z 4 orbifold. In both cases we observe that the discrete symmetries favor particular locations in the orbifold where the particles of standard model should live. On the other hand we consider a class of F-theory models exhibiting an SU(5) gauge group, times additional U(1) symmetries. In this case, the smooth compactification background does not permit us to track the discrete symmetries as transparently as in orbifold models. Hence, we follow a different approach and search for discrete subgroups emerging after the U(1)s are broken. We observe that in this approach it is possible to obtain the standard Z 2 matter parity of the MSSM.

  2. Generalized global symmetries

    International Nuclear Information System (INIS)

    Gaiotto, Davide; Kapustin, Anton; Seiberg, Nathan; Willett, Brian

    2015-01-01

    A q-form global symmetry is a global symmetry for which the charged operators are of space-time dimension q; e.g. Wilson lines, surface defects, etc., and the charged excitations have q spatial dimensions; e.g. strings, membranes, etc. Many of the properties of ordinary global symmetries (q=0) apply here. They lead to Ward identities and hence to selection rules on amplitudes. Such global symmetries can be coupled to classical background fields and they can be gauged by summing over these classical fields. These generalized global symmetries can be spontaneously broken (either completely or to a subgroup). They can also have ’t Hooft anomalies, which prevent us from gauging them, but lead to ’t Hooft anomaly matching conditions. Such anomalies can also lead to anomaly inflow on various defects and exotic Symmetry Protected Topological phases. Our analysis of these symmetries gives a new unified perspective of many known phenomena and uncovers new results.

  3. Lie symmetry analysis, explicit solutions and conservation laws for the space-time fractional nonlinear evolution equations

    Science.gov (United States)

    Inc, Mustafa; Yusuf, Abdullahi; Aliyu, Aliyu Isa; Baleanu, Dumitru

    2018-04-01

    This paper studies the symmetry analysis, explicit solutions, convergence analysis, and conservation laws (Cls) for two different space-time fractional nonlinear evolution equations with Riemann-Liouville (RL) derivative. The governing equations are reduced to nonlinear ordinary differential equation (ODE) of fractional order using their Lie point symmetries. In the reduced equations, the derivative is in Erdelyi-Kober (EK) sense, power series technique is applied to derive an explicit solutions for the reduced fractional ODEs. The convergence of the obtained power series solutions is also presented. Moreover, the new conservation theorem and the generalization of the Noether operators are developed to construct the nonlocal Cls for the equations . Some interesting figures for the obtained explicit solutions are presented.

  4. Symmetry and symmetry breaking in quantum mechanics

    International Nuclear Information System (INIS)

    Chomaz, Philippe

    1998-01-01

    In the world of infinitely small, the world of atoms, nuclei and particles, the quantum mechanics enforces its laws. The discovery of Quanta, this unbelievable castration of the Possible in grains of matter and radiation, in discrete energy levels compels us of thinking the Single to comprehend the Universal. Quantum Numbers, magic Numbers and Numbers sign the wave. The matter is vibration. To describe the music of the world one needs keys, measures, notes, rules and partition: one needs quantum mechanics. The particles reduce themselves not in material points as the scholars of the past centuries thought, but they must be conceived throughout the space, in the accomplishment of shapes of volumes. When Einstein asked himself whether God plays dice, there was no doubt among its contemporaries that if He exists He is a geometer. In a Nature reduced to Geometry, the symmetries assume their role in servicing the Harmony. The symmetries allow ordering the energy levels to make them understandable. They impose there geometrical rules to the matter waves, giving them properties which sometimes astonish us. Hidden symmetries, internal symmetries and newly conceived symmetries have to be adopted subsequently to the observation of some order in this world of Quanta. In turn, the symmetries provide new observables which open new spaces of observation

  5. Holography without translational symmetry

    CERN Document Server

    Vegh, David

    2013-01-01

    We propose massive gravity as a holographic framework for describing a class of strongly interacting quantum field theories with broken translational symmetry. Bulk gravitons are assumed to have a Lorentz-breaking mass term as a substitute for spatial inhomogeneities. This breaks momentum-conservation in the boundary field theory. At finite chemical potential, the gravity duals are charged black holes in asymptotically anti-de Sitter spacetime. The conductivity in these systems generally exhibits a Drude peak that approaches a delta function in the massless gravity limit. Furthermore, the optical conductivity shows an emergent scaling law: $|\\sigma(\\omega)| \\approx {A \\over \\omega^{\\alpha}} + B$. This result is consistent with that found earlier by Horowitz, Santos, and Tong who introduced an explicit inhomogeneous lattice into the system.

  6. Symmetries in nature

    International Nuclear Information System (INIS)

    Mainzer, K.

    1988-01-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs

  7. Symmetries in nature

    Energy Technology Data Exchange (ETDEWEB)

    Mainzer, K

    1988-05-01

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs.

  8. Symmetries in nuclei

    International Nuclear Information System (INIS)

    Arima, A.

    2003-01-01

    (1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)

  9. The Symmetry of Multiferroics

    OpenAIRE

    Harris, A. Brooks

    2006-01-01

    This paper represents a detailed instruction manual for constructing the Landau expansion for magnetoelectric coupling in incommensurate ferroelectric magnets. The first step is to describe the magnetic ordering in terms of symmetry adapted coordinates which serve as complex valued magnetic order parameters whose transformation properties are displayed. In so doing we use the previously proposed technique to exploit inversion symmetry, since this symmetry had been universally overlooked. Havi...

  10. Approximate and renormgroup symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Nail H. [Blekinge Institute of Technology, Karlskrona (Sweden). Dept. of Mathematics Science; Kovalev, Vladimir F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Mathematical Modeling

    2009-07-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  11. Approximate and renormgroup symmetries

    International Nuclear Information System (INIS)

    Ibragimov, Nail H.; Kovalev, Vladimir F.

    2009-01-01

    ''Approximate and Renormgroup Symmetries'' deals with approximate transformation groups, symmetries of integro-differential equations and renormgroup symmetries. It includes a concise and self-contained introduction to basic concepts and methods of Lie group analysis, and provides an easy-to-follow introduction to the theory of approximate transformation groups and symmetries of integro-differential equations. The book is designed for specialists in nonlinear physics - mathematicians and non-mathematicians - interested in methods of applied group analysis for investigating nonlinear problems in physical science and engineering. (orig.)

  12. Quantum group and quantum symmetry

    International Nuclear Information System (INIS)

    Chang Zhe.

    1994-05-01

    This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs

  13. Symmetry of dipositronium Ps2

    International Nuclear Information System (INIS)

    Schrader, D.M.

    2004-01-01

    We work out the complete symmetry and spin problem for diatomic positronium Ps 2 for the ground and singly excited states of zero orbital angular momentum. The general form of the wave function for each state is given, with due regard to charge conjugation parity. Annihilation rates are discussed, and correlations to dissociation products are deduced. We indicate how the approach is extensible to larger aggregates: i.e., PsPs n , n>2

  14. Summary: Symmetries and spin

    International Nuclear Information System (INIS)

    Haxton, W.C.

    1988-01-01

    I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig

  15. Symmetry Festival 2016

    CERN Document Server

    2016-01-01

    The Symmetry Festival is a science and art program series, the most important periodic event (see its history) to bring together scientists, artists, educators and practitioners interested in symmetry (its roots, what is behind, applications, etc.), or in the consequences of its absence.

  16. Quantum symmetry for pedestrians

    International Nuclear Information System (INIS)

    Mack, G.; Schomerus, V.

    1992-03-01

    Symmetries more general than groups are possible in quantum therory. Quantum symmetries in the narrow sense are compatible with braid statistics. They are theoretically consistent much as supersymmetry is, and they could lead to degenerate multiplets of excitations with fractional spin in thin films. (orig.)

  17. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    IAS Admin

    At the Heart of Quantum Field Theory! Aritra Kr. ... principle of symmetry was not held as something very fundamental ... principle of local symmetry: the laws of physics are invariant un- .... Next, we would show that different coefficients of a state ...

  18. Charged fluids with symmetries

    Indian Academy of Sciences (India)

    It is possible to introduce many types of symmetries on the manifold which restrict the ... metric tensor field and generate constants of the motion along null geodesics .... In this analysis we have studied the role of symmetries for charged perfect ...

  19. Symmetry and Interculturality

    Science.gov (United States)

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  20. Symmetry and symmetry breaking in modern physics

    International Nuclear Information System (INIS)

    Barone, M; Theophilou, A K

    2008-01-01

    In modern physics, the theory of symmetry, i.e. group theory, is a basic tool for understanding and formulating the fundamental principles of Physics, like Relativity, Quantum Mechanics and Particle Physics. In this work we focus on the relation between Mathematics, Physics and objective reality

  1. A density functional reactivity theory (DFRT) based approach to understand the effect of symmetry of fullerenes on the kinetic, thermodynamic and structural aspects of carbon NanoBuds

    Energy Technology Data Exchange (ETDEWEB)

    Sarmah, Amrit; Roy, Ram Kinkar, E-mail: rkroy2@rediffmail.com

    2016-06-15

    Highlights: • Kinetic and thermodynamic aspects of the interaction between fullerene (C{sub 32}) and SWCNT using CDASE scheme. • Role of symmetry of fullerenes as well as the site of covalent attachment to the SWCNT in the structural stability of the NanoBud structure. • Increase in the fullerene symmetry improves the relative stability of hybrid NanoBud structure. - Abstract: In the present study, we have rationalized the effect of variation in the symmetry of relatively smaller fullerene (C{sub 32}) on the mode of its interaction with semi-conducting Single-Walled Carbon Nanotubes (SWCNTs) in the process of formation of stable hybrid carbon NanoBuds. Thermodynamic and kinetic parameters, along with the charge transfer values associated with the interaction between fullerene and SWCNTs, have been evaluated using an un-conventional and computationally cost–effective method based on density functional reactivity theory (DFRT). In addition to this, conventional DFT based studies are also performed to substantiate the growth of NanoBud structures formed by the interaction between fullerene and SWCNTs. The findings of the present study suggest that the kinetic, thermodynamic and structural aspects of hybrid carbon NanoBuds are significantly influenced by both the symmetry of C{sub 32} fullerene and its site of covalent attachment to the SWCNT.

  2. Appreciation of symmetry in natural product synthesis.

    Science.gov (United States)

    Bai, Wen-Ju; Wang, Xiqing

    2017-12-13

    Covering: 2012 to June 2017This review aims to show that complex natural product synthesis can be streamlined by taking advantage of molecular symmetry. Various strategies to construct molecules with either evident or hidden symmetry are illustrated. Insights regarding the origins and adjustments of these strategies as well as inspiring new methodological developments are deliberated. When a symmetric strategy fails, the corresponding reason is analysed and an alternative approach is briefly provided. Finally, the importance of exploiting molecular symmetry and future research directions are discussed.

  3. Symmetries and groups in particle physics; Symmetrien und Gruppen in der Teilchenphysik

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Stefan [Mainz Univ. (Germany)

    2016-07-01

    The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to

  4. Restoration of the local gauge symmetry and color confinement in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Hata, Hiroyuki

    1982-01-01

    Restoration of the local gauge symmetry and its connection to color confinement is investigated in non-Abelian gauge theories with covariant gauge fixing. We consider the Noether current J sub(μ,#betta#)sup(a) of the local gauge transformation with transformation functions #betta#sup(b)(x) linear in x sub(μ); #betta#sup(b)(x) = delta sup(ab)x sub(#betta#). This current is conserved only in the physical subspace of the state vector space and in perturbation theory contains a massless pole communicating to the gauge field. We define the local gauge symmetry restoration as the disappearance of this massless ''Goldstone'' pole from J sub(μ,#betta#)sup(a). The restoration condition is obtained and it coincides exactly with the color confinement criterion proposed earlier by Kugo and Ojima. Quarks and other colored particles are shown to be confined in the local gauge symmetry restored phase by using the Ward identities of J sub(μ,#betta#)sup(a). (author)

  5. Proposal for determining the energy content of gravitational waves by using approximate symmetries of differential equations

    International Nuclear Information System (INIS)

    Hussain, Ibrar; Qadir, Asghar; Mahomed, F. M.

    2009-01-01

    Since gravitational wave spacetimes are time-varying vacuum solutions of Einstein's field equations, there is no unambiguous means to define their energy content. However, Weber and Wheeler had demonstrated that they do impart energy to test particles. There have been various proposals to define the energy content, but they have not met with great success. Here we propose a definition using 'slightly broken' Noether symmetries. We check whether this definition is physically acceptable. The procedure adopted is to appeal to 'approximate symmetries' as defined in Lie analysis and use them in the limit of the exact symmetry holding. A problem is noted with the use of the proposal for plane-fronted gravitational waves. To attain a better understanding of the implications of this proposal we also use an artificially constructed time-varying nonvacuum metric and evaluate its Weyl and stress-energy tensors so as to obtain the gravitational and matter components separately and compare them with the energy content obtained by our proposal. The procedure is also used for cylindrical gravitational wave solutions. The usefulness of the definition is demonstrated by the fact that it leads to a result on whether gravitational waves suffer self-damping.

  6. Hidden gauge symmetry

    International Nuclear Information System (INIS)

    O'Raifeartaigh, L.

    1979-01-01

    This review describes the principles of hidden gauge symmetry and of its application to the fundamental interactions. The emphasis is on the structure of the theory rather than on the technical details and, in order to emphasise the structure, gauge symmetry and hidden symmetry are first treated as independent phenomena before being combined into a single (hidden gauge symmetric) theory. The main application of the theory is to the weak and electromagnetic interactions of the elementary particles, and although models are used for comparison with experiment and for illustration, emphasis is placed on those features of the application which are model-independent. (author)

  7. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2015-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry.   It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations.

  8. Generalized symmetry algebras

    International Nuclear Information System (INIS)

    Dragon, N.

    1979-01-01

    The possible use of trilinear algebras as symmetry algebras for para-Fermi fields is investigated. The shortcomings of the examples are argued to be a general feature of such generalized algebras. (author)

  9. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  10. Segmentation Using Symmetry Deviation

    DEFF Research Database (Denmark)

    Hollensen, Christian; Højgaard, L.; Specht, L.

    2011-01-01

    of the CT-scans into a single atlas. Afterwards the standard deviation of anatomical symmetry for the 20 normal patients was evaluated using non-rigid registration and registered onto the atlas to create an atlas for normal anatomical symmetry deviation. The same non-rigid registration was used on the 10...... hypopharyngeal cancer patients to find anatomical symmetry and evaluate it against the standard deviation of the normal patients to locate pathologic volumes. Combining the information with an absolute PET threshold of 3 Standard uptake value (SUV) a volume was automatically delineated. The overlap of automated....... The standard deviation of the anatomical symmetry, seen in figure for one patient along CT and PET, was extracted for normal patients and compared with the deviation from cancer patients giving a new way of determining cancer pathology location. Using the novel method an overlap concordance index...

  11. Statistical symmetries in physics

    International Nuclear Information System (INIS)

    Green, H.S.; Adelaide Univ., SA

    1994-01-01

    Every law of physics is invariant under some group of transformations and is therefore the expression of some type of symmetry. Symmetries are classified as geometrical, dynamical or statistical. At the most fundamental level, statistical symmetries are expressed in the field theories of the elementary particles. This paper traces some of the developments from the discovery of Bose statistics, one of the two fundamental symmetries of physics. A series of generalizations of Bose statistics is described. A supersymmetric generalization accommodates fermions as well as bosons, and further generalizations, including parastatistics, modular statistics and graded statistics, accommodate particles with properties such as 'colour'. A factorization of elements of ggl(n b ,n f ) can be used to define truncated boson operators. A general construction is given for q-deformed boson operators, and explicit constructions of the same type are given for various 'deformed' algebras. A summary is given of some of the applications and potential applications. 39 refs., 2 figs

  12. Wigner's Symmetry Representation Theorem

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 10. Wigner's Symmetry Representation Theorem: At the Heart of Quantum Field Theory! Aritra Kr Mukhopadhyay. General Article Volume 19 Issue 10 October 2014 pp 900-916 ...

  13. Dynamical symmetries for fermions

    International Nuclear Information System (INIS)

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E 2 ) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and ''exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs

  14. Dihedral flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Alexander Simon

    2009-06-10

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D{sub 4}, the other describing quarks and employing the symmetry D{sub 14}. In the latter model it is the quark mixing matrix element V{sub ud} - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  15. Dihedral flavor symmetries

    International Nuclear Information System (INIS)

    Blum, Alexander Simon

    2009-01-01

    This thesis deals with the possibility of describing the flavor sector of the Standard Model of Particle Physics (with neutrino masses), that is the fermion masses and mixing matrices, with a discrete, non-abelian flavor symmetry. In particular, mass independent textures are considered, where one or several of the mixing angles are determined by group theory alone and are independent of the fermion masses. To this end a systematic analysis of a large class of discrete symmetries, the dihedral groups, is analyzed. Mass independent textures originating from such symmetries are described and it is shown that such structures arise naturally from the minimization of scalar potentials, where the scalars are gauge singlet flavons transforming non-trivially only under the flavor group. Two models are constructed from this input, one describing leptons, based on the group D 4 , the other describing quarks and employing the symmetry D 14 . In the latter model it is the quark mixing matrix element V ud - basically the Cabibbo angle - which is at leading order predicted from group theory. Finally, discrete flavor groups are discussed as subgroups of a continuous gauge symmetry and it is shown that this implies that the original gauge symmetry is broken by fairly large representations. (orig.)

  16. Symbolic Detection of Permutation and Parity Symmetries of Evolution Equations

    KAUST Repository

    Alghamdi, Moataz

    2017-06-18

    We introduce a symbolic computational approach to detecting all permutation and parity symmetries in any general evolution equation, and to generating associated invariant polynomials, from given monomials, under the action of these symmetries. Traditionally, discrete point symmetries of differential equations are systemically found by solving complicated nonlinear systems of partial differential equations; in the presence of Lie symmetries, the process can be simplified further. Here, we show how to find parity- and permutation-type discrete symmetries purely based on algebraic calculations. Furthermore, we show that such symmetries always form groups, thereby allowing for the generation of new group-invariant conserved quantities from known conserved quantities. This work also contains an implementation of the said results in Mathematica. In addition, it includes, as a motivation for this work, an investigation of the connection between variational symmetries, described by local Lie groups, and conserved quantities in Hamiltonian systems.

  17. Chiral symmetry breaking in finite quantum electrodynamics

    International Nuclear Information System (INIS)

    Montero, J.C.; Pleitez, V.

    1987-01-01

    The dynamical breakdown of chiral symmetry in a finite Abelian gauge theory using a variational approach for the effective potential for composite operators is discussed. It is shown that, at least in a variational approach, the fermion either remains massless or gets a dynamical mass for every non-zero coupling constant. (Author) [pt

  18. Symmetric energy-momentum tensor in Maxwell, Yang-Mills, and Proca theories obtained using only Noether's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Montesinos, M. [CINVESTAV-IPN, 07360 Mexico D.F. (Mexico); Flores, E. [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)]. E-mail: merced@fis.cinvestav.mx

    2006-07-01

    The symmetric and gauge-invariant energy-momentum tensors for source-free Maxwell and Yang-Mills theories are obtained by means of translations in spacetime via a systematic implementation of Noether's theorem. For the source-free neutral Proca field, the same procedure yields also the symmetric energy-momentum tensor. In all cases, the key point to get the right expressions for the energy-momentum tensors is the appropriate handling of their equations of motion and the Bianchi identities. It must be stressed that these results are obtained without using Belinfante's symmetrization techniques which are usually employed to this end. (Author)

  19. Strings, Branes and Symmetries

    International Nuclear Information System (INIS)

    Westerberg, A.

    1997-01-01

    Recent dramatic progress in the understanding of the non-perturbative structure of superstring theory shows that extended objects of various kinds, collectively referred to as p-branes, are an integral part of the theory. In this thesis, comprising an introductory text and seven appended research papers, we study various aspects of p-branes with relevance for superstring theory. The first part of the introductory text is a brief review of string theory focussing on the role of p-branes. In particular, we consider the so-called D-branes which currently are attracting a considerable amount of attention. The purpose of this part is mainly to put into context the results of paper 4, 5 and 6 concerning action functionals describing the low-energy dynamics of D-branes. The discussion of perturbative string theory given in this part of the introduction is also intended to provide some background to paper 2 which contains an application of the Reggeon-sewing approach to the construction of string vertices. The second part covers a rather different subject, namely higher-dimensional loop algebras and their cohomology, with the aim of facilitating the reading of papers 1, 3 and 7. The relation to p-branes is to be found in paper 1 where we introduce a certain higher-dimensional generalization of the loop algebra and discuss its potential applicability as a symmetry algebra for p-branes. Papers 3 and 7 are mathematically oriented out-growths of this paper addressing the issue of realizing algebras of this kind, known in physics as current algebras, in terms of pseudo differential operators (PSDOs). The main result of paper 3 is a proof of the equivalence between certain Lie-algebra cocycles on the space of second-quantizable PSDOs

  20. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries

    CERN Document Server

    Amelino-Camelia, G

    2002-01-01

    Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...

  1. Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.

    Science.gov (United States)

    Adrianov, A V; Malakhov, V V

    2001-02-01

    Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment. Copyright 2001 Wiley-Liss, Inc.

  2. Bilateral symmetry analysis of breast MRI

    International Nuclear Information System (INIS)

    Alterson, Robert; Plewes, Donald B

    2003-01-01

    Mammographic interpretation often uses symmetry between left and right breasts to indicate the site of potential tumour masses. This approach has not been applied to breast images obtained from MRI. We present an automatic technique for breast symmetry detection based on feature extraction techniques which does not require any efforts to co-register breast MRI data. The approach applies computer-vision techniques to detect natural biological symmetries in breast MR scans based on three objective measures of similarity: multiresolution non-orthogonal wavelet representation, three-dimensional intensity distributions and co-occurrence matrices. Statistical distributions that are invariant to feature localization are computed for each of the extracted image features. These distributions are later compared against each other to account for perceptual similarity. Studies based on 51 normal MRI scans of randomly selected patients showed that the sensitivity of symmetry detection rate approached 94%. The symmetry analysis procedure presented in this paper can be applied as an aid in detecting breast tissue changes arising from disease

  3. Dynamical symmetries of the shell model

    International Nuclear Information System (INIS)

    Van Isacker, P.

    2000-01-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  4. Toward Measuring Network Aesthetics Based on Symmetry

    Directory of Open Access Journals (Sweden)

    Zengqiang Chen

    2017-05-01

    Full Text Available In this exploratory paper, we discuss quantitative graph-theoretical measures of network aesthetics. Related work in this area has typically focused on geometrical features (e.g., line crossings or edge bendiness of drawings or visual representations of graphs which purportedly affect an observer’s perception. Here we take a very different approach, abandoning reliance on geometrical properties, and apply information-theoretic measures to abstract graphs and networks directly (rather than to their visual representaions as a means of capturing classical appreciation of structural symmetry. Examples are used solely to motivate the approach to measurement, and to elucidate our symmetry-based mathematical theory of network aesthetics.

  5. Discrete Symmetries and Models of Flavour Mixing

    International Nuclear Information System (INIS)

    King, Stephen F

    2015-01-01

    In this talk we shall give an overview of the role of discrete symmetries, including both CP and family symmetry, in constructing unified models of quark and lepton (including especially neutrino) masses and mixing. Various different approaches to model building will be described, denoted as direct, semi-direct and indirect, and the pros and cons of each approach discussed. Particular examples based on Δ(6n 2 ) will be discussed and an A to Z of Flavour with Pati-Salam will be presented. (paper)

  6. Rigidity and symmetry

    CERN Document Server

    Weiss, Asia; Whiteley, Walter

    2014-01-01

    This book contains recent contributions to the fields of rigidity and symmetry with two primary focuses: to present the mathematically rigorous treatment of rigidity of structures, and to explore the interaction of geometry, algebra, and combinatorics. Overall, the book shows how researchers from diverse backgrounds explore connections among the various discrete structures with symmetry as the unifying theme.  Contributions present recent trends and advances in discrete geometry, particularly in the theory of polytopes. The rapid development of abstract polytope theory has resulted in a rich theory featuring an attractive interplay of methods and tools from discrete geometry, group theory, classical geometry, hyperbolic geometry and topology.  The volume will also be a valuable source as an introduction to the ideas of both combinatorial and geometric rigidity theory and its applications, incorporating the surprising impact of symmetry. It will appeal to students at both the advanced undergraduate and gradu...

  7. Physics from symmetry

    CERN Document Server

    Schwichtenberg, Jakob

    2018-01-01

    This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations. .

  8. BOOK REVIEW: Symmetry Breaking

    Science.gov (United States)

    Ryder, L. H.

    2005-11-01

    One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would

  9. Symmetry, structure, and spacetime

    CERN Document Server

    Rickles, Dean

    2007-01-01

    In this book Rickles considers several interpretative difficulties raised by gauge-type symmetries (those that correspond to no change in physical state). The ubiquity of such symmetries in modern physics renders them an urgent topic in philosophy of physics. Rickles focuses on spacetime physics, and in particular classical and quantum general relativity. Here the problems posed are at their most pathological, involving the apparent disappearance of spacetime! Rickles argues that both traditional ontological positions should be replaced by a structuralist account according to which relational

  10. Symmetry and inflation

    International Nuclear Information System (INIS)

    Chimento, Luis P.

    2002-01-01

    We find the group of symmetry transformations under which the Einstein equations for the spatially flat Friedmann-Robertson-Walker universe are form invariant. They relate the energy density and the pressure of the fluid to the expansion rate. We show that inflation can be obtained from nonaccelerated scenarios by a symmetry transformation. We derive the transformation rule for the spectrum and spectral index of the curvature perturbations. Finally, the group is extended to investigate inflation in the anisotropic Bianchi type-I spacetime and the brane-world cosmology

  11. Homological mirror symmetry and tropical geometry

    CERN Document Server

    Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia

    2014-01-01

    The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...

  12. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  13. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  14. Approximate symmetries of Hamiltonians

    Science.gov (United States)

    Chubb, Christopher T.; Flammia, Steven T.

    2017-08-01

    We explore the relationship between approximate symmetries of a gapped Hamiltonian and the structure of its ground space. We start by considering approximate symmetry operators, defined as unitary operators whose commutators with the Hamiltonian have norms that are sufficiently small. We show that when approximate symmetry operators can be restricted to the ground space while approximately preserving certain mutual commutation relations. We generalize the Stone-von Neumann theorem to matrices that approximately satisfy the canonical (Heisenberg-Weyl-type) commutation relations and use this to show that approximate symmetry operators can certify the degeneracy of the ground space even though they only approximately form a group. Importantly, the notions of "approximate" and "small" are all independent of the dimension of the ambient Hilbert space and depend only on the degeneracy in the ground space. Our analysis additionally holds for any gapped band of sufficiently small width in the excited spectrum of the Hamiltonian, and we discuss applications of these ideas to topological quantum phases of matter and topological quantum error correcting codes. Finally, in our analysis, we also provide an exponential improvement upon bounds concerning the existence of shared approximate eigenvectors of approximately commuting operators under an added normality constraint, which may be of independent interest.

  15. Molecular symmetry and spectroscopy

    CERN Document Server

    Bunker, Philip; Jensen, Per

    2006-01-01

    The first edition, by P.R. Bunker, published in 1979, remains the sole textbook that explains the use of the molecular symmetry group in understanding high resolution molecular spectra. Since 1979 there has been considerable progress in the field and a second edition is required; the original author has been joined in its writing by Per Jensen. The Material of the first edition has been reorganized and much has been added. The molecular symmetry group is now introduced early on, and the explanation of how to determine nuclear spin statistical weights has been consolidated in one chapter, after groups, symmetry groups, character tables and the Hamiltonian have been introduced. A description of the symmetry in the three-dimensional rotation group K(spatial), irreducible spherical tensor operators, and vector coupling coefficients is now included. The chapters on energy levels and selection rules contain a great deal of material that was not in the first edition (much of it was undiscovered in 1979), concerning ...

  16. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    Koch, V.

    1996-01-01

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  17. The politics of symmetry

    NARCIS (Netherlands)

    Pels, D.L.

    While symmetry and impartiality have become ruling principles in S&TS, defining its core ideal of a 'value-free relativism', their philosophical anchorage has attracted much less discussion than the issue or:how far their jurisdiction can be extended or generalized. This paper seeks to argue that

  18. Groups and Symmetry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 10. Groups and Symmetry: A Guide to Discovering Mathematics. Geetha Venkataraman. Book Review Volume 4 Issue 10 October 1999 pp 91-92. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Aspects of W∞ symmetry

    International Nuclear Information System (INIS)

    Sezgin, E.

    1991-08-01

    We review the structure of W ∞ algebras, their super and topological extensions, and their contractions down to (super) w ∞ . Emphasis is put on the field theoretic realizations of these algebras. We also review the structure of w ∞ and W ∞ gravities and comment on various applications of W ∞ symmetry. (author). 42 refs

  20. Non-Noetherian symmetries

    International Nuclear Information System (INIS)

    Hojman, Sergio A.

    1996-01-01

    The purpose of these lectures is to present some of the ways in which non-Noetherian symmetries are used in contemporary mathematical physics. These include, among others, obtaining conservation laws for dynamical systems, solving non-linear problems, getting alternative Lagrangians for systems of differential equations and constructing symplectic structures and Hamiltonians for dynamical systems starting from scratch

  1. Detection symmetry and asymmetry

    NARCIS (Netherlands)

    du Buf, J.M.H.

    1991-01-01

    Experiments were performed on the detection symmetry and asymmetry of incremental and decremental disks, as a function of both disk diameter and duration. It was found that, for a background luminance of 300cd.m-2, thresholds of dynamic (briefly presented) foveal disks are symmetrical for all

  2. From symmetries to dynamics

    International Nuclear Information System (INIS)

    Stern, J.

    2000-01-01

    The problem of a uniform description of symmetries, their dynamic disturbing and the structure of the vacuum is discussed. The role which problems of this kind played in searching for and understanding the Standard Model of elementary particles from the 1960s till now is also highlighted. (Z.J.)

  3. Fields, symmetries, and quarks

    International Nuclear Information System (INIS)

    Mosel, U.

    1989-01-01

    'Fields, symmetries, and quarks' covers elements of quantum field theory, symmetries, gauge field theories and phenomenological descriptions of hadrons, with special emphasis on topics relevant to nuclear physics. It is aimed at nuclear physicists in general and at scientists who need a working knowledge of field theory, symmetry principles of elementary particles and their interactions and the quark structure of hadrons. The book starts out with an elementary introduction into classical field theory and its quantization. As gauge field theories require a working knowledge of global symmetries in field theories this topic is then discussed in detail. The following part is concerned with the general structure of gauge field theories and contains a thorough discussion of the still less widely known features of Non-Abelian gauge field theories. Quantum Chromodynamics (QCD), which is important for the understanding of hadronic matter, is discussed in the next section together with the quark compositions of hadrons. The last two chapters give a detailed discussion of phenomenological bag-models. The MIT bag is discussed, so that all theoretical calculations can be followed step by step. Since in all other bag-models the calculational methods and steps are essentially identical, this chapter should enable the reader to actually perform such calculations unaided. A last chapter finally discusses the topological bag-models which have become quite popular over the last few years. (orig.)

  4. Vertex algebras and mirror symmetry

    International Nuclear Information System (INIS)

    Borisov, L.A.

    2001-01-01

    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)

  5. Symmetry of priapulids (Priapulida). 1. Symmetry of adults.

    Science.gov (United States)

    Adrianov, A V; Malakhov, V V

    2001-02-01

    Priapulids possess a radial symmetry that is remarkably reflected in both external morphology and internal anatomy. It results in the appearance of 25-radial (a number divisible by five) symmetry summarized as a combination of nonaradial, octaradial, and octaradial (9+8+8) symmetries of scalids. The radial symmetry is a secondary appearance considered as an evolutionary adaptation to a lifestyle within the three-dimensional environment of bottom sediment. The eight anteriormost, or primary, scalids retain their particular position because of their innervation directly from the circumpharyngeal brain. As a result of a combination of the octaradial symmetry of primary scalids, pentaradial symmetry of teeth, and the 25-radial symmetry of scalids, the initial bilateral symmetry remains characterized by the single sagittal plane. Copyright 2001 Wiley-Liss, Inc.

  6. BMS type symmetries at null-infinity and near horizon of non-extremal black holes

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R.; Adami, H. [University of Kurdistan, Department of Science, Sanandaj (Iran, Islamic Republic of)

    2016-12-15

    In this paper we consider a generally covariant theory of gravity, and extend the generalized off-shell ADT current such that it becomes conserved for field dependent (asymptotically) Killing vector field. Then we define the extended off-shell ADT current and the extended off-shell ADT charge. Consequently, we define the conserved charge perturbation by integrating from the extended off-shell ADT charge over a spacelike codimension two surface. Eventually, we use the presented formalism to find the conserved charge perturbation of an asymptotically flat spacetime. The conserved charge perturbation we obtain is exactly matched with the result of Ref. (Barnich and Troessaert, 12:105 2011). These charges are as representations of the BMS4 symmetry algebra. Also,wefind that the near horizon conserved charges of a non-extremal black hole with extended symmetries are the Noether charges. For this case our result is also exactly matched with that of Ref. (Donnay et al., arXiv:1607.05703 [hep-th], 2016). (orig.)

  7. Magnetic superspace groups and symmetry constraints in incommensurate magnetic phases

    International Nuclear Information System (INIS)

    Perez-Mato, J M; Aroyo, M I; Ribeiro, J L; Petricek, V

    2012-01-01

    Superspace symmetry has been for many years the standard approach for the analysis of non-magnetic modulated crystals because of its robust and efficient treatment of the structural constraints present in incommensurate phases. For incommensurate magnetic phases, this generalized symmetry formalism can play a similar role. In this context we review from a practical viewpoint the superspace formalism particularized to magnetic incommensurate phases. We analyse in detail the relation between the description using superspace symmetry and the representation method. Important general rules on the symmetry of magnetic incommensurate modulations with a single propagation vector are derived. The power and efficiency of the method is illustrated with various examples, including some multiferroic materials. We show that the concept of superspace symmetry provides a simple, efficient and systematic way to characterize the symmetry and rationalize the structural and physical properties of incommensurate magnetic materials. This is especially relevant when the properties of incommensurate multiferroics are investigated. (topical review)

  8. Symmetries in physics and harmonics

    International Nuclear Information System (INIS)

    Kolk, D.

    2006-01-01

    In this book the symmetries of elementary particles are described in relation to the rules of harmonics in music. The selection rules are described in connections with harmonic intervals. Also symmetry breaking is considered in this framework. (HSI)

  9. Some aspects of fundamental symmetries and interactions

    NARCIS (Netherlands)

    Jungmann, KP; Grzonka, D; Czyzykiewicz, R; Oelert, W; Rozek, T; Winter, P

    2005-01-01

    The known fundamental symmetries and interactions are well described by the Standard Model. Features of this powerful theory, which are described but not deeper explained, are addressed in a variety of speculative models. Experimental tests of the predictions in such approaches can be either through

  10. Quantum symmetries in particle interactions

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1983-01-01

    The concept of a quantum symmetry is introduced as a symmetry in the formulation of which quantum representations and specific quantum notions are used essentially. Three quantum symmetry principles are discussed: the principle of renormalizability (possibly super-renormalizability), the principle of local gauge symmetry, and the principle of supersymmetry. It is shown that these principles play a deterministic role in the development of quantum field theory. Historically their use has led to ever stronger restrictions on the interaction mechanism of quantum fields

  11. Symmetry and topology in evolution

    International Nuclear Information System (INIS)

    Lukacs, B.; Berczi, S.; Molnar, I.; Paal, G.

    1991-10-01

    This volume contains papers of an interdisciplinary symposium on evolution. The aim of this symposium, held in Budapest, Hungary, 28-29 May 1991, was to clear the role of symmetry and topology at different levels of the evolutionary processes. 21 papers were presented, their topics included evolution of the Universe, symmetry of elementary particles, asymmetry of the Earth, symmetry and asymmetry of biomolecules, symmetry and topology of lining objects, human asymmetry etc. (R.P.)

  12. Cosmic expansion from boson and fermion fields

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2011-01-01

    This paper consists in analyzing an action that describes boson and fermion fields minimally coupled to the gravity and a common matter field. The self-interaction potentials of the fields are not chosen a priori but from the Noether symmetry approach. The Noether forms of the potentials allow the boson field to play the role of dark energy and matter and the fermion field to behave as standard matter. The constant of motion and the cyclic variable associated with the Noether symmetry allow the complete integration of the field equations, whose solution produces a universe with alternated periods of accelerated and decelerated expansion.

  13. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  14. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  15. Symmetry energy in nuclear surface

    International Nuclear Information System (INIS)

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  16. Emergence of Symmetries from Entanglement

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Maximal Entanglement appears to be a key ingredient for the emergence of symmetries. We first illustrate this phenomenon using two examples: the emergence of conformal symmetry in condensed matter systems and  the relation of tensor networks to holography. We further present a Principle of Maximal Entanglement that seems to dictate to a large extend the structure of gauge symmetry.

  17. Deformations of spacetime and internal symmetries

    Directory of Open Access Journals (Sweden)

    Gresnigt Niels G.

    2017-01-01

    Full Text Available Algebraic deformations provide a systematic approach to generalizing the symmetries of a physical theory through the introduction of new fundamental constants. The applications of deformations of Lie algebras and Hopf algebras to both spacetime and internal symmetries are discussed. As a specific example we demonstrate how deforming the classical flavor group S U(3 to the quantum group S Uq(3 ≡ U q (su(3 (a Hopf algebra and taking into account electromagnetic mass splitting within isospin multiplets leads to new and exceptionally accurate baryon mass sum rules that agree perfectly with experimental data.

  18. Dark discrete gauge symmetries

    International Nuclear Information System (INIS)

    Batell, Brian

    2011-01-01

    We investigate scenarios in which dark matter is stabilized by an Abelian Z N discrete gauge symmetry. Models are surveyed according to symmetries and matter content. Multicomponent dark matter arises when N is not prime and Z N contains one or more subgroups. The dark sector interacts with the visible sector through the renormalizable kinetic mixing and Higgs portal operators, and we highlight the basic phenomenology in these scenarios. In particular, multiple species of dark matter can lead to an unconventional nuclear recoil spectrum in direct detection experiments, while the presence of new light states in the dark sector can dramatically affect the decays of the Higgs at the Tevatron and LHC, thus providing a window into the gauge origin of the stability of dark matter.

  19. Symmetries and microscopic physics

    International Nuclear Information System (INIS)

    Blaizot, J.P.

    1997-01-01

    This book is based on a course of lectures devoted to the applications of group theory to quantum physics. The purpose is to give students a precise idea of general principles involving the concept of symmetry and to present practical methods used to calculate physical properties derived from symmetries. The first chapter is an introduction to the main results of group theory, 2 chapters highlight principles and methods concerning geometrical transformations in the space of states, state degeneracy and perturbation theory. The last 4 chapters investigate the applications of these methods to atom physics, nuclear structure and elementary particles. A chapter is devoted to the atom of hydrogen and another to the isospin. Numerous exercises and problems, some with their corrections, are proposed. (A.C.)

  20. Asymmetry, Symmetry and Beauty

    Directory of Open Access Journals (Sweden)

    Abbe R. Kopra

    2010-07-01

    Full Text Available Asymmetry and symmetry coexist in natural and human processes.  The vital role of symmetry in art has been well demonstrated. This article highlights the complementary role of asymmetry. Further we show that the interaction of asymmetric action (recursion and symmetric opposition (sinusoidal waves are instrumental in generating creative features (relatively low entropy, temporal complexity, novelty (less recurrence in the data than in randomized copies and complex frequency composition. These features define Bios, a pattern found in musical compositions and in poetry, except for recurrence instead of novelty. Bios is a common pattern in many natural and human processes (quantum processes, the expansion of the universe, gravitational waves, cosmic microwave background radiation, DNA, physiological processes, animal and human populations, and economic time series. The reduction in entropy is significant, as it reveals creativity and contradicts the standard claim of unavoidable decay towards disorder. Artistic creations capture fundamental features of the world.

  1. Strong Electroweak Symmetry Breaking

    CERN Document Server

    Grinstein, Benjamin

    2011-01-01

    Models of spontaneous breaking of electroweak symmetry by a strong interaction do not have fine tuning/hierarchy problem. They are conceptually elegant and use the only mechanism of spontaneous breaking of a gauge symmetry that is known to occur in nature. The simplest model, minimal technicolor with extended technicolor interactions, is appealing because one can calculate by scaling up from QCD. But it is ruled out on many counts: inappropriately low quark and lepton masses (or excessive FCNC), bad electroweak data fits, light scalar and vector states, etc. However, nature may not choose the minimal model and then we are stuck: except possibly through lattice simulations, we are unable to compute and test the models. In the LHC era it therefore makes sense to abandon specific models (of strong EW breaking) and concentrate on generic features that may indicate discovery. The Technicolor Straw Man is not a model but a parametrized search strategy inspired by a remarkable generic feature of walking technicolor,...

  2. Symmetry rules. How science and nature are founded on symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, J.

    2008-07-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences. (orig.)

  3. Symmetry rules How science and nature are founded on symmetry

    CERN Document Server

    Rosen, Joe

    2008-01-01

    When we use science to describe and understand the world around us, we are in essence grasping nature through symmetry. In fact, modern theoretical physics suggests that symmetry is a, if not the, foundational principle of nature. Emphasizing the concepts, this book leads the reader coherently and comprehensively into the fertile field of symmetry and its applications. Among the most important applications considered are the fundamental forces of nature and the Universe. It is shown that the Universe cannot possess exact symmetry, which is a principle of fundamental significance. Curie's principle - which states that the symmetry of the effect is at least that of the cause - features prominently. An introduction to group theory, the mathematical language of symmetry, is included. This book will convince all interested readers of the importance of symmetry in science. Furthermore, it will serve as valuable background reading for all students in the physical sciences.

  4. Dual symmetry in gauge theories

    International Nuclear Information System (INIS)

    Koshkarov, A.L.

    1997-01-01

    Continuous dual symmetry in electrodynamics, Yang-Mills theory and gravitation is investigated. Dual invariant which leads to badly nonlinear motion equations is chosen as a Lagrangian of the pure classical dual nonlinear electrodynamics. In a natural manner some dual angle which is determined by the electromagnetic strengths at the point of the time-space appears in the model. Motion equations may well be interpreted as the equations of the standard Maxwell theory with source. Alternative interpretation is the quasi-Maxwell linear theory with magnetic charge. Analogous approach is possible in the Yang-Mills theory. In this case the dual-invariant non-Abelian theory motion equations possess the same instanton solutions as the conventional Yang-Mills equations have. An Abelian two-parameter dual group is found to exist in gravitation. Irreducible representations have been obtained: the curvature tensor was expanded into the sum of twice anti-self-dual and self-dual parts. Gravitational instantons are defined as (real )solutions to the usual duality equations. Central symmetry solutions to these equations are obtained. The twice anti-self-dual part of the curvature tensor may be used for introduction of new gravitational equations generalizing Einstein''s equations. However, the theory obtained reduces to the conformal-flat Nordstroem theory

  5. Symmetry and quantum mechanics

    CERN Document Server

    Corry, Scott

    2016-01-01

    This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.

  6. Gravitation, Symmetry and Undergraduates

    Science.gov (United States)

    Jorgensen, Jamie

    2001-04-01

    This talk will discuss "Project Petrov" Which is designed to investigate gravitational fields with symmetry. Project Petrov represents a collaboration involving physicists, mathematicians as well as graduate and undergraduate math and physics students. An overview of Project Petrov will be given, with an emphasis on students' contributions, including software to classify and generate Lie algebras, to classify isometry groups, and to compute the isometry group of a given metric.

  7. Symmetry breaking and chaos

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Ivanov, I.B.

    1999-01-01

    Connections between the symmetries of Hamiltonian systems in classical and quantum mechanics, on one hand, and their regularity or chaoticity, on the other hand, are considered. The quantum-chaoticity criterion that was proposed previously and which was borrowed from the theory of compound-nucleus resonances is used to analyze the quantum diamagnetic Kepler problem - that is, the motion of a spinless charged particle in a Coulomb and a uniform magnetic field

  8. Symmetry and statistics

    International Nuclear Information System (INIS)

    French, J.B.

    1974-01-01

    The concepts of statistical behavior and symmetry are presented from the point of view of many body spectroscopy. Remarks are made on methods for the evaluation of moments, particularly widths, for the purpose of giving a feeling for the types of mathematical structures encountered. Applications involving ground state energies, spectra, and level densities are discussed. The extent to which Hamiltonian eigenstates belong to irreducible representations is mentioned. (4 figures, 1 table) (U.S.)

  9. Symmetry in music

    Energy Technology Data Exchange (ETDEWEB)

    Herrero, O F, E-mail: o.f.herrero@hotmail.co [Conservatorio Superior de Musica ' Eduardo Martinez Torner' Corrada del Obispo s/n 33003 - Oviedo - Asturias (Spain)

    2010-06-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  10. Lie symmetries and superintegrability

    International Nuclear Information System (INIS)

    Nucci, M C; Post, S

    2012-01-01

    We show that a known superintegrable system in two-dimensional real Euclidean space (Post and Winternitz 2011 J. Phys. A: Math. Theor. 44 162001) can be transformed into a linear third-order equation: consequently we construct many autonomous integrals—polynomials up to order 18—for the same system. The reduction method and the connection between Lie symmetries and Jacobi last multiplier are used.

  11. Symmetry in music

    International Nuclear Information System (INIS)

    Herrero, O F

    2010-01-01

    Music and Physics are very close because of the symmetry that appears in music. A periodic wave is what music really is, and there is a field of Physics devoted to waves researching. The different musical scales are the base of all kind of music. This article tries to show how this musical scales are made, how the consonance is the base of many of them and how symmetric they are.

  12. Large lepton mixings from continuous symmetries

    International Nuclear Information System (INIS)

    Everett, Lisa; Ramond, Pierre

    2007-01-01

    Within the broad context of quark-lepton unification, we investigate the implications of broken continuous family symmetries which result from requiring that in the limit of exact symmetry, the Dirac mass matrices yield hierarchical masses for the quarks and charged leptons, but lead to degenerate light neutrino masses as a consequence of the seesaw mechanism, without requiring hierarchical right-handed neutrino mass terms. Quark mixing is then naturally small and proportional to the size of the perturbation, but lepton mixing is large as a result of degenerate perturbation theory, shifted from maximal mixing by the size of the perturbation. Within this approach, we study an illustrative two-family prototype model with an SO(2) family symmetry, and discuss extensions to three-family models

  13. Translational spacetime symmetries in gravitational theories

    International Nuclear Information System (INIS)

    Petti, R J

    2006-01-01

    How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry

  14. Translational spacetime symmetries in gravitational theories

    Energy Technology Data Exchange (ETDEWEB)

    Petti, R J [MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760 (United States)

    2006-02-07

    How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle and (3) using the affine connection and the zero section to define an 'associated solder form', whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however, it violates translational equivariance/gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry.

  15. Symmetry methods for option pricing

    Science.gov (United States)

    Davison, A. H.; Mamba, S.

    2017-06-01

    We obtain a solution of the Black-Scholes equation with a non-smooth boundary condition using symmetry methods. The Black-Scholes equation along with its boundary condition are first transformed into the one dimensional heat equation and an initial condition respectively. We then find an appropriate general symmetry generator of the heat equation using symmetries and the fundamental solution of the heat equation. The symmetry generator is chosen such that the boundary condition is left invariant; the symmetry can be used to solve the heat equation and hence the Black-Scholes equation.

  16. Fluctuations around classical solutions for gauge theories in Lagrangian and Hamiltonian approach

    International Nuclear Information System (INIS)

    Miskovic, Olivera; Pons, Josep M

    2006-01-01

    We analyse the dynamics of gauge theories and constrained systems in general under small perturbations around a classical solution in both Lagrangian and Hamiltonian formalisms. We prove that a fluctuations theory, described by a quadratic Lagrangian, has the same constraint structure and number of physical degrees of freedom as the original non-perturbed theory, assuming the non-degenerate solution has been chosen. We show that the number of Noether gauge symmetries is the same in both theories, but that the gauge algebra in the fluctuations theory becomes Abelianized. We also show that the fluctuations theory inherits all functionally independent rigid symmetries from the original theory and that these symmetries are generated by linear or quadratic generators according to whether the original symmetry is preserved by the background or is broken by it. We illustrate these results with examples

  17. Systematic model building with flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Plentinger, Florian

    2009-12-19

    The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, and {tau} {yields} e{gamma} which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and

  18. Systematic model building with flavor symmetries

    International Nuclear Information System (INIS)

    Plentinger, Florian

    2009-01-01

    The observation of neutrino masses and lepton mixing has highlighted the incompleteness of the Standard Model of particle physics. In conjunction with this discovery, new questions arise: why are the neutrino masses so small, which form has their mass hierarchy, why is the mixing in the quark and lepton sectors so different or what is the structure of the Higgs sector. In order to address these issues and to predict future experimental results, different approaches are considered. One particularly interesting possibility, are Grand Unified Theories such as SU(5) or SO(10). GUTs are vertical symmetries since they unify the SM particles into multiplets and usually predict new particles which can naturally explain the smallness of the neutrino masses via the seesaw mechanism. On the other hand, also horizontal symmetries, i.e., flavor symmetries, acting on the generation space of the SM particles, are promising. They can serve as an explanation for the quark and lepton mass hierarchies as well as for the different mixings in the quark and lepton sectors. In addition, flavor symmetries are significantly involved in the Higgs sector and predict certain forms of mass matrices. This high predictivity makes GUTs and flavor symmetries interesting for both, theorists and experimentalists. These extensions of the SM can be also combined with theories such as supersymmetry or extra dimensions. In addition, they usually have implications on the observed matter-antimatter asymmetry of the universe or can provide a dark matter candidate. In general, they also predict the lepton flavor violating rare decays μ → eγ, τ → μγ, and τ → eγ which are strongly bounded by experiments but might be observed in the future. In this thesis, we combine all of these approaches, i.e., GUTs, the seesaw mechanism and flavor symmetries. Moreover, our request is to develop and perform a systematic model building approach with flavor symmetries and to search for phenomenological

  19. Mirror symmetry II

    CERN Document Server

    Greene, Brian R

    1997-01-01

    Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.

  20. Inertial Symmetry Breaking

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Christopher T.

    2018-03-19

    We review and expand upon recent work demonstrating that Weyl invariant theories can be broken "inertially," which does not depend upon a potential. This can be understood in a general way by the "current algebra" of these theories, independently of specific Lagrangians. Maintaining the exact Weyl invariance in a renormalized quantum theory can be accomplished by renormalization conditions that refer back to the VEV's of fields in the action. We illustrate the computation of a Weyl invariant Coleman-Weinberg potential that breaks a U(1) symmetry together,with scale invariance.

  1. Leadership, power and symmetry

    DEFF Research Database (Denmark)

    Spaten, Ole Michael

    2016-01-01

    Research publications concerning managers who coach their own employees are barely visible despite its wide- spread use in enterprises (McCarthy & Milner, 2013; Gregory & Levy, 2011; Crabb, 2011). This article focuses on leadership, power and moments of symmetry in the coaching relationship...... regarding managers coaching their employees and it is asked; what contributes to coaching of high quality when one reflects on the power aspect as being immanent? Fourteen middle managers coached five of their employees, and all members of each party wrote down cues and experiences immediately after each...

  2. Groups and symmetry

    CERN Document Server

    Farmer, David W

    1995-01-01

    In most mathematics textbooks, the most exciting part of mathematics-the process of invention and discovery-is completely hidden from the reader. The aim of Groups and Symmetry is to change all that. By means of a series of carefully selected tasks, this book leads readers to discover some real mathematics. There are no formulas to memorize; no procedures to follow. The book is a guide: Its job is to start you in the right direction and to bring you back if you stray too far. Discovery is left to you. Suitable for a one-semester course at the beginning undergraduate level, there are no prerequ

  3. Geometry and symmetry

    CERN Document Server

    Yale, Paul B

    2012-01-01

    This book is an introduction to the geometry of Euclidean, affine, and projective spaces with special emphasis on the important groups of symmetries of these spaces. The two major objectives of the text are to introduce the main ideas of affine and projective spaces and to develop facility in handling transformations and groups of transformations. Since there are many good texts on affine and projective planes, the author has concentrated on the n-dimensional cases.Designed to be used in advanced undergraduate mathematics or physics courses, the book focuses on ""practical geometry,"" emphasi

  4. Generalising human demonstration data by identifying affordance symmetries in object interaction trajectories

    CSIR Research Space (South Africa)

    Claassens, J

    2011-09-01

    Full Text Available presents a formal description of a set of these symmetries, which are termed affordance symmetries, and a method to identify them in multiple demonstration recordings. The approach is robust to arbitrary motion before and after the symmetry artifact...

  5. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  6. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.

  7. Symmetry in Complex Networks

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2011-01-01

    Full Text Available In this paper, we analyze a few interrelated concepts about graphs, such as their degree, entropy, or their symmetry/asymmetry levels. These concepts prove useful in the study of different types of Systems, and particularly, in the analysis of Complex Networks. A System can be defined as any set of components functioning together as a whole. A systemic point of view allows us to isolate a part of the world, and so, we can focus on those aspects that interact more closely than others. Network Science analyzes the interconnections among diverse networks from different domains: physics, engineering, biology, semantics, and so on. Current developments in the quantitative analysis of Complex Networks, based on graph theory, have been rapidly translated to studies of brain network organization. The brain's systems have complex network features—such as the small-world topology, highly connected hubs and modularity. These networks are not random. The topology of many different networks shows striking similarities, such as the scale-free structure, with the degree distribution following a Power Law. How can very different systems have the same underlying topological features? Modeling and characterizing these networks, looking for their governing laws, are the current lines of research. So, we will dedicate this Special Issue paper to show measures of symmetry in Complex Networks, and highlight their close relation with measures of information and entropy.

  8. In search of symmetry lost

    CERN Multimedia

    Wilczek, Frank

    2004-01-01

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world (8 pages) Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  9. Trieste lectures on mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hori, K [Department of Physics and Department of Mathematics, University of Toronto, Toronto, Ontario (Canada)

    2003-08-15

    These are pedagogical lectures on mirror symmetry given at the Spring School in ICTP, Trieste, March 2002. The focus is placed on worldsheet descriptions of the physics related to mirror symmetry. We start with the introduction to general aspects of (2,2) supersymmetric field theories in 1 + 1 dimensions. We next move on to the study and applications of linear sigma model. Finally, we provide a proof of mirror symmetry in a class of models. (author)

  10. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  11. Neutrino masses and family symmetry

    International Nuclear Information System (INIS)

    Grinstein, B.; Preskill, J.; Wise, M.B.

    1985-01-01

    Neutrino masses in the 100 eV-1 MeV range are permitted if there is a spontaneously broken global family symmetry that allows the heavy neutrinos to decay by Goldstone boson emission with a cosmologically acceptable lifetime. The family symmetry may be either abelian or nonabelian; we present models illustrating both possibilities. If the family symmetry is nonabelian, then the decay tau -> μ + Goldstone boson or tau -> e + Goldstone may have an observable rate. (orig.)

  12. An introduction to Yangian symmetries

    International Nuclear Information System (INIS)

    Bernard, D.

    1992-01-01

    Some aspects of the quantum Yangians as symmetry algebras of two-dimensional quantum field theories are reviewed. They include two main issues: the first is the classical Heisenberg model, covering non-Abelian symmetries, generators of the symmetries and the semi-classical Yangians, an alternative presentation of the semi-classical Yangians, digression on Poisson-Lie groups. The second is the quantum Heisenberg chain, covering non-Abelian symmetries and the quantum Yangians, the transfer matrix and an alternative presentation of the Yangians, digression on the double Yangians. (K.A.) 15 refs

  13. Killing symmetries in neutron transport

    International Nuclear Information System (INIS)

    Lukacs, B.; Racz, A.

    1992-10-01

    Although inside the reactor zone there is no exact continuous spatial symmetry, in certain configurations neutron flux distribution is close to a symmetrical one. In such cases the symmetrical solution could provide a good starting point to determine the non-symmetrical power distribution. All possible symmetries are determined in the 3-dimensional Euclidean space, and the form of the transport equation is discussed in such a coordinate system which is adapted to the particular symmetry. Possible spontaneous symmetry breakings are pointed out. (author) 6 refs

  14. The conservation of orbital symmetry

    CERN Document Server

    Woodward, R B

    2013-01-01

    The Conservation of Orbital Symmetry examines the principle of conservation of orbital symmetry and its use. The central content of the principle was that reactions occur readily when there is congruence between orbital symmetry characteristics of reactants and products, and only with difficulty when that congruence does not obtain-or to put it more succinctly, orbital symmetry is conserved in concerted reaction. This principle is expected to endure, whatever the language in which it may be couched, or whatever greater precision may be developed in its application and extension. The book ope

  15. Leptogenesis and residual CP symmetry

    International Nuclear Information System (INIS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-01-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  16. Neutrino mass and mixing with discrete symmetry

    International Nuclear Information System (INIS)

    King, Stephen F; Luhn, Christoph

    2013-01-01

    This is a review paper about neutrino mass and mixing and flavour model building strategies based on discrete family symmetry. After a pedagogical introduction and overview of the whole of neutrino physics, we focus on the PMNS mixing matrix and the latest global fits following the Daya Bay and RENO experiments which measure the reactor angle. We then describe the simple bimaximal, tri-bimaximal and golden ratio patterns of lepton mixing and the deviations required for a non-zero reactor angle, with solar or atmospheric mixing sum rules resulting from charged lepton corrections or residual trimaximal mixing. The different types of see-saw mechanism are then reviewed as well as the sequential dominance mechanism. We then give a mini-review of finite group theory, which may be used as a discrete family symmetry broken by flavons either completely, or with different subgroups preserved in the neutrino and charged lepton sectors. These two approaches are then reviewed in detail in separate chapters including mechanisms for flavon vacuum alignment and different model building strategies that have been proposed to generate the reactor angle. We then briefly review grand unified theories (GUTs) and how they may be combined with discrete family symmetry to describe all quark and lepton masses and mixing. Finally, we discuss three model examples which combine an SU(5) GUT with the discrete family symmetries A 4 , S 4 and Δ(96). (review article)

  17. Quantum mechanics symmetries

    CERN Document Server

    Greiner, Walter

    1989-01-01

    "Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...

  18. Symmetries of cluster configurations

    International Nuclear Information System (INIS)

    Kramer, P.

    1975-01-01

    A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed

  19. Analytic progress on exact lattice chiral symmetry

    International Nuclear Information System (INIS)

    Kikukawa, Y.

    2002-01-01

    Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)

  20. CPT-symmetry studies with antihydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Lehnert, Ralf, E-mail: ralehner@indiana.edu [Indiana University Center for Spacetime Symmetries (United States)

    2012-05-15

    Various approaches to physics beyond the Standard Model can lead to small violations of CPT invariance. Since CPT symmetry can be measured with ultra-high precision, CPT tests offer an interesting phenomenological avenue to search for underlying physics. We discuss this reasoning in more detail, comment on the connection between CPT and Lorentz invariance, and review how CPT breaking would affect the (anti)hydrogen spectrum.

  1. Scale gauge symmetry and the standard model

    International Nuclear Information System (INIS)

    Sola, J.

    1990-01-01

    This paper speculates on a version of the standard model of the electroweak and strong interactions coupled to gravity and equipped with a spontaneously broken, anomalous, conformal gauge symmetry. The scalar sector is virtually absent in the minimal model but in the general case it shows up in the form of a nonlinear harmonic map Lagrangian. A Euclidean approach to the phenological constant problem is also addressed in this framework

  2. Protected Edge Modes without Symmetry

    Directory of Open Access Journals (Sweden)

    Michael Levin

    2013-05-01

    Full Text Available We discuss the question of when a gapped two-dimensional electron system without any symmetry has a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall conductance, K_{H}≠0, support such modes, here we show that robust modes can also occur when K_{H}=0—if the system has quasiparticles with fractional statistics. We show that some types of fractional statistics are compatible with a gapped edge, while others are fundamentally incompatible. More generally, we give a criterion for when an electron system with Abelian statistics and K_{H}=0 can support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of quasiparticle types M such that (1 all the quasiparticles in M have trivial mutual statistics, and (2 every quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We derive this criterion using three different approaches: a microscopic analysis of the edge, a general argument based on braiding statistics, and finally a conformal field theory approach that uses constraints from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

  3. Symmetry chains and adaptation coefficients

    International Nuclear Information System (INIS)

    Fritzer, H.P.; Gruber, B.

    1985-01-01

    Given a symmetry chain of physical significance it becomes necessary to obtain states which transform properly with respect to the symmetries of the chain. In this article we describe a method which permits us to calculate symmetry-adapted quantum states with relative ease. The coefficients for the symmetry-adapted linear combinations are obtained, in numerical form, in terms of the original states of the system and can thus be represented in the form of numerical tables. In addition, one also obtains automatically the matrix elements for the operators of the symmetry groups which are involved, and thus for any physical operator which can be expressed either as an element of the algebra or of the enveloping algebra. The method is well suited for computers once the physically relevant symmetry chain, or chains, have been defined. While the method to be described is generally applicable to any physical system for which semisimple Lie algebras play a role we choose here a familiar example in order to illustrate the method and to illuminate its simplicity. We choose the nuclear shell model for the case of two nucleons with orbital angular momentum l = 1. While the states of the entire shell transform like the smallest spin representation of SO(25) we restrict our attention to its subgroup SU(6) x SU(2)/sub T/. We determine the symmetry chains which lead to total angular momentum SU(2)/sub J/ and obtain the symmetry-adapted states for these chains

  4. Collective states and crossing symmetry

    International Nuclear Information System (INIS)

    Heiss, W.D.

    1977-01-01

    Collective states are usually described in simple terms but with the use of effective interactions which are supposed to contain more or less complicated contributions. The significance of crossing symmetry is discussed in this connection. Formal problems encountered in the attempts to implement crossing symmetry are pointed out

  5. Singlets of fermionic gauge symmetries

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Kallosh, R.E.; Rahmanov, M.A.

    1989-01-01

    We investigate under which conditions singlets of fermionic gauge symmetries which are "square roots of gravity" can exist. Their existence is non-trivial because there are no fields neutral in gravity. We tabulate several examples of singlets of global and local supersymmetry and κ-symmetry and

  6. ''Natural'' left-right symmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Pati, J.C.

    1975-01-01

    It is remarked that left-right symmetry of the starting gauge interactions is retained as a ''natural'' symmetry if it is broken in no way except possibly by mass terms in the Lagrangian. The implications of this result for the unification of coupling constants and for parity nonconservation at low and high energies are stressed

  7. Symmetry guide to ferroaxial transitions

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jiří; Přívratská, J.; Ondrejkovič, Petr; Janovec, Václav

    2016-01-01

    Roč. 116, č. 17 (2016), 1-6, č. článku 177602. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : symmetry * symmetry breaking * ferroaxial Transitions * property tensors * Aizu species Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016

  8. Integrability from point symmetries in a family of cosmological Horndeski Lagrangians

    International Nuclear Information System (INIS)

    Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos

    2017-01-01

    For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaitre-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa. (orig.)

  9. Integrability from point symmetries in a family of cosmological Horndeski Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, N.; Giacomini, Alex [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Paliathanasis, Andronikos [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Durban University of Technology, Institute of Systems Science, Durban (South Africa)

    2017-07-15

    For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaitre-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa. (orig.)

  10. Integrability from point symmetries in a family of cosmological Horndeski Lagrangians

    Science.gov (United States)

    Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos

    2017-07-01

    For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaître-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa.

  11. Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form

    Energy Technology Data Exchange (ETDEWEB)

    Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2015-10-15

    We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √(-g) (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless ''dust'' fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies. (orig.)

  12. Fifty years of symmetry operations

    International Nuclear Information System (INIS)

    Wigner, E.P.

    1978-01-01

    The author begins by discussing the application of symmetry principles in classical physics, which began 150 years ago. He then offers a few remarks on the essence of these principles and their role in the structure of physics; events, laws of nature, and invariance principles - kinematic and then dynamic - are treated. After this general discussion of the various types of symmetries, he considers the fundamental differences in their application in classical and quantum physics; the symmetry principles have greater effectiveness in quantum theory. After a few critical remarks of a general nature on the invariance principles, the author reviews the application of symmetry principles in various areas of quantum mechanics: atomic spectra, molecular physics, solid state physics, nuclear physics, and particle physics. He notes that the role of the different symmetries recognized to be approximate provide the most interesting conclusions

  13. Symmetry inheritance of scalar fields

    International Nuclear Information System (INIS)

    Ivica Smolić

    2015-01-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair. (paper)

  14. Hyperbolic-symmetry vector fields.

    Science.gov (United States)

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  15. Spontaneous emergence of gauge symmetry

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Brene, N.

    1987-05-01

    Within the framework of the random dynamics project we have demonstrated several mechanisms for breakdown of a preexisting exact gauge symmetry. This note concerns and reviews a mechanism which works essentially in the opposite direction, leading from am accidental approximate symmetry to an exact formal gauge symmetry. It was shown that although this symmetry is a priori only strictly formal, it can under certain circumstances lead to a physical consequence: the corresponding gauge boson becomes massless. In the chaotic models typical for our random dynamics project there is, of course, a strong competition between this mechanism and mechanisms which temd to destroy the symmetry and give mass(es) to the gauge boson(s). (orig.)

  16. Axions from chiral family symmetry

    International Nuclear Information System (INIS)

    Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.

    1985-01-01

    We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)

  17. Symmetries of Maldacena-Wilson loops from integrable string theory

    International Nuclear Information System (INIS)

    Muenkler, Hagen

    2017-01-01

    This thesis discusses hidden symmetries within N=4 supersymmetric Yang-Mills theory or its AdS/CFT dual, string theory in AdS 5 x S 5 . Here, we focus on the Maldacena-Wilson loop, which is a suitable object for this study since its vacuum expectation value is finite for smooth contours and the conjectured duality to scattering amplitudes provides a conceptual path to transfer its symmetries to other observables. Its strong-coupling description via minimal surfaces in AdS 5 allows to construct the symmetries from the integrability of the underlying classical string theory. This approach has been utilized before to derive a strong-coupling Yangian symmetry of the Maldacena-Wilson loop and describe equiareal deformations of minimal surfaces in AdS 3 . These two findings are connected and extended in the present thesis. In order to discuss the symmetries systematically, we first discuss the symmetry structure of the underlying string model. The discussion can be generalized to the discussion of generic symmetric space models. For these, we find that the symmetry which generates the equiareal deformations of minimal surfaces in AdS 3 has a central role in the symmetry structure of the model: It acts as a raising operator on the infinite tower of conserved charges, thus generating the spectral parameter, and can be employed to construct all symmetry variations from the global symmetry of the model. It is thus referred to as the master symmetry of symmetric space models. Additionally, the algebra of the symmetry variations and the conserved charges is worked out. For the concrete case of minimal surfaces in AdS 5 , we discuss the deformation of the four-cusp solution, which provides the dual description of the four-gluon scattering amplitude. This marks the first step toward transferring the master symmetry to scattering amplitudes. Moreover, we compute the master and Yangian symmetry variations of generic, smooth boundary curves. The results leads to a coupling

  18. Symmetries of Maldacena-Wilson loops from integrable string theory

    Energy Technology Data Exchange (ETDEWEB)

    Muenkler, Hagen

    2017-09-11

    This thesis discusses hidden symmetries within N=4 supersymmetric Yang-Mills theory or its AdS/CFT dual, string theory in AdS{sub 5} x S{sup 5}. Here, we focus on the Maldacena-Wilson loop, which is a suitable object for this study since its vacuum expectation value is finite for smooth contours and the conjectured duality to scattering amplitudes provides a conceptual path to transfer its symmetries to other observables. Its strong-coupling description via minimal surfaces in AdS{sub 5} allows to construct the symmetries from the integrability of the underlying classical string theory. This approach has been utilized before to derive a strong-coupling Yangian symmetry of the Maldacena-Wilson loop and describe equiareal deformations of minimal surfaces in AdS{sub 3}. These two findings are connected and extended in the present thesis. In order to discuss the symmetries systematically, we first discuss the symmetry structure of the underlying string model. The discussion can be generalized to the discussion of generic symmetric space models. For these, we find that the symmetry which generates the equiareal deformations of minimal surfaces in AdS{sub 3} has a central role in the symmetry structure of the model: It acts as a raising operator on the infinite tower of conserved charges, thus generating the spectral parameter, and can be employed to construct all symmetry variations from the global symmetry of the model. It is thus referred to as the master symmetry of symmetric space models. Additionally, the algebra of the symmetry variations and the conserved charges is worked out. For the concrete case of minimal surfaces in AdS{sub 5}, we discuss the deformation of the four-cusp solution, which provides the dual description of the four-gluon scattering amplitude. This marks the first step toward transferring the master symmetry to scattering amplitudes. Moreover, we compute the master and Yangian symmetry variations of generic, smooth boundary curves. The results

  19. Spontaneous Broken Local Conformal Symmetry and Dark Energy Candidate

    International Nuclear Information System (INIS)

    Liu, Lu-Xin

    2013-01-01

    The local conformal symmetry is spontaneously broken down to the Local Lorentz invariance symmetry through the approach of nonlinear realization. The resulting effective Lagrangian, in the unitary gauge, describes a cosmological vector field non-minimally coupling to the gravitational field. As a result of the Higgs mechanism, the vector field absorbs the dilaton and becomes massive, but with an independent energy scale. The Proca type vector field can be modelled as dark energy candidate. The possibility that it further triggers Lorentz symmetry violation is also pointed out

  20. The geometric role of symmetry breaking in gravity

    International Nuclear Information System (INIS)

    Wise, Derek K

    2012-01-01

    In gravity, breaking symmetry from a group G to a group H plays the role of describing geometry in relation to the geometry of the homogeneous space G/H. The deep reason for this is Cartan's 'method of equivalence,' giving, in particular, an exact correspondence between metrics and Cartan connections. I argue that broken symmetry is thus implicit in any gravity theory, for purely geometric reasons. As an application, I explain how this kind of thinking gives a new approach to Hamiltonian gravity in which an observer field spontaneously breaks Lorentz symmetry and gives a Cartan connection on space.

  1. Spin, mass, and symmetry

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1994-01-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics

  2. Symmetry breaking by bifundamentals

    Science.gov (United States)

    Schellekens, A. N.

    2018-03-01

    We derive all possible symmetry breaking patterns for all possible Higgs fields that can occur in intersecting brane models: bifundamentals and rank-2 tensors. This is a field-theoretic problem that was already partially solved in 1973 by Ling-Fong Li [1]. In that paper the solution was given for rank-2 tensors of orthogonal and unitary group, and U (N )×U (M ) and O (N )×O (M ) bifundamentals. We extend this first of all to symplectic groups. When formulated correctly, this turns out to be straightforward generalization of the previous results from real and complex numbers to quaternions. The extension to mixed bifundamentals is more challenging and interesting. The scalar potential has up to six real parameters. Its minima or saddle points are described by block-diagonal matrices built out of K blocks of size p ×q . Here p =q =1 for the solutions of Ling-Fong Li, and the number of possibilities for p ×q is equal to the number of real parameters in the potential, minus 1. The maximum block size is p ×q =2 ×4 . Different blocks cannot be combined, and the true minimum occurs for one choice of basic block, and for either K =1 or K maximal, depending on the parameter values.

  3. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  4. Spin, mass, and symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E. [Stanford Univ., CA (United States)

    1994-12-01

    When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.

  5. Symmetries in nuclear structure

    CERN Document Server

    Allaart, K; Dieperink, A

    1983-01-01

    The 1982 summer school on nuclear physics, organized by the Nuclear Physics Division of the Netherlands' Physical Society, was the fifth in a series that started in 1963. The number of students attending has always been about one hundred, coming from about thirty countries. The theme of this year's school was symmetry in nuclear physics. This book covers the material presented by the enthusi­ astic speakers, who were invited to lecture on this subject. We think they have succeeded in presenting us with clear and thorough introductory talks at graduate or higher level. The time schedule of the school and the location allowed the participants to make many informal contacts during many social activities, ranging from billiards to surf board sailing. We hope and expect that the combination of a relaxed atmosphere during part of the time and hard work during most of the time, has furthered the interest in, and understanding of, nuclear physics. The organization of the summer school was made possible by substantia...

  6. Quark diquark symmetry breaking

    International Nuclear Information System (INIS)

    Souza, M.M. de

    1980-01-01

    Assuming the baryons are made of quark-diquark pairs, the wave functions for the 126 allowed ground states are written. The quark creation and annihilations operators are generalized to describe the quark-diquark structure in terms of a parameter σ. Assuming that all quark-quark interactions are mediated by gluons transforming like an octet of vector mesons, the effective Hamiltonian and the baryon masses as constraint equations for the elements of the mass matrix is written. The symmetry is the SU(6) sub(quark)x SU(21) sub(diquark) broken by quark-quark interactions respectively invariant under U(6), U(2) sub(spin), U(3) and also interactions transforming like the eighth and the third components of SU(3). In the limit of no quark-diquark structure (σ = 0), the ground state masses is titted to within 1% of the experimental data, except for the Δ(1232), where the error is almost 2%. Expanding the decuplet mass equations in terms of σ and keeping terms only up to the second order, this error is reduced to 67%. (Author) [pt

  7. From symmetry violation to dynamics: The charm window

    International Nuclear Information System (INIS)

    Appel, J.A.

    1997-12-01

    C.S. Wu observed parity violation in the low energy process of nuclear decay. She was the first to observe this symmetry violation at any energy. Yet, her work taught us about the form and strengths of the couplings of the massive weak boson. Today, we use the same approach. We look for very much higher mass-scale interactions through symmetry violations in the decays of charm quark systems. These charm decays provide a unique window to new physics

  8. Physical symmetry groups and associated bundles in field theory

    International Nuclear Information System (INIS)

    Crumeyrolle, A.

    1986-01-01

    A previous paper, ''Some geometrical consequences of physical symmetries'' describes in some detail invariant submanifolds of the linear representation space C /sup 4m/ for the physical symmetry group : SU(2,2)xSU(m) and its subgroup PxSU(m). In this paper the author intends to give a geometric version using homogeneous spaces and a spinorial approach. Some concrete orbits by means of spinor structures considered in the modern scope and some plausible physical consequences are discussed

  9. Symmetries of dynamically equivalent theories

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, D.M.; Tyutin, I.V. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Lebedev Physics Institute, Moscow (Russian Federation)

    2006-03-15

    A natural and very important development of constrained system theory is a detail study of the relation between the constraint structure in the Hamiltonian formulation with specific features of the theory in the Lagrangian formulation, especially the relation between the constraint structure with the symmetries of the Lagrangian action. An important preliminary step in this direction is a strict demonstration, and this is the aim of the present article, that the symmetry structures of the Hamiltonian action and of the Lagrangian action are the same. This proved, it is sufficient to consider the symmetry structure of the Hamiltonian action. The latter problem is, in some sense, simpler because the Hamiltonian action is a first-order action. At the same time, the study of the symmetry of the Hamiltonian action naturally involves Hamiltonian constraints as basic objects. One can see that the Lagrangian and Hamiltonian actions are dynamically equivalent. This is why, in the present article, we consider from the very beginning a more general problem: how the symmetry structures of dynamically equivalent actions are related. First, we present some necessary notions and relations concerning infinitesimal symmetries in general, as well as a strict definition of dynamically equivalent actions. Finally, we demonstrate that there exists an isomorphism between classes of equivalent symmetries of dynamically equivalent actions. (author)

  10. Analysis of chiral symmetry breaking mechanism

    International Nuclear Information System (INIS)

    Guo, X. H.; Academia Sinica, Beijing; Huang, T.; CCAST

    1997-01-01

    The renormalization group invariant quark condensate μ is determined both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like δ (q) which is associated with the gluon condensate. The solutions of μ in these two equations are consistent. The authors also obtain the critical strong coupling constant α c above which chiral symmetry breaks in these two approaches. The nonperturbative kernel of the SD equation makes α c smaller and μ bigger. An intuitive picture of the condensation above α c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity they derive the equations for the nonperturbative quark propagator from the SD equation in the presence of the intermediate range force and find that the intermediate-range force is also responsible for dynamical chiral symmetry breaking

  11. Symmetry breaking during seeded growth of nanocrystals.

    Science.gov (United States)

    Xia, Xiaohu; Xia, Younan

    2012-11-14

    Currently, most of the reported noble-metal nanocrystals are limited to a high level of symmetry, as constrained by the inherent, face-centered cubic (fcc) lattice of these metals. In this paper, we report, for the first time, a facile and versatile approach (backed up by a clear mechanistic understanding) for breaking the symmetry of an fcc lattice and thus obtaining nanocrystals with highly unsymmetrical shapes. The key strategy is to induce and direct the growth of nanocrystal seeds into unsymmetrical modes by manipulating the reduction kinetics. With silver as an example, we demonstrated that the diversity of possible shapes taken by noble-metal nanocrystals could be greatly expanded by incorporating a series of new shapes drastically deviated from the fcc lattice. This work provides a new method to investigate shape-controlled synthesis of metal nanocrystal.

  12. Symmetry and asymmetry in mandelate racemase catalysis

    International Nuclear Information System (INIS)

    Whitman, C.P.; Hegeman, G.D.; Cleland, W.W.; Kenyon, G.L.

    1985-01-01

    Kinetic properties of mandelate racemase catalysis (Vmax, Km, deuterium isotope effects, and pH profiles) were all measured in both directions by the circular dichroic assay of Sharp. These results, along with those of studying interactions of mandelate racemase with resolved, enantiomeric competitive inhibitors [(R)- and (S)-alpha-phenylglycerates], indicate a high degree of symmetry in both binding and catalysis. Racemization of either enantiomer of mandelate in D 2 O did not show an overshoot region of molecular ellipticity in circular dichroic measurements upon approach to equilibrium. Both the absence of such an overshoot region and the high degree of kinetic symmetry are consistent with a one-base acceptor mechanism for mandelate racemase. On the other hand, results of irreversible inhibition with partially resolved, enantiomeric affinity labels [(R)- and (S)-alpha-phenylglycidates] reveal a ''functional asymmetry'' at the active site. Mechanistic proposals, consistent with these results, are presented

  13. PT-symmetry management in oligomer systems

    International Nuclear Information System (INIS)

    Horne, R L; Cuevas, J; Kevrekidis, P G; Whitaker, N; Abdullaev, F Kh; Frantzeskakis, D J

    2013-01-01

    We study the effects of management of the PT-symmetric part of the potential within the setting of Schrödinger dimer and trimer oligomer systems. This is done by rapidly modulating in time the gain/loss profile. This gives rise to a number of interesting properties of the system, which are explored at the level of an averaged equation approach. Remarkably, this rapid modulation provides for a controllable expansion of the region of exact PT-symmetry, depending on the strength and frequency of the imposed modulation. The resulting averaged models are analysed theoretically and their exact stationary solutions are translated into time-periodic solutions through the averaging reduction. These are, in turn, compared with the exact periodic solutions of the full non-autonomous PT-symmetry managed problem and very good agreement is found between the two. (paper)

  14. EXECUTIVE SUMMARY OF THE SNOWMASS 2001 WORKING GROUP : ELECTROWEAK SYMMETRY BREAKING

    International Nuclear Information System (INIS)

    CARENA, M.; GERDES, D.W.; HABER, H.E.; TURCOT, A.S.; ZERWAS, P.M.

    2001-01-01

    In this summary report of the 2001 Snowmass Electroweak Symmetry Breaking Working Group, the main candidates for theories of electroweak symmetry breaking are surveyed, and the criteria for distinguishing among the different approaches are discussed. The potential for observing electroweak symmetry breaking phenomena at the upgraded Tevatron and the LHC is described. We emphasize the importance of a high-luminosity e + e - linear collider for precision measurements to clarify the underlying electroweak symmetry breaking dynamics. Finally, we note the possible roles of the μ + μ - collider and VLHC for further elucidating the physics of electroweak symmetry breaking

  15. Astroparticle tests of Lorentz symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Jorge [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2016-07-01

    Lorentz symmetry is a cornerstone of modern physics. As the spacetime symmetry of special relativity, Lorentz invariance is a basic component of the standard model of particle physics and general relativity, which to date constitute our most successful descriptions of nature. Deviations from exact symmetry would radically change our view of the universe and current experiments allow us to test the validity of this assumption. In this talk, I describe effects of Lorentz violation in cosmic rays and gamma rays that can be studied in current observatories.

  16. Geometrical spin symmetry and spin

    International Nuclear Information System (INIS)

    Pestov, I. B.

    2011-01-01

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  17. Chemical potential and reaction electronic flux in symmetry controlled reactions.

    Science.gov (United States)

    Vogt-Geisse, Stefan; Toro-Labbé, Alejandro

    2016-07-15

    In symmetry controlled reactions, orbital degeneracies among orbitals of different symmetries can occur along a reaction coordinate. In such case Koopmans' theorem and the finite difference approximation provide a chemical potential profile with nondifferentiable points. This results in an ill-defined reaction electronic flux (REF) profile, since it is defined as the derivative of the chemical potential with respect to the reaction coordinate. To overcome this deficiency, we propose a new way for the calculation of the chemical potential based on a many orbital approach, suitable for reactions in which symmetry is preserved. This new approach gives rise to a new descriptor: symmetry adapted chemical potential (SA-CP), which is the chemical potential corresponding to a given irreducible representation of a symmetry group. A corresponding symmetry adapted reaction electronic flux (SA-REF) is also obtained. Using this approach smooth chemical potential profiles and well defined REFs are achieved. An application of SA-CP and SA-REF is presented by studying the Cs enol-keto tautomerization of thioformic acid. Two SA-REFs are obtained, JA'(ξ) and JA'' (ξ). It is found that the tautomerization proceeds via an in-plane delocalized 3-center 4-electron O-H-S hypervalent bond which is predicted to exist only in the transition state (TS) region. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Nuclear symmetries at low isospin

    International Nuclear Information System (INIS)

    Juillet, Olivier

    1999-01-01

    With the development of radioactive beams, an area of intense research in nuclear physics concerns the structure of exotic systems with roughly equal numbers of protons and neutrons. These nuclei might in fact develop a proton-neutron superfluidity whose importance compared to pairing correlations between like nucleons is currently investigated. The work presented in this thesis suggests to look at such a competition in an algebraic framework based on a Wigner SU(4) symmetry that combines the pseudo-spin and isospin degrees of freedom. After a detailed review of group theory in quantum mechanics, the validity of the pseudo-SU(4) classification is shown via a direct analysis of realistic shell model states. Its consequences on binding energies and β decay are also studied. Moreover, a simplified boson realisation with zero orbital angular momentum is used to find some physical features of N=Z nuclei such as the condensation of α-like structures or the destruction of isoscalar superfluid correlations by the spin-orbit potential. Finally, another bosonization scheme that includes quadrupole degrees of freedom (IBM-4 model) is tested for the first time by diagonalization of a full Hamiltonian deduced from a realistic shell model interaction. The quality of the results, especially for odd-odd nuclei, allows one to consider this boson approximation as an alternative to standard fermionic approaches for the collective structure of the exotic line N∼Z=28-50. (author) [fr

  19. Stochastic mechanism of symmetry breaking

    International Nuclear Information System (INIS)

    Baseyan, H.Z.

    1983-01-01

    A new symmetry breaking mechanism conditioned by presence of random fields in vacuum is proposed. Massive Yang-Mills fields finally arise, that may be interpreted as ''macroscopic'' manifestation of the ''microscopic'' Yang-Mills massless theory

  20. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander; Wand, Michael D.; Mitra, Niloy J.; Mewes, Daniel; Seidel, Hans Peter

    2011-01-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more

  1. Symmetries in the Lagrangean formalism

    International Nuclear Information System (INIS)

    Grigore, D.R.

    1987-09-01

    We generalize the analysis of Levy-Leblond for lagrangean systems with symmetry. We prove that this analysis goes through practically unchanged and after that we analyse in detail some examples.(author)

  2. Renormgroup symmetry for solution functionals

    International Nuclear Information System (INIS)

    Shirkov, D.V.; Kovalev, V.F.

    2004-01-01

    The paper contains generalization of the renormgroup algorithm for boundary value problems of mathematical physics and related concept of the renormgroup symmetry, formulated earlier by the authors with reference to models based on differential equations. These algorithm and symmetry are formulated now for models with nonlocal (integral) equations. We discuss in detail and illustrate by examples the applications of the generalized algorithm to models with nonlocal terms which appear as linear functionals of the solution. (author)

  3. Conformal symmetry in quantum finance

    International Nuclear Information System (INIS)

    Romero, Juan M; Lavana, Ulises; Miranda, Elio Martínez

    2014-01-01

    The quantum finance symmetries are studied. In order to do this, the one dimensional free non-relativistic particle and its symmetries are revisited and the particle mass is identified as the inverse of square of the volatility. Furthermore, using financial variables, a Schrödinger algebra representation is constructed. In addition, it is shown that the operators of this last representation are not hermitian and not conserved.

  4. Superfield approach to symmetry invariance in quantum ...

    Indian Academy of Sciences (India)

    The Nakanishi–Lautrup auxiliary field B is required to .... In the language of the physical terms, the above HC is the assertion that the electric and magnetic fields (that are gauge and BRST invariant quantities) should remain independent of .... the 4D Lagrangian density (2.1) can be captured in the language of the superfield.

  5. Symmetry of semi-reduced lattices.

    Science.gov (United States)

    Stróż, Kazimierz

    2015-05-01

    The main result of this work is extension of the famous characterization of Bravais lattices according to their metrical, algebraic and geometric properties onto a wide class of primitive lattices (including Buerger-reduced, nearly Buerger-reduced and a substantial part of Delaunay-reduced) related to low-restricted semi-reduced descriptions (s.r.d.'s). While the `geometric' operations in Bravais lattices map the basis vectors into themselves, the `arithmetic' operators in s.r.d. transform the basis vectors into cell vectors (basis vectors, face or space diagonals) and are represented by matrices from the set {\\bb V} of all 960 matrices with the determinant ±1 and elements {0, ±1} of the matrix powers. A lattice is in s.r.d. if the moduli of off-diagonal elements in both the metric tensors M and M(-1) are smaller than corresponding diagonal elements sharing the same column or row. Such lattices are split into 379 s.r.d. types relative to the arithmetic holohedries. Metrical criteria for each type do not need to be explicitly given but may be modelled as linear derivatives {\\bb M}(p,q,r), where {\\bb M} denotes the set of 39 highest-symmetry metric tensors, and p,q,r describe changes of appropriate interplanar distances. A sole filtering of {\\bb V} according to an experimental s.r.d. metric and subsequent geometric interpretation of the filtered matrices lead to mathematically stable and rich information on the Bravais-lattice symmetry and deviations from the exact symmetry. The emphasis on the crystallographic features of lattices was obtained by shifting the focus (i) from analysis of a lattice metric to analysis of symmetry matrices [Himes & Mighell (1987). Acta Cryst. A43, 375-384], (ii) from the isometric approach and invariant subspaces to the orthogonality concept {some ideas in Le Page [J. Appl. Cryst. (1982), 15, 255-259]} and splitting indices [Stróż (2011). Acta Cryst. A67, 421-429] and (iii) from fixed cell transformations to transformations

  6. Geometry of Majorana neutrino and new symmetries

    CERN Document Server

    Volkov, G G

    2006-01-01

    Experimental observation of Majorana fermion matter gives a new impetus to the understanding of the Lorentz symmetry and its extension, the geometrical properties of the ambient space-time structure, matter--antimatter symmetry and some new ways to understand the baryo-genesis problem in cosmology. Based on the primordial Majorana fermion matter assumption, we discuss a possibility to solve the baryo-genesis problem through the the Majorana-Diraco genesis in which we have a chance to understand creation of Q(em) charge and its conservation in our D=1+3 Universe after the Big Bang. In the Majorana-Diraco genesis approach there appears a possibility to check the proton and electron non-stability on the very low energy scale. In particle physics and in our space-time geometry, the Majorana nature of the neutrino can be related to new types of symmetries which are lying beyond the binary Cartan-Killing-Lie algebras/superalgebras. This can just support a conjecture about the non-completeness of the SM in terms of ...

  7. Symmetries of the quantum damped harmonic oscillator

    International Nuclear Information System (INIS)

    Guerrero, J; López-Ruiz, F F; Aldaya, V; Cossío, F

    2012-01-01

    For the non-conservative Caldirola–Kanai system, describing a quantum damped harmonic oscillator, a couple of constant-of-motion operators generating the Heisenberg–Weyl algebra can be found. The inclusion of the standard time evolution generator (which is not a symmetry) as a symmetry in this algebra, in a unitary manner, requires a non-trivial extension of this basic algebra and hence of the physical system itself. Surprisingly, this extension leads directly to the so-called Bateman dual system, which now includes a new particle acting as an energy reservoir. In addition, the Caldirola–Kanai dissipative system can be retrieved by imposing constraints. The algebra of symmetries of the dual system is presented, as well as a quantization that implies, in particular, a first-order Schrödinger equation. As opposed to other approaches, where it is claimed that the spectrum of the Bateman Hamiltonian is complex and discrete, we obtain that it is real and continuous, with infinite degeneracy in all regimes. (paper)

  8. Symmetry and group theory in chemistry

    CERN Document Server

    Ladd, M

    1998-01-01

    A comprehensive discussion of group theory in the context of molecular and crystal symmetry, this book covers both point-group and space-group symmetries.Provides a comprehensive discussion of group theory in the context of molecular and crystal symmetryCovers both point-group and space-group symmetriesIncludes tutorial solutions

  9. Nuclear symmetry energy and the neutron skin in neutron-rich nuclei

    NARCIS (Netherlands)

    Dieperink, AEL; Dewulf, Y; Van Neck, D; Waroquier, M; Rodin, [No Value

    2003-01-01

    The symmetry energy for nuclear matter and its relation to the neutron. skin in finite nuclei is discussed. The symmetry energy as a function of density obtained in a self-consistent Green function approach is presented and compared to the results of other recent theoretical approaches. A partial

  10. Structural symmetry and protein function.

    Science.gov (United States)

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of

  11. Symmetry breaking: The standard model and superstrings

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1988-01-01

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g 2 = (√2G/sub F/)/sup /minus/1/ ≅ 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10 3 )GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs

  12. Prediction of Human Eye Fixations using Symmetry

    OpenAIRE

    Kootstra, Gert; Schomaker, Lambert R. B.

    2009-01-01

    Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of saliency. In this paper, we discuss local symmetry as a measure of saliency. We propose a number of symmetry models and perform an eye-tracking study with human participants viewing photographic i...

  13. A Gaze-Driven Evolutionary Algorithm to Study Aesthetic Evaluation of Visual Symmetry

    Directory of Open Access Journals (Sweden)

    Alexis D. J. Makin

    2016-03-01

    Full Text Available Empirical work has shown that people like visual symmetry. We used a gaze-driven evolutionary algorithm technique to answer three questions about symmetry preference. First, do people automatically evaluate symmetry without explicit instruction? Second, is perfect symmetry the best stimulus, or do people prefer a degree of imperfection? Third, does initial preference for symmetry diminish after familiarity sets in? Stimuli were generated as phenotypes from an algorithmic genotype, with genes for symmetry (coded as deviation from a symmetrical template, deviation–symmetry, DS gene and orientation (0° to 90°, orientation, ORI gene. An eye tracker identified phenotypes that were good at attracting and retaining the gaze of the observer. Resulting fitness scores determined the genotypes that passed to the next generation. We recorded changes to the distribution of DS and ORI genes over 20 generations. When participants looked for symmetry, there was an increase in high-symmetry genes. When participants looked for the patterns they preferred, there was a smaller increase in symmetry, indicating that people tolerated some imperfection. Conversely, there was no increase in symmetry during free viewing, and no effect of familiarity or orientation. This work demonstrates the viability of the evolutionary algorithm approach as a quantitative measure of aesthetic preference.

  14. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  15. On standardization of low symmetry crystal fields

    Science.gov (United States)

    Gajek, Zbigniew

    2015-07-01

    Standardization methods of low symmetry - orthorhombic, monoclinic and triclinic - crystal fields are formulated and discussed. Two alternative approaches are presented, the conventional one, based on the second-rank parameters and the standardization based on the fourth-rank parameters. Mainly f-electron systems are considered but some guidelines for d-electron systems and the spin Hamiltonian describing the zero-field splitting are given. The discussion focuses on premises for choosing the most suitable method, in particular on inadequacy of the conventional one. Few examples from the literature illustrate this situation.

  16. Continuous symmetry from Euclid to Klein

    CERN Document Server

    Barker, William

    2007-01-01

    The fundamental idea of geometry is that of symmetry. With that principle as the starting point, Barker and Howe begin an insightful and rewarding study of Euclidean geometry. The primary focus of the book is on transformations of the plane. The transformational point of view provides both a path for deeper understanding of traditional synthetic geometry and tools for providing proofs that spring from a consistent point of view. As a result, proofs become more comprehensible, as techniques can be used and reused in similar settings. The approach to the material is very concrete, with complete

  17. (Super)integrability from coalgebra symmetry: Formalism and applications

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, A; Blasco, A; Herranz, F J; Musso, F [Departamento de Fisica, Universidad de Burgos, E-09001 Burgos (Spain); Ragnisco, O, E-mail: angelb@ubu.e, E-mail: ablasco@ubu.e, E-mail: fjherranz@ubu.e, E-mail: fmusso@ubu.e, E-mail: ragnisco@fis.uniroma3.i [Dipartimento di Fisica, Universita di Roma Tre and Instituto Nazionale di Fisica Nucleare sezione di Roma Tre, Via Vasca Navale 84, I-00146 Roma (Italy)

    2009-06-01

    The coalgebra approach to the construction of classical integrable systems from Poisson coalgebras is reviewed, and the essential role played by symplectic realizations in this framework is emphasized. Many examples of Hamiltonians with either undeformed or q-deformed coalgebra symmetry are given, and their Liouville superintegrability is discussed. Among them, (quasi-maximally) superintegrable systems on N-dimensional curved spaces of nonconstant curvature are analysed in detail. Further generalizations of the coalgebra approach that make use of comodule and loop algebras are presented. The generalization of such a coalgebra symmetry framework to quantum mechanical systems is straightforward.

  18. Symmetry and Asymmetry Level Measures

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-04-01

    Full Text Available Usually, Symmetry and Asymmetry are considered as two opposite sides of a coin: an object is either totally symmetric, or totally asymmetric, relative to pattern objects. Intermediate situations of partial symmetry or partial asymmetry are not considered. But this dichotomy on the classification lacks of a necessary and realistic gradation. For this reason, it is convenient to introduce "shade regions", modulating the degree of Symmetry (a fuzzy concept. Here, we will analyze the Asymmetry problem by successive attempts of description and by the introduction of the Asymmetry Level Function, as a new Normal Fuzzy Measure. Our results (both Theorems and Corollaries suppose to be some new and original contributions to such very active and interesting field of research. Previously, we proceed to the analysis of the state of art.

  19. Symmetry breaking patterns for inflation

    Science.gov (United States)

    Klein, Remko; Roest, Diederik; Stefanyszyn, David

    2018-06-01

    We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.

  20. Flavor physics without flavor symmetries

    Science.gov (United States)

    Buchmuller, Wilfried; Patel, Ketan M.

    2018-04-01

    We quantitatively analyze a quark-lepton flavor model derived from a six-dimensional supersymmetric theory with S O (10 )×U (1 ) gauge symmetry, compactified on an orbifold with magnetic flux. Two bulk 16 -plets charged under the U (1 ) provide the three quark-lepton generations whereas two uncharged 10 -plets yield two Higgs doublets. At the orbifold fixed points mass matrices are generated with rank one or two. Moreover, the zero modes mix with heavy vectorlike split multiplets. The model possesses no flavor symmetries. Nevertheless, there exist a number of relations between Yukawa couplings, remnants of the underlying grand unified theory symmetry and the wave function profiles of the zero modes, which lead to a prediction of the light neutrino mass scale, mν 1˜10-3 eV and heavy Majorana neutrino masses in the range from 1 012 to 1 014 GeV . The model successfully includes thermal leptogenesis.

  1. Symmetry gauge theory for paraparticles

    International Nuclear Information System (INIS)

    Kursawe, U.

    1986-01-01

    In the present thesis it was shown that for identical particles the wave function of which has a more complicated symmetry than it is the case at the known kinds of particles, the bosons and fermions, a gauge theory can be formulated, the so-called 'symmetry gauge theory'. This theory has its origin alone in the symmetry of the particle wave functions and becomes first relevant when more than two particles are considered. It was shown that for particles with mixed-symmetrical wave functions, so-called 'paraparticles', the quantum mechanical state is no more described by one Hilbert-space element but by a many-dimensional subspace of this Hilbert space. The gauge freedom consists then just in the freedom of the choice of the basis in this subspace, the corresponding gauge group is the group of the unitary basis transformation in this subspace. (orig./HSI) [de

  2. The Broken Symmetry of Time

    International Nuclear Information System (INIS)

    Kastner, Ruth E.

    2011-01-01

    This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.

  3. The Broken Symmetry of Time

    Science.gov (United States)

    Kastner, Ruth E.

    2011-11-01

    This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.

  4. Renormalizable models with broken symmetries

    International Nuclear Information System (INIS)

    Becchi, C.; Rouet, A.; Stora, R.

    1975-10-01

    The results of the renormalized perturbation theory, in the absence of massless quanta, are summarized. The global symmetry breaking is studied and the associated currents are discussed in terms of the coupling with a classical Yang Mills field. Gauge theories are discussed; it is most likely that the natural set up should be the theory of fiber bundles and that making a choice of field coordinates makes the situation obscure. An attempt is made in view of clarifying the meaning of the Slavnov symmetry which characterizes gauge field theories [fr

  5. Symmetry analysis of cellular automata

    International Nuclear Information System (INIS)

    García-Morales, V.

    2013-01-01

    By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.

  6. Symmetry of intramolecular quantum dynamics

    CERN Document Server

    Burenin, Alexander V

    2012-01-01

    The main goal of this book is to give a systematic description of intramolecular quantum dynamics on the basis of only the symmetry principles. In this respect, the book has no analogs in the world literature. The obtained models lead to a simple, purely algebraic, scheme of calculation and are rigorous in the sense that their correctness is limited only to the correct choice of symmetry of the internal dynamics. The book is basically intended for scientists working in the field of molecular spectroscopy, quantum and structural chemistry.

  7. Symposium Symmetries in Science XIII

    CERN Document Server

    Gruber, Bruno J; Yoshinaga, Naotaka; Symmetries in Science XI

    2005-01-01

    This book is a collection of reviews and essays about the recent developments in the area of Symmetries and applications of Group Theory. Contributions have been written mostly at the graduate level but some are accessible to advanced undergraduates. The book is of interest to a wide audience and covers a broad range of topics with a strong degree of thematical unity. The book is part of a Series of books on Symmetries in Science and may be compared to the published Proceedings of the Colloquia on Group Theoretical Methods in Physics. Here, however, prevails a distinguished character for presenting extended reviews on present applications to Science, not restricted to Theoretical Physics.

  8. Cosmological Reflection of Particle Symmetry

    Directory of Open Access Journals (Sweden)

    Maxim Khlopov

    2016-08-01

    Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.

  9. Optical metamaterials with quasicrystalline symmetry: symmetry-induced optical isotropy

    International Nuclear Information System (INIS)

    Kruk, S.S.; Decker, M.; Helgert, Ch.; Neshev, D.N.; Kivshar, Y.S.; Staude, I.; Powell, D.A.; Pertsch, Th.; Menzel, Ch.; Helgert, Ch.; Etrich, Ch.; Rockstuhl, C.; Menzel, Ch.

    2013-01-01

    Taking advantage of symmetry considerations, we have analyzed the potential of various metamaterials to affect the polarization state of light upon oblique illumination. We have shown that depending on the angle of illumination, metamaterials are able to support specific polarization states. The presented methodology that using ellipticity and circular dichroism, provides an unambiguous language for discussing the impact of the inherent symmetry of the metamaterial lattices on their far-field response. Our findings allow the quantification analysis of the impact of inter-element coupling and lattice symmetry on the optical properties of metamaterials, and to separate this contribution from the response associated with a single meta-atom. In addition, we have studied the concept of optical quasicrystalline metamaterials, revealing that the absence of translational symmetry (periodicity) of quasicrystalline metamaterials causes an isotropic optical response, while the long-range positional order preserves the resonance properties. Our findings constitute an important step towards the design of optically isotropic metamaterials and metasurfaces. (authors)

  10. The master symmetry and time dependent symmetries of the differential–difference KP equation

    International Nuclear Information System (INIS)

    Khanizadeh, Farbod

    2014-01-01

    We first obtain the master symmetry of the differential–difference KP equation. Then we show how this master symmetry, through sl(2,C)-representation of the equation, can construct generators of time dependent symmetries. (paper)

  11. Algorithm for research of mathematical physics equations symmetries. Symmetries of the free Schroedinger equation

    International Nuclear Information System (INIS)

    Kotel'nikov, G.A.

    1994-01-01

    An algorithm id proposed for research the symmetries of mathematical physics equation. The application of this algorithm to the Schroedinger equation permitted to establish, that in addition to the known symmetry the Schroedinger equation possesses also the relativistic symmetry

  12. Charge symmetry at the partonic level

    Energy Technology Data Exchange (ETDEWEB)

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  13. A model of intrinsic symmetry breaking

    International Nuclear Information System (INIS)

    Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin

    2013-01-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry

  14. Superdeformations and fermion dynamical symmetries

    International Nuclear Information System (INIS)

    Wu, Cheng-Li

    1990-01-01

    In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU 3 of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU 3 fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU 3 symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting γ-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs

  15. Negative energy solutions and symmetries

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2011-01-01

    We revisit the negative energy solutions of the Dirac (and Klein–Gordon) equation, which become relevant at very high energies in the context of the Feshbach–Villars formulation, and study several symmetries which follow therefrom. Significant consequences are briefly examined. (author)

  16. On four dimensional mirror symmetry

    International Nuclear Information System (INIS)

    Losev, A.; Nekrasov, N.; Shatashvili, S.

    2000-01-01

    A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C 2r invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)

  17. Is CP a gauge symmetry?

    International Nuclear Information System (INIS)

    Choi, K.; Kaplan, D.B.; Nelson, A.E.

    1993-01-01

    Conventional solutions to the strong CP problem all require the existence of global symmetries. However, quantum gravity may destroy global symmetries, making it hard to understand why the electric dipole moment of the neutron (EDMN) is so small. We suggest here that CP is actually a discrete gauge symmetry, and is therefore not violated by quantum gravity. We show that four-dimensional CP can arise as a discrete gauge symmetry in theories with dimensional compactification, if the original number of Minkowski dimensions equals 8k+1, 8k+2 or 8k+3, and if there are certain restrictions on the gauge group; these conditions are met by superstrings. CP may then be broken spontaneously below 10 9 GeV, explaining the observed CP violation in the kaon system without inducing a large EDMN. We discuss the phenomenology of such models, as well as the peculiar properties of cosmic 'SP strings' which could be produced at the compactification scale. Such strings have the curious property that a particle carried around the string is turned into its CP conjugate. A single CP string renders four-dimensional space-time nonorientable. (orig.)

  18. Exploiting Symmetry on Parallel Architectures.

    Science.gov (United States)

    Stiller, Lewis Benjamin

    1995-01-01

    This thesis describes techniques for the design of parallel programs that solve well-structured problems with inherent symmetry. Part I demonstrates the reduction of such problems to generalized matrix multiplication by a group-equivariant matrix. Fast techniques for this multiplication are described, including factorization, orbit decomposition, and Fourier transforms over finite groups. Our algorithms entail interaction between two symmetry groups: one arising at the software level from the problem's symmetry and the other arising at the hardware level from the processors' communication network. Part II illustrates the applicability of our symmetry -exploitation techniques by presenting a series of case studies of the design and implementation of parallel programs. First, a parallel program that solves chess endgames by factorization of an associated dihedral group-equivariant matrix is described. This code runs faster than previous serial programs, and discovered it a number of results. Second, parallel algorithms for Fourier transforms for finite groups are developed, and preliminary parallel implementations for group transforms of dihedral and of symmetric groups are described. Applications in learning, vision, pattern recognition, and statistics are proposed. Third, parallel implementations solving several computational science problems are described, including the direct n-body problem, convolutions arising from molecular biology, and some communication primitives such as broadcast and reduce. Some of our implementations ran orders of magnitude faster than previous techniques, and were used in the investigation of various physical phenomena.

  19. Strong coupling electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models

  20. Strong coupling electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.L. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Burdman, G. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Chivukula, R.S. [Boston Univ., MA (United States). Dept. of Physics

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  1. Symmetry breaking in string theory

    International Nuclear Information System (INIS)

    Potting, R.

    1998-01-01

    A mechanism for a spontaneous breakdown of CPT symmetry appears in string theory, with possible implications for particle models. A realistic string theory might exhibit CPT violation at levels detectable in current or future experiments. A possible new mechanism for baryogenesis in the early Universe is also discussed

  2. Dark Energy and Spacetime Symmetry

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-03-01

    Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.

  3. Instantons and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Carneiro, C.E.I.; McDougall, N.A.

    1984-01-01

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)

  4. Instantons and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)

    1984-10-22

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.

  5. Lie symmetries in differential equations

    International Nuclear Information System (INIS)

    Pleitez, V.

    1979-01-01

    A study of ordinary and Partial Differential equations using the symmetries of Lie groups is made. Following such a study, an application to the Helmholtz, Line-Gordon, Korleweg-de Vries, Burguer, Benjamin-Bona-Mahony and wave equations is carried out [pt

  6. Chiral symmetry in perturbative QCD

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1979-04-01

    The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant

  7. 'Oblique corrections' and symmetry breaking

    International Nuclear Information System (INIS)

    Ramirez, C.A.

    1991-11-01

    Low Energy Parameters (Peskin-Takeuchi) are computed for two Symmetry Braking Schemes (heavy Higgs and techni-ρ). The differences between them are found comparable to the experimental uncertainties (in agreement with previous calculations for the Technicolor Models). Some constraints are obtained for the techni-ρ case. (author). 22 refs, 11 figs

  8. Experimental tests of fundamental symmetries

    NARCIS (Netherlands)

    Jungmann, K. P.

    2014-01-01

    Ongoing experiments and projects to test our understanding of fundamental inter- actions and symmetries in nature have progressed significantly in the past few years. At high energies the long searched for Higgs boson has been found; tests of gravity for antimatter have come closer to reality;

  9. Mixed symmetry tensors in the worldline formalism

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università degli Studi di Modena e Reggio Emilia, via Campi 213/A, I-41125 Modena (Italy); INFN - Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Edwards, James P. [Department of Mathematical Sciences, University of Bath,Claverton Down, Bath BA2 7AY (United Kingdom)

    2016-05-10

    We consider the first quantised approach to quantum field theory coupled to a non-Abelian gauge field. Representing the colour degrees of freedom with a single family of auxiliary variables the matter field transforms in a reducible representation of the gauge group which — by adding a suitable Chern-Simons term to the particle action — can be projected onto a chosen fully (anti-)symmetric representation. By considering F families of auxiliary variables, we describe how to extend the model to arbitrary tensor products of F reducible representations, which realises a U(F) “flavour” symmetry on the worldline particle model. Gauging this symmetry allows the introduction of constraints on the Hilbert space of the colour fields which can be used to project onto an arbitrary irreducible representation, specified by a certain Young tableau. In particular the occupation numbers of the wavefunction — i.e. the lengths of the columns (rows) of the Young tableau — are fixed through the introduction of Chern-Simons terms. We verify this projection by calculating the number of colour degrees of freedom associated to the matter field. We suggest that, using the worldline approach to quantum field theory, this mechanism will allow the calculation of one-loop scattering amplitudes with the virtual particle in an arbitrary representation of the gauge group.

  10. Symmetry-dictated trucation: Solutions of the spherical shell model for heavy nuclei

    International Nuclear Information System (INIS)

    Guidry, M.W.

    1992-01-01

    Principles of dynamical symmetry are used to simplify the spherical shell model. The resulting symmetry-dictated truncation leads to dynamical symmetry solutions that are often in quantitative agreement with a variety of observables. Numerical calculations, including terms that break the dynamical symmetries, are shown that correspond to shell model calculations for heavy deformed nuclei. The effective residual interaction is simple, well-behaved, and can be determined from basic observables. With this approach, we intend to apply the shell model in systematic fashion to all nuclei. The implications for nuclear structure far from stability and for nuclear masses and other quantities of interest in astrophysics are discussed

  11. Generalized symmetries of an 𝓝 = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system

    Science.gov (United States)

    Wang, Jian-Yong; Tang, Xiao-Yan; Liang, Zu-Feng; Lou, Sen-Yue

    2015-05-01

    The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supersymmetric framework to explore series of infinitely many generalized symmetries for supersymmetric systems. Taking the 𝒩 = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system as a concrete example, it is shown that the application of the extended FSSA to this supersymmetric system leads to a set of infinitely many generalized symmetries with an arbitrary function f (t). Some interesting special cases of symmetry algebras are presented, including a limit case f (t) = 1 related to the commutativity of higher order generalized symmetries. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275123, 11175092, 11475052, and 11435005), the Shanghai Knowledge Service Platform for Trustworthy Internet of Things, China (Grant No. ZF1213), and the Talent Fund and K CWong Magna Fund in Ningbo University, China.

  12. Symmetry properties of some nonlinear field theory models

    International Nuclear Information System (INIS)

    Shvachka, A.B.

    1984-01-01

    Various approaches towards the study of symmetry properties of some nonlinear evolution equations as well as possible ways of their computer implementation using the computer algebra systems langage are discussed. Special attention is paid to the method of pseudopotential investigation of formal integrability and isovector method for the equations of balance

  13. Symmetry and conservation law structures of some anti-self-dual

    Indian Academy of Sciences (India)

    The ASD systems and manifolds have been studied via a number of approaches and their origins have been well documented. In this paper, we look at the symmetry structures, variational symmetries and related concepts around the associated conservation laws for a number of such manifolds.

  14. Symmetry and electromagnetism. Simetria y electromagnetismo

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Cobas, L.E.; Font Hernandez, R.

    1993-01-01

    An analytical treatment of electrostatic and magnetostatic field symmetry, as a function of charge and current distribution symmetry, is proposed. The Newmann Principle, related to the cause-effect symmetry relation, is presented and applied to the characterization of simple configurations. (Author) 5 refs.

  15. Symmetries, Integrals and Solutions of Ordinary Differential ...

    Indian Academy of Sciences (India)

    Second-and third-order scalar ordinary differential equations of maximal symmetry in the traditional sense of point, respectively contact, symmetry are examined for the mappings they produce in solutions and fundamental first integrals. The properties of the `exceptional symmetries', i.e. those not considered to be generic to ...

  16. The symmetry of the Hubbard model

    International Nuclear Information System (INIS)

    Grosse, H.

    1988-01-01

    The spectrum of the Hubbard model shows permanent degeneracy of levels with different symmetry, if one considers only symmetry operators independent of the coupling constant. This suggests the existence of symmetry operators which depend on the coupling constant. We find these highly nontrivial operators and show that they explain the degeneracies in the energy spectrum. 5 refs. (Author)

  17. Prediction of human eye fixations using symmetry

    NARCIS (Netherlands)

    Kootstra, Gert; Schomaker, Lambert

    2009-01-01

    Humans are very sensitive to symmetry in visual patterns. Reaction time experiments show that symmetry is detected and recognized very rapidly. This suggests that symmetry is a highly salient feature. Existing computational models of saliency, however, have mainly focused on contrast as a measure of

  18. Dynamical symmetry breaking in barium isotopes

    International Nuclear Information System (INIS)

    Rawat, Bir Singh; Chattopadhyay, P.K.

    1997-01-01

    The isotopes of Xe with mass numbers 124, 126, 128, 130 and the isotopes of barium with mass numbers 128, 130, 132, 134 were shown to correspond to the O(6) dynamical symmetry of IBM. In the investigation of the dynamical symmetry breaking in this region, the barium isotopes for departures from O(6) symmetry have been studied

  19. The investigation of platonic solids symmetry operations with clifford algebra

    International Nuclear Information System (INIS)

    Kilic, A.

    2005-01-01

    The geometric algebra produces the new fields of view in the modern mathematical physics, definition of bodies and rearranging for equations of mathematics and physics. The new mathematical approaches play an important role in the progress of physics. After presenting Clifford algebra and quarantine's, the symmetry operations with Clifford algebra and quarantine's are defined. This symmetry operations are applied to a Platonic solids, which are called as tetrahedron, cube, octahedron, icosahedron and dodecahedron. Also, the vertices of Platonic solids presented in the Cartesian coordinates are calculated

  20. The spin symmetry for deformed generalized Poeschl-Teller potential

    International Nuclear Information System (INIS)

    Wei Gaofeng; Dong Shihai

    2009-01-01

    In the case of spin symmetry we solve the Dirac equation with scalar and vector deformed generalized Poeschl-Teller (DGPT) potential and obtain exact energy equation and spinor wave functions for s-wave bound states. We find that there are only positive energy states for bound states in the case of spin symmetry based on the strong regularity restriction condition λ<-η for the wave functions. The energy eigenvalue approaches a constant when the potential parameter α goes to zero. Two special cases such as generalized PT potential and standard PT potential are also briefly discussed.

  1. Creating symmetry the artful mathematics of wallpaper patterns

    CERN Document Server

    Farris, Frank A

    2015-01-01

    This lavishly illustrated book provides a hands-on, step-by-step introduction to the intriguing mathematics of symmetry. Instead of breaking up patterns into blocks-a sort of potato-stamp method-Frank Farris offers a completely new waveform approach that enables you to create an endless variety of rosettes, friezes, and wallpaper patterns: dazzling art images where the beauty of nature meets the precision of mathematics. Featuring more than 100 stunning color illustrations and requiring only a modest background in math, Creating Symmetry begins by addressing the enigma of a simple curve, who

  2. Renormgroup symmetries in problems of nonlinear geometrical optics

    International Nuclear Information System (INIS)

    Kovalev, V.F.

    1996-01-01

    Utilization and further development of the previously announced approach [1,2] enables one to construct renormgroup symmetries for a boundary value problem for the system of equations which describes propagation of a powerful radiation in a nonlinear medium in geometrical optics approximation. With the help of renormgroup symmetries new rigorous and approximate analytical solutions of nonlinear geometrical optics equations are obtained. Explicit analytical expressions are presented that characterize spatial evolution of laser beam which has an arbitrary intensity dependence at the boundary of the nonlinear medium. (author)

  3. Soft Terms from Broken Symmetries

    CERN Document Server

    Buican, Matthew

    2010-01-01

    In theories of phyiscs beyond the Standard Model (SM), visible sector fields often carry quantum numbers under additional gauge symmetries. One could then imagine a scenario in which these extra gauge symmetries play a role in transmitting supersymmetry breaking from a hidden sector to the Supersymmetric Standard Model (SSM). In this paper we present a general formalism for studying the resulting hidden sectors and calculating the corresponding gauge mediated soft parameters. We find that a large class of generic models features a leading universal contribution to the soft scalar masses that only depends on the scale of Higgsing, even if the model is strongly coupled. As a by-product of our analysis, we elucidate some IR aspects of the correlation functions in General Gauge Mediation. We also discuss possible phenomenological applications.

  4. Physics of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1991-01-01

    This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)

  5. Mirror symmetry and loop operators

    Energy Technology Data Exchange (ETDEWEB)

    Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)

    2015-11-09

    Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.

  6. Symmetry realization of texture zeros

    International Nuclear Information System (INIS)

    Grimus, W.; Joshipura, A.S.; Lavoura, L.; Tanimoto, M.

    2004-01-01

    We show that it is possible to enforce texture zeros in arbitrary entries of the fermion mass matrices by means of Abelian symmetries; in this way, many popular mass-matrix textures find a symmetry justification. We propose two alternative methods which allow one to place zeros in any number of elements of the mass matrices that one wants. They are applicable simultaneously in the quark and lepton sectors. They are also applicable in grand unified theories. The number of scalar fields required by our methods may be large; still, in many interesting cases this number can be reduced considerably. The larger the desired number of texture zeros is, the simpler are the models which reproduce the texture. (orig.)

  7. Steering particles by breaking symmetries

    Science.gov (United States)

    Bet, Bram; Samin, Sela; Georgiev, Rumen; Burak Eral, Huseyin; van Roij, René

    2018-06-01

    We derive general equations of motions for highly-confined particles that perform quasi-two-dimensional motion in Hele-Shaw channels, which we solve analytically, aiming to derive design principles for self-steering particles. Based on symmetry properties of a particle, its equations of motion can be simplified, where we retrieve an earlier-known equation of motion for the orientation of dimer particles consisting of disks (Uspal et al 2013 Nat. Commun. 4), but now in full generality. Subsequently, these solutions are compared with particle trajectories that are obtained numerically. For mirror-symmetric particles, excellent agreement between the analytical and numerical solutions is found. For particles lacking mirror symmetry, the analytic solutions provide means to classify the motion based on particle geometry, while we find that taking the side-wall interactions into account is important to accurately describe the trajectories.

  8. Noncompact symmetries in string theory

    International Nuclear Information System (INIS)

    Maharana, J.; Schwarz, J.H.

    1993-01-01

    Noncompact groups, similar to those that appeared in various supergravity theories in the 1970's have been turning up in recent studies of string theory. First it was discovered that moduli spaces of toroidal compactification are given by noncompact groups modded out by their maximal compact subgroups and discrete duality groups. Then it was found that many other moduli spaces have analogous descriptions. More recently, noncompact group symmetries have turned up in effective actions used to study string cosmology and other classical configurations. This paper explores these noncompact groups in the case of toroidal compactification both from the viewpoint of low-energy effective field theory, using the method of dimensional reduction, and from the viewpoint of the string theory world-sheet. The conclusion is that all these symmetries are intimately related. In particular, we find that Chern-Simons terms in the three-form field strength H μνρ play a crucial role. (orig.)

  9. Isospin symmetry breaking in sd shell nuclei

    International Nuclear Information System (INIS)

    Lam, Y.W.

    2011-12-01

    In the thesis, we develop a microscopic approach to describe the isospin-symmetry breaking effects in sd-shell nuclei. The work is performed within the nuclear shell model. A realistic isospin-conserving Hamiltonian is perfected by a charge-dependent part consisting of the Coulomb interaction and Yukawa-type meson exchange potentials to model charge-dependent forces of nuclear origin. The extended database of the experimental isobaric mass multiplet equation coefficients was compiled during the thesis work and has been used in a fit of the Hamiltonian parameters. The constructed Hamiltonian provides an accurate theoretical description of the isospin mixing nuclear states. A specific behaviour of the IMME (Isobaric Multiplet Mass Equation) coefficients have been revealed. We present two important applications: (i) calculations of isospin-forbidden proton emission amplitudes, which is often of interest for nuclear astrophysics, and (ii) calculation on corrections to nuclear Fermi beta decay, which is crucial for the tests of fundamental symmetries of the weak interaction. (author)

  10. Models of electroweak symmetry breaking

    CERN Document Server

    Pomarol, Alex

    2015-01-01

    This chapter present models of electroweak symmetry breaking arising from strongly interacting sectors, including both Higgsless models and mechanisms involving a composite Higgs. These scenarios have also been investigated in the framework of five-dimensional warped models that, according to the AdS/CFT correspondence, have a four-dimensional holographic interpretation in terms of strongly coupled field theories. We explore the implications of these models at the LHC.

  11. Symmetries of the dual metrics

    International Nuclear Information System (INIS)

    Baleanu, D.

    1998-01-01

    The geometric duality between the metric g μν and a Killing tensor K μν is studied. The conditions were found when the symmetries of the metric g μν and the dual metric K μν are the same. Dual spinning space was constructed without introduction of torsion. The general results are applied to the case of Kerr-Newmann metric

  12. Introduction to symmetry and supersymmetry in quantum field theory

    International Nuclear Information System (INIS)

    Lopuszanski, J.

    1988-01-01

    This is a set of lecture notes given by the author at the Universities of Gottingen and Wroclaw. The text presents the axiomatic approach to field theory and studies in depth the concepts of symmetry and supersymmetry and their associated generators, currents and charges. It is intended as a one- semester course for graduate students in the field of mathematical physics and high energy physics. Contents: Introduction; Example of a Classical and Quantum Scalar Free Field Theory; Scene and Subject of the Drama. Axiom 1 and 2; Subject of the Drama; Principle of Relativity. Causality. Axiom 3, 4 and 5; Irreducibility of the Field Algebra and Scattering Theory. Axiom 6. Axiom O; Preliminaries about Physical Symmetries; Currents and Charges; Global Symmetries and Supersymmetries of the S - Matrix; Representations of the Super-Lie Algebra; The Case of Massless Particles; Fermionic Charges; Concluding Remarks

  13. Permutational symmetries for coincidence rates in multimode multiphotonic interferometry

    Science.gov (United States)

    Khalid, Abdullah; Spivak, Dylan; Sanders, Barry C.; de Guise, Hubert

    2018-06-01

    We obtain coincidence rates for passive optical interferometry by exploiting the permutational symmetries of partially distinguishable input photons, and our approach elucidates qualitative features of multiphoton coincidence landscapes. We treat the interferometer input as a product state of any number of photons in each input mode with photons distinguished by their arrival time. Detectors at the output of the interferometer count photons from each output mode over a long integration time. We generalize and prove the claim of Tillmann et al. [Phys. Rev. X 5, 041015 (2015), 10.1103/PhysRevX.5.041015] that coincidence rates can be elegantly expressed in terms of immanants. Immanants are functions of matrices that exhibit permutational symmetries and the immanants appearing in our coincidence-rate expressions share permutational symmetries with the input state. Our results are obtained by employing representation theory of the symmetric group to analyze systems of an arbitrary number of photons in arbitrarily sized interferometers.

  14. Quasiaverages, symmetry breaking and irreducible Green functions method

    Directory of Open Access Journals (Sweden)

    A.L.Kuzemsky

    2010-01-01

    Full Text Available The development and applications of the method of quasiaverages to quantum statistical physics and to quantum solid state theory and, in particular, to quantum theory of magnetism, were considered. It was shown that the role of symmetry (and the breaking of symmetries in combination with the degeneracy of the system was reanalyzed and essentially clarified within the framework of the method of quasiaverages. The problem of finding the ferromagnetic, antiferromagnetic and superconducting "symmetry broken" solutions of the correlated lattice fermion models was discussed within the irreducible Green functions method. A unified scheme for the construction of generalized mean fields (elastic scattering corrections and self-energy (inelastic scattering in terms of the equations of motion and Dyson equation was generalized in order to include the "source fields". This approach complements previous studies of microscopic theory of antiferromagnetism and clarifies the concepts of Neel sublattices for localized and itinerant antiferromagnetism and "spin-aligning fields" of correlated lattice fermions.

  15. Soliton surfaces associated with generalized symmetries of integrable equations

    International Nuclear Information System (INIS)

    Grundland, A M; Post, S

    2011-01-01

    In this paper, based on the Fokas et al approach (Fokas and Gel'fand 1996 Commun. Math. Phys. 177 203-20; Fokas et al 2000 Sel. Math. 6 347-75), we provide a symmetry characterization of continuous deformations of soliton surfaces immersed in a Lie algebra using the formalism of generalized vector fields, their prolongation structure and links with the Frechet derivatives. We express the necessary and sufficient condition for the existence of such surfaces in terms of the invariance criterion for generalized symmetries and identify additional sufficient conditions which admit an explicit integration of the immersion functions of 2D surfaces in Lie algebras. We discuss in detail the su(N)-valued immersion functions generated by conformal symmetries of the CP N-1 sigma model defined on either the Minkowski or Euclidean space. We further show that the sufficient conditions for explicit integration of such immersion functions impose additional restrictions on the admissible conformal symmetries of the model defined on Minkowski space. On the other hand, the sufficient conditions are identically satisfied for arbitrary conformal symmetries of finite action solutions of the CP N-1 sigma model defined on Euclidean space.

  16. Symmetries of cosmological Cauchy horizons

    International Nuclear Information System (INIS)

    Moncrief, V.; Isenberg, J.

    1983-01-01

    We consider analytic vacuum and electrovacuum spacetimes which contain a compact null hypersurface ruled by closed null generators. We prove that each such spacetime has a non-trivial Killing symmetry. We distinguish two classes of null surfaces, degenerate and non-degenerate ones, characterized by the zero or non-zero value of a constant analogous to the ''surface gravity'' of stationary black holes. We show that the non-degenerate null surfaces are always Cauchy heizons across which the Killing fields change from spacelike (in the globally hyperbolic regions) to timelike (in the acausal, analytic extensions). For the special case of a null surface diffeomorphic to T 3 we characterize the degenerate vacuum solutions completely. These consists of an infinite dimensional family of ''plane wave'' spacetimes which are entirely foliated by compact null surfaces. Previous work by one of us has shown that, when one dimensional Killing symmetries are allowed, then infinite dimensional families of non-degenerate, vacuum solutions exist. We recall these results for the case of Cauchy horizons diffeomorphic to T 3 and prove the generality of the previously constructed non-degenerate solutions. We briefly discuss the possibility of removing the assumptions of closed generators and analyticity and proving an appropriate generalization of our main results. Such a generalization would provide strong support for the cosmic censorship conjecture by showing that causality violating, cosmological solutions of Einstein's equations are essentially an artefact of symmetry. (orig.)

  17. Big break for charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)

    2003-06-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of {sup i}sospin{sup ,} and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while the down quark has a negative charge of -1/3. If charge symmetry was exact, the proton and the neutron would have the same mass and they would both be electrically neutral. This is because the proton is made of two up quarks and a down quark, while the neutron comprises two downs and an up. Replacing up quarks with down quarks, and vice versa, therefore transforms a proton into a neutron. Charge-symmetry breaking causes the neutron to be about 0.1% heavier than the proton because the down quark is slightly heavier than the up quark. Physicists had already elucidated certain aspects of charge-symmetry breaking, but our spirits were raised greatly when we heard of the recent work of Allena Opper of Ohio University in the US and co-workers at the TRIUMF laboratory in British Columbia, Canada. Her team has been trying to observe a small charge-symmetry-breaking effect for several years, using neutron beams at the TRIUMF accelerator. The researchers studied the

  18. Dark matter and global symmetries

    Directory of Open Access Journals (Sweden)

    Yann Mambrini

    2016-09-01

    Full Text Available General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left–Right, Singlet Fermionic, Zee–Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i global symmetries are broken at the Planck scale, that (ii the non-renormalizable operators mediating dark matter decay have O(1 couplings, that (iii the dark matter is a singlet field, and that (iv the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV–TeV, including the WIMP regime.

  19. On E(11) of M-theory: 1. Hidden Symmetries of Maximal Supergravities and Lego of Dynkin Diagrams

    International Nuclear Information System (INIS)

    Nurmagambetov, A.J.

    2007-01-01

    We review a graphical way of classifying hidden symmetry algebras and groups of D=11, 10 maximal supergravities in terms of Dynkin diagrams, the shapes of which are determined by the bosonic field content of supergravities supermultiplets. The approach we follow is tightly related to the West's conjecture on a hidden symmetry of M-theory, and we discuss benefits of the approach in compare to other ways of searching for hidden symmetries of String Theory

  20. Neutrino masses and spontaneously broken flavor symmetries

    International Nuclear Information System (INIS)

    Staudt, Christian

    2014-01-01

    We study the phenomenology of supersymmetric flavor models. We show how the predictions of models based on spontaneously broken non-Abelian discrete flavor symmetries are altered when we include so-called Kaehler corrections. Furthermore, we discuss anomaly-free discrete R symmetries which are compatible with SU(5) unification. We find a set of symmetries compatible with suppressed Dirac neutrino masses and a unique symmetry consistent with the Weinberg operator. We also study a pseudo-anomalous U(1) R symmetry which explains the fermion mass hierarchies and, when amended with additional singlet fields, ameliorates the fine-tuning problem.

  1. Symmetry, from Euclid to Pierre Curie

    International Nuclear Information System (INIS)

    Sivardiere, J.

    1997-01-01

    A historical review of the principles of symmetry is presented, starting with Egyptian pavements and Euclid regular polyhedrons, 2 and 3 dimensional paving studies with Kepler in the 17. century, modern crystallography with the constant angle law and the rational truncations law in the 18. century, the identification of the various crystal symmetries (19. century), the discovery of liquid crystals, the relations between the symmetry and the physical and optical properties of systems, molecules, etc.. Finally, P. Curie has determined the general principle of symmetry, linking symmetry and its effects

  2. Dynamical study of symmetries: breaking and restauration

    International Nuclear Information System (INIS)

    Schuck, P.

    1986-09-01

    First symmetry breaking (spontaneous) is explained and the physical implication discussed for infinite systems. The relation with phase transitions is indicated. Then the specific aspects of symmetry breaking in finite systems is treated and illustrated in detail for the case of translational invariance with the help of an oversimplified but exactly solvable model. The method of projection (restauration of symmetry) is explained for the static case and also applied to the model. Symmetry breaking in the dynamical case and for instance the notion of a soft mode responsible for the symmetry breaking is discussed in the case of superfluidity and another exactly solvable model is introduced. The Goldstone mode is treated in detail. Some remarks on analogies with the breaking of chiral symmetry are made. Some recent developments in the theory of symmetry restauration are briefly outlined [fr

  3. Symmetries and modelling functions for diffusion processes

    International Nuclear Information System (INIS)

    Nikitin, A G; Spichak, S V; Vedula, Yu S; Naumovets, A G

    2009-01-01

    A constructive approach to the theory of diffusion processes is proposed, which is based on application of both symmetry analysis and the method of modelling functions. An algorithm for construction of the modelling functions is suggested. This algorithm is based on the error function expansion (ERFEX) of experimental concentration profiles. The high-accuracy analytical description of the profiles provided by ERFEX approximation allows a convenient extraction of the concentration dependence of diffusivity from experimental data and prediction of the diffusion process. Our analysis is exemplified by its employment in experimental results obtained for surface diffusion of lithium on the molybdenum (1 1 2) surface precovered with dysprosium. The ERFEX approximation can be directly extended to many other diffusion systems.

  4. Phenomenology of symmetry breaking from extra dimensions

    International Nuclear Information System (INIS)

    Alfaro, Jorge; Broncano, Alicia; Belen Gavela, Maria; Rigolin, Stefano; Salvatori, Matteo

    2007-01-01

    Motivated by the electroweak hierarchy problem, we consider theories with two extra dimensions in which the four-dimensional scalar fields are components of gauge boson in full space. We explore the Nielsen-Olesen instability for SU(N) on a torus, in the presence of a magnetic background. A field theory approach is developed, computing explicitly the minimum of the complete effective potential, including tri-linear and quartic couplings and determining the symmetries of the stable vacua. We also develop appropriate gauge-fixing terms when both Kaluza-Klein and Landau levels are present and interacting, discussing the interplay between the possible six and four dimensional choices. The equivalence between coordinate dependent and constant Scherk-Schwarz boundary conditions - associated to either continuous or discrete Wilson lines - is analyzed

  5. Exact cosmological solutions for MOG

    International Nuclear Information System (INIS)

    Roshan, Mahmood

    2015-01-01

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  6. Skyrmions with holography and hidden local symmetry

    International Nuclear Information System (INIS)

    Nawa, Kanabu; Hosaka, Atsushi; Suganuma, Hideo

    2009-01-01

    We study baryons as Skyrmions in holographic QCD with D4/D8/D8 multi-D brane system in type IIA superstring theory, and also in the nonlinear sigma model with hidden local symmetry. Comparing these two models, we find that the extra dimension and its nontrivial curvature can largely change the role of (axial) vector mesons for baryons in four-dimensional space-time. In the hidden local symmetry approach, the ρ-meson field as a massive Yang-Mills field has a singular configuration in Skyrmion, which gives a strong repulsion for the baryon as a stabilizer. When the a 1 meson is added in this approach, the stability of Skyrmion is lost by the cancellation of ρ and a 1 contributions. On the contrary, in holographic QCD, the ρ-meson field does not appear as a massive Yang-Mills field due to the extra dimension and its nontrivial curvature. We show that the ρ-meson field has a regular configuration in Skyrmion, which gives a weak attraction for the baryon in holographic QCD. We argue that Skyrmion with π, ρ, and a 1 mesons become stable due to the curved extra dimension and also the presence of the Skyrme term in holographic QCD. From this result, we also discuss the features of our truncated-resonance analysis on baryon properties with π and ρ mesons below the cutoff scale M KK ∼1 GeV in holographic QCD, which is compared with other 5D instanton analysis.

  7. Symmetries and symmetry breaking beyond the electroweak theory

    International Nuclear Information System (INIS)

    Grojean, Ch.

    1999-01-01

    The Glashow-Salam-Weinberg theory describing electroweak interactions is one of the best successes of quantum field theory; it has passed all the experimental tests of particles physics with a high accuracy. However, this theory suffers from some deficiencies in the sense that some parameters, especially those involved in the generation of the mass of the elementary particles, are fixed to unnatural values. Moreover gravitation whose quantization cannot be achieved in ordinary quantum filed theory is hot taken into account. The aim of this PhD dissertation is to study some theories beyond the Standard Model and inspired by superstring theories. My endeavour has been to develop theoretical aspects of an effective dynamical description of one of the soltonic states of the strongly coupled strings. An important part of my results is also devoted to a more phenomenological analysis of the low energy effects of the symmetries that assure the coherence of the theories at high energy: these symmetries could explain the fermion mass hierarchy and could be directly observable in collider experiments. It is also shown how the geometrical properties of compactified spaces characterize the vacuum of string theory in a non-perturbative regime; such a vacuum can be used to construct a unified theory of gauge and gravitational interactions with a supersymmetry softy broken at a TcV scale. (author)

  8. Reflection symmetry-integrated image segmentation.

    Science.gov (United States)

    Sun, Yu; Bhanu, Bir

    2012-09-01

    This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other attributes like color and texture.

  9. Crossing symmetry in Alpha space

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The conformal bootstrap program aims to catalog all conformal field theories (second-order phase transitions) in D dimensions. Despite its ambitious scope much progress has been made over the past decade, e.g. in computing critical exponents for the 3D O(N) models to high precision. At this stage, analytic methods to explore the CFT landscape are not as well developed. In this talk I will describe a new mathematical framework for the bootstrap known as "alpha space", which reduces crossing symmetry to a set of integral equations. Based on arXiv:1702.08471 (with Balt van Rees) and arXiv:1703.08159.

  10. Torus knots and mirror symmetry

    CERN Document Server

    Brini, Andrea; Marino, Marcos

    2012-01-01

    We propose a spectral curve describing torus knots and links in the B-model. In particular, the application of the topological recursion to this curve generates all their colored HOMFLY invariants. The curve is obtained by exploiting the full Sl(2, Z) symmetry of the spectral curve of the resolved conifold, and should be regarded as the mirror of the topological D-brane associated to torus knots in the large N Gopakumar-Vafa duality. Moreover, we derive the curve as the large N limit of the matrix model computing torus knot invariants.

  11. Symmetries applied to reactor calculations

    International Nuclear Information System (INIS)

    Makai, M.

    1982-03-01

    Three problems of a reactor-calculational model are discussed with the help of symmetry considerations. 1/ A coarse mesh method applicable to any geometry is derived. It is shown that the coarse mesh solution can be constructed from a few standard boundary value problems. 2/ A second stage homogenization method is given based on the Bloch theorem. This ensures the continuity of the current and the flux at the boundary. 3/ The validity of the micro-macro separation is shown for heterogeneous lattices. A formula for the neutron density is derived for cell homogenization. (author)

  12. Hexagonal response matrix using symmetries

    International Nuclear Information System (INIS)

    Gotoh, Y.

    1991-01-01

    A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)

  13. Symmetries and Dirac equation solutions

    International Nuclear Information System (INIS)

    Souza, Marcio Lima de.

    1991-06-01

    The purpose of this thesis is the extension to be relativistic case of a method that has proved useful for the solution of various potential problems in non relativistic situation. This method, the method of dynamical symmetries, is based on the Baker-Campbell-Hausdorf formulae and developed first for the particular example of the relativistic Coulomb problem. Here we generalize the method for a Hamiltonian that can be written as a linear combination of generators of the SO(2,1) group. As illustrative examples, we solve the problem of a charged particle in a constant magnetic field and the exponential magnetic field. (author). 21 refs

  14. History of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Kibble, T W B

    2015-01-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012. (paper)

  15. Leptonic Dirac CP violation predictions from residual discrete symmetries

    Directory of Open Access Journals (Sweden)

    I. Girardi

    2016-01-01

    Full Text Available Assuming that the observed pattern of 3-neutrino mixing is related to the existence of a (lepton flavour symmetry, corresponding to a non-Abelian discrete symmetry group Gf, and that Gf is broken to specific residual symmetries Ge and Gν of the charged lepton and neutrino mass terms, we derive sum rules for the cosine of the Dirac phase δ of the neutrino mixing matrix U. The residual symmetries considered are: i Ge=Z2 and Gν=Zn, n>2 or Zn×Zm, n,m≥2; ii Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν=Z2; iii Ge=Z2 and Gν=Z2; iv Ge is fully broken and Gν=Zn, n>2 or Zn×Zm, n,m≥2; and v Ge=Zn, n>2 or Zn×Zm, n,m≥2 and Gν is fully broken. For given Ge and Gν, the sum rules for cos⁡δ thus derived are exact, within the approach employed, and are valid, in particular, for any Gf containing Ge and Gν as subgroups. We identify the cases when the value of cos⁡δ cannot be determined, or cannot be uniquely determined, without making additional assumptions on unconstrained parameters. In a large class of cases considered the value of cos⁡δ can be unambiguously predicted once the flavour symmetry Gf is fixed. We present predictions for cos⁡δ in these cases for the flavour symmetry groups Gf=S4, A4, T′ and A5, requiring that the measured values of the 3-neutrino mixing parameters sin2⁡θ12, sin2⁡θ13 and sin2⁡θ23, taking into account their respective 3σ uncertainties, are successfully reproduced.

  16. Efficient Identification of Objects Carrying Elements of High-Order Symmetry By Using Correlated Orbital Angular Momentum (OAM States

    Directory of Open Access Journals (Sweden)

    Sergienko Alexander V.

    2014-01-01

    The potential for efficient identification of objects carrying elements of high-order symmetry using correlated orbital angular momentum (OAM states is demonstrated. The enhanced information capacity of this approach allows the recognition of specific spatial symmetry signatures present in objects with the use of fewer resources than in a conventional pixel-by-pixel imaging, representing the first demonstration of compressive sensing using OAM states. This approach demonstrates the capability to quickly evaluate multiple Fourier coefficients directly linked with the symmetry features of the object. The results suggest further application in small-scale biological contexts where symmetry and small numbers of noninvasive measurements are important.

  17. Wheeler-DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Paliathanasis, A. [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Karpathopoulos, L. [University of Athens, Faculty of Physics, Department of Astronomy-Astrophysics-Mechanics, Athens (Greece); Wojnar, A. [Institute for Theoretical Physics, Wroclaw (Poland); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy); Capozziello, S. [Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy)

    2016-04-15

    Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries. (orig.)

  18. Flavor symmetries and fermion masses

    International Nuclear Information System (INIS)

    Rasin, A.

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V ub /V cb = √m u /m c and V td /V ts = √m d /m s , are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanΒ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model

  19. Spinor Structure and Internal Symmetries

    Science.gov (United States)

    Varlamov, V. V.

    2015-10-01

    Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.

  20. Contact symmetries and Hamiltonian thermodynamics

    International Nuclear Information System (INIS)

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-01-01

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production

  1. Symmetry breaking and scalar bosons

    International Nuclear Information System (INIS)

    Gildener, E.; Weinberg, S.

    1976-01-01

    There are reasons to suspect that the spontaneous breakdown of the gauge symmetries of the observed weak and electromagnetic interactions may be produced by the vacuum expectation values of massless weakly coupled elementary scalar fields. A method is described for finding the broken-symmetry solutions of such theories even when they contain arbitrary numbers of scalar fields with unconstrained couplings. In any such theory, there should exist a number of heavy Higgs bosons, with masses comparable to the intermediate vector bosons, plus one light Higgs boson, or ''scalon'' with mass of order αG/sub F/sub 1/2/. The mass and couplings of the scalon are calculable in terms of other masses, even without knowing all the details of the theory. For an SU(2) direct-product U(1) model with arbitrary numbers of scalar isodoublets, the scalon mass is greater than 5.26 GeV; a likely value is 7--10 GeV. The production and decay of the scalon are briefly considered. Some comments are offered on the relation between the mass scales associated with the weak and strong interactions

  2. New four-dimensional symmetry

    International Nuclear Information System (INIS)

    Hsu, J.P.

    1976-01-01

    A new picture of nature is proposed in which there are only two fundamental universal constants anti e (identical with e/c) and dirac constant (identical with dirac constant/c). The theory is developed within the framework of a new four-dimensional symmetry which is constructed on the basis of the Poincare--Einstein principle of relativity for the laws of physics and the Newtonian concept of time. One obtains a new space--light transformation law, a velocity-addition law, and so on. In this symmetry scheme, the speed of light is constant and is completely relative. The new theory is logically self-consistent, and it moreover is in agreement with all previously established experimental facts, such as the ''lifetime dilatation'' of unstable particles, the Michelson--Morley experiment, etc. There is a difference relative to the usual theory, though, in that our theory predicts a new law for the Doppler frequency shift, which can be tested experimentally by measuring the second-order frequency shift

  3. Discrete symmetries with neutral mesons

    Science.gov (United States)

    Bernabéu, José

    2018-01-01

    Symmetries, and Symmetry Breakings, in the Laws of Physics play a crucial role in Fundamental Science. Parity and Charge Conjugation Violations prompted the consideration of Chiral Fields in the construction of the Standard Model, whereas CP-Violation needed at least three families of Quarks leading to Flavour Physics. In this Lecture I discuss the Conceptual Basis and the present experimental results for a Direct Evidence of Separate Reversal-in-Time T, CP and CPT Genuine Asymmetries in Decaying Particles like Neutral Meson Transitions, using Quantum Entanglement and the Decay as a Filtering Measurement. The eight transitions associated to the Flavour-CP eigenstate decay products of entangled neutral mesons have demonstrated with impressive significance a separate evidence of TRV and CPV in Bd-physics, whereas a CPTV asymmetry shows a 2σ effect interpreted as an upper limit. Novel CPTV observables are discussed for K physics at KLOE-2, including the difference between the semileptonic asymmetries from KL and KS, the ratios of double decay rate Intensities to Flavour-CP eigenstate decay products and the ω-effect. Their observation would lead to a change of paradigm beyond Quantum Field Theory, however there is nothing in Quantum Mechanics forbidding CPTV.

  4. Symmetry between bosons and fermions

    International Nuclear Information System (INIS)

    Ohnuki, Y.; Kamefuchi, S.

    1986-01-01

    By definition Bosons and Fermions behave quite differently as regards statistics. It is equally true, however, that in some other respects they do behave similarly or even symmetrically. In the present paper they would like to show that such similarity or symmetry can be exhibited most fully when the theory is formulated in a specific manner, i.e. in terms of annihilation and creation operators a/sub j/ and a/sub j//sup dagger/ or what they term g-numbers. The difference between Bosons and Fermions can, of course, be traced back to the difference in the signatures (jj) = +,- attached to the brackets in the basic commutation relations: [a/sub j/,a/sub j//sup dagger/]-(jj) = 1, [a/sub j/,a/sub j/]-(jj) = 0. However, the substantial part of the theory can in fact be formulated without specifying the individual signatures (jj). This is why it is possible to treat Bosons and Fermions in a unified manner, and to thereby consider, among the two, super- or more general, g-symmetry transformations. 6 references, 1 table

  5. Gauge symmetries, topology, and quantisation

    International Nuclear Information System (INIS)

    Balachandran, A.P.

    1994-01-01

    The following two loosely connected sets of topics are reviewed in these lecture notes: (1) Gauge invariance, its treatment in field theories and its implications for internal symmetries and edge states such as those in the quantum Hall effect. (2) Quantisation on multiply connected spaces and a topological proof the spin-statistics theorem which avoids quantum field theory and relativity. Under (1), after explaining the meaning of gauge invariance and the theory of constraints, we discuss boundary conditions on gauge transformations and the definition of internal symmetries in gauge field theories. We then show how the edge states in the quantum Hall effect can be derived from the Chern-Simons action using the preceding ideas. Under (2), after explaining the significance of fibre bundles for quantum physics, we review quantisation on multiply connected spaces in detail, explaining also mathematical ideas such as those of the universal covering space and the fundamental group. These ideas are then used to prove the aforementioned topological spin-statistics theorem

  6. Local discrete symmetries from superstring derived models

    International Nuclear Information System (INIS)

    Faraggi, A.E.

    1996-10-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model the author illustrates how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations

  7. On the origin of neutrino flavour symmetry

    International Nuclear Information System (INIS)

    King, Stephen F.; Luhn, Christoph

    2009-01-01

    We study classes of models which are based on some discrete family symmetry which is completely broken such that the observed neutrino flavour symmetry emerges indirectly as an accidental symmetry. For such 'indirect' models we discuss the D-term flavon vacuum alignments which are required for such an accidental flavour symmetry consistent with tri-bimaximal lepton mixing to emerge. We identify large classes of suitable discrete family symmetries, namely the Δ(3n 2 ) and Δ(6n 2 ) groups, together with other examples such as Z 7 x Z 3 . In such indirect models the implementation of the type I see-saw mechanism is straightforward using constrained sequential dominance. However the accidental neutrino flavour symmetry may be easily violated, for example leading to a large reactor angle, while maintaining accurately the tri-bimaximal solar and atmospheric predictions.

  8. Symmetry analysis in parametrisation of complex systems

    International Nuclear Information System (INIS)

    Sikora, W; Malinowski, J

    2010-01-01

    The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).

  9. Symmetry analysis in parametrisation of complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Malinowski, J, E-mail: sikora@novell.ftj.agh.edu.p [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland)

    2010-03-01

    The symmetry analysis method based on the theory of group representations is used for description of complex systems and their behavior in this work. The first trial of using the symmetry analysis in modeling of behavior of complex social system is presented. The evacuation of large building scenarios are discussed as transition from chaotic to ordered states, described as movements of individuals according to fields of displacements, calculated correspondingly to given scenario. The symmetry of the evacuation space is taken into account in calculation of displacements field - the displacements related to every point of this space are presented in the coordinate frame in the best way adapted to given symmetry space group, which is the set of basic vectors of irreducible representation of given symmetry group. The results got with using the symmetry consideration are compared with corresponding results calculated under assumption of shortest way to exits (Voronoi assumption).

  10. Discrete symmetries in periodic-orbit theory

    International Nuclear Information System (INIS)

    Robbins, J.M.

    1989-01-01

    The application of periodic-orbit theory to systems which possess a discrete symmetry is considered. A semiclassical expression for the symmetry-projected Green's function is obtained; it involves a sum over classical periodic orbits on a symmetry-reduced phase space, weighted by characters of the symmetry group. These periodic orbits correspond to trajectories on the full phase space which are not necessarily periodic, but whose end points are related by symmetry. If the symmetry-projected Green's functions are summed, the contributions of the unperiodic orbits cancel, and one recovers the usual periodic-orbit sum for the full Green's function. Several examples are considered, including the stadium billiard, a particle in a periodic potential, the Sinai billiard, the quartic oscillator, and the rotational spectrum of SF 6

  11. Symmetry adaptation in two-photon spectroscopy

    International Nuclear Information System (INIS)

    Kibler, M.

    1991-11-01

    Symmetry adaptation techniques are applied to the determination of the intensity of two-photon transitions for transition ions in finite symmetry environments. The case of intra-configurational transitions are discussed with some details and some results on inter-configurational transitions are briefly reported. In particular, for intra-configurational transitions, a model is described which takes into account the following ingredients: (symmetry, second- plus third-order mechanisms, S-, L- and J-mixings). (author) 20 refs

  12. Galileo symmetries in polymer particle representation

    International Nuclear Information System (INIS)

    Chiou, D-W

    2007-01-01

    To illustrate the conceptual problems for the low-energy symmetries in the continuum of spacetime emerging from the discrete quantum geometry, Galileo symmetries are investigated in the polymer particle representation of a non-relativistic particle as a simple toy model. The complete Galileo transformations (translation, rotation and Galileo boost) are naturally defined in the polymer particle Hilbert space and Galileo symmetries are recovered with highly suppressed deviations in the low-energy regime from the underlying polymer particle description

  13. Additional symmetries of supersymmetric KP hierarchies

    International Nuclear Information System (INIS)

    Stanciu, S.

    1994-01-01

    We investigate the additional symmetries of several supersymmetric KP hierarchies: the SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. In all three cases we find that the algebra of symmetries is isomorphic to the algebra of superdifferential operators, or equivalently SW 1+∞ . These results seem to suggest that despite their realization depending on the dynamics, the additional symmetries are kinematical in nature. (orig.)

  14. Rotational Symmetry Breaking in Baby Skyrme Models

    Science.gov (United States)

    Karliner, Marek; Hen, Itay

    We discuss one of the most interesting phenomena exhibited by baby skyrmions - breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.

  15. Spontaneously broken global symmetries and cosmology

    International Nuclear Information System (INIS)

    Shafi, Q.; Vilenkin, A.

    1984-01-01

    Phase transitions associated with spontaneously broken global symmetries, in case these occur in nature, can have important cosmological implications. This is illustrated through two examples. The first one shows how the spontaneous breaking of a global U(1) symmetry, present, for instance, in the minimal SU(5) model, can lead to an inflationary phase. The second example illustrates how topologically stable strings associated with the breaking of U(1) symmetry make an appearance at (or near) the end of the inflationary era

  16. Symmetries in discrete-time mechanics

    International Nuclear Information System (INIS)

    Khorrami, M.

    1996-01-01

    Based on a general formulation for discrete-time quantum mechanics, introduced by M. Khorrami (Annals Phys. 224 (1995), 101), symmetries in discrete-time quantum mechanics are investigated. It is shown that any classical continuous symmetry leads to a conserved quantity in classical mechanics, as well as quantum mechanics. The transformed wave function, however, has the correct evolution if and only if the symmetry is nonanomalous. Copyright copyright 1996 Academic Press, Inc

  17. Fermion dynamical symmetry and identical bands

    International Nuclear Information System (INIS)

    Guidry, M.

    1994-01-01

    Recent general attention has been directed to the phenomenon of identical bands in both normally deformed and superdeformed nuclei. This paper discusses the possibility that such behavior results from a dynamical symmetry of the nuclear many-body system. Phenomenology and the basic principles of Lie algebras are used to place conditions on the acceptable properties of a candidate symmetry. We find that quite general arguments require that such a symmetry have a minimum of 21 generators with a microscopic fermion interpretation

  18. Discrete symmetries and coset space dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1989-01-01

    We consider the discrete symmetries of all the six-dimensional coset spaces and we apply them in gauge theories defined in ten dimensions which are dimensionally reduced over these homogeneous spaces. Particular emphasis is given in the consequences of the discrete symmetries on the particle content as well as on the symmetry breaking a la Hosotani of the resulting four-dimensional theory. (orig.)

  19. The near-symmetry of proteins.

    Science.gov (United States)

    Bonjack-Shterengartz, Maayan; Avnir, David

    2015-04-01

    The majority of protein oligomers form clusters which are nearly symmetric. Understanding of that imperfection, its origins, and perhaps also its advantages requires the conversion of the currently used vague qualitative descriptive language of the near-symmetry into an accurate quantitative measure that will allow to answer questions such as: "What is the degree of symmetry deviation of the protein?," "how do these deviations compare within a family of proteins?," and so on. We developed quantitative methods to answer this type of questions, which are capable of analyzing the whole protein, its backbone or selected portions of it, down to comparison of symmetry-related specific amino-acids, and which are capable of visualizing the various levels of symmetry deviations in the form of symmetry maps. We have applied these methods on an extensive list of homomers and heteromers and found that apparently all proteins never reach perfect symmetry. Strikingly, even homomeric protein clusters are never ideally symmetric. We also found that the main burden of symmetry distortion is on the amino-acids near the symmetry axis; that it is mainly the more hydrophilic amino-acids that take place in symmetry-distortive interactions; and more. The remarkable ability of heteromers to preserve near-symmetry, despite the different sequences, was also shown and analyzed. The comprehensive literature on the suggested advantages symmetric oligomerizations raises a yet-unsolved key question: If symmetry is so advantageous, why do proteins stop shy of perfect symmetry? Some tentative answers to be tested in further studies are suggested in a concluding outlook. © 2014 Wiley Periodicals, Inc.

  20. Inverse semigroups the theory of partial symmetries

    CERN Document Server

    Lawson, Mark V

    1998-01-01

    Symmetry is one of the most important organising principles in the natural sciences. The mathematical theory of symmetry has long been associated with group theory, but it is a basic premise of this book that there are aspects of symmetry which are more faithfully represented by a generalization of groups called inverse semigroups. The theory of inverse semigroups is described from its origins in the foundations of differential geometry through to its most recent applications in combinatorial group theory, and the theory tilings.

  1. Broken SU(4) symmetry and new resonance

    International Nuclear Information System (INIS)

    Ueda, Y.

    1975-11-01

    Weinberg's spectral function sum rules are modified to accommodate broken symmetry effects of SU(4). With a simple choice of the symmetry-breaking term, the spectral function sum rules yield the observed vector meson mass spectrum as well as sum rules for the e - e + decay rates of vector mesons. In particular, a new mass formula, which can be interpreted as the broken symmetry version of the Schwinger formula, is derived, the agreement with experiments is excellent. (Ueda, Y.)

  2. Dark matter reflection of particle symmetry

    Science.gov (United States)

    Khlopov, Maxim Yu.

    2017-05-01

    In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.

  3. Description of the atomic disorder (local order) in crystals by the mixed-symmetry method

    Science.gov (United States)

    Dudka, A. P.; Novikova, N. E.

    2017-11-01

    An approach to the description of local atomic disorder (short-range order) in single crystals by the mixed-symmetry method based on Bragg scattering data is proposed, and the corresponding software is developed. In defect-containing crystals, each atom in the unit cell can be described by its own symmetry space group. The expression for the calculated structural factor includes summation over different sets of symmetry operations for different atoms. To facilitate the search for new symmetry elements, an "atomic disorder expert" was developed, which estimates the significance of tested models. It is shown that the symmetry lowering for some atoms correlates with the existence of phase transitions (in langasite family crystals) and the anisotropy of physical properties (in rare-earth dodecaborides RB12).

  4. Molecular symmetry, super-rotation, and semiclassical motion new ideas for solving old problems

    CERN Document Server

    Schmiedt, Hanno

    2017-01-01

    This book presents a range of fundamentally new approaches to solving problems involving traditional molecular models. Fundamental molecular symmetry is shown to open new avenues for describing molecular dynamics beyond standard perturbation techniques. Traditional concepts used to describe molecular dynamics are based on a few fundamental assumptions, the ball-and-stick picture of molecular structure and the respective perturbative treatment of different kinds of couplings between otherwise separate motions.  The book points out the conceptual limits of these models and, by focusing on the most essential idea of theoretical physics, namely symmetry, shows how to overcome those limits by introducing fundamentally new concepts. The book begins with an introduction to molecular symmetry in general, followed by a discussion of nuclear spin symmetry. Here, a new correlation between identical particle exchange and spin angular momentum symmetry of nuclei is exhibited. The central part of the book is the discussio...

  5. Large Top-Quark Mass and Nonlinear Representation of Flavor Symmetry

    International Nuclear Information System (INIS)

    Feldmann, Thorsten; Mannel, Thomas

    2008-01-01

    We consider an effective theory (ET) approach to flavor-violating processes beyond the standard model, where the breaking of flavor symmetry is described by spurion fields whose low-energy vacuum expectation values are identified with the standard model Yukawa couplings. Insisting on canonical mass dimensions for the spurion fields, the large top-quark Yukawa coupling also implies a large expectation value for the associated spurion, which breaks part of the flavor symmetry already at the UV scale Λ of the ET. Below that scale, flavor symmetry in the ET is represented in a nonlinear way by introducing Goldstone modes for the partly broken flavor symmetry and spurion fields transforming under the residual symmetry. As a result, the dominance of certain flavor structures in rare quark decays can be understood in terms of the 1/Λ expansion in the ET

  6. Elliptic-symmetry vector optical fields.

    Science.gov (United States)

    Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian

    2014-08-11

    We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.

  7. A κ-symmetry calculus for superparticles

    International Nuclear Information System (INIS)

    Gauntlett, J.P.

    1991-01-01

    We develop a κ-symmetry calculus for the d=2 and d=3, N=2 massive superparticles, which enables us to construct higher order κ-invariant actions. The method relies on a reformulation of these models as supersymmetric sigma models that are invariant under local worldline superconformal transformations. We show that the κ-symmetry is embedded in the superconformal symmetry so that a calculus for the κ-symmetry is equivalent to a tensor calculus for the latter. We develop such a calculus without the introduction of a wordline supergravity multiplet. (orig.)

  8. Symmetry, Wigner functions and particle reactions

    International Nuclear Information System (INIS)

    Chavlejshvili, M.P.

    1994-01-01

    We consider the great principle of physics - symmetry - and some ideas, connected with it, suggested by a great physicist Eugene Wigner. We will discuss the concept of symmetry and spin, study the problem of separation of kinematics and dynamics in particle reactions. Using Wigner rotation functions (reflecting symmetry properties) in helicity amplitude decomposition and crossing-symmetry between helicity amplitudes (which contains the same Wigner functions) we get convenient general formalism for description of reactions between particles with any masses and spins. We also consider some applications of the formalism. 17 refs., 1 tab

  9. Spontaneous symmetry breaking and its cosmological consequences

    International Nuclear Information System (INIS)

    Kobzarev, I.Yu.

    1975-01-01

    The concept of symmetry and of the spontaneous symmetry breaking are presented in popular form as applied to quantum physics. Though the presence of the spontaneous symmetry breaking is not proved directly for interactions of elementary particles, on considering the hypothesis of its presence as applied to the hot Universe theory a possibility of obtaining rather uncommon cosmological consequences is discussed. In particular, spontaneous symmetry breaking of vacuum and the rather hot Universe lead necessarily to the presence of the domain structure of the Universe with the surfase energy at the domain interface in the form of a real physical object

  10. PREFACE: Symmetries and Integrability of Difference Equations

    Science.gov (United States)

    Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane

    2007-10-01

    Kent in Canterbury, UK (1996), in Sabaudia near Rome, Italy (1998), at the University of Tokyo, Japan (2000), in Giens, France (2002), and in Helsinki, Finland (2004). The SIDE VII meeting was held at the University of Melbourne from 10-14 July 2006. The scientific committee consisted of Nalini Joshi (The University of Sydney), Frank W Nijhoff (University of Leeds), Reinout Quispel (La Trobe University) and Colin Rogers (University of New South Wales). The local organization was in the hands of John A G Roberts and Wolfgang K Schief. Proceedings of all the previous SIDE meetings have been published; the 1994 and 1988 meetings (edited respectively by D Levi, L Vinet and P Winternitz, and by D Levi and O Ragnisco) as volumes of the CRM Proceedings and Lecture Notes (AMS Publications), the 1996 meeting (edited by P Clarkson and F W Nijhoff) as Volume 255 in the LMS Lecture Note Series. Starting from the 1996 meeting the formula of publication has been changed to include rather selected refereed contributions submitted in response to a call for papers issued after the meetings and not restricted to their participants. Thus publications reflecting the scope of the 1996 meeting (edited by J Hietarinta, F W Nijhoff and J Satsuma) appeared in Journal of Physics A: Mathematical and General 34 48 (special issue), and of the 1998 and 2000 meetings (edited respectively by F W Nijhoff, Yu B Suris and C-M Viallet, and by J F van Diejen and R Halburd) in Journal of Nonlinear Mathematical Physics 10 (Suppl. 2) and 12 (Suppl. 2). The aim of this special issue is to benefit from the occasion offered by the SIDE VII meeting, producing an issue containing papers which represent the state-of-the-art knowledge for studying integrability and symmetry properties of difference equations. This special issue features high quality research papers and invited reviews which deal with themes that were covered by the SIDE VII conference. These are in alphabetical order: Algebraic-geometric approaches

  11. Particle-hole symmetry for composite fermions: An emergent symmetry in the fractional quantum Hall effect

    DEFF Research Database (Denmark)

    Coimbatore Balram, Ajit; Jain, Jainendra

    2017-01-01

    The particle-hole (PH) symmetry of {\\em electrons} is an exact symmetry of the electronic Hamiltonian confined to a specific Landau level, and its interplay with the formation of composite fermions has attracted much attention of late. This article investigates an emergent symmetry...... in the fractional quantum Hall effect, namely the PH symmetry of {\\em composite fermions}, which relates states at composite fermion filling factors $\

  12. Complete theory of symmetry-based indicators of band topology.

    Science.gov (United States)

    Po, Hoi Chun; Vishwanath, Ashvin; Watanabe, Haruki

    2017-06-30

    The interplay between symmetry and topology leads to a rich variety of electronic topological phases, protecting states such as the topological insulators and Dirac semimetals. Previous results, like the Fu-Kane parity criterion for inversion-symmetric topological insulators, demonstrate that symmetry labels can sometimes unambiguously indicate underlying band topology. Here we develop a systematic approach to expose all such symmetry-based indicators of band topology in all the 230 space groups. This is achieved by first developing an efficient way to represent band structures in terms of elementary basis states, and then isolating the topological ones by removing the subset of atomic insulators, defined by the existence of localized symmetric Wannier functions. Aside from encompassing all earlier results on such indicators, including in particular the notion of filling-enforced quantum band insulators, our theory identifies symmetry settings with previously hidden forms of band topology, and can be applied to the search for topological materials.Understanding the role of topology in determining electronic structure can lead to the discovery, or appreciation, of materials with exotic properties such as protected surface states. Here, the authors present a framework for identifying topologically distinct band-structures for all 3D space groups.

  13. New and old symmetries of the Maxwell and Dirac equations

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1983-01-01

    The symmetry properties of Maxwell's equations for the electromagnetic field and also of the Dirac and Kemmer-Duffin-Petiau equations are analyzed. In the framework of a ''non-Lie'' approach it is shown that, besides the well-known invariance with respect to the conformal group and the Heaviside-Larmor-Rainich transformations, Maxwell's equations have an additional symmetry with respect to the group U(2)xU(2) and with respect to the 23-dimensional Lie algebra A 23 . The transformations of the additional symmetry are given by nonlocal (integro-differential) operators. The symmetry of the Dirac equation in the class of differential and integro-differential transformations is investigated. It is shown that this equation is invariant with respect to an 18-parameter group, which includes the Poincare group as a subgroup. A 28-parameter invariance group of the Kemmer-Duffin-Petiau equation is found. Finite transformations of the conformal group for a massless field with arbitrary spin are obtained. The explicit form of conformal transformations for the electromagnetic field and also for the Dirac and Weyl fields is given

  14. Radiological symmetry of brain and head images: comparison and applications

    International Nuclear Information System (INIS)

    Hu, Qingmao; Nowinski, W.L.

    2006-01-01

    Most existing image-based approaches neglect the difference in radiological symmetry between the human brain and head. Thus, it is important to analyze and quantify the spatial relationship between the brain symmetry plane (BSP) and the head symmetry plane (HSP) on radiological images. The HSP and BSP were calculated through maximizing local symmetry within the head or cerebrum followed by outlier removal. The HSPs and BSPs for 145 diversified MRI datasets (80 normal, 23 pathological, and 42 synthesized) were extracted and compared. The average angular and distance deviations between the HSP and BSP were 0.49 and 1.65 mm, respectively. These deviations are dependent upon ethnicity and gender, being: (1) (0.56 , 1.85 mm) and (0.42 , 0.91 mm) for Caucasians and Asians, respectively; and (2) (0.33 , 1.17 mm) and (0.51 , 1.58 mm) for males and females, respectively. The HSP is generally different from the BSP on MR images. Statistically, they can be used interchangeably if accuracy of (0.49 , 1.65 mm) is acceptable. The BSP is preferred for a high accuracy Talairach transformation and localization of the anterior and posterior commissures. Either BSP or HSP can be used for medium accuracy Talairach transform. The HSP is preferred for detecting intracranial pathology. (orig.)

  15. Entanglement entropy in quantum spin chains with broken reflection symmetry

    International Nuclear Information System (INIS)

    Kadar, Zoltan; Zimboras, Zoltan

    2010-01-01

    We investigate the entanglement entropy of a block of L sites in quasifree translation-invariant spin chains concentrating on the effect of reflection-symmetry breaking. The Majorana two-point functions corresponding to the Jordan-Wigner transformed fermionic modes are determined in the most general case; from these, it follows that reflection symmetry in the ground state can only be broken if the model is quantum critical. The large L asymptotics of the entropy are calculated analytically for general gauge-invariant models, which have, until now, been done only for the reflection-symmetric sector. Analytical results are also derived for certain nongauge-invariant models (e.g., for the Ising model with Dzyaloshinskii-Moriya interaction). We also study numerically finite chains of length N with a nonreflection-symmetric Hamiltonian and report that the reflection symmetry of the entropy of the first L spins is violated but the reflection-symmetric Calabrese-Cardy formula is recovered asymptotically. Furthermore, for noncritical reflection-symmetry-breaking Hamiltonians, we find an anomaly in the behavior of the saturation entropy as we approach the critical line. The paper also provides a concise but extensive review of the block-entropy asymptotics in translation-invariant quasifree spin chains with an analysis of the nearest-neighbor case and the enumeration of the yet unsolved parts of the quasifree landscape.

  16. On new and old symmetries of Maxwell and Dirac equations

    International Nuclear Information System (INIS)

    Fushchich, V.I.; Nikitin, A.G.

    1983-01-01

    Symmetry properties of the Maxwell equation for the electromagnetic field are analysed as well as of the Dirac and Kemmer-Duffin-Petiau one. In the frame of the non-geometrical approach it is demonstrated, that besides to the well-known invariance under the conformal group and Heaviside-Larmor-Rainich transformation, Maxwell equation possess the additional symmetry under the group U(2)xU(2) and under the 23-dimensional Lie algebra A 23 . The additional symmetry transformations are realized by the non-local (integro-differential) operators. The symmetry of the Dirac. equation under the differential and integro-differential transformations is investio.ated. It is shown that this equation is invariant under the 18-parametrical group, which includes the Poincare group as a subgroup. The 28-parametrical invariance group of the Kemmer-Duffin-Petiau equation is found. The finite conformal group transformations for a massless field of any spin are obtained. The explicit form of the conformal transformations for the electromagnetic field as well as for the Dirac and Weyl fields is given

  17. A symmetry measure for damage detection with mode shapes

    Science.gov (United States)

    Chen, Justin G.; Büyüköztürk, Oral

    2017-11-01

    This paper introduces a feature for detecting damage or changes in structures, the continuous symmetry measure, which can quantify the amount of a particular rotational, mirror, or translational symmetry in a mode shape of a structure. Many structures in the built environment have geometries that are either symmetric or almost symmetric, however damage typically occurs in a local manner causing asymmetric changes in the structure's geometry or material properties, and alters its mode shapes. The continuous symmetry measure can quantify these changes in symmetry as a novel indicator of damage for data-based structural health monitoring approaches. This paper describes the concept as a basis for detecting changes in mode shapes and detecting structural damage. Application of the method is demonstrated in various structures with different symmetrical properties: a pipe cross-section with a finite element model and experimental study, the NASA 8-bay truss model, and the simulated IASC-ASCE structural health monitoring benchmark structure. The applicability and limitations of the feature in applying it to structures of varying geometries is discussed.

  18. Radiological symmetry of brain and head images: comparison and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qingmao; Nowinski, W.L. [Agency for Science, Technology and Research, Singapore (Singapore). Biomedical Imaging Lab.

    2006-08-15

    Most existing image-based approaches neglect the difference in radiological symmetry between the human brain and head. Thus, it is important to analyze and quantify the spatial relationship between the brain symmetry plane (BSP) and the head symmetry plane (HSP) on radiological images. The HSP and BSP were calculated through maximizing local symmetry within the head or cerebrum followed by outlier removal. The HSPs and BSPs for 145 diversified MRI datasets (80 normal, 23 pathological, and 42 synthesized) were extracted and compared. The average angular and distance deviations between the HSP and BSP were 0.49 and 1.65 mm, respectively. These deviations are dependent upon ethnicity and gender, being: (1) (0.56 , 1.85 mm) and (0.42 , 0.91 mm) for Caucasians and Asians, respectively; and (2) (0.33 , 1.17 mm) and (0.51 , 1.58 mm) for males and females, respectively. The HSP is generally different from the BSP on MR images. Statistically, they can be used interchangeably if accuracy of (0.49 , 1.65 mm) is acceptable. The BSP is preferred for a high accuracy Talairach transformation and localization of the anterior and posterior commissures. Either BSP or HSP can be used for medium accuracy Talairach transform. The HSP is preferred for detecting intracranial pathology. (orig.)

  19. Concentric network symmetry grasps authors' styles in word adjacency networks

    Science.gov (United States)

    Amancio, Diego R.; Silva, Filipi N.; Costa, Luciano da F.

    2015-06-01

    Several characteristics of written texts have been inferred from statistical analysis derived from networked models. Even though many network measurements have been adapted to study textual properties at several levels of complexity, some textual aspects have been disregarded. In this paper, we study the symmetry of word adjacency networks, a well-known representation of text as a graph. A statistical analysis of the symmetry distribution performed in several novels showed that most of the words do not display symmetric patterns of connectivity. More specifically, the merged symmetry displayed a distribution similar to the ubiquitous power-law distribution. Our experiments also revealed that the studied metrics do not correlate with other traditional network measurements, such as the degree or the betweenness centrality. The discriminability power of the symmetry measurements was verified in the authorship attribution task. Interestingly, we found that specific authors prefer particular types of symmetric motifs. As a consequence, the authorship of books could be accurately identified in 82.5% of the cases, in a dataset comprising books written by 8 authors. Because the proposed measurements for text analysis are complementary to the traditional approach, they can be used to improve the characterization of text networks, which might be useful for applications based on stylistic classification.

  20. Expediting model-based optoacoustic reconstructions with tomographic symmetries

    International Nuclear Information System (INIS)

    Lutzweiler, Christian; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-01-01

    Purpose: Image quantification in optoacoustic tomography implies the use of accurate forward models of excitation, propagation, and detection of optoacoustic signals while inversions with high spatial resolution usually involve very large matrices, leading to unreasonably long computation times. The development of fast and memory efficient model-based approaches represents then an important challenge to advance on the quantitative and dynamic imaging capabilities of tomographic optoacoustic imaging. Methods: Herein, a method for simplification and acceleration of model-based inversions, relying on inherent symmetries present in common tomographic acquisition geometries, has been introduced. The method is showcased for the case of cylindrical symmetries by using polar image discretization of the time-domain optoacoustic forward model combined with efficient storage and inversion strategies. Results: The suggested methodology is shown to render fast and accurate model-based inversions in both numerical simulations andpost mortem small animal experiments. In case of a full-view detection scheme, the memory requirements are reduced by one order of magnitude while high-resolution reconstructions are achieved at video rate. Conclusions: By considering the rotational symmetry present in many tomographic optoacoustic imaging systems, the proposed methodology allows exploiting the advantages of model-based algorithms with feasible computational requirements and fast reconstruction times, so that its convenience and general applicability in optoacoustic imaging systems with tomographic symmetries is anticipated