WorldWideScience

Sample records for noe nmr studies

  1. Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints

    International Nuclear Information System (INIS)

    Furuita, Kyoko; Kataoka, Saori; Sugiki, Toshihiko; Hattori, Yoshikazu; Kobayashi, Naohiro; Ikegami, Takahisa; Shiozaki, Kazuhiro; Fujiwara, Toshimichi; Kojima, Chojiro

    2015-01-01

    NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based procedures due to an insufficient number of NOE restraints. By using the 867 PRE-derived distance restraints obtained from the NOE-based structure determination procedure, a high-resolution structure of Sin1 could be successfully determined. The convergence and accuracy of the determined structure were improved by increasing the number of PRE-derived distance restraints. This study demonstrates that PRE-derived distance restraints are useful in the determination of a high-resolution structure of a soluble protein when the number of NOE constraints is insufficient

  2. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States); Petit, Chad M. [University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics (United States); Cornilescu, Gabriel; Stark, Jaime L.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States)

    2016-06-15

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27–98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  3. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data

    International Nuclear Information System (INIS)

    Lee, Woonghee; Petit, Chad M.; Cornilescu, Gabriel; Stark, Jaime L.; Markley, John L.

    2016-01-01

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27–98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  4. Graphical analysis of NMR structural quality and interactive contact map of NOE assignments in ARIA

    Directory of Open Access Journals (Sweden)

    Malliavin Thérèse E

    2008-06-01

    Full Text Available Abstract Background The Ambiguous Restraints for Iterative Assignment (ARIA approach is widely used for NMR structure determination. It is based on simultaneously calculating structures and assigning NOE through an iterative protocol. The final solution consists of a set of conformers and a list of most probable assignments for the input NOE peak list. Results ARIA was extended with a series of graphical tools to facilitate a detailed analysis of the intermediate and final results of the ARIA protocol. These additional features provide (i an interactive contact map, serving as a tool for the analysis of assignments, and (ii graphical representations of structure quality scores and restraint statistics. The interactive contact map between residues can be clicked to obtain information about the restraints and their contributions. Profiles of quality scores are plotted along the protein sequence, and contact maps provide information of the agreement with the data on a residue pair level. Conclusion The graphical tools and outputs described here significantly extend the validation and analysis possibilities of NOE assignments given by ARIA as well as the analysis of the quality of the final structure ensemble. These tools are included in the latest version of ARIA, which is available at http://aria.pasteur.fr. The Web site also contains an installation guide, a user manual and example calculations.

  5. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Richard [Huazhong University of Science and Technology, School of Software Engineering (China); Wang, Yan [Huazhong University of Science and Technology, School of Life Science and Technology (China); Xue, Zhidong, E-mail: zdxue@hust.edu.cn [Huazhong University of Science and Technology, School of Software Engineering (China); Zhang, Yang, E-mail: zhng@umich.edu [University of Michigan, Department of Computational Medicine and Bioinformatics (United States)

    2015-08-15

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  6. Identification of individual protein-ligand NOEs in the limit of intermediate exchange

    International Nuclear Information System (INIS)

    Reibarkh, Mikhail; Malia, Thomas J.; Hopkins, Brian T.; Wagner, Gerhard

    2006-01-01

    Interactions of proteins with small molecules or other macromolecules play key roles in many biological processes and in drug action, and NMR is an excellent tool for their structural characterization. Frequently, however, line broadening due to intermediate exchange completely eliminates the signals needed for measuring specific intermolecular NOEs. This limits the use of NMR for detailed structural studies in such kinetic situations. Here we show that an optimally chosen excess of ligand over protein can reduce the extent of line broadening for both the ligand and the protein. This makes observation of ligand resonances possible but reduces the size of the measurable NOEs due to the residual line broadening and the non-stoichiometric concentrations. Because the solubility of small molecule drug leads are often limited to high micromolar concentrations, protein concentrations are restricted to even lower values in the low micromolar range. At these non-stoichiometric concentrations and in the presence of significant residual line broadening, conventional NOESY experiments very often are not sensitive enough to observe intermolecular NOEs since the signals inverted by the NOESY preparation pulse sequence relax prior to significant NOE build up. Thus, we employ methods related to driven NOE spectroscopy to investigate protein-ligand interactions in the intermediate exchange regime. In this approach, individual protein resonances are selectively irradiated for up to five seconds to build up measurable NOEs at the ligand resonances. To enable saturation of individual protein resonances we prepare deuterated protein samples selectively protonated at a few sites so that the 1D 1 H spectrum of the protein is resolved well enough to permit irradiation of individual protein signals, which do not overlap with the ligand spectrum. This approach is suitable for measuring a sufficiently large number of protein-ligand NOEs that allow calculation of initial complex structures

  7. Solvation study of the non-specific lipid transfer protein from wheat by intermolecular NOEs with water and small organic molecules

    International Nuclear Information System (INIS)

    Liepinsh, Edvards; Sodano, Patrick; Tassin, Severine; Marion, Didier; Vovelle, Francoise; Otting, Gottfried

    1999-01-01

    Intermolecular nuclear Overhauser effects (NOEs) were measured between the protons of various small solvent or gas molecules and the non-specific lipid transfer protein (ns-LTP) from wheat. Intermolecular NOEs were observed with the hydrophobic pocket in the interior of wheat ns-LTP, which grew in intensity in the order cyclopropane (saturated solution) < methane (140 bar) < ethane (40 bar) < acetonitrile (5% in water) < cyclohexane (saturated solution) < benzene (saturated solution). No intermolecular NOEs were observed with dioxane (5% in water). The intermolecular NOEs were negative for all of the organic molecules tested. Intermolecular NOEs between wheat ns-LTP and water were weak or could not be distinguished from exchange-relayed NOEs. As illustrated by the NOEs with cyclohexane versus dioxane, the hydrophobic pocket in wheat ns-LTP preferably binds non-polar molecules. Yet, polar molecules like acetonitrile can also be accommodated. The pressure dependence of the NOEs between methane and wheat ns-LTP indicated incomplete occupancy, even at 190 bar methane pressure. In general, NOE intensities increased with the size of the ligand molecule and its vapor pressure. NMR of the vapor phase showed excellent resolution between the signals from the gas phase and those from the liquid phase. The vapor concentration of cyclohexane was fivefold higher than that of the dioxane solution, supporting the binding of cyclohexane versus uptake of dioxane

  8. KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Iwahara, Junji; Koshiba, Seizo; Tomizawa, Tadashi; Tochio, Naoya; Guentert, Peter; Kigawa, Takanori; Yokoyama, Shigeyuki

    2007-01-01

    The recent expansion of structural genomics has increased the demands for quick and accurate protein structure determination by NMR spectroscopy. The conventional strategy without an automated protocol can no longer satisfy the needs of high-throughput application to a large number of proteins, with each data set including many NMR spectra, chemical shifts, NOE assignments, and calculated structures. We have developed the new software KUJIRA, a package of integrated modules for the systematic and interactive analysis of NMR data, which is designed to reduce the tediousness of organizing and manipulating a large number of NMR data sets. In combination with CYANA, the program for automated NOE assignment and structure determination, we have established a robust and highly optimized strategy for comprehensive protein structure analysis. An application of KUJIRA in accordance with our new strategy was carried out by a non-expert in NMR structure analysis, demonstrating that the accurate assignment of the chemical shifts and a high-quality structure of a small protein can be completed in a few weeks. The high completeness of the chemical shift assignment and the NOE assignment achieved by the systematic analysis using KUJIRA and CYANA led, in practice, to increased reliability of the determined structure

  9. Practical aspects of the 2D 15N-{1H}-NOE experiment

    International Nuclear Information System (INIS)

    Renner, Christian; Schleicher, Michael; Moroder, Luis; Holak, Tad A.

    2002-01-01

    The heteronuclear 15 N-NOE experiment was extensively tested with respect to statistical and systematic experimental error. The dependence of signal intensity in the NOE experiment and in the reference experiment on the saturation and relaxation time was experimentally investigated. The statistics of the experimental values were accessed by numerous repetitions of identical set-ups. As a model system a protein of typical size for NMR studies was chosen, i.e., a 120 amino acid residues containing fragment of the F-actin binding gelation factor (ABP-120). The fragment exhibits fast dynamics that are accessible with the 15 N-NOE experiment with various amplitudes. The results of this study show that commonly used parameters are only adequate for accurate measurement of motions with moderate amplitude. Highly flexible parts require longer delay times and thus more experimental time than commonly used. On the other hand, a qualitative or semi-quantitative assessment of a protein's mobility on fast times scales can be obtained from rapidly recorded experiments with unusual short delay times. The findings of this study are of equal importance for highly accurate measurement of the 15 N-NOE as well as for quick identification of mobile or even unstructured residues/parts of a protein

  10. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    Science.gov (United States)

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  11. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuanpeng Janet, E-mail: yphuang@cabm.rutgers.edu; Mao, Binchen; Xu, Fei; Montelione, Gaetano T., E-mail: gtm@rutgers.edu [Rutgers, The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (United States)

    2015-08-15

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD–NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases {sup 15}N–{sup 1}H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD–NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta.

  12. An Asymmetric Deuterium Labeling Strategy to Identify Interprotomer and Intraprotomer NOEs in Oligomeric Proteins

    International Nuclear Information System (INIS)

    Jasanoff, Alan

    1998-01-01

    A major difficulty in determining the structure of an oligomeric protein by NMR is the problem of distinguishing inter- from intraprotomer NOEs. In order to address this issue in studies of the 27 kD compact trimeric domain of the MHC class II-associated invariant chain, we compared the 13C NOESY-HSQC spectrum of a uniformly 13C-labeled trimer with the spectrum of the same trimer labeled with 13C in only one protomer, and with deuterium in the other two protomers. The spectrum of the unmixed trimer included both inter- and intraprotomer NOEs while the spectrum of the mixed trimer included only intraprotomer peaks. NOEs clearly absent from the spectrum of the mixed trimer could be confidently assigned to interprotomer interactions. Asymmetrically labeled trimers were isolated by refolding a 13C-labeled shorter form of the protein with a 2H-labeled longer form, chromatographically purifying trimers with only one short chain, and then processing with trypsin to yield only protomers with the desired N- and C-termini. In contrast to earlier studies, in which statistical mixtures of differently labeled protomers were analyzed, our procedure generated only a well-defined 1:2 oligomer, and no other mixed oligomers were present. This increased the maximum possible concentration of NMR-active protomers and thus the sensitivity of the experiments. Related methods should be applicable to many oligomeric proteins, particularly those with slow protomer exchange rates

  13. De novo protein structure determination using sparse NMR data

    International Nuclear Information System (INIS)

    Bowers, Peter M.; Strauss, Charlie E.M.; Baker, David

    2000-01-01

    We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models are built from these fragments by minimizing an energy function that favors hydrophobic burial, strand pairing, and satisfaction of NOE constraints. Models generated using this procedure with ∼1 NOE constraint per residue are in some cases closer to the corresponding X-ray structures than the published NMR solution structures. The method requires only the sparse constraints available during initial stages of NMR structure determination, and thus holds promise for increasing the speed with which protein solution structures can be determined

  14. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA

    International Nuclear Information System (INIS)

    Scahill, T.A.; Jensen, R.M.; Swenson, D.H.; Hatzenbuhler, N.T.; Petzold, G.; Wierenga, W.; Brahme, N.D.

    1990-01-01

    The binding of the antitumor drug CC-1065 has been studied with nuclear magnetic resonance (NMR) spectroscopy. This study involves two parts, the elucidation of the covalent binding site of the drug to DNA and a detailed investigation of the noncovalent interactions of CC-1065 with a DNA fragment through analysis of 2D NOE (NOESY) experiments. A CC-1065-DNA adduct was prepared, and an adenine adduct was released upon heating. NMR ( 1 H and 13 C) analysis of the adduct shows that the drug binds to N3 of adenine by reaction of its cyclopropyl group. The reaction pathway and product formed were determined by analysis of the 13 C DEPT spectra. An octamer duplex, d(CGATTAGC·GCTAATCG), was synthesized and used in the interaction study of CC-1065 and the oligomer. The duplex and the drug-octamer complex were both analyzed by 2D spectroscopy (COSY, NOESY). The relative intensity of the NOEs observed between the drug (CC-1065) and the octamer duplex shows conclusively that the drug is located in the minor groove, covalently attached to N3 of adenine 6 and positioned from the 3' → 5' end in relation to strand A [d(CGATTA 6 GC)]. A mechanism for drug binding and stabilization can be inferred from the NOE data and model-building studies

  15. Proton NMR Studies of a Large Protein. pH, Substrate Titrations, and NOESY Experiments with Perdeuterated Yeast Phosphoglycerate Kinase Containing [ 1H]Histidine Residues

    Science.gov (United States)

    Pappu, K. M.; Serpersu, E. H.

    Fully deuterated yeast phosphoglycerate kinase ([ 2H]PGK) was prepared biosynthetically with only histidine side chains of normal ( 1H) isotopic composition. The 1H NMR spectrum of this enzyme([ 1H]His[ 2H]PGK) showed that the histidine side chains are clearly visible as sharp signals. Thus detailed structural studies by 1H NMR became feasible with isotope-hybrid phosphoglycerate kinase which is otherwise too large ( Mr ˜ 46,000) for conventional 1H NMR studies. Proton signals of bound substrates were visible in the 1H NMR spectrum even with a substrate-to-enzyme ratio of less than 1/2 (mol/mol). The 2D NOESY spectrum of enzyme-MgdATP-glycerol 3-phosphate complex showed that, although protein concentration was very high (1.5 m M), no intraprotein cross peaks were observed other than those of intraresidue histidine NOE cross peaks. In addition, intrasubstrate NOEs and intermolecular NOEs between histidine and substrate protons were visible at a 1.5/1 substrate/enzyme (mol/mol) ratio. Paramagnetic effects of a substrate analog, Cr(III)ATP, on some of the histidine side chains indicated that the formation of the ternary enzyme-substrate complex causes large conformational changes in the enzyme.

  16. Compiled data set of exact NOE distance limits, residual dipolar couplings and scalar couplings for the protein GB3

    Directory of Open Access Journals (Sweden)

    Beat Vögeli

    2015-12-01

    Full Text Available We compiled an NMR data set consisting of exact nuclear Overhauser enhancement (eNOE distance limits, residual dipolar couplings (RDCs and scalar (J couplings for GB3, which forms one of the largest and most diverse data set for structural characterization of a protein to date. All data have small experimental errors, which are carefully estimated. We use the data in the research article Vogeli et al., 2015, Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics, J. Struct. Biol., 191, 3, 306–317, doi:10.1016/j.jsb.2015.07.008 [1] for cross-validation in multiple-state structural ensemble calculation. We advocate this set to be an ideal test case for molecular dynamics simulations and structure calculations.

  17. Structural studies of SpoIIAA using NMR

    International Nuclear Information System (INIS)

    Comfort, D.M.

    1998-01-01

    The protein SpoIIAA participates, via phosphorylation and dephosphorylation, in the four-component system that regulates the sporulation sigma factor e. Differential gene expression depends on specialised transcription factors called sigma factors, which direct the RNA polymerase to transcribe specific genes in one or other of the two chambers at various stages of sporulation. The first sporulation-specific sigma factor to be activated is 4 transcription that depends on σ F is essential for the remaining sigma factors to become active in turn. Early in sporulation SpoIIAA is in the phosphorylated state (SpoIIAA-P), as a result of the activity of the ATP-dependent protein kinase, SpoIIAB. About 80 minutes after the initiation of sporulation a specific phosphatase, SpoIIE, begins to hydrolyse SpoIIAA-P, and the resulting SpoIIAA again becomes a substrate for SpoIIAB. SpoIIAB is also an anti-sigma factor which in its free form inhibits a F by binding to it. Competition by SpoIIAA (the anti-anti-sigma factor) for binding to SpoIIAB releases e activity. The three-dimensional structure of SpoIIAA has been determined using high resolution NMR. SpoIIAA has a novel fold, composed of a-helices and P-strand elements. The structural differences between SpoIIAA and its inactive form, SpoIIAA-P, were also investigated by NMR. Tentative evidence points to the observation that phosphorylation of SpoIIAA results in a minor conformational change near the site of phosphorylation, which interferes with the hydrophobic interaction between SpoIIAA and SpoIIAB. Further NMR studies helped to predict the location of SpoIIAA-, GTP-, and ATP-binding sites on the SpoIIAA structure. In addition, the automated iterative NOE assignment algorithm, ARIA, was used to obtain additional NOE-based distance constraints and to calculate a refined structure. (author)

  18. Structural studies of SpoIIAA using NMR

    Energy Technology Data Exchange (ETDEWEB)

    Comfort, D.M

    1998-07-01

    The protein SpoIIAA participates, via phosphorylation and dephosphorylation, in the four-component system that regulates the sporulation sigma factor e. Differential gene expression depends on specialised transcription factors called sigma factors, which direct the RNA polymerase to transcribe specific genes in one or other of the two chambers at various stages of sporulation. The first sporulation-specific sigma factor to be activated is 4 transcription that depends on {sigma}{sup F} is essential for the remaining sigma factors to become active in turn. Early in sporulation SpoIIAA is in the phosphorylated state (SpoIIAA-P), as a result of the activity of the ATP-dependent protein kinase, SpoIIAB. About 80 minutes after the initiation of sporulation a specific phosphatase, SpoIIE, begins to hydrolyse SpoIIAA-P, and the resulting SpoIIAA again becomes a substrate for SpoIIAB. SpoIIAB is also an anti-sigma factor which in its free form inhibits a F by binding to it. Competition by SpoIIAA (the anti-anti-sigma factor) for binding to SpoIIAB releases e activity. The three-dimensional structure of SpoIIAA has been determined using high resolution NMR. SpoIIAA has a novel fold, composed of a-helices and P-strand elements. The structural differences between SpoIIAA and its inactive form, SpoIIAA-P, were also investigated by NMR. Tentative evidence points to the observation that phosphorylation of SpoIIAA results in a minor conformational change near the site of phosphorylation, which interferes with the hydrophobic interaction between SpoIIAA and SpoIIAB. Further NMR studies helped to predict the location of SpoIIAA-, GTP-, and ATP-binding sites on the SpoIIAA structure. In addition, the automated iterative NOE assignment algorithm, ARIA, was used to obtain additional NOE-based distance constraints and to calculate a refined structure. (author)

  19. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1

    International Nuclear Information System (INIS)

    Dolenc, Jozica; Missimer, John H.; Steinmetz, Michel O.; Gunsteren, Wilfred F. van

    2010-01-01

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 φ torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular α-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured 3 J(H N -H Cα )-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and 3 J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and 3 J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  20. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1.

    Science.gov (United States)

    Dolenc, Jozica; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2010-07-01

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 phi torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular alpha-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured (3)J(H(N)-H(Calpha))-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and (3)J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and (3)J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  1. 13C-NMR assignment, structure, and dynamics of deoxyoligonucleotides

    International Nuclear Information System (INIS)

    Zanatta, N.; Borer, P.N.; Levy, G.C.

    1986-01-01

    The unique spectral properties of 13 C-NMR for studying nucleic acids and some of the important features of 13 C-NMR in oligonucleotide studies are demostrated. The main difficulty in studying oligonucleotides by 13 C-NMR and recent improvements in NMR instrumentation and advances in oligonucleotide synthesis are presented. The high resolution 13 C-NMR spectra, T 1 relaxation times and NOEs were measured for duplex of the self-complementary oligo-DNAs: d(CG) 3 and d(GGTATACC) are studied. The target of this study is to developed a systematic 13 C-NMR spectral assignment and to investigate the structure and dynamics of these two sequences by this techniques. (M.J.C.) [pt

  2. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints

    International Nuclear Information System (INIS)

    Giesen, Alexander W.; Homans, Steve W.; Brown, Jonathan Miles

    2003-01-01

    We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (N i -H N i , N i -C' i-1 , H N i - C' i-1 ) in two tensor frames and only backbone H N -H N NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 A with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms

  3. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, Jozica [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland); Missimer, John H.; Steinmetz, Michel O. [Paul Scherrer Institut, Biomolecular Research (Switzerland); Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.c [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland)

    2010-07-15

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 {phi} torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular {alpha}-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured {sup 3}J(H{sub N}-H{sub C{alpha}})-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and {sup 3}J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and {sup 3}J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  4. Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers

    International Nuclear Information System (INIS)

    Chou, S.H.; Flynn, P.; Reid, B.

    1989-01-01

    Ten-micromole solid-phase RNA synthesis has been successfully performed on an automated nucleic acid synthesizer with coupling efficiencies up to 99%, using the tert-butyldimethylsilyl group to protect the 2'-hydroxyl. The tert-butyldimethylsilyl group was easily removed by tetrabutylammonium fluoride under conditions in which virtually no 2'- to 3'-isomerization was found to occur. By use of this approach, the self-complementary RNA dodecamers r(CGCGAAUUCGCG) and r(CGCGUAUACGCG) were synthesized on an automated nucleic acid synthesizer, purified by TLC, and studied by high-resolution NMR. Imino protons were assigned from one-dimensional nuclear Overhauser effects. The nonexchangeable base, H1', and H2' protons were assigned by the sequential NOESY connectivity method. The NOE data from these two oligomers were analyzed qualitatively and compared to the ideal A- and B-type helix models of Arnott et al. (1972a,b). The internucleotide H6/H8 NOEs to the preceding H1' in r(CGCGUAUACGCG) were found to be sequence-dependent and probably reflect the roll angles between adjacent bases. The internucleotide H6/H8 to H2' NOEs of these oligomers correspond very well to an A-type conformation, but the interstrand adenine H2 NOEs to the following H1' were much stronger than those predicted from the fiber model. These strong interstrand NOEs can be rationalized by base pair slide to favor more interstrand base overlap

  5. Structural Studies of Bcl-xL/ligand Complexes using {sup 19}F NMR

    Energy Technology Data Exchange (ETDEWEB)

    Yu Liping; Hajduk, Philip J.; Mack, Jamey; Olejniczak, Edward T. [GPRD, Abbott Laboratories, Pharmaceutical Discovery Division (United States)], E-mail: Edward.olejniczak@abbott.com

    2006-04-15

    Fluorine atoms are often incorporated into drug molecules as part of the lead optimization process in order to improve affinity or modify undesirable metabolic and pharmacokinetic profiles. From an NMR perspective, the abundance of fluorinated drug leads provides an exploitable niche for structural studies using {sup 19}F NMR in the drug discovery process. As {sup 19}F has no interfering background signal from biological sources, {sup 19}F NMR studies of fluorinated drugs bound to their protein receptors can yield easily interpretable and unambiguous structural constraints. {sup 19}F can also be selectively incorporated into proteins to obtain additional constraints for structural studies. Despite these advantages, {sup 19}F NMR has rarely been exploited for structural studies due to its broad lines in macromolecules and their ligand complexes, leading to weak signals in {sup 1}H/{sup 19}F heteronuclear NOE experiments. Here we demonstrate several different experimental strategies that use {sup 19}F NMR to obtain ligand-protein structural constraints for ligands bound to the anti-apoptotic protein Bcl-xL, a drug target for anti-cancer therapy. These examples indicate the applicability of these methods to typical structural problems encountered in the drug development process.

  6. NMR study of 1,4-dihydropyridine derivatives endowed with long alkyl and functionalized chains

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Margarita; Salfran, Esperanza; Rodriguez, Hortensia; Coro, Julieta, E-mail: msuarez@fq.uh.c [Universidad de La Habana (Cuba). Facultad de Quimica. Lab. de Sintesis Organica; Molero, Dolores; Saez, Elena [Universidad Complutense, Madrid (Spain). CAI-RMN; Martinez-Alvarez, Roberto; Martin, Nazario [Universidad Complutense, Madrid (Spain). Facultad de Quimica. Dept. de Quimica Organica I

    2011-07-01

    The {sup 1}H , {sup 13}C and {sup 15}N NMR spectroscopic data for 1,4-dihydropyridine endowed with long alkyl and functionalized chain on C-3 and C-5, have been fully assigned by combination of one- and two dimensional experiments (DEPT, HMBC, HMQC, COSY, nOe). (author)

  7. Conformational analysis of a Chlamydia-specific disaccharide α-Kdo-(2→8)-α-Kdo-(2→O)-allyl in aqueous solution and bound to a monoclonal antibody: Observation of intermolecular transfer NOEs

    International Nuclear Information System (INIS)

    Sokolowski, Tobias; Haselhorst, Thomas; Scheffler, Karoline; Weisemann, Ruediger; Kosma, Paul; Brade, Helmut; Brade, Lore; Peters, Thomas

    1998-01-01

    The disaccharide α-Kdo-(2 → 8)-α-Kdo (Kdo: 3-deoxy-d-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all 1 H NMR signals of α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex

  8. Position of residues in transmembrane peptides with respect to the lipid bilayer: A combined lipid NOEs and water chemical exchange approach in phospholipid bicelles

    International Nuclear Information System (INIS)

    Glover, Kerney Jebrell; Whiles, Jennifer A.; Vold, Regitze R.; Melacini, Giuseppe

    2002-01-01

    The model transmembrane peptide P16 was incorporated into small unaligned phospholipid bicelles, which provide a 'native-like' lipid bilayer compatible with high-resolution solution NMR techniques. Using amide-water chemical exchange and amide-lipid cross-relaxation measurements, the interactions between P16 and bicelles were investigated. Distinctive intermolecular NOE patterns observed in band-selective 2D-NOESY spectra of bicellar solutions with several lipid deuteration schemes indicated that P16 is preferentially interacting with the 'bilayered' region of the bicelle rather than with the rim. Furthermore, when amide-lipid NOEs were combined with amide-water chemical exchange cross-peaks of selectively 15 N-labeled P16 peptides, valuable information was obtained about the position of selected residues relative to the membrane-water interface. Specifically, three main classes were identified. Class I residues lie outside the bilayer and show amide-water exchange cross-peaks but no amide-lipid NOEs. Class II residues reside in the bilayer-water interface and show both amide-water exchange cross-peaks and amide-lipid NOEs. Class III residues are embedded within the hydrophobic core of the membrane and show no amide-water exchange cross-peaks but strong amide-lipid NOEs

  9. Conformational analysis of a Chlamydia-specific disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl in aqueous solution and bound to a monoclonal antibody: Observation of intermolecular transfer NOEs

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Tobias; Haselhorst, Thomas; Scheffler, Karoline [Medizinische Universitaet, Institut fuer Chemie (Germany); Weisemann, Ruediger [Bruker Analytik GmbH, Silberstreifen (Germany); Kosma, Paul [Institut fuer Chemie der Universitaet fuer Bodenkultur Wien (Austria); Brade, Helmut; Brade, Lore [Forschungszentrum Borstel, Zentrum fuer Medizin und Biowissenschaften Parkallee 22 (Germany); Peters, Thomas [Medizinische Universitaet, Institut fuer Chemie (Germany)

    1998-07-15

    The disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo (Kdo: 3-deoxy-d-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all {sup 1}H NMR signals of {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex.

  10. Discriminating binding and positioning of amphiphiles to lipid bilayers by {sup 1}H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Evanics, F. [Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd. North Mississauga, Ont., L5L 1C6 (Canada); Prosser, R.S. [Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd. North Mississauga, Ont., L5L 1C6 (Canada)]. E-mail: sprosser@utm.utoronto.ca

    2005-04-04

    The binding and positioning in lipid bilayers of three well-known drugs--imipramine, nicotine, and caffeine--have been studied using {sup 1}H NMR. The membrane model system consisted of 'fast-tumbling' lipid bicelles, in which a bilayered lipid domain, composed of the unsaturated lipid, 1,2-dimyristelaidoyl-sn-glycero-3-phosphocholine (DMLPC) was surrounded by a rim of deuterated detergent-like lipids, consisting of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC-d22). Binding and immersion depth information was obtained by three experiments. (1) {sup 1}H chemical shift perturbations, upon transfer of the amphiphiles from water to a bicelle mixture, were used to estimate regions of the amphiphiles that interact with the membrane. (2) Water contact to resolvable protons was measured through a Nuclear Overhauser Effect (NOE) between water and resolvable drug and lipid resonances. In the case of both lipids and membrane bound drugs, positive NOEs with large cross-relaxation rates were measured for most resonances originating from the membrane hydrophilic region, while negative NOEs were observed predominantly to resonances in the hydrophobic region of the membrane. (3) {sup 1}H NMR measurements of oxygen-induced (paramagnetic) spin-lattice relaxation rates, which are known to increase with membrane immersion depth, were used to corroborate conclusions based on chemical shift perturbations and water-ligand NOEs.

  11. Exploring the trigger sequence of the GCN4 coiled-coil: Biased molecular dynamics resolves apparent inconsistencies in NMR measurements

    Science.gov (United States)

    Missimer, John H; Dolenc, Jožica; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2010-01-01

    Trigger sequences are indispensable elements for coiled-coil formation. The monomeric helical trigger sequence of the yeast transcriptional activator GCN4 has been investigated recently using several solution NMR observables including nuclear Overhauser enhancement (NOE) intensities and 3J(HN,HCα)-coupling constants, and a set of 20 model structures was proposed. Constrained to satisfy the NOE-derived distance bounds, the NMR model structures do not appear to reproduce all the measured 3J(HN-HCα)-coupling constant values, indicating that the α-helical propensity is not uniform along the GCN4 trigger sequence. A recent methodological study of unrestrained and restrained molecular dynamics (MD) simulations of the GCN4 trigger sequence in solution showed that only MD simulations incorporating time-averaged NOE distance restraints and instantaneous or local-elevation 3J-coupling restraints could satisfy the entire set of the experimental data. In this report, we assess by means of cluster analyses the model structures characteristic of the two simulations that are compatible with the measured data and compare them with the proposed 20 NMR model structures. Striking characteristics of the MD model structures are the variability of the simulated configurations and the indication of entropic stability mediated by the aromatic N-terminal residues 17Tyr and 18His, which are absent in the set of NMR model structures. PMID:20954244

  12. Comparison of multiple crystal structures with NMR data for engrailed homeodomain

    Energy Technology Data Exchange (ETDEWEB)

    Religa, Tomasz L. [MRC Centre for Protein Engineering (United Kingdom)], E-mail: tlr25@mrc-lmb.cam.ac.uk

    2008-03-15

    Two methods are currently available to solve high resolution protein structures-X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the {sup 3}J(H{sup N}H{sup {alpha}}) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

  13. (¹⁵N ± ¹³C') edited (4, 3)D-H(CC)CONH TOCSY and (4, 3)D-NOESY HNCO experiments for unambiguous side chain and NOE assignments of proteins with high shift degeneracy.

    Science.gov (United States)

    Kumar, Dinesh; Arora, Ashish

    2011-11-01

    Well-resolved and unambiguous through-bond correlations and NOE data are crucial for high-quality protein structure determination by NMR. In this context, we present here (4, 3)D reduced dimensionality (RD) experiments: H(CC)CONH TOCSY and NOESY HNCO--which instead of (15)N shifts exploit the linear combination of (15)N(i) and (13)C'(i-1) shifts (where i is a residue number) to resolve the through-bond (1)H-(1)H correlations and through-space (1)H-(1)H NOEs. The strategy makes use of the fact that (15)N and (13)C' chemical shifts when combined linearly provide a dispersion which is better compared to those of the individual chemical shifts. The extended dispersion thus available in these experiments will help to obtain the unambiguous side chain and accurate NOE assignments especially for medium-sized alpha-helical or partially unstructured proteins [molecular weight (MW) between 12-15 kDa] as well as higher MW (between 15-25 kDa) folded proteins where spectral overlap renders inaccurate and ambiguous NOEs. Further, these reduced dimensionality experiments in combination with routinely used (15)N and (13)C' edited TOCSY and NOESY experiments will provide an alternative way for high-quality NMR structure determination of large unstable proteins (with very high shift degeneracy), which are not at all amenable to 4D NMR. The utility of these experiments has been demonstrated here using (13)C/(15)N labeled ubiquitin (76 aa) protein. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Complete {sup 1}H and {sup 13}C NMR structural assignments for a group of four goyazensolide-type furanoheliangolides

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Ana Carolina Ferreira; Silva, Aline Nazare; Matos, Priscilla Mendonca; Silva, Eder Henrique da; Heleno, Vladimir Constantino Gomes [Universidade de Franca, Franca, SP (Brazil). Nucleo de Pesquisas em Ciencias Exatas e Tecnologicas; Lopes, Norberto Peporine; Lopes, Joao Luis Callegari [Universidade de Sao Paulo (FCFRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Ciencias Farmaceuticas de Ribeirao Preto. Dept. de Quimica e Fisica; Sass, Daiane Cristina, E-mail: vheleno_05@yahoo.com.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras de Ribeirao Preto. Dept. de Quimica

    2012-07-01

    Four goyazensolide-type sesquiterpene lactones - lychnofolide, centratherin, goyazensolide and goyazensolide acetate - were thoroughly studied by NMR experimental techniques. {sup 1}H NMR, {sup 13}C NMR {l_brace}{sup 1}H{r_brace}, COSY, HMQC, HMBC, J-res. and NOE experiments were performed to provide the needed structural information. Complete and unequivocal assignment, including the determination of all multiplicities, was obtained for each structure and the data collections are presented in tables (author)

  15. T.C.G triplet in an antiparallel purine.purine.pyrimidine DNA triplex. Conformational studies by NMR.

    Science.gov (United States)

    Dittrich, K; Gu, J; Tinder, R; Hogan, M; Gao, X

    1994-04-12

    The antiparallel purine.purine.pyrimidine DNA triplex, RRY6, which contains a T.C.G inverted triplet in the center of the sequence, was examined by proton and phosphorous two-dimensional NMR spectroscopy. The local conformation of the T.C.G triplet (T4.C11.G18) and the effect of this triplet on the global helical structure were analyzed in detail. The formation of the T.C.G triplet is confirmed by a set of cross-strand NOEs, including unusual cross-strand NOEs between the third strand and the pyrimidine strand as opposed to the purine strand of the duplex. NMR data suggest that the T.C.G triplet may be present in an equilibrium between a non-hydrogen-bonded form and a T(O4)-C(NH2) hydrogen-bonded form and that there is a distortion of the in-plane alignment of the three bases. The flanking G.G.C base triplets are well-defined on the 5'-side of T4, but somewhat interrupted on the 3'-side of T4. The effect of the third strand binding on the Watson-Crick duplex was probed by an NMR study of the free duplex RY6. NMR parameters are affected mostly around the T.C.G inversion site. The perturbations extend to at least two adjacent base triplets on either side. The binding of the third purine strand and the accommodation of a central T.C.G inversion in RRY6 does not require a readjustment in sugar pucker, which remains in the range of C2'-endo. 31P resonances of RRY6 distribute over a range of 2.2 ppm. The H-P coupling patterns of the third strand differ from those of the duplex. General spectral patterns defined by the marker protons of the RRY and YRY triplexes are compared.

  16. Interaction of berenil with the EcoRI dodecamer d(CGCGAATTCGCG)2 in solution studied by NMR

    International Nuclear Information System (INIS)

    Lane, A.N.; Jenkins, T.C.; Neidle, S.; Brown, T.

    1991-01-01

    The conformation of the EcoRI dodecamer d(CGCGAATTCGCG) 2 has been examined in solution by 1 H and 31 P NMR. Spin-spin coupling constants and nuclear Overhauser (NOE) enhancement spectroscopy show that all deoxyriboses lie in the south domain, with a small admixture of the north conformation (0-20%). The time dependence of the nuclear Overhauser enhancements also reveals a relatively uniform conformation at the glycosidic bonds. The average helical twist is 36.5. Tilt angles are small, and roll angles are poorly determined. Both the NOE intensities and 31 P relaxation data imply conformational anomalies at the C3-G4/C9-G10 and the A5-A6/T7-T8 steps. Berenil binds in 1:1 stoichiometry to the dodecamer with high affinity and causes substantial changes in chemical shifts of the sugar protons of nucleotides Ado 5-Cyt 9 and of the H2 resonances of the two Ado residues. NOEs are observed between the aromatic protons of berenil and the H1' of both Thy 7 and Thy 8, as well as to Ado 5 and Ado 6 H2. These results firmly establish that berenil binds via the minor groove and closely approaches the nucleotides Ado 6, Thy 7, and Thy 8. Using the observed NOEs between the ligand and the DNA together with the derived glycosidic torsion angles, the authors have built models that satisfy all of the available solution data

  17. CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO

    International Nuclear Information System (INIS)

    Guerry, Paul; Duong, Viet Dung; Herrmann, Torsten

    2015-01-01

    UNIO is a comprehensive software suite for protein NMR structure determination that enables full automation of all NMR data analysis steps involved—including signal identification in NMR spectra, sequence-specific backbone and side-chain resonance assignment, NOE assignment and structure calculation. Within the framework of the second round of the community-wide stringent blind NMR structure determination challenge (CASD-NMR 2), we participated in two categories of CASD-NMR 2, namely using either raw NMR spectra or unrefined NOE peak lists as input. A total of 15 resulting NMR structure bundles were submitted for 9 out of 10 blind protein targets. All submitted UNIO structures accurately coincided with the corresponding blind targets as documented by an average backbone root mean-square deviation to the reference proteins of only 1.2 Å. Also, the precision of the UNIO structure bundles was virtually identical to the ensemble of reference structures. By assessing the quality of all UNIO structures submitted to the two categories, we find throughout that only the UNIO–ATNOS/CANDID approach using raw NMR spectra consistently yielded structure bundles of high quality for direct deposition in the Protein Data Bank. In conclusion, the results obtained in CASD-NMR 2 are another vital proof for robust, accurate and unsupervised NMR data analysis by UNIO for real-world applications

  18. Analysis of the structural quality of the CASD-NMR 2013 entries

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, Timothy J.; Fogh, Rasmus H. [University of Leicester, Department of Biochemistry, School of Biological Sciences (United Kingdom); Tejero, Roberto [Universidad de Valencia, Departamento de Química Física (Spain); Vranken, Wim [Vrije Universiteit Brussel, Structural Biology Brussels (Belgium); Montelione, Gaetano T. [Rutgers, The State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (United States); Rosato, Antonio [University of Florence, Magnetic Resonance Center, Department of Chemistry (Italy); Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Biochemistry, School of Biological Sciences (United Kingdom)

    2015-08-15

    We performed a comprehensive structure validation of both automated and manually generated structures of the 10 targets of the CASD-NMR-2013 effort. We established that automated structure determination protocols are capable of reliably producing structures of comparable accuracy and quality to those generated by a skilled researcher, at least for small, single domain proteins such as the ten targets tested. The most robust results appear to be obtained when NOESY peak lists are used either as the primary input data or to augment chemical shift data without the need to manually filter such lists. A detailed analysis of the long-range NOE restraints generated by the different programs from the same data showed a surprisingly low degree of overlap. Additionally, we found that there was no significant correlation between the extent of the NOE restraint overlap and the accuracy of the structure. This result was surprising given the importance of NOE data in producing good quality structures. We suggest that this could be explained by the information redundancy present in NOEs between atoms contained within a fixed covalent network.

  19. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    Science.gov (United States)

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  20. Assignment strategies in homonuclear three-dimensional 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Vuister, G.W.; Boelens, R.; Padilla, A.; Kleywegt, G.J.; Kaptein, R.

    1990-01-01

    The increase in dimensionality of three-dimensional (3D) NMR greatly enhances the spectral resolution in comparison to 2D NMR. It alleviates the problem of resonance overlap and may extend the range of molecules amenable to structure determination by high-resolution NMR spectroscopy. Here, the authors present strategies for the assignment of protein resonances from homonuclear nonselective 3D NOE-HOHAHA spectra. A notation for connectivities between protons, corresponding to cross peaks in 3D spectra, is introduced. They show how spin systems can be identified by tracing cross-peak patterns in cross sections perpendicular to the three frequency axes. The observable 3D sequential connectivities in proteins are tabulated, and estimates for the relative intensities of the corresponding cross peaks are given for α-helical and β-sheet conformations. Intensities of the cross peaks in the 3D spectrum of pike III paravalbumin follow the predictions. The sequential-assignment procedure is illustrated for loop regions, extended and α-helical conformations for the residues Ala 54-Leu 63 of paravalbumin. NOEs that were not previously identified in 2D spectra of paravalbumin due to overlap are found

  1. Complete sequence-specific 1H NMR assignments for human insulin

    International Nuclear Information System (INIS)

    Kline, A.D.; Justice, R.M. Jr.

    1990-01-01

    Solvent conditions where human insulin could be studied by high-resolution NMR were determined. Both low pH and addition of acetonitrile were required to overcome the protein's self-association and to obtain useful spectra. Two hundred eighty-six 1 H resonances were located and assigned to specific sites on the protein by using two-dimensional NMR methods. The presence and position of numerous d NN sequential NOE's indicate that the insulin conformation seen in crystallographic studies is largely retained under these solution conditions. Slowly exchanging protons were observed for seven backbone amide protons and were assigned to positions A15 and A16 and to positions B15-B19. These amides all occur within helical regions of the protein

  2. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a

    International Nuclear Information System (INIS)

    Zuiderweg, E.R.P.; Fesik, S.W.

    1989-01-01

    The utility of three-dimensional heteronuclear NMR spectroscopy for the assignment of 1 H and 15 N resonances of the inflammatory protein C5a (MW 8500), uniformly labeled with 15 N, is demonstrated at a protein concentration of 0.7 mM. It is shown that dramatic simplification of the 2D nuclear Overhauser effect spectrum (NOESY) is obtained by editing with respect to the frequency of the 15 N heteronucleus in a third dimension. The improved resolution in the 3D experiment largely facilitates the assignment of protein NMR spectra and allows for the determination of distance constraints from otherwise overlapping NOE cross peaks for purposes of 3D structure determination. The results show that 15 N heteronuclear 3D NMR can facilitate the structure determination of small proteins and promises to be a useful tool for the study of larger systems that cannot be studied by conventional 2D NMR techniques

  3. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a

    Energy Technology Data Exchange (ETDEWEB)

    Zuiderweg, E.R.P.; Fesik, S.W. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-03-21

    The utility of three-dimensional heteronuclear NMR spectroscopy for the assignment of {sup 1}H and {sup 15}N resonances of the inflammatory protein C5a (MW 8500), uniformly labeled with {sup 15}N, is demonstrated at a protein concentration of 0.7 mM. It is shown that dramatic simplification of the 2D nuclear Overhauser effect spectrum (NOESY) is obtained by editing with respect to the frequency of the {sup 15}N heteronucleus in a third dimension. The improved resolution in the 3D experiment largely facilitates the assignment of protein NMR spectra and allows for the determination of distance constraints from otherwise overlapping NOE cross peaks for purposes of 3D structure determination. The results show that {sup 15}N heteronuclear 3D NMR can facilitate the structure determination of small proteins and promises to be a useful tool for the study of larger systems that cannot be studied by conventional 2D NMR techniques.

  4. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Uppsala University, Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology (Sweden); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Faculty of Science – Chemistry, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-08-15

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  5. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    International Nuclear Information System (INIS)

    Schot, Gijs van der; Bonvin, Alexandre M. J. J.

    2015-01-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution

  6. 1H NMR studies of plastocyanin from Scenedesmus obliquus: Complete sequence-specific assignment, secondary structure analysis, and global fold

    International Nuclear Information System (INIS)

    Moore, J.M.; Chazin, W.J.; Wright, P.E.; Powls, R.

    1988-01-01

    Two-dimensional 1 H NMR methods have been used to make sequence-specific resonance assignments for the 97 amino acid residues of the plastocyanin from the green alga Scenedesmus obliquus. Assignments were obtained for all backbone protons and the majority of the side-chain protons. Spin system identification relied heavily on the observation of relayed connectivities to the backbone amide proton. Sequence-specific assignments were made by using the sequential assignment procedure. During this process, an extra valine residue was identified that had not been detected in the original amino acid sequence. Elements of regular secondary structure were identified from characteristic NOE connectivities between backbone protons, coupling constant values, and the observation of slowly exchanging amide protons. The protein in solution contains eight β-strands, one short segment of helix, five reverse turns, and five loops. The β-strands may be arranged into two βsheets on the basis of extensive cross-strand NOE connectivities. The chain-folding topology determined from the NMR experiments is that of a Greek key β-barrel and is similar to that observed for French bean plastocyanin in solution and poplar plastocyanin in the crystalline state. While the overall structures are similar, several differences in local structure between the S. obliquus and higher plant plastocyanins have been identified

  7. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints

    International Nuclear Information System (INIS)

    Tang, Chun; Clore, G. Marius

    2006-01-01

    A simple and reliable approach for docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints (as few as three from a single point) in combination with a novel representation for an attractive potential between mapped interaction surfaces is described. Unambiguous assignments of very sparse intermolecular NOEs are obtained using a reverse labeling strategy in which one the components is fully deuterated with the exception of selective protonation of the δ-methyl groups of isoleucine, while the other component is uniformly 13 C-labeled. This labeling strategy can be readily extended to selective protonation of Ala, Leu, Val or Met. The attractive potential is described by a 'reduced' radius of gyration potential applied specifically to a subset of interfacial residues (those with an accessible surface area ≥ 50% in the free proteins) that have been delineated by chemical shift perturbation. Docking is achieved by rigid body minimization on the basis of a target function comprising the sparse NOE distance restraints, a van der Waals repulsion potential and the 'reduced' radius of gyration potential. The method is demonstrated for two protein-protein complexes (EIN-HPr and IIA Glc -HPr) from the bacterial phosphotransferase system. In both cases, starting from 100 different random orientations of the X-ray structures of the free proteins, 100% convergence is achieved to a single cluster (with near identical atomic positions) with an overall backbone accuracy of ∼2 A. The approach described is not limited to NMR, since interfaces can also be mapped by alanine scanning mutagenesis, and sparse intermolecular distance restraints can be derived from double cycle mutagenesis, cross-linking combined with mass spectrometry, or fluorescence energy transfer

  8. Integrating NOE and RDC using sum-of-squares relaxation for protein structure determination.

    Science.gov (United States)

    Khoo, Y; Singer, A; Cowburn, D

    2017-07-01

    We revisit the problem of protein structure determination from geometrical restraints from NMR, using convex optimization. It is well-known that the NP-hard distance geometry problem of determining atomic positions from pairwise distance restraints can be relaxed into a convex semidefinite program (SDP). However, often the NOE distance restraints are too imprecise and sparse for accurate structure determination. Residual dipolar coupling (RDC) measurements provide additional geometric information on the angles between atom-pair directions and axes of the principal-axis-frame. The optimization problem involving RDC is highly non-convex and requires a good initialization even within the simulated annealing framework. In this paper, we model the protein backbone as an articulated structure composed of rigid units. Determining the rotation of each rigid unit gives the full protein structure. We propose solving the non-convex optimization problems using the sum-of-squares (SOS) hierarchy, a hierarchy of convex relaxations with increasing complexity and approximation power. Unlike classical global optimization approaches, SOS optimization returns a certificate of optimality if the global optimum is found. Based on the SOS method, we proposed two algorithms-RDC-SOS and RDC-NOE-SOS, that have polynomial time complexity in the number of amino-acid residues and run efficiently on a standard desktop. In many instances, the proposed methods exactly recover the solution to the original non-convex optimization problem. To the best of our knowledge this is the first time SOS relaxation is introduced to solve non-convex optimization problems in structural biology. We further introduce a statistical tool, the Cramér-Rao bound (CRB), to provide an information theoretic bound on the highest resolution one can hope to achieve when determining protein structure from noisy measurements using any unbiased estimator. Our simulation results show that when the RDC measurements are

  9. Improved reliability, accuracy and quality in automated NMR structure calculation with ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Mareuil, Fabien [Institut Pasteur, Cellule d' Informatique pour la Biologie (France); Malliavin, Thérèse E.; Nilges, Michael; Bardiaux, Benjamin, E-mail: bardiaux@pasteur.fr [Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528 (France)

    2015-08-15

    In biological NMR, assignment of NOE cross-peaks and calculation of atomic conformations are critical steps in the determination of reliable high-resolution structures. ARIA is an automated approach that performs NOE assignment and structure calculation in a concomitant manner in an iterative procedure. The log-harmonic shape for distance restraint potential and the Bayesian weighting of distance restraints, recently introduced in ARIA, were shown to significantly improve the quality and the accuracy of determined structures. In this paper, we propose two modifications of the ARIA protocol: (1) the softening of the force field together with adapted hydrogen radii, which is meaningful in the context of the log-harmonic potential with Bayesian weighting, (2) a procedure that automatically adjusts the violation tolerance used in the selection of active restraints, based on the fitting of the structure to the input data sets. The new ARIA protocols were fine-tuned on a set of eight protein targets from the CASD–NMR initiative. As a result, the convergence problems previously observed for some targets was resolved and the obtained structures exhibited better quality. In addition, the new ARIA protocols were applied for the structure calculation of ten new CASD–NMR targets in a blind fashion, i.e. without knowing the actual solution. Even though optimisation of parameters and pre-filtering of unrefined NOE peak lists were necessary for half of the targets, ARIA consistently and reliably determined very precise and highly accurate structures for all cases. In the context of integrative structural biology, an increasing number of experimental methods are used that produce distance data for the determination of 3D structures of macromolecules, stressing the importance of methods that successfully make use of ambiguous and noisy distance data.

  10. O6-ethylguanine carcinogenic lesions in DNA: An NMR study of O6etG·C pairing in dodecanucleotide duplexes

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Li, B.F.L.; Swann, P.F.; Patel, D.J.

    1989-01-01

    The pairing of O 6 etG with C located four base pairs in from either end of the self-complementary d(C1-G2-C3-O 6 etG4-A5-G6-C7-T8-C9-G10-C11-G12) duplex (designated O 6 etG·C 12-mer) has been investigated from an analysis of proton and phosphorus two-dimensional NMR experiments. The structural consequences of increasing the alkyl group size were elucidated from a comparative study of the pairing of O 6 meG4 with C9 in a related sequence (designated O 6 meG·C 12-mer). The NMR parameters for both O 6 alkG-containing dodecanucleotides are also compared with those of the control sequence containing G4·C9 base pairs (designated G·C 12-mer). The NOE cross-peaks detected in the two-dimensional NOESY spectra of the O 6 alkG·C 12-mer duplexes in H 2 O solution establish that the O 6 etG4/O 6 meG4 and C9 bases at the lesion site stack into the helix between the flanking C3·G10 and A5·T8 Watson-Crick base pairs. The observed NOEs between the amino protons of C9 and the CH 3 protons of O 6 alkG4 establish a syn orientation of the O 6 -alkyl group with respect to the N 1 of alkylated guanine. A wobble alignment of the O 6 alkG4·C9 base pair stabilized by two hydrogen bonds, one between the amino group of C9 and N 1 of O 6 alkG and the other between the amino group of O 6 alkG and N 3 of C9, is tentatively proposed on the basis of the NOEs between the amino protons of C9 at the lesion site and the imino protons of flanking Watson-Crick base pairs

  11. DNA hairpin structures in solution: 500-MHz two-dimensional 1H NMR studies on d(CGCCGCAGC) and d(CGCCGTAGC)

    International Nuclear Information System (INIS)

    Gupta, G.; Sarma, M.H.; Sarma, R.H.

    1987-01-01

    A hairpin structure contains two conformationally distinct domains: a double-helical stem with Watson-Crick base pairs and a single-stranded loop that connects the two arms of the stem. By extensive 1D and 2D 500-MHz 1 H NMR studies in H 2 O and D 2 O, it has been demonstrated that the DNA oligomers d(CGCCGCAGC) and d(CGCCGTAGC) form hairpin structures under conditions of low concentration, 0.5 mM in DNA strand, and low salt (20 mM NaCl, pH 7). From examination of the nuclear Overhauser effect (NOE) between base protons H8/H6 and sugar protons H1' and H2'/H2'', it was concluded that in D(CGCCGCAGC) and d(CGCCCTAGC) all the nine nucleotides display average (C2'-endo,anti) geometry. The NMR data in conjunction with molecular model building and solvent accessibility studies were used to derive a working model for the hairpins

  12. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun; Clore, G. Marius [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: mariusc@intra.niddk.nih.gov

    2006-09-15

    A simple and reliable approach for docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints (as few as three from a single point) in combination with a novel representation for an attractive potential between mapped interaction surfaces is described. Unambiguous assignments of very sparse intermolecular NOEs are obtained using a reverse labeling strategy in which one the components is fully deuterated with the exception of selective protonation of the {delta}-methyl groups of isoleucine, while the other component is uniformly {sup 13}C-labeled. This labeling strategy can be readily extended to selective protonation of Ala, Leu, Val or Met. The attractive potential is described by a 'reduced' radius of gyration potential applied specifically to a subset of interfacial residues (those with an accessible surface area {>=} 50% in the free proteins) that have been delineated by chemical shift perturbation. Docking is achieved by rigid body minimization on the basis of a target function comprising the sparse NOE distance restraints, a van der Waals repulsion potential and the 'reduced' radius of gyration potential. The method is demonstrated for two protein-protein complexes (EIN-HPr and IIA{sup Glc}-HPr) from the bacterial phosphotransferase system. In both cases, starting from 100 different random orientations of the X-ray structures of the free proteins, 100% convergence is achieved to a single cluster (with near identical atomic positions) with an overall backbone accuracy of {approx}2 A. The approach described is not limited to NMR, since interfaces can also be mapped by alanine scanning mutagenesis, and sparse intermolecular distance restraints can be derived from double cycle mutagenesis, cross-linking combined with mass spectrometry, or fluorescence energy transfer.

  13. Detailed NMR, Including 1,1-ADEQUATE, and Anticancer Studies of Compounds from the Echinoderm Colobometra perspinosa

    Directory of Open Access Journals (Sweden)

    Catherine H. Liptrot

    2009-11-01

    Full Text Available From the dichloromethane/methanol extract of the crinoid Colobometra perspinosa, collected south east of Richards Island (Bedara, Family Islands, Central Great Barrier Reef, Australia, 3-(1'-hydroxypropyl-1,6,8-trihydroxy-9,10-anthraquinone [one of the two stereoisomers of rhodoptilometrin, (1], 3-propyl-1,6,8-trihydroxy-9,10-anthraquinone (3, 2-[(phenylacetylamino]ethanesulfonic acid (4, and 4-hydroxybutanoic acid (5 were isolated. Comparison of 1H- and 13C-NMR data for rhodoptilometrin (1 with those reported in the literature showed significant differences for some resonances associated with rings A and C. In an attempt to provide accurately assigned 1H- and 13C-NMR data, as well as to confirm the structure of 1, a thorough NMR investigation of this compound was undertaken. Measurements included: concentration dependent 13C, 1D selective NOE, HSQC, HMBC and 1,1-ADEQUATE. The NMR data for 4 and 5 are reported here for the first time, as is their occurrence from the marine environment. The in vitro anticancer activity of the original extract was found to be associated with 1, 3 and 5.

  14. Isotope-edited proton NMR study on the structure of a pepsin/inhibitor complex

    International Nuclear Information System (INIS)

    Fesik, S.W.; Luly, J.R.; Erickson, J.W.; Abad-Zapatero, C.

    1988-01-01

    A general approach is illustrated for providing detailed structural information on large enzyme/inhibitor complexes using NMR spectroscopy. The method involves the use of isotopically labeled ligands to simplify two-dimensional NOE spectra of large molecular complexes by isotope-editing techniques. With this approach, the backbone and side-chain conformations (at the P 2 and P 3 sites) of a tightly bound inhibitor of porcine pepsin have bene determined. In addition, structural information on the active site of pepsin has been obtained. Due to the sequence homology between porcine pepsin and human renin, this structural information may prove useful for modeling renin/inhibitor complexes with the ultimate goal of designing more effective renin inhibitors. Moreover, this general approach can be applied to study other biological systems of interest such as other enzyme/inhibitor complexes, ligands bound to soluble receptors, and enzyme/substrate interactions

  15. Uniform and selective deuteration in two-dimensional NMR of proteins

    International Nuclear Information System (INIS)

    LeMaster, D.M.

    1990-01-01

    This paper reports on the practicality of isotopic labeling, particularly deuteration, that has received considerable impetus from advances in molecular biology, which have allowed ready production of NMR quantities of labeled proteins. Protein expression in Escherichia coli allows use of the considerable metabolic genetics known for the organism in shaping the biosynthetic process to meet the labeling demands of the NMR experiments. In addition to deuteration's common use in spectral assignment problems, it also offers considerable potential for enhancing the quality of the nuclear Overhauser effect (NOE) distance and dihedral angle constraints used for solution structural analysis of proteins. Recent reviews emphasize the sample preparation and spectral benefits of protein deuteration

  16. Main-chain-directed strategy for the assignment of 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Englander, S.W.; Wand, A.J.

    1987-01-01

    A strategy for assigning the resonances in two-dimensional (2D) NMR spectra of proteins is described. The method emphasizes the analysis of through-space relationships between protons by use of the two-dimensional nuclear Overhauser effect (NOE) experiment. NOE patterns used in the algorithm were derived from a statistical analysis of the combinations of short proton-proton distances observed in the high-resolution crystal structures of 21 proteins. One starts with a search for authentic main-chain NH-C/sub α/H-C/sub β/H J-coupled units, which can be found with high reliability. The many main-chain units of a protein are then placed in their proper juxtaposition by recognition of predefined NOE connectivity patterns. To discover these connectivities, the 2D NOE spectrum is examined, in a prescribed order, for the distinct NOE patterns characteristic of helices, sheets, turns, and extended chain. Finally, the recognition of a few amino acid side-chain types places the discovered secondary structure elements within the polypeptide sequences. Unlike the sequential assignment approach, the main-chain-directed strategy does not rely on the difficult task of recognizing many side-chain spin systems in J-correlated spectra, the assignment process is not in general sequential with the polypeptide chain, and the prescribed connectivity patterns are cyclic rather than linear. The latter characteristic avoids ambiguous branch points in the analysis and imposed an internally confirmatory property on each forward step

  17. 1H and 15N resonance assignments of oxidized flavodoxin from Anacystis nidulans with 3D NMR

    International Nuclear Information System (INIS)

    Clubb, R.T.; Thanabal, V.; Wagner, G.; Osborne, C.

    1991-01-01

    Proton and nitrogen-15 sequence-specific nuclear magnetic resonance assignments have been determined for recombinant oxidized flavodoxin from Anacystis nidulans. Assignments were obtained by using 15 N- 1 H heteronuclear three-dimensional (3D) NMR spectroscopy on a uniformly nitrogen-15 enriched sample of the protein, pH 6.6, at 30C. For 165 residues, the backbone and a large fraction of the side-chain proton resonances have been assigned. Medium- and long-range NOE's have been used to characterize the secondary structure. In solution, flavodoxin consists of a five-stranded parallel β sheet involving residues 3-9, 31-37, 49-56, 81-89, 114-117, and 141-144. Medium-range NOE's indicate that presence of several helices. Several 15 N and 1 H resonances of the flavin mononucleotide (FMN) prosthetic group have been assigned. The FMN-binding site has been investigated by using polypeptide-FMN NOE's

  18. Unambiguous Determination of Intermolecular Hydrogen Bond of NMR Structure by Molecular Dynamics Refinement Using All-Atom Force Field and Implicit Solvent Model

    International Nuclear Information System (INIS)

    Jee, Jun Goo

    2010-01-01

    It has been shown that AMD refinement is very useful for defining an intermolecular hydrogen bond in NMR structure calculation. The refined structure also provides a clue for explaining the pH dependence in Ub and UIM complexes. As reported by Choi et al., serine-mediated hydrogen bonds are the third most populated hydrogen bonds found in protein-protein intermolecular interactions, after the backbone-backbone and backbone-aspartate ones. The abundance imposes the requirement of an method to determine the interface of protein-protein complexes. The precise geometry is particularly important in the complex structures between Ub and UBDs. Ub recognizes various targets with the same surface, where both hydrophobic and hydrophobic interactions are involved. Hence, the details of the hydrophilic interactions are necessary to find the common binding modes. The structure determination of a biomolecule by NMR depends heavily on the distance restraints derived by the NOE cross peaks that are observed between two protons within 6 A through space. Therefore, the existence of the NOE peaks and their correct assignments to two corresponding protons are essential for an accurate and precise structure determination. Recent developments of NOE assignment and calculation algorithms have enabled the determination of protein 3D structures without any manual interpretation, provided chemical shifts are assigned in most atoms and sufficient NOE peaks exist. Along with these advances, the necessity of determining complicated structures such as complexes is increasing

  19. Conformation of flexibly linked triterpene dimers by using RDC-enhanced NMR spectroscopy

    Science.gov (United States)

    Lakshmi, Jerripothula K.; Pattnaik, Banita; Kavitha, Rachineni; Mallavadhani, Uppuluri V.; Jagadeesh, Bharatam

    2018-06-01

    Dimers of flexibly linked pentacyclic triterpene ursolic acid (UA) and its related frameworks such as asiatic acid (AA) and oleanolic acid (OA) have recently attracted significant attention due to their enhanced anti-cancer and anti-HCV activity compared to their respective monomers. Determination of conformation/inter-monomer orientation of these molecules is very important to understand their structure-activity relationship and to develop new scaffolds, which, however, is difficult through conventional NOE based solution-state NMR spectroscopy, due to lack of long-range NOEs. In the present work, we report a precise determination of conformation of two 1,2,3-triazole-linked triterpene dimer molecules, UA-AA and UA-OA, by employing one-bond Csbnd H residual dipolar couplings (RDCs) as additional long-range orientational restraints, measured in anisotropic PDMS/CDCl3 solvent medium.

  20. Base pair mismatches and carcinogen-modified bases in DNA: an NMR study of G x T and G x O4meT pairing in dodecanucleotide duplexes

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Kouchakdjian, M.; Li, B.F.L.; Swann, P.F.; Patel, D.J.

    1988-01-01

    High-resolution two-dimensional NMR studies have been completed on the self-complementary d(C-G-C-G-A-G-C-T-T-G-C-G) duplex (designated G x T 12-mer) and the self-complementary d(C-G-C-G-A-G-C-T-O 4 meT-G-C-G) duplex (designated G x O 4 meT 12-mer) containing G x T and G x O 4 meT pairs at identical positions four base pairs in from either end of the duplex. The exchangeable and nonexchangeable proton resonances have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOESY) spectra for the G x T 12-mer and G x O 4 meT 12-mer duplexes in H 2 O and D 2 O solution. The guanosine and thymidine imino protons in the G x T mismatch resonate at 10.57 and 11.98 ppm, respectively, and exhibit a strong NOE between themselves and to imino protons of flanking base pairs in the G x T 12-mer duplex. The large upfield chemical shift of this proton relative to that of the imino proton resonance of G in the G x T mismatch or in G x C base pairs indicates that hydrogen bonding to O 4 meT is either very weak or absent. This guanosine imino proton has an NOE to the OCH 3 group of O 4 meT across the pair and NOEs to the imino protons of flanking base pairs. Taken together with data from the NMR of nonexchangeable protons, this shows that both G and O 4 meT have anti-glycosidic torsion angles and are stacked into the duplex. Comparison of the intensity of the NOEs between the guanosine imino proton and the OCH 3 of O 4 meT as well as other protons in its vicinity demonstrates that the OCH 3 group of O 4 meT adopts the syn orientation with respect to N3 of the methylated thymidine. The authors propose an alternate base pairing mode stabilized by one short hydrogen bond between the 2-amino group of guanosine and the 2-carbonyl group of O 4 met

  1. Practical aspects of NMR signal assignment in larger and challenging proteins

    Science.gov (United States)

    Frueh, Dominique P.

    2014-01-01

    NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins. PMID:24534088

  2. NATURAL CYCLOPENTANOID CYANOHYDRIN GLYCOSIDES .13. STRUCTURE DETERMINATION OF NATURAL EPOXYCYCLOPENTANES BY X-RAY CRYSTALLOGRAPHY AND NMR-SPECTROSCOPY

    DEFF Research Database (Denmark)

    Olafsdottir, E. S.; Sorensen, A. M.; Cornett, Claus

    1991-01-01

    nonannellated cyclopentane derivatives. The new glucosides were shown, by NMR spectroscopy (including NOE measurements), X-ray crystallography, and enzymatic hydrolysis to the corresponding cyanohydrins, to be (1R,2R,3R,4R)- and (1S,2S,3S,4S)-1-(beta-D-glucopyranosyloxy)-2,3-epoxy-4-hydroxycyclopenta ne-1...

  3. NMR studies of the solution conformation and dynamics of the tyrocidine peptide antibiotics

    International Nuclear Information System (INIS)

    Zhou, N.

    1985-01-01

    The tyrocidine B and tyrocidine C 1 H NMR spectra in DMSO-d 6 were assigned by using 2D 1 H- 1 H correlation spectroscopy and 1D double resonance experiments. Based on the proton chemical shifts, 3 J/sub NH-Nα/ coupling constants, the chemical shift temperature dependence, and 1D and 2D 1 H- 1 H NOE values, a backbone conformation consisting of an anti-parallel β-pleated sheet, a type I β-turn and a type II' β-turn was suggested for both tyrocidines B and C. Seven out of ten side chains were determined to exist predominantly in one classical Chi 1 rotamer; while the residues Val 1 and Leu 3 had two Chi 1 rotamers which were significantly populated. Chi 2 angles were determined for residues Phe 4 , Trp 6 , DPhe 7 (D Trp 7 ) and Asn 8 . The natural abundance 13 C spectra of tyrocidine B and tyrocidine C were assigned by using 1 H- 13 C correlation spectroscopy. A study of the effect of soluble paramagnetic nitroxide compounds on tyrocidine A proton T 1 values were performed which confirmed the proposed tyrocidine A conformation. It also proved that these nitroxide compounds are very useful in studying proton solvent exposure, and therefore in delineating hydrogen bonding. A proton NMR study of the opioid peptide dynorphin-(1-13) in aqueous solution was reported which was consistent with a non-ordered molecule in the solution

  4. Conformational studies of human [15-2-aminohexanoic acid]little gastrin in sodium dodecyl sulfate micelles by 1H NMR

    International Nuclear Information System (INIS)

    Mammi, S.; Peggion, E.

    1990-01-01

    Human little gastrin is a 17 amino acid peptide that adopts a random conformation in water and an ordered structure in sodium dodecyl sulfate (SDS) micelles as well as in trifluoroethanol (TFE). The circular dichroism spectra in these two media have the same shape, indicative of a similar preferred conformation. The authors describe here the assignment of the proton NMR resonances and the conformational analysis of [Ahx 15 ] little gastrin in SDS micelles. Two-dimensional correlation techniques form the basis for the assignment. The conformational analysis utilizes NOE's, NH to C α H coupling constants, and the temperature coefficients of the amide chemical shifts. The NMR data indicate a helical structure in the N-terminal portion of the peptide. These results are compared with the conformation that the authors recently proposed for a minigastrin analogue (fragment 5-17 of [Ahx 15 ] little gastrin) in TFE

  5. Sequence-specific 1H NMR assignments and secondary structure of the Arc repressor of bacteriophage P22, as determined by two-dimensional 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Breg, J.N.; Boelens, R.; George, A.V.E.; Kaptein, R.

    1989-01-01

    The Arc repressor of bacteriophage P22 is a DNA binding protein that does not belong to any of the known classes of such proteins. The authors have undertaken a 1 H NMR study of the protein with the aim of elucidating its three-dimensional structure in solution and its mode of binding of operator DNA. Here the authors present the 1 H nuclear magnetic resonance (NMR) assignments of all backbone protons an most of the side-chain protons of Arc repressor. Elements of secondary structure have been identified on the basis of networks of characteristics sequential and medium-range nuclear Overhauser enhancements (NOEs). Two α-helical regions have been found in the peptide regions 16-29 and 35-45. The ends of the helices could not yet be firmly established and could extend to residue 31 for the first helix and to residue 49 for the second. Immediately before the first helix, between residues 8 and 14, a region is present with β-sheet characteristics dominated by a close proximity of the α-protons of residues 9 and 13. Because of the dimeric nature of the protein there are still two possible ways in which the NOEs in the β-sheet region can be interpreted. While the data presently do not allow an unambiguous choice between these two possibilities, some evidence is discussed that favors the latter (β-sheet between monomers). Since the N-terminal region of Arc is responsible for the sequence-specific recognition of its operator, the findings suggest the existence of a DNA binding motif in which a β-sheet region is present

  6. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins

    International Nuclear Information System (INIS)

    Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune

    2012-01-01

    NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U- 13 C, 15 N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β- 13 C; α,β- 2 H 2 ] Cys and (2R, 3R)-[β- 13 C; α,β- 2 H 2 ] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ 2 and χ 3 , can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.

  7. Sequence-specific 1H NMR resonance assignments of Bacillus subtilis HPr: Use of spectra obtained from mutants to resolve spectral overlap

    International Nuclear Information System (INIS)

    Wittekind, M.; Klevit, R.E.; Reizer, J.

    1990-01-01

    On the basis of an analysis of two-dimensional 1 H NMR spectra, the complete sequence-specific 1 H NMR assignments are presented for the phosphocarrier protein HPr from the Gram-positive bacterium Bacillus subtilis. During the assignment procedure, extensive use was made of spectra obtained from point mutants of HPr in order to resolve spectral overlap and to provide verification of assignments. Regions of regular secondary structure were identified by characteristic patterns of sequential backbone proton NOEs and slowly exchanging amide protons. B subtilis HPr contains four β-strands that form a single antiparallel β-sheet and two well-defined α-helices. There are two stretches of extended backbone structure, one of which contains the active site His 15 . The overall fold of the protein is very similar to that of Escherichia coli HPr determined by NMR studies

  8. Mixed-time parallel evolution in multiple quantum NMR experiments: sensitivity and resolution enhancement in heteronuclear NMR

    International Nuclear Information System (INIS)

    Ying Jinfa; Chill, Jordan H.; Louis, John M.; Bax, Ad

    2007-01-01

    A new strategy is demonstrated that simultaneously enhances sensitivity and resolution in three- or higher-dimensional heteronuclear multiple quantum NMR experiments. The approach, referred to as mixed-time parallel evolution (MT-PARE), utilizes evolution of chemical shifts of the spins participating in the multiple quantum coherence in parallel, thereby reducing signal losses relative to sequential evolution. The signal in a given PARE dimension, t 1 , is of a non-decaying constant-time nature for a duration that depends on the length of t 2 , and vice versa, prior to the onset of conventional exponential decay. Line shape simulations for the 1 H- 15 N PARE indicate that this strategy significantly enhances both sensitivity and resolution in the indirect 1 H dimension, and that the unusual signal decay profile results in acceptable line shapes. Incorporation of the MT-PARE approach into a 3D HMQC-NOESY experiment for measurement of H N -H N NOEs in KcsA in SDS micelles at 50 o C was found to increase the experimental sensitivity by a factor of 1.7±0.3 with a concomitant resolution increase in the indirectly detected 1 H dimension. The method is also demonstrated for a situation in which homonuclear 13 C- 13 C decoupling is required while measuring weak H3'-2'OH NOEs in an RNA oligomer

  9. Spin Choreography: Basic Steps in High Resolution NMR (by Ray Freeman)

    Science.gov (United States)

    Minch, Michael J.

    1998-02-01

    There are three orientations that NMR courses may take. The traditional molecular structure course focuses on the interpretation of spectra and the use of chemical shifts, coupling constants, and nuclear Overhauser effects (NOE) to sort out subtle details of structure and stereochemistry. Courses can also focus on the fundamental quantum mechanics of observable NMR parameters and processes such a spin-spin splitting and relaxation. More recently there are courses devoted to the manipulation of nuclear spins and the basic steps of one- and two-dimensional NMR experiments. Freeman's book is directed towards the latter audience. Modern NMR methods offer a myriad ways to extract information about molecular structure and motion by observing the behavior of nuclear spins under a variety of conditions. In Freeman's words: "We can lead the spins through an intricate dance, carefully programmed in advance, to enhance, simplify, correlate, decouple, edit or assign NMR spectra." This is a carefully written, well-illustrated account of how this dance is choreographed by pulse programming, double resonance, and gradient effects. Although well written, this book is not an easy read; every word counts. It is recommended for graduate courses that emphasize the fundamentals of magnetic resonance. It is not a text on interpretation of spectra.

  10. NMR spectroscopy: structure elucidation of cycloelatanene A: a natural product case study.

    Science.gov (United States)

    Urban, Sylvia; Dias, Daniel Anthony

    2013-01-01

    The structure elucidation of new secondary metabolites derived from marine and terrestrial sources is frequently a challenging task. The hurdles include the ability to isolate stable secondary metabolites of sufficient purity that are often present in products that the compound may rapidly degrade during and/or after the isolation, due to sensitivity to light, air oxidation, and/or temperature. In this way, precautions need to be taken, as much as possible to avoid any such chemical inter-conversions and/or degradations. Immediately after purification, the next step is to rapidly acquire all analytical spectroscopic data in order to complete the characterization of the isolated secondary metabolite(s), prior to any possible decomposition. The final hurdle in this multiple step process, especially in the acquisition of the NMR spectroscopic and other analytical data (mass spectra, infrared and ultra-violet spectra, optical rotation, etc.), is to assemble the structural moieties/units in an effort to complete the structure elucidation. Often ambiguity with the elucidation of the final structure remains when structural fragments identified are difficult to piece together on the basis of the HMBC NMR correlations or when the relative configuration cannot be unequivocally identified on the basis of NOE NMR enhancements observed. Herein, we describe the methodology used to carry out the structure elucidation of a new C16 chamigrene, cycloelatanene A (5) which was isolated from the southern Australian marine alga Laurencia elata (Rhodomelaceae). The general approach and principles used in the structure determination of this compound can be applied to the structure elucidation of other small molecular weight compounds derived from either natural or synthetic sources.

  11. Conformation of antifreeze glycoproteins as determined from conformational energy calculations and fully assigned proton NMR spectra

    International Nuclear Information System (INIS)

    Bush, C.A.; Rao, B.N.N.

    1986-01-01

    The 1 H NMR spectra of AFGP's ranging in molecular weight from 2600 to 30,000 Daltons isolated from several different species of polar fish have been measured. The spectrum of AFGP 1-4 from Pagothenia borchgrevinki with an average of 30 repeating subunits has a single resonance for each proton of the glycotripeptide repeating unit, (ala-[gal-(β-1→3) galNAc-(α--O-]thr-ala)/sub n/. Its 1 H NMR spectrum including resonances of the amide protons has been completely assigned. Coupling constants and nuclear Overhauser enhancements (n.O.e.) between protons on distant residues imply conformational order. The 2600 dalton molecular weight glycopeptides (AFGP-8) have pro in place of ala at certain specific points in the sequence and AFGP-8R of Eleginus gracilis has arg in place of one thr. The resonances of pro and arg were assigned by decoupling. The resonances of the carboxy and amino terminals have distinct chemical shifts and were assigned in AFGP-8 of Boreogadus saida by titration. n.O.e. between α--protons and amide protons of the adjacent residue (sequential n.O.e.) were used in assignments of additional resonances and to assign the distinctive resonances of thr followed by pro. Conformational energy calculations on the repeating glycotripeptide subunit of AFGP show that the α--glucosidic linkage has a fixed conformation while the β--linkage is less rigid. A conformational model for AFGP 1-4, which is based on the calculations has the peptide in an extended left-handed helix with three residues per turn similar to polyproline II. The model is consistent with CD data, amide proton coupling constants, temperature dependence of amide proton chemical shifts

  12. Assessment of protein solution versus crystal structure determination using spin- diffusion-suppressed NOE and heteronuclear relaxation data

    International Nuclear Information System (INIS)

    LeMaster, David M.

    1997-01-01

    A spin-diffusion-suppressed NOE buildup series has been measured for E. coli thioredoxin.The extensive 13C and 15N relaxation data previously reported for this protein allow for direct interpretation of dynamical contributions to the 1H-1H cross-relaxation rates for a large proportion of the NOE cross peaks. Estimates of the average accuracy for these derived NOE distances are bounded by 4% and 10%, based on a comparison to the corresponding X-ray distances. An independent fluctuation model is proposed for prediction of the dynamical corrections to 1H-1H cross-relaxation rates, based solely on experimental structural and heteronuclear relaxation data. This analysis is aided by the demonstration that heteronuclear order parameters greater than 0.6 depend only on the variance of the H-X bond orientation,independent of the motional model in either one- or two-dimensional diffusion (i.e., 1- S2 = 3/4 sin2 2 θσ). The combination of spin-diffusion-suppressed NOE data and analysis of dynamical corrections to 1H-1H cross-relaxation rates based on heteronuclear relaxation data has allowed for a detailed interpretation of various discrepancies between the reported solution and crystal structures

  13. Acid epimerization of 20-keto pregnane glycosides is determined by 2D-NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Victor P., E-mail: vpergarw@gobiernodecanarias.org [Instituto de Productos Naturales de Canarias, Departamento de Quimica de Productos Naturales y Biotecnologia (Spain)

    2011-05-15

    Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution {sup 1}H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that {omega}{tau}{sub c} {approx} 1, where {tau}{sub c} are the motional correlation times and {omega} is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of {tau}{sub c}. The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180 Degree-Sign Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were

  14. J-UNIO protocol used for NMR structure determination of the 206-residue protein NP-346487.1 from Streptococcus pneumoniae TIGR4

    Energy Technology Data Exchange (ETDEWEB)

    Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Geralt, Michael; Serrano, Pedro; Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    The NMR structure of the 206-residue protein NP-346487.1 was determined with the J-UNIO protocol, which includes extensive automation of the structure determination. With input from three APSY-NMR experiments, UNIO-MATCH automatically yielded 77 % of the backbone assignments, which were interactively validated and extended to 97 %. With an input of the near-complete backbone assignments and three 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra, automated side chain assignment with UNIO-ATNOS/ASCAN resulted in 77 % of the expected assignments, which was extended interactively to about 90 %. Automated NOE assignment and structure calculation with UNIO-ATNOS/CANDID in combination with CYANA was used for the structure determination of this two-domain protein. The individual domains in the NMR structure coincide closely with the crystal structure, and the NMR studies further imply that the two domains undergo restricted hinge motions relative to each other in solution. NP-346487.1 is so far the largest polypeptide chain to which the J-UNIO structure determination protocol has successfully been applied.

  15. Direct methods and residue type specific isotope labeling in NMR structure determination and model-driven sequential assignment

    International Nuclear Information System (INIS)

    Schedlbauer, Andreas; Auer, Renate; Ledolter, Karin; Tollinger, Martin; Kloiber, Karin; Lichtenecker, Roman; Ruedisser, Simon; Hommel, Ulrich; Schmid, Walther; Konrat, Robert; Kontaxis, Georg

    2008-01-01

    Direct methods in NMR based structure determination start from an unassigned ensemble of unconnected gaseous hydrogen atoms. Under favorable conditions they can produce low resolution structures of proteins. Usually a prohibitively large number of NOEs is required, to solve a protein structure ab-initio, but even with a much smaller set of distance restraints low resolution models can be obtained which resemble a protein fold. One problem is that at such low resolution and in the absence of a force field it is impossible to distinguish the correct protein fold from its mirror image. In a hybrid approach these ambiguous models have the potential to aid in the process of sequential backbone chemical shift assignment when 13 C β and 13 C' shifts are not available for sensitivity reasons. Regardless of the overall fold they enhance the information content of the NOE spectra. These, combined with residue specific labeling and minimal triple-resonance data using 13 C α connectivity can provide almost complete sequential assignment. Strategies for residue type specific labeling with customized isotope labeling patterns are of great advantage in this context. Furthermore, this approach is to some extent error-tolerant with respect to data incompleteness, limited precision of the peak picking, and structural errors caused by misassignment of NOEs

  16. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  17. Interaction of the Saccharomyces cerevisiae α-factor with phospholipid vesicles as revealed by proton and phosphorus NMR

    International Nuclear Information System (INIS)

    Jelicks, L.A.; Broido, M.S.; Becker, J.M.; Naider, F.R.

    1989-01-01

    Proton and phosphorus-31 nuclear magnetic resonance ( 1 H and 31 P NMR) studies of the interaction between a tridecapeptide pheromone, the α-factor of Saccharomyces cerevisiae, and sonicated lipid vesicles are reported. 31 P NMR studies demonstrate that there is interaction of the peptide with the phosphorus headgroups, and quasielastic light scattering (QLS) studies indicate that lipid vesicles increase in size upon addition of peptide. Previous solution (aqueous and DMSO) studies from this laboratory indicate that α-factor is highly flexible with only one long-lived identifiable structural feature, a type II β-turn spanning the central portion of the peptide. Two-dimensional (2D) 1 H nuclear Overhauser effect spectroscopy (NOESY) studies demonstrate a marked ordering of the peptide upon interaction with lipid, suggesting a compact N-terminus, in addition to a stabilized β-turn. In contrast to these results in both solution and lipid environment, Wakamatsu et al. proposed a lipid environment conformation, on the basis of one-dimensional transferred NOE studies in D 2 O, which does not include the β-turn

  18. Investigation of the spatial structure of des-Gly9-[Arg8]vasopressin by the methods of two-dimensional NMR spectroscopy and theoretical conformational analysis

    International Nuclear Information System (INIS)

    Shenderovich, M.D.; Sekatsis, I.P.; Liepin'sh, E.E.; Nikiforovich, G.V.; Papsuevich, O.S.

    1986-01-01

    An assignment of the 1 H NMR signals of des-Gly 9 -[Arg 8 ]vasopressin in dimethyl sulfoxide has been made by 2D spectroscopy. The SSCCs and temperature coefficients Δδ/Δ T have been obtained for the amide protons and the system of NOE cross-peaks in the two-dimensional NOESY spectrum has been analyzed. The most important information on the spatial structure of des-Gly 9 -[Arg 8 ]vasopressin is given by the low value of the temperature coefficient Δδ/Δ T of the Asn 5 amide proton and the NOE between the α-protons of Cys 1 and Cys 6 . It is assumed that the screening of the NH proton of the Asn 5 residue from the solvent is connected with a β-bend of the backbone in the 2-5 sequence, and the distance between the C/sup α/H atoms of the Cys 1 and Cys 6 residues does not exceed 4 A. Bearing these limitations in mind, a theoretical conformational analysis of the molecule has been made. The group of low-energy conformations of the backbone obtained has been compared with the complete set of NMR characteristics

  19. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings - an assessment of the interrelation of NMR restraints

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Pernille Rose; Axelsen, Jacob Bock [University of Copenhagen, Institute of Molecular Biology (Denmark); Lerche, Mathilde Hauge [Amersham Health (Sweden); Poulsen, Flemming M. [University of Copenhagen, Institute of Molecular Biology (Denmark)], E-mail: fmp@apk.molbio.ku.dk

    2004-01-15

    We have examined how the hydrogen bond geometry in three different proteins is affected when structural restraints based on measurements of residual dipolar couplings are included in the structure calculations. The study shows, that including restraints based solely on {sup 1}H{sup N}-{sup 15}N residual dipolar couplings has pronounced impact on the backbone rmsd and Ramachandran plot but does not improve the hydrogen bond geometry. In the case of chymotrypsin inhibitor 2 the addition of {sup 13}CO-{sup 13}C{sup {alpha}} and {sup 15}N-{sup 13}CO one bond dipolar couplings as restraints in the structure calculations improved the hydrogen bond geometry to a quality comparable to that obtained in the 1.8 A resolution X-ray structure of this protein. A systematic restraint study was performed, in which four types of restraints, residual dipolar couplings, hydrogen bonds, TALOS angles and NOEs, were allowed in two states. This study revealed the importance of using several types of residual dipolar couplings to get good hydrogen bond geometry. The study also showed that using a small set of NOEs derived only from the amide protons, together with a full set of residual dipolar couplings resulted in structures of very high quality. When reducing the NOE set, it is mainly the side-chain to side-chain NOEs that are removed. Despite of this the effect on the side-chain packing is very small when a reduced NOE set is used, which implies that the over all fold of a protein structure is mainly determined by correct folding of the backbone.

  20. Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects.

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Feng; Li, Hua; Xu, Junzhong; Gochberg, Daniel F; Gore, John C; Zu, Zhongliang

    2017-07-01

    Accurate quantification of chemical exchange saturation transfer (CEST) effects, including dipole-dipole mediated relayed nuclear Overhauser enhancement (rNOE) saturation transfer, is important for applications and studies of molecular concentration and transfer rate (and thereby pH or temperature). Although several quantification methods, such as Lorentzian difference (LD) analysis, multiple-pool Lorentzian fits, and the three-point method, have been extensively used in several preclinical and clinical applications, the accuracy of these methods has not been evaluated. Here we simulated multiple-pool Z spectra containing the pools that contribute to the main CEST and rNOE saturation transfer signals in the brain, numerically fit them using the different methods, and then compared their derived CEST metrics with the known solute concentrations and exchange rates. Our results show that the LD analysis overestimates contributions from amide proton transfer (APT) and intermediate exchanging amine protons; the three-point method significantly underestimates both APT and rNOE saturation transfer at -3.5 ppm (NOE(-3.5)). The multiple-pool Lorentzian fit is more accurate than the other two methods, but only at lower irradiation powers (≤1 μT at 9.4 T) within the range of our simulations. At higher irradiation powers, this method is also inaccurate because of the presence of a fast exchanging CEST signal that has a non-Lorentzian lineshape. Quantitative parameters derived from in vivo images of rodent brain tumor obtained using an irradiation power of 1 μT were also compared. Our results demonstrate that all three quantification methods show similar contrasts between tumor and contralateral normal tissue for both APT and the NOE(-3.5). However, the quantified values of the three methods are significantly different. Our work provides insight into the fitting accuracy obtainable in a complex tissue model and provides guidelines for evaluating other newly developed

  1. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  2. NMR studies of the interaction of the antibiotic nogalamycin with the hexadeoxyribonucleotide duplex d(5'-GCATGC)2

    International Nuclear Information System (INIS)

    Searle, M.S.; Hall, J.G.; Denny, W.A.; Wakelin, L.P.G.

    1988-01-01

    1 H resonance assignments in the NMR spectra of the self-complementary hexadeoxyribonucleoside pentaphosphate d(5'-GCATGC) 2 and its complex with the antibiotic nogalamycin, together with interproton distance constraints obtained from two-dimensional nuclear Overhauser effect (NOE) spectra, have enabled the authors to characterize the three-dimensional structure of these species in solution. In the complex described, two drug molecules are bound per duplex, in each of two equivalent binding sites, with full retention of the dyad symmetry. Twenty-eight NOE distance constraints between antibiotic and nucleotide protons define the position and orientation of the bound drug molecule. Nogalamycin intercalates at the 5'-CA and 5'-TG steps with the major axis of the anthracycline chromophore aligned approximately at right angles to the major axes of the base pairs. The nogalose sugar occupies the minor groove of the helix and makes many contacts with the deoxyribose moieties of three nucleotides along one strand of the duplex in the 5'-TGC segment. The charged dimethylamino group and hydroxyl functions of the bicyclic sugar lie in the major groove juxtaposed to the guanine base, the bridging atoms of the bicyclic sugar making contacts with the methyl group of the thymine. Thus the antibiotic is not symmetrically disposed in the intercalation site but is in close contact in both grooves with atoms comprising the 5'-TGC strand. The intercalation cavity is wedge-shaped, the major axes of the base pairs forming the site being tilted with respect to one another

  3. NMR spectroscopic and quantum mechanical analyses of enhanced solubilization of hesperidin by theasinensin a.

    Science.gov (United States)

    Cao, Ruge; Kobayashi, Yutaro; Nonaka, Airi; Miyata, Yuji; Tanaka, Kazunari; Tanaka, Takashi; Matsui, Toshiro

    2015-07-01

    The use of hesperidin in the pharmaceutical field is limited by its aqueous insolubility. The effects of natural compounds in tea on the solubility of hesperidin were evaluated and the underlying mechanism was investigated by nuclear-magnetic resonance (NMR) and quantum mechanical calculations. The solubility of hesperidin was measured by liquid chromatography time-of-flight mass spectrometry; the structure of the hesperidin/theasinensin A complex was characterized by (1)H-NMR, diffusion-ordered NMR spectroscopy, and rotating frame NOE spectroscopy, as well as theoretically by quantum mechanical calculations. Among the natural compounds in tea, theasinensin A was the most effective in improving hesperidin solubility. The complexation of hesperidin with theasinensin A led to changes in the chemical shift of protons in hesperidin (Δδ: 0.01-0.27 ppm) and diffusion coefficient (ΔD: 0.66-1.32 × 10(-10) m(2)/s) of hesperidin. ROE correlation signals between hesperidin and theasinensin A and quantum mechanical calculations revealed that two hesperidin molecules formed a stable complex with theasinensin A (2:1 complex) with a ΔG energy of -23.5 kJ/mol. This is the first study that provides insight into the enhanced solubility of hesperidin through interactions with theasinensin A via a 2:1 complex formation between hesperidin and theasinensin A.

  4. 1H NMR of High-Potential Iron-Sulfur Protein from the Purple Non-Sulfur Bacterium Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Ciurli, Stefano; Cremonini, Mauro Andrea; Kofod, Pauli

    1996-01-01

    residues bound to the [4Fe-4S]3+/2+ cluster have been performed using one-dimensional NOE and exchange spectroscopy experiments. 1H-NMR hyperfine shifts and relaxation rates of cluster-bound Cys β-CH2 protons indicate that in the [4Fe-4S]3+ cluster one iron ion can be formally described as Fe(III), while......Oxidized and reduced forms of high-potential iron-sulfur protein (HiPIP) from the purple non-sulfur photosynthetic bacterium Rhodoferux fermentans have been characterized using 1H-NMR spectroscopy. Pairwise and sequence-specific assignments of hyperfine-shifted 1H-NMR signals to protons of cysteine...... longitudinal relaxation rates of Cys β-CH2 protons in HiPIPs from six different sources as a function of the Fe-S-Cβ-Cα dihedral angle, indicate that the major contribution is due to a dipolar metal-centered mechanism, with a non-negligeable contribution from a ligand-centered dipolar mechanism which involves...

  5. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  6. An approach for high-throughput structure determination of proteins by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Medek, Ales; Olejniczak, Edward T.; Meadows, Robert P.; Fesik, Stephen W. [Abbott Laboratories, Pharmaceutical Discovery Division (United States)

    2000-11-15

    An approach is described for rapidly determining protein structures by NMR that utilizes proteins containing {sup 13}C-methyl labeled Val, Leu, and Ile ({delta}1) and protonated Phe and Tyr in a deuterated background. Using this strategy, the key NOEs that define the hydrophobic core and overall fold of the protein are easily obtained. NMR data are acquired using cryogenic probe technology which markedly reduces the spectrometer time needed for data acquisition. The approach is demonstrated by determining the overall fold of the antiapoptotic protein, Bcl-xL, from data collected in only 4 days. Refinement of the Bcl-xL structure to a backbone rmsd of 0.95 A was accomplished with data collected in an additional 3 days. A distance analysis of 180 different proteins and structure calculations using simulated data suggests that our method will allow the global folds of a wide variety of proteins to be determined.

  7. Study on irradiated polymerization of acrylonitrile by NMR

    International Nuclear Information System (INIS)

    Zhao Xin; Lin Hao

    1999-01-01

    Sup 13 C CP/MAS spectra and nuclear Overhauser effects (NOE) at room temperature have been measured for acrylonitrile (AN) in homophase irradiated polymerization. With the increase of radiation dose the chemical shift of cracking peaks and NOE are variation. This implies that the polymerized mechanism of AN were changed with the variation of irradiated doses and dose rate. There is the stronger affinity electron group (-CN) in acrylonitrile monomer. It may be polymerized by various ways and mechanism and be gained the polymer of difference structures and molecular weight of polyacrylonitrile (PAN). Starmicarbon and Starker obtained higher molecular weight of polyacrylonitrile by peroxysulfate-pyrosulfite in oxidation-reduction system. The superhigh molecular weight of PAN was synthesized chemically according to the method of Wu et. al. by suspension polymerization. In this paper we discussed that the relative concentrations of steric dyads and triads in the chain structure in PAN and the irradiation polymerized mechanism of acrylonitrile monomer in room temperature by different dose and dose rate

  8. IRMA iterative relaxation matrix approach for NMR structure determination application to DNA fragments

    International Nuclear Information System (INIS)

    Koning, M.M.G.

    1990-01-01

    The subject of this thesis is the structure determination of DNA molecules in solution with the use of NMR. For this purpose a new relaxation matrix approach is introduced. The emphasis is on the interpretation of nuclear Overhauser effects (NOEs) in terms of proton-proton distances and related three dimensional structures. The DNA molecules studied are obligonucleotides, unmodifief as well as modified molecules bu UV radiation. From comparison with unmodified molecules it turned out that UV irradiation scarcely influences the helical structure of the DNA string. At one place of the string a nucleotide is rotated towards the high-ANTI conformation which results in a slight unwinding of the DNA string but sufficient for blocking of the normal reading of genetic information. (H.W.). 456 refs.; 50 figs.; 30 tabs

  9. On the transmit field inhomogeneity correction of relaxation‐compensated amide and NOE CEST effects at 7 T

    Science.gov (United States)

    Windschuh, Johannes; Siero, Jeroen C.W.; Zaiss, Moritz; Luijten, Peter R.; Klomp, Dennis W.J.; Hoogduin, Hans

    2017-01-01

    High field MRI is beneficial for chemical exchange saturation transfer (CEST) in terms of high SNR, CNR, and chemical shift dispersion. These advantages may, however, be counter‐balanced by the increased transmit field inhomogeneity normally associated with high field MRI. The relatively high sensitivity of the CEST contrast to B 1 inhomogeneity necessitates the development of correction methods, which is essential for the clinical translation of CEST. In this work, two B 1 correction algorithms for the most studied CEST effects, amide‐CEST and nuclear Overhauser enhancement (NOE), were analyzed. Both methods rely on fitting the multi‐pool Bloch‐McConnell equations to the densely sampled CEST spectra. In the first method, the correction is achieved by using a linear B 1 correction of the calculated amide and NOE CEST effects. The second method uses the Bloch‐McConnell fit parameters and the desired B 1 amplitude to recalculate the CEST spectra, followed by the calculation of B 1‐corrected amide and NOE CEST effects. Both algorithms were systematically studied in Bloch‐McConnell equations and in human data, and compared with the earlier proposed ideal interpolation‐based B 1 correction method. In the low B 1 regime of 0.15–0.50 μT (average power), a simple linear model was sufficient to mitigate B 1 inhomogeneity effects on a par with the interpolation B 1 correction, as demonstrated by a reduced correlation of the CEST contrast with B 1 in both the simulations and the experiments. PMID:28111824

  10. Sensitivity improvement for correlations involving arginine side-chain Nε/Hε resonances in multi-dimensional NMR experiments using broadband 15N 180o pulses

    International Nuclear Information System (INIS)

    Iwahara, Junji; Clore, G. Marius

    2006-01-01

    Due to practical limitations in available 15 N rf field strength, imperfections in 15 N 180 o pulses arising from off-resonance effects can result in significant sensitivity loss, even if the chemical shift offset is relatively small. Indeed, in multi-dimensional NMR experiments optimized for protein backbone amide groups, cross-peaks arising from the Arg guanidino 15 Nε (∼85 ppm) are highly attenuated by the presence of multiple INEPT transfer steps. To improve the sensitivity for correlations involving Arg Nε-Hε groups, we have incorporated 15 N broadband 180 deg. pulses into 3D 15 N-separated NOE-HSQC and HNCACB experiments. Two 15 N-WURST pulses incorporated at the INEPT transfer steps of the 3D 15 N-separated NOE-HSQC pulse sequence resulted in a ∼1.5-fold increase in sensitivity for the Arg Nε-Hε signals at 800 MHz. For the 3D HNCACB experiment, five 15 N Abramovich-Vega pulses were incorporated for broadband inversion and refocusing, and the sensitivity of Arg 1 Hε- 15 Nε- 13 Cγ/ 13 Cδ correlation peaks was enhanced by a factor of ∼1.7 at 500 MHz. These experiments eliminate the necessity for additional experiments to assign Arg 1 Hε and 15 Nε resonances. In addition, the increased sensitivity afforded for the detection of NOE cross-peaks involving correlations with the 15 Nε/ 1 Hε of Arg in 3D 15 N-separated NOE experiments should prove to be very useful for structural analysis of interactions involving Arg side-chains

  11. A global analysis of NMR distance constraints from the PDB

    International Nuclear Information System (INIS)

    Vranken, Wim

    2007-01-01

    Information obtained from Nuclear Magnetic Resonance (NMR) experiments is encoded as a set of constraint lists when calculating three-dimensional structures for a protein. With the amount of constraint data from the world wide Protein Data Bank (wwPDB) that is now available, it is possible to do a global, large-scale analysis using only information from the constraints, without taking the coordinate information into account. This article describes such an analysis of distance constraints from NOE data based on a set of 1834 NMR PDB entries containing 1909 protein chains. In order to best represent the quality and extent of the data that is currently deposited at the wwPDB, only the original data as deposited by the authors was used, and no attempt was made to 'clean up' and further interpret this information. Because the constraint lists provide a single set of data, and not an ensemble of structural solutions, they are easier to analyse and provide a reduced form of structural information that is relevant for NMR analysis only. The online resource resulting from this analysis makes it possible to check, for example, how often a particular contact occurs when assigning NOESY spectra, or to find out whether a particular sequence fragment is likely to be difficult to assign. In this respect it formalises information that scientists with experience in spectrum analysis are aware of but cannot necessarily quantify. The analysis described here illustrates the importance of depositing constraints (and all other possible NMR derived information) along with the structure coordinates, as this type of information can greatly assist the NMR community

  12. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies

    International Nuclear Information System (INIS)

    Lin, Chin Hsiung; Hurley, L.H.

    1990-01-01

    (+)-CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of the drug are thought to be due to the formation of a covalent adduct with DNA through N3 of adenine. Although the covalent linkage sites between (+)-CC-1065 and DNA have been determined, the tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA duplex adduct was not defined. The [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct was then studied by 1 H and 15 N NMR. One-dimensional NOE difference and two-dimensional NOESY 1 H NMR experiments on the nonisotopically labeled 12-mer duplex adduct demonstrate that the 6-amino protons of the covalently modified adenine exhibit two signals at 9.19 and 9.08 ppm. Proton NMR experiments on the [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct show that the two resonance signals for adenine H6 observed on the nonisotopically labeled duplex adduct were split into doublets by the 15 N nucleus with coupling constants of 91.3 Hz for non-hydrogen-bonded and 86.8 Hz for hydrogen-bonded amino protons. The authors conclude that the covalently modified adenine N6 of the (+)-CC-1065-12-mer duplex adduct is predominantly in the doubly protonated form, in which calculations predict that the C6-N6 bond is shortened and the positive charge is delocalized over the entire adenine molecule

  13. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  14. Efficient Stereospecific Hβ2/3 NMR Assignment Strategy for Mid-Size Proteins

    Directory of Open Access Journals (Sweden)

    Alexandra Born

    2018-06-01

    Full Text Available We present a strategy for stereospecific NMR assignment of Hβ2 and Hβ3 protons in mid-size proteins (~150 residues. For such proteins, resonance overlap in standard experiments is severe, thereby preventing unambiguous assignment of a large fraction of β-methylenes. To alleviate this limitation, assignment experiments may be run in high static fields, where higher decoupling power is required. Three-bond Hα–Hβ J-couplings (3JHα–Hβ are critical for stereospecific assignments of β-methylene protons, and for determining rotameric χ1 states. Therefore, we modified a pulse sequence designed to measure accurate 3JHα–Hβ couplings such that probe heating was reduced, while the decoupling performance was improved. To further increase the resolution, we applied non-uniform sampling (NUS schemes in the indirect 1H and 13C dimensions. The approach was applied to two medium-sized proteins, odorant binding protein 22 (OBP22; 14.4 kDa and Pin1 (18.2 kDa, at 900 MHz polarizing fields. The coupling values obtained from NUS and linear sampling were extremely well correlated. However, NUS decreased the overlap of Hβ2/3 protons, thus supplying a higher yield of extracted 3JHα-Hβ coupling values when compared with linear sampling. A similar effect could be achieved with linear prediction applied to the linearly sampled data prior to the Fourier transformation. Finally, we used 3JHα–Hβ couplings from Pin1 in combination with either conventional or exact nuclear Overhauser enhancement (eNOE restraints to determine the stereospecific assignments of β-methylene protons. The use of eNOEs further increased the fraction of unambiguously assigned resonances when compared with procedures using conventional NOEs.

  15. Results of the R and D activity on the NOE scintillating fiber calorimeter

    International Nuclear Information System (INIS)

    Demitri, I.

    2001-01-01

    The NOE scintillating fiber calorimeter has undergone four years of intense R and D activity. Measurements of light attenuation and time resolution have been carried out on a variety of commercially available scintillating fibers. Both these parameters are important for the optimisation of the design of the calorimeter which will be part of the ICANOE detector

  16. Results of the R and D activity on the NOE scintillating fiber calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Demitri, I. E-mail: ivan.demitri@le.infr.it

    2001-04-01

    The NOE scintillating fiber calorimeter has undergone four years of intense R and D activity. Measurements of light attenuation and time resolution have been carried out on a variety of commercially available scintillating fibers. Both these parameters are important for the optimisation of the design of the calorimeter which will be part of the ICANOE detector.

  17. Separation and identification of phenolic compounds of extra virgin olive oil from Olea europaea L. by HPLC-DAD-SPE-NMR/MS. Identification of a new diastereoisomer of the aldehydic form of oleuropein aglycone.

    Science.gov (United States)

    Pérez-Trujillo, Míriam; Gómez-Caravaca, Ana María; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Parella, Teodor

    2010-08-25

    The phenolic fraction of a monovarietal extra virgin olive oil (EVOO) from Olea europaea L. var. Cornezuelo was studied by the hyphenated HPLC-DAD-SPE-NMR/MS techniques. This survey led to the identification of 25 main compounds. One was identified as a new diastereoisomer of the aldehydic form of oleuropein aglycone (AOA) and characterized by 1D and 2D NMR techniques. The relative configuration of this new AOA was determined as 5R*,8S*,9S* on the basis of the results obtained from the combination of NOE experiments and Monte Carlo conformational search calculations. Assuming, as for the described diastereoisomers, that the new AOA comes from the natural oleuropein aglycone (OA), the absolute configuration was proposed as 5S,8R,9R.

  18. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hikone, Yuya [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Hirai, Go [RIKEN, Synthetic Organic Chemistry Laboratory (Japan); Mishima, Masaki [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Inomata, Kohsuke [RIKEN, Quantitative Biology Center (Japan); Ikeya, Teppei; Arai, Souichiro [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Shirakawa, Masahiro [Japan Agency for Medical Research and Development, AMED-CREST (Japan); Sodeoka, Mikiko [RIKEN, Synthetic Organic Chemistry Laboratory (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan)

    2016-10-15

    Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N–H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.

  19. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells.

    Science.gov (United States)

    Hikone, Yuya; Hirai, Go; Mishima, Masaki; Inomata, Kohsuke; Ikeya, Teppei; Arai, Souichiro; Shirakawa, Masahiro; Sodeoka, Mikiko; Ito, Yutaka

    2016-10-01

    Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N-H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.

  20. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells

    International Nuclear Information System (INIS)

    Hikone, Yuya; Hirai, Go; Mishima, Masaki; Inomata, Kohsuke; Ikeya, Teppei; Arai, Souichiro; Shirakawa, Masahiro; Sodeoka, Mikiko; Ito, Yutaka

    2016-01-01

    Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N–H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.

  1. NMR-Assisted Structure Elucidation of an Anticancer Steroid-β-Enaminone Derivative

    Directory of Open Access Journals (Sweden)

    Donald Poirier

    2017-11-01

    Full Text Available The fortuitous modification of a quinoline-proline-piperazine side chain linked to a steroid in the presence of lithium (trimethylsilyl acetylide has generated an unknown product that is more active than its precursor. After having characterized two β-enaminones (two-carbon homologation compounds that were generated from a simplified model side chain, we have identified the unknown product as being the β-enaminone steroid derivative 1. NMR analysis, especially two-dimensional (2D experiments (correlation spectroscopy (COSY, NOE spectroscopy (NOESY, heteronuclear single-quantum correlation (HSQC and heteronuclear multiple-bond correlation (HMBC provided crucial information that was found essential in the characterization of enaminone 1. We also proposed a mechanism to rationalize the formation of this biologically active compound.

  2. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  3. Structural and dynamical characterization of piroxicam by 1H- and 13C-NMR relaxation studies

    International Nuclear Information System (INIS)

    Rossi, C.; Casini, A.; Picchi, M.P.; Laschi, F.; Calabria, A.; Marcolongo, R.

    1987-01-01

    Carbon spin-lattice relaxation rates of anti-inflammatory drug, piroxicam, have been measured. These results have been used in determining the reorientational rates of the proton carbon vectors. An analysis of internal motions within the pyridinyl moiety of piroxicam was carried out. Selective proton-carbon nuclear Overhauser effect (NOE) measurements were made in order to determine the solution structure of piroxicam. The effect of indirect NOE arising from exchangeable protons has been analyzed and considered. 20 refs.; 4 figs.; 3 tabs

  4. Adducts of nitrogenous ligands with rhodium(II) tetracarboxylates and tetraformamidinate: NMR spectroscopy and density functional theory calculations.

    Science.gov (United States)

    Cmoch, Piotr; Głaszczka, Rafał; Jaźwiński, Jarosław; Kamieński, Bohdan; Senkara, Elżbieta

    2014-03-01

    Complexation of tetrakis(μ2-N,N'-diphenylformamidinato-N,N')-di-rhodium(II) with ligands containing nitrile, isonitrile, amine, hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups has been studied in liquid and solid phases using (1)H, (13)C and (15)N NMR, (13)C and (15)N cross polarisation-magic angle spinning NMR, and absorption spectroscopy in the visible range. The complexation was monitored using various NMR physicochemical parameters, such as chemical shifts, longitudinal relaxation times T1 , and NOE enhancements. Rhodium(II) tetraformamidinate selectively bonded only unbranched amine (propan-1-amine), pentanenitrile, and (1-isocyanoethyl)benzene. No complexation occurred in the case of ligands having hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups, and more expanded amine molecules such as butan-2-amine and 1-azabicyclo[2.2.2]octane. Such features were opposite to those observed in rhodium(II) tetracarboxylates, forming adducts with all kind of ligands. Special attention was focused on the analysis of Δδ parameters, defined as a chemical shift difference between signal in adduct and corresponding signal in free ligand. In the case of (1)H NMR, Δδ values were either negative in adducts of rhodium(II) tetraformamidinate or positive in adducts of rhodium(II) tetracarboxylates. Experimental findings were supported by density functional theory molecular modelling and gauge independent atomic orbitals chemical shift calculations. The calculation of chemical shifts combined with scaling procedure allowed to reproduce qualitatively Δδ parameters. Copyright © 2013 John Wiley & Sons, Ltd.

  5. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  6. NMR techniques in the study of cardiovascular structure and functions

    International Nuclear Information System (INIS)

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy? NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance

  7. 1H and 13C NMR Chemical Shift Assignments and Conformational Analysis for the Two Diastereomers of the Vitamin K Epoxide Reductase Inhibitor Brodifacoum

    International Nuclear Information System (INIS)

    Cort, John R.; Cho, Herman M.

    2009-01-01

    Proton and 13C NMR chemical shift assignments and 1H-1H scalar couplings for the two diastereomers of the vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined from acetone solutions containing both diastereomers. Data were obtained from homo- and heteronuclear correlation spectra acquired at 1H frequencies of 750 and 900 MHz over a 268-303 K temperature range. Conformations inferred from scalar coupling and 1-D NOE measurements exhibit large differences between the diastereomers. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  8. 2D NMR studies of biomolecules

    International Nuclear Information System (INIS)

    Lamerichs, R.M.J.N.

    1989-01-01

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  9. Quantitative measurement of water diffusion lifetimes at a protein/DNA interface by NMR

    International Nuclear Information System (INIS)

    Gruschus, James M.; Ferretti, James A.

    2001-01-01

    Hydration site lifetimes of slowly diffusing water molecules at the protein/DNA interface of the vnd/NK-2 homeodomain DNA complex were determined using novel three-dimensional NMR techniques. The lifetimes were calculated using the ratios of ROE and NOE cross-relaxation rates between the water and the protein backbone and side chain amides. This calculation of the lifetimes is based on a model of the spectral density function of the water-protein interaction consisting of three timescales of motion: fast vibrational/rotational motion, diffusion into/out of the hydration site, and overall macromolecular tumbling. The lifetimes measured ranged from approximately 400 ps to more than 5 ns, and nearly all the slowly diffusing water molecules detected lie at the protein/DNA interface. A quantitative analysis of relayed water cross-relaxation indicated that even at very short mixing times, 5 ms for ROESY and 12 ms for NOESY, relay of magnetization can make a small but detectable contribution to the measured rates. The temperature dependences of the NOE rates were measured to help discriminate direct dipolar cross-relaxation from chemical exchange. Comparison with several X-ray structures of homeodomain/DNA complexes reveals a strong correspondence between water molecules in conserved locations and the slowly diffusing water molecules detected by NMR. A homology model based on the X-ray structures was created to visualize the conserved water molecules detected at the vnd/NK-2 homeodomain DNA interface. Two chains of water molecules are seen at the right and left sides of the major groove, adjacent to the third helix of the homeodomain. Two water-mediated hydrogen bond bridges spanning the protein/DNA interface are present in the model, one between the backbone of Phe8 and a DNA phosphate, and one between the side chain of Asn51 and a DNA phosphate. The hydrogen bond bridge between Asn51 and the DNA might be especially important since the DNA contact made by the invariant

  10. Three-dimensional structural analysis of the group B polysaccharide of Neisseria meningitidis 6275 by two-dimensional NMR: The polysaccharide is suggested to exist in helical conformations in solution

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Ryohei; Bacon, B. (Univ. of California, San Francisco (USA) Veterans Administration Medical Center, San Francisco, CA (USA))

    1991-01-22

    The solution conformations of the group B polysaccharide of Neisseria meningitidis were analyzed by DQF-COSY and pure absorption 2D NOE NMR with three mixing times. The pyranose ring of the sialic acid residue was found to be in the {sup 2}C{sub 5} conformation. The DQF-COSY analysis indicated that the orientations of H6 and H7 and of H7 and H8 are both gauche. In order to overcome the difficulties in analyzing the NOE data due to the two sets of proton overlaps, molecular modeling of {alpha}-2,8-linked sialic acid oligomers was carried out to investigate possible conformers, and theoretical NOE calculations were performed by using CORMA (complete relaxation matrix analysis). The analysis suggests that the polysaccharide adopts helical structures for which the {phi} (defined by O6-C2-O8-C8) and {psi} (C2-O8-C8-C7) angles are in the following ranges: {phi}-60 to 0{degree}, {psi} 115-175{degree} or {phi} 90-120{degree}, {psi}55-175{degree}. The weak affinity of anti-B antibodies for smaller {alpha}-2,8-linked oligosaccharides may be due to the fact that such oligomers are more flexible and may not form an ordered structure as the poly(sialic acid) does.

  11. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs

    Energy Technology Data Exchange (ETDEWEB)

    Hagn, Franz, E-mail: franz.hagn@tum.de; Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2015-04-15

    NMR structural studies on membrane proteins are often complicated by their large size, taking into account the contribution of the membrane mimetic. Therefore, classical resonance assignment approaches often fail. The large size of phospholipid nanodiscs, a detergent-free phospholipid bilayer mimetic, prevented their use in high-resolution solution-state NMR spectroscopy so far. We recently introduced smaller nanodiscs that are suitable for NMR structure determination. However, side-chain assignments of a membrane protein in nanodiscs still remain elusive. Here, we utilized a NOE-based approach to assign (stereo-) specifically labeled Ile, Leu, Val and Ala methyl labeled and uniformly {sup 15}N-Phe and {sup 15}N-Tyr labeled OmpX and calculated a refined high-resolution structure. In addition, we were able to obtain residual dipolar couplings (RDCs) of OmpX in nanodiscs using Pf1 phage medium for the induction of weak alignment. Back-calculated NOESY spectra of the obtained NMR structures were compared to experimental NOESYs in order to validate the quality of these structures. We further used NOE information between protonated lipid head groups and side-chain methyls to determine the position of OmpX in the phospholipid bilayer. These data were verified by paramagnetic relaxation enhancement (PRE) experiments obtained with Gd{sup 3+}-modified lipids. Taken together, this study emphasizes the need for the (stereo-) specific labeling of membrane proteins in a highly deuterated background for high-resolution structure determination, particularly in large membrane mimicking systems like phospholipid nanodiscs. Structure validation by NOESY back-calculation will be helpful for the structure determination and validation of membrane proteins where NOE assignment is often difficult. The use of protein to lipid NOEs will be beneficial for the positioning of a membrane protein in the lipid bilayer without the need for preparing multiple protein samples.

  12. Analysis of the backbone dynamics of interleukin-1β using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Clore, G.M.; Driscoll, P.C.; Wingfield, P.T.; Gronenborn, A.M.

    1990-01-01

    The backbone dynamics of uniformly 15 N-labeled interleukin-1β are investigated by using two-dimensional inverse detected heteronuclear 15 N- 1 H NMR spectroscopy. 15 N T 1 , T 2 , and NOE data at a spectrometer frequency of 600 MHz are obtained for 90% of the backbone amide groups. The data provide evidence for motions on three time scales. All the residues exhibit very fast motions on a time scale of approx-lt 20-50 ps that can be characterized by a single-order parameter with an average value of 0.82 ± 0.05. Thirty-two residues also display motions on a time scale of 0.5-4 ns, slightly less than the overall rotational correlation time of the protein (8.3 ns). While the simple formulation can account for the 15 N T 1 and T 2 data, it fails to account for the 15 N- 1 H NOE data and yields calculated values for the NOEs that are either too small or negative, whereas the observed NOEs are positive. Another 42 residues are characterized by some sort of motion on the 30-ns-10-ms time scale, which results in 15 N line broadening due to chemical exchange between different conformational substates with distinct 15 N chemical shifts. In general, the motions on both the 0.5-4-ns and 30-ns-10-ms time scales are localized in surface-accessible loops and turns connecting the β-strands, as well as at the beginning and end of strands. Finally, the kinetic and equilibrium properties of a slow conformational equilibrium between a major and a minor species, involving at least 19 residues and located on one contiguous face of the molecule, are characterized by using 1 H- 15 N correlation spectroscopy, 1 H- 15 N heteronuclear multiple quantum coherence-nuclear Overhauser enhancement spectroscopy, and 1 H- 1 H nuclear Overhauser enhancement spectroscopy

  13. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  14. Applications of NMR to studies of tissue metabolism

    International Nuclear Information System (INIS)

    Avison, M.J.; Hetherington, H.P.; Shulman, R.G.

    1986-01-01

    From its beginnings as a tool for the elucidation of biochemical pathways and bioenergetic status in unicellular organisms, the field of NMR studie in vivo has grown to encompass not only the study of isolated perfused organs, but also the study of various aspects of the biochemistry, physiology, and pathophysiology of these same organs in the intact animal. In recent years several groups have begun to extend the techniques developed in animals to the study of clinically relevant conditions in humans. A comprehensive review of all areas of NMR studies in vivo would be either unacceptably long or very superficial. For this reason the authors have restricted this review to studies published since 1980, except where an earlier study is particularly relevant to the topic under discussion. Furthermore, they have concentrated on areas that have been extending the scope of NMR in vivo. One specific omission is review of NMR studies of tumors, since a comprehensive review has recently appeared

  15. Structural investigations of substituted indolizine derivatives by NMR studies

    International Nuclear Information System (INIS)

    Furdui, Bianca; Dinica, Rodica; Demeunynck, Martine; Druta, Ioan

    2008-01-01

    Owing to the increasing importance of indolizine heterocycles in the field of biology and pharmacology we have synthesized and investigated the obtained heterocycles by NMR techniques. In order to investigate the substituent effects on the spectroscopic properties, a series of indolizine derivatives were studied by 1 H-NMR, 13 C-NMR and 2D NMR (GCOSY, GHMBC and GHMQC spectra). (authors)

  16. Sensitivity improvement for correlations involving arginine side-chain N{epsilon}/H{epsilon} resonances in multi-dimensional NMR experiments using broadband {sup 15}N 180{sup o} pulses

    Energy Technology Data Exchange (ETDEWEB)

    Iwahara, Junji; Clore, G. Marius [National Institutes of Health, Laboratory of Chemical Physics, Building 5, National Institute of Diabetes and Digestive and Kidney Disease (United States)], E-mail: mariusc@intra.niddk.nih.gov

    2006-12-15

    Due to practical limitations in available {sup 15}N rf field strength, imperfections in {sup 15}N 180{sup o} pulses arising from off-resonance effects can result in significant sensitivity loss, even if the chemical shift offset is relatively small. Indeed, in multi-dimensional NMR experiments optimized for protein backbone amide groups, cross-peaks arising from the Arg guanidino {sup 15}N{epsilon} ({approx}85 ppm) are highly attenuated by the presence of multiple INEPT transfer steps. To improve the sensitivity for correlations involving Arg N{epsilon}-H{epsilon} groups, we have incorporated {sup 15}N broadband 180 deg. pulses into 3D {sup 15}N-separated NOE-HSQC and HNCACB experiments. Two {sup 15}N-WURST pulses incorporated at the INEPT transfer steps of the 3D {sup 15}N-separated NOE-HSQC pulse sequence resulted in a {approx}1.5-fold increase in sensitivity for the Arg N{epsilon}-H{epsilon} signals at 800 MHz. For the 3D HNCACB experiment, five {sup 15}N Abramovich-Vega pulses were incorporated for broadband inversion and refocusing, and the sensitivity of Arg{sup 1}H{epsilon}-{sup 15}N{epsilon}-{sup 13}C{gamma}/{sup 13}C{delta} correlation peaks was enhanced by a factor of {approx}1.7 at 500 MHz. These experiments eliminate the necessity for additional experiments to assign Arg {sup 1}H{epsilon} and {sup 15}N{epsilon} resonances. In addition, the increased sensitivity afforded for the detection of NOE cross-peaks involving correlations with the {sup 15}N{epsilon}/{sup 1}H{epsilon} of Arg in 3D {sup 15}N-separated NOE experiments should prove to be very useful for structural analysis of interactions involving Arg side-chains.

  17. NMR studies of cerebral metabolism in vivo

    International Nuclear Information System (INIS)

    Prichard, J.W.

    1986-01-01

    The nature and extent of the potential synergism between PET and NMR methods is not yet well appreciated in the biomedical community. The long-range interest of medical neurobiology will be well served by efforts of PET and NMR scientists to follow each others' work so that opportunities for productive interchange can be efficiently exploited. Appreciation of the synergism by the rest of the biomedical community will follow naturally. PET is said by the people doing it to be still in its infancy, for they are more concerned with advancing their discipline than with admiring its already impressive achievements. On the scale of the same developmental metaphor, many NMR methods for studying the living human brain are still in utero. The best way to provide the reader a sense of the current status and future course of NMR research in medical neurobiology is by discussion of published in vivo studies. Such a discussion, adapted from another article is what follows

  18. High-resolution NMR studies of chimeric DNA-RNA-DNA duplexes, heteronomous base pairing, and continuous base stacking at junctions

    International Nuclear Information System (INIS)

    Chou, Shanho; Flynn, P.; Wang, A.; Reid, B.

    1991-01-01

    Two symmetrical DNA-RNA-DNA duplex chimeras, d(CGCG)r(AAUU)d(CGCG) (designated rAAUU) and d(CGCG)r(UAUA)d(CGCG) (designated rUAUA), and a nonsymmetrical chimeric duplex, d(CGTT)r(AUAA)d(TGCG)/d(CGCA)r(UUAU)d(AACG) (designated rAUAA), as well as their pure DNA analogues, containing dU instead of T, have been synthesized by solid-phase phosphoramidite methods and studied by high-resolution NMR techniques. The 1D imino proton NOE spectra of these d-r-d chimeras indicate normal Watson-Crick hydrogen bonding and base stacking at the junction region. Preliminary qualitative NOESY, COSY, and chemical shift data suggest that the internal RNA segment contains C3'-endo (A-type) sugar conformations except for the first RNA residues (position 5 and 17) following the 3' end of the DNA block, which, unlike the other six ribonucleotides, exhibit detectable H1'-H2' J coupling. The nucleosides of the two flanking DNA segments appear to adopt a fairly normal C2'-endo B-DNA conformation except at the junction with the RNA blocks (residues 4 and 16), where the last DNA residue appears to adopt an intermediate sugar conformation. The data indicate that A-type and B-type conformations can coexist in a single short continuous nucleic acid duplex, but these results differ somewhat from previous theoretical model studies

  19. Virtual and solution conformations of oligosaccharides

    International Nuclear Information System (INIS)

    Cumming, D.A.; Carver, J.P.

    1987-01-01

    The possibility that observed nuclear Overhauser enhancements and bulk longitudinal relaxation times, parameters measured by 1 H NMR and often employed in determining the preferred solution conformation of biologically important molecules, are the result of averaging over many conformational states is quantitatively evaluated. Of particular interest was to ascertain whether certain 1 H NMR determined conformations are virtual in nature; i.e., the fraction of the population of molecules actually found at any time within the subset of conformational space defined as the solution conformation is vanishingly small. A statistical mechanics approach was utilized to calculate an ensemble average relaxation matrix from which (NOE)'s and (T 1 )'s are calculated. Model glycosidic linkages in four oligosaccharides were studied. The nature of the resultant population distributions is such that 50% of the molecular population is found within 1% of available microstates, while 99% of the molecular population occupies about 10% of the ensemble microstates, a number roughly equal to that sterically allowed. From this analysis the authors conclude that in many cases quantitative interpretation of NMR relaxation data, which attempts to define a single set of allowable torsion angle values consistent with the observed data, will lead to solution conformations that are either virtual or reflect torsion angle values possessed by a minority of the molecular population. Observed values of NMR relaxation data are the result of the complex interdependence of the population distribution and NOE (or T 1 ) surfaces in conformational space. In conformational analyses, NMR data can therefore be used to test different population distributions calculated from empirical potential energy functions

  20. Structural Studies of Biological Solids Using NMR

    Science.gov (United States)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  1. NMR studies of the structure of glasses

    International Nuclear Information System (INIS)

    Bray, P.J.; Gravina, S.J.; Stallworth, P.E.; Szu, S.P.; Jianhui Zhong

    1988-01-01

    Earlier continuous wave (CW) NMR studies of chemical bonding and structure in glasses are summarized. Examples are given of this use of the quadrupolar interaction and chemical shift to obtain structural information. New NMR data and analyses are presented for alkali borate and gallate glasses. Extensions to other elements (e.g. molybdenum, lanthanum) are suggested. 44 refs. (author)

  2. NMR characterization of the DNA binding properties of a novel Hoechst 33258 analogue peptide building block

    DEFF Research Database (Denmark)

    Bunkenborg, Jakob; Behrens, Carsten; Jacobsen, Jens Peter

    2002-01-01

    A novel aryl-bis-benzimidazole amino acid analogue of the DNA-binding compound Hoechst 33258 has recently been designed for incorporation in peptide combinatorial libraries by replacing the N-methylpiperazine group with a carboxyl group and the hydroxy group with an amino-methyl group. The DNA......-binding properties of the aryl-bis-benzimidazole monomer with the C-terminus derivatized with 3-(dimethylamino)-propylamine has been investigated in this paper by (1)H NMR studies of two different complexes with two different DNA sequences: A(5) d(5'-GCCA(5)CG-3'):d(5'-CGT(5)GGC-3') and A(3)T(3) d(5'-CGA(3)T(3)CG-3...... preference with the bis-benzimidazole moiety displaced toward the 3'-end from the center of the duplex. Two families of models of the complexes with A(5) and A(3)T(3) were derived with restrained molecular dynamics based on a large set of 70 and 61, respectively, intermolecular ligand NOEs. Both models give...

  3. Design and numerical evaluation of full-authority flight control systems for conventional and thruster-augmented helicopters employed in NOE operations

    Science.gov (United States)

    Perri, Todd A.; Mckillip, R. M., Jr.; Curtiss, H. C., Jr.

    1987-01-01

    The development and methodology is presented for development of full-authority implicit model-following and explicit model-following optimal controllers for use on helicopters operating in the Nap-of-the Earth (NOE) environment. Pole placement, input-output frequency response, and step input response were used to evaluate handling qualities performance. The pilot was equipped with velocity-command inputs. A mathematical/computational trajectory optimization method was employed to evaluate the ability of each controller to fly NOE maneuvers. The method determines the optimal swashplate and thruster input histories from the helicopter's dynamics and the prescribed geometry and desired flying qualities of the maneuver. Three maneuvers were investigated for both the implicit and explicit controllers with and without auxiliary propulsion installed: pop-up/dash/descent, bob-up at 40 knots, and glideslope. The explicit controller proved to be superior to the implicit controller in performance and ease of design.

  4. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  5. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  6. Application of Solution NMR Spectroscopy to Study Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Christoph Göbl

    2012-03-01

    Full Text Available Recent advances in spectroscopic methods allow the identification of minute fluctuations in a protein structure. These dynamic properties have been identified as keys to some biological processes. The consequences of this structural flexibility can be far‑reaching and they add a new dimension to the structure-function relationship of biomolecules. Nuclear Magnetic Resonance (NMR spectroscopy allows the study of structure as well as dynamics of biomolecules in a very broad range of timescales at atomic level. A number of new NMR methods have been developed recently to allow the measurements of time scales and spatial fluctuations, which in turn provide the thermodynamics associated with the biological processes. Since NMR parameters reflect ensemble measurements, structural ensemble approaches in analyzing NMR data have also been developed. These new methods in some instances can even highlight previously hidden conformational features of the biomolecules. In this review we describe several solution NMR methods to study protein dynamics and discuss their impact on important biological processes.

  7. Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Daley, Margaret E.; Sykes, Brian D.

    2004-01-01

    The dynamics of threonine side chains of the Tenebrio molitor antifreeze protein (TmAFP) were investigated using natural abundance 13 C NMR. In TmAFP, the array of threonine residues on one face of the protein is responsible for conferring its ability to bind crystalline ice and inhibit its growth. Heteronuclear longitudinal and transverse relaxation rates and the 1 H- 13 C NOE were determined in this study. The CαH relaxation measurements were compared to the previously measured 15 N backbone parameters and these are found to be in agreement. For the analysis of the threonine side chain motions, the model of restricted rotational diffusion about the χ 1 dihedral angle was employed [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. We demonstrate that the motion experienced by the ice binding threonine side chains is highly restricted, with an approximate upper limit of less than ±25 deg

  8. Scrambling free combinatorial labeling of alanine-β, isoleucine-δ1, leucine-proS and valine-proS methyl groups for the detection of long range NOEs

    Energy Technology Data Exchange (ETDEWEB)

    Kerfah, Rime [NMR-Bio, IBS/CEA (France); Plevin, Michael J. [University of York, Department of Biology (United Kingdom); Pessey, Ombeline [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France); Hamelin, Olivier [CNRS (France); Gans, Pierre; Boisbouvier, Jerome, E-mail: jerome.boisbouvier@ibs.fr [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France)

    2015-01-15

    Specific isotopic labeling of methyl groups in proteins has greatly extended the applicability of solution NMR spectroscopy. Simultaneous labeling of the methyl groups of several different amino acid types can offer a larger number of useful probes that can be used for structural characterisations of challenging proteins. Herein, we propose an improved AILV methyl-labeling protocol in which L and V are stereo-specifically labeled. We show that 2-ketobutyrate cannot be combined with Ala and 2-acetolactate (for the stereo-specific labeling of L and V) as this results in co-incorporation incompatibility and isotopic scrambling. Thus, we developed a robust and cost-effective enzymatic synthesis of the isoleucine precursor, 2-hydroxy-2-(1′-[{sup 2}H{sub 2}], 2′-[{sup 13}C])ethyl-3-keto-4-[{sup 2}H{sub 3}]butanoic acid, as well as an incorporation protocol that eliminates metabolic leakage. We show that application of this labeling scheme to a large 82 kDa protein permits the detection of long-range {sup 1}H–{sup 1}H NOE cross-peaks between methyl probes separated by up to 10 Å.

  9. Solution structure of the 45-residue MgATP-binding peptide of adenylate kinase as examined by 2-D NMR, FTIR, and CD spectroscopy

    International Nuclear Information System (INIS)

    Fry, D.C.; Byler, D.M.; Susi, H.; Brown, M.; Kuby, S.A.; Mildvan, A.S.

    1988-01-01

    The structure of a synthetic peptide corresponding to residues 1-45 of rabbit muscle adenylate kinase has been studied in aqueous solution by two-dimensional NMR, FTIR, and CD spectroscopy. This peptide, which binds MgATP and is believed to represent most of the MgATP-binding site of the enzyme, appears to maintain a conformation similar to that of residues 1-45 in the X-ray structure of intact porcine adenylate kinase, with 42% of the residues of the peptide showing NOEs indicative of phi and psi angles corresponding to those found in the protein. The NMR studies suggest that the peptide is composed of two helical regions of residues 4-7 and 23-29, and three stretches of β-strand at residues 8-15, 30-32, and 35-40, yielding an overall secondary structure consisting of 24% α-helix, 38% β-structure, and 38% aperiodic. Although the resolution-enhanced amide I band of the peptide FTIR spectrum is broad and rather featureless, possible due to disorder, it can be fit by using methods developed on well-characterized globular proteins. The CD spectrum is best fit by assuming the presence of at most 13% α-helix in the peptide, 24 +/- 2% β-structure, and 66 +/- 4% aperiodic. The inability of the high-frequency FTIR and CD methods to detect helices in the amount found by NMR may result from the short helical lengths as well as from static and dynamic disorder in the peptide. Upon binding of MgATP, numerous conformation changes in the backbone of the peptide are detected by NMR, with smaller alterations in the overall secondary structure as assess by CD

  10. Protein folding on the ribosome studied using NMR spectroscopy

    Science.gov (United States)

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  11. Study on the Effects of Oligo chitosan and Bioliquifert on Two Rice Mutants, NMR 151 and NMR 152

    International Nuclear Information System (INIS)

    Shakinah Salleh; Faiz Ahmad; Sobri Hussein

    2016-01-01

    Nuclear Malaysia has successfully developed two new rice mutants namely NMR 151 and NMR 152. In addition, Nuclear Malaysia has also successfully developed Oligo chitosan and liquid bio fertilizer (Bioliquifert). Oligo chitosan acts as elicitor that has been proven to be very effective in controlling disease infections and improving yield productivity. Bioliquifert on the other hand is a mixture of microbes containing major nutrient-providing microorganisms. The objective of this study is to observe the effects of Oligo chitosan and Bioliquifert on rice mutants, NMR 151 and NMR 152. The treatment was applied on 14 day old seedlings of MR 219, NMR 151 and NMR 152 sowed in 20 cm pots containing silty clay from the paddy soil of Tanjung Karang, Selangor. The seedlings were then placed in the greenhouse at Nuclear Malaysia until it reaches 110 days old. Study was conducted in a Complete Randomized Design (CRD) with 3 replications was used and each replication consisted of three plants. All treatments received compound and single dressing fertilizer as recommended by National Rice Production Package except for Treatment 2 and 3, in which Treatment 2 received Oligo chitosan and Bioliquifert while Treatment 3 only received Bioliquifert. Results on plant height, number of tiller and plant fresh weight are not significantly different for all cultivar except for seed dry weight of NMR 152 and MR 219. (author)

  12. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-oxo-7H-dG(syn)·dA(anti) alignment at lesion site

    International Nuclear Information System (INIS)

    Kouchakdjian, M.; Patel, D.J.; Bodepudi, V.; Shibutani, S.; Eisenberg, M.; Johnson, F.; Grollman, A.P.

    1991-01-01

    Proton NMR studies are reported on the complementary d(C1-C2-A3-C4-T5-A6-oxo-G7-T8-C9-A10-C11-C12)·d(G13-G14-T15-G16-A17-A18-T19-A20-G21-T22-G23-G24) dodecanucleotide duplex (designated 8-oxo-7H-dG·dA 12-mer), which contains a centrally located 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) residue, a group commonly found in DNA that has been exposed to ionizing radiation or oxidizing free radicals. From the NMR spectra it can be deduced that this moiety exists as two tautomers, or gives rise to two DNA conformations, that are in equilibrium and that exchange slowly. The present study focuses on the major component of the equilibrium that originates in the 6,8-dioxo tautomer of 8-oxo-7H-dG. The authors have assigned the exchangeable NH1, NH7, and NH 2 -2 base protons located on the Watson-Crick and Hoogsteen edges of 8-oxo-7H-dG7 in the 8-oxo-7H-dG·dA 12-mer duplex, using an analysis of one- and two-dimensional nuclear Overhauser enhancement (NOE) data in H 2 O solution. They were able to detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(A6-oxo-G7-T8)·d(A17-A18-T19) trinucleotide segment centered about the lesion site that establishes stacking of the oxo-dG7(syn)·dA(anti) pair between stable Watson-Crick dA6·dT19 and dT8·A17 base pairs with minimal perturbation of the helix. The structural studies demonstrate that 8-oxo-7H-dG(syn)·dA(anti) forms a stable pair in the interior of the helix, providing a basis for the observed incorporation of dA opposite 8-oxo-7H-dG when readthrough occurs past this oxidized nucleoside base

  13. NMR-Metabolic Methodology in the Study of GM Foods

    Science.gov (United States)

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  14. Proton NMR studies of Cucurbita maxima trypsin inhibitors: evidence for pH-dependent conformational change and His25-Tyr27 interaction.

    Science.gov (United States)

    Krishnamoorthi, R; Lin, C L; Gong, Y X; VanderVelde, D; Hahn, K

    1992-01-28

    A pH-dependent His25-Tyr27 interaction was demonstrated in the case of Cucurbita maxima trypsin inhibitors (CMTI-I and CMTI-III) by means of nuclear magnetic resonance (NMR) spectroscopy. pH titration, line widths, peak shapes, deuterium exchange kinetics, and two-dimensional nuclear Overhauser effect spectroscopy (NOESY) were employed to characterize a conformational change involving Tyr27, which was shown to be triggered by deprotonation of His25 around pH 6. A hydrogen bond is proposed to be formed between N epsilon of His25 and OH of Tyr27, as a distance between the atoms, His25 N epsilon and Tyr27 OH, of 3.02 A is consistent with a model built with NOE-derived distance constraints. Both the X-ray [Bode, W., Greyling, J.H., Huber, R., Otlewski, J., & Wilusz, T. (1989) FEBS Lett. 242, 282-292] and NMR [Holak, T.A., Gondol, D., Otlewski, J., & Wilusz, T. (1989) J. Mol. Biol. 210, 635-648] structures of CMTI-I at low pH (4.7-5.3) rule out such an interaction between the two aromatic rings, as the ring planes are oriented about 10 A away from each other. The presently characterized relative orientations of His25 and Tyr27 are of functional significance, as these residues make contact with the enzyme in the enzyme-inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor were functionally relevant only in the pH range 6-8. The pKa of His25 was determined and found to be influenced by Glu9/Lys substitution and by the hydrolysis of the reactive-site peptide bond between Arg5 and Ile6.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance {sup 13}C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Daley, Margaret E.; Sykes, Brian D. [University of Alberta, Department of Biochemistry, CIHR Group in Protein Structure and Function and Protein Engineering Network of Centres of Excellence (Canada)

    2004-06-15

    The dynamics of threonine side chains of the Tenebrio molitor antifreeze protein (TmAFP) were investigated using natural abundance {sup 13}C NMR. In TmAFP, the array of threonine residues on one face of the protein is responsible for conferring its ability to bind crystalline ice and inhibit its growth. Heteronuclear longitudinal and transverse relaxation rates and the {sup 1}H-{sup 13}C NOE were determined in this study. The C{alpha}H relaxation measurements were compared to the previously measured {sup 15}N backbone parameters and these are found to be in agreement. For the analysis of the threonine side chain motions, the model of restricted rotational diffusion about the {chi}{sub 1} dihedral angle was employed [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. We demonstrate that the motion experienced by the ice binding threonine side chains is highly restricted, with an approximate upper limit of less than {+-}25 deg.

  16. Three-dimensional solution structure of Cucurbita maxima trypsin inhibitor-V determined by NMR spectroscopy.

    Science.gov (United States)

    Cai, M; Gong, Y; Kao, J L; Krishnamoorthi, R

    1995-04-18

    The solution structure of Cucurbita maxima trypsin inhibitor-V (CMTI-V), which is also a specific inhibitor of the blood coagulation protein, factor XIIa, was determined by 1H NMR spectroscopy in combination with a distance-geometry and simulated annealing algorithm. Sequence-specific resonance assignments were made for all the main-chain and most of the side-chain hydrogens. Stereospecific assignments were also made for some of the beta-, gamma-, delta-, and epsilon-hydrogens and valine methyl hydrogens. The ring conformations of all six prolines in the inhibitor were determined on the basis of 1H-1H vicinal coupling constant patterns; most of the proline ring hydrogens were stereospecifically assigned on the basis of vicinal coupling constant and intraresidue nuclear Overhauser effect (NOE) patterns. Distance constraints were determined on the basis of NOEs between pairs of hydrogens. Dihedral angle constraints were determined from estimates of scalar coupling constants and intraresidue NOEs. On the basis of 727 interproton distance and 111 torsion angle constraints, which included backbone phi angles and side-chain chi 1, chi 2, chi 3, and chi 4 angles, 22 structures were calculated by a distance geometry algorithm and refined by energy minimization and simulated annealing methods. Both main-chain and side-chain atoms are well-defined, except for a loop region, two terminal residues, and some side-chain atoms located on the molecular surface. The average root mean squared deviation in the position for equivalent atoms between the 22 individual structures and the mean structure obtained by averaging their coordinates is 0.58 +/- 0.06 A for the main-chain atoms and 1.01 +/- 0.07 A for all the non-hydrogen atoms of residues 3-40 and 49-67. These structures were compared to the X-ray crystallographic structure of another protein of the same inhibitor family-chymotrypsin inhibitor-2 from barley seeds [CI-2; McPhalen, C. A., & James, M. N. G. (1987) Biochemistry 26

  17. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts

    Directory of Open Access Journals (Sweden)

    Simone Di Micco

    2013-12-01

    Full Text Available In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of 13C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of 13C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

  18. NMR studies of the exocyclic 1,N6-ethenodeoxyadenosine adduct (εdA) opposite thymidine in a DNA duplex. Nonplanar alignment of εdA(anti) and dT(anti) at the lesion site

    International Nuclear Information System (INIS)

    Kouchakdjian, M.; Patel, D.J.; Eisenberg, M.; Yarema, K.; Basu, A.; Essigmann, J.

    1991-01-01

    Two-dimensional proton NMR studies are reported on the complementary d(C-A-T-G-T-G-T-A-C)·d(G-T-A-C-εA-C-A-T-G) nonanucleotide duplex (designated εdA·dT 9-mer duplex) containing 1,N 6 -ethenodeoxyadenosine (εdA), a carcinogen-DNA adduct, positioned opposite thymidine in the center of the helix. The authors NMR studies have focused on the conformation of the εdA·dT 9-mer duplex at neutral pH with emphasis on defining the alignment at the dT5·εdA14 lesion site. The through-space NOE distance connectivities establish that both dT5 and εdA14 adopt anti glycosidic torsion angles, are directed into the interior of the helix, and stack with flanking Watson-Crick dG4·dC15 and dG6·dC13 pairs. Furthermore, the d(G4-T5-G6)·d(C13-εA14-C15) trinucleotide segment centered about the dT5·εdA14 lesion site adopts a right-handed helical conformation in solution. Energy minimization computations were undertaken starting from six different alignments of dT5(anti) and εdA14(anti) at the lesion site and were guided by distance constraints defined by lower and upper bounds estimated from NOESY data sets on the εdA·dT 9-mer duplex. The NMR data are consistent with a nonplanar alignment of εdA14(anti) and dT5(anti) with dT5 displaced toward the flanking dG4·dC15 base pair within the d(G4-T5-G6)·d(C13-εA14-C15) segment of the εdA·dT 9-mer duplex

  19. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ2 conformation by intra-residue NOEs

    International Nuclear Information System (INIS)

    Miyanoiri, Yohei; Takeda, Mitsuhiro; Jee, JunGoo; Ono, Akira M.; Okuma, Kosuke; Terauchi, Tsutomu; Kainosho, Masatsune

    2011-01-01

    Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U– 13 C, 15 N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the 13 C– 13 C and 13 C– 1 H spin coupling networks (Kainosho et al. in Nature 440:52–57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3- 2 H 2 ; δ1,ε3,η2- 13 C 3 ; ε1- 15 N]-indole ring ([ 12 C γ, 12 C ε2 ] SAIL-Trp), which provides a more robust way to correlate the 1 H β , 1 H α , and 1 H N to the 1 H δ1 and 1 H ε3 through the intra-residue NOEs. The assignment of the 1 H δ1 / 13 C δ1 and 1 H ε3 / 13 C ε3 signals can thus be transferred to the 1 H ε1 / 15 N ε1 and 1 H η2 / 13 C η2 signals, as with the previous type of SAIL-Trp, which has an extra 13 C at the C γ of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was 1 H β2 in this experiment, one can determine the side-chain conformation of the Trp residue including the χ 2 angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [ 12 C γ , 12 C ε2 ] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.

  20. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ(2) conformation by intra-residue NOEs.

    Science.gov (United States)

    Miyanoiri, Yohei; Takeda, Mitsuhiro; Jee, JunGoo; Ono, Akira M; Okuma, Kosuke; Terauchi, Tsutomu; Kainosho, Masatsune

    2011-12-01

    Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U-(13)C,(15)N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the (13)C-(13)C and (13)C-(1)H spin coupling networks (Kainosho et al. in Nature 440:52-57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3-(2)H(2); δ1,ε3,η2-(13)C(3); ε1-(15)N]-indole ring ([(12)C (γ,) ( 12) C(ε2)] SAIL-Trp), which provides a more robust way to correlate the (1)H(β), (1)H(α), and (1)H(N) to the (1)H(δ1) and (1)H(ε3) through the intra-residue NOEs. The assignment of the (1)H(δ1)/(13)C(δ1) and (1)H(ε3)/(13)C(ε3) signals can thus be transferred to the (1)H(ε1)/(15)N(ε1) and (1)H(η2)/(13)C(η2) signals, as with the previous type of SAIL-Trp, which has an extra (13)C at the C(γ) of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was (1)H(β2) in this experiment, one can determine the side-chain conformation of the Trp residue including the χ(2) angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [(12)C(γ),(12)C(ε2)] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.

  1. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  2. NMR study of Albemoschus esculentus characterization

    International Nuclear Information System (INIS)

    Bathista, A.L.B.S; Silva, E.O.; Nogueira, Jose de S.; Tavares, M.I.B.

    2001-01-01

    The investigation of the main compounds presented in the Albemoschus esculentus has been carried out employing nuclear magnetic resonance spectroscopy (NMR), using solution and solid state NMR when it one was necessary. The evaluation of NMR data allowed us to characterize the main type of components presented in this kind of sample. It was necessary to use a total information from solid state NMR and also the solution response. From these information we could get that four main components were presented in this sample. One in the shell, that is cellulose, another one between the shell and seeds that is a polysaccharide and in the seed two components were found one is a starch and the second one is an oil, a triacylglycerol. These components are responsible by its physical chemistry properties. (author)

  3. NMR studies of metallic tin confined within porous matrices

    International Nuclear Information System (INIS)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-01-01

    119 Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown

  4. DNA oligonucleotide conformations: high resolution NMR studies

    International Nuclear Information System (INIS)

    Mellema, J.-R.

    1984-01-01

    The present work describes a DNA double-helix model, which is well comparable with the models derived from fibre-diffraction studies. The model has a mononucleotide repeat with torsion angles in accordance with average geometries as derived from 1 H NMR studies. Special attention was paid to reduce the number of short H-H nonbonding contacts, which are abundantly present in the 'classical' fibre-diffraction models. Chapter 3 describes the first complete assignment of a 1 H NMR spectrum of a DNA tetramer, d(TAAT). Preliminary conformational data derived from the spectral parameters recorded at 27 0 C are given. A more detailed analysis employing temperature-dependence studies is given in Chapter 4. (Auth.)

  5. NMR-Metabolic Methodology in the Study of GM Foods

    Directory of Open Access Journals (Sweden)

    Irene D’Amico

    2010-01-01

    Full Text Available The 1H-NMR methodology used in the study of genetically modified (GM foods is discussed. Transgenic lettuce (Lactuca sativa cv "Luxor" over-expressing the Arabidopsis KNAT1 gene is presented as a case study. Twenty-two water-soluble metabolites (amino acids, organic acids, sugars present in leaves of conventional and GM lettuce were monitored by NMR and quantified at two developmental stages. The NMR spectra did not reveal any difference in metabolite composition between the GM lettuce and the wild type counterpart. Statistical analyses of metabolite variables highlighted metabolism variation as a function of leaf development as well as the transgene. A main effect of the transgene was in altering sugar metabolism.

  6. Chemical-exchange-sensitive MRI of amide, amine and NOE at 9.4 T versus 15.2 T.

    Science.gov (United States)

    Chung, Julius Juhyun; Choi, Wonmin; Jin, Tao; Lee, Jung Hee; Kim, Seong-Gi

    2017-09-01

    Chemical exchange (CE)-sensitive MRI benefits greatly from stronger magnetic fields; however, field effects on CE-sensitive imaging have not yet been studied well in vivo. We have compared CE-sensitive Z-spectra and maps obtained at the fields of 9.4 T and 15.2 T in phantoms and rats with off-resonance chemical-exchange-sensitive spin lock (CESL), which is similar to conventional chemical exchange saturation transfer. At higher fields, the background peak at water resonance has less spread and the exchange rate relative to chemical shift decreases, thus CESL intensity is dependent on B 0 . For the in vivo amide and nuclear Overhauser enhancement (NOE) composite resonances of rat brains, intensities were similar for both magnetic fields, but effective amide proton transfer and NOE values obtained with three-point quantification or a curve fitting method were larger at 15.2 T due to the reduced spread of attenuation at the direct water resonance. When using intermediate exchange-sensitive irradiation parameters, the amine proton signal was 65% higher at 15.2 T than at 9.4 T due to a reduced ratio of exchange rate to chemical shift. In summary, increasing magnetic field provides enhancements to CE-sensitive signals in the intermediate exchange regime and reduces contamination from background signals in the slow exchange regime. Consequently, ultrahigh magnetic field is advantageous for CE-sensitive MRI, especially for amine and hydroxyl protons. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Diastereotopic covalent binding of the natural inhibitor leupeptin to trypsin: Detection of two interconverting hemiacetals by solution and solid-state NMR spectroscopy

    International Nuclear Information System (INIS)

    Ortiz, C.; Tellier, C.; Williams, H.; Stolowich, N.J.; Scott, A.I.

    1991-01-01

    The naturally occurring peptidyl protease inhibitor leupeptin (N-acetyl-L-leucyl-L-leucyl-L-argininal) has been prepared labeled with 13 C at the argininal carbonyl. 13 C chemical shift data for the trypsin-leupeptin inhibitor complex in the pH range 3.0-7.6 reveal the presence of two pH-dependent covalent complexes, suggestive of two interconverting diastereomers at the new asymmetric tetrahedral center created by covalent addition of Ser195 to either side of the 13 C-enriched aldehyde of the inhibitor. At pH 7 two signals are observable at δ 98.8 and δ 97.2 (84:16 ratio), while at pH 3.0 the latter signal predominates. In the selective proton 13 C-edited NOE spectrum of the major diastereomer at pH 7.4, a strong NOE is observed between the hemiacetal proton of the inhibitor and the C2 proton of His57 of the enzyme, thus defining the stereochemistry of the high pH complex to the S configuration in which the hemiacetal oxygen resides in the oxyanion hole. pH titration studies further indicate that the 13 C chemical shift of the S diastereomer follows a titration curve with a pK a of 4.69, the magnitude of which is consistent with direct titration of the hemiacetal oxygen. Similar pH-dependent chemical shifts were obtained by using CPMAS 13 C NMR, providing evidence for the existence of the same diastereomeric equilibrium in the solid state

  8. NMR study of LaPb2

    International Nuclear Information System (INIS)

    Ueda, K.; Kohara, T.; Yamada, Y.

    1995-01-01

    La and Pb NMR signals were observed in LaPb 2 with a superconducting transition temperature of about 7 K. The width of the Pb NMR spectrum with an asymmetric line shape was rather narrower than those of Er-, Gd- and Ho-Pb 2 . The spin-lattice relaxation time of Pb nuclei was twice longer than that of Pb metal. La NMR spectrum had satellites due to the electric quadrupole interaction. These results show that each local environment at La or Pb site in LaPb 2 compound is uniquely determined, compared with those in randomly substituted alloys. ((orig.))

  9. Internal motion time scales of a small, highly stable and disulfide-rich protein: A 15N, 13C NMR and molecular dynamics study

    International Nuclear Information System (INIS)

    Guenneugues, Marc; Gilquin, Bernard; Wolff, Nicolas; Menez, Andre; Zinn-Justin, Sophie

    1999-01-01

    Motions of the backbone CαHα and threonine CβHβ bonds of toxin α were investigated using natural abundance 13C NMR and molecular dynamics. Measurement of the 13C longitudinal and transverse relaxation rates employed ACCORDION techniques together with coherence selection by pulsed field gradients and sensitivity enhancement through the use of preservation of equivalent pathway, thus allowing a considerable reduction of the required spectrometer time. 13C R1, R2, 1H → 13C NOE were obtained, as well as the variations of R1ρ(90 deg.) as a function of the rf field strength. These data were compared to those recorded by 1H and 15N NMR on a labelled sample of the toxin [Guenneugues et al. (1997) Biochemistry, 36, 16097-16108]. Both sets of data showed that picosecond to nanosecond time scale motions are well correlated to the secondary structure of the protein. This was further reinforced by the analysis of a 1 ns molecular dynamics simulation in water. Several CαHα and threonine CβHβ experimentally exhibit fast motions with a correlation time longer than 500 ps, that cannot be sampled along the simulation. In addition, the backbone exhibits motions on the microsecond to millisecond time scale on more than half of its length. Thus, toxin α, a highly stable protein (Tm=75 deg. C at acidic pH) containing 61 amino acids and 4 disulfides, shows important internal motions on time scales ranging from 0.1-0.5 ps, to 10-100 ps, 1 ns, and about 30 μs to 10 ms

  10. U. Blossing, G. Imsen & L. Moos (eds., The Nordic Education Model: ´A School for All´ Encounters Noe-Liberal Policy (Dordrecht: Springer, 2014

    Directory of Open Access Journals (Sweden)

    Þorlákur Axel Jónsson

    2016-03-01

    Full Text Available Book review of: Blossing, G. Imsen & L. Moos (eds, The Nordic Education Model: ´A School for All´ Encounters Noe-Liberal Policy (Dordrecht: Springer, Policy Implications of Research in Education 1, 2014

  11. BioMagResBank databases DOCR and FRED containing converted and filtered sets of experimental NMR restraints and coordinates from over 500 protein PDB structures

    Energy Technology Data Exchange (ETDEWEB)

    Doreleijers, Jurgen F. [University of Wisconsin-Madison, BioMagResBank, Department of Biochemistry (United States); Nederveen, Aart J. [Utrecht University, Bijvoet Center for Biomolecular Research (Netherlands); Vranken, Wim [European Bioinformatics Institute, Macromolecular Structure Database group (United Kingdom); Lin Jundong [University of Wisconsin-Madison, BioMagResBank, Department of Biochemistry (United States); Bonvin, Alexandre M.J.J.; Kaptein, Robert [Utrecht University, Bijvoet Center for Biomolecular Research (Netherlands); Markley, John L.; Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Department of Biochemistry (United States)], E-mail: elu@bmrb.wisc.edu

    2005-05-15

    We present two new databases of NMR-derived distance and dihedral angle restraints: the Database Of Converted Restraints (DOCR) and the Filtered Restraints Database (FRED). These databases currently correspond to 545 proteins with NMR structures deposited in the Protein Databank (PDB). The criteria for inclusion were that these should be unique, monomeric proteins with author-provided experimental NMR data and coordinates available from the PDB capable of being parsed and prepared in a consistent manner. The Wattos program was used to parse the files, and the CcpNmr FormatConverter program was used to prepare them semi-automatically. New modules, including a new implementation of Aqua in the BioMagResBank (BMRB) software Wattos were used to analyze the sets of distance restraints (DRs) for inconsistencies, redundancies, NOE completeness, classification and violations with respect to the original coordinates. Restraints that could not be associated with a known nomenclature were flagged. The coordinates of hydrogen atoms were recalculated from the positions of heavy atoms to allow for a full restraint analysis. The DOCR database contains restraint and coordinate data that is made consistent with each other and with IUPAC conventions. The FRED database is based on the DOCR data but is filtered for use by test calculation protocols and longitudinal analyses and validations. These two databases are available from websites of the BMRB and the Macromolecular Structure Database (MSD) in various formats: NMR-STAR, CCPN XML, and in formats suitable for direct use in the software packages CNS and CYANA.

  12. BioMagResBank databases DOCR and FRED containing converted and filtered sets of experimental NMR restraints and coordinates from over 500 protein PDB structures

    International Nuclear Information System (INIS)

    Doreleijers, Jurgen F.; Nederveen, Aart J.; Vranken, Wim; Lin Jundong; Bonvin, Alexandre M.J.J.; Kaptein, Robert; Markley, John L.; Ulrich, Eldon L.

    2005-01-01

    We present two new databases of NMR-derived distance and dihedral angle restraints: the Database Of Converted Restraints (DOCR) and the Filtered Restraints Database (FRED). These databases currently correspond to 545 proteins with NMR structures deposited in the Protein Databank (PDB). The criteria for inclusion were that these should be unique, monomeric proteins with author-provided experimental NMR data and coordinates available from the PDB capable of being parsed and prepared in a consistent manner. The Wattos program was used to parse the files, and the CcpNmr FormatConverter program was used to prepare them semi-automatically. New modules, including a new implementation of Aqua in the BioMagResBank (BMRB) software Wattos were used to analyze the sets of distance restraints (DRs) for inconsistencies, redundancies, NOE completeness, classification and violations with respect to the original coordinates. Restraints that could not be associated with a known nomenclature were flagged. The coordinates of hydrogen atoms were recalculated from the positions of heavy atoms to allow for a full restraint analysis. The DOCR database contains restraint and coordinate data that is made consistent with each other and with IUPAC conventions. The FRED database is based on the DOCR data but is filtered for use by test calculation protocols and longitudinal analyses and validations. These two databases are available from websites of the BMRB and the Macromolecular Structure Database (MSD) in various formats: NMR-STAR, CCPN XML, and in formats suitable for direct use in the software packages CNS and CYANA

  13. Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers

    Science.gov (United States)

    Behroozmand, Ahmad A.; Knight, Rosemary; Müller-Petke, Mike; Auken, Esben; Barfod, Adrian A. S.; Ferré, Ty P. A.; Vilhelmsen, Troels N.; Johnson, Carole D.; Christiansen, Anders V.

    2017-11-01

    The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high-quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near-surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements.

  14. A comparative study of bone scintigraphy and NMR for vertebral diseases

    International Nuclear Information System (INIS)

    Nakatani, Mariko; Sekiya, Toru; Hata, Yuichi; Mori, Yutaka; Yasuda, Masanobu; Kawakami, Kenji; Tada, Sinpei

    1985-01-01

    A comparative study of NMR and bone scintigraphy was performed in vertebral disorders, and the significance of both modalities was evaluated. Twelve patients with various vertebral abnormalities including ten cases of vertebral metastases, one case of cervical caries and one case of Granular cell tumor of L3, were examined. In 4 patients, NMR showed abnormalities in the same regions as the bone scintigrams. In another 3 patients. NMR did not show the disorders reported on bone scintigrams. This may be due to the low NMR sensitivity to tiny infiltration of tumor cells in the bone marrow. In 3 out of the remaining 5 patients, NMR demonstrated abnormal findings, whilst the bone scintigrams were normal. Previous bone scintigrams in these patients before treatment had shown abnormal accumulation of activity in the region of abnormal NMR findings. This may be due to the fact that NMR detects the irreversible change of bone marrow, and bone scintigram demonstrates the turn over of bone minerals. This limited experience suggests that both madalities are complementary in the evaluation of vertebral abnormalities. (author)

  15. NMR studies of the sporulation protein SpoIIAA: Implications for the regulation of the transcription factor {sigma}F in Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, Helena; Comfort, David; Lord, Matthew; Yudkin, Michael; Campbell, Iain D.; Nilges, Michael

    2001-04-15

    SpoIIAA participates in a four-component mechanism for phosphorylation-dependent transcription control at the outset of sporulation. We report the refinement of the solution structure of SpoIIAA by using the automated iterative NOE assignment method ARIA. To complement the structural data, the protein dynamics were determined by measuring the T{sub 1}, T{sub 2} and NOE of the backbone {sup 15}N-nuclei. The refined structure permits a discussion of the structural features that are important for the function of SpoIIAA in the regulation of the sporulation sigma factor {sigma}{sup F}, and for homologous regulatory pathways present in B. subtilis and in other bacilli.

  16. NMR studies of the sporulation protein SpoIIAA: Implications for the regulation of the transcription factor σF in Bacillus subtilis

    International Nuclear Information System (INIS)

    Kovacs, Helena; Comfort, David; Lord, Matthew; Yudkin, Michael; Campbell, Iain D.; Nilges, Michael

    2001-01-01

    SpoIIAA participates in a four-component mechanism for phosphorylation-dependent transcription control at the outset of sporulation. We report the refinement of the solution structure of SpoIIAA by using the automated iterative NOE assignment method ARIA. To complement the structural data, the protein dynamics were determined by measuring the T 1 , T 2 and NOE of the backbone 15 N-nuclei. The refined structure permits a discussion of the structural features that are important for the function of SpoIIAA in the regulation of the sporulation sigma factor σ F , and for homologous regulatory pathways present in B. subtilis and in other bacilli

  17. Rhodopsin-lipid interactions studied by NMR.

    Science.gov (United States)

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Hyperpolarized 129Xe as an NMR probe for functional studies

    International Nuclear Information System (INIS)

    Wolber, J.

    2000-01-01

    The nuclear spin polarization of 129 Xe can be enhanced by several orders of magnitude using optical pumping techniques, resulting in a dramatic enhancement of the 129 Xe Nuclear Magnetic Resonance (NMR) signal. The 'hyperpolarized' gas can be used for Magnetic Resonance Imaging (MRI) of the void spaces of the lungs after introduction of the gas into the respiratory system. Furthermore, the high solubility of xenon in blood and lipids suggests the use of 129 Xe NMR for studying blood flow, permeability, perfusion and blood volume. Hyperpolarized 129 Xe MRI has the potential of combining the high sensitivity and functional information of radioactive tracer studies with the high spatial and temporal resolution of MRI. The spin-lattice relaxation time T 1 of 129 Xe in blood determines the loss of polarization during transit from the lungs to the tissue of interest. A difference in the relaxation times of xenon in oxygenated and deoxygenated blood could be used as a contrast mechanism in functional Magnetic Resonance Imaging (fMRI). In this thesis, the hyperpolarized 129 Xe T 1 in human blood is measured in vitro as a function of blood oxygenation, and the relevant relaxation mechanisms are discussed. A new and unexpected finding is that the hyperpolarized 129 Xe NMR spectrum in blood is highly sensitive to blood oxygenation. Therefore, hyperpolarized 129 Xe NMR provides a powerful means of measuring blood oxygenation quantitatively and non-invasively. The interaction of xenon with hemoglobin is responsible for an oxygen-dependent shift of the 129 Xe NMR resonance of xenon in red blood cells. Injection delivery of hyperpolarized 129 Xe in solution could be a more efficient method of administrating the gas for functional NMR studies. For this purpose, suitable biocompatible carrier media have been studied. In particular, the use of perfluorocarbon emulsions, which are already in use as blood substitutes, as delivery media for hyperpolarized 129 Xe has been investigates

  19. Proton NMR studies of functionalized nanoparticles in aqueous environments

    Science.gov (United States)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  20. NMR and optical studies of piezoelectric polymers

    International Nuclear Information System (INIS)

    Schmidt, V.H.; Tuthill, G.F.

    1993-01-01

    Progress is reported in several areas dealing with piezoelectric (electroactive) polymers (mostly vinylidene fluoride, trifluoroethylene, copolymers, PVF 2 ) and liquid crystals. Optical studies, neutron scattering, NMR, thermal, theory and modeling were done

  1. A suite of Mathematica notebooks for the analysis of protein main chain 15N NMR relaxation data

    International Nuclear Information System (INIS)

    Spyracopoulos, Leo

    2006-01-01

    A suite of Mathematica notebooks has been designed to ease the analysis of protein main chain 15 N NMR relaxation data collected at a single magnetic field strength. Individual notebooks were developed to perform the following tasks: nonlinear fitting of 15 N-T 1 and -T 2 relaxation decays to a two parameter exponential decay, calculation of the principal components of the inertia tensor from protein structural coordinates, nonlinear optimization of the principal components and orientation of the axially symmetric rotational diffusion tensor, model-free analysis of 15 N-T 1 , -T 2 , and { 1 H}- 15 N NOE data, and reduced spectral density analysis of the relaxation data. The principle features of the notebooks include use of a minimal number of input files, integrated notebook data management, ease of use, cross-platform compatibility, automatic visualization of results and generation of high-quality graphics, and output of analyses in text format

  2. NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating.

    Science.gov (United States)

    Shenkarev, Zakhar O; Paramonov, Alexander S; Lyukmanova, Ekaterina N; Shingarova, Lyudmila N; Yakimov, Sergei A; Dubinnyi, Maxim A; Chupin, Vladimir V; Kirpichnikov, Mikhail P; Blommers, Marcel J J; Arseniev, Alexander S

    2010-04-28

    The structure and dynamics of the isolated voltage-sensing domain (VSD) of the archaeal potassium channel KvAP was studied by high-resolution NMR. The almost complete backbone resonance assignment and partial side-chain assignment of the (2)H,(13)C,(15)N-labeled VSD were obtained for the protein domain solubilized in DPC/LDAO (2:1) mixed micelles. Secondary and tertiary structures of the VSD were characterized using secondary chemical shifts and NOE contacts. These data indicate that the spatial structure of the VSD solubilized in micelles corresponds to the structure of the domain in an open state of the channel. NOE contacts and secondary chemical shifts of amide protons indicate the presence of tightly bound water molecule as well as hydrogen bond formation involving an interhelical salt bridge (Asp62-R133) that stabilizes the overall structure of the domain. The backbone dynamics of the VSD was studied using (15)N relaxation measurements. The loop regions S1-S2 and S2-S3 were found mobile, while the S3-S4 loop (voltage-sensor paddle) was found stable at the ps-ns time scale. The moieties of S1, S2, S3, and S4 helices sharing interhelical contacts (at the level of the Asp62-R133 salt bridge) were observed in conformational exchange on the micros-ms time scale. Similar exchange-induced broadening of characteristic resonances was observed for the VSD solubilized in the membrane of lipid-protein nanodiscs composed of DMPC, DMPG, and POPC/DOPG lipids. Apparently, the observed interhelical motions represent an inherent property of the VSD of the KvAP channel and can play an important role in the voltage gating.

  3. An NMR-Guided Screening Method for Selective Fragment Docking and Synthesis of a Warhead Inhibitor

    Directory of Open Access Journals (Sweden)

    Ram B. Khattri

    2016-07-01

    Full Text Available Selective hits for the glutaredoxin ortholog of Brucella melitensis are determined using STD NMR and verified by trNOE and 15N-HSQC titration. The most promising hit, RK207, was docked into the target molecule using a scoring function to compare simulated poses to experimental data. After elucidating possible poses, the hit was further optimized into the lead compound by extension with an electrophilic acrylamide warhead. We believe that focusing on selectivity in this early stage of drug discovery will limit cross-reactivity that might occur with the human ortholog as the lead compound is optimized. Kinetics studies revealed that lead compound 5 modified with an ester group results in higher reactivity than an acrylamide control; however, after modification this compound shows little selectivity for bacterial protein versus the human ortholog. In contrast, hydrolysis of compound 5 to the acid form results in a decrease in the activity of the compound. Together these results suggest that more optimization is warranted for this simple chemical scaffold, and opens the door for discovery of drugs targeted against glutaredoxin proteins—a heretofore untapped reservoir for antibiotic agents.

  4. An NMR-Guided Screening Method for Selective Fragment Docking and Synthesis of a Warhead Inhibitor.

    Science.gov (United States)

    Khattri, Ram B; Morris, Daniel L; Davis, Caroline M; Bilinovich, Stephanie M; Caras, Andrew J; Panzner, Matthew J; Debord, Michael A; Leeper, Thomas C

    2016-07-16

    Selective hits for the glutaredoxin ortholog of Brucella melitensis are determined using STD NMR and verified by trNOE and (15)N-HSQC titration. The most promising hit, RK207, was docked into the target molecule using a scoring function to compare simulated poses to experimental data. After elucidating possible poses, the hit was further optimized into the lead compound by extension with an electrophilic acrylamide warhead. We believe that focusing on selectivity in this early stage of drug discovery will limit cross-reactivity that might occur with the human ortholog as the lead compound is optimized. Kinetics studies revealed that lead compound 5 modified with an ester group results in higher reactivity than an acrylamide control; however, after modification this compound shows little selectivity for bacterial protein versus the human ortholog. In contrast, hydrolysis of compound 5 to the acid form results in a decrease in the activity of the compound. Together these results suggest that more optimization is warranted for this simple chemical scaffold, and opens the door for discovery of drugs targeted against glutaredoxin proteins-a heretofore untapped reservoir for antibiotic agents.

  5. NMR studies of macroscopic and microscopic properties of liquid crystals

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1998-03-01

    The work presented is concerned with studies of orientational order in liquid crystals and the behaviour of certain mesophases. The experimental technique used in common with all the work is deuterium NMR spectroscopy. Much of the work involves studies of the orientational order of deuteriated solute molecules dissolved in liquid crystal solvents. Chapter 1 gives an introduction to liquid crystals followed by a quantitative description of orientational order. Deuterium NMR in liquid crystals is described and an outline of the molecular field theory behind the orientational order of a rigid, biaxial solute in a uniaxial mesophase is given. In Chapter 2 a novel type of mesophase induction is studied using NMR, where a solute induces up to two extra phases in a discotic mesogen depending on its concentration. The purpose of this work is to try to gain an understanding into the mechanism of the phase induction involved. Chapter 3 is concerned primarily with the macroscopic behaviour of the nematic phase formed by a semi-rigid main-chain polymer in solution. Of particular interest is the study of the reorientation of the monodomain, once the director has been rotated with respect to the magnetic field of the NMR spectrometer. A mesogen which has been claimed to exhibit a biaxial nematic phase is studied in Chapter 4, in order to determine the symmetry of the phase using NMR. Finally, Chapter 5 deals with the differing behaviour of a liquid crystal monomer and its dimer dissolved in common nematic solvents in order to determine whether this agrees with molecular field theory. (author)

  6. Novel NMR tools to study structure and dynamics of biomembranes.

    Science.gov (United States)

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  7. Unraveling the symmetry ambiguity in a hexamer: Calculation of the R6 human insulin structure

    International Nuclear Information System (INIS)

    O'Donoghue, Sean I.; Chang Xiaoqing; Abseher, Roger; Nilges, Michael; Led, Jens J.

    2000-01-01

    Crystallographic and NMR studies of insulin have revealed a highly flexible molecule with a range of different aggregation and structural states; the importance of these states for the function of the hormone is still unclear. To address this question, we have studied the solution structure of the insulin R 6 symmetric hexamer using NMR spectroscopy. Structure determination of symmetric oligomers by NMR is complicated due to 'symmetry ambiguity' between intra- and intermonomer NOEs, and between different classes of intermonomer NOEs. Hence, to date, only two symmetric tetramers and one symmetric pentamer (VTB, B subunit of verotoxin) have been solved by NMR; there has been no other symmetric hexamer or higher-order oligomer. Recently, we reported a solution structure for R 6 insulin hexamer. However, in that study, a crystal structure was used as a reference to resolve ambiguities caused by the threefold symmetry; the same method was used in solving VTB. Here, we have successfully recalculated R 6 insulin using the symmetry-ADR method, a computational strategy in which ambiguities are resolved using the NMR data alone. Thus the obtained structure is a refinement of the previous R 6 solution structure. Correlated motions in the final structural ensemble were analysed using a recently developed principal component method; this suggests the presence of two major conformational substates. The study demonstrates that the solution structure of higher-order symmetric oligomers can be determined unambiguously from NMR data alone, using the symmetry-ADR method. This success bodes well for future NMR studies of higher-order symmetric oligomers. The correlated motions observed in the structural ensemble suggest a new insight into the mechanism of phenol exchange and the T 6 ↔ R 6 transition of insulin in solution

  8. Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies

    International Nuclear Information System (INIS)

    Zhou Pei; Wagner, Gerhard

    2010-01-01

    Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR. We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs.

  9. Data describing the solution structure of the WW3* domain from human Nedd4-1

    Directory of Open Access Journals (Sweden)

    Vineet Panwalkar

    2016-09-01

    Full Text Available The third WW domain (WW3* of human Nedd4-1 (Neuronal precursor cell expressed developmentally down-regulated gene 4-1 interacts with the poly-proline (PY motifs of the human epithelial Na+ channel (hENaC subunits at micromolar affinity. This data supplements the article (Panwalkar et al., 2015 [1]. We describe the NMR experiments used to solve the solution structure of the WW3* domain. We also present NOE network data for defining the rotameric state of side chains of peptide binding residues, and complement this data with χ1 dihedral angles derived from 3J couplings and molecular dynamics simulations data. Keywords: Chemical shift, Neuronal precursor cell expressed developmentally down-regulated gene 4-1, NMR, NOE distance restraints, WW domain

  10. NMR studies of Na+-anion association effects in polymer electrolytes

    International Nuclear Information System (INIS)

    Greenbaum, S.G.; Pak, Y.S.; Wintergill, M.C.; Fontanella, J.J.

    1988-01-01

    23 Na nuclear magnetic resonance (NMR) measurements on poly (propylene oxide) (PPO) and siloxane based polymer electrolytes containing various sodium salts at a single nominal concentration are reported. In addition, differential scanning calorimetry (DSC) and electrical conductivity studies were carried out on the PPO materials. The NMR-determined mobile Na + concentrations and DSC results provide evidence for ionic aggregation effects which, for some samples, result in salt precipitation at elevated temperatures. 23 Na chemical shifts observed in solid state NMR due to mobile Na + -anion interactions influence ionic transport as well as the number of available carriers. (author). 19 refs.; 7 figs

  11. Applications of 1H-NMR relaxometry in experimental liver studies

    International Nuclear Information System (INIS)

    Holzmueller, P.

    1992-01-01

    Purpose of this study was to investigate applications of proton nuclear magnetic resonance ( 1 H-NMR) relaxometry in experimental medicine. Relaxometry was performed by measurements of spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation time parameters on liver biopsies up to four hours after biopsy excision. Variations of relaxation times due to species and strain, different sample handling and different liver damage models, ethionine fatty liver and paracetamol liver necrosis, were investigated. Cell integrity effects were studied on homogenized liver samples. Relaxation time parameters, especially 'main' components T 1A and T 2A of biexponential model fit, were identified to react very sensitive after tissue damages as well as to cell viability. Thus, investigation of stored liver grafts was performed in order to evaluate the possibility of a rapid liver graft viability testing method for human liver transplantation surgery by 1 H-NMR relaxometry. Another series of measurements was performed to investigate the applicability of isoflurane anesthesia for in vivo NMR experiments. This study proved the good appropriateness of isoflurane for that purpose provided that physiological monitoring and individual adjustment of anesthesia are performed. In these investigations it could be revealed that mainly T 1A and T 2A are influenced by tissue condition and that different information is inherent in these two parameters, with T 2A reflecting tissue viability and changes of tissue conditions very sensitively but rather unspecifically in respect to the damage applied. Based on these results the following future applications of 1 H-NMR relaxometry are suggested : (1) model investigations, (2) investigation of given pathologies, (3) investigation of basic requirements for in vivo NMR and (4) application in a liver graft viability testing protocol, which seems to be the most important future application of 1 H-NMR relaxometry in medicine. (author)

  12. On-Going Bentonite Pore Water Studies by NMR and SAXS

    International Nuclear Information System (INIS)

    Carlsson, Torbjoern; Muurinen, Arto; Root, Andrew

    2013-01-01

    Compacted water-saturated MX-80 bentonite is presently being studied by SAXS and NMR in order to quantify the major pore water phases in the bentonite. The SAXS and NMR measurements gave very similar results indicating that the pore water is mainly distributed between two major phases (interlayer and non-interlayer water) and also indicate how these phases depend on the bentonite dry density. The results from the SAXS and NMR studies at VTT indicate the same thing: - The pore water in water-saturated compacted (?dry = 0.7-1.6 g/cm 3 ) bentonite is divided into two main phases: interlayer water and non-interlayer water. - The amounts of these pore water phases can be determined quantitatively with the above methods. (authors)

  13. Multinuclear MAS NMR studies on coked zeolites H-ZSM-5

    International Nuclear Information System (INIS)

    Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H.

    1991-01-01

    During the cracking process carbonaceous materials are deposited on the outer or inner surface of the catalyst. These deposits are in many cases the main cause of catalyst deactivation. Magic angle spinning (MAS) NMR investigations and catalytic n-hexane cracking were carried out on H-ZSM-5 zeolites after a mild hydrothermal de-alumination. By 13 C CP MAS NMR it could be shown that the enhanced catalytic activity does not enhance the coke formation and that the chemical nature of these deposits is essentially aromatic. From 1 H MAS NMR studies performed on shallow-bed activated sealed samples and 27 Al and 29 Si MAS NMR on rehydrated samples it follows that for high coke concentrations the catalyst deactivation is caused mainly by blocking of Broensted acid sites. (author). 27 refs.; 3 figs.; 2 tabs

  14. NMR studies of abasic sites in DNA duplexes: deoxyadenosine stacks into the helix opposite the cyclic analog of 2-deoxyribose

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Chang, C.N.; Grollman, A.P.; Patel, D.J.

    1988-01-01

    Proton and phosphorus NMR studies are reported for the complementary d(C-A-T-G-A-G-T-A-C) x d(G-T-A-C-F-C-A-T-G) nonanucleotide duplex (designated AP/sub F/ 9-mer duplex) which contains a stable abasic site analog, F, in the center of the helix. This oligodeoxynucleotide contains a modified tetrahydrofuran moiety, isosteric with 2-deoxyribofuranose, which serves as a structural analog of a natural apurinic/apyrimidinic site. Exchangeable and nonexchangeable base and sugar protons, including those located at the abasic site, have been assigned in the complementary AP/sub F/ 9-mer duplex by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H 2 O and D 2 O solution at low temperature (0 0 C). These studies indicate that A5 inserts into the helix opposite the abasic site F14 and stacks with flanking G4 x C15 and G6 x C13 Watson-Crick base pairs. Base-sugar proton NOE connectivities were measured through G4-A5-G6 on the unmodified strand and between the base protons of C15 and the sugar protons of the 5'-flanking residue F14 on the modified strand. These studies establish that all glycosidic torsion angles are anti and that the helix is right-handed at and adjacent to the abasic site in the AP/sub F/ 9-mer duplex. Two of the 16 phosphodiester groups exhibit phosphorus resonances outside the normal spectral dispersion indicative of altered torsion angles at two of the phosphate groups in the backbone of the AP/sub F/ 9-mer duplex

  15. Proton NMR studies of Cucurbita maxima trypsin inhibitors: Evidence for pH-dependent conformational change and his25 - try27 interaction

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthi, R.; Chanlan Sun Lin; Yuxi Gong (Kansas State Univ., Manhattan (United States)); VanderVelde, D. (Univ. of Kansas, Lawrence (United States)); Hahn, K. (Univ. of Colorado, Denver (United States))

    1992-01-28

    A pH-dependent His25-Tyr27 interaction was demonstrated in the case of Cucurbita maxima trypsin inhibitors (CMTI-I and CMTI-III) by means of nuclear magnetic resonance (NMR) spectroscopy. pH titration, line widths, peak shapes, deuterium exchange kinetics, and two-dimensional nuclear Overhauser effect spectroscopy (NOESY) were employed to characterize a conformational change involving Tyr27, which was shown to be triggered by deprotonation of His25 around pH 6. A hydrogen bond is proposed to be formed between N{sub {epsilon}} of His25 and OH of Tyr27, as a distance between the atoms, His25 N{epsilon} and Tyr25 OH, of 3.02 {angstrom} is consistent with a model built with NOE-derived distance constraints. The presently characterized relative orientations of His25 and Tyr27 are of functional significance, as these residues make contact with the enzyme in the enzyme-inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor were functionally relevant only in the pH range 6-8. The pK{sub a} of His25 was determined and found to be influenced by Glu9/Lys substitution and by the hydrolysis of the reactive-site peptide bond between Arg5 and Ile6. As these sites are located far (>10 {angstrom}) from His25, the results point out conformational changes that are propagated to a distant site in the protein molecule.

  16. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mantsyzov, Alexey B. [M.V. Lomonosov Moscow State University, Faculty of Fundamental Medicine (Russian Federation); Shen, Yang; Lee, Jung Ho [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Hummer, Gerhard [Max Planck Institute of Biophysics (Germany); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2015-09-15

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ({sup 15}N, {sup 13}C{sup α}, and {sup 13}C′), six types of J couplings ({sup 3}J{sub HNHα}, {sup 3}J{sub C′C′}, {sup 3}J{sub C′Hα}, {sup 1}J{sub HαCα}, {sup 2}J{sub CαN} and {sup 1}J{sub CαN}), as well as the {sup 15}N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.

  17. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the {chi}{sub 2} conformation by intra-residue NOEs

    Energy Technology Data Exchange (ETDEWEB)

    Miyanoiri, Yohei; Takeda, Mitsuhiro [Nagoya University, Graduate School of Science, Structural Biology Research Center (Japan); Jee, JunGoo; Ono, Akira M.; Okuma, Kosuke; Terauchi, Tsutomu [Tokyo Metropolitan University, Center for Priority Areas (Japan); Kainosho, Masatsune, E-mail: kainosho@nagoya-u.jp [Nagoya University, Graduate School of Science, Structural Biology Research Center (Japan)

    2011-12-15

    Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U-{sup 13}C,{sup 15}N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the {sup 13}C-{sup 13}C and {sup 13}C-{sup 1}H spin coupling networks (Kainosho et al. in Nature 440:52-57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [{zeta}2,{zeta}3-{sup 2}H{sub 2}; {delta}1,{epsilon}3,{eta}2-{sup 13}C{sub 3}; {epsilon}1-{sup 15}N]-indole ring ([{sup 12}C{sub {gamma},}{sup 12}C{sub {epsilon}2}] SAIL-Trp), which provides a more robust way to correlate the {sup 1}H{sub {beta}}, {sup 1}H{sub {alpha}}, and {sup 1}H{sub N} to the {sup 1}H{sub {delta}1} and {sup 1}H{sub {epsilon}3} through the intra-residue NOEs. The assignment of the {sup 1}H{sub {delta}1}/{sup 13}C{sub {delta}1} and {sup 1}H{sub {epsilon}3}/{sup 13}C{sub {epsilon}3} signals can thus be transferred to the {sup 1}H{sub {epsilon}1}/{sup 15}N{sub {epsilon}1} and {sup 1}H{sub {eta}2}/{sup 13}C{sub {eta}2} signals, as with the previous type of SAIL-Trp, which has an extra {sup 13}C at the C{sub {gamma}} of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral {beta}-methylene protons, which was {sup 1}H{sub {beta}2} in this experiment, one can determine the side-chain conformation of the Trp residue including the {chi}{sub 2} angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [{sup 12}C{sub {gamma}},{sup 12}C

  18. NMR studies of multiphase flows II

    Energy Technology Data Exchange (ETDEWEB)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E. [Lovelace Institutes, Albuquerque, NM (United States)] [and others

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  19. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  20. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    International Nuclear Information System (INIS)

    Saether, Oddbjoern

    2005-01-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  1. NMR structural studies of peptides and proteins in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Opella, S J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1994-12-31

    The use of NMR methodology in structural studies is described as applicable to larger proteins, considering that the majority of membrane proteins is constructed from a limited repertoire of structural and dynamic elements. The membrane associated domains of these proteins are made up of long hydrophobic membrane spanning helices, shorter amphipathic bridging helices in the plane of the bilayer, connecting loops with varying degrees of mobility, and mobile N- and C- terminal sections. NMR studies have been successful in identifying all of these elements and their orientations relative to each other and the membrane bilayer 19 refs., 9 figs.

  2. NMR studies of phase behaviour in polyacrylonitrile solutions

    International Nuclear Information System (INIS)

    Golightly, J.A.

    1998-10-01

    The aim of the thesis was to study the phase behaviour of aqueous polyacrylonitrile/NaSCN solutions using a variety of nuclear magnetic resonance techniques. Polyacrylonitrile (PAN) is the basis of the acrylic fibre industry, as such fibres contain at least 85% PAN. Despite this industrial importance, the available literature describing the phase behaviour of PAN in solution is far from comprehensive. Bulk 1 H NMR relaxation measurements were carried out over a wide range of concentrations and temperatures to probe the molecular dynamics of the PAN and water molecules. The relaxation data was found to be biexponential decay for all samples, the relative amplitudes of which were shown to be equal to the ratio of PAN protons to water protons. Both species were found to be in the regime of rapid molecular motion. Bulk 1 H NMR self diffusion measurements, using the PFGSTE technique, exhibited a bi-exponential decay of the echo amplitudes. By careful selection of the observation time, Δ, it was possible to independently probe the water and PAN translational diffusion. A background gradient, resulting from inhomogeneities of the magnetic field, complicated the analysis of the data and a novel polynomial least squares fitting procedure was devised to overcome this effect. The measured attenuation of the water diffusion coefficients (D∼10 -6 -10 -5 cm 2 s -1 ) with increasing PAN volume fraction was modelled according to various theories, including free volume and scaling laws. The study of the PAN diffusion coefficient (D∼10 -7 -10 -6 cm 2 s -1 ) was limited by the experimental constraints of the NMR spectrometer. A 1 H NMR one-dimensional imaging technique was used to study the non-solvent induced phase separation (coagulation) of a PAN solution. The time dependence of the measured profiles allowed observation of the coagulation process. A diffusion model was developed to fit the experimental data using a semi-infinite diffusion framework. The fitting parameters

  3. BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank

    International Nuclear Information System (INIS)

    Doreleijers, Jurgen F.; Mading, Steve; Maziuk, Dimitri; Sojourner, Kassandra; Yin Lei; Zhu Jun; Markley, John L.; Ulrich, Eldon L.

    2003-01-01

    Experimental constraints associated with NMR structures are available from the Protein Data Bank (PDB) in the form of 'Magnetic Resonance' (MR) files. These files contain multiple types of data concatenated without boundary markers and are difficult to use for further research. Reported here are the results of a project initiated to annotate, archive, and disseminate these data to the research community from a searchable resource in a uniform format. The MR files from a set of 1410 NMR structures were analyzed and their original constituent data blocks annotated as to data type using a semi-automated protocol. A new software program called Wattos was then used to parse and archive the data in a relational database. From the total number of MR file blocks annotated as constraints, it proved possible to parse 84% (3337/3975). The constraint lists that were parsed correspond to three data types (2511 distance, 788 dihedral angle, and 38 residual dipolar couplings lists) from the three most popular software packages used in NMR structure determination: XPLOR/CNS (2520 lists), DISCOVER (412 lists), and DYANA/DIANA (405 lists). These constraints were then mapped to a developmental version of the BioMagResBank (BMRB) data model. A total of 31 data types originating from 16 programs have been classified, with the NOE distance constraint being the most commonly observed. The results serve as a model for the development of standards for NMR constraint deposition in computer-readable form. The constraints are updated regularly and are available from the BMRB web site (http://www.bmrb.wisc.edu)

  4. PVT Degradation Studies: NMR Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-06

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. Nuclear magnetic resonance spectroscopy has been used to elucidate the state of water inside the PVT. The deuterium NMR results show that water absorbed by PVT under warm, humid conditions enters several distinct environments, and when the PVT is transferred from incubation to ambient temperature and humidity the water is lost on a time scale of a few hours from these samples. Most of the deuterium NMR peaks can be assigned to bulk liquid water, but almost 35% of the detected signal intensity is contained in a resonance that resembles spectra of water contained in nanometer-scale pores in mesoporous carbon.

  5. nmr spectroscopic study and dft calculations of giao nmr shieldings

    African Journals Online (AJOL)

    Preferred Customer

    3Department of Physics, Arts and Science Faculty, Dumlupinar University, Kütahya, ... 1H, 13C NMR chemical shifts and 1JCH coupling constants of .... then estimated using the corresponding TMS shieldings calculated in advance at the same.

  6. NMR studies of echinomycin bisintercalation complexes with d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution: sequence-dependent formation of Hoogsteen A1 x T4 and Watson-Crick T1 x A4 base pairs flanking the bisintercalation site

    International Nuclear Information System (INIS)

    Gao, X.; Patel, D.J.

    1988-01-01

    The authors report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-Tr) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets records in H 2 O and D 2 O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding the dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A large set of intermolecular contacts established from nuclear Overhauser effects (NOEs) between antibiotic and nucleic acid protons in the echinomycin-tetranucleotide complexes in solution are consistent with corresponding contacts reported for echinomycin-oligonucleotide complexes in the crystalline state. The authors demonstrate that the G x G base pairs adopt Watson-Crick pairing in both d(ACGT) and d(TCGA) complexes in solution. By contrast, the A1 x T4 base pairs adopt Hoogsteen pairing for the echinomycin-d(A1-C2-G3-Tr) complex while the T1 x A4 base pairs adopt Watson-Crick pairing for the echinomycin-d(T1-C2-G3-A4) complex in aqueous solution. These results emphasize the role of sequence in discriminating between Watson-Crick and Hoogsteen pairs at base pairs flanking the echinomycin bisintercalation site in solution

  7. Solid-state NMR studies of form I of atorvastatin calcium.

    Science.gov (United States)

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  8. 27Al NMR studies of NpPd5Al2

    International Nuclear Information System (INIS)

    Chudo, H.; Sakai, H.; Tokunaga, Y.; Kambe, S.; Aoki, D.; Homma, Y.; Shiokawa, Y.; Haga, Y.; Ikeda, S.; Matsuda, T.D.; Onuki, Y.; Yasuoka, H.

    2009-01-01

    We present 27 Al NMR studies for a single crystal of the Np-based superconductor NpPd 5 Al 2 (T c =4.9K). We have observed a five-line 27 Al NMR spectrum with a center line and four satellite lines separated by first-order nuclear quadrupole splittings. The Knight shift clearly drops below T c . The temperature dependence of the 27 Al nuclear spin-lattice relaxation rate shows no coherence peak below T c , indicating that NpPd 5 Al 2 is an unconventional superconductor with an anisotropic gap. The analysis of the present NMR data provides evidence for strong-coupling d-wave superconductivity in NpPd 5 Al 2 .

  9. Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, David; Bedard, Mikaeel; Bilodeau, Josee; Lavigne, Pierre, E-mail: pierre.lavigne@usherbrooke.ca [Universite de Sherbrooke, Departement de Biochimie, Faculte de Medecine et des Sciences de la Sante, Institut de Pharmacologie de Sherbrooke (Canada)

    2013-10-15

    Myc-interacting zinc finger protein-1 (Miz-1) is a BTB/POZ transcription factor that activates the transcription of cytostatic genes, such as p15{sup INK4B} or p21{sup CIP1}. The C-terminus of Miz-1 contains 13 consensus C{sub 2}H{sub 2} zinc finger domains (ZF). ZFs 1-4 have been shown to interact with SMAD3/4, while the remaining ZFs are expected to bind the promoters of target genes. We have noted unusual features in ZF 5 and the linker between ZFs 5 and 6. Indeed, a glutamate is found instead of the conserved basic residue two positions before the second zinc-coordinating histidine on the ZF 5 helix, and the linker sequence is DTDKE in place of the classical TGEKP sequence. In a canonical {beta}{beta}{alpha} fold, such unusual primary structure elements should cause severe electrostatic repulsions. In this context, we have characterized the structure and the dynamics of a Miz-1 construct comprising ZFs 5-8 (Miz 5-8) by solution-state NMR. Whilst ZFs 5, 7 and 8 were shown to adopt the classical {beta}{beta}{alpha} fold for C{sub 2}H{sub 2} ZFs, the number of long-range NOEs was insufficient to define a classical fold for ZF 6. We show by using {sup 15}N-relaxation dispersion experiments that this lack of NOEs is due to the presence of extensive motions on the {mu}s-ms timescale. Since this negatively charged region would have to be located near the phosphodiester backbone in a DNA complex, we propose that in addition to promoting conformational searches, it could serve as a hinge region to keep ZFs 1-4 away from DNA.

  10. [Derivative spectrophotometric and NMR spectroscopic study in pharmaceutical science].

    Science.gov (United States)

    Kitamura, Keisuke

    2007-10-01

    This review starts with an introduction of derivative spectrophotometry followed by a description on the construction of a personal computer-assisted derivative spectrophotometric (DS) system. An acquisition system for inputting digitalized absorption spectra into personal computers and a BASIC program for calculating derivative spectra were developed. Then, applications of the system to drug analyses that are difficult with traditional absorption methods are described. Following this, studies on the interactions of drugs with biological macromolecules by the DS and NMR methods were discussed. An (1)H NMR study elucidated that the small unilamellar vesicle (SUV) has a single membrane made of a phosphatidylcholine bilayer, and that chlorpromazine interacts with both the outer and inner layers. (13)C NMR revealed a reduction of the dissociation constants of phenothiazine drugs due to their interaction with SUV. The partition coefficients of phenothiazine, benzodiazepine and steroid drugs in an SUV-water system and the effects of cholesterol or amino lipids content on these partition coefficients were examined by the DS method. The binding constants of phenothiazine drugs to bovine serum albumin (BSA) and the influence of Na(+), K(+), Cl(-), Br(-), and I(-) on these binding constants were determined by DS. It was found that I(-), Br(-), Cl(-) reduce the binding constants in this order, and that Na(+) and K(+) have no effect. A (19)F NMR study revealed that triflupromazine binds to BSA and human serum albumin in two regions including Site II with different populations, and that a nonsteroidal anti-inflammatory drug, niflumic acid, binds Sites Ia and Ib.

  11. Isotope labeling strategies for NMR studies of RNA

    International Nuclear Information System (INIS)

    Lu, Kun; Miyazaki, Yasuyuki; Summers, Michael F.

    2010-01-01

    The known biological functions of RNA have expanded in recent years and now include gene regulation, maintenance of sub-cellular structure, and catalysis, in addition to propagation of genetic information. As for proteins, RNA function is tightly correlated with structure. Unlike proteins, structural information for larger, biologically functional RNAs is relatively limited. NMR signal degeneracy, relaxation problems, and a paucity of long-range 1 H- 1 H dipolar contacts have limited the utility of traditional NMR approaches. Selective isotope labeling, including nucleotide-specific and segmental labeling strategies, may provide the best opportunities for obtaining structural information by NMR. Here we review methods that have been developed for preparing and purifying isotopically labeled RNAs, as well as NMR strategies that have been employed for signal assignment and structure determination.

  12. Study of molecular movements in some organic crystals by NMR

    International Nuclear Information System (INIS)

    Alexandre, M.

    1971-01-01

    After a discussion on molecular crystals (generalities, movements within molecular solids, study of movements, complexes by charge transfer) and some specific ones (molecular complexes of trinitrobenzene or TNB), this research thesis reports the use of nuclear magnetic resonance (NMR) to study molecular movements: generalities on broadband NMR, spin relaxation and strong field network, observation of the absorption signal and measurement of the second moment. The last part reports and discusses experimental results obtained on TNB-naphthalene, on TNB-azulene, on TNB-benzothiophene, and on TNB-indole

  13. Proton NMR studies on Megaphaera elsdenii flavodoxin : structure elucidation by 2D-NMR and implications

    NARCIS (Netherlands)

    Mierlo, van C.

    1990-01-01

    1H NMR techniques have been applied for a thorough study of the uncrystallizable Megasphaera elsdenii flavodoxin in its three redox states. The aim of the research project described in this thesis was to obtain answers regarding questions

  14. High resolution NMR study of cellulose in solid state and in solution

    International Nuclear Information System (INIS)

    Saint-Germain, Jean

    1983-01-01

    This research thesis reports the study of native cellulose (cotton) and wood by nuclear magnetic resonance (NMR). As far as the cotton spectrum is concerned, the author assigned resonances which more specifically corresponded to amorphous or crystalline areas. Wood was studied in its bulk condition, and resonances have been determined for the different wood components. The behaviour of cellulose in solution in a solvent has been studied by liquid high resolution NMR. The solvation mechanism has been determined and a study of model components of the macromolecule allowed a conformational study of cellulose in this solvent to be performed. Bi-dimensional NMR and longitudinal relaxation time measurements highlighted the existence of an intramolecular hydrogen bond in the cellulose in solution [fr

  15. High resolution deuterium NMR studies of bacterial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  16. High resolution deuterium NMR studies of bacterial metabolism

    International Nuclear Information System (INIS)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-01-01

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed

  17. Solid NMR study of lithium ions accommodated in various transition metal oxides

    International Nuclear Information System (INIS)

    Kanzaki, Yasushi; Suzuki, Noriko

    2008-01-01

    Solid NMR was used to elucidate the lithium accommodation/extraction reaction in various transition metal oxides. The first study was the lithium ion exchange reaction of titanium antimonic acid (TiSbA). The effect of hydration on the selectivity of lithium ion in the solid phase was examined using 7 Li NMR. The second study was the irreversible ion exchange behavior of HNbO 3 . The selectivity for the lithium ion and the irreversible behavior were examined using 1 H and 7 Li NMR. The third study was the isotope separation between 6 Li and 7 Li in various inorganic ion exchangers. The high isotope separation coefficient was ascribed to the degree of dehydration during the ion exchange reaction. The degree of dehydration was examined by 1 H and 7 Li NMR studies. The last study was determining the mechanism of the lithium accommodation/extraction reaction of λ-MnO 2 in an aqueous solution. The different paths between the accommodation and extraction and the formation of MnO 4- during the accommodation were determined by chemical analysis. The Knight shift in the 7 Li MAS-NMR spectra of Li 0.5 MnO 2 suggested the localization of the electron density on the lithium nuclei. An XPS study also suggested the presence of an electron density on the lithium nuclei. A pH-independent redox couple was assumed to account for the accommodation/extraction reaction of lithium ions, such as Li(I)/Li(0). (author)

  18. Synthesis and applications of selectively {sup 13}C-labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    SantaLucia, J. Jr.; Shen, L.X.; Lewis, H.; Cai, Z.; Tinoci, I. Jr. [Univ. of California, Berkeley, CA (United States)

    1994-12-01

    Spectral overlap is a substantial problem in NMR studies of RNA molecules >30 nucleotides. To overcome this difficulty, we synthesized selectively {sup 13}C-labeled RNAs and adapted several isotope-edited two- and three-dimensional NMR experiments originally developed for protein studies. We optimized protocols for synthesis of multi-gram quantities of CTP, UTp, ATP, and GTP using a combination of synthetic organic and enzymatic methods. Uracil is prepared in 40 to 50% yield from {sup 13}C-cyanide in two steps. Using acetyl- tribenzoyl-ribose and standard chemistry uracil is then attached to the sugar (90% yield). The tribenzoyl-uridine intermediate is converted into uridine or cytidine quantitatively, depending on the deblocking protocol. Labeled purines are synthesized using simple pyrimidine precursors and reacting with {sup 13}C-formic acid (80% yield). Purine nucleosides are then synthesized using uridine phosphorylase and purine nucleoside phosphorylase. The nucleosides were converted to NMPs by treatment with POC1{sub 3} in triethylphosphate. We converted NMPs to NTPs by standard enzymatic methods. Selectively labeled RNAs were synthesized by run-off transcription using {sup 13}C-labeled NTPs. Several different strategies help solve over-lap problems in larger RNAs. Isotope-edited two-dimensional NMR experiments such as {omega}1-1/2 X-filtered NOESY simplify NMR spectra by dividing the normal NOESY spectrum into two subspectra-one involving NOEs from protons bound to {sup 12}C and one from protons bound to {sup 13}C. For example, we labeled A and U residues of a 34-nucleotide pseudoknot, and the {sup 12}C subspectrum of the 1/2 X-filtered NOESY contained NOEs only from G and C residues (along with adenine 2H); the {sup 13}C subspectrum contained NOEs only from A and U residues. Each subspectrum has less overlap than the NOESY of an unlabeled sample; the editing strategy allows each resonance to be identified by residue type (A, C, G, or U).

  19. Xenon-Water Interaction in Bacterial Suspensions as Studied by NMR

    DEFF Research Database (Denmark)

    Rodin, V.; Ponomarev, Alexander; Gerasimov, Maxim

    2017-01-01

    suspensions of Escherichia coli in the presence of xenon using nuclear magnetic resonance (NMR). The work studied how the spin-lattice relaxation times of water protons in suspension change under xenon conditions. Xenon is able to form clathrate hydrates with water molecules at a temperature above the melting...... point of ice. The work studied NMR relaxation times which reflect the rotation freedom of water molecules in suspension. Lower relaxation times indicate reduced rotational freedom of water. Single exponential behavior of spin-lattice relaxation of protons in the suspensions of microorganisms has been...

  20. Study of β-NMR for Liquid Biological Samples

    CERN Document Server

    Beattie, Caitlin

    2017-01-01

    β-NMR is an exotic form of NMR spectroscopy that allows for the characterization of matter based on the anisotropic β-decay of radioactive probe nuclei. This has been shown to be an effective spectroscopic technique for many different compounds, but its use for liquid biological samples is relatively unexplored. The work at the VITO line of ISOLDE seeks to employ this technique to study such samples. Currently, preparations are being made for an experiment to characterize DNA G-quadruplexes and their interactions with stabilizing cations. More specifically, the work in which I engaged as a summer student focused on the experiment’s liquid handling system and the stability of the relevant biological samples under vacuum.

  1. A transition radiation detector interleaved with low-density targets for the NOE experiment

    CERN Document Server

    Alexandrov, K V; Bernardini, P; Brigida, M; Campana, D; Candela, A M; Caruso, R; Cassese, F; Ceres, A; D'Aquino, B; De Cataldo, G; De Mitri, I; Di Credico, A; Favuzzi, C; Fusco, P; Gargano, F; Giglietto, N; Giordano, F; Grillo, A; Guarino, F; Gustavino, C; Lamanna, E; Lauro, A; Leone, A; Loparco, F; Mancarella, G; Martello, D; Mazziotta, M N; Mikheyev, S P; Mongelli, M; Osteria, G; Palladino, Vittorio; Passeggio, G; Perchiazzi, M; Pontoniere, G; Rainó, A; Rocco, R; Romanucci, E; Rubizzo, U; Sacchetti, A; Scapparone, E; Spinelli, P; Tikhomirov, V; Vaccina, A; Vanzanella, E; Weber, M

    2001-01-01

    The NOE Collaboration has proposed a transition radiation detector (TRD) interleaved with marble targets to tag the electron decay channel of tau leptons produced by nu /sub tau /, eventually originated by nu /sub mu / oscillations in a long base line experiment. A reduced scale TRD detector prototype has been built and exposed to an electron/pion beam at the CERN PS. Discrimination capabilities between electrons and both charged and neutral pions, representing the main source of background for our measurement, have been determined obtaining rejection factors of the order of the tenth of percent for charged pions, and of a few percent for the neutral pion, matching the experiment requirements. The capabilities of this detector to measure the energy released by particles that start showering inside the targets are shown. A momentum resolution sigma /sub p//P

  2. TD-NMR studies on CuSO{sub 4} salt hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Nikolaus; Magin, Peter; Wengeler, Robert [BASF Aktiengesellschaft, Ludwigshafen (Germany); Kleinschmidt, Sebastian [Universitaet Magdeburg, FB Chemie (Germany)

    2008-07-01

    Despite the high concentration of paramagnetic copper ions, solid CuSO{sub 4} hydrates exhibit surprizingly narrow NMR signals. This is known since the late 1940s. Using TD-NMR methods established for polymer studies, the relaxation behaviour of CuSO{sub 4} preparations with different water content was studied at room temperature. For the water content of the pentahydrate and below, the NMR signal exhibits a pure solid-state-type magnetization decay behaviour. For slightly overstoichiometric moisture contents, a liquid-like signal is observed in addition to the solid signal. However, the relative amplitudes of the solid and the liquid signal do not mirror the stoichiometric composition of the pentahydrate and the excess water. Instead, the solid signal amplitude only accounts for four hydrate water molecules while the fifth water exhibits rapid exchange with the liquid phase and thus contributes to the liquid-type signal. This finding is in good agreement to results from investigations into the crystal structure of solid CuSO4 pentahydrate.

  3. NMR study of rare earth and actinide complexes

    International Nuclear Information System (INIS)

    Villardi de Montlaur de, G.C.

    1978-01-01

    Proton magnetic resonance studies of lanthanide shift reagents with olefin-transition metal complexes, monoamines and diamines as substrates are described. Shift reagents for olefins are reported: Lnsup(III)(fod) 3 can induce substantial shifts in the nmr spectra of a variety of olefins when silver 1-heptafluororobutyrate is used to complex the olefin. The preparation, properties and efficiency of such systems are described. Configurational aspects and exchange processes of Lnsup(III)(fod) 3 complexes with secondary and tertiary monoamines are analysed by means of dynamic nmr. Factors influencing the stability and the stoichiometry of these complexes and various processes such as nitrogen inversion and ligand exchange are discussed. At low temperature, ring inversion can be slow on an nmr time-scale for Lnsup(III)(fod) 3 -diamino chelates. Barriers to ring inversion in substituted ethylenediamines and propanediamines are obtained. Steric factors appear to play an important role in the stability and kinetics of these bidentate species. The synthesis of uranium-IV crown-ether and cryptate complexes is described. A conformational study of these compounds show evidence of an insertion of the paramagnetic cation as witnessed by the large induced shifts observed. The insertion of uranium in the macrocyclic ligand of a UCl 4 -dicyclohexyl-18-crown-6 complex is confirmed by an X-ray structural determination [fr

  4. NMR Studies of Polymer Nanocomposites

    National Research Council Canada - National Science Library

    Greenbaum, Steve

    2001-01-01

    .... The primary tool is pulsed field gradient NMR. A static field gradient method was developed which makes possible variable pressure diffusion measurement, and the application to the important fuel cell membrane NAFION constitute the first results...

  5. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  6. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    Science.gov (United States)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  7. Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials

    Science.gov (United States)

    Paik, Younkee

    Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.

  8. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    Science.gov (United States)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  9. 31P-NMR study of human pyrimidine 5'-nucleotidase deficient erythrocytes

    International Nuclear Information System (INIS)

    Higaki, Tsuyoshi; Kagimoto, Tadashi; Nagata, Koichi; Tanase, Sumio; Morino, Yoshimasa; Takatsuki, Kiyoshi

    1982-01-01

    Metabolic disorder of nucleotides in human pyrimidine 5'-nucleotidase (P5N) deficient erythrocytes was studied by 31 P-NMR with high resolution. Identification by combination of high-speed liquid chromatography revealed two-fold increases from the normal in the spectra in the α-, β- and γ-zones of nucleoside triphosphates of P5N deficient erythrocytes, 2,3-diphosphoglycerate shifted to the 0.3 ppm low magnetic field and signals of NAD and UDP-sugars(s) in the diphosphodiester zone. These results were obtained from the 31 P-NMR spectrum about one hour after blood sampling, indicating the high utility of this NMR for the diagnosis of P5N deficiency. (Chiba, N.)

  10. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  11. Advanced NMR technology for bioscience and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J. [Los Alamos National Lab., NM (US); Boumenthal, D.K. [Univ. of Utah, Salt Lake City, UT (US); Kennedy, M.A. [Pacific Northwest National Lab., Richland, WA (US); Moore, G.J. [Wayne State Univ., Detroit, MI (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  12. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    International Nuclear Information System (INIS)

    Foerland, Kjersti

    2005-01-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41

  13. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    Energy Technology Data Exchange (ETDEWEB)

    Foerland, Kjersti

    2005-07-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41.

  14. Triple-resonance multidimensional NMR study of calmodulin complexed with the binding domain of skeletal muscle myosin light-chain kinase: Indication of a conformational change in the central helix

    International Nuclear Information System (INIS)

    Ikura, Mitsuhiko; Kay, L.E.; Bax, A.; Krinks, M.

    1991-01-01

    Heteronuclear 3D and 4D NMR experiments have been used to obtain 1 H, 13 C, and 15 N backbone chemical shift assignments in Ca 2+ -loaded clamodulin complexed with a 26-residue synthetic peptide (M13) corresponding to the calmodulin-bionding domain (residues 577-602) of rabbit skeletal muscle muosin light-chain kinase. Comparison of the chemical shift values with those observed in peptide-free calmodulin shows that binding of M13 peptide induces substantial chemical shift changes that are not localized in one particular region of the protein. The largest changes are found in the first helix of the Ca 2+ -binding site 1 (E11-E14), the N-terminal portion of the central helix (M72-D78), and the second helix of the Ca 2+ -binding site 4 (F141-M145). Analysis of backbone NOE connectivities indicates a change from α-helical to an extended conformation for residues 75-77 upon complexation with M13. Upon complexation with M13, a significant decrease in the amide exchange rate is observed for residues T110, L112, G113, and E114 at the end of the second helix of site 3

  15. Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy

    Science.gov (United States)

    Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastián C.

    2006-03-01

    In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon® seat, and Kalrez® O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

  16. NMR studies of transmembrane electron transport in human erythrocytes

    International Nuclear Information System (INIS)

    Kennett, E.C.; Bubb, W.A.; Kuchel, P.W.

    2002-01-01

    Full text: Electron transport systems exist in the plasma membranes of all cells. These systems appear to play a role in cell growth and proliferation, intracellular signalling, hormone responses, apoptotic events, cell defence and perhaps most importantly they enable the cell to respond to changes in the redox state of both the intra- and extracellular environments. Previously, 13 C NMR has been used to study transmembrane electron transport in human erythrocytes, specifically the reduction of extracellular 13 C-ferricyanide. NMR is a particularly useful tool for studying such systems as changes in the metabolic state of the cell can be observed concomitantly with extracellular reductase activity. We investigated the oxidation of extracellular NADH by human erythrocytes using 1 H and 31 P NMR spectroscopy. Recent results for glucose-starved human erythrocytes indicate that, under these conditions, extracellular NADH can be oxidised at the plasma membrane with the electron transfer across the membrane resulting in reduction of intracellular NAD + . The activity is inhibited by known trans-plasma membrane electron transport inhibitors (capsaicin and atebrin) and is unaffected by inhibition of the erythrocyte Band 3 anion transporter. These results suggest that electron import from extracellular NADH allows the cell to re-establish a reducing environment after the normal redox balance is disturbed

  17. Broad line NMR study of modified polypropylene fibres

    International Nuclear Information System (INIS)

    Olcak, D.; Sevcovic, L.; Mucha, L.

    1999-01-01

    Study of drawn fibres prepared from an isostatic polypropylene modified by an ethylene aminoalkylacrylate copolymer has been done using the broad line of 1 H NMR. NMR spectra were measured on the set of fibres prepared with a draw ratio λ from 1 to 5.5 at two temperatures, one of them corresponding to the onset of segmental motion and the other one is the minddle of the temperature interval as determined by decrease of the second moment M 2 . Decomposition of the spectra into elementary components related to the amorphous, intermediate and crystalline regions of partially crystalline polymers has been made. The drawing of the fibres was found to enhance the chain mobility in the amorphous region and to restrain the molecular motion in the intermediate region. Such behaviour well supports conclusions predicted in the earlier study based on the spin-lattice relaxation time T 1 and dynamic mechanical data treated using the WLF theory. (Authors)

  18. Determination of the populations and structures of multiple conformers in an ensemble from NMR data: Multiple-copy refinement of nucleic acid structures using floating weights

    International Nuclear Information System (INIS)

    Goerler, Adrian; Ulyanov, Nikolai B.; James, Thomas L.

    2000-01-01

    A new algorithm is presented for determination of structural conformers and their populations based on NMR data. Restrained Metropolis Monte Carlo simulations or restrained energy minimizations are performed for several copies of a molecule simultaneously. The calculations are restrained with dipolar relaxation rates derived from measured NOE intensities via complete relaxation matrix analysis. The novel feature of the algorithm is that the weights of individual conformers are determined in every refinement step, by the quadratic programming algorithm, in such a way that the restraint energy is minimized. Its design ensures that the calculated populations of the individual conformers are based only on experimental restraints. Presence of internally inconsistent restraints is the driving force for determination of distinct multiple conformers. The method is applied to various simulated test systems. Conformational calculations on nucleic acids are carried out using generalized helical parameters with the program DNAminiCarlo. From different mixtures of A- and B-DNA, minor fractions as low as 10% could be determined with restrained energy minimization. For B-DNA with three local conformers (C2'-endo, O4'-exo, C3'-endo), the minor O4'-exo conformer could not be reliably determined using NOE data typically measured for DNA. The other two conformers, C2'-endo and C3'-endo, could be reproduced by Metropolis Monte Carlo simulated annealing. The behavior of the algorithm in various situations is analyzed, and a number of refinement protocols are discussed. Prior to application of this algorithm to each experimental system, it is suggested that the presence of internal inconsistencies in experimental data be ascertained. In addition, because the performance of the algorithm depends on the type of conformers involved and experimental data available, it is advisable to carry out test calculations with simulated data modeling each experimental system studied

  19. NMR and molecular modeling evidence for a G·A mismatch base pair in a purine-rich DNA duplex

    International Nuclear Information System (INIS)

    Li, Ying; Wilson, W.D.; Zon, G.

    1991-01-01

    1 H NMR experiments indicate that the oligomer 5'-d(ATGAGCGAATA) forms an unusual 10-base-pair duplex with 4 G·A base pairs and a 3' unpaired adenosine. NMR results indicate that guanoxine imino protons of the F·A mismatches are not hydrogen bonded but are stacked in the helix. A G→ I substitution in either G·A base pair causes a dramatic decrtease in duplex stability and indicates that hydrogen bonding of the guanosine amino group is critical. Nuclear Overhauser effect spectroscopy (NOESY) and two-dimensional correlated spectroscopy (COSY) results indicate that the overall duplex conformation is in the B-family. Cross-strand NOEs in two-dimensional NOESY spectra between a mismatched AH2 and an AH1' of the other mismatched base pair and between a mismatched GH8 and GNH1 of the other mismatch establish a purine-purine stacking pattern, adenosine over adenosine and guanosine over guanosine, which strongly stabilizes the duplex. A computer graphics molecular model of the ususual duplex was constructed with G·A base pairs containing A-NH 2 to GN3 and G-NH 2 to AN7 hydrogen bonds and B-form base pairs on both sides of the G·A pairs [5'-d(ATGAGC)]. The energy-minimized duplex satisfies all experimental constraints from NOESY and COSY results. A hydrogen bond from G-NH 2 of the mismatch to a phosphate oxygen is predicted

  20. NMR studies concerning base-base interactions in oligonucleotides

    International Nuclear Information System (INIS)

    Hoogen, Y.T. van den.

    1988-01-01

    Two main subjects are treated in the present thesis. The firsst part principally deals with the base-base interactions in single-stranded oligoribonucleotides. The second part presents NMR and model-building studies of DNA and RNA duplexes containing an unpaired base. (author). 242 refs.; 26 figs.; 24 tabs

  1. Solid-state NMR studies of nucleic acid components

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Hodgkinson, P.

    2015-01-01

    Roč. 5, č. 16 (2015), s. 12300-12310 ISSN 2046-2069 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * nucleic acid s * solid-state NMR Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/ra/c4ra14404j

  2. 1H-NMR/13C-NMR studies of branched structures in PVC obtained at atmospheric pressure

    International Nuclear Information System (INIS)

    Braun, D.; Holzer, G.; Hjertberg, T.

    1981-01-01

    The 1 H-NMR-spectra of raw poly (vinyl cloride) obtained at atmospheric pressure (U-PVC) have revealed the presence of high concentrations of branches. The content of labile chlorine was determined by reaction with phenole in order to estimate the branch points with tertiary chlorine. The branch length of reductively dehalogenated U-PVC by 13 C-NMR analysis have provided evidence for both short chain branches including chloromethyl groups and 2.4-dichloro-n-butyl groups and long chain branching. For a number of U-polymers the total amount of branching ranges from 7.5 to 13.5/1000 C. The 13 C-NMR measurements point to a ratio of methyl/butyl branches of 1:1 and short chains/long chains of 6:1. (orig.)

  3. 11B nutation NMR study of powdered borosilicates

    International Nuclear Information System (INIS)

    Woo, Ae Ja; Yang, Kyung Hwa; Han, Duk Young

    1998-01-01

    In this work, we applied the 1D 11 B nutation NMR method for the analysis of the local structural environments in powdered borosilicates (SiO 2 -B 2 O 3 ). Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density matrix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D 11 B nutation NMR experiment. The 11 B NMR parameters, quadrupole coupling constants (e 2 qQ/h) and asymmetry parameters (η), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed

  4. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.

    Science.gov (United States)

    Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  5. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet

    Science.gov (United States)

    Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  6. NMR studies of the helical antiferromagnetic compound EuCo2P2

    Science.gov (United States)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  7. Solid-state NMR of inorganic semiconductors.

    Science.gov (United States)

    Yesinowski, James P

    2012-01-01

    Studies of inorganic semiconductors by solid-state NMR vary widely in terms of the nature of the samples investigated, the techniques employed to observe the NMR signal, and the types of information obtained. Compared with the NMR of diamagnetic non-semiconducting substances, important differences often result from the presence of electron or hole carriers that are the hallmark of semiconductors, and whose theoretical interpretation can be involved. This review aims to provide a broad perspective on the topic for the non-expert by providing: (1) a basic introduction to semiconductor physical concepts relevant to NMR, including common crystal structures and the various methods of making samples; (2) discussions of the NMR spin Hamiltonian, details of some of the NMR techniques and strategies used to make measurements and theoretically predict NMR parameters, and examples of how each of the terms in the Hamiltonian has provided useful information in bulk semiconductors; (3) a discussion of the additional considerations needed to interpret the NMR of nanoscale semiconductors, with selected examples. The area of semiconductor NMR is being revitalized by this interest in nanoscale semiconductors, the great improvements in NMR detection sensitivity and resolution that have occurred, and the current interest in optical pumping and spintronics-related studies. Promising directions for future research will be noted throughout.

  8. {sup 15}N and {sup 13}C- SOFAST-HMQC editing enhances 3D-NOESY sensitivity in highly deuterated, selectively [{sup 1}H,{sup 13}C]-labeled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo, E-mail: rossip@umn.edu; Xia, Youlin; Khanra, Nandish; Veglia, Gianluigi, E-mail: vegli001@umn.edu; Kalodimos, Charalampos G., E-mail: ckalodim@umn.edu [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States)

    2016-12-15

    The ongoing NMR method development effort strives for high quality multidimensional data with reduced collection time. Here, we apply ‘SOFAST-HMQC’ to frequency editing in 3D NOESY experiments and demonstrate the sensitivity benefits using highly deuterated and {sup 15}N, methyl labeled samples in H{sub 2}O. The experiments benefit from a combination of selective T{sub 1} relaxation (or L-optimized effect), from Ernst angle optimization and, in certain types of experiments, from using the mixing time for both NOE buildup and magnetization recovery. This effect enhances sensitivity by up to 2.4× at fast pulsing versus reference HMQC sequences of same overall length and water suppression characteristics. Representative experiments designed to address interesting protein NMR challenges are detailed. Editing capabilities are exploited with heteronuclear {sup 15}N,{sup 13}C-edited, or with diagonal-free {sup 13}C aromatic/methyl-resolved 3D-SOFAST-HMQC–NOESY–HMQC. The latter experiment is used here to elucidate the methyl-aromatic NOE network in the hydrophobic core of the 19 kDa FliT-FliJ flagellar protein complex. Incorporation of fast pulsing to reference experiments such as 3D-NOESY–HMQC boosts digital resolution, simplifies the process of NOE assignment and helps to automate protein structure determination.

  9. Contrast-enhanced NMR imaging: animal studies using gadolinium-DTPA complex

    International Nuclear Information System (INIS)

    Brasch, R.C.; Weinmann, H.J.; Wesbey, G.E.

    1984-01-01

    Gadolinium (Gd)-DTPA complex was assessed as a nuclear magnetic resonance (NMR) contrast-enhancing agent by experimentally imaging normal and diseased animals. After intravenous injection, Gd-DTPA, a strongly paramagnetic complex by virtue of unpaired electrons, was rapidly excreted into the urine of rats, producing an easily observable contrast enhancement on NMR images in kidney parenchyma and urine. Sterile soft-tissue abscesses demonstrated an obvious rim pattern of enhancement. A focus of radiation-induced brain damage in a canine model was only faintly detectable on spin-echo NMR images before contrast administration; after 0.5 mmol/kg Gd-DTPA administration, the lesion intensity increased from 3867 to 5590. In comparison, the normal brain with an intact blood-brain barrier remained unchanged in NMR characterization. Gd-DTPA is a promising new NMR contrast enhancer for the clinical assessment of renal function, of inflammatory lesions, and of focal disruption of the blood-brain barrier

  10. Moessbauer and NMR study of novel Tin(IV)-lactames

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, Erno; Szalay, Roland; Homonnay, Zoltan, E-mail: homonnay@ludens.elte.hu; Nagy, Sandor [Eoetvoes Lorand University, Institute of Chemistry (Hungary)

    2012-03-15

    N-tributylstannylated 2-pyrrolidinone was reacted with tributyltin triflate in different molar ratios and the complex formation monitored using {sup 1}H-NMR, {sup 13}C-NMR and {sup 119}Sn Moessbauer spectroscopy. Comparing the carbon NMR and tin Moessbauer results, a reaction scheme is suggested for the complexation which assumes the formation of a simultaneously O- and N-tributylstannylated pyrrolidinone cation. The formation of the only O-stannylated pyrrolidinone is also assumed to account for the non-constant Moessbauer parameters of the two tin environments in the distannylated pyrrolidinone cation when the ratio of tributyltin triflate is increased in the reaction.

  11. 11B NMR study of calcium-hexaborides

    International Nuclear Information System (INIS)

    Mean, B.J.; Lee, K.H.; Kang, K.H.; Lee, Moohee; Rhee, J.S.; Cho, B.K.

    2005-01-01

    We have performed 11 B nuclear magnetic resonance (NMR) measurements to look for microscopic evidence of the ferromagnetic state in several CaB 6 single crystals. A number of 11 B NMR resonance peaks are observed with the frequency and intensity of those peaks distinctively changing depending on the angle between the crystalline axis and a magnetic field. Analyzing this behavior, we find that the electric field gradient tensor at the boron has its principal axis perpendicular to the six cubic faces with a quadrupole resonance frequency ν Q ∼600kHz. However, the satellite resonances are found to be made of two peaks. Detailed analysis of the four composite satellite peaks confirms that there are two different boron sites with slightly different ν Q 's. This suggests that the boron octahedron cages are locally distorted. However, this distortion is not directly related to ferromagnetism. Even though the magnetization data highlight the ferromagnetic hysteresis, 11 B NMR linewidth and shift data show no clear microscopic evidence of the ferromagnetic state in several different compositions of CaB 6 single crystals

  12. Using 1H and 13C NMR chemical shifts to determine cyclic peptide conformations: a combined molecular dynamics and quantum mechanics approach.

    Science.gov (United States)

    Nguyen, Q Nhu N; Schwochert, Joshua; Tantillo, Dean J; Lokey, R Scott

    2018-05-10

    Solving conformations of cyclic peptides can provide insight into structure-activity and structure-property relationships, which can help in the design of compounds with improved bioactivity and/or ADME characteristics. The most common approaches for determining the structures of cyclic peptides are based on NMR-derived distance restraints obtained from NOESY or ROESY cross-peak intensities, and 3J-based dihedral restraints using the Karplus relationship. Unfortunately, these observables are often too weak, sparse, or degenerate to provide unequivocal, high-confidence solution structures, prompting us to investigate an alternative approach that relies only on 1H and 13C chemical shifts as experimental observables. This method, which we call conformational analysis from NMR and density-functional prediction of low-energy ensembles (CANDLE), uses molecular dynamics (MD) simulations to generate conformer families and density functional theory (DFT) calculations to predict their 1H and 13C chemical shifts. Iterative conformer searches and DFT energy calculations on a cyclic peptide-peptoid hybrid yielded Boltzmann ensembles whose predicted chemical shifts matched the experimental values better than any single conformer. For these compounds, CANDLE outperformed the classic NOE- and 3J-coupling-based approach by disambiguating similar β-turn types and also enabled the structural elucidation of the minor conformer. Through the use of chemical shifts, in conjunction with DFT and MD calculations, CANDLE can help illuminate conformational ensembles of cyclic peptides in solution.

  13. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bingol, Kerem

    2018-04-18

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMR and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.

  14. A comparison study of PET, NMR, and CT imaging in cerebral ischemia

    International Nuclear Information System (INIS)

    Babikian, V.L.; Ford, C.S.; Buonanno, F.S.; Kistler, J.P.; Ackerman, R.H.; Alpert, N.M.; Correia, J.A.; Johnson, K.A.; Buxton, R.B.

    1987-01-01

    Whether ischemia without infarction produces recognizable changes in relaxation times of ischemic but viable brain is an important, unresolved issue. Therefore, a study was initiated of patients with cerebral ischemia, using positron emission tomography (PET), NMR, and computed tomography (CT) to compare and contrast the pathophysiologic information provided by each and to study the issue of whether cerebral ischemia without infarction can be appreciated by proton NMR imaging. Here the initial results are reported. 4 refs.; 2 figs.; 1 table

  15. Studies on Photodarkening Effect in Glassy As2S3 Using High Field NMR

    Science.gov (United States)

    Hari, Parameswar; Su, Tining; Taylor, Craig; Reyes, Arneil; Kuhns, Phil; Moulton, William; Sullivan, N. S.

    2001-03-01

    Photodarkening, or the shift of the optical absorption edge to smaller energies after excitation with light whose energy is near that of the optical band edge, has been studied in many chalcogenide glasses for many years. Recently we have conducted nuclear magnetic resonance (NMR) studies of 75As in glassy As2S3 at 17T . We compared the 75As NMR lineshape in glassy As2S3 before and after irradiation at 77K. After irradiation at 514.5 nm for 230 hours with 170 mW/cm2 there is a subtle change in the NMR lineshape. This change is reversible on annealing at 200 C for 1.75 hours. We will discuss the implications of this result based on NMR lineshape analysis using an exact solution of the spin 3/2 Hamiltonian

  16. Direct Comparison of 19F qNMR and 1H qNMR by Characterizing Atorvastatin Calcium Content

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Quantitative nuclear magnetic resonance (qNMR is a powerful tool in measuring drug content because of its high speed, sensitivity, and precision. Most of the reports were based on proton qNMR (1H qNMR and only a few fluorine qNMR (19F qNMR were reported. No research has been conducted to directly compare the advantage and disadvantage between these two methods. In the present study, both 19F and 1H qNMR were performed to characterize the content of atorvastatin calcium with the same internal standard. Linearity, precision, and results from two methods were compared. Results showed that 19F qNMR has similar precision and sensitivity to 1H qNMR. Both methods generate similar results compared to mass balance method. Major advantage from 19F qNMR is that the analyte signal is with less or no interference from impurities. 19F qNMR is an excellent approach to quantify fluorine-containing analytes.

  17. Morpholino spin-labeling for base-pair sequencing of a 3'-terminal RNA stem by proton homonuclear Overhauser enhancements: yeast ribosomal 5S RNA

    International Nuclear Information System (INIS)

    Lee, K.M.; Marshall, A.G.

    1987-01-01

    Base-pair sequences for 5S and 5.8S RNAs are not readily extracted from proton homonuclear nuclear Overhauser enhancement (NOE) connectivity experiments alone, due to extensive peak overlap in the downfield (11-15 ppm) proton NMR spectrum. In this paper, we introduce a new method for base-pair proton peak assignment for ribosomal RNAs, based upon the distance-dependent broadening of the resonances of base-pair protons spatially proximal to a paramagnetic group. Introduction of a nitroxide spin-label covalently attached to the 3'-terminal ribose provides an unequivocal starting point for base-pair hydrogen-bond proton NMR assignment. Subsequent NOE connectivities then establish the base-pair sequence for the terminal stem of a 5S RNA. Periodate oxidation of yeast 5S RNA, followed by reaction with 4-amino-2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO-NH2) and sodium borohydride reduction, produces yeast 5S RNA specifically labeled with a paramagnetic nitroxide group at the 3'-terminal ribose. Comparison of the 500-MHz 1H NMR spectra of native and 3'-terminal spin-labeled yeast 5S RNA serves to identify the terminal base pair (G1 . C120) and its adjacent base pair (G2 . U119) on the basis of their proximity to the 3'-terminal spin-label. From that starting point, we have then identified (G . C, A . U, or G . U) and sequenced eight of the nine base pairs in the terminal helix via primary and secondary NOE's

  18. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    Science.gov (United States)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  19. 'In vivo' and high resolution spectroscopy in solids by NMR: an instrument for transgenic plants study

    International Nuclear Information System (INIS)

    Colnago, L.A.; Herrmann, P.S.P.; Bernardes Filho, R.

    1995-01-01

    This work has developed a study on transgenic plants using two different techniques of nuclear magnetic resonance, in vivo NMR and high resolution NMR. In order to understand the gene mutations and characterize the plants constituents, NMR spectral data were analysed and discussed, then the results were presented

  20. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  1. NMR study of structure of lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The diagnostic value PMR studies of diamagnetic lanthanide complexes to define the nature of the species in the lanthanide-pyruvate system is discussed. The use of NMR spectra of both diamagnetic and paramagnetic lanthanide complexes to obtain detailed structural information is reviewed

  2. 1D AND 2D NMR STUDIES OF BENZYL O–VANILLIN

    Directory of Open Access Journals (Sweden)

    Mohammed Hadi Al–Douh

    2010-06-01

    Full Text Available The reaction of o-vanillin A with benzyl bromide B2 in acetone as the solvent and K2CO3 as a base in the presence of tetra-n-butylammonium iodide (TBAI as catalyst formed benzyl o-vanillin, C. The complete assignments of C using PROTON, APT, DEPT-135, COSY, NOESY, HMQC and HMBC NMR in both CDCl3 and acetone-d6 are discussed, and the coupling constants J are reported in Hertz (Hz.     Keywords: 1H NMR; 13C NMR; 2D NMR; Benzyl o-Vanillin

  3. Two dimensional solid state NMR

    International Nuclear Information System (INIS)

    Kentgens, A.P.M.

    1987-01-01

    This thesis illustrates, by discussing some existing and newly developed 2D solid state experiments, that two-dimensional NMR of solids is a useful and important extension of NMR techniques. Chapter 1 gives an overview of spin interactions and averaging techniques important in solid state NMR. As 2D NMR is already an established technique in solutions, only the basics of two dimensional NMR are presented in chapter 2, with an emphasis on the aspects important for solid spectra. The following chapters discuss the theoretical background and applications of specific 2D solid state experiments. An application of 2D-J resolved NMR, analogous to J-resolved spectroscopy in solutions, to natural rubber is given in chapter 3. In chapter 4 the anisotropic chemical shift is mapped out against the heteronuclear dipolar interaction to obtain information about the orientation of the shielding tensor in poly-(oxymethylene). Chapter 5 concentrates on the study of super-slow molecular motions in polymers using a variant of the 2D exchange experiment developed by us. Finally chapter 6 discusses a new experiment, 2D nutation NMR, which makes it possible to study the quadrupole interaction of half-integer spins. 230 refs.; 48 figs.; 8 tabs

  4. Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme

    International Nuclear Information System (INIS)

    Soares, T. A.; Daura, X.; Oostenbrink, C.; Smith, L. J.; Gunsteren, W. F. van

    2004-01-01

    The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, 3 J NHα and 3 J αβ coupling constants, and 1 5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone 3 J HNα -coupling constants and 1 H- 1 5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain 3 J αβ -coupling constants and 1 H- 1 5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result

  5. A combined NMR and XRD study of AFI and AEL type molecular sieves

    NARCIS (Netherlands)

    Peeters, M.P.J.; Ven, van de L.J.M.; Haan, de J.W.; Hooff, van J.H.C.

    1993-01-01

    Calcined dehydrated AlPO4-5 was studied by x-ray powder diffraction, 31P MAS, and 27Al double-resonance (DOR) NMR. Three crystallog. different sites can be distinguished in the structure of dehydrated AlPO4-5 in the ratio 1:1:1. The obsd. splitting of the NMR spectra is correlated to the line width

  6. 53Cr NMR study of CuCrO2 multiferroic

    Science.gov (United States)

    Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Kumagai, K.; Furukawa, Y.; Sadykov, A. F.; Piskunov, Yu. V.; Gerashchenko, A. P.; Barilo, S. N.; Shiryaev, S. V.

    2015-11-01

    The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61-66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2- t del-τπ- t del-echo. The spin-spin and spin-lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.

  7. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study

    International Nuclear Information System (INIS)

    Sahu, Sarata C.; Bhuyan, Abani K.; Udgaonkar, Jayant B.; Hosur, R.V.

    2000-01-01

    Backbone dynamics of uniformly 15 N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 deg. C, pH 6.6, using 15 N relaxation data obtained from proton-detected 2D { 1 H}- 15 N NMR spectroscopy. 15 N spin-lattice relaxation rate constants (R 1 ), spin-spin relaxation rate constants (R 2 ), and steady-state heteronuclear { 1 H}- 15 N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15 N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (τ m ) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme

  8. Two- and three-dimensional proton NMR studies of apo-neocarzinostatin

    International Nuclear Information System (INIS)

    Xiaolian Gao; Burkhart, W.

    1991-01-01

    Neocarzinostatin (NCS) is an antitumor protein from Streptomyces carzinostaticus that is identical in apo-protein sequence with mitomalcin (MMC) from Streptomyces malayensis. The authors describe the use of apo-NCS as a model system for applying combined two-and three-dimensional (2D and 3D) proton NMR spectroscopy to the structure determination of proteins without isotope labeling. Strategies aimed at accurately assigning overlapped 2D cross-peaks by using semiautomated combined 2D and 3D data analysis are developed. Using this approach, they have assigned 99% of the protons, including those of the side chains, and identified about 1,270 intra- and interresidue proton-proton interactions (fixed distances are not included) in apo-NCS. Comparing these results with those reported recently on 2D NMR studies of apo-NCS demonstrated advantages of proton 3D NMR spectroscopy in protein spectral assignments. They are able to obtain more complete proton resonance and secondary structural assignments and find several misassignments in the earlier report. Strategies utilized in this work should be useful for developing automation procedures for spectral assignments

  9. NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue

    Directory of Open Access Journals (Sweden)

    Fen Yue

    2018-04-01

    Full Text Available Hydrothermal carbonization (HTC is a valuable approach to convert furfural residue (FR into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques (1H and 13C NMR, 1H–1H COSY and 1H13C HSQC etc. especially 1D selective gradient total correlation spectroscopy (TOCSY NMR were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions (180–240 °C at 8 h, and 1–24 h at 240 °C was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies. Keywords: NMR, Hydrothermal carbonization, Furfural residue, Stock process water

  10. Impact of opal nanoconfinement on electronic properties of sodium particles: NMR studies

    Energy Technology Data Exchange (ETDEWEB)

    Charnaya, E.V., E-mail: charnaya@live.com [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); Institute of Physics, St. Petersburg State University, St. Petersburg, 198504 (Russian Federation); Lee, M.K. [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); MoST Instrument Center at NCKU, Tainan, 70101 Taiwan (China); Chang, L.J. [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); Kumzerov, Yu.A.; Fokin, A.V. [A.F. Ioffe Physico-Technical Institute RAS, St. Petersburg, 194021 (Russian Federation); Samoylovich, M.I. [Moscow Institute of Physics and Technology, Moscow, 141700 (Russian Federation); Bugaev, A.S. [CSR Institute of Technology “Technomash”, Moscow, 121108 (Russian Federation)

    2015-03-20

    The {sup 23}Na Knight shift of NMR line which is highly correlated with the electron spin susceptibility and density of states at the Fermi level was studied for the sodium loaded opal. The measurements were carried out within a temperature range from 100 to 400 K for solid and melted confined sodium nanoparticles. The NMR line below 305 K was a singlet with the Knight shift reduced compared to that in bulk. Above this temperature the NMR line split reproducibly into two components with opposite trends in the Knight shift temperature dependences which evidenced a nanoconfinement-induced transformation and heterogeneity in the electron system. The findings were suggested to be related to changes in the topology of the Fermi surface.

  11. Synergistic Applications of MD and NMR for the Study of Biological Systems

    Directory of Open Access Journals (Sweden)

    Olivier Fisette

    2012-01-01

    same time, theoretical and computational approaches gain in reliability and their field of application widens. In this short paper, we discuss recent advances in the areas of solution nuclear magnetic resonance (NMR spectroscopy and molecular dynamics (MD simulations that were made possible by the combination of both methods, that is, through their synergistic use. We present the main NMR observables and parameters that can be computed from simulations, and how they are used in a variety of complementary applications, including dynamics studies, model-free analysis, force field validation, and structural studies.

  12. Molecular motion of micellar solutes: a 13C NMR relaxation study

    International Nuclear Information System (INIS)

    Stark, R.E.; Kasakevich, M.L.; Granger, J.W.

    1982-01-01

    A series of simple NMR relaxation experiments have been performed on nitrobenzene and aniline dissolved in the ionic detergents sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB). Using 13 C relaxation rates at various molecular sites, and comparing data obtained in organic media with those for micellar solutions, the viscosity at the solubilization site was estimated and a detailed picture of motional restrictions imposed by the micellar enviroment was derived. Viscosities of 8 to 17 cp indicate a rather fluid environment for solubilized nitrobenzene; both additives exhibit altered motional preferences in CTAB solutions only. As an aid in interpretation of the NMR data, quasi-elastic light scattering and other physical techniques have been used to evaluate the influence of organic solutes on micellar size and shape. The NMR methods are examined critically in terms of their general usefulness for studies of solubilization in detergent micelles. 48 references

  13. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    International Nuclear Information System (INIS)

    Skinner, Simon P.; Fogh, Rasmus H.; Boucher, Wayne; Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W.

    2016-01-01

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  14. CcpNmr AnalysisAssign: a flexible platform for integrated NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Simon P.; Fogh, Rasmus H. [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom); Boucher, Wayne [University of Cambridge, Department of Biochemistry (United Kingdom); Ragan, Timothy J.; Mureddu, Luca G.; Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Molecular and Cell Biology, Leicester Institute for Structural- and Chemical Biology (United Kingdom)

    2016-10-15

    NMR spectroscopy is an indispensably powerful technique for the analysis of biomolecules under ambient conditions, both for structural- and functional studies. However, in practice the complexity of the technique has often frustrated its application by non-specialists. In this paper, we present CcpNmr version-3, the latest software release from the Collaborative Computational Project for NMR, for all aspects of NMR data analysis, including liquid- and solid-state NMR data. This software has been designed to be simple, functional and flexible, and aims to ensure that routine tasks can be performed in a straightforward manner. We have designed the software according to modern software engineering principles and leveraged the capabilities of modern graphics libraries to simplify a variety of data analysis tasks. We describe the process of backbone assignment as an example of the flexibility and simplicity of implementing workflows, as well as the toolkit used to create the necessary graphics for this workflow. The package can be downloaded from www.ccpn.ac.uk/v3-software/downloads http://www.ccpn.ac.uk/v3-software/downloads and is freely available to all non-profit organisations.

  15. 15N NMR studies of layered nitride superconductor LixZrNCl

    International Nuclear Information System (INIS)

    Tou, H.; Oshiro, S.; Kotegawa, H.; Taguchi, Y.; Kishiume, Y.; Kasahara, Y.; Iwasa, Y.

    2010-01-01

    NMR measurements were carried out on pristine ZrNCl and Li x ZrNCl. From the 15 N-Knight shift study, the isotropic Knight shift, the traceless chemical (orbital) shift tensor and the traceless Knight shift tensor were determined as K iso = -71 ppm, (σ 1 , σ 2 , σ 3 ) = (-55, -55, 110) ppm and (K 1 , K 2 , K 3 ) = (48, 48, -96) ppm, respectively. In the superconducting state, the fractional change of the 15 N NMR shift for H-parallel ab was observed, evidencing that the pairing symmetry is a spin-singlet state.

  16. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane.

    Directory of Open Access Journals (Sweden)

    Rathi Saravanan

    Full Text Available BACKGROUND: Antimicrobial peptides (AMPs play important roles in the innate defense mechanism. The broad spectrum of activity of AMPs requires an efficient permeabilization of the bacterial outer and inner membranes. The outer leaflet of the outer membrane of Gram negative bacteria is made of a specialized lipid called lipopolysaccharide (LPS. The LPS layer is an efficient permeability barrier against anti-bacterial agents including AMPs. As a mode of protection, LPS can induce self associations of AMPs rendering them inactive. Temporins are a group of short-sized AMPs isolated from frog skin, and many of them are inactive against Gram negative bacteria as a result of their self-association in the LPS-outer membrane. PRINCIPAL FINDINGS: Using NMR spectroscopy, we have determined atomic resolution structure and characterized localization of temporin-1Ta or TA (FLPLIGRVLSGIL-amide in LPS micelles. In LPS micelles, TA adopts helical conformation for residues L4-I12, while residues F1-L3 are found to be in extended conformations. The aromatic sidechain of residue F1 is involved in extensive packing interactions with the sidechains of residues P3, L4 and I5. Interestingly, a number of long-range NOE contacts have been detected between the N-terminal residues F1, P3 with the C-terminal residues S10, I12, L13 of TA in LPS micelles. Saturation transfer difference (STD NMR studies demonstrate close proximity of residues including F1, L2, P3, R7, S10 and L13 with the LPS micelles. Notably, the LPS bound structure of TA shows differences with the structures of TA determined in DPC and SDS detergent micelles. SIGNIFICANCE: We propose that TA, in LPS lipids, forms helical oligomeric structures employing N- and C-termini residues. Such oligomeric structures may not be translocated across the outer membrane; resulting in the inactivation of the AMP. Importantly, the results of our studies will be useful for the development of antimicrobial agents with a

  17. An NMR Protonation Study of Metal Diethylenetriaminepentaacetic Acid Complexes.

    Science.gov (United States)

    Letkeman, Peter

    1979-01-01

    This experiment is suitable for an integrated laboratory course for senior chemistry majors. It introduces the student to a study of the relative basicity of different proton accepting sites. It serves as an opportunity to learn about nmr techniques and could extend to infrared, as well. (BB)

  18. NMR study of hyper-polarized 129Xe and applications to liquid-phase NMR experiments

    International Nuclear Information System (INIS)

    Marion, D.

    2008-07-01

    In liquid samples where both nuclear polarization and spin density are strong, the magnetization dynamics, which can be analysed by NMR (nuclear magnetic resonance) methods, is deeply influenced by the internal couplings induced by local dipolar fields. The present thesis describes some of the many consequences associated to the presence in the sample of concentrated xenon hyper-polarized by an optical pumping process. First, we deal with the induced modifications in frequency and line width of the proton and xenon spectra, then we present the results of SPIDER, a coherent polarization transfer experiment designed to enhance the polarization of protons, in order to increase their NMR signal level. A third part is dedicated to the description of the apparition of repeated chaotic maser emissions by un unstable xenon magnetization coupled to the detection coil tuned at the xenon Larmor frequency (here 138 MHz). In the last part, we present a new method allowing a better tuning of any NMR detection probe and resulting in sensible gains in terms of sensitivity and signal shaping. Finally, we conclude with a partial questioning of the classical relaxation theory in the specific field of highly polarized and concentrated spin systems in a liquid phase. (author)

  19. Antiprotozoal Isoflavan Quinones from Abrus precatorius ssp. africanus

    CSIR Research Space (South Africa)

    Hata, Y

    2013-04-01

    Full Text Available and semipreparative RPHPLC chromatography. Structures were established by HR-ESIMS, and 1D and 2D NMR ((sup)1H, (sup)13C, COSY, HMBC, HSQC, and NOE difference spectroscopy). Five compounds were obtained and identified as two isoflavan hydroquinones, abruquinone H (1...

  20. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  1. Structure and conformational dynamics of the domain 5 RNA hairpin of a bacterial group II intron revealed by solution nuclear magnetic resonance and molecular dynamics simulations.

    Science.gov (United States)

    Pechlaner, Maria; Sigel, Roland K O; van Gunsteren, Wilfred F; Dolenc, Jožica

    2013-10-08

    Nuclear magnetic resonance (NMR) nuclear Overhauser enhancement (NOE) data obtained for a 35-nucleotide RNA segment of a bacterial group II intron indicate a helical hairpin structure in which three parts, a terminal pentaloop, a bulge, and a G-A mismatch, display no Watson-Crick base pairing. The 668 NOE upper distance bounds for atom pairs are insufficient to uniquely determine the conformation of these segments. Therefore, molecular dynamics simulations including time-averaged distance restraints have been used to obtain a conformational ensemble compatible with the observed NMR data. The ensemble shows alternating hydrogen bonding patterns for the mentioned segments. In particular, in the pentaloop and in the bulge, the hydrogen bonding networks correspond to distinct conformational clusters that could not be captured by using conventional single-structure refinement techniques. This implies that, to obtain a realistic picture of the conformational ensemble of such flexible biomolecules, it is necessary to properly account for the conformational variability in the structure refinement of RNA fragments.

  2. NMR spectroscopic studies of membrane-bound biological systems

    International Nuclear Information System (INIS)

    Hohlweg, W.

    2013-01-01

    In the course of this thesis, biological NMR spectroscopy was employed in studying membrane-bound peptides and proteins, for which structural information is still comparatively hard to obtain. Initial work focused on various model peptides bound to membrane-mimicking micelles, studying the protonation state of arginine in a membrane environment. Strong evidence for a cation-π complex was found in TM7, a peptide which forms the seventh transmembrane helix of subunit a of the vacuolar-type H+-ATPase (V-ATPase). V-ATPase is a physiologically highly relevant proton pump, which is present in intracellular membranes of all eukaryotic organisms, as well as the plasma membrane of several specialized cells. Loss of functional V-ATPase is associated with human diseases such as osteopetrosis, distal renal tubular acidosis or the spreading of cancer. V-ATPase is considered a potential drug target in the treatment of osteoporosis and cancer, or in the development of novel contraceptives. Results from NMR solution structure determination, NMR titration experiments, paramagnetic relaxation enhancement experiments and tryptophan fluorescence spectroscopy confirm the existence of a buried cation-? complex formed between arginine residue R735, which is essential for proton transport, and neighbouring tryptophan and tyrosine residues. In vivo experiments in the yeast Saccharomyces cerevisiae using selective growth tests and fluorescence microscopy showed that formation of the cation-π complex is essential for V-ATPase function. Deletion of both aromatic residues, as well as only the one tryptophan residue leads to growth defects and inability to maintain vacuolar pH homeostasis. These findings shine new light on the still elusive mechanism of proton transport in V-ATPase, and show that arginine R735 may be directly involved in proton transfer across the membrane. (author) [de

  3. Studies of metal-biomolecule systems in liquids with beta-detected NMR

    CERN Document Server

    Walczak, Michal

    2017-01-01

    My internship took place within a small research team funded via the European Research Council (ERC Starting Grant: Beta-Drop NMR) at ISOLDE. It was devoted to laser spin-polarization and beta-detected NMR techniques and their future applications in chemistry and biology. I was involved in the design and tests of the beta-NMR spectrometer which will be used in the upcoming experiments. In this way I have been exposed to many topics in physics (atomic and nuclear physics), experimental techniques (vacuum technology, lasers, beta detectors, electronics, DAQ software), as well as chemistry and biology (NMR on metal ions, metal ion binding to biomolecules, quantum chemistry calculations).

  4. 1H-NMR, 1H-NMR T2-edited, and 2D-NMR in bipolar disorder metabolic profiling.

    Science.gov (United States)

    Sethi, Sumit; Pedrini, Mariana; Rizzo, Lucas B; Zeni-Graiff, Maiara; Mas, Caroline Dal; Cassinelli, Ana Cláudia; Noto, Mariane N; Asevedo, Elson; Cordeiro, Quirino; Pontes, João G M; Brasil, Antonio J M; Lacerda, Acioly; Hayashi, Mirian A F; Poppi, Ronei; Tasic, Ljubica; Brietzke, Elisa

    2017-12-01

    The objective of this study was to identify molecular alterations in the human blood serum related to bipolar disorder, using nuclear magnetic resonance (NMR) spectroscopy and chemometrics. Metabolomic profiling, employing 1 H-NMR, 1 H-NMR T 2 -edited, and 2D-NMR spectroscopy and chemometrics of human blood serum samples from patients with bipolar disorder (n = 26) compared with healthy volunteers (n = 50) was performed. The investigated groups presented distinct metabolic profiles, in which the main differential metabolites found in the serum sample of bipolar disorder patients compared with those from controls were lipids, lipid metabolism-related molecules (choline, myo-inositol), and some amino acids (N-acetyl-L-phenyl alanine, N-acetyl-L-aspartyl-L-glutamic acid, L-glutamine). In addition, amygdalin, α-ketoglutaric acid, and lipoamide, among other compounds, were also present or were significantly altered in the serum of bipolar disorder patients. The data presented herein suggest that some of these metabolites differentially distributed between the groups studied may be directly related to the bipolar disorder pathophysiology. The strategy employed here showed significant potential for exploring pathophysiological features and molecular pathways involved in bipolar disorder. Thus, our findings may contribute to pave the way for future studies aiming at identifying important potential biomarkers for bipolar disorder diagnosis or progression follow-up.

  5. Positron annihilation and 129Xe NMR studies of free volume in polymers

    International Nuclear Information System (INIS)

    Nagasaka, Bunsow; Eguchi, Taro; Nakayama, Hirokazu; Nakamura, Nobuo; Ito, Yasuo

    2000-01-01

    The existence and the average size of free volume in bisphenol-A polycarbonate (PC), low-density polyethylene (LDPE), poly (2,6-dimethyl-phenylene oxide)(PPO), and polytetrafluoroethylene (PTFE) were studied by positron annihilation and 129 Xe NMR measurements. The 129 Xe NMR chemical shifts for xenon adsorbed in the polymers indicated that the average pore size of the free volume increased in the following order: PC, LDPE, PPO, and PTFE. This order of the pore size of the free volume agrees well with that estimated from the longest lifetime (τ 3 ) of ortho-positronium formed in the polymers. The unique correlation that δ -1 ∝ r is established between the 129 Xe NMR chemical shift (δ) and the pore size (r), which is deduced from the positron annihilation measurements.

  6. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  7. Solid state NMR study of cumbaru flour

    International Nuclear Information System (INIS)

    Nogueira, Jose S.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Tavares, Maria I.B.

    2001-01-01

    The polysaccharide obtained by seed of Dipteryx alata Vog, has been characterised by 13 C solid state, using the basic routine techniques, like MAS and CPMAS and by the proton spin-lattice relaxation time in the rotating frame parameter (T 1 H ρ). Knowing that the chemical structure and molecular dynamic are extremely necessary route to obtain information on the polysaccharides, this work contributes to the classification of the seed containing in the cumbaru fruit to get response on its application. To obtain the initial responses for our purposes some solid state NMR techniques were chosen. The CPMAS 13 C NMR spectrum of the polysaccharide was investigated to know if it has some crystallinity. The MAS 13 C NMR spectrum showed the presence of domains with distinct molecular mobility, because these domains will differ basically in the distribution size and chain packing. The variable contact time experiment was used to analyse the distribution form of 13 C decays, which give us more information about sample heterogeneity. The T 1 H ρHr values were obtained from the variable contact time and by delayed contact time experiment, because these parameter indicate the order of polysaccharides. From the values of this parameter, we found that this polysaccharide is completely non-ordered. (author)

  8. Two-dimensional NMR studies of allyl palladium complexes of ...

    Indian Academy of Sciences (India)

    Administrator

    h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.

  9. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. sup(1)H-NMR study of restricted rotation in dithiophosphoromethyl acetanilides

    International Nuclear Information System (INIS)

    Kovacs, Zs.

    1985-01-01

    sup(1)H-NMR spectra of a series of dithiophosphoromethyl acetanilide derivatives were investigated. The presence of an ortho substituted aryl group bonded to the nitrogen atom of the amide group allowed the observation of restricted internal rotation around the aryl-nitrogen bond. Coalescence temperature and the values of the free energy of activation were determined from the temperature dependent NMR behaviour of these molecules. The possibility of cis-trans isomerism about the nitrogen carbonyl bond was also studied, and the assignment of the conformation of the existing isomer was also made using the aromatic solvent induced shift. (author)

  11. Mössbauer and NMR study of novel Tin(IV)-lactames

    International Nuclear Information System (INIS)

    Kuzmann, Erno; Szalay, Roland; Homonnay, Zoltan; Nagy, Sandor

    2012-01-01

    N-tributylstannylated 2-pyrrolidinone was reacted with tributyltin triflate in different molar ratios and the complex formation monitored using 1 H-NMR, 13 C-NMR and 119 Sn Mössbauer spectroscopy. Comparing the carbon NMR and tin Mössbauer results, a reaction scheme is suggested for the complexation which assumes the formation of a simultaneously O- and N-tributylstannylated pyrrolidinone cation. The formation of the only O-stannylated pyrrolidinone is also assumed to account for the non-constant Mössbauer parameters of the two tin environments in the distannylated pyrrolidinone cation when the ratio of tributyltin triflate is increased in the reaction.

  12. NMR imaging of cerebral infarction

    International Nuclear Information System (INIS)

    Takusagawa, Yoshihiko; Yamaoka, Naoki; Doi, Kazuaki; Okada, Keisei

    1987-01-01

    One hundred and five patients with cerebral infarction were studied by nuclear magnetic resonance (NMR) CT (resistive type of magnet with strength of 0.1 tesla) and X-ray CT. Pulse sequences used saturation recovery (Tr = 600 mSec), Inversion recovery (Tr = 500 mSec, Td = 300 mSec) and spin echo (Tr = 1500 mSec, Te = 40, 80, 120, 160 mSec). Fifteen cases were examined by NMR-CT within 24 hours from onset. Proton NMR imaging could not detect cerebral ischemia as early as 2 hours after onset, but except could detect the lesions in Se image the area of cerebral infarct 3 hours after onset. After 5 hours from onset image changes in SE were evident and corresponded to the area of cerebral infarct, but image changes in IR could not fully delineate the infarcted area. NMR images of 41 year-old woman with cerebral embolism by MCA trunck occlusion associated with mitral stenosis were presented, and NMR-CT was examined 10 hours, 9th and 43th days after episode of MCA occlusion. Sixty patents (64 times) with lacunar infarction were studied by NMR-CT and X-ray CT. The inversion recovery images were used mainly for detection of lesions and comparison with X-ray CT. In 160 lesions which were detected by NMR-CT or X-ray CT, could 156 lesions be detected by NMR-CT and 78 lesions by X-ray CT. Inversion recovery images were more useful for detection of lacunes than X-ray CT. Calculated T1 and T2 values prolonged with time course from onset. (author)

  13. Bentonite pore structure based on SAXS, chloride exclusion and NMR studies

    International Nuclear Information System (INIS)

    Muurinen, A.; Carlsson, T.

    2013-11-01

    Water-saturated bentonite is planned to be used in many countries as an important barrier component in high-level nuclear waste (HLW) repositories. Knowledge about the microstructure of the bentonite and the distribution of water between interlayer and non-interlayer pores is important for modelling of long-term processes. In this work the microstructure of water-saturated samples prepared from Na montmorillonite, Ca-montmorillonite, sodium bentonite MX-80 and calcium bentonite Deponit CaN were studied with nuclear magnetic resonance (NMR) and small-angle xray scattering spectroscopy (SAXS). The sample dry densities ranged between 0.3 and 1.6 g/cm 3 . The NMR technique was used to get information about the volumes of different water types in the bentonite samples. The results were obtained using 1H NMR spin-lattice T 1ρ relaxation time measurements using the short inter-pulse method. The interpretation of the NMR results was made by fitting distributions of exponentials to observed decay curves. The SAXS measurements were used to get information about the size distribution of the interlayer distance of montmorillonite. The chloride porosity measurements and Donnan exclusion calculations were used together with the SAXS results for evaluation of the bentonite microstructure. The NMR studies and SAXS studies coupled with Cl porosity measurements provided very similar pictures of how the porewater is divided in interlayer and non-interlayer water in MX-80 bentonite. In the case where MX-80 of a dry density 1.6 g/cm 3 was equilibrated with 0.1 M NaCl solution, the results indicated an interlayer porosity of 30 % and non-interlayer porosity of 12 %. The interlayer space mainly contained two water layers but also spaces with more water layers were present. The average size of the non-interlayer pores was evaluated to be 120 - 150 A. From the montmorillonite surface area 98 % was interlayer and 2 % non-interlayer. Evaluation of the interlayer and non

  14. Proton NMR study of α-MnH 0.06

    Science.gov (United States)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Antonov, V. E.; Antonova, T. E.

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH 0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH 0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.

  15. Non-polymeric asymmetric binary glass-formers. II. Secondary relaxation studied by dielectric, 2H NMR, and 31P NMR spectroscopy

    Science.gov (United States)

    Pötzschner, B.; Mohamed, F.; Bächer, C.; Wagner, E.; Lichtinger, A.; Bock, D.; Kreger, K.; Schmidt, H.-W.; Rössler, E. A.

    2017-04-01

    We investigate the secondary (β-) relaxations of an asymmetric binary glass former consisting of a spirobichroman derivative (SBC; Tg = 356 K) as the high-Tg component and the low-Tg component tripropyl phosphate (TPP; Tg = 134 K). The main relaxations are studied in Paper I [B. Pötzschner et al., J. Chem. Phys. 146, 164503 (2017)]. A high Tg contrast of ΔTg = 222 K is put into effect in a non-polymeric system. Component-selective studies are carried out by combining results from dielectric spectroscopy (DS) for mass concentrations cTPP ≥ 60% and those from different methods of 2H and 31P NMR spectroscopy. In the case of NMR, the full concentration range (10% ≤ cTPP ≤ 100%) is covered. The neat components exhibit a β-relaxation (β1 (SBC) and β2 (TPP)). The latter is rediscovered by DS in the mixtures for all concentrations with unchanged time constants. NMR spectroscopy identifies the β-relaxations as being alike to those in neat glasses. A spatially highly restricted motion with angular displacement below ±10° encompassing all molecules is involved. In the low temperature range, where TPP shows the typical 31P NMR echo spectra of the β2-process, very similar spectral features are observed for the (deuterated) SBC component by 2H NMR, in addition to its "own" β1-process observed at high temperatures. Apparently, the small TPP molecules enslave the large SBC molecules to perform a common hindered reorientation. The temperature dependence of the spin-lattice relaxation time of both components is the same and reveals an angular displacement of the SBC molecules somewhat smaller than that of TPP, though the time constants τβ2 are the same. Furthermore, T1(T) of TPP in the temperature region of the β2-process is absolutely the same as in the mixture TPP/polystyrene investigated previously. It appears that the manifestations of the β-process introduced by one component are essentially independent of the second component. Finally, at cTPP ≤ 20% one

  16. Structural analysis of d(GCAATTGC)2 and its complex with berenil by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Yoshida, Mitsuru; Banville, D.L.; Shafer, R.H.

    1990-01-01

    The structures of d(GCAATTGC) 2 and its complex with berenil in solution were analyzed by two-dimensional 1 H NMR spectroscopy. Intra- and internucleotide nuclear Overhauser effect (NOE) connectivities demonstrate that the octanucleotide duplex is primarily in the B conformation. Binding with berenil stabilizes the duplex with respect to thermal denaturation by about 10 degree C, based on the appearance of the imino proton signals. The berenil-d(GCAATTGC) 2 system is in fast exchange on the NMR time scale. The two-dimensional NMR data reveal that berenil binds in the minor groove of d(GCAATTGC) 2 . The aromatic drug protons are placed within 5 angstrom of the H2 proton of both adenines, the H1', H5', and H5 double-prime of both thymidines, and the H4', H5', and H5 double-prime of the internal guanosine. The amidine protons on berenil are also close to the H2 proton of both adenines. The duplex retains an overall B conformation in the complex with berenil. At 18 degree C, NOE contacts at longer mixing times indicate the presence of end-to-end association both in the duplex alone and also in its complex with berenil. These intermolecular contacts either vanished or diminished substantially at 45 degree C. Two molecular models are proposed for the berenil-(GCAATTGC) 2 complex; one has hydrogen bonds between the berenil amidine protons and the carbonyl oxygen, O2, of the external thymines, and the other has hydrogen bonds between the drug amidine protons and the purine nitrogen, N3, of the internal adenines. Quantitative analysis of the NOE data favors the second model

  17. Some nitrogen-14 NMR studies in solids

    International Nuclear Information System (INIS)

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the 14 N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long 14 N longitudinal relaxation times (T 1 ) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between 14 N and 1 H. Using quadrupolar echo and CP techniques, the 14 N quadrupolar coupling constants (e 2 qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the 14 N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects

  18. Studies of Superfluid 3He Confined to a Regular Submicron Slab Geometry, Using SQUID NMR

    International Nuclear Information System (INIS)

    Casey, Andrew; Corcoles, Antonio; Lusher, Chris; Cowan, Brian; Saunders, John

    2006-01-01

    The effect on the superfluid ground state of confining p-wave superfluid 3He in regular geometries of characteristic size comparable to the diameter of the Cooper pair remains relatively unexplored, in part because of the demands placed by experiments on the sensitivity of the measuring technique. In this paper we report preliminary experiments aimed at the study of 3He confined to a slab geometry. The NMR response of a series of superfluid samples has been investigated using a SQUID NMR amplifier. The sensitivity of this NMR spectrometer enables samples of order 1017 spins, with low filling factor, to be studied with good resolution

  19. NMR: its application to the experimental study of hydrocephalus and brain edema

    Energy Technology Data Exchange (ETDEWEB)

    Asato, R; Murata, T; Mori, K; Handa, H [Kyoto Univ. (Japan). Faculty of Medicine

    1981-06-01

    The pulsed NMR technique is very sensitive to molecular movement because its observation frequency is in the range of the rates of molecular movement. Furthermore it makes it possible to study the interested molecules in the biological tissues physically and noninvasively. In this report we have investigated the experimental brain edema and hydrocephalus, in both of which the tissue fluid changes are main pathology, through /sup 1/H-NMR relaxation study of water molecule in the brain tissues. The longitudinal (T/sub 1/) and the transverse (T/sub 2/) relaxation times were measured with Varian-HR-220 spectrometer modified with Nicolet-TT-100 PFT system. The experimental materials were the adult male Wister rats suffering from cold injury edema and the adult canines suffering from kaolin hydrocephalus. The study showed firstly that in brain edema no particular changes were found for relaxation times in the white matter, whereas in the gray matter, discrepancy between the changes of T/sub 1/ and T/sub 2/ was observed. That is to say, there were 2 components of T/sub 2/ in contrast with single T/sub 1/ value in the same sample of the edematous gray matter, which indicates the existence of 2 fractions of tissue water, not exchanging on an NMR time scale. Secondary, a good correlation between the longitudinal (T/sub 1/) relaxation time and the tissue water content was found for the dog brains, which suggests that we can analyse the NMR relaxation data of the dog brains based on the two-fraction fast-exchange model.

  20. Continuous Flow 1H and 13C NMR Spectroscopy in Microfluidic Stripline NMR Chips

    NARCIS (Netherlands)

    Oosthoek-de Vries, Anna Jo; Bart, Jacob; Tiggelaar, Roald M.; Janssen, Johannes W.G.; van Bentum, Jan (P.J.M.); Gardeniers, Han J.G.E.; Kentgens, Arno P.M.

    2017-01-01

    Microfluidic stripline NMR technology not only allows for NMR experiments to be performed on small sample volumes in the submicroliter range, but also experiments can easily be performed in continuous flow because of the stripline's favorable geometry. In this study we demonstrate the possibility of

  1. NMR studies of electrophoretic mobility in surfactant systems

    International Nuclear Information System (INIS)

    Conveney, F.M.; Strange, J.H.; Smith, A.L.; Smith, E.G.

    1989-01-01

    An experimental technique is described in which the flow of electrically charged micelles is measured in the presence of an applied electric field using an NMR technique. The method is used to determine the electrophoretic mobility at ambient temperature of a 5% aqueous solution of sodium dodecyl sulphate and is shown to provide a new technique for the study of electrophoresis in surfactant solutions. (author). 8 refs.; 4 figs

  2. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    Science.gov (United States)

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  3. NMR study of local diamagnetic properties of carbon structures with multiwalled nanotubes

    International Nuclear Information System (INIS)

    Nikolaev, E.G.; Omel'yanovsky, O.E.; Prudkovsky, V.S.; Sadakov, A.V.; Tsebro, V.I.

    2009-01-01

    The reasons for the high diamagnetic susceptibility of carbon columns, which are covered with a nanotube mesh, from the interior part of cathode deposits have been studied by means of NMR. A comparative study is made of the 13 C NMR spectra and the magnetic susceptibility of carbon columns before and after ultrasonic processing as well as of finely dispersed material, obtained as a result of such processing, enriched with multilayer nanotubes. The strong diamagnetism of the carbon columns is apparently associated with a quite dense conglomerate of graphite particles, nanotubes, and multilayer polyhedral particles present in their core and not with the surface mesh of multilayer nanotubes. To make a more accurate determination of the character of the anisotropy of the magnetic susceptibility of multilayer carbon nanotubes, the form of the 13 C NMR spectra of samples enriched with multilayer nanotubes, where the nanotubes are either not oriented or only partially oriented, is analyzed. It is shown that the diamagnetic susceptibility of multilayer carbon nanotubes is highest when the magnetic field is oriented perpendicular to their axis

  4. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  5. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  6. The importance of including local correlation times in the calculation of inter-proton distances from NMR measurements: ignoring local correlation times leads to significant errors in the conformational analysis of the Glc alpha1-2Glc alpha linkage by NMR spectroscopy.

    Science.gov (United States)

    Mackeen, Mukram; Almond, Andrew; Cumpstey, Ian; Enis, Seth C; Kupce, Eriks; Butters, Terry D; Fairbanks, Antony J; Dwek, Raymond A; Wormald, Mark R

    2006-06-07

    The experimental determination of oligosaccharide conformations has traditionally used cross-linkage 1H-1H NOE/ROEs. As relatively few NOEs are observed, to provide sufficient conformational constraints this method relies on: accurate quantification of NOE intensities (positive constraints); analysis of absent NOEs (negative constraints); and hence calculation of inter-proton distances using the two-spin approximation. We have compared the results obtained by using 1H 2D NOESY, ROESY and T-ROESY experiments at 500 and 700 MHz to determine the conformation of the terminal Glc alpha1-2Glc alpha linkage in a dodecasaccharide and a related tetrasaccharide. For the tetrasaccharide, the NOESY and ROESY spectra produced the same qualitative pattern of linkage cross-peaks but the quantitative pattern, the relative peak intensities, was different. For the dodecasaccharide, the NOESY and ROESY spectra at 500 MHz produced a different qualitative pattern of linkage cross-peaks, with fewer peaks in the NOESY spectrum. At 700 MHz, the NOESY and ROESY spectra of the dodecasaccharide produced the same qualitative pattern of peaks, but again the relative peak intensities were different. These differences are due to very significant differences in the local correlation times for different proton pairs across this glycosidic linkage. The local correlation time for each proton pair was measured using the ratio of the NOESY and T-ROESY cross-relaxation rates, leaving the NOESY and ROESY as independent data sets for calculating the inter-proton distances. The inter-proton distances calculated including the effects of differences in local correlation times give much more consistent results.

  7. Lateral interactions in the photoreceptor membrane: a NMR study

    International Nuclear Information System (INIS)

    Mollevanger, L.C.P.J.

    1987-01-01

    The photoreceptor membrane has an exceptionally high content of polyunsaturated fatty acyl chains combined with a high amount of phosphatidyl ethanolamine. It is situated in a cell organelle, the rod outer segment, with a high biological activity in which controlable trans-membrane currents of different ions play an important role. These characteristics make it a very interesting biological membrane to search for the existence of non-bilayer structures. Therefore in this thesis a detailed study of the polymorphic phase behaviour of the rod outer segment photoreceptor lipids was undertaken, concerning modulation of the polymorphic phase behaviour of photoreceptor membrane lipids by divalent cations and temperature, polymorphism of the individual phospholipid classes phosphatidylethanolamine and phosphatidylserine and effects of cholesterol, bilayer stabilization by (rhod)opsin. Morphologically intact rod outer segment possesses a large magnetic anisotropy. This property is used to obtain 31 P-NMR of oriented photoreceptor membranes which allows spectral analysis and identification of individual phospholipid classes, and allows to study lateral lipid diffusion in intact disk membranes. The power of high resolution solid state 13 C-NMR to study the conformation of the chromophore in rhodopsin is demonstrated. (Auth.)

  8. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  9. NMR spectroscopy and drug development

    International Nuclear Information System (INIS)

    Craik, D.; Munro, S.

    1990-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy for structural and conformational studies on drug molecules, the three-dimensional investigation of proteins structure and their interactions with ligands are discussed. In-vivo NMR studies of the effects of drugs on metabolism in perfused organs and whole animals are also briefly presented. 5 refs., ills

  10. Part I. Generation of tailored radio-frequency pulses for NMR. Part II. Deuterium NMR studies of oriented DNA, and its interaction with water

    International Nuclear Information System (INIS)

    Brandes, R.

    1988-01-01

    A novel method for generating tailored radio-frequency pulses for use in NMR is presented. For this purpose, an inexpensive device based on analog audio filters was built. As an application, the superior selectivity of this method is shown by comparing it with a soft pulse excitation. The theoretical response of the magnetization to these tailored rf pulses is also calculated. Deuterium NMR line shapes of 2 H-labeled purine bases in solid, uniaxially oriented Li- and Na-DNA have been obtained. The spectral densities of motion were determined for the Li-DNA samples to test a model for uncorrelated, restricted base motion. For the first time, a 2 H spectrum is reported for 2 H labeled DNA in the liquid crystalline state. A procedure is outlined to separate the base motion from the DNA axis motion. In addition to the studies of DNA itself, the interaction of water (D 2 O) with samples of uniaxially oriented Na- and Li-DNA have been studied by high resolution 2 H NMR

  11. Comparative NMR study of nPrBTP and iPrBTP

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Muellich, U.; Geist, A.; Geckeis, H. [Karlsruhe Institute of Technology - KIT, Institute for Nuclear Waste Disposal - INE, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rohde, V. [Fraunhofer Institute for Chemical Technology - ICT, Environmental Engineering, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany); Kaden, P. [Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden (Germany); Panak, P.J. [Karlsruhe Institute of Technology - KIT, Institute for Nuclear Waste Disposal - INE, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); University of Heidelberg, Department of Physical Chemistry, Im Neuenheimer Feld 253, 69120 Heidelberg (Germany)

    2016-07-01

    Bis-triazinyl-pyridine type ligands are important extracting agents for separating trivalent actinide ions from trivalent lanthanides. The alkyl substituents on the lateral triazine rings have a significant effect on the stability of the ligand against hydrolysis and radiolysis. Furthermore they influence solubility, extraction behaviour and selectivity. TRLFS and extraction studies suggest differences in complexation and extraction behaviour of BTP ligands bearing iso-propyl or n-propyl substituents, respectively. As NMR studies allow insight into the metal-ligand bonding, we conducted NMR studies on a range of {sup 15}N-labelled nPrBTP and iPrBTP Ln(III) and Am(III) complexes. Our results show that no strong change in the metal-ligand bonding occurs, thus excluding electronic reasons for differences in complexation behaviour, extraction kinetics and selectivity. This supports mechanistic reasons for the observed differences. (authors)

  12. Structural characterization by NMR of the natively unfolded extracellular domain of beta-dystroglycan: toward the identification of the binding epitope for alpha-dystroglycan.

    Science.gov (United States)

    Bozzi, Manuela; Bianchi, Marzia; Sciandra, Francesca; Paci, Maurizio; Giardina, Bruno; Brancaccio, Andrea; Cicero, Daniel O

    2003-11-25

    Dystroglycan (DG) is an adhesion molecule playing a crucial role for tissue stability during both early embriogenesis and adulthood and is composed by two tightly interacting subunits: alpha-DG, membrane-associated and highly glycosylated, and the transmembrane beta-DG. Recently, by solid-phase binding assays and NMR experiments, we have shown that the C-terminal domain of alpha-DG interacts with a recombinant extracellular fragment of beta-DG (positions 654-750) independently from glycosylation and that the linear binding epitope is located between residues 550 and 565 of alpha-DG. In order to elucidate which moieties of beta-DG are specifically involved in the complex with alpha-DG, the ectodomain has been recombinantly expressed and purified in a labeled ((13)C,(15)N) form and studied by multidimensional NMR. Although it represents a natively unfolded protein domain, we obtained an almost complete backbone assignment. Chemical shift index, (1)H-(15)N heteronuclear single-quantum coherence and nuclear Overhauser effect (HSQC-NOESY) spectra and (3)J(HN,H)(alpha) coupling constant values confirm that this protein is highly disordered, but (1)H-(15)N steady-state NOE experiments indicate that the protein presents two regions of different mobility. The first one, between residues 659 and 722, is characterized by a limited degree of mobility, whereas the C-terminal portion, containing about 30 amino acids, is highly flexible. The binding of beta-DG(654-750) to the C-terminal region of the alpha subunit, alpha-DG(485-620), has been investigated, showing that the region of beta-DG(654-750) between residues 691 and 719 is involved in the interaction.

  13. Nitrogen Use Efficiency and Carbon Isotope Discrimination Study on NMR151 and NMR152 Mutant Lines Rice at Field Under Different Nitrogen Rates and Water Potentials

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abdul Wahid; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Latiffah Nordin; Abdul Razak Ruslan; Hazlina Abdullah; Khairuddin Abdul Rahim

    2016-01-01

    This study was conducted to evaluate the nitrogen use efficiency and "1"3C isotope discrimination of rice mutant lines viz. NMR151 and NMR152. Both cultivars are developed under rice radiation mutagenesis programme for adaptability to aerobic conditions. In the present study, NMR151 and NMR152 were grown under conditions of varying water potentials and nitrogen levels in a field. Two water potentials and three nitrogen rates in a completely randomized design with three replications were carried out. The rice mutants were grown for 110 days under two water potentials, (i) Field capacity from 0 to 110 DAS [FC], and (ii) Field capacity from 0 to 40 DAS and 30 % dry of field capacity from 41 to 110 DAS [SS] and three nitrogen rates, (i) 0 kg N/ ha (0N), (ii) 60 kg N/ ha (60N), and (iii) 120 kg N/ ha (120N). "1"5N isotopic tracer technique was used in this study, whereby the "1"5N labeled urea fertilizer 5.20 % atom excess (a.e) was utilized as a tracer for nitrogen use efficiency (NUE) study. "1"5N isotope presence in the samples was determined using emission spectrometry and percentage of total nitrogen was determined by the Kjeldahl method. "1"5N a.e values of the samples were used in the determination of the NUE. The value of "1"3C isotope discrimination (Δ"1"3C) in the sample was determined using isotope ratio mass spectrometry (IRMS). The "1"3C isotope discrimination technique was used as a tool to identify drought resistance rice cultivars with improves water use efficiency. The growth and agronomy data, viz. plant height, number of tillers, grain yield, straw yield, and 1000 grain weight also were recorded. Results from this study showed nitrogen rates imparted significant effects on yield (grain and straw) plant height, number of tillers and 1000 grain weight. Water potentials had significant effects only on 1000 grain weight and Δ"1"3C. The NUE for both mutant lines rice showed no significant different between treatments. Both Rice mutant lines rice NMR151

  14. Some nitrogen-14 NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  15. β-NMR sample optimization

    CERN Document Server

    Zakoucka, Eva

    2013-01-01

    During my summer student programme I was working on sample optimization for a new β-NMR project at the ISOLDE facility. The β-NMR technique is well-established in solid-state physics and just recently it is being introduced for applications in biochemistry and life sciences. The β-NMR collaboration will be applying for beam time to the INTC committee in September for three nuclei: Cu, Zn and Mg. Sample optimization for Mg was already performed last year during the summer student programme. Therefore sample optimization for Cu and Zn had to be completed as well for the project proposal. My part in the project was to perform thorough literature research on techniques studying Cu and Zn complexes in native conditions, search for relevant binding candidates for Cu and Zn applicable for ß-NMR and eventually evaluate selected binding candidates using UV-VIS spectrometry.

  16. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  17. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  18. Nuclear magnetic resonance spectroscopy in the structure elucidation and biosynthesis of natural products

    International Nuclear Information System (INIS)

    Meksuriyen, D.

    1988-01-01

    Examination of a chloroform extract of Dracaena loureiri Gagnep (Agavaceae), a Thia medicinal plant possessing antibacterial activity, has led to the isolation of fifteen flavenoids. The biogenic relationships among these flavenoids isolated were briefly discussed. Definition of the skeleton and the unambiguous assignment of all of the protons of the isolates was achieved through extensive 2D-homonuclear chemical shift correlation, nuclear Overhauser effect (NOE) difference spectroscopy and 2D-NOE experiments. The 1 H and 13 C NMR spectra of staurosporine, a potent biologically active agent from Streptomyces staurosporeus, were unambiguously assigned by using 2D homonuclear chemical shift correlation, NOE, 1 H-detected heteronuclear multiple-quantum coherence via direct coupling and via multiple-bond coupling for resonance assignments of protonated and nonprotonated carbons, respectively. S. Staurosporeus was found to utilize endogenous and exogenous D- and L-isomers of trytophan in the production of staurosporine. The biosynthesis of staurosporine was examined by employing carbon-14, tritium, and carbon-13 labeled precursors

  19. Oriented solid-state NMR spectrosocpy

    DEFF Research Database (Denmark)

    Bertelsen, Kresten

    This thesis is concerned with driving forward oriented solid-state NMR spectroscopy as a viable technique for studying peptides in membrane bilayers. I will show that structural heterogeneity is an intrinsic part of the peptide/lipid system and that NMR can be used to characterize static...... and dynamic structural features of the peptides and its local surroundings. In fact one need to take into account the dynamical features of the system in order to correctly predict the structure from oriented solid-state NMR spectra.      ...

  20. NMR-CT scanner

    International Nuclear Information System (INIS)

    Kose, Katsumi; Sato, Kozo; Sugimoto, Hiroshi; Sato, Masataka.

    1983-01-01

    A brief explanation is made on the imaging methods for a practical diagnostic NMR-CT scanner : A whole-body NMR-CT scanner utilizing a resistive magnet has been developed by Toshiba in cooperation with the Institute for Solid State Physics, the University of Tokyo. Typical NMR-CT images of volunteers and patients obtained in the clinical experiments using this device are presented. Detailed specifications are also shown about the practical NMR-CTs which are to be put on the market after obtaining the government approval. (author)

  1. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  2. NMR studies of defects created by irradiation in metals

    International Nuclear Information System (INIS)

    Minier, M.; Minier, C.

    1983-06-01

    Nuclear Magnetic Resonance has been rarely used to study point defects created by irradiation in metals. Information obtained in this field using N.M.R. are shown. Some results are also described: characterization of migrating defects in electron irradiated copper; mobility of the complex interstitial-impurity in Al with 150 ppm of chromium; interstitial structure in irradiated aluminum and autodiffusion in metals [fr

  3. Solution NMR Spectroscopy in Target-Based Drug Discovery.

    Science.gov (United States)

    Li, Yan; Kang, Congbao

    2017-08-23

    Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.

  4. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  5. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    International Nuclear Information System (INIS)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G.; Boffo, Elisangela F.; Figueira, Glyn M.

    2012-01-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, 1 H HR-MAS NMR and 1 H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  6. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  7. A molecular dynamics simulation investigation of the relative stability of the cyclic peptide octreotide and its deprotonated and its (CF3)-Trp substituted analogs in different solvents.

    Science.gov (United States)

    Smith, Lorna J; Rought Whitta, Georgia; Dolenc, Jožica; Wang, Dongqi; van Gunsteren, Wilfred F

    2016-10-15

    The cyclic octa-peptide octreotide and its derivatives are used as diagnostics and therapeutics in relation to particular types of cancers. This led to investigations of their conformational properties using spectroscopic, NMR and CD, methods. A CF 3 -substituted derivative, that was designed to stabilize the dominant octreotide conformer responsible for receptor binding, turned out to have a lower affinity. The obtained spectroscopic data were interpreted as to show an increased flexibility of the CF 3 derivative compared to the unsubstituted octreotide, which could then explain the lower affinity. In this article, we use MD simulation without and with time-averaged NOE distance and time-averaged local-elevation 3 J-coupling restraining representing experimental NMR data to determine the conformational properties of the different peptides in the different solvents for which experimental data are available, that are compatible with the NOE atom-atom distance bounds and the 3 J HNHα -couplings as derived from the NMR measurements. The conformational ensembles show that the CF 3 substitution in combination with the change of solvent from water to methanol leads to a decrease in flexibility and a shift in the populations of the dominant conformers that are compatible with the experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Solution structure and dynamics of melanoma inhibitory activity protein

    International Nuclear Information System (INIS)

    Lougheed, Julie C.; Domaille, Peter J.; Handel, Tracy M.

    2002-01-01

    Melanoma inhibitory activity (MIA) is a small secreted protein that is implicated in cartilage cell maintenance and melanoma metastasis. It is representative of a recently discovered family of proteins that contain a Src Homologous 3 (SH3) subdomain. While SH3 domains are normally found in intracellular proteins and mediate protein-protein interactions via recognition of polyproline helices, MIA is single-domain extracellular protein, and it probably binds to a different class of ligands.Here we report the assignments, solution structure, and dynamics of human MIA determined by heteronuclear NMR methods. The structures were calculated in a semi-automated manner without manual assignment of NOE crosspeaks, and have a backbone rmsd of 0.38 A over the ordered regions of the protein. The structure consists of an SH3-like subdomain with N- and C-terminal extensions of approximately 20 amino acids each that together form a novel fold. The rmsd between the solution structure and our recently reported crystal structure is 0.86 A over the ordered regions of the backbone, and the main differences are localized to the most dynamic regions of the protein. The similarity between the NMR and crystal structures supports the use of automated NOE assignments and ambiguous restraints to accelerate the calculation of NMR structures

  9. NMR spectroscopy study of agar-based polymers electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, R.I.; Tambelli, C.E. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Fac. de Zootecnia e Engenharia de Alimentos; Raphael, E. [Universidade Federal de Sao Joao del-Rey (UFSJ), MG (Brazil). Dept. de Ciencias Naturais; Silva, I.D.A.; Magon, C.J.; Donoso, J.P. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This communication presents the results of preparation and characterization of transparent films obtained from agar and acetic acid. The films were characterized by electrochemical impedance spectroscopy (EIS) and nuclear magnetic resonance (NMR). The film formed by agar (Sigma Aldrich) was dispersed in water and kept under stirring and heating at 100 deg C. Next, glycerol, formaldehyde and different quantities of acetic acid (25 and 50 wt%) were added to this solution. The obtained solution was placed on a glass plate and left to dry for 48 hours in oven at 50 deg C to obtain the films, which were kept under vacuum before characterization. The ionic conductivity of the films display an Arrhenius behavior with activation energy E{sub a} = 78 (25 wt% of acetic acid) and E{sub a} = 87 kJ/mol (50 wt% of acetic acid). The conductivity values were 3:0 X 10{sup -6} and 1:2 X 10{sup -4} S/cm at room temperature and 4:4 X 10{sup -4} and 1:5 X 10{sup -3}S/cm at 70 deg C, for the 25 and 50 wt% of acetic acid respectively. To investigate the mechanism of protonic conduction in the polymer proton conductor proton NMR measurements were performed in the temperature range 200-370 K. The {sup 1}H-NMR results exhibit the qualitative feature associated with the proton mobility, namely the presence of well defined {sup 1}H spin-lattice relaxation maxima at 300 K. Activation energy of the order of 40 kJ/mol was obtained from the {sup 1}H-NMR line narrowing data. The ionic conductivity of the film combined with their transparency, flexibility, homogeneity and good adhesion to the glasses or metals indicate that agar-based SPEs are promising materials for used on optoelectronic applications. (author)

  10. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs

  11. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  12. Studying the molecular determinants of potassium channel structure and function in membranes by solid-state NMR

    NARCIS (Netherlands)

    van der Cruijsen, Elwin

    2014-01-01

    Solid-state Nuclear Magnetic Resonance (ssNMR) has made remarkable progress in the structural characterization of membrane proteins systems at atomic resolution. Such studies can be further aided by the use of molecular dynamic simulations. Moreover, ssNMR data can be directly compared to functional

  13. NMR studies of interfaces, strain and anisotropy in Co/Cu multilayers

    International Nuclear Information System (INIS)

    Thomson, T.; Riedi, P.C.

    1999-01-01

    59 Co NMR studies of multilayers are able to give three direct pieces of information: (i) the crystal phase of Co, fcc (217.4 MHz), hcp (220-228 MHz) and in exotic cases bcc (198 MHz) for films measured at T= 4.2 K, (ii) the nature of the interfaces from low frequency satellite lines, and (iii) the strain state deduced from small changes in the line positions. Extensive studies of Co/Cu multilayer interfacial structures as a function of deposition technique, layer thickness, substrate/buffer layer structure and annealing temperature have been undertaken. This work has shed new light on the relationship between interfacial structure and magnetoresistance and in particular has demonstrated that flat, atomic scale, interfaces lead to greater magnetoresistance. The difference between the Co and Cu lattice constant results in an extensive, tensile in-plane strain developing in Co layers provided that some epitaxial registry is present. Information on strain effects can be obtained from the position and width of the NMR lines. The magnetic anisotropy field can be determined by measuring the field dependence of the enhancement effect due to electronic magnetisation. This provides unique insight into the distribution of magnetic anisotropy within the Co layers, as the enhancement can be investigated independently for each NMR line and, hence, provides environment specific information on magnetic anisotropy at the interfaces and in the interior of the layers

  14. Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme

    Energy Technology Data Exchange (ETDEWEB)

    Soares, T. A. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Daura, X. [Universitat Autonoma de Barcelona, InstitucioCatalana de Recerca i Estudis Avancats and Institut de Biotecnologia i Biomedicina (Spain); Oostenbrink, C. [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland); Smith, L. J. [University of Oxford, Oxford Centre for Molecular Sciences, Central Chemistry Laboratory (United Kingdom); Gunsteren, W. F. van [ETH Hoenggerberg Zuerich, Laboratory of Physical Chemistry (Switzerland)], E-mail: wfvgn@igc.phys.chem.ethz.ch

    2004-12-15

    The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom-atom distance bounds, {sup 3}J{sub NH{alpha}} and {sup 3}J{sub {alpha}}{sub {beta}} coupling constants, and {sup 1}5N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom-atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0-1.5 ns while backbone {sup 3}J{sub HN{alpha}}-coupling constants and {sup 1}H- {sup 1}5N order parameters take slightly longer, 1.0-2.0 ns. As expected, side-chain {sup 3}J{sub {alpha}}{sub {beta}}-coupling constants and {sup 1}H- {sup 1}5N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the

  15. Push-through Direction Injectin NMR Automation

    Science.gov (United States)

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  16. Experimental and theoretical NMR studies of interaction between phenylalanine derivative and egg yolk lecithin.

    Science.gov (United States)

    Wałęsa, Roksana; Ptak, Tomasz; Siodłak, Dawid; Kupka, Teobald; Broda, Małgorzata A

    2014-06-01

    The interaction of phenylalanine diamide (Ac-Phe-NHMe) with egg yolk lecithin (EYL) in chloroform was studied by (1)H and (13)C NMR. Six complexes EYL-Ac-Phe-NHMe, stabilized by N-H···O or/and C-H···O hydrogen bonds, were optimized at M06-2X/6-31G(d,p) level. The assignment of EYL and Ac-Phe-NHMe NMR signals was supported using GIAO (gauge including atomic orbital) NMR calculations at VSXC and B3LYP level of theory combined with STO-3Gmag basis set. Results of our study indicate that the interaction of peptides with lecithin occurs mainly in the polar 'head' of the lecithin. Additionally, the most probable lecithin site of H-bond interaction with Ac-Phe-NHMe is the negatively charged oxygen in phosphate group that acts as proton acceptor. Copyright © 2014 John Wiley & Sons, Ltd.

  17. 1H Nuclear Magnetic Resonance (NMR) metabonomic study of breast cancer in Indian population

    International Nuclear Information System (INIS)

    Sonkar, Kanchan; Sinha, Neeraj; Arshad, Farah

    2012-01-01

    Breast cancer is the most common cancer diagnosed in women worldwide with over 1.3 million new cases per year. Recently it has been observed that breast cancer is increasing very rapidly in low income countries including India. Lipids not only play very important and vital role of prime structural component in human body they are also important functional components in cellular metabolism. Transformation from benign to malignant tissue involves several biochemical processes and understanding these processes provides very useful insight related to cancer prognosis. Thus study of lipids becomes very important and NMR spectroscopy is one of the techniques which can be utilized to identifying all lipid components simultaneously. The tissue specimens (35, benign 20 and malignant 15; patient age group 47 yrs) were collected after breast surgeries and were snap frozen in liquid nitrogen. Part of all tissues was sent for routine histopathology. Lipid extraction was performed by Folch method (Folch, 1957) using cholesterol and methanol (2:1 ratio). The NMR spectra of the extracted lipids were recorded immediately after the sample preparation. All NMR experiments were performed on a Bruker Avance 800 MHz spectrometer. 1 H NMR analysis of lipid extract of breast tissue in Indian population shows there is significant elevation of phosphotidycholine, plasmalogen and esterified cholesterol with decrease in triacylglycerol in cancer breast compared to benign tissue implying that their metabolism is definitely altered during carcinogenesis. This study analyzes the role of NMR as an additional diagnostic tool on the basis of examination of lipid extract. (author)

  18. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  19. Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: a 6Li MAS NMR study of adsorption and absorption on goethite

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Paik, Younkee; Julmis, Keinia

    2005-01-01

    High-resolution 2H MAS NMR spectra can be obtained for nanocrystalline particles of goethite (alpha-FeOOH, particle size approximately 4-10 nm) at room temperature, facilitating NMR studies of sorption under environmentally relevant conditions. Li sorption was investigated as a function of pH, th...... on the goethite surface. Even larger Li hyperfine shifts (289 ppm) were observed for Li+-exchanged goethite, which contains lithium ions in the tunnels of the goethite structure, confirming the Li assignment of the 145 ppm Li resonance to the surface sites. Udgivelsesdato: 2005-Oct-6...

  20. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  1. Authenticity study of Phyllanthus species by NMR and FT-IR Techniques coupled with chemometric methods

    Directory of Open Access Journals (Sweden)

    Maiara S. Santos

    2012-01-01

    Full Text Available The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.

  2. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  3. Chemical constituents of Capraria biflora (Scrophulariaceae) and larvicidal activity of essential oil

    International Nuclear Information System (INIS)

    Souza, Luciana Gregorio da S.; Almeida, Macia Cleane S.; Monte, Francisco Jose Q.; Santiago, Gilvandete Maria P.; Braz-Filho, Raimundo; Lemos, Telma Leda G.; Gomes, Clerton L.; Nascimento, Ronaldo F. do

    2012-01-01

    . Analysis of essential oil from fresh leaves of Capraria biflora allowed identification of fourteen essential oil constituents among which thirteen are sesquiterpene compounds, and α-humulene (43.0%) the major constituent. The essential oil was tested for larvicidal activity against Aedes aegypyti showing good activity, with LC 50 73.39 μg/mL (2.27 g/mL). Chromatographic studies of extracts from roots and stems allowed the isolation of five compounds: naphthoquinone biflorin, sesquiterpene caprariolide B, the steroid β-sitosterol, the carbohydrate D-mannitol and iridoid myopochlorin first reported in the species C. biflora. The structures of compounds were characterized by spectroscopic data, IR, MS, NMR 13 C, NMR 1 H, NOE, HSQC and HMBC. (author)

  4. {sup 11}B-NMR spectroscopic study on the interaction of epinephrine and p-BPA

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, K.; Yoshino, K. [Shinshu Univ., Department of Chemistry, Matsumoto, Nagano (Japan)

    2000-10-01

    It is studied that p-BPA (p-bronophenylalanine) which formed complex with catechol functional group has interaction with epinephrine by {sup 11}B-NMR. Two {sup 11}B-NMR resonance signals were observed at pH 7.0. The signal at 29.6 ppm is assigned to p-BPA and at 10.8 ppm is assigned to that of complex. We can determine complex formation constants (logK') in various pH. (author)

  5. An introduction to biological NMR spectroscopy

    International Nuclear Information System (INIS)

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). (authors)

  6. Sequential nearest-neighbor effects on computed {sup 13}C{sup {alpha}} chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Vila, Jorge A. [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States); Serrano, Pedro; Wuethrich, Kurt [The Scripps Research Institute, Department of Molecular Biology (United States); Scheraga, Harold A., E-mail: has5@cornell.ed [Cornell University, Baker Laboratory of Chemistry and Chemical Biology (United States)

    2010-09-15

    To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of {sup 13}C{sup {alpha}} chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue {alpha}/{beta} protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed {sup 13}C{sup {alpha}} chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical {sup 13}C{sup {alpha}} chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed {sup 13}C{sup {alpha}} chemical shifts, {Delta}{sub ca,i}, for the individual residues along the sequence. This indicates that the {Delta}{sub ca,i} -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.

  7. N7- and N9-substituted purine derivatives: a N-15 NMR study

    Czech Academy of Sciences Publication Activity Database

    Marek, R.; Brus, Jiří; Toušek, J.; Kovács, L.; Hocková, Dana

    2002-01-01

    Roč. 40, č. 5 (2002), s. 353-360 ISSN 0749-1581 R&D Projects: GA ČR GA203/98/P026; GA MŠk LN00A016 Institutional research plan: CEZ:AV0Z4050913 Keywords : NMR * H-1 NMR * N-15 NMR Subject RIV: CE - Biochemistry Impact factor: 0.994, year: 2002

  8. Is Low-field NMR a Complementary Tool to GC-MS in Quality Control of Essential Oils? A Case Study

    NARCIS (Netherlands)

    Krause, Andre; Wu, Yu; Tian, Runtao; Beek, van Teris A.

    2018-01-01

    High-field NMR is an expensive and important quality control technique. In recent years, cheaper and simpler low-field NMR has become available as a new quality control technique. In this study, 60 MHz 1 H-NMR was compared with GC-MS and refractometry for the detection of adulteration of essential

  9. NMR studies of liquid crystals and molecules dissolved in liquid crystal solvents

    Energy Technology Data Exchange (ETDEWEB)

    Drobny, Gary Peter [Univ. of California, Berkeley, CA (United States)

    1982-11-01

    This thesis describes several studies in which nuclear magnetic resonance (nmr) spectroscopy has been used to probe the structure, orientation and dynamics of liquid crystal mesogens and molecules dissolved in liquid crystalline phases. In addition, a modern high field nmr spectrometer is described which has been used to perform such nmr studies. Chapter 1 introduces the quantum mechanical formalisms used throughout this thesis and briefly reviews the fundamentals of nuclear spin physics and pulsed nmr spectroscopy. First the density operator is described and a specific form for the canonical ensemble is derived. Then Clebsch-Gordon coefficients, Wigner rotation matrices, and irreducible tensor operators are reviewed. An expression for the equilibrium (Curie) magnetization is obtained and the linear response of a spin system to a strong pulsed r.f. irradiation is described. Finally, the spin interaction Hamiltonians relevant to this work are reviewed together with their truncated forms. Chapter 2 is a deuterium magnetic resonance study of two 'nom' liquid crystals which possess several low temperature mesomorphic phases. Specifically, deuterium quadrupolar echo spectroscopy is used to determine the orientation of the liquid crystal molecules in smectic phases, the changes in molecular orientation and motion that occur at smectic-smectic phase transitions, and the order of the phase transitions. For both compounds, the phase sequence is determined to be isotropic, nematic, smectic A, smectic C, smectic BA, smectic BC, and crystalline. The structure of the smectic A phase is found to be consistent with the well-known model of a two dimensional liquid in which molecules are rapidly rotating about their long axes and oriented at right angles to the plane of the layers. Molecules in the smectic C phase are found to have their long axes tilted with respect to the layer normal, and the tilt angle is temperature dependent, increasing from

  10. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2014-11-21

    The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.

  11. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

    KAUST Repository

    Emwas, Abdul-Hamid M.; Luchinat, Claudio; Turano, Paola; Tenori, Leonardo; Roy, Raja; Salek, Reza M.; Ryan, Danielle; Merzaban, Jasmeen; Kaddurah-Daouk, Rima; Zeri, Ana Carolina; Nagana Gowda, G. A.; Raftery, Daniel; Wang, Yulan; Brennan, Lorraine; Wishart, David S.

    2014-01-01

    The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.

  12. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review.

    Science.gov (United States)

    Emwas, Abdul-Hamid; Luchinat, Claudio; Turano, Paola; Tenori, Leonardo; Roy, Raja; Salek, Reza M; Ryan, Danielle; Merzaban, Jasmeen S; Kaddurah-Daouk, Rima; Zeri, Ana Carolina; Nagana Gowda, G A; Raftery, Daniel; Wang, Yulan; Brennan, Lorraine; Wishart, David S

    The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.

  13. Solution NMR study of the yeast cytochrome c peroxidase: cytochrome c interaction

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Alexander N., E-mail: ovolkov@vub.ac.be; Nuland, Nico A. J. van [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)

    2013-07-15

    Here we present a solution NMR study of the complex between yeast cytochrome c (Cc) and cytochrome c peroxidase (CcP), a paradigm for understanding the biological electron transfer. Performed for the first time, the CcP-observed heteronuclear NMR experiments were used to probe the Cc binding in solution. Combining the Cc- and CcP-detected experiments, the binding interface on both proteins was mapped out, confirming that the X-ray structure of the complex is maintained in solution. Using NMR titrations and chemical shift perturbation analysis, we show that the interaction is independent of the CcP spin-state and is only weakly affected by the Cc redox state. Based on these findings, we argue that the complex of the ferrous Cc and the cyanide-bound CcP is a good mimic of the catalytically-active Cc-CcP compound I species. Finally, no chemical shift perturbations due to the Cc binding at the low-affinity CcP site were observed at low ionic strength. We discuss possible reasons for the absence of the effects and outline future research directions.

  14. ECG gated NMR-CT for cardiovascular diseases

    International Nuclear Information System (INIS)

    Nishikawa, J.; Machida, K.; Iio, M.; Yoshimoto, N.; Sugimoto, T.; Kawaguchi, H.; Mano, H.

    1984-01-01

    The authors applied NMR-CT to cardiac study with ECG gated technique to evaluate the left ventricular (LV) function and compared it with cardiovascular nuclear medicine study (NM). The NMR-CT machine has resistive air-core magnet with 0.15 Tesla. The saturation recovery image or inversion recovery image were obtained as 256 x 256 matrix and 15 mm in thickness. The study population was ten patients who were evaluated both by NMR image and by NM performed within one week interval. The heart muscle was able to be visualized without any contrast material nor radioisotopes in inversion recovery images, whereas saturation recovery images failed to separate heart muscle from blood pool. The wall motions of LV in both methods were well correlated except for inferior wall. The values of ejection fraction in NMR image were moderately low, but two modalities showed satisfactory correlation (r=0.85). The region of myocardial infarction was revealed as wall thinning and/or wall motion abnormality. It is still preliminary to draw a conclusion, however, it can be said that in the evaluation of LV function, method by NMR might be of equal value to those of NM. It can be certain that eventually gated NMR-CT will become more effective method for various aspects of cardiovascular evaluation

  15. In situ NMR and modeling studies of nitroxide mediated copolymerization of styrene and n-butyl acrylate

    NARCIS (Netherlands)

    Hlalele, L.; Klumperman, L.

    2011-01-01

    The combination of in situ1H NMR and in situ31P NMR was used to study the nitroxide mediated copolymerization of styrene and n-butyl acrylate. The alkoxyamine MAMA-DEPN was employed to initiate and mediate the copolymerization. The nature of the ultimate/terminal monomer units of dormant polymer

  16. NMR imaging and pharmaceutical sciences

    International Nuclear Information System (INIS)

    Beall, P.T.; Good, W.R.

    1986-01-01

    Described is the technique of NMR-imaging in diagnostic medicine. Proton and phosphorus NMR in diagnosis of abnormal tissue pathology. Discussed is the value of NMR to the pharmaceutical sciences. NMR may play an important role in monitoring the response of tissues to drugs, determining the localization of drugs, performing real time pharmacokinetics and testing the use of NMR contrast pharmaceuticals

  17. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Raz [Univ. of California, Berkeley, CA (United States)

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. 27Al and 23Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework 27Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na+ cations are directly involved in adsorption processes and reactions in zeolite cavities.

  18. Study of a Conformational Equilibrium of Lisinopril by HPLC, NMR, and DFT

    Directory of Open Access Journals (Sweden)

    Sondes Bouabdallah

    2014-01-01

    Full Text Available The isomerization of lisinopril has been investigated using chromatographic, NMR spectroscopic, and theoretical calculations. The NMR data, particularly the NOEDIFF experiments, show that the major species that was eluted first is the trans form. The proportion was 77% and 23% for the trans and cis, respectively. The thermodynamic parameters (ΔH, ΔS, and ΔG were determined by varying the temperature in the NMR experiments. The interpretations of the experimental data were further supported by DFT/B3LYP calculations.

  19. Some double resonance and multiple quantum NMR studies in solids

    International Nuclear Information System (INIS)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made

  20. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  1. Structural variation study of cobalt nanoparticles synthesized by co-precipitation method using 59Co NMR

    Science.gov (United States)

    Manjunatha, M.; Kumar, Rajeev; B. M., Siddesh; Sahoo, Balaram; Damle, R.; Ramesh, K. P.

    2018-04-01

    We have synthesized cobalt nanoparticles using co-precipitation method. Further, the two phases of the cobalt is monitored by varying the synthesis parameters. 59Co NMR and XRD are used as characterization tools to study the phase variation in the cobalt samples. XRD and NMR results show a remarkable correlation in the two samples (Co-1 and Co-2). Co-2 has predominant fcc and hcp phases, whereas, Co-1 has fcc phase with lower amount of hcp. Both the samples show same saturation magnetization (Ms) but there is a remarkable difference in the phase composition. Thus, 59Co NMR appears to be a good tool to identify the phase purity of the ferromagnetic cobalt samples.

  2. Theory of NMR probe design

    International Nuclear Information System (INIS)

    Schnall, M.D.

    1988-01-01

    The NMR probe is the intrinsic part of the NMR system which allows transmission of a stimulus to a sample and the reception of a resulting signal from a sample. NMR probes are used in both imaging and spectroscopy. Optimal probe design is important to the production of adequate signal/moise. It is important for anyone using NMR techniques to understand how NMR probes work and how to optimize probe design

  3. $\\beta$-NMR of copper isotopes in ionic liquids

    CERN Multimedia

    We propose to test the feasibility of spin-polarization and $\\beta$-NMR studies on several short-lived copper isotopes, $^{58}$ Cu, $^{74}$Cu and $^{75}$Cu in crystals and liquids. The motivation is given by biological studies of Cu with $\\beta$-NMR in liquid samples, since Cu is present in a large number of enzymes involved in electron transfer and activation of oxygen. The technique is based on spin-polarization via optical pumping in the new VITO beamline. We will use the existing lasers, NMR magnet and NMR chambers and we will prepare a new optical pumping system. The studies will be devoted to tests of achieved $\\beta$-asymmetry in solid hosts, the behaviour of asymmetry when increasing vacuum, and finally NMR scans in ionic liquids. The achieved spin polarization will be also relevant for the plans to measure with high precision the magnetic moments of neutron-rich Cu isotopes.

  4. NMR studies of myocardial energy metabolism and ionic homeostasis during ischemia and reperfusion

    International Nuclear Information System (INIS)

    Kirkels, J.H.

    1989-01-01

    In this study several aspects of myocardial energy metabolism and ionic homeostasis during ischemia and reperfusion were investigated in isolated perfused rat hearts, regionally ischemic rabbit hearts, and ex vivo human donor hearts during long term hypothermic cardioplegia. Phosphorus-31 nuclear magnetic resonance ( 31 P NMR) spectroscopy was used as a powerful tool to non-destructively follow the time course in changes in intracellular high-energy phosphates, (creatine phosphate and ATP), inorganic phosphate, and pH. In addition, changes in intracellular free magnesium were followed during ischemia and reperfusion. Sodium-23 ( 23 Na) NMR spectroscopy was used to study intracellular sodium during ischemia and reperfusion and during calcium-free perfusion. (author). 495 refs.; 33 figs.; 11 tabs

  5. Quantum tunneling of magnetization in molecular nanomagnet Fe8 studied by NMR

    International Nuclear Information System (INIS)

    Maegawa, Satoru; Ueda, Miki

    2003-01-01

    Magnetization and NMR measurements have been performed for single crystals of molecular magnet Fe8. The field and temperature dependences of magnetization below 25 K are well described in terms of the isolated clusters with the total spin S=10. The stepwise recoveries of 1 H-NMR signals at the level crossing fields caused by the resonant quantum tunneling of magnetization were observed below 400 mK. The recovery of the NMR signals are explained by the fluctuation caused by the transition between the energy states of Fe magnetizations governed by Landau-Zener quantum transitions

  6. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    Science.gov (United States)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  7. NMR and computational study of Ba8CuxGe46-x clathrate semiconductors

    International Nuclear Information System (INIS)

    Chen, Jing-Han; Sirusi Arvij, Ali; Zheng, Xiang; Rodriguez, Sergio Y.; Ross, Joseph H.

    2014-01-01

    Highlights: • Quadrupole NMR with first-principles calculations probes local site preferences. • Cu/Ge ratio is clarified vs. the ideal Zintl composition. • Modified Becke–Johnson exchange potential agrees well with NMR Knight shifts. - Abstract: Ba 8 Cu x Ge 46-x is a type-I clathrate material that forms as a semiconductor in a narrow composition range corresponding to the electron-balanced Zintl composition, with x = 5.3. We use NMR spectroscopy combined with ab initio electronic structure calculations to probe the electronic and structural behavior of these materials. Computational results based on a superstructure model for the atomic configuration of the alloy provide good agreement with the electric quadrupole-broadened NMR lineshapes. Modeling using the modified Becke–Johnson (TB-mBJ) exchange potential is also shown to agree well with experimental NMR Knight shifts. The results indicate that the Cu–Ge balance is the main factor determining the carrier density, within a narrow stability range near the ideal Zintl composition

  8. Studies on supramolecular gel formation using DOSY NMR

    Czech Academy of Sciences Publication Activity Database

    Nonappa, N.; Šaman, David; Kolehmainen, E.

    2015-01-01

    Roč. 53, č. 4 (2015), s. 256-260 ISSN 0749-1581 Institutional support: RVO:61388963 Keywords : DOSY * VT NMR * gel * diffusion coefficients Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.226, year: 2015

  9. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    Science.gov (United States)

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  10. Petrophysical properties of greensand as predicted from NMR measurements

    DEFF Research Database (Denmark)

    Hossain, Zakir; Grattoni, Carlos A.; Solymar, Mikael

    2011-01-01

    ABSTRACT: Nuclear magnetic resonance (NMR) is a useful tool in reservoir evaluation. The objective of this study is to predict petrophysical properties from NMR T2 distributions. A series of laboratory experiments including core analysis, capillary pressure measurements, NMR T2 measurements...... with macro-pores. Permeability may be predicted from NMR by using Kozeny's equation when surface relaxivity is known. Capillary pressure drainage curves may be predicted from NMR T2 distribution when pore size distribution within a sample is homogeneous....

  11. Local electronic structure of TM-based alloys: a pulsed NMR study

    International Nuclear Information System (INIS)

    Guerra, D.A.

    1984-01-01

    A pulsed NMR study on several transition metal + metalloid amorphous alloys is reported. The analisis of Knight shifts and nuclear spin-lattice relaxation of metalloids indicates a dominant contribution of p-electrons in the Fermi level density of state, supporting the existence of a p-d hibridization. (author) [pt

  12. nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data.

    Science.gov (United States)

    Schober, Daniel; Jacob, Daniel; Wilson, Michael; Cruz, Joseph A; Marcu, Ana; Grant, Jason R; Moing, Annick; Deborde, Catherine; de Figueiredo, Luis F; Haug, Kenneth; Rocca-Serra, Philippe; Easton, John; Ebbels, Timothy M D; Hao, Jie; Ludwig, Christian; Günther, Ulrich L; Rosato, Antonio; Klein, Matthias S; Lewis, Ian A; Luchinat, Claudio; Jones, Andrew R; Grauslys, Arturas; Larralde, Martin; Yokochi, Masashi; Kobayashi, Naohiro; Porzel, Andrea; Griffin, Julian L; Viant, Mark R; Wishart, David S; Steinbeck, Christoph; Salek, Reza M; Neumann, Steffen

    2018-01-02

    NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.

  13. Selected topics from recent NMR studies of organolithium compounds

    Directory of Open Access Journals (Sweden)

    Günther Harald

    1999-01-01

    Full Text Available After a short introduction to NMR spectroscopy of alkali and alkaline earth metals the review concentrates on NMR investigations of organolithium compounds. The isotopic fingerprint method, which rests on deuterium-induced isotope shifts for 6Li resonances, is introduced and exemplified with applications from the aggregation behavior of cyclopropyllithium systems and mixed aggregate formation between methyllithium and lithium salts. In the following chapter, one- and two-dimensional pulse experiments, both for homo- and for heteronuclear spin systems are discussed. Finally, the structural aspects associated with benzyllithium are outlined and the formation of polylithium systems by lithium reduction of biphenylenes is described.

  14. Nuclear magnetic resonance (NMR) tomography

    International Nuclear Information System (INIS)

    Skalpe, I.O.

    1984-01-01

    A brief survey of the working principle of the NMR technique in diagnostical medicine is given. Its clinical usefulness for locating tumors, diagnosing various other diseases, such as some mental illnesses and multiple sclerosis, and its possibilities for studying biochemical processes in vivo are mentioned. The price of NMR image scanners and the problems of the strong magnetic field around the machines are mentioned

  15. Contact replacement for NMR resonance assignment.

    Science.gov (United States)

    Xiong, Fei; Pandurangan, Gopal; Bailey-Kellogg, Chris

    2008-07-01

    Complementing its traditional role in structural studies of proteins, nuclear magnetic resonance (NMR) spectroscopy is playing an increasingly important role in functional studies. NMR dynamics experiments characterize motions involved in target recognition, ligand binding, etc., while NMR chemical shift perturbation experiments identify and localize protein-protein and protein-ligand interactions. The key bottleneck in these studies is to determine the backbone resonance assignment, which allows spectral peaks to be mapped to specific atoms. This article develops a novel approach to address that bottleneck, exploiting an available X-ray structure or homology model to assign the entire backbone from a set of relatively fast and cheap NMR experiments. We formulate contact replacement for resonance assignment as the problem of computing correspondences between a contact graph representing the structure and an NMR graph representing the data; the NMR graph is a significantly corrupted, ambiguous version of the contact graph. We first show that by combining connectivity and amino acid type information, and exploiting the random structure of the noise, one can provably determine unique correspondences in polynomial time with high probability, even in the presence of significant noise (a constant number of noisy edges per vertex). We then detail an efficient randomized algorithm and show that, over a variety of experimental and synthetic datasets, it is robust to typical levels of structural variation (1-2 AA), noise (250-600%) and missings (10-40%). Our algorithm achieves very good overall assignment accuracy, above 80% in alpha-helices, 70% in beta-sheets and 60% in loop regions. Our contact replacement algorithm is implemented in platform-independent Python code. The software can be freely obtained for academic use by request from the authors.

  16. Some double resonance and multiple quantum NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.

  17. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    NARCIS (Netherlands)

    Van Der Schot, Gijs; Bonvin, Alexandre M J J

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on

  18. NMR studies on the structure and dynamics of lac operator DNA

    International Nuclear Information System (INIS)

    Lee, S.C.

    1985-01-01

    Nuclear Magnetic Resonance spectroscopy was used to elucidate the relationships between structure, dynamics and function of the gene regulatory sequence corresponding to the lactose operon operator of Escherichia coli. The length of the DNA fragments examined varied from 13 to 36 base pair, containing all or part of the operator sequence. These DNA fragments are either derived genetically or synthesized chemically. Resonances of the imino protons were assigned by one dimensional inter-base pair nuclear Overhauser enhancement (NOE) measurements. Imino proton exchange rates were measured by saturation recovery methods. Results from the kinetic measurements show an interesting dynamic heterogeneity with a maximum opening rate centered about a GTG/CAC sequence which correlates with the biological function of the operator DNA. This particular three base pair sequence occurs frequently and often symmetrically in prokaryotic nd eukaryotic DNA sites where one anticipates specific protein interaction for gene regulation. The observed sequence dependent imino proton exchange rate may be a reflection of variation of the local structure of regulatory DNA. The results also indicate that the observed imino proton exchange rates are length dependent

  19. O6-ethylguanine carcinogenic lesions in DNA: An NMR study of O6etG·T pairing in dodecanucloetide duplexes

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Li, B.F.L.; Swann, P.F.; Patel, D.J.

    1989-01-01

    High-resolution two-dimensional NMR studies are reported on the self-complementary d-(C1-G2-C3-O 6 etG4-A5-G6-C7-T8-T9-G10-C11-G12) duplex (designated O 6 etG·T 12-mer) containing two symmetrically related O 6 etG·T lesion sites located four base pairs in from either end of the duplex. Parallel studies were undertaken on a related sequence containing O 6 meG·T lesion sites (designated O 6 meG·T 12-mer) in order to evaluate the influence of the size of the alkyl substituent on the structure of the duplex and were undertaken on a related sequence containing G·T mismatch sites (designated G·T 12-mer duplex), which served as the control duplex. The exchangeable and nonexchangeable proton and the phosphorus nuclei have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOE) and correlated spectra of the O 6 etG·T 12-mer, O 6 meG·T 12-mer, and G·T 12-mer duplexes in H 2 O and D 2 O solutions. The distance connectivities observed in the NOESY spectra of the O 6 alkG·T 12-mer duplexes establish that the helix is right-handed and all of the bases adopt an anti conformation of the glycosidic torsion angle including the O 6 alkG4 and T9 bases at the lesion site. These observations establish that the O 6 alkG4 and T9 residues are stacked into the duplex and that the O 6 CH 3 and O 6 CH 2 CH 3 groups of O 6 alkG4 adopt a syn orientation with respect to the N 1 of the alkylated guanine. Since the O 6 -alkyl group adopts a syn orientation, the separation between the O 6 of O 6 alkG4 and the O 4 of T9 in the major groove is increased, preventing the formation of a short hydrogen bond between the N 1 ring nitrogen of O 6 alkG4 and the imino proton of T9

  20. Interaction of charged amphiphilic drugs with phosphatidylcholine vesicles studied by NMR

    International Nuclear Information System (INIS)

    Eriksson, L.E.G.

    1987-01-01

    Small unilamellar vesicles from egg phosphatidylcholine in NaCl solutions were exposed to some amphiphilic pharmaca. The aromatic drugs (chlorpromazine, dibucaine, tetracaine, imipramine and propranolol) were in their cationic form of the amines. By 1 H- and 31 P-NMR the membrane signals were observed. In particular, the N-methyl choline proton signals were followed upon drug addition. The intrinsic chemical shift difference (0.02 ppm) between the inner (upfield) and outer choline signals was influenced by the drug concentration. Packing properties of the lipid head groups and ring current shift probably contributed. At very high drug concentration, the vesicles are destroyed. A transformation into a micellar state with a high sample viscosity took place in a narrow concentration range of drug. The anion effects of Cl - were studied from the 35 Cl-NMR linewidth at 9.8 and 39.1 MHz. A continuous increase in the signal linewidth followed upon drug addition to the vesicles. Only chlorpromazine produced a broadening in the absence of vesicles (NaCl blank). The linewidth reflected a critical micelle concentration of this drug around 7 mM in 0.1 M NaCl. The 35 Cl-NMR experiments demonstrated the existence of an anionic counterion effect. This phenomenon should be accounted for when quantitatively analysing drug-membrane interactions in electrostatic terms. (Auth.)

  1. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  2. Single crystal NMR studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Pennington, C.H.; Durand, D.J.; Zax, D.B.; Slichter, C.P.; Rice, J.P.; Bukowski, E.D.; Ginsberg, D.M.

    1989-01-01

    The authors report Cu NMR studies in the normal state of a single crystal of the T/sub c/ = 90 K superconductor YBa 2 Cu 3 O/sub 7/minus/δ/. The authors have measured the magnetic shift tensor, the electric field gradient tensor, the nuclear spin-lattice relaxation rate tensor, and the time dependence and functional form of the transverse decay. From these data they obtain information about the charge state and magnetic state of the Cu atoms, and the existence and size of the electronic exchange coupling between spins of adjacent Cu atoms. 18 refs., 3 figs., 2 tabs

  3. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    Science.gov (United States)

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  4. Chemical constituents of Capraria biflora (Scrophulariaceae) and larvicidal activity of essential oil; Constituintes quimicos de Capraria biflora (Scrophulariaceae) e atividade larvicida de seu oleo essencial

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luciana Gregorio da S.; Almeida, Macia Cleane S.; Monte, Francisco Jose Q.; Santiago, Gilvandete Maria P.; Braz-Filho, Raimundo; Lemos, Telma Leda G. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica; Gomes, Clerton L.; Nascimento, Ronaldo F. do, [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Quimica Analitica e Fisico-Quimica

    2012-07-01

    . Analysis of essential oil from fresh leaves of Capraria biflora allowed identification of fourteen essential oil constituents among which thirteen are sesquiterpene compounds, and {alpha}-humulene (43.0%) the major constituent. The essential oil was tested for larvicidal activity against Aedes aegypyti showing good activity, with LC{sub 50} 73.39 {mu}g/mL (2.27 g/mL). Chromatographic studies of extracts from roots and stems allowed the isolation of five compounds: naphthoquinone biflorin, sesquiterpene caprariolide B, the steroid {beta}-sitosterol, the carbohydrate D-mannitol and iridoid myopochlorin first reported in the species C. biflora. The structures of compounds were characterized by spectroscopic data, IR, MS, NMR{sup 13}C, NMR{sup 1}H, NOE, HSQC and HMBC. (author)

  5. Structural study of pyrones by NMR

    International Nuclear Information System (INIS)

    Mandarino, D.G.

    1985-01-01

    Extracts of two species of Aniba, designed Aniba-SA (light petroleum extract) and Aniba-SB (benzene extract), afforded by chromatographic fraccionation some compounds. The isolated compounds were identified using spectrometric data and C 13 -NMR coupled and decompled spectra of pyrones were registered. Measurement of the heteronuclear residual coupling by irradiation proton frequency off-resonance was used for distinguish C-5, C-7 and C-8 carbons of the pyrones SB-1, SB-3, SB-4 and SB-5. (M.J.C.) [pt

  6. sup 1 sup 1 B nutation NMR study of powdered borosilicates

    CERN Document Server

    Woo, A J; Han, D Y

    1998-01-01

    In this work, we applied the 1D sup 1 sup 1 B nutation NMR method for the analysis of the local structural environments in powdered borosilicates (SiO sub 2 -B sub 2 O sub 3). Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density matrix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D sup 1 sup 1 B nutation NMR experiment. The sup 1 sup 1 B NMR parameters, quadrupole coupling constants (e sup 2 qQ/h) and asymmetry parameters (eta), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed.

  7. A primer to nutritional metabolomics by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Savorani, Francesco; Rasmussen, Morten Arendt; Mikkelsen, Mette Skau

    2013-01-01

    This paper outlines the advantages and disadvantages of using high throughput NMR metabolomics for nutritional studies with emphasis on the workflow and data analytical methods for generation of new knowledge. The paper describes one-by-one the major research activities in the interdisciplinary...... metabolomics platform and highlights the opportunities that NMR spectra can provide in future nutrition studies. Three areas are emphasized: (1) NMR as an unbiased and non-destructive platform for providing an overview of the metabolome under investigation, (2) NMR for providing versatile information and data...... structures for multivariate pattern recognition methods and (3) NMR for providing a unique fingerprint of the lipoprotein status of the subject. For the first time in history, by combining NMR spectroscopy and chemometrics we are able to perform inductive nutritional research as a complement to the deductive...

  8. Application of amino acid type-specific 1H- and 14N-labeling in a 2H-, 15N-labeled background to a 47 kDa homodimer: Potential for NMR structure determination of large proteins

    International Nuclear Information System (INIS)

    Kelly, Mark J.S.; Krieger, Cornelia; Ball, Linda J.; Yu Yihua; Richter, Gerald; Schmieder, Peter; Bacher, Adelbert; Oschkinat, Hartmut

    1999-01-01

    NMR investigations of larger macromolecules (>20 kDa) are severely hindered by rapid 1H and 13C transverse relaxation. Replacement of non-exchangeable protons with deuterium removes many efficient 1H-1H and 1H-13C relaxation pathways. The main disadvantage of deuteration is that many of the protons which would normally be the source of NOE-based distance restraints are removed. We report the development of a novel labeling strategy which is based on specific protonation and 14N-labeling of the residues phenylalanine, tyrosine, threonine, isoleucine and valine in a fully deuterated, 15N-labeled background. This allows the application of heteronuclear half-filters, 15N-editing and 1H-TOCSY experiments to select for particular magnetization transfer pathways. Results from investigations of a 47 kDa dimeric protein labeled in this way demonstrated that the method provides useful information for the structure determination of large proteins

  9. Flow units from integrated WFT and NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Kasap, E.; Altunbay, M.; Georgi, D.

    1997-08-01

    Reliable and continuous permeability profiles are vital as both hard and soft data required for delineating reservoir architecture. They can improve the vertical resolution of seismic data, well-to-well stratigraphic correlations, and kriging between the well locations. In conditional simulations, permeability profiles are imposed as the conditioning data. Variograms, covariance functions and other geostatistical indicators are more reliable when based on good quality permeability data. Nuclear Magnetic Resonance (NMR) logging and Wireline Formation Tests (WFT) separately generate a wealth of information, and their synthesis extends the value of this information further by providing continuous and accurate permeability profiles without increasing the cost. NMR and WFT data present a unique combination because WFTs provide discrete, in situ permeability based on fluid-flow, whilst NMR responds to the fluids in the pore space and yields effective porosity, pore-size distribution, bound and moveable fluid saturations, and permeability. The NMR permeability is derived from the T{sub 2}-distribution data. Several equations have been proposed to transform T{sub 2} data to permeability. Regardless of the transform model used, the NMR-derived permeabilities depend on interpretation parameters that may be rock specific. The objective of this study is to integrate WFT permeabilities with NMR-derived, T{sub 2} distribution-based permeabilities and thereby arrive at core quality, continuously measured permeability profiles. We outlined the procedures to integrate NMR and WFT data and applied the procedure to a field case. Finally, this study advocates the use of hydraulic unit concepts to extend the WFT-NMR derived, core quality permeabilities to uncored intervals or uncored wells.

  10. NMR structural studies of oligosaccharides and other natural products

    DEFF Research Database (Denmark)

    Kjærulff, Louise

    produce secondary metabolites for signaling and competing against other organisms, and these molecules are important in drug discovery due to their inherent biological activities. From a marine Photobacterium (P. halotolerans) we isolated the solonamides and the ngercheumicins, two families of cyclic...... through the nJCH correlation, this experiment has exciting applications for configurational assignment of e.g. carbohydrates and for residual dipolar couplings. Identification of known molecules and discovery of novel molecules are other important applications of NMR spectroscopy. Bacteria and fungi....... fijiensis, was also investigated for production of novel secondary metabolites, and a new pyranonigrin (E) was isolated and structure elucidated by NMR spectroscopy along with JBIR-74 and decumbenone A, two known metabolites previously isolated from Aspergillus and Penicillium species. Oligosaccharides...

  11. HPLC-NMR revisited: Using time-slice HPLC-SPE-NMR with database assisted dereplication

    DEFF Research Database (Denmark)

    Johansen, Kenneth; Wubshet, Sileshi Gizachew; Nyberg, Nils

    2013-01-01

    Time based trapping of chromatographically separated compounds on to solid-phase extraction cartridges (SPE) and subsequent elution to NMR-tubes was done to emulate the function of HPLC–NMR for dereplication purposes. Sufficient mass sensitivity was obtained by the use of a state-of-the-art HPLC......–SPE–NMR-system with a cryogenically cooled probe head, designed for 1.7 mm NMR-tubes. The resulting 1H NMR spectra (600 MHz) were evaluated against a database of previously acquired and prepared spectra. The in-house developed matching algorithm, based on partitioning of the spectra and allowing for changes in the chemical shifts......, is described and the code included as Supplementary Information. Two mixtures of natural products was used to test the approach; one extract of Carthamus oxyacantha (wild safflower) containing an array of spiro compounds and one extract of the endophytic fungus Penicillum namyslowski containing griseofulvin...

  12. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  13. 2D NMR studies on muscle and cerebral metabolism in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Gillet, B.; Doan, B.T.; Verre-Sebrie, C.; Fedeli, O.; Beloeil, J.C. (Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France). Inst. de Chimie des Substances Naturelles); Peres, M. (CERMA-CEV, 91 - Bretigny-sur-Orge (France)); Barrere, B.; Seylaz, J. (Paris-7 Univ., 75 (France)); Morin, S.; Koenig, J. (Bordeaux-1 Univ., 33 - Talence (France)); Sebille, A. (Faculte de Medecine Saint-Antoine, 75 - Paris (France))

    1994-06-01

    New developments in in vivo 2D[sup 1]H NMR spectroscopy now allow several metabolites, which are not resolved by 1D NMR to be assigned. This report describes the use of this technique to follow the time courses of changes in the concentration of metabolites in the rat brain during physiological and pathophysiological processes (hyperglycemia and hypoxia) and to compare the fatty acid components of normal and dystrophic mouse gastrocnemius muscle. (authors). 15 refs., 5 figs.

  14. 31P-NMR studies on perfused mouse liver

    International Nuclear Information System (INIS)

    McLaughlin, A.C.; Takeda, H.; Chance, B.

    1978-01-01

    From a metabolic viewpoint, the most important organ in the body is the liver. In contrast to more specialized organs such as heart and kidney which perform only one major function, the liver performs a number of major metabolic functions. Two of the most important functions are the catabolism and storage of foodstuffs (in the form of glycogen) and the control of most of the constituents of the blood (in particular, the blood glucose level). Most of these functions are localized within a single type of cell. One way that the liver is able to regulate these diverse reactions is by the control of the ATP level in the cell. Encouraged by the recent success of many groups in using 31 P-NMR to provide a continuous and non-destructive monitor of ATP levels in isolated cells, skeletal muscle, and perfused organs such as heart and kidney, 31 P-NMR was used to investigate ATP levels in perfused liver of mice

  15. A new Labdane Diterpene and Other Constituents from Marrubium deserti Noe ex coss.

    Directory of Open Access Journals (Sweden)

    Hocine Dendougui

    2011-01-01

    Full Text Available The phytochemical study of the chloroform soluble part of the hydroalcoholic extract of Marrubium deserti allowed us to describe a new labdane diterpene, 6-dehydroxy-19-acetyl-marrubenol (3 beside three other diterpenes : 19-acetyl-marrubenol (6 , 6-acetyl-marrubenol (7 and 16-epoxy-9-hydroxy-labda-13(16, 14- diene (1. This latter derivative is described for the first time as natural compound. Phytol (2, and three sterols: b -sitosterol (4, stigmasterol (5 and b -sitosterol 3-O-glucoside (8 were also isolated from this species. Structure elucidation of the isolated compounds was accomplished by means of spectroscopic techniques, especially NMR spectroscopy and mass spectrometry.

  16. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  17. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism

    International Nuclear Information System (INIS)

    Meyer, R.A.; Kushmerick, M.J.; Brown, T.R.

    1982-01-01

    This review presents the principles and limitations of phosphorus nuclear magnetic resonance ( 31 P-NMR) spectroscopy as applied to the study of striated muscle metabolism. Application of the techniques discussed include noninvasive measurement of high-energy phosphate, intracellular pH, intracellular free Mg 2+ , and metabolite compartmentation. In perfused cat biceps (fast-twitch) muscles, but not in soleus (slow-twitch), NMR spectra indicate a substantially lower (1 mM) free inorganic phosphate level than when measured chemically (6 mM). In addition, saturation and inversion spin-transfer methods that enable direct measurement of the unidirectional fluxes through creatine kinase are described. In perfused cat biceps muscle, results suggest that this enzyme and its substrates are in simple chemical equilibrium

  18. Xenon NMR of liquid crystals confined to cylindrical nanocavities: a simulation study.

    Science.gov (United States)

    Karjalainen, Jouni; Vaara, Juha; Straka, Michal; Lantto, Perttu

    2015-03-21

    independent of temperature. Our results show that the combination of CG simulations and a QC pre-parameterised (129)Xe NMR shielding allows efficient studies of the phase behaviour and structure of complex systems containing thousands of molecules, and brings us closer to the simulation of NMR experiments.

  19. Stereospecific assignments of glycine in proteins by stereospecific deuteration and {sup 15}N labeling

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.P.; Curley, R.W. Jr.; Panigot, M.J.; Fesik, S.W. [Ohio State Univ., Columbus, OH (United States)

    1994-12-01

    Stereospecific assignments are important for accurately determining the three-dimensional structures of proteins through the use of multidimensional NMR techniques. It is especially important to stereospecifically assign the glycine {alpha}-protons in proteins because of the potential for different backbone conformations of this residue. These stereospecific assignments are critical for interpreting the {sup 3}J{sub NH,{alpha}H} coupling constants and NOEs involving the glycine {alpha}-protons that determine the conformation of this part of the protein. However, it is often difficult to unambiguously obtain the stereospecific assignments for glycine residues by using only NOE data. In this poster, we present a method for unambiguous, stereospecific assignment of the {alpha}-protons of glycine residues. This method involves synthesis of stereo-specifically deuterated and {sup 15}N-labeled Gly using a slightly modified procedure originally described by Woodard and coworkers for the stereoselective deuteration of glycine. The stereospecifically deuterated and {sup 15}N-labeled Gy has been incorporated into recombinant proteins expressed in both bacterial systems (FKBP) and mammalian cells (u-PA). Two- and three-dimensional isotope-filtered and isotope-edited NMR experiments were used to obtain the stereospecific assignments of the glycine {alpha}-protons for these proteins.

  20. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    International Nuclear Information System (INIS)

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.; Ackerman, J.J.; Karl, I.E.

    1990-01-01

    The effects of sepsis on intracellular Na+ concentration ([Na+]i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosed as septic were also examined for [Na+]i. Five rat RBC specimens had [Na+]i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing [6,6-2H2]glucose and examined by 2H-NMR. No significant differences in [Na+]i or glucose utilization were found in RBCs from control or septic rats. There were no differences in [Na+]i in the two groups of patients. The [Na+]i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the [Na+]i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism

  1. Deuterium NMR, induced and intrinsic cholesteric lyomesophases

    International Nuclear Information System (INIS)

    Alcantara, M.R.

    1982-01-01

    Induced and intrinsic cholesteric lyotropic mesophases were studied. Induced cholesteric lyomesophases based on potassium laurate (KL) system, with small amounts of cholesterol added, were studied by deuterium NMR and by polarizing microscopy. Order profiles obtained from deuterium NMR of KL perdenderated chains in both induced cholesteric and normal mesophases were compared. The intrinsic cholesteric lyotropic mesophases were based on the amphiphile potassium N-lauroyl serinate (KLNS) in the resolved levo form. The study of the type I intrinsic cholesteric mesophase was made by optical microscopy under polarized light and the type II intrinsic cholesteric lyomesophase was characterized by deuterium NMR. The new texture was explained by the use of the theory of disclinations developed for thermotropic liquid crystals, specially for cholesteric type. (M.J.C.) [pt

  2. Study on 1H-NMR fingerprinting of Rhodiolae Crenulatae Radix et Rhizoma.

    Science.gov (United States)

    Wen, Shi-yuan; Zhou, Jiang-tao; Chen, Yan-yan; Ding, Li-qin; Jiang, Miao-miao

    2015-07-01

    Nuclear magnetic resonance (1H-NMR) fingerprint of Rhodiola rosea medicinal materials was established, and used to distinguish the quality of raw materials from different sources. Pulse sequence for water peak inhibition was employed to acquire 1H-NMR spectra with the temperature at 298 K and spectrometer frequency of 400.13 MHz. Through subsection integral method, the obtained NMR data was subjected to similarity analysis and principal component analysis (PCA). 10 batches raw materials of Rhodiola rosea from different origins were successfully distinguished by PCA. The statistical results indicated that rhodiola glucoside, butyl alcohol, maleic acid and alanine were the main differential ingredients. This method provides an auxiliary method of Chinese quality approach to evaluate the quality of Rhodiola crenulata without using natural reference substances.

  3. NMR study of hydride systems

    International Nuclear Information System (INIS)

    Peretz, M.

    1980-02-01

    The hydrides of thorium (ThH 2 , Th 4 H 15 and Th 4 D 15 ) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x)) 2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th 4 H 15 than in ThH 2 ; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th 4 H 15 ; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  4. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  5. Bayesian Peak Picking for NMR Spectra

    KAUST Repository

    Cheng, Yichen

    2014-02-01

    Protein structure determination is a very important topic in structural genomics, which helps people to understand varieties of biological functions such as protein-protein interactions, protein–DNA interactions and so on. Nowadays, nuclear magnetic resonance (NMR) has often been used to determine the three-dimensional structures of protein in vivo. This study aims to automate the peak picking step, the most important and tricky step in NMR structure determination. We propose to model the NMR spectrum by a mixture of bivariate Gaussian densities and use the stochastic approximation Monte Carlo algorithm as the computational tool to solve the problem. Under the Bayesian framework, the peak picking problem is casted as a variable selection problem. The proposed method can automatically distinguish true peaks from false ones without preprocessing the data. To the best of our knowledge, this is the first effort in the literature that tackles the peak picking problem for NMR spectrum data using Bayesian method.

  6. O-17 NMR measurement of water

    International Nuclear Information System (INIS)

    Fukazawa, Nobuyuki

    1990-01-01

    Recently, attention has been paid to the various treatment of water and the utilization of water by magnetic treatment, electric field treatment and so on. It has been said that by these treatments, the change in the properties of water arises. The state of this treated water cannot be explained by the properties of water from conventional physical and chemical standpoints. In addition, the method of measurement of whether the change arose or not is not yet determined. It is necessary to establish the method of measurement for the basic state of water. In this study, O-17 NMR which observes the state of water directly at molecular or atomic level was investigated as the method of measuring water. The measurement of O-17 NMR was carried out with a JNR 90Q FT NMR of Fourier transformation type of JEOL Ltd. The experimental method and the results are reported. The result of measurement of the O-17 NMR spectrum for distilled ion exchange water is shown. It is know that it has very wide line width as compared with the NMR spectra of protons and C-13. The relative sensitivity of O-17 observation is about 1/100,000 of that of protons. As to the information on the state of water obtained by O-17 NMR, there are chemical shift and line width. As temperature rose, the line width showed decrease, which seemed to be related to the decrease of hydrogen combination. (K.I.)

  7. Quantification of aluminium-27 NMR spectra of high-surface-area oxides

    International Nuclear Information System (INIS)

    Pearson, R.M.; Schramm, C.M.

    1990-01-01

    This paper discusses the quantitation of 27 Al NMR spectra. It is showns that the so called 'invisible' aluminium atoms seen by recent workers are completely consistent with known continuous wave NMR studies of the 27 Al NMR spectra of high surface area aluminium oxides. The use of pulsed NMR techniques further complicate the quantitative measurement of 27 Al NMR spectra, especially when high resolution NMR spectrometers are used for this purpose. Methods are described which allow both the estimation of aluminium not seen by continuous wave techniques and the amounts of the NMR spectra lost in pulsed work. (author). 24 refs.; 6 figs.; 1 tab

  8. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, D.R. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)], E-mail: ekman.drew@epa.gov; Teng, Q. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States); Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T. [Mid-Continent Ecology Division, U.S. EPA, 6201 Congdon Boulevard, Duluth, MN 55804 (United States); Collette, T.W. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)

    2007-11-30

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D {sup 1}H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D {sup 1}H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of {sup 1}H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 {mu}g/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish.

  9. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    International Nuclear Information System (INIS)

    Ekman, D.R.; Teng, Q.; Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T.; Collette, T.W.

    2007-01-01

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D 1 H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D 1 H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of 1 H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 μg/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish

  10. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  11. NMR and domain wall mobility in intermetallic compounds

    International Nuclear Information System (INIS)

    Guimaraes, A.P.; Sampaio, L.C.; Cunha, S.F.; Alves, K.M.B.

    1991-01-01

    The technique of pulsed NMR can be used to study the distribution of hyperfine fields in a magnetic matrix. The dynamics of the domain walls are relevant to the generation of NMR signals. In the present study on the (R x Y 1-x ) Fe 2 intermetallic compounds, the reduction in the signals is associated to increased propagation fields. This indicates that a smaller domain wall mobility is at the origin of these effects. NMR spectra in this system show the importance of direct and indirect (i.e., mediated by Fe atoms) terms in the transferred hyperfine field. (author)

  12. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.; Abdul Jameel, Abdul Gani; Hourani, Nadim; Emwas, Abdul-Hamid M.; Sarathy, Mani; Roberts, William L.

    2015-01-01

    infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC

  13. In vivo 7Li and 19F NMR studies of drugs in the brain

    International Nuclear Information System (INIS)

    Komoroski, Richard A.

    1999-01-01

    For various reasons, it is advantageous to measure the concentration of a psychoactive drug in the brain in vivo. Many drugs contain the element fluorine. Using 19 F NMR spectroscopy, we have studied the psychoactive drugs trifluoperazine and fluoxetine in the brain in vivo. Using 7 Li NMR, it is possible to detect lithium ion, used to treat manic depressive illness. We have measured the concentration and distribution of lithium in both human and rat brain in vivo. Measurement of drug levels in the human brain may provide a measure of therapeutic or toxic effects, as well as insight into drug metabolism and mechanism of action. (author)

  14. NMR study of damage on isolated perfused rat heart exposed to ischemia and hypoxia

    International Nuclear Information System (INIS)

    Luo Xuechun; Yan Yongbin; Zhang Riqing; Fan Lili

    2001-01-01

    Myocardial ischemia is the most common and primary cause of myocardium damage. Numerous conventional techniques and methods have been developed for ischemia and reperfusion studies. However, because of damage to the heart sample, most of these techniques can not be used to continuously monitor the full dynamic course of the myocardial metabolic pathway. The nuclear magnetic resonance (NMR) surface coil technique, which overcomes the limitations of conventional instrumentation, can be used to quantitatively study every stage of the perfused heart (especially after perfusion stoppage) continuously, dynamically, and without damage under normal or designed physiological conditions at the molecular level. In this paper, 31 P-NMR was used to study the effects of ischemia and hypoxia on isolated perfused hearts. The results show that complete hypoxia caused more severe functional damage to the myocardial cells than complete ischemia

  15. Metabolic studies with NMR spectroscopy of the alga Dunaliella salina trapped within agarose beads.

    Science.gov (United States)

    Bental, M; Pick, U; Avron, M; Degani, H

    1990-02-22

    A technique for the entrapment of the unicellular algae Dunaliella salina in agarose beads and their perfusion during NMR measurements is presented. The trapped cells maintained their ability to proliferate under normal growth conditions, and remained viable and stable under steady-state conditions for long periods during NMR measurements. Following osmotic shock in the dark, prominent changes were observed in the intracellular level of ATP and polyphosphates, but little to no changes in the intracellular pH or orthoposphate content. When cells were subjected to hyperosmotic shock, the ATP level decreased. The content of NMR-visible polyphosphates decreased as well, presumably due to the production of longer, NMR-invisible structures. Following hypoosmotic shock, the ATP content increased and longer polyphosphates were broken down to shorter, more mobile polymers.

  16. A 55Mn NMR study of the La0.75Sr0.25MnO3 nanoparticles

    International Nuclear Information System (INIS)

    Rybicki, D.; Sikora, M.; Kapusta, Cz.; Riedi, P.C.; Jirak, Z.; Knizek, K.; Marysko, M.; Pollert, E.; Veverka, P.

    2006-01-01

    We report on a 55 Mn NMR study of the La 0.75 Sr 0.25 MnO 3 nanoparticles of the average grain size 33 nm and 114 nm at 4.2 K and 77 K and at applied field of 0, 0.2 and 0.5T. A dominant signal from the double exchange (DE) controlled metallic ferromagnetic interior of the grains as well as a small signal from insulating ferromagnetic regions is observed. From a comparison with bulk magnetization measurement the thickness of the nonferromagnetic outer layer of the grains and the amount of the ferromagnetic insulating phase was determined. The relative amount of these phases with respect to the ferromagnetic metallic phase increases with decreasing grain size. The DE line in the NMR spectrum shows a frequency shift with applied field according to a full 55 Mn gyromagnetic ratio. A value of the demagnetizing field close to zero is obtained, which indicates a single domain state of the nanoparticles. For the sample with larger grains a higher NMR enhancement is observed, which indicates a higher magnetic susceptibility of the sample at the NMR frequencies. A comparison with the NMR data obtained on a microcrystalline material is made. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. NMR study of the 1-13C glucose colon bacterial metabolism

    International Nuclear Information System (INIS)

    Briet, F.; Flourie, B.; Pochart, P.; Rambaud, J.C.; Desjeux, J.F.; Dallery, L.; Grivet, J.P.

    1994-01-01

    The aim of the study is to examine in-vitro and by nuclear magnetic resonance the biological pathways for the fermentation of the 1- 13 C labelled glucose (99 atoms percent) by human colon bacteria. The preparation of the bacterial suspension and the glucose degradation kinetics are presented; the NMR analysis sensitivity and quantification features are discussed and results are presented. 2 figs., 1 ref

  18. Intracellular pH and inorganic phosphate content of heart in vivo: A 31P-NMR study

    International Nuclear Information System (INIS)

    Katz, L.A.; Swain, J.A.; Portman, M.A.; Balaban, R.S.

    1988-01-01

    Studies were performed to determine the contribution of red blood cells to the 31 P-nuclear magnetic resonance (NMR) spectrum of the canine heart in vivo and the feasibility of measuring myocardial intracellular phosphate and pH. This was accomplished by replacing whole blood with a perfluorochemical perfusion emulsion blood substitute, Oxypherol, and noting the difference in the 31 P-NMR spectrum of the heart. NMR data were collected with a NMR transmitter-receiver coil on the surface of the distal portion of the left ventricle. These studies demonstrated that a small contribution from 2,3-diphosphoglycerate (2,3-DPG) and phosphodiesters in the blood could be detected. The magnitude and shift of these blood-borne signals permitted the relative quantification of intracellular inorganic phosphate (P i ) content as well as intracellular pH. Under resting conditions, the intracellular ATP/P i was 7.0 ± 0.08. This corresponds to a free intracellular P 1 content of ∼ 0.8 μmol./g wet wt. The intracellular pH was 7.10 ± 0.01. Acute respiratory alkalosis and acidosis, with the arterial pH ranging from ∼7.0 to 7.7, resulted in only small changes in the intracellular pH. These latter results demonstrate an effective myocardial intracellular proton-buffering mechanism in vivo

  19. An in-cell NMR study of monitoring stress-induced increase of cytosolic Ca{sup 2+} concentration in HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hembram, Dambarudhar Shiba Sankar; Haremaki, Takahiro; Hamatsu, Jumpei; Inoue, Jin; Kamoshida, Hajime; Ikeya, Teppei; Mishima, Masaki [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan); Mikawa, Tsutomu [Cellular and Molecular Biology Unit, RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198 (Japan); Hayashi, Nobuhiro [Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-1, Nagatsuda-chou, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Shirakawa, Masahiro [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo 192-0373 (Japan)

    2013-09-06

    Highlights: •We performed time-resolved NMR observations of calbindin D{sub 9k} in HeLa cells. •Stress-induced increase of cytosolic Ca{sup 2+} concentration was observed by in-cell NMR. •Calbindin D{sub 9k} showed the state-transition from Mg{sup 2+}- to Ca{sup 2+}-bound state in cells. •We provide a useful tool for in situ monitoring of the healthiness of the cells. -- Abstract: Recent developments in in-cell NMR techniques have allowed us to study proteins in detail inside living eukaryotic cells. The lifetime of in-cell NMR samples is however much shorter than that in culture media, presumably because of various stresses as well as the nutrient depletion in the anaerobic environment within the NMR tube. It is well known that Ca{sup 2+}-bursts occur in HeLa cells under various stresses, hence the cytosolic Ca{sup 2+} concentration can be regarded as a good indicator of the healthiness of cells in NMR tubes. In this study, aiming at monitoring the states of proteins resulting from the change of cytosolic Ca{sup 2+} concentration during experiments, human calbindin D{sub 9k} (P47M + C80) was used as the model protein and cultured HeLa cells as host cells. Time-resolved measurements of 2D {sup 1}H–{sup 15}N SOFAST–HMQC experiments of calbindin D{sub 9k} (P47M + C80) in HeLa cells showed time-dependent changes in the cross-peak patterns in the spectra. Comparison with in vitro assignments revealed that calbindin D{sub 9k} (P47M + C80) is initially in the Mg{sup 2+}-bound state, and then gradually converted to the Ca{sup 2+}-bound state. This conversion process initiates after NMR sample preparation. These results showed, for the first time, that cells inside the NMR tube were stressed, presumably because of cell precipitation, the lack of oxygen and nutrients, etc., thereby releasing Ca{sup 2+} into cytosol during the measurements. The results demonstrated that in-cell NMR can monitor the state transitions of stimulated cells through the observation of

  20. Investigation of zeolites by solid state quadrapole NMR

    International Nuclear Information System (INIS)

    Janssen, R.

    1990-01-01

    The subject of this thesis is the NMR investigation of zeolites. The nature and properties of zeolites are discussed. Some of the basic priniples of NMR techniques on quadrupole nuclei are presented. A special technique, namely a two-dimensional nutation experiment is discussed in detail. The theory of the nutation experiment for quadrupole spin species with spin quantum number 3/2 as well as 5/2 is presented. For both spin spcies the theoretical spectra are compared with experimental results. It is also shown that the nutation expeirment can be performed with several pulse schemes. It is shown how phase-sensitive pure-absorption nutation spectra can be obtained and an NMR-probe is presented that is capable of performing NMR experiments at high (up to 500 degree C) temperatures. The two-dimensional nutation NMR technique has been applied to sodium cations in zeolite NaA. For this purpose a numbre of zeolite samples were prepared that contained different amounts of water. With the aid of nutation NMR the hydration of the zeolite can be studied and conclusions can be drawn about the symmetry of the surrounding of the sodium cations. With the aid of an extension of the nutation NMR experiment: Rotary Echo Nutation NMR, it is shown that in zeolite NaA, in various stages of hydration, the sodium cations or water molecules are mobile. Proof is given by means of high-temperature 23 Na-NMR that dehydrates zeolite NaA undergoes a phase transition at ca. 120 degree C. In a high-temperature NMR investigation of zeolite ZSM-5 it is shown that the sodium ions start to execute motions when the temperature is increased. (author). 198 refs.; 72 figs.; 6 tabs

  1. Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy.

    Science.gov (United States)

    Tyagi, Ritu; Rana, Poonam; Khan, Ahmad Raza; Bhatnagar, Deepak; Devi, M Memita; Chaturvedi, Shubhra; Tripathi, Rajendra P; Khushu, Subash

    2011-10-01

    Thallium (Tl) is a toxic heavy metal and its exposure to the human body causes physiological and biochemical changes due to its interference with potassium-dependent biological reactions. A high-resolution (1)H NMR spectroscopy based metabonomic approach has been applied for investigating acute biochemical effects caused by thallium sulfate (Tl(2)SO(4)). Male strain A mice were divided in three groups and received three doses of Tl(2)SO(4) (5, 10 and 20 mg kg(-1) b.w., i.p.). Urine samples collected at 3, 24, 72 and 96 h post-dose time points were analyzed by (1)H NMR spectroscopy. NMR spectral data were processed and analyzed using principal components analysis to represent biochemical variations induced by Tl(2)SO(4). Results showed Tl-exposed mice urine to have distinct metabonomic phenotypes and revealed dose- and time-dependent clustering of treated groups. The metabolic signature of urine analysis from Tl(2)SO(4)-treated animals exhibited an increase in the levels of creatinine, taurine, hippurate and β-hydroxybutyrate along with a decrease in energy metabolites trimethylamine and choline. These findings revealed Tl-induced disturbed gut flora, membrane metabolite, energy and protein metabolism, representing physiological dysfunction of vital organs. The present study indicates the great potential of NMR-based metabonomics in mapping metabolic response for toxicology, which could ultimately lead to identification of potential markers for Tl toxicity. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Natural abundant solid state NMR studies in designed tripeptides for differentiation of multiple conformers.

    Science.gov (United States)

    Jayanthi, S; Chatterjee, Bhaswati; Raghothama, S

    2009-10-01

    Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro-(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro-(L)Pro-(L)Phe-OMe (2), and Piv-(D)Pro-(L)Pro-(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The (13)C spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C(beta) and C(gamma) carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all trans form across the di-Proline segment. The results are in agreement with the X-ray analysis. Solid state (15)N resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. (1)H chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between (1)H--(13)C. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.

  3. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  4. NMR study of CeTe at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hinderer, J. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland)]. E-mail: hinderer@phys.ethz.ch; Weyeneth, S.M. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Weller, M. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Gavilano, J.L. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Felder, E. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Hulliger, F. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Ott, H.R. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland)

    2006-05-01

    We present {sup 125}Te NMR measurements on CeTe powder at temperatures between 1 and 150K and in magnetic fields between 5 and 8T. CeTe is a rocksalt-type intermetallic compound. It orders antiferromagnetically at T{sub N}{approx}2.2K with a much reduced ordered moment [H.R. Ott, J.K. Kjems, F. Hulliger, Phys. Rev. Lett. 42 20 (1979) 1378]. From our low-temperature NMR spectra we infer the presence of at least three inequivalent Te sites at low temperatures. Considering the crystal structure this result is completely unexpected. The linewidths and the Knight shifts of the individual lines are significantly different and increase substantially with decreasing temperature. They follow the temperature dependence of the magnetic susceptibility above 20K. Above T{sub N}, hyperfine fields of 1.6, 0.8 and 0.0T at the three Te sites per Bohr magneton of Ce moment are deduced from Knight shift vs. magnetic susceptibility data. These values are typical for transferred hyperfine fields via conduction electrons.

  5. An improved ultrafast 2D NMR experiment: Towards atom-resolved real-time studies of protein kinetics at multi-Hz rates

    International Nuclear Information System (INIS)

    Gal, Maayan; Kern, Thomas; Schanda, Paul; Frydman, Lucio; Brutscher, Bernhard

    2009-01-01

    Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium real-time kinetic NMR methods allow direct observation of conformational or chemical changes by following peak positions and intensities in a series of spectra recorded during a kinetic event. Because standard multidimensional NMR methods required to yield sufficient atom-resolution are intrinsically time-consuming, many interesting phenomena are excluded from real-time NMR analysis. Recently, spatially encoded ultrafast 2D NMR techniques have been proposed that allow one to acquire a 2D NMR experiment within a single transient. In addition, when combined with the SOFAST technique, such ultrafast experiments can be repeated at high rates. One of the problems detected for such ultrafast protein NMR experiments is related to the heteronuclear decoupling during detection with interferences between the pulses and the oscillatory magnetic field gradients arising in this scheme. Here we present a method for improved ultrafast data acquisition yielding higher signal to noise and sharper lines in single-scan 2D NMR spectra. In combination with a fast-mixing device, the recording of 1 H- 15 N correlation spectra with repetition rates of up to a few Hertz becomes feasible, enabling real-time studies of protein kinetics occurring on time scales down to a few seconds

  6. Nuclear Magnetic Resonance (NMR Study for the Detection and Quantitation of Cholesterol in HSV529 Therapeutic Vaccine Candidate

    Directory of Open Access Journals (Sweden)

    Rahima Khatun

    Full Text Available This study describes the NMR-based method to determine the limit of quantitation (LOQ and limit of detection (LOD of cholesterol, a process-related impurity in the replication-deficient Herpes Simplex Virus (HSV type 2 candidate vaccine HSV529. Three signature peaks from the 1D 1H NMR of a cholesterol reference spectrum were selected for the identification of cholesterol. The LOQ for a cholesterol working standard was found to be 1 μg/mL, and the LOD was found to be 0.1 μg/mL. The identity of cholesterol, separated from the formulation of growth supplement by thin layer chromatography (TLC, was confirmed by 1D 1H NMR and 2D 1H-13C HSQC NMR. The three signature peaks of cholesterol were detected only in a six-times concentrated sample of HSV529 candidate vaccine sample and not in the single dose HSV529 vaccine sample under similar experimental conditions. Taken together, the results demonstrated that NMR is a direct method that can successfully identify and quantify cholesterol in viral vaccine samples, such as HSV529, and as well as in the growth supplement used during the upstream stages of HSV529 manufacturing. Keywords: Herpes simplex virus type 2 (HSV-2, Viral vaccine, NMR, Residuals, LOD and LOQ, TLC, Growth supplement

  7. Muscular pathology: echographic and NMR imaging aspects

    International Nuclear Information System (INIS)

    Pascal-Suisse, P.; Beaurain, P.; Mougniot, C.

    1995-01-01

    A comparison of echographic techniques and NMR imaging has been done for the diagnosis of muscular trauma and tumor pathologies. In traumatic pathology, the echographic analysis allows to determine the complete assessment of recent muscular injuries. NMR imaging can be used in granuloma or fibrous callosity appreciation and for the analysis of deep injury (muscles and muscles-tendon junctions) and of muscular aponeurosis. Echography must be used together with color coding Doppler technique in the diagnosis of tumor pathology and for the study of slow fluxes. The recently available energy Doppler technique seems to be powerful in the study of vascularization of small expansive formations, but their extension to adjacent bone or tissue can only be appreciated using NMR imaging. (J.S.)

  8. 1H NMR studies of human lysozyme: Spectral assignment and comparison with hen lysozyme

    International Nuclear Information System (INIS)

    Redfield, C.; Dobson, C.M.

    1990-01-01

    Complete main-chain (NH and αCH) 1 H NMR assignments are reported for the 130 residues of human lysozyme, along with extensive assignments for side-chain protons. Analysis of 2-D NOESY experiments shows that the regions of secondary structure for human lysozyme in solution are essentially identical with those found previously in a similar study of hen lysozyme and are in close accord with the structure of the protein reported previously from x-ray diffraction studies in the crystalline state. Comparison of the chemical shifts, spin-spin coupling constants, and hydrogen exchange behavior are also consistent with closely similar structures for the two proteins in solution. In a number of cases specific differences in the NMR parameters between hen and human lysozymes can be correlated with specific differences observed in the crystal structures

  9. Structure and Dynamics Studies of Cytolytic Peptides in Lipid Bilayers using NMR Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Sara Krogh

    2015-01-01

    different and cytolytic peptides were investigated in this work. The peptides were SPF-5506-A4 from Trichoderma sp, Conolysin-Mt1 from Conus mustelinus, and Alamethicin from Trichoderma viride. The studies employed solution and solid-state NMR spectroscopy in combination with different biophysical methods...

  10. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  11. Development of 19F-NMR chemical shift detection of DNA B-Z equilibrium using 19F-NMR.

    Science.gov (United States)

    Nakamura, S; Yang, H; Hirata, C; Kersaudy, F; Fujimoto, K

    2017-06-28

    Various DNA conformational changes are in correlation with biological events. In particular, DNA B-Z equilibrium showed a high correlation with translation and transcription. In this study, we developed a DNA probe containing 5-trifluoromethylcytidine or 5-trifluoromethylthymidine to detect DNA B-Z equilibrium using 19 F-NMR. Its probe enabled the quantitative detection of B-, Z-, and ss-DNA based on 19 F-NMR chemical shift change.

  12. Chemical behavior of methylpyranomalvidin-3-O-glucoside in aqueous solution studied by NMR and UV-visible spectroscopy.

    Science.gov (United States)

    Oliveira, Joana; Petrov, Vesselin; Parola, A Jorge; Pina, Fernando; Azevedo, Joana; Teixeira, Natércia; Brás, Natércia F; Fernandes, Pedro A; Mateus, Nuno; Ramos, Maria João; de Freitas, Victor

    2011-02-17

    In the present work, the proton-transfer reactions of the methylpyranomalvidin-3-O-glucoside pigment in water with different pH values was studied by NMR and UV-visible spectroscopies. The results showed four equilibrium forms: the methylpyranomalvidin-3-O-glucoside cation, the neutral quinoidal base, the respective anionic quinoidal base, and a dianionic base unprotonated at the methyl group. According to the NMR data, it seems that for methylpyranomalvidin-3-O-glucoside besides the acid-base equilibrium between the pyranoflavylium cation and the neutral quinoidal base, a new species is formed at pD 4.88-6.10. This is corroborated by the appearance of a new set of signals in the NMR spectrum that may be assigned to the formation of hemiketal/cis-chalcone species to a small extent. The two ionization constants (pK(a1) and pK(a2)) obtained by both methods (NMR and UV-visible) for methylpyranomalvidin-3-O-glucoside are in agreement (pK(a1) = 5.17 ± 0.03; pK(a2) = 8.85 ± 0.08; and pK(a1) = 4.57 ± 0.07; pK(a2) = 8.23 ± 0.04 obtained by NMR and UV-visible spectroscopies, respectively). Moreover, the fully dianionic unprotonated form (at the methyl group) of the methylpyranomalvidin-3-O-glucoside is converted slowly into a new structure that displays a yellow color at basic pH. On the basis of the results obtained through LC-MS and NMR, the proposed structure was found to correspond to the flavonol syringetin-3-glucoside.

  13. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Zhi Hu, Jian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  14. NMR Phase Noise in Bitter Magnets

    Science.gov (United States)

    Sigmund, E. E.; Calder, E. S.; Thomas, G. W.; Mitrović, V. F.; Bachman, H. N.; Halperin, W. P.; Kuhns, P. L.; Reyes, A. P.

    2001-02-01

    We have studied the temporal instability of a high field resistive Bitter magnet through nuclear magnetic resonance (NMR). This instability leads to transverse spin decoherence in repeated and accumulated NMR experiments as is normally performed during signal averaging. We demonstrate this effect via Hahn echo and Carr-Purcell-Meiboom-Gill (CPMG) transverse relaxation experiments in a 23-T resistive magnet. Quantitative analysis was found to be consistent with separate measurements of the magnetic field frequency fluctuation spectrum, as well as with independent NMR experiments performed in a magnetic field with a controlled instability. Finally, the CPMG sequence with short pulse delays is shown to be successful in recovering the intrinsic spin-spin relaxation even in the presence of magnetic field temporal instability.

  15. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard; Gao, Xin; Li, Ming

    2012-01-01

    Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule's introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening.Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. 2012 Jang et al.; licensee BioMed Central Ltd.

  16. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    KAUST Repository

    Jang, Richard

    2012-03-21

    Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule\\'s introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening.Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. 2012 Jang et al.; licensee BioMed Central Ltd.

  17. Comparing pharmacophore models derived from crystallography and NMR ensembles

    Science.gov (United States)

    Ghanakota, Phani; Carlson, Heather A.

    2017-11-01

    NMR and X-ray crystallography are the two most widely used methods for determining protein structures. Our previous study examining NMR versus X-Ray sources of protein conformations showed improved performance with NMR structures when used in our Multiple Protein Structures (MPS) method for receptor-based pharmacophores (Damm, Carlson, J Am Chem Soc 129:8225-8235, 2007). However, that work was based on a single test case, HIV-1 protease, because of the rich data available for that system. New data for more systems are available now, which calls for further examination of the effect of different sources of protein conformations. The MPS technique was applied to Growth factor receptor bound protein 2 (Grb2), Src SH2 homology domain (Src-SH2), FK506-binding protein 1A (FKBP12), and Peroxisome proliferator-activated receptor-γ (PPAR-γ). Pharmacophore models from both crystal and NMR ensembles were able to discriminate between high-affinity, low-affinity, and decoy molecules. As we found in our original study, NMR models showed optimal performance when all elements were used. The crystal models had more pharmacophore elements compared to their NMR counterparts. The crystal-based models exhibited optimum performance only when pharmacophore elements were dropped. This supports our assertion that the higher flexibility in NMR ensembles helps focus the models on the most essential interactions with the protein. Our studies suggest that the "extra" pharmacophore elements seen at the periphery in X-ray models arise as a result of decreased protein flexibility and make very little contribution to model performance.

  18. Solid state NMR of materials

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Sharon A; Ferguson, David B; Haw, James F [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1994-12-31

    In situ NMR experiments are studied, including probe of several structures such as the structures of the organic adsorbates, Broensted acid sites, other nuclei associated with active sites, and other framework sites. The authors report that in the absence of high concentrations of paramagnetic sites or metal particles, high resolution MAS spectra are relatively easy to obtain and interpret. It is also concluded that NMR can measure spatial distributions and rates of diffusion; and are able to characterize equilibrium structures and the frequencies and amplitudes of molecular motion

  19. Using NMR Spectroscopy to Investigate the Solution Behavior of Nerve Agents and Their Binding to Acetylcholinesterase

    Science.gov (United States)

    2016-01-01

    from the NOE data and X-ray crystallography , will be used to evaluate the conformational changes associated with AChE interaction. Refined MD...P.G. Funnels, Pathways, and the Energy Landscape of Protein Folding: A Synthesis . Proteins 1995, 21, 167–195. Cavalli, A.; Bottegoni, G.; Raco

  20. A 55Mn NMR Study of the La0.75Sr0.25MnO3 Nanoparticles

    International Nuclear Information System (INIS)

    Kapusta, Cz.; Rybicki, D.; Sikora, M.

    2005-01-01

    We report on a 55 Mn NMR study of the La 0.75 Sr 0.25 MnO 3 nanoparticles with the average grain size of 33 nm and 114 nm at 4.2 K and at the applied field 0, 0.2 and 0.5 T. A dominant signal from the double exchange (DE) controlled metallic ferromagnetic interior of the grains as well as a small signal from insulating ferromagnetic surface regions of the grains are observed. The DE resonant line shows a frequency shift in the applied field according to a full gyromagnetic ratio and a value of the demagnetizing field much smaller than 0.2 T is obtained. In both samples studied a two-exponential nuclear spin-spin (T 2 ) relaxation is observed at zero field, whereas a single-exponential relaxation is observed at the applied field of 0.5 T. For the sample with larger grains a higher NMR enhancement is observed, which indicates a higher magnetic susceptibility of the sample at the NMR frequencies. A comparison to the NMR data obtained on a bulk material is made. The results are discussed in terms of the influence of the grain size and on the presence of domain walls or other magnetic inhomogeneities and on the magnetic anisotropy

  1. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    Science.gov (United States)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  2. MRI and unilateral NMR study of reindeer skin tanning processes.

    Science.gov (United States)

    Zhu, Lizheng; Del Federico, Eleonora; Ilott, Andrew J; Klokkernes, Torunn; Kehlet, Cindie; Jerschow, Alexej

    2015-04-07

    The study of arctic or subarctic indigenous skin clothing material, known for its design and ability to keep the body warm, provides information about the tanning materials and techniques. The study also provides clues about the culture that created it, since tanning processes are often specific to certain indigenous groups. Untreated skin samples and samples treated with willow (Salix sp) bark extract and cod liver oil are compared in this study using both MRI and unilateral NMR techniques. The two types of samples show different proton spatial distributions and different relaxation times, which may also provide information about the tanning technique and aging behavior.

  3. NMR investigations of molecular dynamics

    Science.gov (United States)

    Palmer, Arthur

    2011-03-01

    NMR spectroscopy is a powerful experimental approach for characterizing protein conformational dynamics on multiple time scales. The insights obtained from NMR studies are complemented and by molecular dynamics (MD) simulations, which provide full atomistic details of protein dynamics. Homologous mesophilic (E. coli) and thermophilic (T. thermophilus) ribonuclease H (RNase H) enzymes serve to illustrate how changes in protein sequence and structure that affect conformational dynamic processes can be monitored and characterized by joint analysis of NMR spectroscopy and MD simulations. A Gly residue inserted within a putative hinge between helices B and C is conserved among thermophilic RNases H, but absent in mesophilic RNases H. Experimental spin relaxation measurements show that the dynamic properties of T. thermophilus RNase H are recapitulated in E. coli RNase H by insertion of a Gly residue between helices B and C. Additional specific intramolecular interactions that modulate backbone and sidechain dynamical properties of the Gly-rich loop and of the conserved Trp residue flanking the Gly insertion site have been identified using MD simulations and subsequently confirmed by NMR spin relaxation measurements. These results emphasize the importance of hydrogen bonds and local steric interactions in restricting conformational fluctuations, and the absence of such interactions in allowing conformational adaptation to substrate binding.

  4. NMR study of thermoresponsive block copolymer in aqueous solution

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Konefal, Rafal; Čadová, Eva

    2016-01-01

    Roč. 217, č. 12 (2016), s. 1370-1375 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA15-13853S Institutional support: RVO:61389013 Keywords : aqueous solutions * NMR * NOESY Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.500, year: 2016

  5. C-13 NMR spectroscopy of plasma reduces interference of hypertriglyceridemia in the H-1 NMR detection of malignancy

    International Nuclear Information System (INIS)

    Fossell, E.T.; Hall, F.M.; McDonagh, J.

    1991-01-01

    The authors have previously described the application of water-suppressed proton nuclear magnetic resonance (H-1 NMR) spectroscopy of plasma for detection of malignancy. Subsequently, hypertriglyceridemia has been identified as a source of false positive results. Here is described a confirmatory, adjunctive technique -analysis of the carbon-13 (C-13) NMR spectrum of plasma- which also identifies the presence of malignancy but is not sensitive to the plasma triglyceride level. Blinded plasma samples from 480 normal donors and 208 patients scheduled for breast biopsy were analyzed by water-suppressed H-1 and C-13 NMR spectroscopy. Triglyceride levels were also measured. Among the normal donors, there were 38 individuals with hypertriglyceridemia of whom 18 had results consistent with malignancy by H-1 NMR spectroscopy. However, the C-13 technique reduced the apparent H-1 false positive rate from 7.0 to 0.6 percent. Similarly, in the breast biopsy cohort, C-13 reduced the false positive rate from 2.8 to 0.9 percent. Furthermore, the accuracy of the combined H-1/C-13 test in this blinded study was greater than 96 percent in 208 patients studied. (author). 27 refs.; 5 figs.; 4 tabs

  6. Selected topics in solution-phase biomolecular NMR spectroscopy

    Science.gov (United States)

    Kay, Lewis E.; Frydman, Lucio

    2017-05-01

    Solution bio-NMR spectroscopy continues to enjoy a preeminent role as an important tool in elucidating the structure and dynamics of a range of important biomolecules and in relating these to function. Equally impressive is how NMR continues to 'reinvent' itself through the efforts of many brilliant practitioners who ask increasingly demanding and increasingly biologically relevant questions. The ability to manipulate spin Hamiltonians - almost at will - to dissect the information of interest contributes to the success of the endeavor and ensures that the NMR technology will be well poised to contribute to as yet unknown frontiers in the future. As a tribute to the versatility of solution NMR in biomolecular studies and to the continued rapid advances in the field we present a Virtual Special Issue (VSI) that includes over 40 articles on various aspects of solution-state biomolecular NMR that have been published in the Journal of Magnetic Resonance in the past 7 years. These, in total, help celebrate the achievements of this vibrant field.

  7. Structural biology by NMR: structure, dynamics, and interactions.

    Directory of Open Access Journals (Sweden)

    Phineus R L Markwick

    2008-09-01

    Full Text Available The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.

  8. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    Science.gov (United States)

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  9. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konuma, Tsuyoshi [Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology (United States); Harada, Erisa [Suntory Foundation for Life Sciences, Bioorganic Research Institute (Japan); Sugase, Kenji, E-mail: sugase@sunbor.or.jp, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2015-12-15

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  10. NMR imaging of the brain: initial impressions

    International Nuclear Information System (INIS)

    Spencer, D.H.; Bydder, G.M.

    1983-01-01

    An NMR imaging system designed and built by Thorn-EMI Ltd was installed at Hammersmith Hospital in March 1981. In the first year of operation 180 patients and 40 volunteers have had cranial examinations and initial impressions bases on this experience are presented. Patients with a wide variety of neurological diseases have been studied to provide a basis for diagnostic interpretation, to define distinctive features, and to evaluate different types of scanning sequences. NMR imaging appears to be of considerable value in neurological diagnosis and has a number of advantages over CT. The detailed evaluation of NMR imaging will require much more work but the initial results are very promising

  11. Graphical programming for pulse automated NMR experiments

    International Nuclear Information System (INIS)

    Belmonte, S.B.; Oliveira, I.S.; Guimaraes, A.P.

    1999-01-01

    We describe a software program designed to control a broadband pulse Nuclear Magnetic Resonance (NMR) spectrometer used in zero-field NMR studies of magnetic metals. The software is written in the graphical language LabVIEW. This type of programming allows modifications and the inclusion of new routines to be easily made by the non-specialist, without changing the basic structure of the program. The program corrects for differences in the gain of the two acquisition channels [U (phase) and V (quadrature)], and automatic baseline subtraction. We present examples of measurements of NMR spectra, spin-echo decay (T 2 ), and quadrupolar oscillations, performed in magnetic intermetallic compounds. (author)

  12. Metabolic engineering applications of in vivo 31P and 13C NMR studies of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Shanks, J.V.

    1989-01-01

    With intent to quantify NMR measurements as much as possible, analysis techniques of the in vivo 31 P NMR spectrum are developed. A systematic procedure is formulated for estimating the relative intracellular concentrations of the sugar phosphates in S. cerevisiae from the 31 P NMR spectrum. In addition, in vivo correlation of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, β-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate are determined. Also, a method was developed for elucidation of the cytoplasmic and vacuolar components of inorganic phosphate in the 31 P NMR spectrum of S. cerevisiae. An in vivo correlation relating the inorganic phosphate chemical shift of the vacuole with the chemical shift of the resonance for pyrophosphate and the terminal phosphate of polyphosphate (PP 1 ) is established. Transient measurements provided by 31 P NMR are applied to reg1 mutant and standard strains. 31 P and 13 C NMR measurements are used to analyze the performance of recombinant strains in which the glucose phosphorylation step had been altered

  13. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Brian Finley [Univ. of California, Berkeley, CA (United States)

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a "receiver domain" in the family of "two-component" regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  14. Detergent/nanodisc screening for high-resolution NMR studies of an integral membrane protein containing a cytoplasmic domain.

    Directory of Open Access Journals (Sweden)

    Christos Tzitzilonis

    Full Text Available Because membrane proteins need to be extracted from their natural environment and reconstituted in artificial milieus for the 3D structure determination by X-ray crystallography or NMR, the search for membrane mimetic that conserve the native structure and functional activities remains challenging. We demonstrate here a detergent/nanodisc screening study by NMR of the bacterial α-helical membrane protein YgaP containing a cytoplasmic rhodanese domain. The analysis of 2D [(15N,(1H]-TROSY spectra shows that only a careful usage of low amounts of mixed detergents did not perturb the cytoplasmic domain while solubilizing in parallel the transmembrane segments with good spectral quality. In contrast, the incorporation of YgaP into nanodiscs appeared to be straightforward and yielded a surprisingly high quality [(15N,(1H]-TROSY spectrum opening an avenue for the structural studies of a helical membrane protein in a bilayer system by solution state NMR.

  15. observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    Akogun, Hyogo 678-1297, Japan. ∗. Email: kohara@sci.himeji tech.ac.jp. Abstract. NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si. NMR signals arising from the antiferromagnetic ...

  16. NMR imaging of human atherosclerosis

    International Nuclear Information System (INIS)

    Toussaint, J.F.

    1995-01-01

    Diagnosis and prognosis of atherosclerosis can no longer be evaluated with morphological parameters only. A description of atherosclerotic plaque composition is necessary to study the mechanisms of plaque rupture, which depends on collagenous cap and lipid core thicknesses. NMR, as a biochemical imaging technique, allows visualization of these components using T1 contrast (mobile lipids), T2 contrast (cap vs. core), spin density (calcifications), diffusion imaging, 1H and 13C spectroscopy. Today, these imaging sequences allow to study in vitro the effects of interventional techniques such as angioplasty or atherectomy. Clinical investigations begin, which will attempt to develop in vivo microscopy and test the ability of NMR to predict plaque rupture. (author). 13 refs., 7 figs

  17. Xanthanolides and xanthane epoxide derivatives from Xanthium strumarium.

    Science.gov (United States)

    Mahmoud, A A

    1998-12-01

    From the aerial parts of Xanthium strumarium, three new xanthanolide and xanthane-type sesquiterpenoids, 11alpha,13-dihydroxanthatin, 4beta,5beta-epoxyxanthatin-1alpha,4alpha-endoperoxide, and 1beta,4beta,4alpha,5alpha-diepoxyxanth-11(13)-en-12-oic acid have been isolated, together with seven known compounds. The structures were determined by spectroscopic methods, particularly high resolution 1D, 2D NMR spectroscopy and NOE experiments.

  18. Intracellular PHB conversion in a type II methanotroph studied by 13 C NMR

    NARCIS (Netherlands)

    Vecherskaya, M.; Dijkema, C.; Stams, A.J.M.

    2001-01-01

    Poly-g-hydroxybutyrate (PHB) formation under aerobic conditions via incorporation of [13C-2]acetate as a cosubstrate and its intracellular degradation under anaerobic conditions in a Type II methanotroph was studied by 13C NMR. During PHB synthesis in the presence of labelled acetate, low levels of

  19. Multinuclear NMR studies of single lipid bilayers supported in cylindrical aluminum oxide nanopores.

    Science.gov (United States)

    Gaede, Holly C; Luckett, Keith M; Polozov, Ivan V; Gawrisch, Klaus

    2004-08-31

    Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.

  20. Microprocessorized NMR measurement

    International Nuclear Information System (INIS)

    Rijllart, A.

    1984-01-01

    An MC68000 CAMAC microprocessor system for fast and accurate NMR signal measurement will be presented. A stand-alone CAMAC microprocessor system (MC68000 STAC) with a special purpose interface sweeps a digital frequency synthesizer and digitizes the NMR signal with a 16-bit ADC of 17 μs conversion time. It averages the NMR signal data over many sweeps and then transfers it through CAMAC to a computer for calculation of the signal parameters. The computer has full software control over the timing and sweep settings of this signal averager, and thus allows optimization of noise suppression. Several of these processor systems can be installed in the same crate for parallel processing, and the flexibility of the STAC also allows easy adaptation to other applications such as transient recording or phase-sensitive detection. (orig.)

  1. NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization.

    Science.gov (United States)

    Kruk, Joanna; Doskocz, Marek; Jodłowska, Elżbieta; Zacharzewska, Anna; Łakomiec, Joanna; Czaja, Kornelia; Kujawski, Jacek

    2017-01-01

    Metabolomics is a rapidly developing branch of science that concentrates on identifying biologically active molecules with potential biomarker properties. To define the best biomarkers for diseases, metabolomics uses both models (in vitro, animals) and human, as well as, various techniques such as mass spectroscopy, gas chromatography, liquid chromatography, infrared and UV-VIS spectroscopy and nuclear magnetic resonance. The last one takes advantage of the magnetic properties of certain nuclei, such as 1 H, 13 C, 31 P, 19 F, especially their ability to absorb and emit energy, what is crucial for analyzing samples. Among many spectroscopic NMR techniques not only one-dimensional (1D) techniques are known, but for many years two-dimensional (2D, for example, COSY, DOSY, JRES, HETCORE, HMQS), three-dimensional (3D, DART-MS, HRMAS, HSQC, HMBC) and solid-state NMR have been used. In this paper, authors taking apart fundamental division of nuclear magnetic resonance techniques intend to shown their wide application in metabolomic studies, especially in identifying biomarkers.

  2. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  3. Metabonomic study of human serum in gallbladder cancer by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Sonkar, Kanchan; Sinha, Neeraj; Behari, Anu; Kapoor, V.K.

    2012-01-01

    Gallbladder carcinoma (GBC) is one of the most lethal malignancies of upper gastrointestinal tract and it has the highest mortality rate in Chile and India. It has a very high incidence rates in northern India therefore it is also called as an Indian disease. There are several factors which play important role in development of gallbladder cancer including long-standing stones in gallbladder and alterations in composition of bile. Studies on gallstones and gallbladder tissues revealed that benign group can easily be discriminated from malignant group. Many proteomic studies have been performed for different cancers and several responsible serum protein markers have been identified but there is no such metabonomics study that shows the presence of any biomarker associated with gallbladder carcinoma. Identification of such biomarker would help immensely in the diagnostic of GBC. For this study we have collected blood samples (70; including patients from Chronic Cholecystitis (CC), XanthoGranulomatous Cholecystitis (XGC) and Gallbladder Cancer (GBC)) post-operatively (immediately after surgery) from patient undergoing cholecystectomy in Department of Surgical Gastroenterology, SGPGIMS. Control samples were also collected from 20 volunteers after 12 hrs of fasting. 4 ml of blood sample was collected and was allowed to clot in plastic tube for 30 min at room temperature in incubator. The serum was collected by centrifugation and samples were stored at -80 deg C till NMR experiments. 400 μL of serum was used for recording NMR spectra. NMR spectra were recorded at Bruker Avance 800 MHz spectrometer using CPMG pulse sequence with water presaturation. Control serum shows presence of various amino acids and low molecular weight metabolites. Detailed multivariate analysis along with markers found in serum associated with GBC will be presented. (author)

  4. NMR studies of actinide carbide and nitride electronic properties

    International Nuclear Information System (INIS)

    Boutard, Jean-Louis

    1976-12-01

    N.M.R. studies applied to 13 C and 15 N in the solid solutions ThCsub(1-x)Nsub(x), UCsub(1-x)Nsub(x) and in the compounds ThCsub(1-x) and U 2 C 3 , were undertaken to study carbon and nitrogen contribution to chemical bonds and magnetism. For THORIUM MONOCARBIDE AND CARBONITRIDE: ThCsub(1-x) and ThCsub(1-x)Nsub(x), the very strong orbital contribution to the frequency shift reveals an important covalent character of the valence band 6d metal and 2p metalloid states. The ThCsub(1-x) band structure stoichiometry variation is due to 6dγ metal states appearing at the Fermi level and is in-opposition to a rigid band model. A non-saturated bond mechanism is suggested. For URANIUM CARBONITRIDE: UCsub(1-x)Nsub(x), in the concentration range in which no magnetic order appears at low temperature (x<0.90), the results are in opposition to a localized 5f 2 configuration model, and show that the uranium fundamental state is non-magnetic. Nevertheless two qualitatively different behaviors exist: nitrogen concentration lower than 40%: and nitrogen concentration higher than 40%. A model is proposed to account for those domains: it relies on the 5f-2p hybridization parameter which is maximum on 2p band edge (UC) and almost nul for UN. For URANIUM SESQUICARBIDE: U 2 C 3 : the N.M.R. line observation at 4.2 K indicates a non-magnetic fundamental state although the magnetic susceptibility presents a maximum at 60 K. Spin fluctuations in 5f bands are proposed to describe the electronic properties of this compound. [fr

  5. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    Science.gov (United States)

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Positional isotope exchange studies on enzyme using NMR spectroscopy

    International Nuclear Information System (INIS)

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, 18 O-β,γ-ATP and 18 O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field 31 P NMR, we were able to differentiate between 18 O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with 18 O-β,γ-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the 18 O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN 1 /sub P/) type of mechanism

  7. 23Na+- and 39K+-NMR studies of cation-polyanion interactions in vascular connective tissue

    International Nuclear Information System (INIS)

    Siegel, G.; Walter, A.; Bostanjoglo, M.

    1987-01-01

    The ion binding properties of vascular connective tissue as well as of substances derived therefrom were studied in dependence on cation concentration by NMR and atomic absorption techniques. 16 refs.; 8 figs

  8. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    2012-01-01

    High Resolution NMR: Theory and Chemical Applications discusses the principles and theory of nuclear magnetic resonance and how this concept is used in the chemical sciences. This book is written at an intermediate level, with mathematics used to augment verbal descriptions of the phenomena. This text pays attention to developing and interrelating four approaches - the steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The style of this book is based on the assumption that the reader has an acquaintance with the general principles of quantum mechanics, but no extensive background in quantum theory or proficiency in mathematics is required. This book begins with a description of the basic physics, together with a brief account of the historical development of the field. It looks at the study of NMR in liquids, including high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. This book is intended to assis...

  9. 13C and 17O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    International Nuclear Information System (INIS)

    Clark, D.L.; Newton, T.W.; Palmer, P.D.; Zwick, B.D.

    1995-01-01

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U0 2 (CO 3 ) 3 4- and (UO 2 ) 3 (CO 3 ) 6 6- in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = -log(a H + ) versus p[H] = -log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA

  10. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes.

    Science.gov (United States)

    Jayalakshmi, V; Krishna, N Rama

    2002-03-01

    A couple of recent applications of intermolecular NOE (INOE) experiments as applied to biomolecular systems involve the (i) saturation transfer difference NMR (STD-NMR) method and (ii) the intermolecular cross-saturation NMR (ICS-NMR) experiment. STD-NMR is a promising tool for rapid screening of a large library of compounds to identify bioactive ligands binding to a target protein. Additionally, it is also useful in mapping the binding epitopes presented by a bioactive ligand to its target protein. In this latter application, the STD-NMR technique is essentially similar to the ICS-NMR experiment, which is used to map protein-protein or protein-nucleic acid contact surfaces in complexes. In this work, we present a complete relaxation and conformational exchange matrix (CORCEMA) theory (H. N. B. Moseley et al., J. Magn. Reson. B 108, 243-261 (1995)) applicable for these two closely related experiments. As in our previous work, we show that when exchange is fast on the relaxation rate scale, a simplified CORCEMA theory can be formulated using a generalized average relaxation rate matrix. Its range of validity is established by comparing its predictions with those of the exact CORCEMA theory which is valid for all exchange rates. Using some ideal model systems we have analyzed the factors that influence the ligand proton intensity changes when the resonances from some protons on the receptor protein are saturated. The results show that the intensity changes in the ligand signals in an intermolecular NOE experiment are very much dependent upon: (1) the saturation time, (2) the location of the saturated receptor protons with respect to the ligand protons, (3) the conformation of the ligand-receptor interface, (4) the rotational correlation times for the molecular species, (5) the kinetics of the reversibly forming complex, and (6) the ligand/receptor ratio. As an example of a typical application of the STD-NMR experiment we have also simulated the STD effects for a

  11. Raman and NMR study in MgO-doped LiNbO3 crystal

    International Nuclear Information System (INIS)

    Hu, L.J.; Chang, Y.H.; Chang, C.S.; Yang, S.J.; Hu, M.L.; Tse, W.S.

    1991-01-01

    This paper reports on the MgO-doped LiNbO 3 crystal grown and studied by NMR and Raman techniques. The solubility of MgO in the LiNbO 3 crystal is as much as 30 mole %. It is shown in NMR spectra that the number of Nb 5+ cations at A-site (Li-site) decrease as Mg concentration increased when the Mg content is lower than 5 mole %. The vibration of (NbO 6 ) octahedron and translations involving Li + and Mg 2+ cations motion can be identified by replacing Nb 5+ and Li + cations with Ta 5+ and Mg 2+ cations through Raman spectra. The 115 cm -1 and 151 cm -1 peaks are due to the translational modes of Mg 2+ and Li + cations. The doping mechanisms of MgO are proposed

  12. Optimized bacterial expression and purification of the c-Src catalytic domain for solution NMR studies

    International Nuclear Information System (INIS)

    Piserchio, Andrea; Ghose, Ranajeet; Cowburn, David

    2009-01-01

    Progression of a host of human cancers is associated with elevated levels of expression and catalytic activity of the Src family of tyrosine kinases (SFKs), making them key therapeutic targets. Even with the availability of multiple crystal structures of active and inactive forms of the SFK catalytic domain (CD), a complete understanding of its catalytic regulation is unavailable. Also unavailable are atomic or near-atomic resolution information about their interactions, often weak or transient, with regulating phosphatases and downstream targets. Solution NMR, the biophysical method best suited to tackle this problem, was previously hindered by difficulties in bacterial expression and purification of sufficient quantities of soluble, properly folded protein for economically viable labeling with NMR-active isotopes. Through a choice of optimal constructs, co-expression with chaperones and optimization of the purification protocol, we have achieved the ability to bacterially produce large quantities of the isotopically-labeled CD of c-Src, the prototypical SFK, and of its activating Tyr-phosphorylated form. All constructs produce excellent spectra allowing solution NMR studies of this family in an efficient manner

  13. A novel tridentate Schiff base dioxo-molybdenum(VI) complex: synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, ¹H NMR and ¹³C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran; Stoeckli-Evans, Helen

    2012-09-01

    A new dioxo-molybdenum(VI) complex [MoO(2)(L)(H(2)O)] has been synthesized, using 5-methoxy 2-[(2-hydroxypropylimino)methyl]phenol as tridentate ONO donor Schiff base ligand (H(2)L) and MoO(2)(acac)(2). The yellow crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the UV-visible, FTIR, (1)H NMR and (13)C NMR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TDDFT) method is used to calculate the electronic transitions of the complex. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR shielding tensors computed at the B3LYP/DGDZVP level of theory is in agreement with experimental (1)H NMR spectra. However, the (13)C NMR shielding tensors computed at the B3LYP level, employing a combined basis set of DGDZVP for Mo and 6-31+G(2df,p) for other atoms, are in better agreement with experimental (13)C NMR spectra. The electronic transitions calculated at the B3LYP/DGDZVP level by using TD-DFT method is in accordance with the observed UV-visible spectrum of the compound. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. NMR study of thermal decomposition of lithium tetrahydroaluminate

    International Nuclear Information System (INIS)

    Tarasov, V.P.; Bakum, S.I.; Kuznetsova, S.F.

    1997-01-01

    Pyrolysis of lithium aluminotetrahydrides and deuterides, LiAlH 4 and LiAlD 4 , was studied by 1 H, 7 Li, 27 Al NMR in 20-700 deg C range. 20-30 time constriction of resonance lines of studied nuclei at 170 deg C testifies to melting of the compounds. It is shown that at LiAlD 4 melting point the first stage of pyrolysis is described by two parallel reactions: LiAlD 4 -> LiD + Al + D 2 , LiAlD 4 + LiD -> Li 3 AlD 6 , which proceed with different rates. It was revealed that reactions of lithium hydride (deuteride) with metallic aluminium at temperatures above 400 deg C resulted to formation of intermetallic compounds of LiAl and LiAl 3 composition. LiAl is characterized by higher thermal stability, than LiAl 3 . 20 refs., 6 figs., 2 tabs

  15. Applications of NMR spectroscopy to xenobiotic metabolism

    International Nuclear Information System (INIS)

    Harris, T.M.

    1989-01-01

    Recent years have seen high field NMR spectrometers become commonplace in research laboratories. At the same time, major advances in methodology for structural analysis have occurred, particularly notable among these being the development of two-dimensional spectroscopic techniques. Many applications have been made of NMR spectroscopy in the study of xenobiotic metabolic processes. This deals with two specific applications which have been made in the author's laboratory and involve mechanistic studies of the reactions of the carcinogens ethylene dibromide and aflatoxin with DNA

  16. Deuteron NMR and modelling in solid polymers

    International Nuclear Information System (INIS)

    Hirschinger, J.

    1992-01-01

    Deuteron NMR techniques are described and some recent applications to the study of rotational motions in solid polymers are reviewed. The information content and the domain of applicability of each technique are presented. Ultra-slow motions are studied in real time without any motional model consideration. For very fast motions, computer molecular dynamics simulations are shown to complement the NMR results. Experimental examples deal with the chain motion in the crystalline α-phase of poly(vinylidenefluoride) and nylon 6,6

  17. Brain atrophy during aging. Quantitative studies with X-CT and NMR-CT

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-12-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.).

  18. NMR as a probe metabolic disorders in disease and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yushmanov, Victor E [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Chemical Physics

    1994-12-31

    The effects of malignant tumors, chemical and physical factors (toxic agents, ionizing radiation) as well as of their treatment on tissue metabolism were studied by NMR imaging. The importance of NMR is highlighted since it enables to a better understanding of molecular mechanisms of diseases and therapeutic interventions, in addition to the analysis of metabolic disorders in human beings. Combined with the studies of experimental animal pathologies, may constitute a base for new types of NMR-diagnosis in vivo 10 refs.

  19. Structural comparison of 1{beta}-Methylcarbapenem, Carbapenem and Penem: NMR studies and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T. [Research Center, Sumitomo Pharmaceuticals Co., Ltd., 3-1-98 Kasugadenaka, Konohanaku, Osaka (Japan)

    1998-04-01

    Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using {sup 1}H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained {beta}-lactam rings in good agreement with the crystallographic data. {sup 1}H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Structural comparison of 1β-Methylcarbapenem, Carbapenem and Penem: NMR studies and theoretical calculations

    International Nuclear Information System (INIS)

    Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T.

    1998-01-01

    Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using 1 H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained β-lactam rings in good agreement with the crystallographic data. 1 H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane

    Science.gov (United States)

    Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua

    2005-01-01

    Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922

  2. The NMR Probe of High-T$_{c}$ Materials

    CERN Document Server

    Walstedt, Russell E

    2008-01-01

    The NMR probe has yielded a vast array of data for the high-Tc materials, corresponding to different compounds, ionic sites, and nuclear species, as well as to a wide variety of experimental conditions. Over the twenty years, since the discovery of superconducting cuprates, ongoing analysis and discussion of cuprate NMR data have resulted in a wealth of important insights into the physics of these exotic systems. The aims of this monograph are threefold. First, it reviews NMR methodology as it has been applied to the cuprate studies. This is addressed to NMR practitioners and to physics laypersons alike. Next, it presents a review of cuprate NMR measurements and the wide variety of phenomena which they represent. The third phase is to recount the theoretical model calculations and other proposals which have been put forward to account for these data. Parts two and three are presented in parallel, as there are many aspects to both topics, each with its own interesting history. There is, even twenty years on, a...

  3. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection

    Energy Technology Data Exchange (ETDEWEB)

    Viegas, Aldino; Viennet, Thibault [Heinrich-Heine-University, Institute of Physical Biology (Germany); Yu, Tsyr-Yan [Academia Sinica, Institute of Atomic and Molecular Sciences (China); Schumann, Frank [Bruker BioSpin GmbH (Switzerland); Bermel, Wolfgang [Bruker BioSpin GmbH (Germany); Wagner, Gerhard [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Etzkorn, Manuel, E-mail: manuel.etzkorn@hhu.de [Heinrich-Heine-University, Institute of Physical Biology (Germany)

    2016-01-15

    A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. {sup 1}H) and low-γ (e.g. {sup 13}C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-x{sub L} (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins.

  5. UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection

    International Nuclear Information System (INIS)

    Viegas, Aldino; Viennet, Thibault; Yu, Tsyr-Yan; Schumann, Frank; Bermel, Wolfgang; Wagner, Gerhard; Etzkorn, Manuel

    2016-01-01

    A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. 1 H) and low-γ (e.g. 13 C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-x L (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins

  6. UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection.

    Science.gov (United States)

    Viegas, Aldino; Viennet, Thibault; Yu, Tsyr-Yan; Schumann, Frank; Bermel, Wolfgang; Wagner, Gerhard; Etzkorn, Manuel

    2016-01-01

    A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. (1)H) and low-γ (e.g. (13)C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-xL (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins.

  7. Applications of solid-state Nuclear Magnetic Resonance (NMR) in studies of Portland cements-based materials

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Andersen, Morten Daugaard; Jakobsen, Hans Jørgen

    2007-01-01

    Solid-state NMR spectroscopy represents an important research tool in the characterization of a range of structural properties for cement-based materials. Different approaches of the technique can be used to obtain information on hydration kinetics, mobile and bound water, porosity, and local...... atomic structures. After a short introduction to these NMR techniques, it is exemplified how magic-angle spinning (MAS) NMR can provide quantitative and structural information about specific phases in anhydrous and hydrated Portland cements with main emphasis on the incorporation of Al3+ ions...

  8. Spectroscopy study on structural elucidation of flavonoids from Solanum jabrense Agra and Nee and S. paludosum Moric; Estudo espectroscopico em elucidacao estrutural de flavonoides de Solanum jabrense Agra and Nee e S. paludosum Moric

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Tania Maria Sarmento da [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Dept. de Quimica], e-mail: sarmento@pesquisador.cnpq.br; Carvalho, Mario Geraldo de [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Braz-Filho, Raimundo [Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ (Brazil). Setor de Quimica de Produtos Naturais

    2009-07-01

    The NMR (RMN{sup 1}H, {sup 13}C, COSY, HMQC, HMBC, NOE-DIFF, NOESY) and mass spectra data analysis of sixteen flavonoids, including nine natural, 7-O-methylkanferol (rhamnocitrin), 3,7-di-O-methylkanferol (kumatakenin), 3-O-methylquercetin, 3,7,3',4'-tetra-O-methylquercetin (retusin), 3,7,8,4'-tetra-O-methylgossipetin, 3,7,8,3',4'-penta-O-methylgossipetin, 7-O-methylapigenin (genkwanin), 3,7,8-tri-O-methylherbacetin, 7,4'- di-O-methylquercetin (ombuine), isolated from Solanum paludosum and S. jabrense, and seven prepared methyl and acetyl derivatives, are discussed according the substitution on the rings A, B and C. (author)

  9. Advances in 27Al MAS NMR studies of geopolymers

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Abbrent, Sabina; Kobera, Libor; Urbanová, Martina; Cuba, P.

    2016-01-01

    Roč. 88, č. 2016 (2016), s. 79-147 ISSN 0066-4103 R&D Projects: GA ČR(CZ) GA13-24155S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : geopolymers * aluminosilicates * solid-state NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.600, year: 2016

  10. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs

  11. A fragment separator at LBL for beta-NMR experiment

    International Nuclear Information System (INIS)

    Matsuta, K.; Ozawa, A.; Nojiri, Y.; Minamisono, T.; Fukuda, M.; Kitagawa, A.; Ohtsubo, T.; Momota, S.; Fukuda, S.; Matsuo, Y.; Takechi, H.; Minami, I.; Sugimoto, K.; Tanihata, I.; Omata, K.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    1992-03-01

    The Beam 44 fragment separator was built at the Bevalac of LBL for NMR studies of beta emitting nuclei. 37 K, 39 Ca, and 43 Ti fragments originating from 40 Ca and 46 Ti primary beams were separated by the separator for NMR studies on these nuclei. Nuclear spin polarization was created in 39 Ca and 43 Ti using the tilted foil technique (TFT), and the magnetic moment of 43 Ti was deduced. Fragment polarization was measured for 37 K and 39 Ca emitted to finite deflection angles. The Beam 44 fragment separator in combination with a proper polarization technique, such as TFT or fragment polarization, has been very effective for such NMR studies

  12. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups

    Science.gov (United States)

    Cody, George D.; Alexander, Conel M. O.'D.

    2005-02-01

    Solid-state 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic experiments have been performed on isolated meteoritic Insoluble Organic Matter (IOM) spanning four different carbonaceous chondrite meteorite groups; a CR2 (EET92042), a CI1 (Orgueil), a CM2 (Murchison), and the unique C2 meteorite, Tagish Lake. These solid state NMR experiments reveal considerable variation in bulk organic composition across the different meteorite group's IOM. The fraction of aromatic carbon increases as CR2 meteorite groups. Single pulse (SP) 13C magic angle spinning (MAS) NMR experiments reveal the presence of nanodiamonds with an apparent concentration ranking in the IOM of CR2 IOM of all four meteoritic IOM fractions are highly substituted. Fast spinning SP 1H MAS NMR spectral data combined with other NMR experimental data reveal that the average hydrogen content of sp 3 bonded carbon functional groups is low, requiring a high degree of aliphatic chain branching in each IOM fraction. The variation in chemistry across the meteorite groups is consistent with alteration by low temperature chemical oxidation. It is concluded that such chemistry principally affected the aliphatic moieties whereas the aromatic moieties and nanodiamonds may have been largely unaffected.

  13. NMR spectroscopy using liquid crystal solvents

    CERN Document Server

    Emsley, JW

    2013-01-01

    NMR Spectroscopy using Liquid Crystal Solvents covers the importance of using a liquid crystal solvent in NMR to derive nuclear dipolar spin-spin coupling constants. This book is composed of ten chapters, and begins with a brief description of the features and benefits of liquid crystal in NMR spectroscopic analysis. The succeeding chapters deal with the mode of operation of nuclear spin Hamiltonian for partially oriented molecules and the analysis of NMR spectra of partially oriented molecules, as well as the determination of rigid molecule structure. These topics are followed by discussions

  14. Stripline-based microfluidic devices for high-resolution NMR spectroscopy

    NARCIS (Netherlands)

    Bart, J.

    2009-01-01

    A novel route towards microchip integrated NMR analysis was studied. For NMR analysis of mass-limited samples, research has focussed for decennia on microsolenoidal or planar helical detection coils on microfluidic substrates. Since these approaches suffer from static field distortion resulting in

  15. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanyan [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm)2, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of ~3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites

  16. Study on the interactions PVC/plasticizers by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Maria I.B.; Monteiro, Elisabeth E.C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas; Harris, Robin [Durham Univ. (United Kingdom). Dept. of Chemistry

    1992-12-31

    The nature of the interactions between PVC and plasticizers as di-butyl phthalate and di-2-ethyl-hexyl phthalate can be investigated using proton/carbon-13 NMR techniques. The measurements of T{sub 1} for protons and carbon-13 and T{sub 1} P for protons can provide a good source of information about the complex behaviour for those two systems which were investigated. (author) 14 refs., 5 figs., 1 tab.

  17. NMR Studies of Lithium Iodide Based Solid Electrolytes

    DEFF Research Database (Denmark)

    Dupree, R.; Howells, R. J.; Hooper, A.

    1983-01-01

    In mixture of LiI with γAl2O3 the ionic conductivity is found to increase by up to three orders of magnitude over pure LiI. NMR measurements of7Li relaxation times were performed on both anhydrous LiI and a mixture of LiI with 30m/o γAl2O3. The relaxation is found to be purely dipolar in origin f...

  18. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.

    Science.gov (United States)

    Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K

    1995-04-01

    The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Lectures on pulsed NMR

    International Nuclear Information System (INIS)

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs

  20. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  1. Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Scanu, Sandra

    2013-01-01

    This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational

  2. An in vivo wide bore NMR spectrometer at 2 T for human metabolic studies

    International Nuclear Information System (INIS)

    Tran Dinh, S.; Jehenson, P.; Chalot, J.F.

    1985-01-01

    A wide bore (53 cm diameter) superconducting magnet operating at 2 T was built by the Service des Techniques Instrumentales des Particules Elementaires at C.E.N.-Saclay (Institut de Recherche Fondamentale of the Commissariat a l'Energie Atomique) for NMR spectroscopic studies in humans. The magnet consists of two main components: a magnetic circuit and a cryostat. The magnetic circuit is made of a main coil (four solenoids with 23 km of niobium-titanium superconductor) and its superconducting shim coils (correcting for nine terms: Z, Z 2 , Z 3 , X, Y, XY, XZ, YZ, X 2 -Y 2 ). The current in the main coil is 200 A and the maximum current in each shim coil is 20A. The magnetic field homogeneity is about 4.10 -8 in a 20 mm diameter sphere and its time drift is less than 10 -8 /hour. The whole NMR spectrometer, including the superconducting magnet and a Bruker CXP-90 console associated with an Aspect 2000 calculator was recently installed in the Service Hospitalier Frederic-Joliot, Biology Department of the C.E.A. Preliminary results obtained by 31 P-NMR in humans using surface coils of various diameters (3,5 and 10 cm) are also presented [fr

  3. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Gowda, G.A. Nagana; Raftery, Daniel

    2015-01-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact biospecimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597

  4. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G A; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  6. Estudo espectroscópico em elucidação estrutural de flavonoides de Solanum jabrense Agra & Nee e S. paludosum Moric Spectroscopy study on structural elucidation of flavonoids from Solanum jabrense Agra & Nee e S. paludosum Moric

    Directory of Open Access Journals (Sweden)

    Tania Maria Sarmento da Silva

    2009-01-01

    Full Text Available The NMR (RMN¹H, 13C, COSY, HMQC, HMBC, NOE-DIFF, NOESY and mass spectra data analysis of sixteen flavonoids, including nine natural, 7-O-methylkanferol (ramnocitrin, 3,7-di-O-methylkanferol (kumatakenin, 3-O-methylquercetin, 3,7,3',4'-tetra-O-methylquercetin (retusin, 3,7,8,4'-tetra-O-methylgossipetin, 3,7,8,3',4'-penta-O-methylgossipetin, 7-O-methylapigenin (genkwanin, 3,7,8-tri-O-methylherbacetin, 7,4'- di-O-methylquercetin (ombuine, isolated from Solanum paludosum and S. jabrense, and seven prepared methyl and acetyl derivatives, are discussed according the substitution on the rings A, B and C.

  7. The pH behavior of a 2-aminoethyl dihydrogen phosphate zwitterion studied with NMR-titrations

    Science.gov (United States)

    Myller, A. T.; Karhe, J. J.; Haukka, M.; Pakkanen, T. T.

    2013-02-01

    In this study a bifunctional 2-aminoethyl dihydrogen phosphate (AEPH2) was 1H and 31P NMR characterized in a pH range of 1-12 in order to determine the zwitterion properties in different pH regions in H2O and D2O solutions. NMR was also used to determine the pH range where AEPH2 exists as a zwitterion. The phosphate group has two deprotonation points, around pH 1 and 6, while the amino group deprotonates at pH 11. The zwitterion form of AEPH2 (NH3+sbnd CHsbnd CHsbnd OPOH) exists as the main ion between pH 1 and 6 in water solutions and also in the solid state.

  8. NMR studies of two spliced leader RNAs using isotope labeling

    Energy Technology Data Exchange (ETDEWEB)

    Lapham, J.; Crothers, D.M. [Yale Univ., New Haven, CT (United States)

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  9. Gamma-radiation induced cross-links in ethylene-propylene rubber studied by CP-MAS NMR

    International Nuclear Information System (INIS)

    Sohma, J.; Shiotani, M.; Murakami, S.

    1983-01-01

    A new technique of 13 C-NMR, the CP-MAS method, was applied to study a chemistry of cross-links induced by #betta#-irradiation of ethylene-propylene rubber. The chemical species of cross-linking points were specified with their relative concentrations by the analysis of the CP-MAS spectra obtained before and after the irradiation. It was found that the short branches were also formed by the irradiation. A comparison was made between the cross-links detected by the CP-MAS method and those obtained by the Charlesby-Pinner analysis of the gelation caused by the #betta#-irradiation. The conventional 13 C-NMR of the cross-linked and swollen EPR provided us an information on the sol parts of the sample but little information on the cross-links in the gel parts. (author)

  10. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes† †Electronic supplementary information (ESI) available: LIFDI-MS spectra and additional NMR spectra. See DOI: 10.1039/c4sc03103b

    Science.gov (United States)

    Beele, Björn B.; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J.

    2015-01-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15N labeling and characterized by NMR and LIFDI-MS methods. 15N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal–ligand bonding in Am(C5-BPP)3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP)3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species. PMID:29560242

  11. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  12. 13C CPMAS NMR Studies of Anthocyanidins and their Glucosides

    International Nuclear Information System (INIS)

    Wolniak, M.; Wawer, I.

    2005-01-01

    Anthocyanins are responsible for red, purple or blue colours of flower petals and can be found in red or black fruits and berries. Many foods, especially red grapes and wines, aronia or blueberries contain large amounts of anthocyanins. Their health beneficial effects are related to antioxidant and radical scavenging properties. Structural analysis of anthocyanins by NMR are few, owing to the difficulty in obtaining analysable spectra for unstable, interconverting compounds, available in small amounts. Compounds studied by us were isolated from fruits and berries. 13 C CPMAS NMR spectra were recorded on a Bruker DSX-400 spectrometer for solid chlorides of: cyanidin, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin and pelargonidin 3-O-glucoside. Dipolar dephased and short contact pulse sequences were used as an aid in the assignment of resonances in CPMAS spectra of solids. Inspection of the spectra indicates that anthocyanidins are in the form of flavylium (cationic) and not in form of the chalcone.: the resonance of C2 appears at ca. 160 ppm and C3 at ca. 135 ppm, whereas C ring opening produces C2 = O, for which chemical shift of ca. 180 ppm can be expected. A comparison of experimental (CPMAS) and predicted (GIAO DFT) shielding constants for cyanidin provided information about the orientation of OH groups, twist angle of aromatic ring B and the localization of the chloride anion.(author)

  13. A software framework for analysing solid-state MAS NMR data

    International Nuclear Information System (INIS)

    Stevens, Tim J.; Fogh, Rasmus H.; Boucher, Wayne; Higman, Victoria A.; Eisenmenger, Frank; Bardiaux, Benjamin; Rossum, Barth-Jan van; Oschkinat, Hartmut; Laue, Ernest D.

    2011-01-01

    Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.

  14. A new Schiff base compound N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone): synthesis, experimental and theoretical studies on its crystal structure, FTIR, UV-visible, 1H NMR and 13C NMR spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran

    2011-10-15

    The Schiff base compound, N,N'-(2,2-dimetylpropane)-bis(dihydroxylacetophenone) (NDHA) is synthesized through the condensation of 2-hydroxylacetophenone and 2,2-dimethyl 1,3-amino propane in methanol at ambient temperature. The yellow crystalline precipitate is used for X-ray single-crystal determination and measuring Fourier transform infrared (FTIR), UV-visible, (1)H NMR and (13)C NMR spectra. Electronic structure calculations at the B3LYP, PBEPBE and PW91PW91 levels of theory are performed to optimize the molecular geometry and to calculate the FTIR, (1)H NMR and (13)C NMR spectra of the compound. Time-dependent density functional theory (TDDFT) method is used to calculate the UV-visible spectrum of NDHA. Vibrational frequencies are determined experimentally and compared with those obtained theoretically. Vibrational assignments and analysis of the fundamental modes of the compound are also performed. All theoretical methods can well reproduce the structure of the compound. The (1)H NMR and (13)C NMR chemical shifts calculated by all DFT methods are consistent with the experimental data. However, the NMR shielding tensors computed at the B3LYP/6-31+G(d,p) level of theory are in better agreement with experimental (1)H NMR and (13)C NMR spectra. The electronic absorption spectrum calculated at the B3LYP/6-31+G(d,p) level by using TD-DFT method is in accordance with the observed UV-visible spectrum of NDHA. In addition, some quantum descriptors of the molecule are calculated and conformational analysis is performed and the results were compared with the crystallographic data. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  16. Ring current shifts in {sup 19}F-NMR of membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongsheng, E-mail: liudsh@shanghaitech.edu.cn; Wüthrich, Kurt, E-mail: kwuthrich@shanghaitech.edu.cn [ShanghaiTech University, iHuman Institute (China)

    2016-05-15

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of {sup 19}F-NMR probes include high sensitivity of the {sup 19}F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where {sup 19}F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of {sup 19}F-NMR probes used in GPCRs. Analysis of previously reported {sup 19}F-NMR data on the β{sub 2}-adrenergic receptor and mammalian rhodopsin showed that all {sup 19}F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on {sup 19}F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related {sup 19}F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future {sup 19}F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the {sup 19}F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with {sup 19}F-NMR markers can be substantiated by a more extensive data base resulting from future studies.

  17. Environmental constraints in the study of flexible segments of proteins

    Energy Technology Data Exchange (ETDEWEB)

    D' Ursi, Annamaria; Albrizio, Stefania; Tancredi, Teodorico; Temussi, Piero A

    1998-05-15

    The structural problem posed by ill-defined segments in protein structures is similar to those encountered in the study of most peptide hormones, with terminal tracts resembling linear peptides and loops resembling cyclic peptides. The conformational preferences of short linear peptides in solution can be influenced by the use of solvent mixtures of viscosity higher than that of pure water but comparable to that of cytoplasm. In order to check whether it is possible to use these media in the structural study of proteins, we undertook an exploratory study on BPTI in a mixture of dimethylsulfoxide and water. The complete assignment of BPTI in an 80:20 (by volume) DMSO-d{sub 6}/water cryomixture at two temperatures showed that all resonances parallel those in water, hinting at the persistence of the correct protein architecture, which is also confirmed by NOESY experiments. In addition to the NOEs present in the aqueous solution it was possible to detect numerous new cross peaks, in particular from residues belonging to the less-defined regions. The new cross peaks do not originate from spin diffusion and are consistent with the best NMR structure and with the X-ray structures of BPTI.

  18. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.

    Science.gov (United States)

    Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart

    2003-01-15

    The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.

  19. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew Loyd [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ pattern of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T1, T2, and 15N/1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.

  20. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Xiaoyun Han

    2016-11-01

    Full Text Available In Aspergillus nidulans, the nitrogen metabolite repression regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in Aspergillus flavus has notbeen previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of nitrogen metabolite repression and the nitrogen metabolism network in fungi.