WorldWideScience

Sample records for noe nmr studies

  1. Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints

    International Nuclear Information System (INIS)

    Furuita, Kyoko; Kataoka, Saori; Sugiki, Toshihiko; Hattori, Yoshikazu; Kobayashi, Naohiro; Ikegami, Takahisa; Shiozaki, Kazuhiro; Fujiwara, Toshimichi; Kojima, Chojiro

    2015-01-01

    NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based procedures due to an insufficient number of NOE restraints. By using the 867 PRE-derived distance restraints obtained from the NOE-based structure determination procedure, a high-resolution structure of Sin1 could be successfully determined. The convergence and accuracy of the determined structure were improved by increasing the number of PRE-derived distance restraints. This study demonstrates that PRE-derived distance restraints are useful in the determination of a high-resolution structure of a soluble protein when the number of NOE constraints is insufficient

  2. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data

    International Nuclear Information System (INIS)

    Lee, Woonghee; Petit, Chad M.; Cornilescu, Gabriel; Stark, Jaime L.; Markley, John L.

    2016-01-01

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27–98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  3. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States); Petit, Chad M. [University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics (United States); Cornilescu, Gabriel; Stark, Jaime L.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States)

    2016-06-15

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27–98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  4. Graphical analysis of NMR structural quality and interactive contact map of NOE assignments in ARIA

    Directory of Open Access Journals (Sweden)

    Malliavin Thérèse E

    2008-06-01

    Full Text Available Abstract Background The Ambiguous Restraints for Iterative Assignment (ARIA approach is widely used for NMR structure determination. It is based on simultaneously calculating structures and assigning NOE through an iterative protocol. The final solution consists of a set of conformers and a list of most probable assignments for the input NOE peak list. Results ARIA was extended with a series of graphical tools to facilitate a detailed analysis of the intermediate and final results of the ARIA protocol. These additional features provide (i an interactive contact map, serving as a tool for the analysis of assignments, and (ii graphical representations of structure quality scores and restraint statistics. The interactive contact map between residues can be clicked to obtain information about the restraints and their contributions. Profiles of quality scores are plotted along the protein sequence, and contact maps provide information of the agreement with the data on a residue pair level. Conclusion The graphical tools and outputs described here significantly extend the validation and analysis possibilities of NOE assignments given by ARIA as well as the analysis of the quality of the final structure ensemble. These tools are included in the latest version of ARIA, which is available at http://aria.pasteur.fr. The Web site also contains an installation guide, a user manual and example calculations.

  5. Solvation study of the non-specific lipid transfer protein from wheat by intermolecular NOEs with water and small organic molecules

    International Nuclear Information System (INIS)

    Liepinsh, Edvards; Sodano, Patrick; Tassin, Severine; Marion, Didier; Vovelle, Francoise; Otting, Gottfried

    1999-01-01

    Intermolecular nuclear Overhauser effects (NOEs) were measured between the protons of various small solvent or gas molecules and the non-specific lipid transfer protein (ns-LTP) from wheat. Intermolecular NOEs were observed with the hydrophobic pocket in the interior of wheat ns-LTP, which grew in intensity in the order cyclopropane (saturated solution) < methane (140 bar) < ethane (40 bar) < acetonitrile (5% in water) < cyclohexane (saturated solution) < benzene (saturated solution). No intermolecular NOEs were observed with dioxane (5% in water). The intermolecular NOEs were negative for all of the organic molecules tested. Intermolecular NOEs between wheat ns-LTP and water were weak or could not be distinguished from exchange-relayed NOEs. As illustrated by the NOEs with cyclohexane versus dioxane, the hydrophobic pocket in wheat ns-LTP preferably binds non-polar molecules. Yet, polar molecules like acetonitrile can also be accommodated. The pressure dependence of the NOEs between methane and wheat ns-LTP indicated incomplete occupancy, even at 190 bar methane pressure. In general, NOE intensities increased with the size of the ligand molecule and its vapor pressure. NMR of the vapor phase showed excellent resolution between the signals from the gas phase and those from the liquid phase. The vapor concentration of cyclohexane was fivefold higher than that of the dioxane solution, supporting the binding of cyclohexane versus uptake of dioxane

  6. Intermolecular detergent-membrane protein noes for the characterization of the dynamics of membrane protein-detergent complexes.

    Science.gov (United States)

    Eichmann, Cédric; Orts, Julien; Tzitzilonis, Christos; Vögeli, Beat; Smrt, Sean; Lorieau, Justin; Riek, Roland

    2014-12-11

    The interaction between membrane proteins and lipids or lipid mimetics such as detergents is key for the three-dimensional structure and dynamics of membrane proteins. In NMR-based structural studies of membrane proteins, qualitative analysis of intermolecular nuclear Overhauser enhancements (NOEs) or paramagnetic resonance enhancement are used in general to identify the transmembrane segments of a membrane protein. Here, we employed a quantitative characterization of intermolecular NOEs between (1)H of the detergent and (1)H(N) of (2)H-perdeuterated, (15)N-labeled α-helical membrane protein-detergent complexes following the exact NOE (eNOE) approach. Structural considerations suggest that these intermolecular NOEs should show a helical-wheel-type behavior along a transmembrane helix or a membrane-attached helix within a membrane protein as experimentally demonstrated for the complete influenza hemagglutinin fusion domain HAfp23. The partial absence of such a NOE pattern along the amino acid sequence as shown for a truncated variant of HAfp23 and for the Escherichia coli inner membrane protein YidH indicates the presence of large tertiary structure fluctuations such as an opening between helices or the presence of large rotational dynamics of the helices. Detergent-protein NOEs thus appear to be a straightforward probe for a qualitative characterization of structural and dynamical properties of membrane proteins embedded in detergent micelles.

  7. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  8. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  9. Identification of individual protein-ligand NOEs in the limit of intermediate exchange

    International Nuclear Information System (INIS)

    Reibarkh, Mikhail; Malia, Thomas J.; Hopkins, Brian T.; Wagner, Gerhard

    2006-01-01

    Interactions of proteins with small molecules or other macromolecules play key roles in many biological processes and in drug action, and NMR is an excellent tool for their structural characterization. Frequently, however, line broadening due to intermediate exchange completely eliminates the signals needed for measuring specific intermolecular NOEs. This limits the use of NMR for detailed structural studies in such kinetic situations. Here we show that an optimally chosen excess of ligand over protein can reduce the extent of line broadening for both the ligand and the protein. This makes observation of ligand resonances possible but reduces the size of the measurable NOEs due to the residual line broadening and the non-stoichiometric concentrations. Because the solubility of small molecule drug leads are often limited to high micromolar concentrations, protein concentrations are restricted to even lower values in the low micromolar range. At these non-stoichiometric concentrations and in the presence of significant residual line broadening, conventional NOESY experiments very often are not sensitive enough to observe intermolecular NOEs since the signals inverted by the NOESY preparation pulse sequence relax prior to significant NOE build up. Thus, we employ methods related to driven NOE spectroscopy to investigate protein-ligand interactions in the intermediate exchange regime. In this approach, individual protein resonances are selectively irradiated for up to five seconds to build up measurable NOEs at the ligand resonances. To enable saturation of individual protein resonances we prepare deuterated protein samples selectively protonated at a few sites so that the 1D 1 H spectrum of the protein is resolved well enough to permit irradiation of individual protein signals, which do not overlap with the ligand spectrum. This approach is suitable for measuring a sufficiently large number of protein-ligand NOEs that allow calculation of initial complex structures

  10. Practical aspects of the 2D 15N-{1H}-NOE experiment

    International Nuclear Information System (INIS)

    Renner, Christian; Schleicher, Michael; Moroder, Luis; Holak, Tad A.

    2002-01-01

    The heteronuclear 15 N-NOE experiment was extensively tested with respect to statistical and systematic experimental error. The dependence of signal intensity in the NOE experiment and in the reference experiment on the saturation and relaxation time was experimentally investigated. The statistics of the experimental values were accessed by numerous repetitions of identical set-ups. As a model system a protein of typical size for NMR studies was chosen, i.e., a 120 amino acid residues containing fragment of the F-actin binding gelation factor (ABP-120). The fragment exhibits fast dynamics that are accessible with the 15 N-NOE experiment with various amplitudes. The results of this study show that commonly used parameters are only adequate for accurate measurement of motions with moderate amplitude. Highly flexible parts require longer delay times and thus more experimental time than commonly used. On the other hand, a qualitative or semi-quantitative assessment of a protein's mobility on fast times scales can be obtained from rapidly recorded experiments with unusual short delay times. The findings of this study are of equal importance for highly accurate measurement of the 15 N-NOE as well as for quick identification of mobile or even unstructured residues/parts of a protein

  11. Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers

    International Nuclear Information System (INIS)

    Chou, S.H.; Flynn, P.; Reid, B.

    1989-01-01

    Ten-micromole solid-phase RNA synthesis has been successfully performed on an automated nucleic acid synthesizer with coupling efficiencies up to 99%, using the tert-butyldimethylsilyl group to protect the 2'-hydroxyl. The tert-butyldimethylsilyl group was easily removed by tetrabutylammonium fluoride under conditions in which virtually no 2'- to 3'-isomerization was found to occur. By use of this approach, the self-complementary RNA dodecamers r(CGCGAAUUCGCG) and r(CGCGUAUACGCG) were synthesized on an automated nucleic acid synthesizer, purified by TLC, and studied by high-resolution NMR. Imino protons were assigned from one-dimensional nuclear Overhauser effects. The nonexchangeable base, H1', and H2' protons were assigned by the sequential NOESY connectivity method. The NOE data from these two oligomers were analyzed qualitatively and compared to the ideal A- and B-type helix models of Arnott et al. (1972a,b). The internucleotide H6/H8 NOEs to the preceding H1' in r(CGCGUAUACGCG) were found to be sequence-dependent and probably reflect the roll angles between adjacent bases. The internucleotide H6/H8 to H2' NOEs of these oligomers correspond very well to an A-type conformation, but the interstrand adenine H2 NOEs to the following H1' were much stronger than those predicted from the fiber model. These strong interstrand NOEs can be rationalized by base pair slide to favor more interstrand base overlap

  12. Structural studies of SpoIIAA using NMR

    International Nuclear Information System (INIS)

    Comfort, D.M.

    1998-01-01

    The protein SpoIIAA participates, via phosphorylation and dephosphorylation, in the four-component system that regulates the sporulation sigma factor e. Differential gene expression depends on specialised transcription factors called sigma factors, which direct the RNA polymerase to transcribe specific genes in one or other of the two chambers at various stages of sporulation. The first sporulation-specific sigma factor to be activated is 4 transcription that depends on σ F is essential for the remaining sigma factors to become active in turn. Early in sporulation SpoIIAA is in the phosphorylated state (SpoIIAA-P), as a result of the activity of the ATP-dependent protein kinase, SpoIIAB. About 80 minutes after the initiation of sporulation a specific phosphatase, SpoIIE, begins to hydrolyse SpoIIAA-P, and the resulting SpoIIAA again becomes a substrate for SpoIIAB. SpoIIAB is also an anti-sigma factor which in its free form inhibits a F by binding to it. Competition by SpoIIAA (the anti-anti-sigma factor) for binding to SpoIIAB releases e activity. The three-dimensional structure of SpoIIAA has been determined using high resolution NMR. SpoIIAA has a novel fold, composed of a-helices and P-strand elements. The structural differences between SpoIIAA and its inactive form, SpoIIAA-P, were also investigated by NMR. Tentative evidence points to the observation that phosphorylation of SpoIIAA results in a minor conformational change near the site of phosphorylation, which interferes with the hydrophobic interaction between SpoIIAA and SpoIIAB. Further NMR studies helped to predict the location of SpoIIAA-, GTP-, and ATP-binding sites on the SpoIIAA structure. In addition, the automated iterative NOE assignment algorithm, ARIA, was used to obtain additional NOE-based distance constraints and to calculate a refined structure. (author)

  13. An NMR study of the covalent and noncovalent interactions of CC-1065 and DNA

    International Nuclear Information System (INIS)

    Scahill, T.A.; Jensen, R.M.; Swenson, D.H.; Hatzenbuhler, N.T.; Petzold, G.; Wierenga, W.; Brahme, N.D.

    1990-01-01

    The binding of the antitumor drug CC-1065 has been studied with nuclear magnetic resonance (NMR) spectroscopy. This study involves two parts, the elucidation of the covalent binding site of the drug to DNA and a detailed investigation of the noncovalent interactions of CC-1065 with a DNA fragment through analysis of 2D NOE (NOESY) experiments. A CC-1065-DNA adduct was prepared, and an adenine adduct was released upon heating. NMR ( 1 H and 13 C) analysis of the adduct shows that the drug binds to N3 of adenine by reaction of its cyclopropyl group. The reaction pathway and product formed were determined by analysis of the 13 C DEPT spectra. An octamer duplex, d(CGATTAGC·GCTAATCG), was synthesized and used in the interaction study of CC-1065 and the oligomer. The duplex and the drug-octamer complex were both analyzed by 2D spectroscopy (COSY, NOESY). The relative intensity of the NOEs observed between the drug (CC-1065) and the octamer duplex shows conclusively that the drug is located in the minor groove, covalently attached to N3 of adenine 6 and positioned from the 3' → 5' end in relation to strand A [d(CGATTA 6 GC)]. A mechanism for drug binding and stabilization can be inferred from the NOE data and model-building studies

  14. An Asymmetric Deuterium Labeling Strategy to Identify Interprotomer and Intraprotomer NOEs in Oligomeric Proteins

    International Nuclear Information System (INIS)

    Jasanoff, Alan

    1998-01-01

    A major difficulty in determining the structure of an oligomeric protein by NMR is the problem of distinguishing inter- from intraprotomer NOEs. In order to address this issue in studies of the 27 kD compact trimeric domain of the MHC class II-associated invariant chain, we compared the 13C NOESY-HSQC spectrum of a uniformly 13C-labeled trimer with the spectrum of the same trimer labeled with 13C in only one protomer, and with deuterium in the other two protomers. The spectrum of the unmixed trimer included both inter- and intraprotomer NOEs while the spectrum of the mixed trimer included only intraprotomer peaks. NOEs clearly absent from the spectrum of the mixed trimer could be confidently assigned to interprotomer interactions. Asymmetrically labeled trimers were isolated by refolding a 13C-labeled shorter form of the protein with a 2H-labeled longer form, chromatographically purifying trimers with only one short chain, and then processing with trypsin to yield only protomers with the desired N- and C-termini. In contrast to earlier studies, in which statistical mixtures of differently labeled protomers were analyzed, our procedure generated only a well-defined 1:2 oligomer, and no other mixed oligomers were present. This increased the maximum possible concentration of NMR-active protomers and thus the sensitivity of the experiments. Related methods should be applicable to many oligomeric proteins, particularly those with slow protomer exchange rates

  15. Structural studies of SpoIIAA using NMR

    Energy Technology Data Exchange (ETDEWEB)

    Comfort, D.M

    1998-07-01

    The protein SpoIIAA participates, via phosphorylation and dephosphorylation, in the four-component system that regulates the sporulation sigma factor e. Differential gene expression depends on specialised transcription factors called sigma factors, which direct the RNA polymerase to transcribe specific genes in one or other of the two chambers at various stages of sporulation. The first sporulation-specific sigma factor to be activated is 4 transcription that depends on {sigma}{sup F} is essential for the remaining sigma factors to become active in turn. Early in sporulation SpoIIAA is in the phosphorylated state (SpoIIAA-P), as a result of the activity of the ATP-dependent protein kinase, SpoIIAB. About 80 minutes after the initiation of sporulation a specific phosphatase, SpoIIE, begins to hydrolyse SpoIIAA-P, and the resulting SpoIIAA again becomes a substrate for SpoIIAB. SpoIIAB is also an anti-sigma factor which in its free form inhibits a F by binding to it. Competition by SpoIIAA (the anti-anti-sigma factor) for binding to SpoIIAB releases e activity. The three-dimensional structure of SpoIIAA has been determined using high resolution NMR. SpoIIAA has a novel fold, composed of a-helices and P-strand elements. The structural differences between SpoIIAA and its inactive form, SpoIIAA-P, were also investigated by NMR. Tentative evidence points to the observation that phosphorylation of SpoIIAA results in a minor conformational change near the site of phosphorylation, which interferes with the hydrophobic interaction between SpoIIAA and SpoIIAB. Further NMR studies helped to predict the location of SpoIIAA-, GTP-, and ATP-binding sites on the SpoIIAA structure. In addition, the automated iterative NOE assignment algorithm, ARIA, was used to obtain additional NOE-based distance constraints and to calculate a refined structure. (author)

  16. Proton NMR Studies of a Large Protein. pH, Substrate Titrations, and NOESY Experiments with Perdeuterated Yeast Phosphoglycerate Kinase Containing [ 1H]Histidine Residues

    Science.gov (United States)

    Pappu, K. M.; Serpersu, E. H.

    Fully deuterated yeast phosphoglycerate kinase ([ 2H]PGK) was prepared biosynthetically with only histidine side chains of normal ( 1H) isotopic composition. The 1H NMR spectrum of this enzyme([ 1H]His[ 2H]PGK) showed that the histidine side chains are clearly visible as sharp signals. Thus detailed structural studies by 1H NMR became feasible with isotope-hybrid phosphoglycerate kinase which is otherwise too large ( Mr ˜ 46,000) for conventional 1H NMR studies. Proton signals of bound substrates were visible in the 1H NMR spectrum even with a substrate-to-enzyme ratio of less than 1/2 (mol/mol). The 2D NOESY spectrum of enzyme-MgdATP-glycerol 3-phosphate complex showed that, although protein concentration was very high (1.5 m M), no intraprotein cross peaks were observed other than those of intraresidue histidine NOE cross peaks. In addition, intrasubstrate NOEs and intermolecular NOEs between histidine and substrate protons were visible at a 1.5/1 substrate/enzyme (mol/mol) ratio. Paramagnetic effects of a substrate analog, Cr(III)ATP, on some of the histidine side chains indicated that the formation of the ternary enzyme-substrate complex causes large conformational changes in the enzyme.

  17. Structural Studies of Bcl-xL/ligand Complexes using {sup 19}F NMR

    Energy Technology Data Exchange (ETDEWEB)

    Yu Liping; Hajduk, Philip J.; Mack, Jamey; Olejniczak, Edward T. [GPRD, Abbott Laboratories, Pharmaceutical Discovery Division (United States)], E-mail: Edward.olejniczak@abbott.com

    2006-04-15

    Fluorine atoms are often incorporated into drug molecules as part of the lead optimization process in order to improve affinity or modify undesirable metabolic and pharmacokinetic profiles. From an NMR perspective, the abundance of fluorinated drug leads provides an exploitable niche for structural studies using {sup 19}F NMR in the drug discovery process. As {sup 19}F has no interfering background signal from biological sources, {sup 19}F NMR studies of fluorinated drugs bound to their protein receptors can yield easily interpretable and unambiguous structural constraints. {sup 19}F can also be selectively incorporated into proteins to obtain additional constraints for structural studies. Despite these advantages, {sup 19}F NMR has rarely been exploited for structural studies due to its broad lines in macromolecules and their ligand complexes, leading to weak signals in {sup 1}H/{sup 19}F heteronuclear NOE experiments. Here we demonstrate several different experimental strategies that use {sup 19}F NMR to obtain ligand-protein structural constraints for ligands bound to the anti-apoptotic protein Bcl-xL, a drug target for anti-cancer therapy. These examples indicate the applicability of these methods to typical structural problems encountered in the drug development process.

  18. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  19. NMR studies of isotopically labeled RNA

    Energy Technology Data Exchange (ETDEWEB)

    Pardi, A. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  20. NMR Studies of Polymer Nanocomposites

    National Research Council Canada - National Science Library

    Greenbaum, Steve

    2001-01-01

    .... The primary tool is pulsed field gradient NMR. A static field gradient method was developed which makes possible variable pressure diffusion measurement, and the application to the important fuel cell membrane NAFION constitute the first results...

  1. NMR study of 1,4-dihydropyridine derivatives endowed with long alkyl and functionalized chains

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Margarita; Salfran, Esperanza; Rodriguez, Hortensia; Coro, Julieta, E-mail: msuarez@fq.uh.c [Universidad de La Habana (Cuba). Facultad de Quimica. Lab. de Sintesis Organica; Molero, Dolores; Saez, Elena [Universidad Complutense, Madrid (Spain). CAI-RMN; Martinez-Alvarez, Roberto; Martin, Nazario [Universidad Complutense, Madrid (Spain). Facultad de Quimica. Dept. de Quimica Organica I

    2011-07-01

    The {sup 1}H , {sup 13}C and {sup 15}N NMR spectroscopic data for 1,4-dihydropyridine endowed with long alkyl and functionalized chain on C-3 and C-5, have been fully assigned by combination of one- and two dimensional experiments (DEPT, HMBC, HMQC, COSY, nOe). (author)

  2. NMR studies of the structure of glasses

    International Nuclear Information System (INIS)

    Bray, P.J.; Gravina, S.J.; Stallworth, P.E.; Szu, S.P.; Jianhui Zhong

    1988-01-01

    Earlier continuous wave (CW) NMR studies of chemical bonding and structure in glasses are summarized. Examples are given of this use of the quadrupolar interaction and chemical shift to obtain structural information. New NMR data and analyses are presented for alkali borate and gallate glasses. Extensions to other elements (e.g. molybdenum, lanthanum) are suggested. 44 refs. (author)

  3. 2D NMR studies of biomolecules

    International Nuclear Information System (INIS)

    Lamerichs, R.M.J.N.

    1989-01-01

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  4. NMR study of hydride systems

    International Nuclear Information System (INIS)

    Peretz, M.

    1980-02-01

    The hydrides of thorium (ThH 2 , Th 4 H 15 and Th 4 D 15 ) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x)) 2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th 4 H 15 than in ThH 2 ; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th 4 H 15 ; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  5. Isotope-edited proton NMR study on the structure of a pepsin/inhibitor complex

    International Nuclear Information System (INIS)

    Fesik, S.W.; Luly, J.R.; Erickson, J.W.; Abad-Zapatero, C.

    1988-01-01

    A general approach is illustrated for providing detailed structural information on large enzyme/inhibitor complexes using NMR spectroscopy. The method involves the use of isotopically labeled ligands to simplify two-dimensional NOE spectra of large molecular complexes by isotope-editing techniques. With this approach, the backbone and side-chain conformations (at the P 2 and P 3 sites) of a tightly bound inhibitor of porcine pepsin have bene determined. In addition, structural information on the active site of pepsin has been obtained. Due to the sequence homology between porcine pepsin and human renin, this structural information may prove useful for modeling renin/inhibitor complexes with the ultimate goal of designing more effective renin inhibitors. Moreover, this general approach can be applied to study other biological systems of interest such as other enzyme/inhibitor complexes, ligands bound to soluble receptors, and enzyme/substrate interactions

  6. NMR and optical studies of piezoelectric polymers

    International Nuclear Information System (INIS)

    Schmidt, V.H.; Tuthill, G.F.

    1993-01-01

    Progress is reported in several areas dealing with piezoelectric (electroactive) polymers (mostly vinylidene fluoride, trifluoroethylene, copolymers, PVF 2 ) and liquid crystals. Optical studies, neutron scattering, NMR, thermal, theory and modeling were done

  7. PVT Degradation Studies: NMR Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-06

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. Nuclear magnetic resonance spectroscopy has been used to elucidate the state of water inside the PVT. The deuterium NMR results show that water absorbed by PVT under warm, humid conditions enters several distinct environments, and when the PVT is transferred from incubation to ambient temperature and humidity the water is lost on a time scale of a few hours from these samples. Most of the deuterium NMR peaks can be assigned to bulk liquid water, but almost 35% of the detected signal intensity is contained in a resonance that resembles spectra of water contained in nanometer-scale pores in mesoporous carbon.

  8. KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies

    International Nuclear Information System (INIS)

    Kobayashi, Naohiro; Iwahara, Junji; Koshiba, Seizo; Tomizawa, Tadashi; Tochio, Naoya; Guentert, Peter; Kigawa, Takanori; Yokoyama, Shigeyuki

    2007-01-01

    The recent expansion of structural genomics has increased the demands for quick and accurate protein structure determination by NMR spectroscopy. The conventional strategy without an automated protocol can no longer satisfy the needs of high-throughput application to a large number of proteins, with each data set including many NMR spectra, chemical shifts, NOE assignments, and calculated structures. We have developed the new software KUJIRA, a package of integrated modules for the systematic and interactive analysis of NMR data, which is designed to reduce the tediousness of organizing and manipulating a large number of NMR data sets. In combination with CYANA, the program for automated NOE assignment and structure determination, we have established a robust and highly optimized strategy for comprehensive protein structure analysis. An application of KUJIRA in accordance with our new strategy was carried out by a non-expert in NMR structure analysis, demonstrating that the accurate assignment of the chemical shifts and a high-quality structure of a small protein can be completed in a few weeks. The high completeness of the chemical shift assignment and the NOE assignment achieved by the systematic analysis using KUJIRA and CYANA led, in practice, to increased reliability of the determined structure

  9. NMR studies of cerebral metabolism in vivo

    International Nuclear Information System (INIS)

    Prichard, J.W.

    1986-01-01

    The nature and extent of the potential synergism between PET and NMR methods is not yet well appreciated in the biomedical community. The long-range interest of medical neurobiology will be well served by efforts of PET and NMR scientists to follow each others' work so that opportunities for productive interchange can be efficiently exploited. Appreciation of the synergism by the rest of the biomedical community will follow naturally. PET is said by the people doing it to be still in its infancy, for they are more concerned with advancing their discipline than with admiring its already impressive achievements. On the scale of the same developmental metaphor, many NMR methods for studying the living human brain are still in utero. The best way to provide the reader a sense of the current status and future course of NMR research in medical neurobiology is by discussion of published in vivo studies. Such a discussion, adapted from another article is what follows

  10. Complete {sup 1}H and {sup 13}C NMR structural assignments for a group of four goyazensolide-type furanoheliangolides

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Ana Carolina Ferreira; Silva, Aline Nazare; Matos, Priscilla Mendonca; Silva, Eder Henrique da; Heleno, Vladimir Constantino Gomes [Universidade de Franca, Franca, SP (Brazil). Nucleo de Pesquisas em Ciencias Exatas e Tecnologicas; Lopes, Norberto Peporine; Lopes, Joao Luis Callegari [Universidade de Sao Paulo (FCFRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Ciencias Farmaceuticas de Ribeirao Preto. Dept. de Quimica e Fisica; Sass, Daiane Cristina, E-mail: vheleno_05@yahoo.com.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filosofia, Ciencias e Letras de Ribeirao Preto. Dept. de Quimica

    2012-07-01

    Four goyazensolide-type sesquiterpene lactones - lychnofolide, centratherin, goyazensolide and goyazensolide acetate - were thoroughly studied by NMR experimental techniques. {sup 1}H NMR, {sup 13}C NMR {l_brace}{sup 1}H{r_brace}, COSY, HMQC, HMBC, J-res. and NOE experiments were performed to provide the needed structural information. Complete and unequivocal assignment, including the determination of all multiplicities, was obtained for each structure and the data collections are presented in tables (author)

  11. T.C.G triplet in an antiparallel purine.purine.pyrimidine DNA triplex. Conformational studies by NMR.

    Science.gov (United States)

    Dittrich, K; Gu, J; Tinder, R; Hogan, M; Gao, X

    1994-04-12

    The antiparallel purine.purine.pyrimidine DNA triplex, RRY6, which contains a T.C.G inverted triplet in the center of the sequence, was examined by proton and phosphorous two-dimensional NMR spectroscopy. The local conformation of the T.C.G triplet (T4.C11.G18) and the effect of this triplet on the global helical structure were analyzed in detail. The formation of the T.C.G triplet is confirmed by a set of cross-strand NOEs, including unusual cross-strand NOEs between the third strand and the pyrimidine strand as opposed to the purine strand of the duplex. NMR data suggest that the T.C.G triplet may be present in an equilibrium between a non-hydrogen-bonded form and a T(O4)-C(NH2) hydrogen-bonded form and that there is a distortion of the in-plane alignment of the three bases. The flanking G.G.C base triplets are well-defined on the 5'-side of T4, but somewhat interrupted on the 3'-side of T4. The effect of the third strand binding on the Watson-Crick duplex was probed by an NMR study of the free duplex RY6. NMR parameters are affected mostly around the T.C.G inversion site. The perturbations extend to at least two adjacent base triplets on either side. The binding of the third purine strand and the accommodation of a central T.C.G inversion in RRY6 does not require a readjustment in sugar pucker, which remains in the range of C2'-endo. 31P resonances of RRY6 distribute over a range of 2.2 ppm. The H-P coupling patterns of the third strand differ from those of the duplex. General spectral patterns defined by the marker protons of the RRY and YRY triplexes are compared.

  12. nmr spectroscopic study and dft calculations of giao nmr shieldings

    African Journals Online (AJOL)

    Preferred Customer

    3Department of Physics, Arts and Science Faculty, Dumlupinar University, Kütahya, ... 1H, 13C NMR chemical shifts and 1JCH coupling constants of .... then estimated using the corresponding TMS shieldings calculated in advance at the same.

  13. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  14. Structural investigations of substituted indolizine derivatives by NMR studies

    International Nuclear Information System (INIS)

    Furdui, Bianca; Dinica, Rodica; Demeunynck, Martine; Druta, Ioan

    2008-01-01

    Owing to the increasing importance of indolizine heterocycles in the field of biology and pharmacology we have synthesized and investigated the obtained heterocycles by NMR techniques. In order to investigate the substituent effects on the spectroscopic properties, a series of indolizine derivatives were studied by 1 H-NMR, 13 C-NMR and 2D NMR (GCOSY, GHMBC and GHMQC spectra). (authors)

  15. Conformational analysis of a Chlamydia-specific disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl in aqueous solution and bound to a monoclonal antibody: Observation of intermolecular transfer NOEs

    Energy Technology Data Exchange (ETDEWEB)

    Sokolowski, Tobias; Haselhorst, Thomas; Scheffler, Karoline [Medizinische Universitaet, Institut fuer Chemie (Germany); Weisemann, Ruediger [Bruker Analytik GmbH, Silberstreifen (Germany); Kosma, Paul [Institut fuer Chemie der Universitaet fuer Bodenkultur Wien (Austria); Brade, Helmut; Brade, Lore [Forschungszentrum Borstel, Zentrum fuer Medizin und Biowissenschaften Parkallee 22 (Germany); Peters, Thomas [Medizinische Universitaet, Institut fuer Chemie (Germany)

    1998-07-15

    The disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo (Kdo: 3-deoxy-d-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all {sup 1}H NMR signals of {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to {alpha}-Kdo-(2{sup {yields}}8)-{alpha}-Kdo-(2{sup {yields}}O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex.

  16. Conformational analysis of a Chlamydia-specific disaccharide α-Kdo-(2→8)-α-Kdo-(2→O)-allyl in aqueous solution and bound to a monoclonal antibody: Observation of intermolecular transfer NOEs

    International Nuclear Information System (INIS)

    Sokolowski, Tobias; Haselhorst, Thomas; Scheffler, Karoline; Weisemann, Ruediger; Kosma, Paul; Brade, Helmut; Brade, Lore; Peters, Thomas

    1998-01-01

    The disaccharide α-Kdo-(2 → 8)-α-Kdo (Kdo: 3-deoxy-d-manno-oct-2-ulosonic acid) represents a genus-specific epitope of the lipopolysaccharide of the obligate intracellular human pathogen Chlamydia. The conformation of the synthetically derived disaccharide α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl was studied in aqueous solution, and complexed to a monoclonal antibody S25-2. Various NMR experiments based on the detection of NOEs (or transfer NOEs) and ROEs (or transfer ROEs) were performed. A major problem was the extensive overlap of almost all 1 H NMR signals of α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl. To overcome this difficulty, HMQC-NOESY and HMQC-trNOESY experiments were employed. Spin diffusion effects were identified using trROESY experiments, QUIET-trNOESY experiments and MINSY experiments. It was found that protein protons contribute to the observed spin diffusion effects. At 800 MHz, intermolecular trNOEs were observed between ligand protons and aromatic protons in the antibody binding site. From NMR experiments and Metropolis Monte Carlo simulations, it was concluded that α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl in aqueous solution exists as a complex conformational mixture. Upon binding to the monoclonal antibody S25-2, only a limited range of conformations is available to α-Kdo-(2 → 8)-α-Kdo-(2 → O)-allyl. These possible bound conformations were derived from a distance geometry analysis using transfer NOEs as experimental constraints. It is clear that a conformation is selected which lies within a part of the conformational space that is highly populated in solution. This conformational space also includes the conformation found in the crystal structure. Our results provide a basis for modeling studies of the antibody-disaccharide complex

  17. NMR studies of the solution conformation and dynamics of the tyrocidine peptide antibiotics

    International Nuclear Information System (INIS)

    Zhou, N.

    1985-01-01

    The tyrocidine B and tyrocidine C 1 H NMR spectra in DMSO-d 6 were assigned by using 2D 1 H- 1 H correlation spectroscopy and 1D double resonance experiments. Based on the proton chemical shifts, 3 J/sub NH-Nα/ coupling constants, the chemical shift temperature dependence, and 1D and 2D 1 H- 1 H NOE values, a backbone conformation consisting of an anti-parallel β-pleated sheet, a type I β-turn and a type II' β-turn was suggested for both tyrocidines B and C. Seven out of ten side chains were determined to exist predominantly in one classical Chi 1 rotamer; while the residues Val 1 and Leu 3 had two Chi 1 rotamers which were significantly populated. Chi 2 angles were determined for residues Phe 4 , Trp 6 , DPhe 7 (D Trp 7 ) and Asn 8 . The natural abundance 13 C spectra of tyrocidine B and tyrocidine C were assigned by using 1 H- 13 C correlation spectroscopy. A study of the effect of soluble paramagnetic nitroxide compounds on tyrocidine A proton T 1 values were performed which confirmed the proposed tyrocidine A conformation. It also proved that these nitroxide compounds are very useful in studying proton solvent exposure, and therefore in delineating hydrogen bonding. A proton NMR study of the opioid peptide dynorphin-(1-13) in aqueous solution was reported which was consistent with a non-ordered molecule in the solution

  18. Structural Studies of Biological Solids Using NMR

    Science.gov (United States)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  19. NMR techniques in the study of cardiovascular structure and functions

    International Nuclear Information System (INIS)

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy? NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance

  20. 13C-NMR assignment, structure, and dynamics of deoxyoligonucleotides

    International Nuclear Information System (INIS)

    Zanatta, N.; Borer, P.N.; Levy, G.C.

    1986-01-01

    The unique spectral properties of 13 C-NMR for studying nucleic acids and some of the important features of 13 C-NMR in oligonucleotide studies are demostrated. The main difficulty in studying oligonucleotides by 13 C-NMR and recent improvements in NMR instrumentation and advances in oligonucleotide synthesis are presented. The high resolution 13 C-NMR spectra, T 1 relaxation times and NOEs were measured for duplex of the self-complementary oligo-DNAs: d(CG) 3 and d(GGTATACC) are studied. The target of this study is to developed a systematic 13 C-NMR spectral assignment and to investigate the structure and dynamics of these two sequences by this techniques. (M.J.C.) [pt

  1. DNA oligonucleotide conformations: high resolution NMR studies

    International Nuclear Information System (INIS)

    Mellema, J.-R.

    1984-01-01

    The present work describes a DNA double-helix model, which is well comparable with the models derived from fibre-diffraction studies. The model has a mononucleotide repeat with torsion angles in accordance with average geometries as derived from 1 H NMR studies. Special attention was paid to reduce the number of short H-H nonbonding contacts, which are abundantly present in the 'classical' fibre-diffraction models. Chapter 3 describes the first complete assignment of a 1 H NMR spectrum of a DNA tetramer, d(TAAT). Preliminary conformational data derived from the spectral parameters recorded at 27 0 C are given. A more detailed analysis employing temperature-dependence studies is given in Chapter 4. (Auth.)

  2. Rhodopsin-lipid interactions studied by NMR.

    Science.gov (United States)

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints

    International Nuclear Information System (INIS)

    Giesen, Alexander W.; Homans, Steve W.; Brown, Jonathan Miles

    2003-01-01

    We report the determination of the global fold of human ubiquitin using protein backbone NMR residual dipolar coupling and long-range nuclear Overhauser effect (NOE) data as conformational restraints. Specifically, by use of a maximum of three backbone residual dipolar couplings per residue (N i -H N i , N i -C' i-1 , H N i - C' i-1 ) in two tensor frames and only backbone H N -H N NOEs, a global fold of ubiquitin can be derived with a backbone root-mean-square deviation of 1.4 A with respect to the crystal structure. This degree of accuracy is more than adequate for use in databases of structural motifs, and suggests a general approach for the determination of protein global folds using conformational restraints derived only from backbone atoms

  4. Polymeric proanthocyanidins 13C NMR studies of procyanidins

    Science.gov (United States)

    Lawrence J. Porter; Roger H. Newman; Lai Yeap Foo; Herbert Wong; Richard W. Hemingway

    1982-01-01

    Proanthocyanidin polymers have been shown to consist entirely of flavan-3-ol units by a combination of techniques including 13C n.m.r. spectroscopy. The 13C n.m.r. spectra of the polymers and related molecules are now considered in more detail. Prior to this study UC n.m.r. data has been published of procyanidins and...

  5. Compiled data set of exact NOE distance limits, residual dipolar couplings and scalar couplings for the protein GB3

    Directory of Open Access Journals (Sweden)

    Beat Vögeli

    2015-12-01

    Full Text Available We compiled an NMR data set consisting of exact nuclear Overhauser enhancement (eNOE distance limits, residual dipolar couplings (RDCs and scalar (J couplings for GB3, which forms one of the largest and most diverse data set for structural characterization of a protein to date. All data have small experimental errors, which are carefully estimated. We use the data in the research article Vogeli et al., 2015, Complementarity and congruence between exact NOEs and traditional NMR probes for spatial decoding of protein dynamics, J. Struct. Biol., 191, 3, 306–317, doi:10.1016/j.jsb.2015.07.008 [1] for cross-validation in multiple-state structural ensemble calculation. We advocate this set to be an ideal test case for molecular dynamics simulations and structure calculations.

  6. Isotope labeling for NMR studies of macromolecular structure and interactions

    International Nuclear Information System (INIS)

    Wright, P.E.

    1994-01-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform 13 C, 15 N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific 13 C and 15 N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions

  7. Isotope labeling for NMR studies of macromolecular structure and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Wright, P.E. [Scripps Research Institute, La Jolla, CA (United States)

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  8. Discriminating binding and positioning of amphiphiles to lipid bilayers by {sup 1}H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Evanics, F. [Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd. North Mississauga, Ont., L5L 1C6 (Canada); Prosser, R.S. [Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd. North Mississauga, Ont., L5L 1C6 (Canada)]. E-mail: sprosser@utm.utoronto.ca

    2005-04-04

    The binding and positioning in lipid bilayers of three well-known drugs--imipramine, nicotine, and caffeine--have been studied using {sup 1}H NMR. The membrane model system consisted of 'fast-tumbling' lipid bicelles, in which a bilayered lipid domain, composed of the unsaturated lipid, 1,2-dimyristelaidoyl-sn-glycero-3-phosphocholine (DMLPC) was surrounded by a rim of deuterated detergent-like lipids, consisting of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC-d22). Binding and immersion depth information was obtained by three experiments. (1) {sup 1}H chemical shift perturbations, upon transfer of the amphiphiles from water to a bicelle mixture, were used to estimate regions of the amphiphiles that interact with the membrane. (2) Water contact to resolvable protons was measured through a Nuclear Overhauser Effect (NOE) between water and resolvable drug and lipid resonances. In the case of both lipids and membrane bound drugs, positive NOEs with large cross-relaxation rates were measured for most resonances originating from the membrane hydrophilic region, while negative NOEs were observed predominantly to resonances in the hydrophobic region of the membrane. (3) {sup 1}H NMR measurements of oxygen-induced (paramagnetic) spin-lattice relaxation rates, which are known to increase with membrane immersion depth, were used to corroborate conclusions based on chemical shift perturbations and water-ligand NOEs.

  9. NMR-Metabolic Methodology in the Study of GM Foods

    Science.gov (United States)

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  10. NMR study of LaPb2

    International Nuclear Information System (INIS)

    Ueda, K.; Kohara, T.; Yamada, Y.

    1995-01-01

    La and Pb NMR signals were observed in LaPb 2 with a superconducting transition temperature of about 7 K. The width of the Pb NMR spectrum with an asymmetric line shape was rather narrower than those of Er-, Gd- and Ho-Pb 2 . The spin-lattice relaxation time of Pb nuclei was twice longer than that of Pb metal. La NMR spectrum had satellites due to the electric quadrupole interaction. These results show that each local environment at La or Pb site in LaPb 2 compound is uniquely determined, compared with those in randomly substituted alloys. ((orig.))

  11. NMR study of Albemoschus esculentus characterization

    International Nuclear Information System (INIS)

    Bathista, A.L.B.S; Silva, E.O.; Nogueira, Jose de S.; Tavares, M.I.B.

    2001-01-01

    The investigation of the main compounds presented in the Albemoschus esculentus has been carried out employing nuclear magnetic resonance spectroscopy (NMR), using solution and solid state NMR when it one was necessary. The evaluation of NMR data allowed us to characterize the main type of components presented in this kind of sample. It was necessary to use a total information from solid state NMR and also the solution response. From these information we could get that four main components were presented in this sample. One in the shell, that is cellulose, another one between the shell and seeds that is a polysaccharide and in the seed two components were found one is a starch and the second one is an oil, a triacylglycerol. These components are responsible by its physical chemistry properties. (author)

  12. NMR studies of multiphase flows II

    Energy Technology Data Exchange (ETDEWEB)

    Altobelli, S.A.; Caprihan, A.; Fukushima, E. [Lovelace Institutes, Albuquerque, NM (United States)] [and others

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  13. A multinuclear static NMR study of geopolymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Favier, Aurélie, E-mail: aurelie.favier@epfl.ch [Univ Paris-Est, IFSTTAR, Materials Department, 14-20 bd Newton, F-77447 Marne la Vallée Cedex 2 (France); Habert, Guillaume [Institute for Construction and Infrastructure Management, ETH Zurich, CH-8093 Zurich (Switzerland); Roussel, Nicolas [Univ Paris-Est, IFSTTAR, Materials Department, 14-20 bd Newton, F-77447 Marne la Vallée Cedex 2 (France); D' Espinose de Lacaillerie, Jean-Baptiste [Ecole Supérieure de Physique et de Chimie Indusrtrielles de la Ville de Paris (ESPCI), ParisTech, PSL Research University, Soft Matter Sciences and Engineering Laboratory SIMM, CNRS UMR 7615, 10 rue Vauquelin, F-75005 Paris (France)

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  14. Interaction of berenil with the EcoRI dodecamer d(CGCGAATTCGCG)2 in solution studied by NMR

    International Nuclear Information System (INIS)

    Lane, A.N.; Jenkins, T.C.; Neidle, S.; Brown, T.

    1991-01-01

    The conformation of the EcoRI dodecamer d(CGCGAATTCGCG) 2 has been examined in solution by 1 H and 31 P NMR. Spin-spin coupling constants and nuclear Overhauser (NOE) enhancement spectroscopy show that all deoxyriboses lie in the south domain, with a small admixture of the north conformation (0-20%). The time dependence of the nuclear Overhauser enhancements also reveals a relatively uniform conformation at the glycosidic bonds. The average helical twist is 36.5. Tilt angles are small, and roll angles are poorly determined. Both the NOE intensities and 31 P relaxation data imply conformational anomalies at the C3-G4/C9-G10 and the A5-A6/T7-T8 steps. Berenil binds in 1:1 stoichiometry to the dodecamer with high affinity and causes substantial changes in chemical shifts of the sugar protons of nucleotides Ado 5-Cyt 9 and of the H2 resonances of the two Ado residues. NOEs are observed between the aromatic protons of berenil and the H1' of both Thy 7 and Thy 8, as well as to Ado 5 and Ado 6 H2. These results firmly establish that berenil binds via the minor groove and closely approaches the nucleotides Ado 6, Thy 7, and Thy 8. Using the observed NOEs between the ligand and the DNA together with the derived glycosidic torsion angles, the authors have built models that satisfy all of the available solution data

  15. Applications of NMR to studies of tissue metabolism

    International Nuclear Information System (INIS)

    Avison, M.J.; Hetherington, H.P.; Shulman, R.G.

    1986-01-01

    From its beginnings as a tool for the elucidation of biochemical pathways and bioenergetic status in unicellular organisms, the field of NMR studie in vivo has grown to encompass not only the study of isolated perfused organs, but also the study of various aspects of the biochemistry, physiology, and pathophysiology of these same organs in the intact animal. In recent years several groups have begun to extend the techniques developed in animals to the study of clinically relevant conditions in humans. A comprehensive review of all areas of NMR studies in vivo would be either unacceptably long or very superficial. For this reason the authors have restricted this review to studies published since 1980, except where an earlier study is particularly relevant to the topic under discussion. Furthermore, they have concentrated on areas that have been extending the scope of NMR in vivo. One specific omission is review of NMR studies of tumors, since a comprehensive review has recently appeared

  16. Proton NMR studies on Megaphaera elsdenii flavodoxin : structure elucidation by 2D-NMR and implications

    NARCIS (Netherlands)

    Mierlo, van C.

    1990-01-01

    1H NMR techniques have been applied for a thorough study of the uncrystallizable Megasphaera elsdenii flavodoxin in its three redox states. The aim of the research project described in this thesis was to obtain answers regarding questions

  17. NMR studies of metallic tin confined within porous matrices

    International Nuclear Information System (INIS)

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-01-01

    119 Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown

  18. Exploring the trigger sequence of the GCN4 coiled-coil: Biased molecular dynamics resolves apparent inconsistencies in NMR measurements

    Science.gov (United States)

    Missimer, John H; Dolenc, Jožica; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2010-01-01

    Trigger sequences are indispensable elements for coiled-coil formation. The monomeric helical trigger sequence of the yeast transcriptional activator GCN4 has been investigated recently using several solution NMR observables including nuclear Overhauser enhancement (NOE) intensities and 3J(HN,HCα)-coupling constants, and a set of 20 model structures was proposed. Constrained to satisfy the NOE-derived distance bounds, the NMR model structures do not appear to reproduce all the measured 3J(HN-HCα)-coupling constant values, indicating that the α-helical propensity is not uniform along the GCN4 trigger sequence. A recent methodological study of unrestrained and restrained molecular dynamics (MD) simulations of the GCN4 trigger sequence in solution showed that only MD simulations incorporating time-averaged NOE distance restraints and instantaneous or local-elevation 3J-coupling restraints could satisfy the entire set of the experimental data. In this report, we assess by means of cluster analyses the model structures characteristic of the two simulations that are compatible with the measured data and compare them with the proposed 20 NMR model structures. Striking characteristics of the MD model structures are the variability of the simulated configurations and the indication of entropic stability mediated by the aromatic N-terminal residues 17Tyr and 18His, which are absent in the set of NMR model structures. PMID:20954244

  19. Some nitrogen-14 NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  20. Some nitrogen-14 NMR studies in solids

    International Nuclear Information System (INIS)

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the 14 N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long 14 N longitudinal relaxation times (T 1 ) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between 14 N and 1 H. Using quadrupolar echo and CP techniques, the 14 N quadrupolar coupling constants (e 2 qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the 14 N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects

  1. Solid state NMR study of cumbaru flour

    International Nuclear Information System (INIS)

    Nogueira, Jose S.; Bathista, Andre L.B.S.; Silva, Emerson O.; Priante Filho, Nicolau; Tavares, Maria I.B.

    2001-01-01

    The polysaccharide obtained by seed of Dipteryx alata Vog, has been characterised by 13 C solid state, using the basic routine techniques, like MAS and CPMAS and by the proton spin-lattice relaxation time in the rotating frame parameter (T 1 H ρ). Knowing that the chemical structure and molecular dynamic are extremely necessary route to obtain information on the polysaccharides, this work contributes to the classification of the seed containing in the cumbaru fruit to get response on its application. To obtain the initial responses for our purposes some solid state NMR techniques were chosen. The CPMAS 13 C NMR spectrum of the polysaccharide was investigated to know if it has some crystallinity. The MAS 13 C NMR spectrum showed the presence of domains with distinct molecular mobility, because these domains will differ basically in the distribution size and chain packing. The variable contact time experiment was used to analyse the distribution form of 13 C decays, which give us more information about sample heterogeneity. The T 1 H ρHr values were obtained from the variable contact time and by delayed contact time experiment, because these parameter indicate the order of polysaccharides. From the values of this parameter, we found that this polysaccharide is completely non-ordered. (author)

  2. Position of residues in transmembrane peptides with respect to the lipid bilayer: A combined lipid NOEs and water chemical exchange approach in phospholipid bicelles

    International Nuclear Information System (INIS)

    Glover, Kerney Jebrell; Whiles, Jennifer A.; Vold, Regitze R.; Melacini, Giuseppe

    2002-01-01

    The model transmembrane peptide P16 was incorporated into small unaligned phospholipid bicelles, which provide a 'native-like' lipid bilayer compatible with high-resolution solution NMR techniques. Using amide-water chemical exchange and amide-lipid cross-relaxation measurements, the interactions between P16 and bicelles were investigated. Distinctive intermolecular NOE patterns observed in band-selective 2D-NOESY spectra of bicellar solutions with several lipid deuteration schemes indicated that P16 is preferentially interacting with the 'bilayered' region of the bicelle rather than with the rim. Furthermore, when amide-lipid NOEs were combined with amide-water chemical exchange cross-peaks of selectively 15 N-labeled P16 peptides, valuable information was obtained about the position of selected residues relative to the membrane-water interface. Specifically, three main classes were identified. Class I residues lie outside the bilayer and show amide-water exchange cross-peaks but no amide-lipid NOEs. Class II residues reside in the bilayer-water interface and show both amide-water exchange cross-peaks and amide-lipid NOEs. Class III residues are embedded within the hydrophobic core of the membrane and show no amide-water exchange cross-peaks but strong amide-lipid NOEs

  3. O6-ethylguanine carcinogenic lesions in DNA: An NMR study of O6etG·C pairing in dodecanucleotide duplexes

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Li, B.F.L.; Swann, P.F.; Patel, D.J.

    1989-01-01

    The pairing of O 6 etG with C located four base pairs in from either end of the self-complementary d(C1-G2-C3-O 6 etG4-A5-G6-C7-T8-C9-G10-C11-G12) duplex (designated O 6 etG·C 12-mer) has been investigated from an analysis of proton and phosphorus two-dimensional NMR experiments. The structural consequences of increasing the alkyl group size were elucidated from a comparative study of the pairing of O 6 meG4 with C9 in a related sequence (designated O 6 meG·C 12-mer). The NMR parameters for both O 6 alkG-containing dodecanucleotides are also compared with those of the control sequence containing G4·C9 base pairs (designated G·C 12-mer). The NOE cross-peaks detected in the two-dimensional NOESY spectra of the O 6 alkG·C 12-mer duplexes in H 2 O solution establish that the O 6 etG4/O 6 meG4 and C9 bases at the lesion site stack into the helix between the flanking C3·G10 and A5·T8 Watson-Crick base pairs. The observed NOEs between the amino protons of C9 and the CH 3 protons of O 6 alkG4 establish a syn orientation of the O 6 -alkyl group with respect to the N 1 of alkylated guanine. A wobble alignment of the O 6 alkG4·C9 base pair stabilized by two hydrogen bonds, one between the amino group of C9 and N 1 of O 6 alkG and the other between the amino group of O 6 alkG and N 3 of C9, is tentatively proposed on the basis of the NOEs between the amino protons of C9 at the lesion site and the imino protons of flanking Watson-Crick base pairs

  4. Determination of the major tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA adduct by 1H and 15N NMR studies

    International Nuclear Information System (INIS)

    Lin, Chin Hsiung; Hurley, L.H.

    1990-01-01

    (+)-CC-1065 is an extremely potent antitumor antibiotic produced by Streptomyces zelensis. The potent cytotoxic effects of the drug are thought to be due to the formation of a covalent adduct with DNA through N3 of adenine. Although the covalent linkage sites between (+)-CC-1065 and DNA have been determined, the tautomeric form of the covalently modified adenine in the (+)-CC-1065-DNA duplex adduct was not defined. The [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct was then studied by 1 H and 15 N NMR. One-dimensional NOE difference and two-dimensional NOESY 1 H NMR experiments on the nonisotopically labeled 12-mer duplex adduct demonstrate that the 6-amino protons of the covalently modified adenine exhibit two signals at 9.19 and 9.08 ppm. Proton NMR experiments on the [6- 15 N]deoxyadenosine-labeled 12-mer duplex adduct show that the two resonance signals for adenine H6 observed on the nonisotopically labeled duplex adduct were split into doublets by the 15 N nucleus with coupling constants of 91.3 Hz for non-hydrogen-bonded and 86.8 Hz for hydrogen-bonded amino protons. The authors conclude that the covalently modified adenine N6 of the (+)-CC-1065-12-mer duplex adduct is predominantly in the doubly protonated form, in which calculations predict that the C6-N6 bond is shortened and the positive charge is delocalized over the entire adenine molecule

  5. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  6. Protein folding on the ribosome studied using NMR spectroscopy

    Science.gov (United States)

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  7. NMR studies of spin dynamics in cuprates

    International Nuclear Information System (INIS)

    Takigawa, M.; Mitzi, D.B.

    1994-01-01

    The authors report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi 2.1 Sr 1.94 Ca 0.88 Cu 2.07 O 8+σ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa 2 Cu 3 O 6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector

  8. NMR studies of spin dynamics in cuprates

    Science.gov (United States)

    Takigawa, M.; Mitzi, D. B.

    1994-04-01

    We report recent NMR results in cuprates. The oxygen Knight shift and the Cu nuclear spin-lattice relaxation rate in Bi2.1Sr1.94Ca0.88Cu2.07O8+δ single crystals revealed a gapless superconducting state, which can be most naturally explained by a d-wave pairing state and the intrinsic disorder in this material. The Cu nuclear spin-spin relaxation rate in underdoped YBa2Cu3O6.63 shows distinct temperature dependence from the spin-lattice relaxation rate, providing direct evidence for a pseudo spin-gap near the antiferromagnetic wave vector.

  9. Structural study of pyrones by NMR

    International Nuclear Information System (INIS)

    Mandarino, D.G.

    1985-01-01

    Extracts of two species of Aniba, designed Aniba-SA (light petroleum extract) and Aniba-SB (benzene extract), afforded by chromatographic fraccionation some compounds. The isolated compounds were identified using spectrometric data and C 13 -NMR coupled and decompled spectra of pyrones were registered. Measurement of the heteronuclear residual coupling by irradiation proton frequency off-resonance was used for distinguish C-5, C-7 and C-8 carbons of the pyrones SB-1, SB-3, SB-4 and SB-5. (M.J.C.) [pt

  10. Base pair mismatches and carcinogen-modified bases in DNA: an NMR study of G x T and G x O4meT pairing in dodecanucleotide duplexes

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Kouchakdjian, M.; Li, B.F.L.; Swann, P.F.; Patel, D.J.

    1988-01-01

    High-resolution two-dimensional NMR studies have been completed on the self-complementary d(C-G-C-G-A-G-C-T-T-G-C-G) duplex (designated G x T 12-mer) and the self-complementary d(C-G-C-G-A-G-C-T-O 4 meT-G-C-G) duplex (designated G x O 4 meT 12-mer) containing G x T and G x O 4 meT pairs at identical positions four base pairs in from either end of the duplex. The exchangeable and nonexchangeable proton resonances have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOESY) spectra for the G x T 12-mer and G x O 4 meT 12-mer duplexes in H 2 O and D 2 O solution. The guanosine and thymidine imino protons in the G x T mismatch resonate at 10.57 and 11.98 ppm, respectively, and exhibit a strong NOE between themselves and to imino protons of flanking base pairs in the G x T 12-mer duplex. The large upfield chemical shift of this proton relative to that of the imino proton resonance of G in the G x T mismatch or in G x C base pairs indicates that hydrogen bonding to O 4 meT is either very weak or absent. This guanosine imino proton has an NOE to the OCH 3 group of O 4 meT across the pair and NOEs to the imino protons of flanking base pairs. Taken together with data from the NMR of nonexchangeable protons, this shows that both G and O 4 meT have anti-glycosidic torsion angles and are stacked into the duplex. Comparison of the intensity of the NOEs between the guanosine imino proton and the OCH 3 of O 4 meT as well as other protons in its vicinity demonstrates that the OCH 3 group of O 4 meT adopts the syn orientation with respect to N3 of the methylated thymidine. The authors propose an alternate base pairing mode stabilized by one short hydrogen bond between the 2-amino group of guanosine and the 2-carbonyl group of O 4 met

  11. Application of Solution NMR Spectroscopy to Study Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Christoph Göbl

    2012-03-01

    Full Text Available Recent advances in spectroscopic methods allow the identification of minute fluctuations in a protein structure. These dynamic properties have been identified as keys to some biological processes. The consequences of this structural flexibility can be far‑reaching and they add a new dimension to the structure-function relationship of biomolecules. Nuclear Magnetic Resonance (NMR spectroscopy allows the study of structure as well as dynamics of biomolecules in a very broad range of timescales at atomic level. A number of new NMR methods have been developed recently to allow the measurements of time scales and spatial fluctuations, which in turn provide the thermodynamics associated with the biological processes. Since NMR parameters reflect ensemble measurements, structural ensemble approaches in analyzing NMR data have also been developed. These new methods in some instances can even highlight previously hidden conformational features of the biomolecules. In this review we describe several solution NMR methods to study protein dynamics and discuss their impact on important biological processes.

  12. Novel NMR tools to study structure and dynamics of biomembranes.

    Science.gov (United States)

    Gawrisch, Klaus; Eldho, Nadukkudy V; Polozov, Ivan V

    2002-06-01

    Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.

  13. NMR-Metabolic Methodology in the Study of GM Foods

    Directory of Open Access Journals (Sweden)

    Irene D’Amico

    2010-01-01

    Full Text Available The 1H-NMR methodology used in the study of genetically modified (GM foods is discussed. Transgenic lettuce (Lactuca sativa cv "Luxor" over-expressing the Arabidopsis KNAT1 gene is presented as a case study. Twenty-two water-soluble metabolites (amino acids, organic acids, sugars present in leaves of conventional and GM lettuce were monitored by NMR and quantified at two developmental stages. The NMR spectra did not reveal any difference in metabolite composition between the GM lettuce and the wild type counterpart. Statistical analyses of metabolite variables highlighted metabolism variation as a function of leaf development as well as the transgene. A main effect of the transgene was in altering sugar metabolism.

  14. NMR structural studies of peptides and proteins in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Opella, S J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1994-12-31

    The use of NMR methodology in structural studies is described as applicable to larger proteins, considering that the majority of membrane proteins is constructed from a limited repertoire of structural and dynamic elements. The membrane associated domains of these proteins are made up of long hydrophobic membrane spanning helices, shorter amphipathic bridging helices in the plane of the bilayer, connecting loops with varying degrees of mobility, and mobile N- and C- terminal sections. NMR studies have been successful in identifying all of these elements and their orientations relative to each other and the membrane bilayer 19 refs., 9 figs.

  15. Study of molecular movements in some organic crystals by NMR

    International Nuclear Information System (INIS)

    Alexandre, M.

    1971-01-01

    After a discussion on molecular crystals (generalities, movements within molecular solids, study of movements, complexes by charge transfer) and some specific ones (molecular complexes of trinitrobenzene or TNB), this research thesis reports the use of nuclear magnetic resonance (NMR) to study molecular movements: generalities on broadband NMR, spin relaxation and strong field network, observation of the absorption signal and measurement of the second moment. The last part reports and discusses experimental results obtained on TNB-naphthalene, on TNB-azulene, on TNB-benzothiophene, and on TNB-indole

  16. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a

    International Nuclear Information System (INIS)

    Zuiderweg, E.R.P.; Fesik, S.W.

    1989-01-01

    The utility of three-dimensional heteronuclear NMR spectroscopy for the assignment of 1 H and 15 N resonances of the inflammatory protein C5a (MW 8500), uniformly labeled with 15 N, is demonstrated at a protein concentration of 0.7 mM. It is shown that dramatic simplification of the 2D nuclear Overhauser effect spectrum (NOESY) is obtained by editing with respect to the frequency of the 15 N heteronucleus in a third dimension. The improved resolution in the 3D experiment largely facilitates the assignment of protein NMR spectra and allows for the determination of distance constraints from otherwise overlapping NOE cross peaks for purposes of 3D structure determination. The results show that 15 N heteronuclear 3D NMR can facilitate the structure determination of small proteins and promises to be a useful tool for the study of larger systems that cannot be studied by conventional 2D NMR techniques

  17. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a

    Energy Technology Data Exchange (ETDEWEB)

    Zuiderweg, E.R.P.; Fesik, S.W. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-03-21

    The utility of three-dimensional heteronuclear NMR spectroscopy for the assignment of {sup 1}H and {sup 15}N resonances of the inflammatory protein C5a (MW 8500), uniformly labeled with {sup 15}N, is demonstrated at a protein concentration of 0.7 mM. It is shown that dramatic simplification of the 2D nuclear Overhauser effect spectrum (NOESY) is obtained by editing with respect to the frequency of the {sup 15}N heteronucleus in a third dimension. The improved resolution in the 3D experiment largely facilitates the assignment of protein NMR spectra and allows for the determination of distance constraints from otherwise overlapping NOE cross peaks for purposes of 3D structure determination. The results show that {sup 15}N heteronuclear 3D NMR can facilitate the structure determination of small proteins and promises to be a useful tool for the study of larger systems that cannot be studied by conventional 2D NMR techniques.

  18. DNA hairpin structures in solution: 500-MHz two-dimensional 1H NMR studies on d(CGCCGCAGC) and d(CGCCGTAGC)

    International Nuclear Information System (INIS)

    Gupta, G.; Sarma, M.H.; Sarma, R.H.

    1987-01-01

    A hairpin structure contains two conformationally distinct domains: a double-helical stem with Watson-Crick base pairs and a single-stranded loop that connects the two arms of the stem. By extensive 1D and 2D 500-MHz 1 H NMR studies in H 2 O and D 2 O, it has been demonstrated that the DNA oligomers d(CGCCGCAGC) and d(CGCCGTAGC) form hairpin structures under conditions of low concentration, 0.5 mM in DNA strand, and low salt (20 mM NaCl, pH 7). From examination of the nuclear Overhauser effect (NOE) between base protons H8/H6 and sugar protons H1' and H2'/H2'', it was concluded that in D(CGCCGCAGC) and d(CGCCCTAGC) all the nine nucleotides display average (C2'-endo,anti) geometry. The NMR data in conjunction with molecular model building and solvent accessibility studies were used to derive a working model for the hairpins

  19. NMR studies concerning base-base interactions in oligonucleotides

    International Nuclear Information System (INIS)

    Hoogen, Y.T. van den.

    1988-01-01

    Two main subjects are treated in the present thesis. The firsst part principally deals with the base-base interactions in single-stranded oligoribonucleotides. The second part presents NMR and model-building studies of DNA and RNA duplexes containing an unpaired base. (author). 242 refs.; 26 figs.; 24 tabs

  20. Two-dimensional NMR studies of allyl palladium complexes of ...

    Indian Academy of Sciences (India)

    Administrator

    h3-Allyl complexes are intermediates in organic synthetic reactions such as allylic alkylation and amination. There is growing interest in understanding the structures of chiral h3-allyl intermediates as this would help to unravel the mechanism of enantioselective C–C bond forming reactions. Two-dimensional NMR study is a.

  1. An NMR Protonation Study of Metal Diethylenetriaminepentaacetic Acid Complexes.

    Science.gov (United States)

    Letkeman, Peter

    1979-01-01

    This experiment is suitable for an integrated laboratory course for senior chemistry majors. It introduces the student to a study of the relative basicity of different proton accepting sites. It serves as an opportunity to learn about nmr techniques and could extend to infrared, as well. (BB)

  2. NMR study of structure of lanthanide complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1976-01-01

    The diagnostic value PMR studies of diamagnetic lanthanide complexes to define the nature of the species in the lanthanide-pyruvate system is discussed. The use of NMR spectra of both diamagnetic and paramagnetic lanthanide complexes to obtain detailed structural information is reviewed

  3. Study on the Effects of Oligo chitosan and Bioliquifert on Two Rice Mutants, NMR 151 and NMR 152

    International Nuclear Information System (INIS)

    Shakinah Salleh; Faiz Ahmad; Sobri Hussein

    2016-01-01

    Nuclear Malaysia has successfully developed two new rice mutants namely NMR 151 and NMR 152. In addition, Nuclear Malaysia has also successfully developed Oligo chitosan and liquid bio fertilizer (Bioliquifert). Oligo chitosan acts as elicitor that has been proven to be very effective in controlling disease infections and improving yield productivity. Bioliquifert on the other hand is a mixture of microbes containing major nutrient-providing microorganisms. The objective of this study is to observe the effects of Oligo chitosan and Bioliquifert on rice mutants, NMR 151 and NMR 152. The treatment was applied on 14 day old seedlings of MR 219, NMR 151 and NMR 152 sowed in 20 cm pots containing silty clay from the paddy soil of Tanjung Karang, Selangor. The seedlings were then placed in the greenhouse at Nuclear Malaysia until it reaches 110 days old. Study was conducted in a Complete Randomized Design (CRD) with 3 replications was used and each replication consisted of three plants. All treatments received compound and single dressing fertilizer as recommended by National Rice Production Package except for Treatment 2 and 3, in which Treatment 2 received Oligo chitosan and Bioliquifert while Treatment 3 only received Bioliquifert. Results on plant height, number of tiller and plant fresh weight are not significantly different for all cultivar except for seed dry weight of NMR 152 and MR 219. (author)

  4. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  5. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    International Nuclear Information System (INIS)

    Saether, Oddbjoern

    2005-01-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  6. NMR studies of macroscopic and microscopic properties of liquid crystals

    International Nuclear Information System (INIS)

    Hughes, J.R.

    1998-03-01

    The work presented is concerned with studies of orientational order in liquid crystals and the behaviour of certain mesophases. The experimental technique used in common with all the work is deuterium NMR spectroscopy. Much of the work involves studies of the orientational order of deuteriated solute molecules dissolved in liquid crystal solvents. Chapter 1 gives an introduction to liquid crystals followed by a quantitative description of orientational order. Deuterium NMR in liquid crystals is described and an outline of the molecular field theory behind the orientational order of a rigid, biaxial solute in a uniaxial mesophase is given. In Chapter 2 a novel type of mesophase induction is studied using NMR, where a solute induces up to two extra phases in a discotic mesogen depending on its concentration. The purpose of this work is to try to gain an understanding into the mechanism of the phase induction involved. Chapter 3 is concerned primarily with the macroscopic behaviour of the nematic phase formed by a semi-rigid main-chain polymer in solution. Of particular interest is the study of the reorientation of the monodomain, once the director has been rotated with respect to the magnetic field of the NMR spectrometer. A mesogen which has been claimed to exhibit a biaxial nematic phase is studied in Chapter 4, in order to determine the symmetry of the phase using NMR. Finally, Chapter 5 deals with the differing behaviour of a liquid crystal monomer and its dimer dissolved in common nematic solvents in order to determine whether this agrees with molecular field theory. (author)

  7. Hyperpolarized 129Xe as an NMR probe for functional studies

    International Nuclear Information System (INIS)

    Wolber, J.

    2000-01-01

    The nuclear spin polarization of 129 Xe can be enhanced by several orders of magnitude using optical pumping techniques, resulting in a dramatic enhancement of the 129 Xe Nuclear Magnetic Resonance (NMR) signal. The 'hyperpolarized' gas can be used for Magnetic Resonance Imaging (MRI) of the void spaces of the lungs after introduction of the gas into the respiratory system. Furthermore, the high solubility of xenon in blood and lipids suggests the use of 129 Xe NMR for studying blood flow, permeability, perfusion and blood volume. Hyperpolarized 129 Xe MRI has the potential of combining the high sensitivity and functional information of radioactive tracer studies with the high spatial and temporal resolution of MRI. The spin-lattice relaxation time T 1 of 129 Xe in blood determines the loss of polarization during transit from the lungs to the tissue of interest. A difference in the relaxation times of xenon in oxygenated and deoxygenated blood could be used as a contrast mechanism in functional Magnetic Resonance Imaging (fMRI). In this thesis, the hyperpolarized 129 Xe T 1 in human blood is measured in vitro as a function of blood oxygenation, and the relevant relaxation mechanisms are discussed. A new and unexpected finding is that the hyperpolarized 129 Xe NMR spectrum in blood is highly sensitive to blood oxygenation. Therefore, hyperpolarized 129 Xe NMR provides a powerful means of measuring blood oxygenation quantitatively and non-invasively. The interaction of xenon with hemoglobin is responsible for an oxygen-dependent shift of the 129 Xe NMR resonance of xenon in red blood cells. Injection delivery of hyperpolarized 129 Xe in solution could be a more efficient method of administrating the gas for functional NMR studies. For this purpose, suitable biocompatible carrier media have been studied. In particular, the use of perfluorocarbon emulsions, which are already in use as blood substitutes, as delivery media for hyperpolarized 129 Xe has been investigates

  8. Integrating NOE and RDC using sum-of-squares relaxation for protein structure determination.

    Science.gov (United States)

    Khoo, Y; Singer, A; Cowburn, D

    2017-07-01

    We revisit the problem of protein structure determination from geometrical restraints from NMR, using convex optimization. It is well-known that the NP-hard distance geometry problem of determining atomic positions from pairwise distance restraints can be relaxed into a convex semidefinite program (SDP). However, often the NOE distance restraints are too imprecise and sparse for accurate structure determination. Residual dipolar coupling (RDC) measurements provide additional geometric information on the angles between atom-pair directions and axes of the principal-axis-frame. The optimization problem involving RDC is highly non-convex and requires a good initialization even within the simulated annealing framework. In this paper, we model the protein backbone as an articulated structure composed of rigid units. Determining the rotation of each rigid unit gives the full protein structure. We propose solving the non-convex optimization problems using the sum-of-squares (SOS) hierarchy, a hierarchy of convex relaxations with increasing complexity and approximation power. Unlike classical global optimization approaches, SOS optimization returns a certificate of optimality if the global optimum is found. Based on the SOS method, we proposed two algorithms-RDC-SOS and RDC-NOE-SOS, that have polynomial time complexity in the number of amino-acid residues and run efficiently on a standard desktop. In many instances, the proposed methods exactly recover the solution to the original non-convex optimization problem. To the best of our knowledge this is the first time SOS relaxation is introduced to solve non-convex optimization problems in structural biology. We further introduce a statistical tool, the Cramér-Rao bound (CRB), to provide an information theoretic bound on the highest resolution one can hope to achieve when determining protein structure from noisy measurements using any unbiased estimator. Our simulation results show that when the RDC measurements are

  9. 1H NMR studies of plastocyanin from Scenedesmus obliquus: Complete sequence-specific assignment, secondary structure analysis, and global fold

    International Nuclear Information System (INIS)

    Moore, J.M.; Chazin, W.J.; Wright, P.E.; Powls, R.

    1988-01-01

    Two-dimensional 1 H NMR methods have been used to make sequence-specific resonance assignments for the 97 amino acid residues of the plastocyanin from the green alga Scenedesmus obliquus. Assignments were obtained for all backbone protons and the majority of the side-chain protons. Spin system identification relied heavily on the observation of relayed connectivities to the backbone amide proton. Sequence-specific assignments were made by using the sequential assignment procedure. During this process, an extra valine residue was identified that had not been detected in the original amino acid sequence. Elements of regular secondary structure were identified from characteristic NOE connectivities between backbone protons, coupling constant values, and the observation of slowly exchanging amide protons. The protein in solution contains eight β-strands, one short segment of helix, five reverse turns, and five loops. The β-strands may be arranged into two βsheets on the basis of extensive cross-strand NOE connectivities. The chain-folding topology determined from the NMR experiments is that of a Greek key β-barrel and is similar to that observed for French bean plastocyanin in solution and poplar plastocyanin in the crystalline state. While the overall structures are similar, several differences in local structure between the S. obliquus and higher plant plastocyanins have been identified

  10. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuanpeng Janet, E-mail: yphuang@cabm.rutgers.edu; Mao, Binchen; Xu, Fei; Montelione, Gaetano T., E-mail: gtm@rutgers.edu [Rutgers, The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (United States)

    2015-08-15

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD–NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases {sup 15}N–{sup 1}H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD–NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta.

  11. Proton NMR studies of functionalized nanoparticles in aqueous environments

    Science.gov (United States)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  12. Concluding Remarks; Zaklyuchitel'noe slovo

    Energy Technology Data Exchange (ETDEWEB)

    Budker, G. I. [Institute of Nuclear Physics, Siberian Department of the USSR Academy of Sciences, Novosibirsk, Union Of Soviet Socialist Republics (Russian Federation)

    1969-01-15

    I feel that the changes which have taken place in science in the last few years open up new possibilities, about which I should like to say a few words. In 1951 we began work on thermonuclear reactions in the confident belief that we would solve the problem with a rush and immediately. I was assigned the task of ensuring that our future thermonuclear reactor would not get too much out of hand. It was like the story of the man who wished to invent a perpetual motion machine and had taken out a patent on a method for keeping it under control. This attitude stemmed from the successes in developing ''explosive thermonuclear reactors'', a task which was achieved within a very short period of time, leaving physicists with the impression that they could do everything - and do it fast. However, experience soon showed that here we had a scientific rather than a technological problem and that it would be necessary to study in detail the physics of plasmas - which we have now been doing for over ten years. [Russian] Mne kazhetsja, chto za poslednie gody- v nauke proizoshli izmenenija, otkryvshie novye vozmozhnosti, na kotoryh ja hotel by ostanovit'sja. Ja hochu napomnit', chto v 1951 godu my nachali raboty po fizike plazmy i termojadernym reakcijam. U nas byla uverennost', chto my reshim jetu problemu s hodu, srazu. Mne bylo porucheno obespechivat' regulirovanie budushhego termojadernogo reaktora, chtoby tot ne ochen' ''razognalsja'' i ne vyshel iz-pod kontrolja. Sejchas jeto poruchenie napominaet istoriju o tom, kak odin hotel izobresti vechnyj dvigatel' i vzjal patent na to, chtoby tot ne razgonjalsja do beskonechnyh skorostej. . . Bol'shie uspehi v razrabotke ''vzryvchatyh termojadernyh reaktorov'', kotorye byli sozdany za ochen' korotkoe vremja, porodili u fizikov uverennost' v to, chto oni mogut sdelat' vse i sdelat' bystro. Odnako ochen' skoro zhizn' pokazala, chto jetim delom nuzhno zanimat'sja ne kak konstruirovaniem, a kak naukoj, chto nado razvivat' plazmennuju

  13. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Richard [Huazhong University of Science and Technology, School of Software Engineering (China); Wang, Yan [Huazhong University of Science and Technology, School of Life Science and Technology (China); Xue, Zhidong, E-mail: zdxue@hust.edu.cn [Huazhong University of Science and Technology, School of Software Engineering (China); Zhang, Yang, E-mail: zhng@umich.edu [University of Michigan, Department of Computational Medicine and Bioinformatics (United States)

    2015-08-15

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates allows NMR-I-TASSER to sample different topologies while convergence to a single structure is not required. Retroactive and blind tests of the CASD-NMR targets from Rounds 1 and 2 demonstrate that even without using NOE peak lists I-TASSER can generate correct structure topology with 15 of 20 targets having a TM-score above 0.5. With the addition of NOE-based distance restraints, NMR-I-TASSER significantly improved the I-TASSER models with all models having the TM-score above 0.5. The average RMSD was reduced from 5.29 to 2.14 Å in Round 1 and 3.18 to 1.71 Å in Round 2. There is no obvious difference in the modeling results with using raw and refined peak lists, indicating robustness of the pipeline to the NOE assignment errors. Overall, despite the low-resolution modeling the current NMR-I-TASSER pipeline provides a coarse-grained structure folding approach complementary to traditional molecular dynamics simulations, which can produce fast near-native frameworks for atomic-level structural refinement.

  14. Broad line NMR study of modified polypropylene fibres

    International Nuclear Information System (INIS)

    Olcak, D.; Sevcovic, L.; Mucha, L.

    1999-01-01

    Study of drawn fibres prepared from an isostatic polypropylene modified by an ethylene aminoalkylacrylate copolymer has been done using the broad line of 1 H NMR. NMR spectra were measured on the set of fibres prepared with a draw ratio λ from 1 to 5.5 at two temperatures, one of them corresponding to the onset of segmental motion and the other one is the minddle of the temperature interval as determined by decrease of the second moment M 2 . Decomposition of the spectra into elementary components related to the amorphous, intermediate and crystalline regions of partially crystalline polymers has been made. The drawing of the fibres was found to enhance the chain mobility in the amorphous region and to restrain the molecular motion in the intermediate region. Such behaviour well supports conclusions predicted in the earlier study based on the spin-lattice relaxation time T 1 and dynamic mechanical data treated using the WLF theory. (Authors)

  15. NMR studies on graphite-methanol system

    International Nuclear Information System (INIS)

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  16. STRUCTURAL STUDY AND INVESTIGATION OF NMR TENSORS ...

    African Journals Online (AJOL)

    NBO studies were performed to the second-order and perturbative estimates of donor-acceptor interaction have been done. The procedures of gauge-invariant atomic orbital (GIAO) and continuous-set-of-gauge-transformation (CSGT) were employed to calculate isotropic shielding, chemical shifts anisotropy and chemical ...

  17. NMR studies of defects created by irradiation in metals

    International Nuclear Information System (INIS)

    Minier, M.; Minier, C.

    1983-06-01

    Nuclear Magnetic Resonance has been rarely used to study point defects created by irradiation in metals. Information obtained in this field using N.M.R. are shown. Some results are also described: characterization of migrating defects in electron irradiated copper; mobility of the complex interstitial-impurity in Al with 150 ppm of chromium; interstitial structure in irradiated aluminum and autodiffusion in metals [fr

  18. NMR studies of electrophoretic mobility in surfactant systems

    International Nuclear Information System (INIS)

    Conveney, F.M.; Strange, J.H.; Smith, A.L.; Smith, E.G.

    1989-01-01

    An experimental technique is described in which the flow of electrically charged micelles is measured in the presence of an applied electric field using an NMR technique. The method is used to determine the electrophoretic mobility at ambient temperature of a 5% aqueous solution of sodium dodecyl sulphate and is shown to provide a new technique for the study of electrophoresis in surfactant solutions. (author). 8 refs.; 4 figs

  19. Betulinic acid spectroscopic studies by NMR

    International Nuclear Information System (INIS)

    Junges, Mario Jose; Fernandes, Joao Batista; Rodrigues Filho, Edson; Vieira, Paulo Cezar; Silva, Maria Fatima das G. Fernandes da

    1995-01-01

    HMQC, HMBC, COSY 1 H- 1 H, DEPT, COSYHLR were used to assign the hydrogen and carbon chemical shifts of betulinic acid. On base in this study it is proposed to change the δ of the carbons 6, 11, 18, 19 and 26 and of the methyls hydrogen in the literature for betulinic acid, as well as of the compounds where betulinic acid was used as model. It was verified that H-5, δ 0,82, is in position strongly shielded. (author)

  20. NMR studies of abasic sites in DNA duplexes: deoxyadenosine stacks into the helix opposite the cyclic analog of 2-deoxyribose

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Chang, C.N.; Grollman, A.P.; Patel, D.J.

    1988-01-01

    Proton and phosphorus NMR studies are reported for the complementary d(C-A-T-G-A-G-T-A-C) x d(G-T-A-C-F-C-A-T-G) nonanucleotide duplex (designated AP/sub F/ 9-mer duplex) which contains a stable abasic site analog, F, in the center of the helix. This oligodeoxynucleotide contains a modified tetrahydrofuran moiety, isosteric with 2-deoxyribofuranose, which serves as a structural analog of a natural apurinic/apyrimidinic site. Exchangeable and nonexchangeable base and sugar protons, including those located at the abasic site, have been assigned in the complementary AP/sub F/ 9-mer duplex by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H 2 O and D 2 O solution at low temperature (0 0 C). These studies indicate that A5 inserts into the helix opposite the abasic site F14 and stacks with flanking G4 x C15 and G6 x C13 Watson-Crick base pairs. Base-sugar proton NOE connectivities were measured through G4-A5-G6 on the unmodified strand and between the base protons of C15 and the sugar protons of the 5'-flanking residue F14 on the modified strand. These studies establish that all glycosidic torsion angles are anti and that the helix is right-handed at and adjacent to the abasic site in the AP/sub F/ 9-mer duplex. Two of the 16 phosphodiester groups exhibit phosphorus resonances outside the normal spectral dispersion indicative of altered torsion angles at two of the phosphate groups in the backbone of the AP/sub F/ 9-mer duplex

  1. [Derivative spectrophotometric and NMR spectroscopic study in pharmaceutical science].

    Science.gov (United States)

    Kitamura, Keisuke

    2007-10-01

    This review starts with an introduction of derivative spectrophotometry followed by a description on the construction of a personal computer-assisted derivative spectrophotometric (DS) system. An acquisition system for inputting digitalized absorption spectra into personal computers and a BASIC program for calculating derivative spectra were developed. Then, applications of the system to drug analyses that are difficult with traditional absorption methods are described. Following this, studies on the interactions of drugs with biological macromolecules by the DS and NMR methods were discussed. An (1)H NMR study elucidated that the small unilamellar vesicle (SUV) has a single membrane made of a phosphatidylcholine bilayer, and that chlorpromazine interacts with both the outer and inner layers. (13)C NMR revealed a reduction of the dissociation constants of phenothiazine drugs due to their interaction with SUV. The partition coefficients of phenothiazine, benzodiazepine and steroid drugs in an SUV-water system and the effects of cholesterol or amino lipids content on these partition coefficients were examined by the DS method. The binding constants of phenothiazine drugs to bovine serum albumin (BSA) and the influence of Na(+), K(+), Cl(-), Br(-), and I(-) on these binding constants were determined by DS. It was found that I(-), Br(-), Cl(-) reduce the binding constants in this order, and that Na(+) and K(+) have no effect. A (19)F NMR study revealed that triflupromazine binds to BSA and human serum albumin in two regions including Site II with different populations, and that a nonsteroidal anti-inflammatory drug, niflumic acid, binds Sites Ia and Ib.

  2. Study of β-NMR for Liquid Biological Samples

    CERN Document Server

    Beattie, Caitlin

    2017-01-01

    β-NMR is an exotic form of NMR spectroscopy that allows for the characterization of matter based on the anisotropic β-decay of radioactive probe nuclei. This has been shown to be an effective spectroscopic technique for many different compounds, but its use for liquid biological samples is relatively unexplored. The work at the VITO line of ISOLDE seeks to employ this technique to study such samples. Currently, preparations are being made for an experiment to characterize DNA G-quadruplexes and their interactions with stabilizing cations. More specifically, the work in which I engaged as a summer student focused on the experiment’s liquid handling system and the stability of the relevant biological samples under vacuum.

  3. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Jelinek, Raz [Univ. of California, Berkeley, CA (United States)

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. 27Al and 23Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework 27Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na+ cations are directly involved in adsorption processes and reactions in zeolite cavities.

  4. Conformational, vibrational, NMR and DFT studies of N-methylacetanilide.

    Science.gov (United States)

    Arjunan, V; Santhanam, R; Rani, T; Rosi, H; Mohan, S

    2013-03-01

    A detailed conformational, vibrational, NMR and DFT studies of N-methylacetanilide have been carried out. In DFT, B3LYP method have been used with 6-31G(**), 6-311++G(**) and cc-pVTZ basis sets. The vibrational frequencies were calculated resulting in IR and Raman frequencies together with intensities and Raman depolarisation ratios. The dipole moment derivatives were computed analytically. Owing to the complexity of the molecule, the potential energy distributions of the vibrational modes of the compound are also calculated. Isoelectronic molecular electrostatic potential surface (MEP) and electron density surface were examined. (1)H and (13)C NMR isotropic chemical shifts were calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound were also determined from TD-DFT method. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. NMR relaxation studies with MnDPDP

    International Nuclear Information System (INIS)

    Southon, T.E.; Grant, D.; Bjoernerud, A.; Moen, O.M.; Spilling, B.; Martinsen, I.; Refsum, H.

    1997-01-01

    Purpose: Our studies were designed to compare the efficacy of mangafodipir trisodium (MnDPDP, Teslascan) as a tissue-specific MR agent with that of manganese chloride (MnCl 2 ), to compare the efficacy of different doses and rates of administration of MnDPDP, and to collect the data needed for predicting optimum pulse sequences. Material and Methods: The dose response for the relaxation rates R1 and R2 at 0.47 T, and the manganese (Mn) concentrations in rat liver and in the liver, pancreas, heart and adrenals of pigs was determined for both MnDPDP and MnCl 2 administered i.v. Computer simulations were carried out to model the effects of different tissue Mn concentrations and TR on signal intensities and contrast-to-noise ratios. Results: In rat liver and pig organs both compounds produced a positive dose-response in R1 and tissue Mn concentration, and only small or no response in R2. The Mn concentration in rat liver was positively correlated with R1, regardless of the form in which Mn was given, or the rate of administration. Optimal imaging parametes are therefore expected to be different pre- and post-MnDPDP administration. (orig./AJ)

  6. NMR study of rare earth and actinide complexes

    International Nuclear Information System (INIS)

    Villardi de Montlaur de, G.C.

    1978-01-01

    Proton magnetic resonance studies of lanthanide shift reagents with olefin-transition metal complexes, monoamines and diamines as substrates are described. Shift reagents for olefins are reported: Lnsup(III)(fod) 3 can induce substantial shifts in the nmr spectra of a variety of olefins when silver 1-heptafluororobutyrate is used to complex the olefin. The preparation, properties and efficiency of such systems are described. Configurational aspects and exchange processes of Lnsup(III)(fod) 3 complexes with secondary and tertiary monoamines are analysed by means of dynamic nmr. Factors influencing the stability and the stoichiometry of these complexes and various processes such as nitrogen inversion and ligand exchange are discussed. At low temperature, ring inversion can be slow on an nmr time-scale for Lnsup(III)(fod) 3 -diamino chelates. Barriers to ring inversion in substituted ethylenediamines and propanediamines are obtained. Steric factors appear to play an important role in the stability and kinetics of these bidentate species. The synthesis of uranium-IV crown-ether and cryptate complexes is described. A conformational study of these compounds show evidence of an insertion of the paramagnetic cation as witnessed by the large induced shifts observed. The insertion of uranium in the macrocyclic ligand of a UCl 4 -dicyclohexyl-18-crown-6 complex is confirmed by an X-ray structural determination [fr

  7. NMR studies of transmembrane electron transport in human erythrocytes

    International Nuclear Information System (INIS)

    Kennett, E.C.; Bubb, W.A.; Kuchel, P.W.

    2002-01-01

    Full text: Electron transport systems exist in the plasma membranes of all cells. These systems appear to play a role in cell growth and proliferation, intracellular signalling, hormone responses, apoptotic events, cell defence and perhaps most importantly they enable the cell to respond to changes in the redox state of both the intra- and extracellular environments. Previously, 13 C NMR has been used to study transmembrane electron transport in human erythrocytes, specifically the reduction of extracellular 13 C-ferricyanide. NMR is a particularly useful tool for studying such systems as changes in the metabolic state of the cell can be observed concomitantly with extracellular reductase activity. We investigated the oxidation of extracellular NADH by human erythrocytes using 1 H and 31 P NMR spectroscopy. Recent results for glucose-starved human erythrocytes indicate that, under these conditions, extracellular NADH can be oxidised at the plasma membrane with the electron transfer across the membrane resulting in reduction of intracellular NAD + . The activity is inhibited by known trans-plasma membrane electron transport inhibitors (capsaicin and atebrin) and is unaffected by inhibition of the erythrocyte Band 3 anion transporter. These results suggest that electron import from extracellular NADH allows the cell to re-establish a reducing environment after the normal redox balance is disturbed

  8. De novo protein structure determination using sparse NMR data

    International Nuclear Information System (INIS)

    Bowers, Peter M.; Strauss, Charlie E.M.; Baker, David

    2000-01-01

    We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models are built from these fragments by minimizing an energy function that favors hydrophobic burial, strand pairing, and satisfaction of NOE constraints. Models generated using this procedure with ∼1 NOE constraint per residue are in some cases closer to the corresponding X-ray structures than the published NMR solution structures. The method requires only the sparse constraints available during initial stages of NMR structure determination, and thus holds promise for increasing the speed with which protein solution structures can be determined

  9. 'In vivo' and high resolution spectroscopy in solids by NMR: an instrument for transgenic plants study

    International Nuclear Information System (INIS)

    Colnago, L.A.; Herrmann, P.S.P.; Bernardes Filho, R.

    1995-01-01

    This work has developed a study on transgenic plants using two different techniques of nuclear magnetic resonance, in vivo NMR and high resolution NMR. In order to understand the gene mutations and characterize the plants constituents, NMR spectral data were analysed and discussed, then the results were presented

  10. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints

    International Nuclear Information System (INIS)

    Tang, Chun; Clore, G. Marius

    2006-01-01

    A simple and reliable approach for docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints (as few as three from a single point) in combination with a novel representation for an attractive potential between mapped interaction surfaces is described. Unambiguous assignments of very sparse intermolecular NOEs are obtained using a reverse labeling strategy in which one the components is fully deuterated with the exception of selective protonation of the δ-methyl groups of isoleucine, while the other component is uniformly 13 C-labeled. This labeling strategy can be readily extended to selective protonation of Ala, Leu, Val or Met. The attractive potential is described by a 'reduced' radius of gyration potential applied specifically to a subset of interfacial residues (those with an accessible surface area ≥ 50% in the free proteins) that have been delineated by chemical shift perturbation. Docking is achieved by rigid body minimization on the basis of a target function comprising the sparse NOE distance restraints, a van der Waals repulsion potential and the 'reduced' radius of gyration potential. The method is demonstrated for two protein-protein complexes (EIN-HPr and IIA Glc -HPr) from the bacterial phosphotransferase system. In both cases, starting from 100 different random orientations of the X-ray structures of the free proteins, 100% convergence is achieved to a single cluster (with near identical atomic positions) with an overall backbone accuracy of ∼2 A. The approach described is not limited to NMR, since interfaces can also be mapped by alanine scanning mutagenesis, and sparse intermolecular distance restraints can be derived from double cycle mutagenesis, cross-linking combined with mass spectrometry, or fluorescence energy transfer

  11. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun; Clore, G. Marius [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: mariusc@intra.niddk.nih.gov

    2006-09-15

    A simple and reliable approach for docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints (as few as three from a single point) in combination with a novel representation for an attractive potential between mapped interaction surfaces is described. Unambiguous assignments of very sparse intermolecular NOEs are obtained using a reverse labeling strategy in which one the components is fully deuterated with the exception of selective protonation of the {delta}-methyl groups of isoleucine, while the other component is uniformly {sup 13}C-labeled. This labeling strategy can be readily extended to selective protonation of Ala, Leu, Val or Met. The attractive potential is described by a 'reduced' radius of gyration potential applied specifically to a subset of interfacial residues (those with an accessible surface area {>=} 50% in the free proteins) that have been delineated by chemical shift perturbation. Docking is achieved by rigid body minimization on the basis of a target function comprising the sparse NOE distance restraints, a van der Waals repulsion potential and the 'reduced' radius of gyration potential. The method is demonstrated for two protein-protein complexes (EIN-HPr and IIA{sup Glc}-HPr) from the bacterial phosphotransferase system. In both cases, starting from 100 different random orientations of the X-ray structures of the free proteins, 100% convergence is achieved to a single cluster (with near identical atomic positions) with an overall backbone accuracy of {approx}2 A. The approach described is not limited to NMR, since interfaces can also be mapped by alanine scanning mutagenesis, and sparse intermolecular distance restraints can be derived from double cycle mutagenesis, cross-linking combined with mass spectrometry, or fluorescence energy transfer.

  12. NMR spectroscopy: structure elucidation of cycloelatanene A: a natural product case study.

    Science.gov (United States)

    Urban, Sylvia; Dias, Daniel Anthony

    2013-01-01

    The structure elucidation of new secondary metabolites derived from marine and terrestrial sources is frequently a challenging task. The hurdles include the ability to isolate stable secondary metabolites of sufficient purity that are often present in products that the compound may rapidly degrade during and/or after the isolation, due to sensitivity to light, air oxidation, and/or temperature. In this way, precautions need to be taken, as much as possible to avoid any such chemical inter-conversions and/or degradations. Immediately after purification, the next step is to rapidly acquire all analytical spectroscopic data in order to complete the characterization of the isolated secondary metabolite(s), prior to any possible decomposition. The final hurdle in this multiple step process, especially in the acquisition of the NMR spectroscopic and other analytical data (mass spectra, infrared and ultra-violet spectra, optical rotation, etc.), is to assemble the structural moieties/units in an effort to complete the structure elucidation. Often ambiguity with the elucidation of the final structure remains when structural fragments identified are difficult to piece together on the basis of the HMBC NMR correlations or when the relative configuration cannot be unequivocally identified on the basis of NOE NMR enhancements observed. Herein, we describe the methodology used to carry out the structure elucidation of a new C16 chamigrene, cycloelatanene A (5) which was isolated from the southern Australian marine alga Laurencia elata (Rhodomelaceae). The general approach and principles used in the structure determination of this compound can be applied to the structure elucidation of other small molecular weight compounds derived from either natural or synthetic sources.

  13. MRI and unilateral NMR study of reindeer skin tanning processes.

    Science.gov (United States)

    Zhu, Lizheng; Del Federico, Eleonora; Ilott, Andrew J; Klokkernes, Torunn; Kehlet, Cindie; Jerschow, Alexej

    2015-04-07

    The study of arctic or subarctic indigenous skin clothing material, known for its design and ability to keep the body warm, provides information about the tanning materials and techniques. The study also provides clues about the culture that created it, since tanning processes are often specific to certain indigenous groups. Untreated skin samples and samples treated with willow (Salix sp) bark extract and cod liver oil are compared in this study using both MRI and unilateral NMR techniques. The two types of samples show different proton spatial distributions and different relaxation times, which may also provide information about the tanning technique and aging behavior.

  14. Study on irradiated polymerization of acrylonitrile by NMR

    International Nuclear Information System (INIS)

    Zhao Xin; Lin Hao

    1999-01-01

    Sup 13 C CP/MAS spectra and nuclear Overhauser effects (NOE) at room temperature have been measured for acrylonitrile (AN) in homophase irradiated polymerization. With the increase of radiation dose the chemical shift of cracking peaks and NOE are variation. This implies that the polymerized mechanism of AN were changed with the variation of irradiated doses and dose rate. There is the stronger affinity electron group (-CN) in acrylonitrile monomer. It may be polymerized by various ways and mechanism and be gained the polymer of difference structures and molecular weight of polyacrylonitrile (PAN). Starmicarbon and Starker obtained higher molecular weight of polyacrylonitrile by peroxysulfate-pyrosulfite in oxidation-reduction system. The superhigh molecular weight of PAN was synthesized chemically according to the method of Wu et. al. by suspension polymerization. In this paper we discussed that the relative concentrations of steric dyads and triads in the chain structure in PAN and the irradiation polymerized mechanism of acrylonitrile monomer in room temperature by different dose and dose rate

  15. NMR studies of phase behaviour in polyacrylonitrile solutions

    International Nuclear Information System (INIS)

    Golightly, J.A.

    1998-10-01

    The aim of the thesis was to study the phase behaviour of aqueous polyacrylonitrile/NaSCN solutions using a variety of nuclear magnetic resonance techniques. Polyacrylonitrile (PAN) is the basis of the acrylic fibre industry, as such fibres contain at least 85% PAN. Despite this industrial importance, the available literature describing the phase behaviour of PAN in solution is far from comprehensive. Bulk 1 H NMR relaxation measurements were carried out over a wide range of concentrations and temperatures to probe the molecular dynamics of the PAN and water molecules. The relaxation data was found to be biexponential decay for all samples, the relative amplitudes of which were shown to be equal to the ratio of PAN protons to water protons. Both species were found to be in the regime of rapid molecular motion. Bulk 1 H NMR self diffusion measurements, using the PFGSTE technique, exhibited a bi-exponential decay of the echo amplitudes. By careful selection of the observation time, Δ, it was possible to independently probe the water and PAN translational diffusion. A background gradient, resulting from inhomogeneities of the magnetic field, complicated the analysis of the data and a novel polynomial least squares fitting procedure was devised to overcome this effect. The measured attenuation of the water diffusion coefficients (D∼10 -6 -10 -5 cm 2 s -1 ) with increasing PAN volume fraction was modelled according to various theories, including free volume and scaling laws. The study of the PAN diffusion coefficient (D∼10 -7 -10 -6 cm 2 s -1 ) was limited by the experimental constraints of the NMR spectrometer. A 1 H NMR one-dimensional imaging technique was used to study the non-solvent induced phase separation (coagulation) of a PAN solution. The time dependence of the measured profiles allowed observation of the coagulation process. A diffusion model was developed to fit the experimental data using a semi-infinite diffusion framework. The fitting parameters

  16. Single crystal NMR studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Pennington, C.H.; Durand, D.J.; Zax, D.B.; Slichter, C.P.; Rice, J.P.; Bukowski, E.D.; Ginsberg, D.M.

    1989-01-01

    The authors report Cu NMR studies in the normal state of a single crystal of the T/sub c/ = 90 K superconductor YBa 2 Cu 3 O/sub 7/minus/δ/. The authors have measured the magnetic shift tensor, the electric field gradient tensor, the nuclear spin-lattice relaxation rate tensor, and the time dependence and functional form of the transverse decay. From these data they obtain information about the charge state and magnetic state of the Cu atoms, and the existence and size of the electronic exchange coupling between spins of adjacent Cu atoms. 18 refs., 3 figs., 2 tabs

  17. Some double resonance and multiple quantum NMR studies in solids

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of /sup 13/C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D/sub 2/O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, ..delta..sigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO/sub 3/.D/sub 2/O, ..cap alpha..,..beta.. d-2 HMB and ..cap alpha..,..beta..,..gamma.. d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules ..delta..m = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made.

  18. NMR spectroscopic studies of membrane-bound biological systems

    International Nuclear Information System (INIS)

    Hohlweg, W.

    2013-01-01

    In the course of this thesis, biological NMR spectroscopy was employed in studying membrane-bound peptides and proteins, for which structural information is still comparatively hard to obtain. Initial work focused on various model peptides bound to membrane-mimicking micelles, studying the protonation state of arginine in a membrane environment. Strong evidence for a cation-π complex was found in TM7, a peptide which forms the seventh transmembrane helix of subunit a of the vacuolar-type H+-ATPase (V-ATPase). V-ATPase is a physiologically highly relevant proton pump, which is present in intracellular membranes of all eukaryotic organisms, as well as the plasma membrane of several specialized cells. Loss of functional V-ATPase is associated with human diseases such as osteopetrosis, distal renal tubular acidosis or the spreading of cancer. V-ATPase is considered a potential drug target in the treatment of osteoporosis and cancer, or in the development of novel contraceptives. Results from NMR solution structure determination, NMR titration experiments, paramagnetic relaxation enhancement experiments and tryptophan fluorescence spectroscopy confirm the existence of a buried cation-? complex formed between arginine residue R735, which is essential for proton transport, and neighbouring tryptophan and tyrosine residues. In vivo experiments in the yeast Saccharomyces cerevisiae using selective growth tests and fluorescence microscopy showed that formation of the cation-π complex is essential for V-ATPase function. Deletion of both aromatic residues, as well as only the one tryptophan residue leads to growth defects and inability to maintain vacuolar pH homeostasis. These findings shine new light on the still elusive mechanism of proton transport in V-ATPase, and show that arginine R735 may be directly involved in proton transfer across the membrane. (author) [de

  19. Some double resonance and multiple quantum NMR studies in solids

    International Nuclear Information System (INIS)

    Wemmer, D.E.

    1978-08-01

    The first section of this work presents the theory and experimental applications to analysis of molecular motion of chemical shielding lineshapes obtained with high resolution double resonance NMR techniques. Analysis of 13 C powder lineshapes in hexamethylbenzene (HMB) and decamethylferrocene (DMFe) show that these molecules reorient in a jumping manner about the symmetry axis. Analysis of proton chemical shielding lineshapes of residual protons in heavy ice (D 2 O) show that protons are exchanged among the tetrahedral positions of neighboring oxygen atoms, consistent with motion expected from defect migration. The second section describes the application of Fourier Transform Double Quantum NMR to measurement of chemical shielding of deuterium in powder samples. Studies of partially deuterated benzene and ferrocene give equal shielding anisotropies, Δsigma = -6.5 ppM. Theoretical predictions and experimental measurements of dipolar couplings between deuterons using FTDQ NMR are presented. Crystals of BaClO 3 .D 2 O, α,β d-2 HMB and α,β,γ d-3 HMB were studied, as were powders of d-2 HMB and anisic acid. The third section discusses general multiple quantum spectroscopy in dipolar coupled spin systems. Theoretical description is made for creation and detection of coherences between states without quantum number selection rules Δm = +-1. Descriptions of techniques for partial selectivity of order in preparation and detection of multiple quantum coherences are made. The effects on selectivity and resolution of echo pulses during multiple quantum experiments are discussed. Experimental observation of coherences up to order 6 have been made in a sample of benzene dissolved in a liquid crystal. Experimental verifications of order selection and echo generation have been made

  20. Detailed NMR, Including 1,1-ADEQUATE, and Anticancer Studies of Compounds from the Echinoderm Colobometra perspinosa

    Directory of Open Access Journals (Sweden)

    Catherine H. Liptrot

    2009-11-01

    Full Text Available From the dichloromethane/methanol extract of the crinoid Colobometra perspinosa, collected south east of Richards Island (Bedara, Family Islands, Central Great Barrier Reef, Australia, 3-(1'-hydroxypropyl-1,6,8-trihydroxy-9,10-anthraquinone [one of the two stereoisomers of rhodoptilometrin, (1], 3-propyl-1,6,8-trihydroxy-9,10-anthraquinone (3, 2-[(phenylacetylamino]ethanesulfonic acid (4, and 4-hydroxybutanoic acid (5 were isolated. Comparison of 1H- and 13C-NMR data for rhodoptilometrin (1 with those reported in the literature showed significant differences for some resonances associated with rings A and C. In an attempt to provide accurately assigned 1H- and 13C-NMR data, as well as to confirm the structure of 1, a thorough NMR investigation of this compound was undertaken. Measurements included: concentration dependent 13C, 1D selective NOE, HSQC, HMBC and 1,1-ADEQUATE. The NMR data for 4 and 5 are reported here for the first time, as is their occurrence from the marine environment. The in vitro anticancer activity of the original extract was found to be associated with 1, 3 and 5.

  1. NMR studies of the interaction of the antibiotic nogalamycin with the hexadeoxyribonucleotide duplex d(5'-GCATGC)2

    International Nuclear Information System (INIS)

    Searle, M.S.; Hall, J.G.; Denny, W.A.; Wakelin, L.P.G.

    1988-01-01

    1 H resonance assignments in the NMR spectra of the self-complementary hexadeoxyribonucleoside pentaphosphate d(5'-GCATGC) 2 and its complex with the antibiotic nogalamycin, together with interproton distance constraints obtained from two-dimensional nuclear Overhauser effect (NOE) spectra, have enabled the authors to characterize the three-dimensional structure of these species in solution. In the complex described, two drug molecules are bound per duplex, in each of two equivalent binding sites, with full retention of the dyad symmetry. Twenty-eight NOE distance constraints between antibiotic and nucleotide protons define the position and orientation of the bound drug molecule. Nogalamycin intercalates at the 5'-CA and 5'-TG steps with the major axis of the anthracycline chromophore aligned approximately at right angles to the major axes of the base pairs. The nogalose sugar occupies the minor groove of the helix and makes many contacts with the deoxyribose moieties of three nucleotides along one strand of the duplex in the 5'-TGC segment. The charged dimethylamino group and hydroxyl functions of the bicyclic sugar lie in the major groove juxtaposed to the guanine base, the bridging atoms of the bicyclic sugar making contacts with the methyl group of the thymine. Thus the antibiotic is not symmetrically disposed in the intercalation site but is in close contact in both grooves with atoms comprising the 5'-TGC strand. The intercalation cavity is wedge-shaped, the major axes of the base pairs forming the site being tilted with respect to one another

  2. High-resolution NMR studies of chimeric DNA-RNA-DNA duplexes, heteronomous base pairing, and continuous base stacking at junctions

    International Nuclear Information System (INIS)

    Chou, Shanho; Flynn, P.; Wang, A.; Reid, B.

    1991-01-01

    Two symmetrical DNA-RNA-DNA duplex chimeras, d(CGCG)r(AAUU)d(CGCG) (designated rAAUU) and d(CGCG)r(UAUA)d(CGCG) (designated rUAUA), and a nonsymmetrical chimeric duplex, d(CGTT)r(AUAA)d(TGCG)/d(CGCA)r(UUAU)d(AACG) (designated rAUAA), as well as their pure DNA analogues, containing dU instead of T, have been synthesized by solid-phase phosphoramidite methods and studied by high-resolution NMR techniques. The 1D imino proton NOE spectra of these d-r-d chimeras indicate normal Watson-Crick hydrogen bonding and base stacking at the junction region. Preliminary qualitative NOESY, COSY, and chemical shift data suggest that the internal RNA segment contains C3'-endo (A-type) sugar conformations except for the first RNA residues (position 5 and 17) following the 3' end of the DNA block, which, unlike the other six ribonucleotides, exhibit detectable H1'-H2' J coupling. The nucleosides of the two flanking DNA segments appear to adopt a fairly normal C2'-endo B-DNA conformation except at the junction with the RNA blocks (residues 4 and 16), where the last DNA residue appears to adopt an intermediate sugar conformation. The data indicate that A-type and B-type conformations can coexist in a single short continuous nucleic acid duplex, but these results differ somewhat from previous theoretical model studies

  3. Lateral interactions in the photoreceptor membrane: a NMR study

    International Nuclear Information System (INIS)

    Mollevanger, L.C.P.J.

    1987-01-01

    The photoreceptor membrane has an exceptionally high content of polyunsaturated fatty acyl chains combined with a high amount of phosphatidyl ethanolamine. It is situated in a cell organelle, the rod outer segment, with a high biological activity in which controlable trans-membrane currents of different ions play an important role. These characteristics make it a very interesting biological membrane to search for the existence of non-bilayer structures. Therefore in this thesis a detailed study of the polymorphic phase behaviour of the rod outer segment photoreceptor lipids was undertaken, concerning modulation of the polymorphic phase behaviour of photoreceptor membrane lipids by divalent cations and temperature, polymorphism of the individual phospholipid classes phosphatidylethanolamine and phosphatidylserine and effects of cholesterol, bilayer stabilization by (rhod)opsin. Morphologically intact rod outer segment possesses a large magnetic anisotropy. This property is used to obtain 31 P-NMR of oriented photoreceptor membranes which allows spectral analysis and identification of individual phospholipid classes, and allows to study lateral lipid diffusion in intact disk membranes. The power of high resolution solid state 13 C-NMR to study the conformation of the chromophore in rhodopsin is demonstrated. (Auth.)

  4. 13C CPMAS NMR Studies of Anthocyanidins and their Glucosides

    International Nuclear Information System (INIS)

    Wolniak, M.; Wawer, I.

    2005-01-01

    Anthocyanins are responsible for red, purple or blue colours of flower petals and can be found in red or black fruits and berries. Many foods, especially red grapes and wines, aronia or blueberries contain large amounts of anthocyanins. Their health beneficial effects are related to antioxidant and radical scavenging properties. Structural analysis of anthocyanins by NMR are few, owing to the difficulty in obtaining analysable spectra for unstable, interconverting compounds, available in small amounts. Compounds studied by us were isolated from fruits and berries. 13 C CPMAS NMR spectra were recorded on a Bruker DSX-400 spectrometer for solid chlorides of: cyanidin, cyanidin 3-O-glucoside, cyanidin 3,5-O-diglucoside, pelargonidin and pelargonidin 3-O-glucoside. Dipolar dephased and short contact pulse sequences were used as an aid in the assignment of resonances in CPMAS spectra of solids. Inspection of the spectra indicates that anthocyanidins are in the form of flavylium (cationic) and not in form of the chalcone.: the resonance of C2 appears at ca. 160 ppm and C3 at ca. 135 ppm, whereas C ring opening produces C2 = O, for which chemical shift of ca. 180 ppm can be expected. A comparison of experimental (CPMAS) and predicted (GIAO DFT) shielding constants for cyanidin provided information about the orientation of OH groups, twist angle of aromatic ring B and the localization of the chloride anion.(author)

  5. NMR study of hyper-polarized 129Xe and applications to liquid-phase NMR experiments

    International Nuclear Information System (INIS)

    Marion, D.

    2008-07-01

    In liquid samples where both nuclear polarization and spin density are strong, the magnetization dynamics, which can be analysed by NMR (nuclear magnetic resonance) methods, is deeply influenced by the internal couplings induced by local dipolar fields. The present thesis describes some of the many consequences associated to the presence in the sample of concentrated xenon hyper-polarized by an optical pumping process. First, we deal with the induced modifications in frequency and line width of the proton and xenon spectra, then we present the results of SPIDER, a coherent polarization transfer experiment designed to enhance the polarization of protons, in order to increase their NMR signal level. A third part is dedicated to the description of the apparition of repeated chaotic maser emissions by un unstable xenon magnetization coupled to the detection coil tuned at the xenon Larmor frequency (here 138 MHz). In the last part, we present a new method allowing a better tuning of any NMR detection probe and resulting in sensible gains in terms of sensitivity and signal shaping. Finally, we conclude with a partial questioning of the classical relaxation theory in the specific field of highly polarized and concentrated spin systems in a liquid phase. (author)

  6. Proton NMR studies of Cucurbita maxima trypsin inhibitors: evidence for pH-dependent conformational change and His25-Tyr27 interaction.

    Science.gov (United States)

    Krishnamoorthi, R; Lin, C L; Gong, Y X; VanderVelde, D; Hahn, K

    1992-01-28

    A pH-dependent His25-Tyr27 interaction was demonstrated in the case of Cucurbita maxima trypsin inhibitors (CMTI-I and CMTI-III) by means of nuclear magnetic resonance (NMR) spectroscopy. pH titration, line widths, peak shapes, deuterium exchange kinetics, and two-dimensional nuclear Overhauser effect spectroscopy (NOESY) were employed to characterize a conformational change involving Tyr27, which was shown to be triggered by deprotonation of His25 around pH 6. A hydrogen bond is proposed to be formed between N epsilon of His25 and OH of Tyr27, as a distance between the atoms, His25 N epsilon and Tyr27 OH, of 3.02 A is consistent with a model built with NOE-derived distance constraints. Both the X-ray [Bode, W., Greyling, J.H., Huber, R., Otlewski, J., & Wilusz, T. (1989) FEBS Lett. 242, 282-292] and NMR [Holak, T.A., Gondol, D., Otlewski, J., & Wilusz, T. (1989) J. Mol. Biol. 210, 635-648] structures of CMTI-I at low pH (4.7-5.3) rule out such an interaction between the two aromatic rings, as the ring planes are oriented about 10 A away from each other. The presently characterized relative orientations of His25 and Tyr27 are of functional significance, as these residues make contact with the enzyme in the enzyme-inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor were functionally relevant only in the pH range 6-8. The pKa of His25 was determined and found to be influenced by Glu9/Lys substitution and by the hydrolysis of the reactive-site peptide bond between Arg5 and Ile6.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. NMR study of thermal decomposition of lithium tetrahydroaluminate

    International Nuclear Information System (INIS)

    Tarasov, V.P.; Bakum, S.I.; Kuznetsova, S.F.

    1997-01-01

    Pyrolysis of lithium aluminotetrahydrides and deuterides, LiAlH 4 and LiAlD 4 , was studied by 1 H, 7 Li, 27 Al NMR in 20-700 deg C range. 20-30 time constriction of resonance lines of studied nuclei at 170 deg C testifies to melting of the compounds. It is shown that at LiAlD 4 melting point the first stage of pyrolysis is described by two parallel reactions: LiAlD 4 -> LiD + Al + D 2 , LiAlD 4 + LiD -> Li 3 AlD 6 , which proceed with different rates. It was revealed that reactions of lithium hydride (deuteride) with metallic aluminium at temperatures above 400 deg C resulted to formation of intermetallic compounds of LiAl and LiAl 3 composition. LiAl is characterized by higher thermal stability, than LiAl 3 . 20 refs., 6 figs., 2 tabs

  8. NMR studies of two spliced leader RNAs using isotope labeling

    Energy Technology Data Exchange (ETDEWEB)

    Lapham, J.; Crothers, D.M. [Yale Univ., New Haven, CT (United States)

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  9. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  10. Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies

    International Nuclear Information System (INIS)

    Zhou Pei; Wagner, Gerhard

    2010-01-01

    Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR. We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs.

  11. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet.

    Science.gov (United States)

    Vennemann, T; Jeong, M; Yoon, D; Magrez, A; Berger, H; Yang, L; Živković, I; Babkevich, P; Rønnow, H M

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO 4 with S = 1/2 (Mo 5+ ) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31 P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  12. Note: Commercial SQUID magnetometer-compatible NMR probe and its application for studying a quantum magnet

    Science.gov (United States)

    Vennemann, T.; Jeong, M.; Yoon, D.; Magrez, A.; Berger, H.; Yang, L.; Živković, I.; Babkevich, P.; Rønnow, H. M.

    2018-04-01

    We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

  13. NMR studies of actinide carbide and nitride electronic properties

    International Nuclear Information System (INIS)

    Boutard, Jean-Louis

    1976-12-01

    N.M.R. studies applied to 13 C and 15 N in the solid solutions ThCsub(1-x)Nsub(x), UCsub(1-x)Nsub(x) and in the compounds ThCsub(1-x) and U 2 C 3 , were undertaken to study carbon and nitrogen contribution to chemical bonds and magnetism. For THORIUM MONOCARBIDE AND CARBONITRIDE: ThCsub(1-x) and ThCsub(1-x)Nsub(x), the very strong orbital contribution to the frequency shift reveals an important covalent character of the valence band 6d metal and 2p metalloid states. The ThCsub(1-x) band structure stoichiometry variation is due to 6dγ metal states appearing at the Fermi level and is in-opposition to a rigid band model. A non-saturated bond mechanism is suggested. For URANIUM CARBONITRIDE: UCsub(1-x)Nsub(x), in the concentration range in which no magnetic order appears at low temperature (x<0.90), the results are in opposition to a localized 5f 2 configuration model, and show that the uranium fundamental state is non-magnetic. Nevertheless two qualitatively different behaviors exist: nitrogen concentration lower than 40%: and nitrogen concentration higher than 40%. A model is proposed to account for those domains: it relies on the 5f-2p hybridization parameter which is maximum on 2p band edge (UC) and almost nul for UN. For URANIUM SESQUICARBIDE: U 2 C 3 : the N.M.R. line observation at 4.2 K indicates a non-magnetic fundamental state although the magnetic susceptibility presents a maximum at 60 K. Spin fluctuations in 5f bands are proposed to describe the electronic properties of this compound. [fr

  14. 13C and 31P NMR studies of myocardial metabolism

    International Nuclear Information System (INIS)

    Laughlin, M.R.

    1988-01-01

    The fluxes through two enzyme systems have been measured in perfused or in in vivo heart using NMR: phosphocreatine kinase, and glycogen synthase and phosphorylase. The rates of synthesis and degradation of glycogen were monitored in vivo in fed, fasted, and diabetic rat heart during infusions of 13 C-1-glucose and insulin using proton-decoupled 13 C-NMR at 1.9 and 4.7 tesla. The enzyme activities of glycogen synthase and glycogen phosphorylase were also measured in this tissue which had been freeze clamped at the end of the experiment, for comparison with the synthetic rates. For normal fed, fasted, and diabetic animals, synthesis rates were 0.28, 0.16, and 0.15 μmol/min.gww respectively. Glycogen synthase i activity was 0.23, 0.14, and 0.14 μmol/min.gww in these hearts at the end of the experiment, when measured at appropriate substrate and activator concentrations, and follow activation time courses that are consistent with being the main rate determinant for net synthesis in all cases. Turnover of glycogen was studied by observing the preformed 13 C-1-glycogen signal during infusion of 12 C-glucose and insulin, and was found to be close to zero. Extracted phosphorylase a activity was approximately ten times that of synthase i under these circumstances. In order to fully interpret the turnover studies, glycogenolysis of preformed 13 C-glycogen was observed after a bolus of glucagon. The glycogen had either been synthesized from 13 C-1-glucose for a single hour, or during an hour of 13 C-glucose and a subsequent hour of 12 C-glucose infusion. The author observed that breakdown follows an exponential time course related to the phosphorylase a activation state and that the last synthesized glycogen breaks down at the rate of 2.5 μmol/min.gww, five times faster than that synthesized an hour earlier

  15. Moessbauer and NMR study of novel Tin(IV)-lactames

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmann, Erno; Szalay, Roland; Homonnay, Zoltan, E-mail: homonnay@ludens.elte.hu; Nagy, Sandor [Eoetvoes Lorand University, Institute of Chemistry (Hungary)

    2012-03-15

    N-tributylstannylated 2-pyrrolidinone was reacted with tributyltin triflate in different molar ratios and the complex formation monitored using {sup 1}H-NMR, {sup 13}C-NMR and {sup 119}Sn Moessbauer spectroscopy. Comparing the carbon NMR and tin Moessbauer results, a reaction scheme is suggested for the complexation which assumes the formation of a simultaneously O- and N-tributylstannylated pyrrolidinone cation. The formation of the only O-stannylated pyrrolidinone is also assumed to account for the non-constant Moessbauer parameters of the two tin environments in the distannylated pyrrolidinone cation when the ratio of tributyltin triflate is increased in the reaction.

  16. Isotope labeling strategies for NMR studies of RNA

    International Nuclear Information System (INIS)

    Lu, Kun; Miyazaki, Yasuyuki; Summers, Michael F.

    2010-01-01

    The known biological functions of RNA have expanded in recent years and now include gene regulation, maintenance of sub-cellular structure, and catalysis, in addition to propagation of genetic information. As for proteins, RNA function is tightly correlated with structure. Unlike proteins, structural information for larger, biologically functional RNAs is relatively limited. NMR signal degeneracy, relaxation problems, and a paucity of long-range 1 H- 1 H dipolar contacts have limited the utility of traditional NMR approaches. Selective isotope labeling, including nucleotide-specific and segmental labeling strategies, may provide the best opportunities for obtaining structural information by NMR. Here we review methods that have been developed for preparing and purifying isotopically labeled RNAs, as well as NMR strategies that have been employed for signal assignment and structure determination.

  17. Studies on supramolecular gel formation using DOSY NMR

    Czech Academy of Sciences Publication Activity Database

    Nonappa, N.; Šaman, David; Kolehmainen, E.

    2015-01-01

    Roč. 53, č. 4 (2015), s. 256-260 ISSN 0749-1581 Institutional support: RVO:61388963 Keywords : DOSY * VT NMR * gel * diffusion coefficients Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.226, year: 2015

  18. Solid-state NMR studies of nucleic acid components

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Hodgkinson, P.

    2015-01-01

    Roč. 5, č. 16 (2015), s. 12300-12310 ISSN 2046-2069 R&D Projects: GA ČR GA13-24880S Institutional support: RVO:61388963 Keywords : NMR spectroscopy * nucleic acid s * solid-state NMR Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/ra/c4ra14404j

  19. Successful Sampling Strategy Advances Laboratory Studies of NMR Logging in Unconsolidated Aquifers

    Science.gov (United States)

    Behroozmand, Ahmad A.; Knight, Rosemary; Müller-Petke, Mike; Auken, Esben; Barfod, Adrian A. S.; Ferré, Ty P. A.; Vilhelmsen, Troels N.; Johnson, Carole D.; Christiansen, Anders V.

    2017-11-01

    The nuclear magnetic resonance (NMR) technique has become popular in groundwater studies because it responds directly to the presence and mobility of water in a porous medium. There is a need to conduct laboratory experiments to aid in the development of NMR hydraulic conductivity models, as is typically done in the petroleum industry. However, the challenge has been obtaining high-quality laboratory samples from unconsolidated aquifers. At a study site in Denmark, we employed sonic drilling, which minimizes the disturbance of the surrounding material, and extracted twelve 7.6 cm diameter samples for laboratory measurements. We present a detailed comparison of the acquired laboratory and logging NMR data. The agreement observed between the laboratory and logging data suggests that the methodologies proposed in this study provide good conditions for studying NMR measurements of unconsolidated near-surface aquifers. Finally, we show how laboratory sample size and condition impact the NMR measurements.

  20. Practical aspects of NMR signal assignment in larger and challenging proteins

    Science.gov (United States)

    Frueh, Dominique P.

    2014-01-01

    NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins. PMID:24534088

  1. Complete sequence-specific 1H NMR assignments for human insulin

    International Nuclear Information System (INIS)

    Kline, A.D.; Justice, R.M. Jr.

    1990-01-01

    Solvent conditions where human insulin could be studied by high-resolution NMR were determined. Both low pH and addition of acetonitrile were required to overcome the protein's self-association and to obtain useful spectra. Two hundred eighty-six 1 H resonances were located and assigned to specific sites on the protein by using two-dimensional NMR methods. The presence and position of numerous d NN sequential NOE's indicate that the insulin conformation seen in crystallographic studies is largely retained under these solution conditions. Slowly exchanging protons were observed for seven backbone amide protons and were assigned to positions A15 and A16 and to positions B15-B19. These amides all occur within helical regions of the protein

  2. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study

    International Nuclear Information System (INIS)

    Sahu, Sarata C.; Bhuyan, Abani K.; Udgaonkar, Jayant B.; Hosur, R.V.

    2000-01-01

    Backbone dynamics of uniformly 15 N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 deg. C, pH 6.6, using 15 N relaxation data obtained from proton-detected 2D { 1 H}- 15 N NMR spectroscopy. 15 N spin-lattice relaxation rate constants (R 1 ), spin-spin relaxation rate constants (R 2 ), and steady-state heteronuclear { 1 H}- 15 N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15 N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (τ m ) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme

  3. (¹⁵N ± ¹³C') edited (4, 3)D-H(CC)CONH TOCSY and (4, 3)D-NOESY HNCO experiments for unambiguous side chain and NOE assignments of proteins with high shift degeneracy.

    Science.gov (United States)

    Kumar, Dinesh; Arora, Ashish

    2011-11-01

    Well-resolved and unambiguous through-bond correlations and NOE data are crucial for high-quality protein structure determination by NMR. In this context, we present here (4, 3)D reduced dimensionality (RD) experiments: H(CC)CONH TOCSY and NOESY HNCO--which instead of (15)N shifts exploit the linear combination of (15)N(i) and (13)C'(i-1) shifts (where i is a residue number) to resolve the through-bond (1)H-(1)H correlations and through-space (1)H-(1)H NOEs. The strategy makes use of the fact that (15)N and (13)C' chemical shifts when combined linearly provide a dispersion which is better compared to those of the individual chemical shifts. The extended dispersion thus available in these experiments will help to obtain the unambiguous side chain and accurate NOE assignments especially for medium-sized alpha-helical or partially unstructured proteins [molecular weight (MW) between 12-15 kDa] as well as higher MW (between 15-25 kDa) folded proteins where spectral overlap renders inaccurate and ambiguous NOEs. Further, these reduced dimensionality experiments in combination with routinely used (15)N and (13)C' edited TOCSY and NOESY experiments will provide an alternative way for high-quality NMR structure determination of large unstable proteins (with very high shift degeneracy), which are not at all amenable to 4D NMR. The utility of these experiments has been demonstrated here using (13)C/(15)N labeled ubiquitin (76 aa) protein. Copyright © 2011 John Wiley & Sons, Ltd.

  4. High resolution deuterium NMR studies of bacterial metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-12-25

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed.

  5. High resolution deuterium NMR studies of bacterial metabolism

    International Nuclear Information System (INIS)

    Aguayo, J.B.; Gamcsik, M.P.; Dick, J.D.

    1988-01-01

    High resolution deuterium NMR spectra were obtained from suspensions of five bacterial strains: Escherichia coli, Clostridium perfringens, Klebsiella pneumoniae, Proteus mirabilis, and Staphylococcus aureus. Deuterium-labeled D-glucose at C-1, C-2, and C-6 was used to monitor dynamically anaerobic metabolism. The flux of glucose through the various bacterial metabolic pathways could be determined by following the disappearance of glucose and the appearance of the major end products in the 2H NMR spectrum. The presence of both labeled and unlabeled metabolites could be detected using 1H NMR spectroscopy since the proton resonances in the labeled species are shifted upfield due to an isotopic chemical shift effect. The 1H-1H scalar coupling observed in both the 2H and 1H NMR spectra was used to assign definitively the resonances of labeled species. An increase in the intensity of natural abundance deuterium signal of water can be used to monitor pathways in which a deuteron is lost from the labeled metabolite. The steps in which label loss can occur are outlined, and the influence these processes have on the ability of 2H NMR spectroscopy to monitor metabolism are assessed

  6. Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects.

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Feng; Li, Hua; Xu, Junzhong; Gochberg, Daniel F; Gore, John C; Zu, Zhongliang

    2017-07-01

    Accurate quantification of chemical exchange saturation transfer (CEST) effects, including dipole-dipole mediated relayed nuclear Overhauser enhancement (rNOE) saturation transfer, is important for applications and studies of molecular concentration and transfer rate (and thereby pH or temperature). Although several quantification methods, such as Lorentzian difference (LD) analysis, multiple-pool Lorentzian fits, and the three-point method, have been extensively used in several preclinical and clinical applications, the accuracy of these methods has not been evaluated. Here we simulated multiple-pool Z spectra containing the pools that contribute to the main CEST and rNOE saturation transfer signals in the brain, numerically fit them using the different methods, and then compared their derived CEST metrics with the known solute concentrations and exchange rates. Our results show that the LD analysis overestimates contributions from amide proton transfer (APT) and intermediate exchanging amine protons; the three-point method significantly underestimates both APT and rNOE saturation transfer at -3.5 ppm (NOE(-3.5)). The multiple-pool Lorentzian fit is more accurate than the other two methods, but only at lower irradiation powers (≤1 μT at 9.4 T) within the range of our simulations. At higher irradiation powers, this method is also inaccurate because of the presence of a fast exchanging CEST signal that has a non-Lorentzian lineshape. Quantitative parameters derived from in vivo images of rodent brain tumor obtained using an irradiation power of 1 μT were also compared. Our results demonstrate that all three quantification methods show similar contrasts between tumor and contralateral normal tissue for both APT and the NOE(-3.5). However, the quantified values of the three methods are significantly different. Our work provides insight into the fitting accuracy obtainable in a complex tissue model and provides guidelines for evaluating other newly developed

  7. Hydrogen-1 NMR relaxation time studies in membrane: anesthetic systems

    International Nuclear Information System (INIS)

    Pinto, L.M.A.; Fraceto, L.; Paula, E. de; Franzoni, L.; Spisni, A.

    1997-01-01

    The study of local anesthetics'(LA) interaction with model phospholipid membranes is justified by the direct correlation between anesthetic's hydrophobicity and its potency/toxicity. By the same reason, uncharged LA species seems to play a crucial role in anesthesia. Most clinically used LA are small amphiphilics with a protonated amine group (pKa around 8). Although both charged (protonated) and uncharged forms can coexist at physiological pH, it has been shown (Lee, Biochim. Biophys. Acta 514:95, 1978; Screier et al. Biochim. Biophys. Acta 769:231, 1984) that the real anesthetic pka can be down-shifted, due to differential partition into membranes, increasing the ratio of uncharged species at pH 7.4. We have measured 1 H-NMR longitudinal relaxation times (T 1 ) for phospholipid and three local anesthetics (tetracaine, lidocaine, benzocaine), in sonicated vesicles at a 3:1 molar ratio. All the LA protons have shown smaller T 1 in this system than in isotropic phases, reflecting LA immobilization caused by insertion in the membrane. T 1 values for the lipid protons in the presence of LA were analyzed, in an attempt to identify specific LA:lipid contact regions. (author)

  8. 11B nutation NMR study of powdered borosilicates

    International Nuclear Information System (INIS)

    Woo, Ae Ja; Yang, Kyung Hwa; Han, Duk Young

    1998-01-01

    In this work, we applied the 1D 11 B nutation NMR method for the analysis of the local structural environments in powdered borosilicates (SiO 2 -B 2 O 3 ). Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density matrix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D 11 B nutation NMR experiment. The 11 B NMR parameters, quadrupole coupling constants (e 2 qQ/h) and asymmetry parameters (η), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed

  9. Conformational studies of human [15-2-aminohexanoic acid]little gastrin in sodium dodecyl sulfate micelles by 1H NMR

    International Nuclear Information System (INIS)

    Mammi, S.; Peggion, E.

    1990-01-01

    Human little gastrin is a 17 amino acid peptide that adopts a random conformation in water and an ordered structure in sodium dodecyl sulfate (SDS) micelles as well as in trifluoroethanol (TFE). The circular dichroism spectra in these two media have the same shape, indicative of a similar preferred conformation. The authors describe here the assignment of the proton NMR resonances and the conformational analysis of [Ahx 15 ] little gastrin in SDS micelles. Two-dimensional correlation techniques form the basis for the assignment. The conformational analysis utilizes NOE's, NH to C α H coupling constants, and the temperature coefficients of the amide chemical shifts. The NMR data indicate a helical structure in the N-terminal portion of the peptide. These results are compared with the conformation that the authors recently proposed for a minigastrin analogue (fragment 5-17 of [Ahx 15 ] little gastrin) in TFE

  10. NMR and XAS Study of Fe-Mo Double Perovskites

    International Nuclear Information System (INIS)

    Zajac, D.A.; Kapusta, C.; Borowiec, M.; Sikora, M.; Marquina, C.; Blasco, J.; Ibarra, M.R.

    2005-01-01

    The results of NMR and XAS measurements of the A 2 FeMoO 6 double perovskites (DP) (A 2 =Sr 2 , SrBa, Ba 2 , Ca 2 ) at the Fe and Mo K edges are reported and the information on the individual site electronic and magnetic properties is analysed. The compounds studied belong to the family of materials exhibiting a high field '' colossal '' magnetoresistance as well as a low field '' giant '' magnetoresistance. Magnetoresistive properties of the compounds arise from their half-metallicity, i.e. only one spin direction being populated in the conduction band, which consists of overlapping spin down 3d Fe, 2p O and 4d Mo electron bands. Within the model, a spin-down electron undergoes a fast hopping through unoccupied oxygen 2p orbitals between Fe 3+ (3d 5 - spin up) and Mo 6+ (4d 0 ) ionic cores. This mechanism implicates an anti-parallel coupling of the Fe and Mo spins and leads to non-integer magnetic moments and a metallic character below TC. The interaction, in analogy with the '' double exchange '' (DE) in manganites, is called '' double exchange-like '' interaction. The superexchange interaction (SE) is also expected to be present, resulting also in an anti-parallel coupling of 3d Fe 3+ and 4d Mo 5+ spins through occupied oxygen 2p orbitals. The insulating character of SE is connected with an increase of the tilt angle of the Fe-O-Mo bond, which is related to a change of the structural tolerance factor f and results in structural distortions. The molybdenum NMR measurements revealed the existence of a non-integer magnetic moment at Mo and Fe, which can be attributed to the DE-like interaction. However, experiments using Moessbauer spectroscopy have shown the existence of two Fe ionisation states - with integer (SE) and non integer (DE) magnetic moments. The 95 Mo and 97 Mo NMR measurements on A 2 FeMoO 6 (A 2 =Sr 2 , SrBa, Ba 2 , Ca 2 ) presented in this work show different values of the Mo hyperfine field and the corresponding magnetic moment. This is attributed

  11. Selected topics from recent NMR studies of organolithium compounds

    Directory of Open Access Journals (Sweden)

    Günther Harald

    1999-01-01

    Full Text Available After a short introduction to NMR spectroscopy of alkali and alkaline earth metals the review concentrates on NMR investigations of organolithium compounds. The isotopic fingerprint method, which rests on deuterium-induced isotope shifts for 6Li resonances, is introduced and exemplified with applications from the aggregation behavior of cyclopropyllithium systems and mixed aggregate formation between methyllithium and lithium salts. In the following chapter, one- and two-dimensional pulse experiments, both for homo- and for heteronuclear spin systems are discussed. Finally, the structural aspects associated with benzyllithium are outlined and the formation of polylithium systems by lithium reduction of biphenylenes is described.

  12. On the transmit field inhomogeneity correction of relaxation‐compensated amide and NOE CEST effects at 7 T

    Science.gov (United States)

    Windschuh, Johannes; Siero, Jeroen C.W.; Zaiss, Moritz; Luijten, Peter R.; Klomp, Dennis W.J.; Hoogduin, Hans

    2017-01-01

    High field MRI is beneficial for chemical exchange saturation transfer (CEST) in terms of high SNR, CNR, and chemical shift dispersion. These advantages may, however, be counter‐balanced by the increased transmit field inhomogeneity normally associated with high field MRI. The relatively high sensitivity of the CEST contrast to B 1 inhomogeneity necessitates the development of correction methods, which is essential for the clinical translation of CEST. In this work, two B 1 correction algorithms for the most studied CEST effects, amide‐CEST and nuclear Overhauser enhancement (NOE), were analyzed. Both methods rely on fitting the multi‐pool Bloch‐McConnell equations to the densely sampled CEST spectra. In the first method, the correction is achieved by using a linear B 1 correction of the calculated amide and NOE CEST effects. The second method uses the Bloch‐McConnell fit parameters and the desired B 1 amplitude to recalculate the CEST spectra, followed by the calculation of B 1‐corrected amide and NOE CEST effects. Both algorithms were systematically studied in Bloch‐McConnell equations and in human data, and compared with the earlier proposed ideal interpolation‐based B 1 correction method. In the low B 1 regime of 0.15–0.50 μT (average power), a simple linear model was sufficient to mitigate B 1 inhomogeneity effects on a par with the interpolation B 1 correction, as demonstrated by a reduced correlation of the CEST contrast with B 1 in both the simulations and the experiments. PMID:28111824

  13. NMR study of thermoresponsive block copolymer in aqueous solution

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Konefal, Rafal; Čadová, Eva

    2016-01-01

    Roč. 217, č. 12 (2016), s. 1370-1375 ISSN 1022-1352 R&D Projects: GA ČR(CZ) GA15-13853S Institutional support: RVO:61389013 Keywords : aqueous solutions * NMR * NOESY Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.500, year: 2016

  14. Advances in 27Al MAS NMR studies of geopolymers

    Czech Academy of Sciences Publication Activity Database

    Brus, Jiří; Abbrent, Sabina; Kobera, Libor; Urbanová, Martina; Cuba, P.

    2016-01-01

    Roč. 88, č. 2016 (2016), s. 79-147 ISSN 0066-4103 R&D Projects: GA ČR(CZ) GA13-24155S; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : geopolymers * aluminosilicates * solid-state NMR Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.600, year: 2016

  15. 235U NMR study of the itinerant antiferromagnet USb2

    International Nuclear Information System (INIS)

    Kato, Harukazu; Sakai, Hironori; Ikushima, Kenji; Kambe, Shinsaku; Tokunaga, Yo; Aoki, Dai; Haga, Yoshinori; O-bar nuki, Yoshichika; Yasuoka, Hiroshi; Walstedt, Russell E.

    2005-01-01

    We have succeeded in resolving a 235 U antiferromagnetic nuclear magnetic resonance (AFNMR) signal using 235 U-enriched samples of USb 2 . The uranium hyperfine field and coupling constant estimated for this compound are consistent with those from other experiments. This is the first reported observation of 235 U NMR in conducting host material

  16. Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Scanu, Sandra

    2013-01-01

    This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational

  17. Studies of Superfluid 3He Confined to a Regular Submicron Slab Geometry, Using SQUID NMR

    International Nuclear Information System (INIS)

    Casey, Andrew; Corcoles, Antonio; Lusher, Chris; Cowan, Brian; Saunders, John

    2006-01-01

    The effect on the superfluid ground state of confining p-wave superfluid 3He in regular geometries of characteristic size comparable to the diameter of the Cooper pair remains relatively unexplored, in part because of the demands placed by experiments on the sensitivity of the measuring technique. In this paper we report preliminary experiments aimed at the study of 3He confined to a slab geometry. The NMR response of a series of superfluid samples has been investigated using a SQUID NMR amplifier. The sensitivity of this NMR spectrometer enables samples of order 1017 spins, with low filling factor, to be studied with good resolution

  18. Proton NMR studies of Cucurbita maxima trypsin inhibitors: Evidence for pH-dependent conformational change and his25 - try27 interaction

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamoorthi, R.; Chanlan Sun Lin; Yuxi Gong (Kansas State Univ., Manhattan (United States)); VanderVelde, D. (Univ. of Kansas, Lawrence (United States)); Hahn, K. (Univ. of Colorado, Denver (United States))

    1992-01-28

    A pH-dependent His25-Tyr27 interaction was demonstrated in the case of Cucurbita maxima trypsin inhibitors (CMTI-I and CMTI-III) by means of nuclear magnetic resonance (NMR) spectroscopy. pH titration, line widths, peak shapes, deuterium exchange kinetics, and two-dimensional nuclear Overhauser effect spectroscopy (NOESY) were employed to characterize a conformational change involving Tyr27, which was shown to be triggered by deprotonation of His25 around pH 6. A hydrogen bond is proposed to be formed between N{sub {epsilon}} of His25 and OH of Tyr27, as a distance between the atoms, His25 N{epsilon} and Tyr25 OH, of 3.02 {angstrom} is consistent with a model built with NOE-derived distance constraints. The presently characterized relative orientations of His25 and Tyr27 are of functional significance, as these residues make contact with the enzyme in the enzyme-inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor complex. Furthermore, trypsin assay and inhibitor-binding studies showed that conformations of trypsin and the squash inhibitor were functionally relevant only in the pH range 6-8. The pK{sub a} of His25 was determined and found to be influenced by Glu9/Lys substitution and by the hydrolysis of the reactive-site peptide bond between Arg5 and Ile6. As these sites are located far (>10 {angstrom}) from His25, the results point out conformational changes that are propagated to a distant site in the protein molecule.

  19. Sequence-specific 1H NMR resonance assignments of Bacillus subtilis HPr: Use of spectra obtained from mutants to resolve spectral overlap

    International Nuclear Information System (INIS)

    Wittekind, M.; Klevit, R.E.; Reizer, J.

    1990-01-01

    On the basis of an analysis of two-dimensional 1 H NMR spectra, the complete sequence-specific 1 H NMR assignments are presented for the phosphocarrier protein HPr from the Gram-positive bacterium Bacillus subtilis. During the assignment procedure, extensive use was made of spectra obtained from point mutants of HPr in order to resolve spectral overlap and to provide verification of assignments. Regions of regular secondary structure were identified by characteristic patterns of sequential backbone proton NOEs and slowly exchanging amide protons. B subtilis HPr contains four β-strands that form a single antiparallel β-sheet and two well-defined α-helices. There are two stretches of extended backbone structure, one of which contains the active site His 15 . The overall fold of the protein is very similar to that of Escherichia coli HPr determined by NMR studies

  20. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    International Nuclear Information System (INIS)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G.; Boffo, Elisangela F.; Figueira, Glyn M.

    2012-01-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, 1 H HR-MAS NMR and 1 H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  1. Authenticity study of Phyllanthus species by NMR and FT-IR Techniques coupled with chemometric methods

    Directory of Open Access Journals (Sweden)

    Maiara S. Santos

    2012-01-01

    Full Text Available The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.

  2. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  3. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  4. NMR studies of Na+-anion association effects in polymer electrolytes

    International Nuclear Information System (INIS)

    Greenbaum, S.G.; Pak, Y.S.; Wintergill, M.C.; Fontanella, J.J.

    1988-01-01

    23 Na nuclear magnetic resonance (NMR) measurements on poly (propylene oxide) (PPO) and siloxane based polymer electrolytes containing various sodium salts at a single nominal concentration are reported. In addition, differential scanning calorimetry (DSC) and electrical conductivity studies were carried out on the PPO materials. The NMR-determined mobile Na + concentrations and DSC results provide evidence for ionic aggregation effects which, for some samples, result in salt precipitation at elevated temperatures. 23 Na chemical shifts observed in solid state NMR due to mobile Na + -anion interactions influence ionic transport as well as the number of available carriers. (author). 19 refs.; 7 figs

  5. A comparative study of bone scintigraphy and NMR for vertebral diseases

    International Nuclear Information System (INIS)

    Nakatani, Mariko; Sekiya, Toru; Hata, Yuichi; Mori, Yutaka; Yasuda, Masanobu; Kawakami, Kenji; Tada, Sinpei

    1985-01-01

    A comparative study of NMR and bone scintigraphy was performed in vertebral disorders, and the significance of both modalities was evaluated. Twelve patients with various vertebral abnormalities including ten cases of vertebral metastases, one case of cervical caries and one case of Granular cell tumor of L3, were examined. In 4 patients, NMR showed abnormalities in the same regions as the bone scintigrams. In another 3 patients. NMR did not show the disorders reported on bone scintigrams. This may be due to the low NMR sensitivity to tiny infiltration of tumor cells in the bone marrow. In 3 out of the remaining 5 patients, NMR demonstrated abnormal findings, whilst the bone scintigrams were normal. Previous bone scintigrams in these patients before treatment had shown abnormal accumulation of activity in the region of abnormal NMR findings. This may be due to the fact that NMR detects the irreversible change of bone marrow, and bone scintigram demonstrates the turn over of bone minerals. This limited experience suggests that both madalities are complementary in the evaluation of vertebral abnormalities. (author)

  6. Automated sample preparation station for studying self-diffusion in porous solids with NMR spectroscopy

    Science.gov (United States)

    Hedin, Niklas; DeMartin, Gregory J.; Reyes, Sebastián C.

    2006-03-01

    In studies of gas diffusion in porous solids with nuclear magnetic resonance (NMR) spectroscopy the sample preparation procedure becomes very important. An apparatus is presented here that pretreats the sample ex situ and accurately sets the desired pressure and temperature within the NMR tube prior to its introduction in the spectrometer. The gas manifold that supplies the NMR tube is also connected to a microbalance containing another portion of the same sample, which is kept at the same temperature as the sample in the NMR tube. This arrangement permits the simultaneous measurement of the adsorption loading on the sample, which is required for the interpretation of the NMR diffusion experiments. Furthermore, to ensure a good seal of the NMR tube, a hybrid valve design composed of titanium, a Teflon® seat, and Kalrez® O-rings is utilized. A computer controlled algorithm ensures the accuracy and reproducibility of all the procedures, enabling the NMR diffusion experiments to be performed at well controlled conditions of pressure, temperature, and amount of gas adsorbed on the porous sample.

  7. 31P NMR study of phosphate metabolites in intact developing seeds of wheat, soybean and mustard

    International Nuclear Information System (INIS)

    Gambhir, P.N.; Pande, P.C.; Ratcliffe, R.G.

    1994-01-01

    The study of 31 P NMR spectra of intact developing seeds of wheat, soybean and mustard and its possible use for assessing the relative degree of hypoxia under in vivo conditions are reported. 7 refs., 2 figs

  8. NMR structural studies of oligosaccharides and other natural products

    DEFF Research Database (Denmark)

    Kjærulff, Louise

    produce secondary metabolites for signaling and competing against other organisms, and these molecules are important in drug discovery due to their inherent biological activities. From a marine Photobacterium (P. halotolerans) we isolated the solonamides and the ngercheumicins, two families of cyclic...... through the nJCH correlation, this experiment has exciting applications for configurational assignment of e.g. carbohydrates and for residual dipolar couplings. Identification of known molecules and discovery of novel molecules are other important applications of NMR spectroscopy. Bacteria and fungi....... fijiensis, was also investigated for production of novel secondary metabolites, and a new pyranonigrin (E) was isolated and structure elucidated by NMR spectroscopy along with JBIR-74 and decumbenone A, two known metabolites previously isolated from Aspergillus and Penicillium species. Oligosaccharides...

  9. High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane

    Science.gov (United States)

    Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua

    2005-01-01

    Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922

  10. A comparison study of PET, NMR, and CT imaging in cerebral ischemia

    International Nuclear Information System (INIS)

    Babikian, V.L.; Ford, C.S.; Buonanno, F.S.; Kistler, J.P.; Ackerman, R.H.; Alpert, N.M.; Correia, J.A.; Johnson, K.A.; Buxton, R.B.

    1987-01-01

    Whether ischemia without infarction produces recognizable changes in relaxation times of ischemic but viable brain is an important, unresolved issue. Therefore, a study was initiated of patients with cerebral ischemia, using positron emission tomography (PET), NMR, and computed tomography (CT) to compare and contrast the pathophysiologic information provided by each and to study the issue of whether cerebral ischemia without infarction can be appreciated by proton NMR imaging. Here the initial results are reported. 4 refs.; 2 figs.; 1 table

  11. NMR spectroscopy study of agar-based polymers electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, R.I.; Tambelli, C.E. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Fac. de Zootecnia e Engenharia de Alimentos; Raphael, E. [Universidade Federal de Sao Joao del-Rey (UFSJ), MG (Brazil). Dept. de Ciencias Naturais; Silva, I.D.A.; Magon, C.J.; Donoso, J.P. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2012-07-01

    Full text: This communication presents the results of preparation and characterization of transparent films obtained from agar and acetic acid. The films were characterized by electrochemical impedance spectroscopy (EIS) and nuclear magnetic resonance (NMR). The film formed by agar (Sigma Aldrich) was dispersed in water and kept under stirring and heating at 100 deg C. Next, glycerol, formaldehyde and different quantities of acetic acid (25 and 50 wt%) were added to this solution. The obtained solution was placed on a glass plate and left to dry for 48 hours in oven at 50 deg C to obtain the films, which were kept under vacuum before characterization. The ionic conductivity of the films display an Arrhenius behavior with activation energy E{sub a} = 78 (25 wt% of acetic acid) and E{sub a} = 87 kJ/mol (50 wt% of acetic acid). The conductivity values were 3:0 X 10{sup -6} and 1:2 X 10{sup -4} S/cm at room temperature and 4:4 X 10{sup -4} and 1:5 X 10{sup -3}S/cm at 70 deg C, for the 25 and 50 wt% of acetic acid respectively. To investigate the mechanism of protonic conduction in the polymer proton conductor proton NMR measurements were performed in the temperature range 200-370 K. The {sup 1}H-NMR results exhibit the qualitative feature associated with the proton mobility, namely the presence of well defined {sup 1}H spin-lattice relaxation maxima at 300 K. Activation energy of the order of 40 kJ/mol was obtained from the {sup 1}H-NMR line narrowing data. The ionic conductivity of the film combined with their transparency, flexibility, homogeneity and good adhesion to the glasses or metals indicate that agar-based SPEs are promising materials for used on optoelectronic applications. (author)

  12. In situ NMR studies of reactions on catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Haw, James F [Texas A and M Univ., College Station, TX (United States). Dept. of Chemistry

    1994-12-31

    Zeolites are useful in the synthesis of fine chemicals. The systematic understanding of organic chemistry of zeolite catalysis may contribute to: the elucidation of reaction mechanisms of existing catalytic processes; the discovery of new catalytic reactions; the application of zeolite catalysis to the synthesis of fine chemicals. This work presents species of zeolites identified by in situ NMR; reactions of organic chemicals on zeolites and proposes mechanisms as well as reactivity trends 3 refs., 7 tabs.

  13. Study on the interactions PVC/plasticizers by NMR

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Maria I.B.; Monteiro, Elisabeth E.C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas; Harris, Robin [Durham Univ. (United Kingdom). Dept. of Chemistry

    1992-12-31

    The nature of the interactions between PVC and plasticizers as di-butyl phthalate and di-2-ethyl-hexyl phthalate can be investigated using proton/carbon-13 NMR techniques. The measurements of T{sub 1} for protons and carbon-13 and T{sub 1} P for protons can provide a good source of information about the complex behaviour for those two systems which were investigated. (author) 14 refs., 5 figs., 1 tab.

  14. NMR studies of selective population inversion and spin clustering

    International Nuclear Information System (INIS)

    Baum, J.S.

    1986-02-01

    This work describes the development and application of selective excitation techniques in Nuclear Magnetic Resonance. Composite pulses and multiple-quantum methods are used to accomplish various goals, such as broadband and narrowband excitation in liquids, and collective excitation of groups of spins in solids. These methods are applied to a variety of problems, including non-invasive spatial localization, spin cluster size characterization in disordered solids and solid state NMR imaging

  15. NMR Studies of Lithium Iodide Based Solid Electrolytes

    DEFF Research Database (Denmark)

    Dupree, R.; Howells, R. J.; Hooper, A.

    1983-01-01

    In mixture of LiI with γAl2O3 the ionic conductivity is found to increase by up to three orders of magnitude over pure LiI. NMR measurements of7Li relaxation times were performed on both anhydrous LiI and a mixture of LiI with 30m/o γAl2O3. The relaxation is found to be purely dipolar in origin f...

  16. 11B NMR study of calcium-hexaborides

    International Nuclear Information System (INIS)

    Mean, B.J.; Lee, K.H.; Kang, K.H.; Lee, Moohee; Rhee, J.S.; Cho, B.K.

    2005-01-01

    We have performed 11 B nuclear magnetic resonance (NMR) measurements to look for microscopic evidence of the ferromagnetic state in several CaB 6 single crystals. A number of 11 B NMR resonance peaks are observed with the frequency and intensity of those peaks distinctively changing depending on the angle between the crystalline axis and a magnetic field. Analyzing this behavior, we find that the electric field gradient tensor at the boron has its principal axis perpendicular to the six cubic faces with a quadrupole resonance frequency ν Q ∼600kHz. However, the satellite resonances are found to be made of two peaks. Detailed analysis of the four composite satellite peaks confirms that there are two different boron sites with slightly different ν Q 's. This suggests that the boron octahedron cages are locally distorted. However, this distortion is not directly related to ferromagnetism. Even though the magnetization data highlight the ferromagnetic hysteresis, 11 B NMR linewidth and shift data show no clear microscopic evidence of the ferromagnetic state in several different compositions of CaB 6 single crystals

  17. Studies on Photodarkening Effect in Glassy As2S3 Using High Field NMR

    Science.gov (United States)

    Hari, Parameswar; Su, Tining; Taylor, Craig; Reyes, Arneil; Kuhns, Phil; Moulton, William; Sullivan, N. S.

    2001-03-01

    Photodarkening, or the shift of the optical absorption edge to smaller energies after excitation with light whose energy is near that of the optical band edge, has been studied in many chalcogenide glasses for many years. Recently we have conducted nuclear magnetic resonance (NMR) studies of 75As in glassy As2S3 at 17T . We compared the 75As NMR lineshape in glassy As2S3 before and after irradiation at 77K. After irradiation at 514.5 nm for 230 hours with 170 mW/cm2 there is a subtle change in the NMR lineshape. This change is reversible on annealing at 200 C for 1.75 hours. We will discuss the implications of this result based on NMR lineshape analysis using an exact solution of the spin 3/2 Hamiltonian

  18. A combined NMR and XRD study of AFI and AEL type molecular sieves

    NARCIS (Netherlands)

    Peeters, M.P.J.; Ven, van de L.J.M.; Haan, de J.W.; Hooff, van J.H.C.

    1993-01-01

    Calcined dehydrated AlPO4-5 was studied by x-ray powder diffraction, 31P MAS, and 27Al double-resonance (DOR) NMR. Three crystallog. different sites can be distinguished in the structure of dehydrated AlPO4-5 in the ratio 1:1:1. The obsd. splitting of the NMR spectra is correlated to the line width

  19. Multinuclear MAS NMR studies on coked zeolites H-ZSM-5

    International Nuclear Information System (INIS)

    Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H.

    1991-01-01

    During the cracking process carbonaceous materials are deposited on the outer or inner surface of the catalyst. These deposits are in many cases the main cause of catalyst deactivation. Magic angle spinning (MAS) NMR investigations and catalytic n-hexane cracking were carried out on H-ZSM-5 zeolites after a mild hydrothermal de-alumination. By 13 C CP MAS NMR it could be shown that the enhanced catalytic activity does not enhance the coke formation and that the chemical nature of these deposits is essentially aromatic. From 1 H MAS NMR studies performed on shallow-bed activated sealed samples and 27 Al and 29 Si MAS NMR on rehydrated samples it follows that for high coke concentrations the catalyst deactivation is caused mainly by blocking of Broensted acid sites. (author). 27 refs.; 3 figs.; 2 tabs

  20. NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue

    Directory of Open Access Journals (Sweden)

    Fen Yue

    2018-04-01

    Full Text Available Hydrothermal carbonization (HTC is a valuable approach to convert furfural residue (FR into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques (1H and 13C NMR, 1H–1H COSY and 1H13C HSQC etc. especially 1D selective gradient total correlation spectroscopy (TOCSY NMR were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions (180–240 °C at 8 h, and 1–24 h at 240 °C was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies. Keywords: NMR, Hydrothermal carbonization, Furfural residue, Stock process water

  1. A Field Study of NMR Logging to Quantify Petroleum Contamination in Subsurface Sediments

    Science.gov (United States)

    Fay, E. L.; Knight, R. J.; Grunewald, E. D.

    2016-12-01

    Nuclear magnetic resonance (NMR) measurements are directly sensitive to hydrogen-bearing fluids including water and petroleum products. NMR logging tools can be used to detect and quantify petroleum hydrocarbon contamination in the sediments surrounding a well or borehole. An advantage of the NMR method is that data can be collected in both cased and uncased holes. In order to estimate the volume of in-situ hydrocarbon, there must be sufficient contrast between either the relaxation times (T2) or the diffusion coefficients (D) of water and the contaminant. In a field study conducted in Pine Ridge, South Dakota, NMR logging measurements were used to investigate an area of hydrocarbon contamination from leaking underground storage tanks. A contaminant sample recovered from a monitoring well at the site was found to be consistent with a mixture of gasoline and diesel fuel. NMR measurements were collected in two PVC-cased monitoring wells; D and T2 measurements were used together to detect and quantify contaminant in the sediments above and below the water table at both of the wells. While the contrast in D between the fluids was found to be inadequate for fluid typing, the T2 contrast between the contaminant and water in silt enabled the estimation of the water and contaminant volumes. This study shows that NMR logging can be used to detect and quantify in-situ contamination, but also highlights the importance of sediment and contaminant properties that lead to a sufficiently large contrast in T2 or D.

  2. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria)

    Science.gov (United States)

    Kupka, Teobald; Wieczorek, Piotr P.

    2016-01-01

    In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of 1H and 13C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.

  3. NMR studies of sodium cholate-lecithin mixed micelles

    International Nuclear Information System (INIS)

    Eriksson, P.-O.; Lindblom, G.; Arvidson, G.

    1983-01-01

    T 1 and T 2 2 H-NMR relaxation times have been measured for 2 H-labelled phosphatidylcholine in the aqueous solution phase of the ternary system lecithin-sodium cholate-water. In this phase aggregates are formed by a mixture of cholate and lecithin. Information about the dimension of these miscellar aggregates has been obtained from a simple model of the relaxation times in which two modes of molecular motion are considered. The results obtained accord well with recent investigations using laser-light scattering techniques

  4. 31P-NMR studies on perfused mouse liver

    International Nuclear Information System (INIS)

    McLaughlin, A.C.; Takeda, H.; Chance, B.

    1978-01-01

    From a metabolic viewpoint, the most important organ in the body is the liver. In contrast to more specialized organs such as heart and kidney which perform only one major function, the liver performs a number of major metabolic functions. Two of the most important functions are the catabolism and storage of foodstuffs (in the form of glycogen) and the control of most of the constituents of the blood (in particular, the blood glucose level). Most of these functions are localized within a single type of cell. One way that the liver is able to regulate these diverse reactions is by the control of the ATP level in the cell. Encouraged by the recent success of many groups in using 31 P-NMR to provide a continuous and non-destructive monitor of ATP levels in isolated cells, skeletal muscle, and perfused organs such as heart and kidney, 31 P-NMR was used to investigate ATP levels in perfused liver of mice

  5. Positional isotope exchange studies on enzyme using NMR spectroscopy

    International Nuclear Information System (INIS)

    Matsunaga, T.O.

    1987-01-01

    The isotopically enriched compounds, 18 O-β,γ-ATP and 18 O bridge-labeled pyrophosphate, synthesized previously in this laboratory, were used to investigate and measure the exchange vs. turnover of substrates and products from their central complexes in four selected enzyme systems. Using hi-field 31 P NMR, we were able to differentiate between 18 O labeled in the bridge vs. the non-bridge positions by virtue of the isotope shift upon the phosphorus nuclei. The bridge to non-bridge scrambling of the label was quantitated and the exchange vs. turnover ratios under a variety of conditions was determined. Using the substrate inhibitor carboxycreatinine, PIX experiments with 18 O-β,γ-ATP and creatine kinase were conducted. It was shown that carboxycreatinine and creatine kinase promoted exchange of the 18 O label as determined by NMR. We have concluded that carboxycreatinine is either a substrate that catalyzes very slow turnover or it catalyzes exchange by a dissociative (SN 1 /sub P/) type of mechanism

  6. NMR study of CeTe at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Hinderer, J. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland)]. E-mail: hinderer@phys.ethz.ch; Weyeneth, S.M. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Weller, M. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Gavilano, J.L. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Felder, E. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Hulliger, F. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland); Ott, H.R. [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zurich (Switzerland)

    2006-05-01

    We present {sup 125}Te NMR measurements on CeTe powder at temperatures between 1 and 150K and in magnetic fields between 5 and 8T. CeTe is a rocksalt-type intermetallic compound. It orders antiferromagnetically at T{sub N}{approx}2.2K with a much reduced ordered moment [H.R. Ott, J.K. Kjems, F. Hulliger, Phys. Rev. Lett. 42 20 (1979) 1378]. From our low-temperature NMR spectra we infer the presence of at least three inequivalent Te sites at low temperatures. Considering the crystal structure this result is completely unexpected. The linewidths and the Knight shifts of the individual lines are significantly different and increase substantially with decreasing temperature. They follow the temperature dependence of the magnetic susceptibility above 20K. Above T{sub N}, hyperfine fields of 1.6, 0.8 and 0.0T at the three Te sites per Bohr magneton of Ce moment are deduced from Knight shift vs. magnetic susceptibility data. These values are typical for transferred hyperfine fields via conduction electrons.

  7. Structural and dynamical characterization of piroxicam by 1H- and 13C-NMR relaxation studies

    International Nuclear Information System (INIS)

    Rossi, C.; Casini, A.; Picchi, M.P.; Laschi, F.; Calabria, A.; Marcolongo, R.

    1987-01-01

    Carbon spin-lattice relaxation rates of anti-inflammatory drug, piroxicam, have been measured. These results have been used in determining the reorientational rates of the proton carbon vectors. An analysis of internal motions within the pyridinyl moiety of piroxicam was carried out. Selective proton-carbon nuclear Overhauser effect (NOE) measurements were made in order to determine the solution structure of piroxicam. The effect of indirect NOE arising from exchangeable protons has been analyzed and considered. 20 refs.; 4 figs.; 3 tabs

  8. NMR studies of structures of lanthanide dicarboxylate complexes in solution

    International Nuclear Information System (INIS)

    Choppin, G.R.; Kullberg, L.

    PMR pand 13 C shift data were measured for complexes of Pr(III), Eu(III) and Yb(III) with ethylene 1,2-dioxydiacetate (EDODA), ethylene 1,2-dithiodiacetate (EDSDA), and ethylene, 1,2-diaminodiacetate (EDDA). Solubility problems limited analysis of the EDSDA and EDDA data to qualitative evaluation. In the EDSDA complexes, the data indicate that the sulfur atoms do not participate in bonding to the lanthanide cations. Moreover, both carboxylate groups seem to bind Pr and Eu while Yb interacts with only a single carboxylate group. The EDDA complexes are tetradentate with long lived (NMR scale) Ln-N bonds. Shift theory allowed more quantitative analysis of the EDODA complexes. They are tetradentate with a puckered chelate ring and Ln-O(ether) distances of 2.3 A

  9. NMR study of CeCoSi3

    International Nuclear Information System (INIS)

    Iwamoto, Y.

    1995-01-01

    Low-temperature susceptibility, NMR and NQR of the 59 Co signal in CeCoSi 3 have been measured. CeCoSi 3 showed a superconducting transition at 0.7-1.2K. From NQR measurement, the nuclear quadrupole frequency and the full width at half maximum (FWHM) of 59 Co in CeCoSi 3 were estimated to be about 1.08MHz and 0.08MHz, respectively. The 59 Co nuclear spin-lattice relaxation rate (1/T 1 ) in CeCoSi 3 was proportional to the temperature (T) as the Fermi liquid state above the superconducting transition temperature (T c ), and then rapidly decreased below T c . ((orig.))

  10. Proton and deuteron NMR study of PTFE ionomer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, G; Pak, Y S [Dept. of Materials Science, McMaster Univ., Hamilton, Ontario (Canada)

    1992-02-01

    Proton and deuteron NMR have been conducted to investigate the ionic motion in perfluorinated ionomer membranes from Dow Chemical (XUS) and DuPont (Nafion{sup R}). Two proton relaxation peaks were found in the XUS specimen absorbed with H{sub 2}O. The major (narrow) peak presented a spin-lattice relaxation time (T{sub 1}) of 107 ms while the minor (broader) one gave much longer T{sub 1}. While the former was attributed to the water molecules involved in restricted motion, the latter was expected to be associated with the protons located in the vicinity of the sulfonate groups. Similar to the previous results from the others, only a single peak was detected in Nafion{sup R} in {sup 1}H spectra, indicating that the protons in the different environments were engaging rapid exchange within NMR time scale. In contrast to the inverse proportion dependence of the linewidth on the water sorption in Nafion{sup R}, the major line of the XUS membrane exhibited insensitive linewidth dependence on the variation of H{sub 2}O concentration. The difference was attributed to the existence of narrow breaths of the pores in XUS sample, such that free water contribution to the enhancement of proton mobility was limited. The {sup 2}H spectra of Nafion{sup R} were found to possess a doublet, due to nuclear quadrupolar interaction. Dow (XUS) membrane treated in at 100% relative humidity (RH) D{sub 2}O presented a single peak with the linewidth insensitive to the amount of heavy water absorbed. An additional rise emerged on the ''shoulder'' of this single peak when treated at 33% RH. It is concluded that XUS membrane does not provide strong hydrogen bonding to eliminate the rapid motion average over the nuclear quadrupole interaction. (orig.).

  11. Results of the R and D activity on the NOE scintillating fiber calorimeter

    International Nuclear Information System (INIS)

    Demitri, I.

    2001-01-01

    The NOE scintillating fiber calorimeter has undergone four years of intense R and D activity. Measurements of light attenuation and time resolution have been carried out on a variety of commercially available scintillating fibers. Both these parameters are important for the optimisation of the design of the calorimeter which will be part of the ICANOE detector

  12. Results of the R and D activity on the NOE scintillating fiber calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Demitri, I. E-mail: ivan.demitri@le.infr.it

    2001-04-01

    The NOE scintillating fiber calorimeter has undergone four years of intense R and D activity. Measurements of light attenuation and time resolution have been carried out on a variety of commercially available scintillating fibers. Both these parameters are important for the optimisation of the design of the calorimeter which will be part of the ICANOE detector.

  13. High resolution NMR study of cellulose in solid state and in solution

    International Nuclear Information System (INIS)

    Saint-Germain, Jean

    1983-01-01

    This research thesis reports the study of native cellulose (cotton) and wood by nuclear magnetic resonance (NMR). As far as the cotton spectrum is concerned, the author assigned resonances which more specifically corresponded to amorphous or crystalline areas. Wood was studied in its bulk condition, and resonances have been determined for the different wood components. The behaviour of cellulose in solution in a solvent has been studied by liquid high resolution NMR. The solvation mechanism has been determined and a study of model components of the macromolecule allowed a conformational study of cellulose in this solvent to be performed. Bi-dimensional NMR and longitudinal relaxation time measurements highlighted the existence of an intramolecular hydrogen bond in the cellulose in solution [fr

  14. 1H Nuclear Magnetic Resonance (NMR) metabonomic study of breast cancer in Indian population

    International Nuclear Information System (INIS)

    Sonkar, Kanchan; Sinha, Neeraj; Arshad, Farah

    2012-01-01

    Breast cancer is the most common cancer diagnosed in women worldwide with over 1.3 million new cases per year. Recently it has been observed that breast cancer is increasing very rapidly in low income countries including India. Lipids not only play very important and vital role of prime structural component in human body they are also important functional components in cellular metabolism. Transformation from benign to malignant tissue involves several biochemical processes and understanding these processes provides very useful insight related to cancer prognosis. Thus study of lipids becomes very important and NMR spectroscopy is one of the techniques which can be utilized to identifying all lipid components simultaneously. The tissue specimens (35, benign 20 and malignant 15; patient age group 47 yrs) were collected after breast surgeries and were snap frozen in liquid nitrogen. Part of all tissues was sent for routine histopathology. Lipid extraction was performed by Folch method (Folch, 1957) using cholesterol and methanol (2:1 ratio). The NMR spectra of the extracted lipids were recorded immediately after the sample preparation. All NMR experiments were performed on a Bruker Avance 800 MHz spectrometer. 1 H NMR analysis of lipid extract of breast tissue in Indian population shows there is significant elevation of phosphotidycholine, plasmalogen and esterified cholesterol with decrease in triacylglycerol in cancer breast compared to benign tissue implying that their metabolism is definitely altered during carcinogenesis. This study analyzes the role of NMR as an additional diagnostic tool on the basis of examination of lipid extract. (author)

  15. NMR and TRLFS studies of Ln(iii) and An(iii) C5-BPP complexes.

    Science.gov (United States)

    Adam, Christian; Beele, Björn B; Geist, Andreas; Müllich, Udo; Kaden, Peter; Panak, Petra J

    2015-02-01

    C5-BPP is a highly efficient N-donor ligand for the separation of trivalent actinides, An(iii), from trivalent lanthanides, Ln(iii). The molecular origin of the selectivity of C5-BPP and many other N-donor ligands of the BTP-type is still not entirely understood. We present here the first NMR studies on C5-BPP Ln(iii) and An(iii) complexes. C5-BPP is synthesized with 10% 15 N labeling and characterized by NMR and LIFDI-MS methods. 15 N NMR spectroscopy gives a detailed insight into the bonding of C5-BPP with lanthanides and Am(iii) as a representative for trivalent actinide cations, revealing significant differences in 15 N chemical shift for coordinating nitrogen atoms compared to Ln(iii) complexes. The temperature dependence of NMR chemical shifts observed for the Am(iii) complex indicates a weak paramagnetism. This as well as the observed large chemical shift for coordinating nitrogen atoms show that metal-ligand bonding in Am(C5-BPP) 3 has a larger share of covalence than in lanthanide complexes, confirming earlier studies. The Am(C5-BPP) 3 NMR sample is furthermore spiked with Cm(iii) and characterized by time-resolved laser fluorescence spectroscopy (TRLFS), yielding important information on the speciation of trace amounts of minor complex species.

  16. Dynamic NMR Study of Model CMP Slurry Containing Silica Particles as Abrasives

    Science.gov (United States)

    Odeh, F.; Al-Bawab, A.; Li, Y.

    2018-02-01

    Chemical mechanical planarization (CMP) should provide a good surface planarity with minimal surface defectivity. Since CMP slurries are multi-component systems, it is very important to understand the various processes and interactions taking place in such slurries. Several techniques have been employed for such task, however, most of them lack the molecular recognition to investigate molecular interactions without adding probes which in turn increase complexity and might alter the microenvironment of the slurry. Nuclear magnetic resonance (NMR) is a powerful technique that can be employed in such study. The longitudinal relaxation times (T1) of the different components of CMP slurries were measured using Spin Echo-NMR (SE-NMR) at a constant temperature. The fact that NMR is non-invasive and gives information on the molecular level gives more advantage to the technique. The model CMP slurry was prepared in D2O to enable monitoring of T1 for the various components' protons. SE-NMR provide a very powerful tool to study the various interactions and adsorption processes that take place in a model CMP silica based slurry which contains BTA and/or glycine and/or Cu+2 ions. It was found that BTA is very competitive towards complexation with Cu+2 ions and BTA-Cu complex adsorbs on silica surface.

  17. Experimental and theoretical NMR studies of interaction between phenylalanine derivative and egg yolk lecithin.

    Science.gov (United States)

    Wałęsa, Roksana; Ptak, Tomasz; Siodłak, Dawid; Kupka, Teobald; Broda, Małgorzata A

    2014-06-01

    The interaction of phenylalanine diamide (Ac-Phe-NHMe) with egg yolk lecithin (EYL) in chloroform was studied by (1)H and (13)C NMR. Six complexes EYL-Ac-Phe-NHMe, stabilized by N-H···O or/and C-H···O hydrogen bonds, were optimized at M06-2X/6-31G(d,p) level. The assignment of EYL and Ac-Phe-NHMe NMR signals was supported using GIAO (gauge including atomic orbital) NMR calculations at VSXC and B3LYP level of theory combined with STO-3Gmag basis set. Results of our study indicate that the interaction of peptides with lecithin occurs mainly in the polar 'head' of the lecithin. Additionally, the most probable lecithin site of H-bond interaction with Ac-Phe-NHMe is the negatively charged oxygen in phosphate group that acts as proton acceptor. Copyright © 2014 John Wiley & Sons, Ltd.

  18. On-Going Bentonite Pore Water Studies by NMR and SAXS

    International Nuclear Information System (INIS)

    Carlsson, Torbjoern; Muurinen, Arto; Root, Andrew

    2013-01-01

    Compacted water-saturated MX-80 bentonite is presently being studied by SAXS and NMR in order to quantify the major pore water phases in the bentonite. The SAXS and NMR measurements gave very similar results indicating that the pore water is mainly distributed between two major phases (interlayer and non-interlayer water) and also indicate how these phases depend on the bentonite dry density. The results from the SAXS and NMR studies at VTT indicate the same thing: - The pore water in water-saturated compacted (?dry = 0.7-1.6 g/cm 3 ) bentonite is divided into two main phases: interlayer water and non-interlayer water. - The amounts of these pore water phases can be determined quantitatively with the above methods. (authors)

  19. NMR relaxometry study of plaster mortar with polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Jumate, E.; Manea, D. [Technical University of Cluj-Napoca, Faculty of Civil Engineering. 15 C Daicoviciu Str., 400020, Cluj-Napoca (Romania); Moldovan, D.; Fechete, R. [Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., 400027, Cluj-Napoca (Romania)

    2013-11-13

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T{sub 2} relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T{sub 2} distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T{sub 2} relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T{sub 2} relaxation rates corresponding to the bound water.

  20. NMR relaxometry study of plaster mortar with polymer additives

    Science.gov (United States)

    Jumate, E.; Moldovan, D.; Fechete, R.; Manea, D.

    2013-11-01

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T2 relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T2 distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T2 relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T2 relaxation rates corresponding to the bound water.

  1. NMR relaxometry study of plaster mortar with polymer additives

    International Nuclear Information System (INIS)

    Jumate, E.; Manea, D.; Moldovan, D.; Fechete, R.

    2013-01-01

    The cement mixed with water forms a plastic paste or slurry which stiffness in time and finally hardens into a resistant stone. The addition of sand aggregates, polymers (Walocel) and/or calcium carbonate will modify dramatically the final mortar mechanic and thermal properties. The hydration processes can be observed using the 1D NMR measurements of transverse T 2 relaxation times distributions analysed by a Laplace inversion algorithm. These distributions were obtained for mortar pasta measured at 2 hours after preparation then at 3, 7 and 28 days after preparation. Multiple components are identified in the T 2 distributions. These can be associated with the proton bounded chemical or physical to the mortar minerals characterized by a short T 2 relaxation time and to water protons in pores with three different pore sizes as observed from SEM images. The evaporation process is faster in the first hours after preparation, while the mortar hydration (bonding of water molecules to mortar minerals) can be still observed after days or months from preparation. Finally, the mechanic resistance was correlated with the transverse T 2 relaxation rates corresponding to the bound water

  2. NMR studies of the helical antiferromagnetic compound EuCo2P2

    Science.gov (United States)

    Higa, N.; Ding, Q.-P.; Kubota, F.; Uehara, H.; Yogi, M.; Furukawa, Y.; Sangeetha, N. S.; Johnston, D. C.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    In EuCo2P2, 4f electron spins of Eu2+ ions order antiferromagnetically below a Néel temperature TN = 66.5 K . The magnetic structure below TN was reported to be helical with the helix axis along the c-axis from the neutron diffraction study. We report the results of 153Eu, 59Co and 31P nuclear magnetic resonance (NMR) measurements on EuCo2P2 using a single crystal and a powdered sample. In the antiferromagnetic (AFM) state, we succeeded in observing 153Eu, 59Co and 31P NMR spectra in zero magnetic field. The sharp 153Eu zero field NMR (ZF NMR) lines indicate homogeneous Eu ordered moment. The 59Co and 31P ZF NMR spectra showed an asymmetric spectral shape, indicating a distribution of the internal magnetic induction at each nuclear position. The AFM propagation vector k characterizing the helical AFM state can be determined from the internal magnetic induction at Co site. We have determined the model-independent value of the AFM propagation vector k distributed from (0, 0, 0.86)2π/c to (0, 0, 0.73)2π/c, where c is the lattice parameter.

  3. Xenon-Water Interaction in Bacterial Suspensions as Studied by NMR

    DEFF Research Database (Denmark)

    Rodin, V.; Ponomarev, Alexander; Gerasimov, Maxim

    2017-01-01

    suspensions of Escherichia coli in the presence of xenon using nuclear magnetic resonance (NMR). The work studied how the spin-lattice relaxation times of water protons in suspension change under xenon conditions. Xenon is able to form clathrate hydrates with water molecules at a temperature above the melting...... point of ice. The work studied NMR relaxation times which reflect the rotation freedom of water molecules in suspension. Lower relaxation times indicate reduced rotational freedom of water. Single exponential behavior of spin-lattice relaxation of protons in the suspensions of microorganisms has been...

  4. Synergistic Applications of MD and NMR for the Study of Biological Systems

    Directory of Open Access Journals (Sweden)

    Olivier Fisette

    2012-01-01

    same time, theoretical and computational approaches gain in reliability and their field of application widens. In this short paper, we discuss recent advances in the areas of solution nuclear magnetic resonance (NMR spectroscopy and molecular dynamics (MD simulations that were made possible by the combination of both methods, that is, through their synergistic use. We present the main NMR observables and parameters that can be computed from simulations, and how they are used in a variety of complementary applications, including dynamics studies, model-free analysis, force field validation, and structural studies.

  5. 1H-NMR/13C-NMR studies of branched structures in PVC obtained at atmospheric pressure

    International Nuclear Information System (INIS)

    Braun, D.; Holzer, G.; Hjertberg, T.

    1981-01-01

    The 1 H-NMR-spectra of raw poly (vinyl cloride) obtained at atmospheric pressure (U-PVC) have revealed the presence of high concentrations of branches. The content of labile chlorine was determined by reaction with phenole in order to estimate the branch points with tertiary chlorine. The branch length of reductively dehalogenated U-PVC by 13 C-NMR analysis have provided evidence for both short chain branches including chloromethyl groups and 2.4-dichloro-n-butyl groups and long chain branching. For a number of U-polymers the total amount of branching ranges from 7.5 to 13.5/1000 C. The 13 C-NMR measurements point to a ratio of methyl/butyl branches of 1:1 and short chains/long chains of 6:1. (orig.)

  6. Deuterium and lithium-6 MAS NMR studies of manganese oxide electrode materials

    Science.gov (United States)

    Paik, Younkee

    Electrolytic manganese dioxide (EMD) is used world wide as the cathode materials in both lithium and alkaline primary (non-rechargeable) batteries. We have developed deuterium and lithium MAS NMR techniques to study EMD and related manganese oxides and hydroxides, where diffraction techniques are of limited value due to a highly defective nature of the structures. Deuterons in EMD, manganite, groutite, and deuterium-intercalated pyrolusite and ramsdellite were detected by NMR, for the first time, and their locations and motions in the structures were analyzed by applying variable temperature NMR techniques. Discharge mechanisms of EMD in alkaline (aqueous) electrolytes were studied, in conjunction with step potential electrochemical spectroscopic (SPECS) method, and five distinctive discharge processes were proposed. EMD is usually heat-treated at about 300--400°C to remove water to be used in lithium batteries. Details of the effects of heat-treatment, such as structural and compositional changes as a function of heat-treatment temperature, were studied by a combination of MAS NMR, XRD, and thermogravimetric analysis. Lithium local environments in heat-treated EMD (HEMD) that were discharged in lithium cells, were described in terms of related environments found in model compounds pyrolusite and ramsdellite where specific Li + sites were detected by MAS NMR and the hyperfine shift scale method of Grey et al. Acid-leaching of Li2MnO3 represents an approach for synthesizing new or modified manganese oxide electrode materials for lithium rechargeable batteries. Progressive removal of lithium from specific crystallographic sites, followed by a gradual change of the crystal structure, was monitored by a combination of NMR and XRD techniques.

  7. Applications of 1H-NMR relaxometry in experimental liver studies

    International Nuclear Information System (INIS)

    Holzmueller, P.

    1992-01-01

    Purpose of this study was to investigate applications of proton nuclear magnetic resonance ( 1 H-NMR) relaxometry in experimental medicine. Relaxometry was performed by measurements of spin-lattice (T 1 ) and spin-spin (T 2 ) relaxation time parameters on liver biopsies up to four hours after biopsy excision. Variations of relaxation times due to species and strain, different sample handling and different liver damage models, ethionine fatty liver and paracetamol liver necrosis, were investigated. Cell integrity effects were studied on homogenized liver samples. Relaxation time parameters, especially 'main' components T 1A and T 2A of biexponential model fit, were identified to react very sensitive after tissue damages as well as to cell viability. Thus, investigation of stored liver grafts was performed in order to evaluate the possibility of a rapid liver graft viability testing method for human liver transplantation surgery by 1 H-NMR relaxometry. Another series of measurements was performed to investigate the applicability of isoflurane anesthesia for in vivo NMR experiments. This study proved the good appropriateness of isoflurane for that purpose provided that physiological monitoring and individual adjustment of anesthesia are performed. In these investigations it could be revealed that mainly T 1A and T 2A are influenced by tissue condition and that different information is inherent in these two parameters, with T 2A reflecting tissue viability and changes of tissue conditions very sensitively but rather unspecifically in respect to the damage applied. Based on these results the following future applications of 1 H-NMR relaxometry are suggested : (1) model investigations, (2) investigation of given pathologies, (3) investigation of basic requirements for in vivo NMR and (4) application in a liver graft viability testing protocol, which seems to be the most important future application of 1 H-NMR relaxometry in medicine. (author)

  8. Solid-state NMR studies of form I of atorvastatin calcium.

    Science.gov (United States)

    Wang, Wei David; Gao, Xudong; Strohmeier, Mark; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2012-03-22

    Solid-state (13)C, (19)F, and (15)N magic angle spinning NMR studies of Form I of atorvastatin calcium are reported, including chemical shift tensors of all resolvable carbon sites and fluorine sites. The complete (13)C and (19)F chemical shift assignments are given based on an extensive analysis of (13)C-(1)H HETCOR and (13)C-(19)F HETCOR results. The solid-state NMR data indicate that the asymmetric unit of this material contains two atorvastatin molecules. A possible structure of Form I of atorvastatin calcium (ATC-I), derived from solid-state NMR data and density functional theory calculations of various structures, is proposed for this important active pharmaceutical ingredient (API).

  9. 31P-NMR study of human pyrimidine 5'-nucleotidase deficient erythrocytes

    International Nuclear Information System (INIS)

    Higaki, Tsuyoshi; Kagimoto, Tadashi; Nagata, Koichi; Tanase, Sumio; Morino, Yoshimasa; Takatsuki, Kiyoshi

    1982-01-01

    Metabolic disorder of nucleotides in human pyrimidine 5'-nucleotidase (P5N) deficient erythrocytes was studied by 31 P-NMR with high resolution. Identification by combination of high-speed liquid chromatography revealed two-fold increases from the normal in the spectra in the α-, β- and γ-zones of nucleoside triphosphates of P5N deficient erythrocytes, 2,3-diphosphoglycerate shifted to the 0.3 ppm low magnetic field and signals of NAD and UDP-sugars(s) in the diphosphodiester zone. These results were obtained from the 31 P-NMR spectrum about one hour after blood sampling, indicating the high utility of this NMR for the diagnosis of P5N deficiency. (Chiba, N.)

  10. Positron annihilation and 129Xe NMR studies of free volume in polymers

    International Nuclear Information System (INIS)

    Nagasaka, Bunsow; Eguchi, Taro; Nakayama, Hirokazu; Nakamura, Nobuo; Ito, Yasuo

    2000-01-01

    The existence and the average size of free volume in bisphenol-A polycarbonate (PC), low-density polyethylene (LDPE), poly (2,6-dimethyl-phenylene oxide)(PPO), and polytetrafluoroethylene (PTFE) were studied by positron annihilation and 129 Xe NMR measurements. The 129 Xe NMR chemical shifts for xenon adsorbed in the polymers indicated that the average pore size of the free volume increased in the following order: PC, LDPE, PPO, and PTFE. This order of the pore size of the free volume agrees well with that estimated from the longest lifetime (τ 3 ) of ortho-positronium formed in the polymers. The unique correlation that δ -1 ∝ r is established between the 129 Xe NMR chemical shift (δ) and the pore size (r), which is deduced from the positron annihilation measurements.

  11. Structural variation study of cobalt nanoparticles synthesized by co-precipitation method using 59Co NMR

    Science.gov (United States)

    Manjunatha, M.; Kumar, Rajeev; B. M., Siddesh; Sahoo, Balaram; Damle, R.; Ramesh, K. P.

    2018-04-01

    We have synthesized cobalt nanoparticles using co-precipitation method. Further, the two phases of the cobalt is monitored by varying the synthesis parameters. 59Co NMR and XRD are used as characterization tools to study the phase variation in the cobalt samples. XRD and NMR results show a remarkable correlation in the two samples (Co-1 and Co-2). Co-2 has predominant fcc and hcp phases, whereas, Co-1 has fcc phase with lower amount of hcp. Both the samples show same saturation magnetization (Ms) but there is a remarkable difference in the phase composition. Thus, 59Co NMR appears to be a good tool to identify the phase purity of the ferromagnetic cobalt samples.

  12. Molecular motion of micellar solutes: a 13C NMR relaxation study

    International Nuclear Information System (INIS)

    Stark, R.E.; Kasakevich, M.L.; Granger, J.W.

    1982-01-01

    A series of simple NMR relaxation experiments have been performed on nitrobenzene and aniline dissolved in the ionic detergents sodium dodecyl sulfate (SDS) and hexadecyltrimethylammonium bromide (CTAB). Using 13 C relaxation rates at various molecular sites, and comparing data obtained in organic media with those for micellar solutions, the viscosity at the solubilization site was estimated and a detailed picture of motional restrictions imposed by the micellar enviroment was derived. Viscosities of 8 to 17 cp indicate a rather fluid environment for solubilized nitrobenzene; both additives exhibit altered motional preferences in CTAB solutions only. As an aid in interpretation of the NMR data, quasi-elastic light scattering and other physical techniques have been used to evaluate the influence of organic solutes on micellar size and shape. The NMR methods are examined critically in terms of their general usefulness for studies of solubilization in detergent micelles. 48 references

  13. 27Al NMR studies of NpPd5Al2

    International Nuclear Information System (INIS)

    Chudo, H.; Sakai, H.; Tokunaga, Y.; Kambe, S.; Aoki, D.; Homma, Y.; Shiokawa, Y.; Haga, Y.; Ikeda, S.; Matsuda, T.D.; Onuki, Y.; Yasuoka, H.

    2009-01-01

    We present 27 Al NMR studies for a single crystal of the Np-based superconductor NpPd 5 Al 2 (T c =4.9K). We have observed a five-line 27 Al NMR spectrum with a center line and four satellite lines separated by first-order nuclear quadrupole splittings. The Knight shift clearly drops below T c . The temperature dependence of the 27 Al nuclear spin-lattice relaxation rate shows no coherence peak below T c , indicating that NpPd 5 Al 2 is an unconventional superconductor with an anisotropic gap. The analysis of the present NMR data provides evidence for strong-coupling d-wave superconductivity in NpPd 5 Al 2 .

  14. Impact of opal nanoconfinement on electronic properties of sodium particles: NMR studies

    Energy Technology Data Exchange (ETDEWEB)

    Charnaya, E.V., E-mail: charnaya@live.com [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); Institute of Physics, St. Petersburg State University, St. Petersburg, 198504 (Russian Federation); Lee, M.K. [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); MoST Instrument Center at NCKU, Tainan, 70101 Taiwan (China); Chang, L.J. [Department of Physics, National Cheng Kung University, Tainan, 70101 Taiwan (China); Kumzerov, Yu.A.; Fokin, A.V. [A.F. Ioffe Physico-Technical Institute RAS, St. Petersburg, 194021 (Russian Federation); Samoylovich, M.I. [Moscow Institute of Physics and Technology, Moscow, 141700 (Russian Federation); Bugaev, A.S. [CSR Institute of Technology “Technomash”, Moscow, 121108 (Russian Federation)

    2015-03-20

    The {sup 23}Na Knight shift of NMR line which is highly correlated with the electron spin susceptibility and density of states at the Fermi level was studied for the sodium loaded opal. The measurements were carried out within a temperature range from 100 to 400 K for solid and melted confined sodium nanoparticles. The NMR line below 305 K was a singlet with the Knight shift reduced compared to that in bulk. Above this temperature the NMR line split reproducibly into two components with opposite trends in the Knight shift temperature dependences which evidenced a nanoconfinement-induced transformation and heterogeneity in the electron system. The findings were suggested to be related to changes in the topology of the Fermi surface.

  15. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1

    International Nuclear Information System (INIS)

    Dolenc, Jozica; Missimer, John H.; Steinmetz, Michel O.; Gunsteren, Wilfred F. van

    2010-01-01

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 φ torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular α-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured 3 J(H N -H Cα )-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and 3 J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and 3 J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  16. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1.

    Science.gov (United States)

    Dolenc, Jozica; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2010-07-01

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 phi torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular alpha-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured (3)J(H(N)-H(Calpha))-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and (3)J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and (3)J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  17. Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: a 6Li MAS NMR study of adsorption and absorption on goethite

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Paik, Younkee; Julmis, Keinia

    2005-01-01

    High-resolution 2H MAS NMR spectra can be obtained for nanocrystalline particles of goethite (alpha-FeOOH, particle size approximately 4-10 nm) at room temperature, facilitating NMR studies of sorption under environmentally relevant conditions. Li sorption was investigated as a function of pH, th...... on the goethite surface. Even larger Li hyperfine shifts (289 ppm) were observed for Li+-exchanged goethite, which contains lithium ions in the tunnels of the goethite structure, confirming the Li assignment of the 145 ppm Li resonance to the surface sites. Udgivelsesdato: 2005-Oct-6...

  18. NMR study of spin dynamics in mesoscopic molecular clusters

    Science.gov (United States)

    Borsa, Ferdinando

    1998-03-01

    Recent published and umpublished work regarding the magnetic properties and the spin dynamics of molecules containing rings of 6,8 and 10 spins and of molecules containing clusters of 8 and 12 spins are reviewed. The 1H nuclear spin-lattice relaxation rate (NSLR) and the Muon Spin Resonance relaxation in Mn12 (A.Lascialfari, D.Gatteschi, F.Borsa, A.Shastri, Z.H.Jang and P.Carretta, Phys.Rev. B 1 January 1998) and Fe8 clusters are presented and discussed with regards to the high temperature spin dynamics of the Mn (Fe) magnetic moments and with regards to the low temperature superparamagnetic behavior. 1H and 63Cu NMR results are presented for two "quantum" spin rings : Cu6 and Cu8. The Cu6 is a weakly coupled (J/k=60K) ferromagnetic S=1/2 spin ring while Cu8 is a strongly coupled (J/k greater than 400K) antiferromagnetic S=1/2 spin ring.The dependence of the NSRL from temperature and from applied magnetic field are analyzed in terms of the calculated magnetic energy levels of the magnetic ring. The values of the energy gap between the ground state and the first excited state are extracted from the exponential decrease of the NSLR as the temperature is lowered. The results in the Cu ( S=1/2) "quantum" rings are compared with the results in "quantum" chains and ladders and with the results in "classical" Fe (S=5/2) antiferromagnetic rings : Fe6 and Fe10 (A.Lascialfari, D.Gatteschi, F.Borsa and A.Cornia , Phys.Rev. 55B,14341,1997) ).

  19. Paramagnetic relaxation enhancements in NMR peptide-membrane interaction studies

    International Nuclear Information System (INIS)

    Kosol, S.

    2011-01-01

    Small membrane-bound proteins or peptides are involved in numerous essential biological processes, like cellular recognition, signaling, channel formation, and cytolysis. The secondary structure, orientation, mode of interaction and dynamics of these peptides can be as varied as their functions. Their localization in the membrane, the immersion depth, and their binding mode are factors critical to the function of these peptides. The atomic 3D solution structure of peptides bound to micelles can be determined by NMR spectroscopy. However, by employing paramagnetic relaxation enhancements (PREs) information on the complete topology of peptide bound to a micelle can be obtained. The antimicrobial peptide maximin H6, fst, a bacterial toxin, and the human peptide hormone ghrelin served as membrane-bound model peptides of similar sizes but strongly differing amino acid sequences. Their structures and binding behavior were determined and compared.The measured PREs provided suitable data for determining and distinguishing the different topologies of the investigated peptides bound to micelles. Maximin H6 and fst fold into α-helices upon insertion into a membrane, whereas the unstructured ghrelin is freely mobile in solution and interacts only via a covalently bound octanoyl group with the lipids. Maximin H6 is oriented parallel to the membrane surface, enabling the peptide to aggregate at the membrane water interface. Fst binds in transmembrane orientation with a protruding intrinsically disordered region near the C-terminus. Aside from determining the orientation of the bound peptides from the PREs, the moieties critical for membrane binding could be mapped in ghrelin. If suitable relaxation-edited spectra are acquired, the complete orientation and immersion depth of a peptide bound to a micelle can readily be obtained. (author) [de

  20. 53Cr NMR study of CuCrO2 multiferroic

    Science.gov (United States)

    Smol'nikov, A. G.; Ogloblichev, V. V.; Verkhovskii, S. V.; Mikhalev, K. N.; Yakubovskii, A. Yu.; Kumagai, K.; Furukawa, Y.; Sadykov, A. F.; Piskunov, Yu. V.; Gerashchenko, A. P.; Barilo, S. N.; Shiryaev, S. V.

    2015-11-01

    The magnetically ordered phase of the CuCrO2 single crystal has been studied by the nuclear magnetic resonance (NMR) method on 53Cr nuclei in the absence of an external magnetic field. The 53Cr NMR spectrum is observed in the frequency range νres = 61-66 MHz. The shape of the spectrum depends on the delay tdel between pulses in the pulse sequence τπ/2- t del-τπ- t del-echo. The spin-spin and spin-lattice relaxation times have been measured. Components of the electric field gradient, hyperfine fields, and the magnetic moment on chromium atoms have been estimated.

  1. 15N NMR studies of layered nitride superconductor LixZrNCl

    International Nuclear Information System (INIS)

    Tou, H.; Oshiro, S.; Kotegawa, H.; Taguchi, Y.; Kishiume, Y.; Kasahara, Y.; Iwasa, Y.

    2010-01-01

    NMR measurements were carried out on pristine ZrNCl and Li x ZrNCl. From the 15 N-Knight shift study, the isotropic Knight shift, the traceless chemical (orbital) shift tensor and the traceless Knight shift tensor were determined as K iso = -71 ppm, (σ 1 , σ 2 , σ 3 ) = (-55, -55, 110) ppm and (K 1 , K 2 , K 3 ) = (48, 48, -96) ppm, respectively. In the superconducting state, the fractional change of the 15 N NMR shift for H-parallel ab was observed, evidencing that the pairing symmetry is a spin-singlet state.

  2. In vivo 7Li and 19F NMR studies of drugs in the brain

    International Nuclear Information System (INIS)

    Komoroski, Richard A.

    1999-01-01

    For various reasons, it is advantageous to measure the concentration of a psychoactive drug in the brain in vivo. Many drugs contain the element fluorine. Using 19 F NMR spectroscopy, we have studied the psychoactive drugs trifluoperazine and fluoxetine in the brain in vivo. Using 7 Li NMR, it is possible to detect lithium ion, used to treat manic depressive illness. We have measured the concentration and distribution of lithium in both human and rat brain in vivo. Measurement of drug levels in the human brain may provide a measure of therapeutic or toxic effects, as well as insight into drug metabolism and mechanism of action. (author)

  3. sup(1)H-NMR study of restricted rotation in dithiophosphoromethyl acetanilides

    International Nuclear Information System (INIS)

    Kovacs, Zs.

    1985-01-01

    sup(1)H-NMR spectra of a series of dithiophosphoromethyl acetanilide derivatives were investigated. The presence of an ortho substituted aryl group bonded to the nitrogen atom of the amide group allowed the observation of restricted internal rotation around the aryl-nitrogen bond. Coalescence temperature and the values of the free energy of activation were determined from the temperature dependent NMR behaviour of these molecules. The possibility of cis-trans isomerism about the nitrogen carbonyl bond was also studied, and the assignment of the conformation of the existing isomer was also made using the aromatic solvent induced shift. (author)

  4. {sup 11}B-NMR spectroscopic study on the interaction of epinephrine and p-BPA

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, K.; Yoshino, K. [Shinshu Univ., Department of Chemistry, Matsumoto, Nagano (Japan)

    2000-10-01

    It is studied that p-BPA (p-bronophenylalanine) which formed complex with catechol functional group has interaction with epinephrine by {sup 11}B-NMR. Two {sup 11}B-NMR resonance signals were observed at pH 7.0. The signal at 29.6 ppm is assigned to p-BPA and at 10.8 ppm is assigned to that of complex. We can determine complex formation constants (logK') in various pH. (author)

  5. Water speciation in sodium silicate glasses (quenched melts): A comprehensive NMR study

    Science.gov (United States)

    Xue, X.; Kanzaki, M.; Eguchi, J.

    2012-12-01

    Dissolution mechanism of water is an important factor governing how the dissolved water affects the physical and thermodynamic properties of silicate melts and glasses. Our previous studies have demonstrated that 1H MAS NMR in combination with 29Si-1H and 27Al-1H double-resonance NMR experiments is an effective approach for unambiguously differentiating and quantifying different water species in quenched silicate melts (glasses). Several contrasting dissolution mechanisms have been revealed depending on the melt composition: for relatively polymerized melts, the formation of SiOH/AlOH species (plus molecular H2O) and depolymerization of the network structure dominate; whereas for depolymerized Ca-Mg silicate melts, free OH (e.g. MgOH) become increasingly important (cf. [1]). The proportion of free OH species has been shown to decrease with both increasing melt polymerization (silica content) and decreasing field strength of the network modifying cations (from Mg to Ca). Our previous 1H and 29Si MAS NMR results for hydrous Na silicate glasses of limited compositions (Na2Si4O9 and Na2Si2O5) were consistent with negligible free OH (NaOH) species and depolymerizing effect of water dissolution [2]. On the other hand, there were also other studies that proposed the presence of significant NaOH species in hydrous glasses near the Na2Si2O5 composition. The purpose of this study is apply the approach of combined 1H MAS NMR and double-resonance (29Si-1H and 23Na-1H) NMR to gain unambiguous evidence for the OH speciation in Na silicate glasses (melts) as a function of composition. Hydrous Na silicate glasses containing mostly ≤ 1 wt% H2O for a range of Na/Si ratios from 0.33 to 1.33 have been synthesized by rapidly quenching melts either at 0.2 GPa using an internally heated gas pressure vessel or at 1 GPa using a piston cylinder high-pressure apparatus. NMR spectra have been acquired using a 9.4 T Varian Unity-Inova spectrometer. The 29Si and 1H chemical shifts are

  6. Sequence-specific 1H NMR assignments and secondary structure of the Arc repressor of bacteriophage P22, as determined by two-dimensional 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Breg, J.N.; Boelens, R.; George, A.V.E.; Kaptein, R.

    1989-01-01

    The Arc repressor of bacteriophage P22 is a DNA binding protein that does not belong to any of the known classes of such proteins. The authors have undertaken a 1 H NMR study of the protein with the aim of elucidating its three-dimensional structure in solution and its mode of binding of operator DNA. Here the authors present the 1 H nuclear magnetic resonance (NMR) assignments of all backbone protons an most of the side-chain protons of Arc repressor. Elements of secondary structure have been identified on the basis of networks of characteristics sequential and medium-range nuclear Overhauser enhancements (NOEs). Two α-helical regions have been found in the peptide regions 16-29 and 35-45. The ends of the helices could not yet be firmly established and could extend to residue 31 for the first helix and to residue 49 for the second. Immediately before the first helix, between residues 8 and 14, a region is present with β-sheet characteristics dominated by a close proximity of the α-protons of residues 9 and 13. Because of the dimeric nature of the protein there are still two possible ways in which the NOEs in the β-sheet region can be interpreted. While the data presently do not allow an unambiguous choice between these two possibilities, some evidence is discussed that favors the latter (β-sheet between monomers). Since the N-terminal region of Arc is responsible for the sequence-specific recognition of its operator, the findings suggest the existence of a DNA binding motif in which a β-sheet region is present

  7. Local electronic structure of TM-based alloys: a pulsed NMR study

    International Nuclear Information System (INIS)

    Guerra, D.A.

    1984-01-01

    A pulsed NMR study on several transition metal + metalloid amorphous alloys is reported. The analisis of Knight shifts and nuclear spin-lattice relaxation of metalloids indicates a dominant contribution of p-electrons in the Fermi level density of state, supporting the existence of a p-d hibridization. (author) [pt

  8. Structure and Dynamics Studies of Cytolytic Peptides in Lipid Bilayers using NMR Spectroscopy

    DEFF Research Database (Denmark)

    Hansen, Sara Krogh

    2015-01-01

    different and cytolytic peptides were investigated in this work. The peptides were SPF-5506-A4 from Trichoderma sp, Conolysin-Mt1 from Conus mustelinus, and Alamethicin from Trichoderma viride. The studies employed solution and solid-state NMR spectroscopy in combination with different biophysical methods...

  9. Intracellular PHB conversion in a type II methanotroph studied by 13 C NMR

    NARCIS (Netherlands)

    Vecherskaya, M.; Dijkema, C.; Stams, A.J.M.

    2001-01-01

    Poly-g-hydroxybutyrate (PHB) formation under aerobic conditions via incorporation of [13C-2]acetate as a cosubstrate and its intracellular degradation under anaerobic conditions in a Type II methanotroph was studied by 13C NMR. During PHB synthesis in the presence of labelled acetate, low levels of

  10. Dehydration/hydration of granular beds for thermal storage applications: a combined NMR and temperature study

    NARCIS (Netherlands)

    Donkers, P.A.J.; Pel, L.; Adan, O.C.G.

    For heat/cold storage systems a granular bed of salt hydrates is studied during dehydration/hydration. The water density in these beds are measured with help of NMR. Diffusion based dehydration of a granular bed of Na2SO4·10H2O is shown to be internally limited as larger grains dehydrate faster than

  11. NMR studies of echinomycin bisintercalation complexes with d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution: sequence-dependent formation of Hoogsteen A1 x T4 and Watson-Crick T1 x A4 base pairs flanking the bisintercalation site

    International Nuclear Information System (INIS)

    Gao, X.; Patel, D.J.

    1988-01-01

    The authors report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-Tr) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets records in H 2 O and D 2 O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding the dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A large set of intermolecular contacts established from nuclear Overhauser effects (NOEs) between antibiotic and nucleic acid protons in the echinomycin-tetranucleotide complexes in solution are consistent with corresponding contacts reported for echinomycin-oligonucleotide complexes in the crystalline state. The authors demonstrate that the G x G base pairs adopt Watson-Crick pairing in both d(ACGT) and d(TCGA) complexes in solution. By contrast, the A1 x T4 base pairs adopt Hoogsteen pairing for the echinomycin-d(A1-C2-G3-Tr) complex while the T1 x A4 base pairs adopt Watson-Crick pairing for the echinomycin-d(T1-C2-G3-A4) complex in aqueous solution. These results emphasize the role of sequence in discriminating between Watson-Crick and Hoogsteen pairs at base pairs flanking the echinomycin bisintercalation site in solution

  12. Solid NMR study of lithium ions accommodated in various transition metal oxides

    International Nuclear Information System (INIS)

    Kanzaki, Yasushi; Suzuki, Noriko

    2008-01-01

    Solid NMR was used to elucidate the lithium accommodation/extraction reaction in various transition metal oxides. The first study was the lithium ion exchange reaction of titanium antimonic acid (TiSbA). The effect of hydration on the selectivity of lithium ion in the solid phase was examined using 7 Li NMR. The second study was the irreversible ion exchange behavior of HNbO 3 . The selectivity for the lithium ion and the irreversible behavior were examined using 1 H and 7 Li NMR. The third study was the isotope separation between 6 Li and 7 Li in various inorganic ion exchangers. The high isotope separation coefficient was ascribed to the degree of dehydration during the ion exchange reaction. The degree of dehydration was examined by 1 H and 7 Li NMR studies. The last study was determining the mechanism of the lithium accommodation/extraction reaction of λ-MnO 2 in an aqueous solution. The different paths between the accommodation and extraction and the formation of MnO 4- during the accommodation were determined by chemical analysis. The Knight shift in the 7 Li MAS-NMR spectra of Li 0.5 MnO 2 suggested the localization of the electron density on the lithium nuclei. An XPS study also suggested the presence of an electron density on the lithium nuclei. A pH-independent redox couple was assumed to account for the accommodation/extraction reaction of lithium ions, such as Li(I)/Li(0). (author)

  13. IRMA iterative relaxation matrix approach for NMR structure determination application to DNA fragments

    International Nuclear Information System (INIS)

    Koning, M.M.G.

    1990-01-01

    The subject of this thesis is the structure determination of DNA molecules in solution with the use of NMR. For this purpose a new relaxation matrix approach is introduced. The emphasis is on the interpretation of nuclear Overhauser effects (NOEs) in terms of proton-proton distances and related three dimensional structures. The DNA molecules studied are obligonucleotides, unmodifief as well as modified molecules bu UV radiation. From comparison with unmodified molecules it turned out that UV irradiation scarcely influences the helical structure of the DNA string. At one place of the string a nucleotide is rotated towards the high-ANTI conformation which results in a slight unwinding of the DNA string but sufficient for blocking of the normal reading of genetic information. (H.W.). 456 refs.; 50 figs.; 30 tabs

  14. NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study

    Energy Technology Data Exchange (ETDEWEB)

    Bevilaqua, Rochele C. A.; Miranda, Caetano R. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Rigo, Vagner A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Universidade Tecnológica Federal do Paraná, UTFPR, Cornélio Procópio, PR (Brazil); Veríssimo-Alves, Marcos [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, UFABC, Santo André, SP (Brazil); Departamento de Física, ICEx, Universidade Federal Fluminense, UFF, Volta Redonda, RJ (Brazil)

    2014-11-28

    The electronic and coordination environment of minerals surfaces, as calcite, are very difficult to characterize experimentally. This is mainly due to the fact that there are relatively few spectroscopic techniques able to detect Ca{sup 2+}. Since calcite is a major constituent of sedimentary rocks in oil reservoir, a more detailed characterization of the interaction between hydrocarbon molecules and mineral surfaces is highly desirable. Here we perform a first principles study on the adsorption of hydrocarbon molecules on calcite surface (CaCO{sub 3} (101{sup ¯}4)). The simulations were based on Density Functional Theory with Solid State Nuclear Magnetic Resonance (SS-NMR) calculations. The Gauge-Including Projector Augmented Wave method was used to compute mainly SS-NMR parameters for {sup 43}Ca, {sup 13}C, and {sup 17}O in calcite surface. It was possible to assign the peaks in the theoretical NMR spectra for all structures studied. Besides showing different chemical shifts for atoms located on different environments (bulk and surface) for calcite, the results also display changes on the chemical shift, mainly for Ca sites, when the hydrocarbon molecules are present. Even though the interaction of the benzene molecule with the calcite surface is weak, there is a clearly distinguishable displacement of the signal of the Ca sites over which the hydrocarbon molecule is located. A similar effect is also observed for hexane adsorption. Through NMR spectroscopy, we show that aromatic and alkane hydrocarbon molecules adsorbed on carbonate surfaces can be differentiated.

  15. O6-ethylguanine carcinogenic lesions in DNA: An NMR study of O6etG·T pairing in dodecanucloetide duplexes

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Li, B.F.L.; Swann, P.F.; Patel, D.J.

    1989-01-01

    High-resolution two-dimensional NMR studies are reported on the self-complementary d-(C1-G2-C3-O 6 etG4-A5-G6-C7-T8-T9-G10-C11-G12) duplex (designated O 6 etG·T 12-mer) containing two symmetrically related O 6 etG·T lesion sites located four base pairs in from either end of the duplex. Parallel studies were undertaken on a related sequence containing O 6 meG·T lesion sites (designated O 6 meG·T 12-mer) in order to evaluate the influence of the size of the alkyl substituent on the structure of the duplex and were undertaken on a related sequence containing G·T mismatch sites (designated G·T 12-mer duplex), which served as the control duplex. The exchangeable and nonexchangeable proton and the phosphorus nuclei have been assigned from an analysis of two-dimensional nuclear Overhauser enhancement (NOE) and correlated spectra of the O 6 etG·T 12-mer, O 6 meG·T 12-mer, and G·T 12-mer duplexes in H 2 O and D 2 O solutions. The distance connectivities observed in the NOESY spectra of the O 6 alkG·T 12-mer duplexes establish that the helix is right-handed and all of the bases adopt an anti conformation of the glycosidic torsion angle including the O 6 alkG4 and T9 bases at the lesion site. These observations establish that the O 6 alkG4 and T9 residues are stacked into the duplex and that the O 6 CH 3 and O 6 CH 2 CH 3 groups of O 6 alkG4 adopt a syn orientation with respect to the N 1 of the alkylated guanine. Since the O 6 -alkyl group adopts a syn orientation, the separation between the O 6 of O 6 alkG4 and the O 4 of T9 in the major groove is increased, preventing the formation of a short hydrogen bond between the N 1 ring nitrogen of O 6 alkG4 and the imino proton of T9

  16. Acid epimerization of 20-keto pregnane glycosides is determined by 2D-NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Victor P., E-mail: vpergarw@gobiernodecanarias.org [Instituto de Productos Naturales de Canarias, Departamento de Quimica de Productos Naturales y Biotecnologia (Spain)

    2011-05-15

    Carbohydrates influence many essential biological events such as apoptosis, differentiation, tumor metastasis, cancer, neurobiology, immunology, development, host-pathogen interactions, diabetes, signal transduction, protein folding, and many other contexts. We now report on the structure determination of pregnane glycosides isolated from the aerial parts of Ceropegia fusca Bolle (Asclepiadaceae). The observation of cicatrizant, vulnerary and cytostatic activities in some humans and animals of Ceropegia fusca Bolle, a species endemic to the Canary Islands, encouraged us to begin a pharmacological study to determine their exact therapeutic properties. High resolution {sup 1}H-NMR spectra of pregnane glycosides very often display well-resolved signals that can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. ROESY is especially suited for molecules such that {omega}{tau}{sub c} {approx} 1, where {tau}{sub c} are the motional correlation times and {omega} is the angular frequency. In these cases the NOE is nearly zero, while the rotating-frame Overhauser effect spectroscopy (ROESY) is always positive and increases monotonically for increasing values of {tau}{sub c}. The ROESY shows dipolar interactions cross peaks even in medium-sized molecules which are helpful in unambiguous assignment of all the interglycosidic linkages. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180 Degree-Sign Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY and DPFGSE-TOCSY experiments, while DPFGSE-ROESY was used to monitor the spatial environment of the selectively excited proton. Dipolar interactions between nuclei close in space can be detected by the 1D GROESY experiment, which is a one-dimensional counterpart of the 2D ROESY method. The C-12 and C-17 configurations were

  17. Studying the molecular determinants of potassium channel structure and function in membranes by solid-state NMR

    NARCIS (Netherlands)

    van der Cruijsen, Elwin

    2014-01-01

    Solid-state Nuclear Magnetic Resonance (ssNMR) has made remarkable progress in the structural characterization of membrane proteins systems at atomic resolution. Such studies can be further aided by the use of molecular dynamic simulations. Moreover, ssNMR data can be directly compared to functional

  18. In situ NMR and modeling studies of nitroxide mediated copolymerization of styrene and n-butyl acrylate

    NARCIS (Netherlands)

    Hlalele, L.; Klumperman, L.

    2011-01-01

    The combination of in situ1H NMR and in situ31P NMR was used to study the nitroxide mediated copolymerization of styrene and n-butyl acrylate. The alkoxyamine MAMA-DEPN was employed to initiate and mediate the copolymerization. The nature of the ultimate/terminal monomer units of dormant polymer

  19. Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy.

    Science.gov (United States)

    Tyagi, Ritu; Rana, Poonam; Khan, Ahmad Raza; Bhatnagar, Deepak; Devi, M Memita; Chaturvedi, Shubhra; Tripathi, Rajendra P; Khushu, Subash

    2011-10-01

    Thallium (Tl) is a toxic heavy metal and its exposure to the human body causes physiological and biochemical changes due to its interference with potassium-dependent biological reactions. A high-resolution (1)H NMR spectroscopy based metabonomic approach has been applied for investigating acute biochemical effects caused by thallium sulfate (Tl(2)SO(4)). Male strain A mice were divided in three groups and received three doses of Tl(2)SO(4) (5, 10 and 20 mg kg(-1) b.w., i.p.). Urine samples collected at 3, 24, 72 and 96 h post-dose time points were analyzed by (1)H NMR spectroscopy. NMR spectral data were processed and analyzed using principal components analysis to represent biochemical variations induced by Tl(2)SO(4). Results showed Tl-exposed mice urine to have distinct metabonomic phenotypes and revealed dose- and time-dependent clustering of treated groups. The metabolic signature of urine analysis from Tl(2)SO(4)-treated animals exhibited an increase in the levels of creatinine, taurine, hippurate and β-hydroxybutyrate along with a decrease in energy metabolites trimethylamine and choline. These findings revealed Tl-induced disturbed gut flora, membrane metabolite, energy and protein metabolism, representing physiological dysfunction of vital organs. The present study indicates the great potential of NMR-based metabonomics in mapping metabolic response for toxicology, which could ultimately lead to identification of potential markers for Tl toxicity. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR.

    Science.gov (United States)

    van der Schot, Gijs; Bonvin, Alexandre M J J

    2015-08-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665-1674, 2005b, doi: 10.1021/ja047109h). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27-35, 2013, doi: 10.1007/s10858-013-9762-6), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  1. The structure of poly(carbonsuboxide) on the atomic scale: a solid-state NMR study.

    Science.gov (United States)

    Schmedt auf der Günne, Jörn; Beck, Johannes; Hoffbauer, Wilfried; Krieger-Beck, Petra

    2005-07-18

    In this contribution we present a study of the structure of amorphous poly(carbonsuboxide) (C3O2)x by 13C solid-state NMR spectroscopy supported by infrared spectroscopy and chemical analysis. Poly(carbonsuboxide) was obtained by polymerization of carbonsuboxide C3O2, which in turn was synthesized from malonic acid bis(trimethylsilylester). Two different 13C labeling schemes were applied to probe inter- and intramonomeric bonds in the polymer by dipolar solid-state NMR methods and also to allow quantitative 13C MAS NMR spectra. Four types of carbon environments can be distinguished in the NMR spectra. Double-quantum and triple-quantum 2D correlation experiments were used to assign the observed peaks using the through-space and through-bond dipolar coupling. In order to obtain distance constraints for the intermonomeric bonds, double-quantum constant-time experiments were performed. In these experiments an additional filter step was applied to suppress contributions from not directly bonded 13C,13C spin pairs. The 13C NMR intensities, chemical shifts, connectivities and distances gave constraints for both the polymerization mechanism and the short-range order of the polymer. The experimental results were complemented by bond lengths predicted by density functional theory methods for several previously suggested models. Based on the presented evidence we can unambiguously exclude models based on gamma-pyronic units and support models based on alpha-pyronic units. The possibility of planar ladder- and bracelet-like alpha-pyronic structures is discussed.

  2. Nitrogen Use Efficiency and Carbon Isotope Discrimination Study on NMR151 and NMR152 Mutant Lines Rice at Field Under Different Nitrogen Rates and Water Potentials

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abdul Wahid; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Latiffah Nordin; Abdul Razak Ruslan; Hazlina Abdullah; Khairuddin Abdul Rahim

    2016-01-01

    This study was conducted to evaluate the nitrogen use efficiency and "1"3C isotope discrimination of rice mutant lines viz. NMR151 and NMR152. Both cultivars are developed under rice radiation mutagenesis programme for adaptability to aerobic conditions. In the present study, NMR151 and NMR152 were grown under conditions of varying water potentials and nitrogen levels in a field. Two water potentials and three nitrogen rates in a completely randomized design with three replications were carried out. The rice mutants were grown for 110 days under two water potentials, (i) Field capacity from 0 to 110 DAS [FC], and (ii) Field capacity from 0 to 40 DAS and 30 % dry of field capacity from 41 to 110 DAS [SS] and three nitrogen rates, (i) 0 kg N/ ha (0N), (ii) 60 kg N/ ha (60N), and (iii) 120 kg N/ ha (120N). "1"5N isotopic tracer technique was used in this study, whereby the "1"5N labeled urea fertilizer 5.20 % atom excess (a.e) was utilized as a tracer for nitrogen use efficiency (NUE) study. "1"5N isotope presence in the samples was determined using emission spectrometry and percentage of total nitrogen was determined by the Kjeldahl method. "1"5N a.e values of the samples were used in the determination of the NUE. The value of "1"3C isotope discrimination (Δ"1"3C) in the sample was determined using isotope ratio mass spectrometry (IRMS). The "1"3C isotope discrimination technique was used as a tool to identify drought resistance rice cultivars with improves water use efficiency. The growth and agronomy data, viz. plant height, number of tillers, grain yield, straw yield, and 1000 grain weight also were recorded. Results from this study showed nitrogen rates imparted significant effects on yield (grain and straw) plant height, number of tillers and 1000 grain weight. Water potentials had significant effects only on 1000 grain weight and Δ"1"3C. The NUE for both mutant lines rice showed no significant different between treatments. Both Rice mutant lines rice NMR151

  3. NMR studies of the exocyclic 1,N6-ethenodeoxyadenosine adduct (εdA) opposite thymidine in a DNA duplex. Nonplanar alignment of εdA(anti) and dT(anti) at the lesion site

    International Nuclear Information System (INIS)

    Kouchakdjian, M.; Patel, D.J.; Eisenberg, M.; Yarema, K.; Basu, A.; Essigmann, J.

    1991-01-01

    Two-dimensional proton NMR studies are reported on the complementary d(C-A-T-G-T-G-T-A-C)·d(G-T-A-C-εA-C-A-T-G) nonanucleotide duplex (designated εdA·dT 9-mer duplex) containing 1,N 6 -ethenodeoxyadenosine (εdA), a carcinogen-DNA adduct, positioned opposite thymidine in the center of the helix. The authors NMR studies have focused on the conformation of the εdA·dT 9-mer duplex at neutral pH with emphasis on defining the alignment at the dT5·εdA14 lesion site. The through-space NOE distance connectivities establish that both dT5 and εdA14 adopt anti glycosidic torsion angles, are directed into the interior of the helix, and stack with flanking Watson-Crick dG4·dC15 and dG6·dC13 pairs. Furthermore, the d(G4-T5-G6)·d(C13-εA14-C15) trinucleotide segment centered about the dT5·εdA14 lesion site adopts a right-handed helical conformation in solution. Energy minimization computations were undertaken starting from six different alignments of dT5(anti) and εdA14(anti) at the lesion site and were guided by distance constraints defined by lower and upper bounds estimated from NOESY data sets on the εdA·dT 9-mer duplex. The NMR data are consistent with a nonplanar alignment of εdA14(anti) and dT5(anti) with dT5 displaced toward the flanking dG4·dC15 base pair within the d(G4-T5-G6)·d(C13-εA14-C15) segment of the εdA·dT 9-mer duplex

  4. NATURAL CYCLOPENTANOID CYANOHYDRIN GLYCOSIDES .13. STRUCTURE DETERMINATION OF NATURAL EPOXYCYCLOPENTANES BY X-RAY CRYSTALLOGRAPHY AND NMR-SPECTROSCOPY

    DEFF Research Database (Denmark)

    Olafsdottir, E. S.; Sorensen, A. M.; Cornett, Claus

    1991-01-01

    nonannellated cyclopentane derivatives. The new glucosides were shown, by NMR spectroscopy (including NOE measurements), X-ray crystallography, and enzymatic hydrolysis to the corresponding cyanohydrins, to be (1R,2R,3R,4R)- and (1S,2S,3S,4S)-1-(beta-D-glucopyranosyloxy)-2,3-epoxy-4-hydroxycyclopenta ne-1...

  5. Spectroscopic techniques (Moessbauer spectrometry, NMR, ESR...) as tools to resolve doubtful NMR images: Study of the craniopharyngioma tumor

    International Nuclear Information System (INIS)

    Rimbert, J.N.; Dumas, F.; Lafargue, C.; Kellershohn, C.; Brunelle, F.; Lallemand, D.

    1990-01-01

    Craniopharyngioma, an intracranial tumor, exhibits hyperintensity in the Spin-Echo-T 2 -NMR image and a hyposignal in the SE-T 1 -image. However, in some cases (15-20% cases), hypersignals are seen in both SE-T 1 and T 2 -MRI. Using spectroscopic techniques, Moessbauer spectrometry in particular, we have demonstrated that the T 1 hypersignal is due to ferritin, dissolved in the cystic liquid, after tumor cell lysis, in the course of time. Other possible reasons inducing a shortening of the T 1 relaxation time (presence of lipids, intratumoral hemorrhage) have been rejected. (orig.)

  6. NMR study of damage on isolated perfused rat heart exposed to ischemia and hypoxia

    International Nuclear Information System (INIS)

    Luo Xuechun; Yan Yongbin; Zhang Riqing; Fan Lili

    2001-01-01

    Myocardial ischemia is the most common and primary cause of myocardium damage. Numerous conventional techniques and methods have been developed for ischemia and reperfusion studies. However, because of damage to the heart sample, most of these techniques can not be used to continuously monitor the full dynamic course of the myocardial metabolic pathway. The nuclear magnetic resonance (NMR) surface coil technique, which overcomes the limitations of conventional instrumentation, can be used to quantitatively study every stage of the perfused heart (especially after perfusion stoppage) continuously, dynamically, and without damage under normal or designed physiological conditions at the molecular level. In this paper, 31 P-NMR was used to study the effects of ischemia and hypoxia on isolated perfused hearts. The results show that complete hypoxia caused more severe functional damage to the myocardial cells than complete ischemia

  7. Comparative NMR study of nPrBTP and iPrBTP

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Muellich, U.; Geist, A.; Geckeis, H. [Karlsruhe Institute of Technology - KIT, Institute for Nuclear Waste Disposal - INE, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rohde, V. [Fraunhofer Institute for Chemical Technology - ICT, Environmental Engineering, Joseph-von-Fraunhofer-Str. 7, 76327 Pfinztal (Germany); Kaden, P. [Helmholtz-Zentrum Dresden - Rossendorf e. V., Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden (Germany); Panak, P.J. [Karlsruhe Institute of Technology - KIT, Institute for Nuclear Waste Disposal - INE, Herrmann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); University of Heidelberg, Department of Physical Chemistry, Im Neuenheimer Feld 253, 69120 Heidelberg (Germany)

    2016-07-01

    Bis-triazinyl-pyridine type ligands are important extracting agents for separating trivalent actinide ions from trivalent lanthanides. The alkyl substituents on the lateral triazine rings have a significant effect on the stability of the ligand against hydrolysis and radiolysis. Furthermore they influence solubility, extraction behaviour and selectivity. TRLFS and extraction studies suggest differences in complexation and extraction behaviour of BTP ligands bearing iso-propyl or n-propyl substituents, respectively. As NMR studies allow insight into the metal-ligand bonding, we conducted NMR studies on a range of {sup 15}N-labelled nPrBTP and iPrBTP Ln(III) and Am(III) complexes. Our results show that no strong change in the metal-ligand bonding occurs, thus excluding electronic reasons for differences in complexation behaviour, extraction kinetics and selectivity. This supports mechanistic reasons for the observed differences. (authors)

  8. Adducts of nitrogenous ligands with rhodium(II) tetracarboxylates and tetraformamidinate: NMR spectroscopy and density functional theory calculations.

    Science.gov (United States)

    Cmoch, Piotr; Głaszczka, Rafał; Jaźwiński, Jarosław; Kamieński, Bohdan; Senkara, Elżbieta

    2014-03-01

    Complexation of tetrakis(μ2-N,N'-diphenylformamidinato-N,N')-di-rhodium(II) with ligands containing nitrile, isonitrile, amine, hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups has been studied in liquid and solid phases using (1)H, (13)C and (15)N NMR, (13)C and (15)N cross polarisation-magic angle spinning NMR, and absorption spectroscopy in the visible range. The complexation was monitored using various NMR physicochemical parameters, such as chemical shifts, longitudinal relaxation times T1 , and NOE enhancements. Rhodium(II) tetraformamidinate selectively bonded only unbranched amine (propan-1-amine), pentanenitrile, and (1-isocyanoethyl)benzene. No complexation occurred in the case of ligands having hydroxyl, sulfhydryl, isocyanate, and isothiocyanate functional groups, and more expanded amine molecules such as butan-2-amine and 1-azabicyclo[2.2.2]octane. Such features were opposite to those observed in rhodium(II) tetracarboxylates, forming adducts with all kind of ligands. Special attention was focused on the analysis of Δδ parameters, defined as a chemical shift difference between signal in adduct and corresponding signal in free ligand. In the case of (1)H NMR, Δδ values were either negative in adducts of rhodium(II) tetraformamidinate or positive in adducts of rhodium(II) tetracarboxylates. Experimental findings were supported by density functional theory molecular modelling and gauge independent atomic orbitals chemical shift calculations. The calculation of chemical shifts combined with scaling procedure allowed to reproduce qualitatively Δδ parameters. Copyright © 2013 John Wiley & Sons, Ltd.

  9. Main-chain-directed strategy for the assignment of 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Englander, S.W.; Wand, A.J.

    1987-01-01

    A strategy for assigning the resonances in two-dimensional (2D) NMR spectra of proteins is described. The method emphasizes the analysis of through-space relationships between protons by use of the two-dimensional nuclear Overhauser effect (NOE) experiment. NOE patterns used in the algorithm were derived from a statistical analysis of the combinations of short proton-proton distances observed in the high-resolution crystal structures of 21 proteins. One starts with a search for authentic main-chain NH-C/sub α/H-C/sub β/H J-coupled units, which can be found with high reliability. The many main-chain units of a protein are then placed in their proper juxtaposition by recognition of predefined NOE connectivity patterns. To discover these connectivities, the 2D NOE spectrum is examined, in a prescribed order, for the distinct NOE patterns characteristic of helices, sheets, turns, and extended chain. Finally, the recognition of a few amino acid side-chain types places the discovered secondary structure elements within the polypeptide sequences. Unlike the sequential assignment approach, the main-chain-directed strategy does not rely on the difficult task of recognizing many side-chain spin systems in J-correlated spectra, the assignment process is not in general sequential with the polypeptide chain, and the prescribed connectivity patterns are cyclic rather than linear. The latter characteristic avoids ambiguous branch points in the analysis and imposed an internally confirmatory property on each forward step

  10. 1H NMR studies of human lysozyme: Spectral assignment and comparison with hen lysozyme

    International Nuclear Information System (INIS)

    Redfield, C.; Dobson, C.M.

    1990-01-01

    Complete main-chain (NH and αCH) 1 H NMR assignments are reported for the 130 residues of human lysozyme, along with extensive assignments for side-chain protons. Analysis of 2-D NOESY experiments shows that the regions of secondary structure for human lysozyme in solution are essentially identical with those found previously in a similar study of hen lysozyme and are in close accord with the structure of the protein reported previously from x-ray diffraction studies in the crystalline state. Comparison of the chemical shifts, spin-spin coupling constants, and hydrogen exchange behavior are also consistent with closely similar structures for the two proteins in solution. In a number of cases specific differences in the NMR parameters between hen and human lysozymes can be correlated with specific differences observed in the crystal structures

  11. NMR studies of myocardial energy metabolism and ionic homeostasis during ischemia and reperfusion

    International Nuclear Information System (INIS)

    Kirkels, J.H.

    1989-01-01

    In this study several aspects of myocardial energy metabolism and ionic homeostasis during ischemia and reperfusion were investigated in isolated perfused rat hearts, regionally ischemic rabbit hearts, and ex vivo human donor hearts during long term hypothermic cardioplegia. Phosphorus-31 nuclear magnetic resonance ( 31 P NMR) spectroscopy was used as a powerful tool to non-destructively follow the time course in changes in intracellular high-energy phosphates, (creatine phosphate and ATP), inorganic phosphate, and pH. In addition, changes in intracellular free magnesium were followed during ischemia and reperfusion. Sodium-23 ( 23 Na) NMR spectroscopy was used to study intracellular sodium during ischemia and reperfusion and during calcium-free perfusion. (author). 495 refs.; 33 figs.; 11 tabs

  12. CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO

    International Nuclear Information System (INIS)

    Guerry, Paul; Duong, Viet Dung; Herrmann, Torsten

    2015-01-01

    UNIO is a comprehensive software suite for protein NMR structure determination that enables full automation of all NMR data analysis steps involved—including signal identification in NMR spectra, sequence-specific backbone and side-chain resonance assignment, NOE assignment and structure calculation. Within the framework of the second round of the community-wide stringent blind NMR structure determination challenge (CASD-NMR 2), we participated in two categories of CASD-NMR 2, namely using either raw NMR spectra or unrefined NOE peak lists as input. A total of 15 resulting NMR structure bundles were submitted for 9 out of 10 blind protein targets. All submitted UNIO structures accurately coincided with the corresponding blind targets as documented by an average backbone root mean-square deviation to the reference proteins of only 1.2 Å. Also, the precision of the UNIO structure bundles was virtually identical to the ensemble of reference structures. By assessing the quality of all UNIO structures submitted to the two categories, we find throughout that only the UNIO–ATNOS/CANDID approach using raw NMR spectra consistently yielded structure bundles of high quality for direct deposition in the Protein Data Bank. In conclusion, the results obtained in CASD-NMR 2 are another vital proof for robust, accurate and unsupervised NMR data analysis by UNIO for real-world applications

  13. NMR spectroscopic and quantum mechanical analyses of enhanced solubilization of hesperidin by theasinensin a.

    Science.gov (United States)

    Cao, Ruge; Kobayashi, Yutaro; Nonaka, Airi; Miyata, Yuji; Tanaka, Kazunari; Tanaka, Takashi; Matsui, Toshiro

    2015-07-01

    The use of hesperidin in the pharmaceutical field is limited by its aqueous insolubility. The effects of natural compounds in tea on the solubility of hesperidin were evaluated and the underlying mechanism was investigated by nuclear-magnetic resonance (NMR) and quantum mechanical calculations. The solubility of hesperidin was measured by liquid chromatography time-of-flight mass spectrometry; the structure of the hesperidin/theasinensin A complex was characterized by (1)H-NMR, diffusion-ordered NMR spectroscopy, and rotating frame NOE spectroscopy, as well as theoretically by quantum mechanical calculations. Among the natural compounds in tea, theasinensin A was the most effective in improving hesperidin solubility. The complexation of hesperidin with theasinensin A led to changes in the chemical shift of protons in hesperidin (Δδ: 0.01-0.27 ppm) and diffusion coefficient (ΔD: 0.66-1.32 × 10(-10) m(2)/s) of hesperidin. ROE correlation signals between hesperidin and theasinensin A and quantum mechanical calculations revealed that two hesperidin molecules formed a stable complex with theasinensin A (2:1 complex) with a ΔG energy of -23.5 kJ/mol. This is the first study that provides insight into the enhanced solubility of hesperidin through interactions with theasinensin A via a 2:1 complex formation between hesperidin and theasinensin A.

  14. Ab initio study, investigation of NMR shielding tensors, NBO and ...

    African Journals Online (AJOL)

    The electrochemical oxidation of dopamine and 3,4-dihydroxymethamphetamine (HHMA) has been studied in the presence of GSH and cysteine as a nucleophile. In order to determine the optimized geometries, energies, dipole moments, atomic charges, thermochemical analysis and other properties, we performed ...

  15. The in-vitro study of human blood leukemic cells by pulsed NMR

    International Nuclear Information System (INIS)

    Zulkarnaen, M.; Munawir; Wibowo, Tono; Suyitno, Gogot

    1983-01-01

    The diagram of leukemic cells in human blood has been studied by using the NMR longitudinal relaxation technique. The observation was treated in whole blood, serum and blood cell. Every result was compared with previous observation and show that the values of the proton longitudinal relaxation in the leukemic whole blood almost twice or more that of normal blood, while in the serum and the blood cell, the values are nearly the same. (author)

  16. Blends of natural rubber and polyurethane lattices studied by solid-state NMR

    International Nuclear Information System (INIS)

    Ricardo, Nagila M.P.S.; Franca, Francisco C.F. de; Price, Colin; Heatley, Frank

    2001-01-01

    Molecular mixing in films formed from a mixture of a polyurethane and natural rubber lattices has been studied using 1 H and 13 C solid-state NMR. The techniques employed include 1 H relaxation measurements, and 13 C cross-polarisation and direct excitation methods. The spectra of the blends were essentially a weighted superposition of the spectra of the individual components, indicating that the polyurethane and rubber remained phase-separated in large domains. (author)

  17. NMR study of the 1-13C glucose colon bacterial metabolism

    International Nuclear Information System (INIS)

    Briet, F.; Flourie, B.; Pochart, P.; Rambaud, J.C.; Desjeux, J.F.; Dallery, L.; Grivet, J.P.

    1994-01-01

    The aim of the study is to examine in-vitro and by nuclear magnetic resonance the biological pathways for the fermentation of the 1- 13 C labelled glucose (99 atoms percent) by human colon bacteria. The preparation of the bacterial suspension and the glucose degradation kinetics are presented; the NMR analysis sensitivity and quantification features are discussed and results are presented. 2 figs., 1 ref

  18. NMR: its application to the experimental study of hydrocephalus and brain edema

    Energy Technology Data Exchange (ETDEWEB)

    Asato, R; Murata, T; Mori, K; Handa, H [Kyoto Univ. (Japan). Faculty of Medicine

    1981-06-01

    The pulsed NMR technique is very sensitive to molecular movement because its observation frequency is in the range of the rates of molecular movement. Furthermore it makes it possible to study the interested molecules in the biological tissues physically and noninvasively. In this report we have investigated the experimental brain edema and hydrocephalus, in both of which the tissue fluid changes are main pathology, through /sup 1/H-NMR relaxation study of water molecule in the brain tissues. The longitudinal (T/sub 1/) and the transverse (T/sub 2/) relaxation times were measured with Varian-HR-220 spectrometer modified with Nicolet-TT-100 PFT system. The experimental materials were the adult male Wister rats suffering from cold injury edema and the adult canines suffering from kaolin hydrocephalus. The study showed firstly that in brain edema no particular changes were found for relaxation times in the white matter, whereas in the gray matter, discrepancy between the changes of T/sub 1/ and T/sub 2/ was observed. That is to say, there were 2 components of T/sub 2/ in contrast with single T/sub 1/ value in the same sample of the edematous gray matter, which indicates the existence of 2 fractions of tissue water, not exchanging on an NMR time scale. Secondary, a good correlation between the longitudinal (T/sub 1/) relaxation time and the tissue water content was found for the dog brains, which suggests that we can analyse the NMR relaxation data of the dog brains based on the two-fraction fast-exchange model.

  19. NMR structural studies of the ionizing radiation adduct 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) opposite deoxyadenosine in a DNA duplex. 8-oxo-7H-dG(syn)·dA(anti) alignment at lesion site

    International Nuclear Information System (INIS)

    Kouchakdjian, M.; Patel, D.J.; Bodepudi, V.; Shibutani, S.; Eisenberg, M.; Johnson, F.; Grollman, A.P.

    1991-01-01

    Proton NMR studies are reported on the complementary d(C1-C2-A3-C4-T5-A6-oxo-G7-T8-C9-A10-C11-C12)·d(G13-G14-T15-G16-A17-A18-T19-A20-G21-T22-G23-G24) dodecanucleotide duplex (designated 8-oxo-7H-dG·dA 12-mer), which contains a centrally located 7-hydro-8-oxodeoxyguanosine (8-oxo-7H-dG) residue, a group commonly found in DNA that has been exposed to ionizing radiation or oxidizing free radicals. From the NMR spectra it can be deduced that this moiety exists as two tautomers, or gives rise to two DNA conformations, that are in equilibrium and that exchange slowly. The present study focuses on the major component of the equilibrium that originates in the 6,8-dioxo tautomer of 8-oxo-7H-dG. The authors have assigned the exchangeable NH1, NH7, and NH 2 -2 base protons located on the Watson-Crick and Hoogsteen edges of 8-oxo-7H-dG7 in the 8-oxo-7H-dG·dA 12-mer duplex, using an analysis of one- and two-dimensional nuclear Overhauser enhancement (NOE) data in H 2 O solution. They were able to detect a set of intra- and interstrand NOEs between protons (exchangeable and nonexchangeable) on adjacent residues in the d(A6-oxo-G7-T8)·d(A17-A18-T19) trinucleotide segment centered about the lesion site that establishes stacking of the oxo-dG7(syn)·dA(anti) pair between stable Watson-Crick dA6·dT19 and dT8·A17 base pairs with minimal perturbation of the helix. The structural studies demonstrate that 8-oxo-7H-dG(syn)·dA(anti) forms a stable pair in the interior of the helix, providing a basis for the observed incorporation of dA opposite 8-oxo-7H-dG when readthrough occurs past this oxidized nucleoside base

  20. Structural comparison of 1{beta}-Methylcarbapenem, Carbapenem and Penem: NMR studies and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T. [Research Center, Sumitomo Pharmaceuticals Co., Ltd., 3-1-98 Kasugadenaka, Konohanaku, Osaka (Japan)

    1998-04-01

    Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using {sup 1}H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained {beta}-lactam rings in good agreement with the crystallographic data. {sup 1}H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Structural comparison of 1β-Methylcarbapenem, Carbapenem and Penem: NMR studies and theoretical calculations

    International Nuclear Information System (INIS)

    Sunagawa, M.; Sasaki, A.; Igarashi, J.-E.; Nishimura, T.

    1998-01-01

    Structural comparisons of meropenem (1), desmethyl meropenem (2) and the penem analogue (3) which contain the same side chains at both C-2 and C-6 were performed using 1 H NMR measurements together with 3-21G* level of ab initio MO and molecular mechanics calculations. The ab initio MO calculations reproduced the skeletons of these strained β-lactam rings in good agreement with the crystallographic data. 1 H NMR measurements in aqueous solution together with molecular modeling studies indicated that there were conformational differences of the C-2 and C-6 side chains in this series of compounds. These observations suggested that the conformational differences could affect their biological activities. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Changes in molecular structure and properties of irradiated polymers of different compositions - ESR and NMR study

    International Nuclear Information System (INIS)

    Carswell-Pomerantz, T.; Babanalbandi, A.; Dong, L.; Hill, D.J.T.; Perera, M.C.S.; Pomery, P.J.; Saadat, G.; Whittaker, A.K.

    1999-01-01

    Investigations of molecular structural changes in polymers during exposure to high energy radiation is the long term interest of the Polymer Materials and Radiation Group at the University of Queensland. Recently, the group had looked at a range of polymers including natural and synthetic rubbers, methacrylates and polyesters. The objective of the work has been to investigate the relationships between polymer structure and sensitivity towards high energy radiation, including gamma radiation. This report will focus on the Electron Spin Resonance (ESR) and Nuclear Magnetic Resonance (NMR) studies of the effects of gamma irradiation on these polymers. Other methods such as Gas Chromatography (GC), Gel Permeation Chromatography (GPC), Fourier Transformed Infra Red (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Dynamic Mechanical Analysis (DMA) have also been used as these methods combine with ESR and NMR, to provide a more complete picture of the mechanism of the structural changes. (author)

  3. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism

    International Nuclear Information System (INIS)

    Meyer, R.A.; Kushmerick, M.J.; Brown, T.R.

    1982-01-01

    This review presents the principles and limitations of phosphorus nuclear magnetic resonance ( 31 P-NMR) spectroscopy as applied to the study of striated muscle metabolism. Application of the techniques discussed include noninvasive measurement of high-energy phosphate, intracellular pH, intracellular free Mg 2+ , and metabolite compartmentation. In perfused cat biceps (fast-twitch) muscles, but not in soleus (slow-twitch), NMR spectra indicate a substantially lower (1 mM) free inorganic phosphate level than when measured chemically (6 mM). In addition, saturation and inversion spin-transfer methods that enable direct measurement of the unidirectional fluxes through creatine kinase are described. In perfused cat biceps muscle, results suggest that this enzyme and its substrates are in simple chemical equilibrium

  4. Raman and NMR study in MgO-doped LiNbO3 crystal

    International Nuclear Information System (INIS)

    Hu, L.J.; Chang, Y.H.; Chang, C.S.; Yang, S.J.; Hu, M.L.; Tse, W.S.

    1991-01-01

    This paper reports on the MgO-doped LiNbO 3 crystal grown and studied by NMR and Raman techniques. The solubility of MgO in the LiNbO 3 crystal is as much as 30 mole %. It is shown in NMR spectra that the number of Nb 5+ cations at A-site (Li-site) decrease as Mg concentration increased when the Mg content is lower than 5 mole %. The vibration of (NbO 6 ) octahedron and translations involving Li + and Mg 2+ cations motion can be identified by replacing Nb 5+ and Li + cations with Ta 5+ and Mg 2+ cations through Raman spectra. The 115 cm -1 and 151 cm -1 peaks are due to the translational modes of Mg 2+ and Li + cations. The doping mechanisms of MgO are proposed

  5. Part I. Generation of tailored radio-frequency pulses for NMR. Part II. Deuterium NMR studies of oriented DNA, and its interaction with water

    International Nuclear Information System (INIS)

    Brandes, R.

    1988-01-01

    A novel method for generating tailored radio-frequency pulses for use in NMR is presented. For this purpose, an inexpensive device based on analog audio filters was built. As an application, the superior selectivity of this method is shown by comparing it with a soft pulse excitation. The theoretical response of the magnetization to these tailored rf pulses is also calculated. Deuterium NMR line shapes of 2 H-labeled purine bases in solid, uniaxially oriented Li- and Na-DNA have been obtained. The spectral densities of motion were determined for the Li-DNA samples to test a model for uncorrelated, restricted base motion. For the first time, a 2 H spectrum is reported for 2 H labeled DNA in the liquid crystalline state. A procedure is outlined to separate the base motion from the DNA axis motion. In addition to the studies of DNA itself, the interaction of water (D 2 O) with samples of uniaxially oriented Na- and Li-DNA have been studied by high resolution 2 H NMR

  6. TD-NMR studies on CuSO{sub 4} salt hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, Nikolaus; Magin, Peter; Wengeler, Robert [BASF Aktiengesellschaft, Ludwigshafen (Germany); Kleinschmidt, Sebastian [Universitaet Magdeburg, FB Chemie (Germany)

    2008-07-01

    Despite the high concentration of paramagnetic copper ions, solid CuSO{sub 4} hydrates exhibit surprizingly narrow NMR signals. This is known since the late 1940s. Using TD-NMR methods established for polymer studies, the relaxation behaviour of CuSO{sub 4} preparations with different water content was studied at room temperature. For the water content of the pentahydrate and below, the NMR signal exhibits a pure solid-state-type magnetization decay behaviour. For slightly overstoichiometric moisture contents, a liquid-like signal is observed in addition to the solid signal. However, the relative amplitudes of the solid and the liquid signal do not mirror the stoichiometric composition of the pentahydrate and the excess water. Instead, the solid signal amplitude only accounts for four hydrate water molecules while the fifth water exhibits rapid exchange with the liquid phase and thus contributes to the liquid-type signal. This finding is in good agreement to results from investigations into the crystal structure of solid CuSO4 pentahydrate.

  7. NMR studies of interfaces, strain and anisotropy in Co/Cu multilayers

    International Nuclear Information System (INIS)

    Thomson, T.; Riedi, P.C.

    1999-01-01

    59 Co NMR studies of multilayers are able to give three direct pieces of information: (i) the crystal phase of Co, fcc (217.4 MHz), hcp (220-228 MHz) and in exotic cases bcc (198 MHz) for films measured at T= 4.2 K, (ii) the nature of the interfaces from low frequency satellite lines, and (iii) the strain state deduced from small changes in the line positions. Extensive studies of Co/Cu multilayer interfacial structures as a function of deposition technique, layer thickness, substrate/buffer layer structure and annealing temperature have been undertaken. This work has shed new light on the relationship between interfacial structure and magnetoresistance and in particular has demonstrated that flat, atomic scale, interfaces lead to greater magnetoresistance. The difference between the Co and Cu lattice constant results in an extensive, tensile in-plane strain developing in Co layers provided that some epitaxial registry is present. Information on strain effects can be obtained from the position and width of the NMR lines. The magnetic anisotropy field can be determined by measuring the field dependence of the enhancement effect due to electronic magnetisation. This provides unique insight into the distribution of magnetic anisotropy within the Co layers, as the enhancement can be investigated independently for each NMR line and, hence, provides environment specific information on magnetic anisotropy at the interfaces and in the interior of the layers

  8. NMR study of local diamagnetic properties of carbon structures with multiwalled nanotubes

    International Nuclear Information System (INIS)

    Nikolaev, E.G.; Omel'yanovsky, O.E.; Prudkovsky, V.S.; Sadakov, A.V.; Tsebro, V.I.

    2009-01-01

    The reasons for the high diamagnetic susceptibility of carbon columns, which are covered with a nanotube mesh, from the interior part of cathode deposits have been studied by means of NMR. A comparative study is made of the 13 C NMR spectra and the magnetic susceptibility of carbon columns before and after ultrasonic processing as well as of finely dispersed material, obtained as a result of such processing, enriched with multilayer nanotubes. The strong diamagnetism of the carbon columns is apparently associated with a quite dense conglomerate of graphite particles, nanotubes, and multilayer polyhedral particles present in their core and not with the surface mesh of multilayer nanotubes. To make a more accurate determination of the character of the anisotropy of the magnetic susceptibility of multilayer carbon nanotubes, the form of the 13 C NMR spectra of samples enriched with multilayer nanotubes, where the nanotubes are either not oriented or only partially oriented, is analyzed. It is shown that the diamagnetic susceptibility of multilayer carbon nanotubes is highest when the magnetic field is oriented perpendicular to their axis

  9. Multinuclear NMR studies of single lipid bilayers supported in cylindrical aluminum oxide nanopores.

    Science.gov (United States)

    Gaede, Holly C; Luckett, Keith M; Polozov, Ivan V; Gawrisch, Klaus

    2004-08-31

    Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.

  10. Natural abundant solid state NMR studies in designed tripeptides for differentiation of multiple conformers.

    Science.gov (United States)

    Jayanthi, S; Chatterjee, Bhaswati; Raghothama, S

    2009-10-01

    Solid state NMR (SSNMR) experiments on heteronuclei in natural abundance are described for three synthetically designed tripeptides Piv-(L)Pro-(L)Pro-(L)Phe-OMe (1), Piv-(D)Pro-(L)Pro-(L)Phe-OMe (2), and Piv-(D)Pro-(L)Pro-(L)Phe-NHMe (3). These peptides exist in different conformation as shown by solution state NMR and single crystal X-ray analysis (Chatterjee et al., Chem Eur J 2008, 14, 6192). In this study, SSNMR has been used to probe the conformations of these peptides in their powder form. The (13)C spectrum of peptide (1) showed doubling of resonances corresponding to cis/cis form, unlike in solution where the similar doubling is attributed to cis/trans form. This has been confirmed by the chemical shift differences of C(beta) and C(gamma) carbon of Proline in peptide (1) both in solution and SSNMR. Peptide (2) and (3) provided single set of resonances which represented all trans form across the di-Proline segment. The results are in agreement with the X-ray analysis. Solid state (15)N resonances, especially from Proline residues provided additional information, which is normally not observable in solution state NMR. (1)H chemical shifts are also obtained from a two-dimensional heteronuclear correlation experiment between (1)H--(13)C. The results confirm the utility of NMR as a useful tool for identifying different conformers in peptides in the solid state. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 851-860, 2009.

  11. An in vivo wide bore NMR spectrometer at 2 T for human metabolic studies

    International Nuclear Information System (INIS)

    Tran Dinh, S.; Jehenson, P.; Chalot, J.F.

    1985-01-01

    A wide bore (53 cm diameter) superconducting magnet operating at 2 T was built by the Service des Techniques Instrumentales des Particules Elementaires at C.E.N.-Saclay (Institut de Recherche Fondamentale of the Commissariat a l'Energie Atomique) for NMR spectroscopic studies in humans. The magnet consists of two main components: a magnetic circuit and a cryostat. The magnetic circuit is made of a main coil (four solenoids with 23 km of niobium-titanium superconductor) and its superconducting shim coils (correcting for nine terms: Z, Z 2 , Z 3 , X, Y, XY, XZ, YZ, X 2 -Y 2 ). The current in the main coil is 200 A and the maximum current in each shim coil is 20A. The magnetic field homogeneity is about 4.10 -8 in a 20 mm diameter sphere and its time drift is less than 10 -8 /hour. The whole NMR spectrometer, including the superconducting magnet and a Bruker CXP-90 console associated with an Aspect 2000 calculator was recently installed in the Service Hospitalier Frederic-Joliot, Biology Department of the C.E.A. Preliminary results obtained by 31 P-NMR in humans using surface coils of various diameters (3,5 and 10 cm) are also presented [fr

  12. Solution NMR study of the yeast cytochrome c peroxidase: cytochrome c interaction

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Alexander N., E-mail: ovolkov@vub.ac.be; Nuland, Nico A. J. van [Vrije Universiteit Brussel, Jean Jeener NMR Centre, Structural Biology Brussels (Belgium)

    2013-07-15

    Here we present a solution NMR study of the complex between yeast cytochrome c (Cc) and cytochrome c peroxidase (CcP), a paradigm for understanding the biological electron transfer. Performed for the first time, the CcP-observed heteronuclear NMR experiments were used to probe the Cc binding in solution. Combining the Cc- and CcP-detected experiments, the binding interface on both proteins was mapped out, confirming that the X-ray structure of the complex is maintained in solution. Using NMR titrations and chemical shift perturbation analysis, we show that the interaction is independent of the CcP spin-state and is only weakly affected by the Cc redox state. Based on these findings, we argue that the complex of the ferrous Cc and the cyanide-bound CcP is a good mimic of the catalytically-active Cc-CcP compound I species. Finally, no chemical shift perturbations due to the Cc binding at the low-affinity CcP site were observed at low ionic strength. We discuss possible reasons for the absence of the effects and outline future research directions.

  13. Interaction of charged amphiphilic drugs with phosphatidylcholine vesicles studied by NMR

    International Nuclear Information System (INIS)

    Eriksson, L.E.G.

    1987-01-01

    Small unilamellar vesicles from egg phosphatidylcholine in NaCl solutions were exposed to some amphiphilic pharmaca. The aromatic drugs (chlorpromazine, dibucaine, tetracaine, imipramine and propranolol) were in their cationic form of the amines. By 1 H- and 31 P-NMR the membrane signals were observed. In particular, the N-methyl choline proton signals were followed upon drug addition. The intrinsic chemical shift difference (0.02 ppm) between the inner (upfield) and outer choline signals was influenced by the drug concentration. Packing properties of the lipid head groups and ring current shift probably contributed. At very high drug concentration, the vesicles are destroyed. A transformation into a micellar state with a high sample viscosity took place in a narrow concentration range of drug. The anion effects of Cl - were studied from the 35 Cl-NMR linewidth at 9.8 and 39.1 MHz. A continuous increase in the signal linewidth followed upon drug addition to the vesicles. Only chlorpromazine produced a broadening in the absence of vesicles (NaCl blank). The linewidth reflected a critical micelle concentration of this drug around 7 mM in 0.1 M NaCl. The 35 Cl-NMR experiments demonstrated the existence of an anionic counterion effect. This phenomenon should be accounted for when quantitatively analysing drug-membrane interactions in electrostatic terms. (Auth.)

  14. Optimized bacterial expression and purification of the c-Src catalytic domain for solution NMR studies

    International Nuclear Information System (INIS)

    Piserchio, Andrea; Ghose, Ranajeet; Cowburn, David

    2009-01-01

    Progression of a host of human cancers is associated with elevated levels of expression and catalytic activity of the Src family of tyrosine kinases (SFKs), making them key therapeutic targets. Even with the availability of multiple crystal structures of active and inactive forms of the SFK catalytic domain (CD), a complete understanding of its catalytic regulation is unavailable. Also unavailable are atomic or near-atomic resolution information about their interactions, often weak or transient, with regulating phosphatases and downstream targets. Solution NMR, the biophysical method best suited to tackle this problem, was previously hindered by difficulties in bacterial expression and purification of sufficient quantities of soluble, properly folded protein for economically viable labeling with NMR-active isotopes. Through a choice of optimal constructs, co-expression with chaperones and optimization of the purification protocol, we have achieved the ability to bacterially produce large quantities of the isotopically-labeled CD of c-Src, the prototypical SFK, and of its activating Tyr-phosphorylated form. All constructs produce excellent spectra allowing solution NMR studies of this family in an efficient manner

  15. Two- and three-dimensional proton NMR studies of apo-neocarzinostatin

    International Nuclear Information System (INIS)

    Xiaolian Gao; Burkhart, W.

    1991-01-01

    Neocarzinostatin (NCS) is an antitumor protein from Streptomyces carzinostaticus that is identical in apo-protein sequence with mitomalcin (MMC) from Streptomyces malayensis. The authors describe the use of apo-NCS as a model system for applying combined two-and three-dimensional (2D and 3D) proton NMR spectroscopy to the structure determination of proteins without isotope labeling. Strategies aimed at accurately assigning overlapped 2D cross-peaks by using semiautomated combined 2D and 3D data analysis are developed. Using this approach, they have assigned 99% of the protons, including those of the side chains, and identified about 1,270 intra- and interresidue proton-proton interactions (fixed distances are not included) in apo-NCS. Comparing these results with those reported recently on 2D NMR studies of apo-NCS demonstrated advantages of proton 3D NMR spectroscopy in protein spectral assignments. They are able to obtain more complete proton resonance and secondary structural assignments and find several misassignments in the earlier report. Strategies utilized in this work should be useful for developing automation procedures for spectral assignments

  16. Structure and motion of phospholipids in human plasma lipoproteins. A 31P NMR study

    International Nuclear Information System (INIS)

    Fenske, D.B.; Chana, R.S.; Parmar, Y.I.; Treleaven, W.D.; Cushley, R.J.

    1990-01-01

    The structure and motion of phospholipids in human plasma lipoproteins have been studied by using 31 P NMR. Lateral diffusion coefficients, D T , obtained from the viscosity dependence of the 31 P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL 2 , HDL 3 ), and egg PC/TO microemulsions at 25 degree C, for VLDL at 40 degree C, and for LDL at 45 degree C. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, Δσ, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence for the 31 P NMR line widths. These results suggest differences in the orientation and/or ordering of the head-group in the HDLs. The dynamic behavior of the phosphate moiety in LDL and HDL 3 has been obtained from the temperature dependence of the 31 P spin-lattice relaxation rates. Values of the correlation time for phosphate group reorientation and the activation energy for the motion are nearly identical in LDL and HDL 3 and are similar to values obtained for phospholipid bilayers. This argues against long-lived protein-lipid interactions being the source of either the slow diffusion in LDL or the altered head-group orientation in the HDLs

  17. 23Na+- and 39K+-NMR studies of cation-polyanion interactions in vascular connective tissue

    International Nuclear Information System (INIS)

    Siegel, G.; Walter, A.; Bostanjoglo, M.

    1987-01-01

    The ion binding properties of vascular connective tissue as well as of substances derived therefrom were studied in dependence on cation concentration by NMR and atomic absorption techniques. 16 refs.; 8 figs

  18. Is Low-field NMR a Complementary Tool to GC-MS in Quality Control of Essential Oils? A Case Study

    NARCIS (Netherlands)

    Krause, Andre; Wu, Yu; Tian, Runtao; Beek, van Teris A.

    2018-01-01

    High-field NMR is an expensive and important quality control technique. In recent years, cheaper and simpler low-field NMR has become available as a new quality control technique. In this study, 60 MHz 1 H-NMR was compared with GC-MS and refractometry for the detection of adulteration of essential

  19. Separation and identification of phenolic compounds of extra virgin olive oil from Olea europaea L. by HPLC-DAD-SPE-NMR/MS. Identification of a new diastereoisomer of the aldehydic form of oleuropein aglycone.

    Science.gov (United States)

    Pérez-Trujillo, Míriam; Gómez-Caravaca, Ana María; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Parella, Teodor

    2010-08-25

    The phenolic fraction of a monovarietal extra virgin olive oil (EVOO) from Olea europaea L. var. Cornezuelo was studied by the hyphenated HPLC-DAD-SPE-NMR/MS techniques. This survey led to the identification of 25 main compounds. One was identified as a new diastereoisomer of the aldehydic form of oleuropein aglycone (AOA) and characterized by 1D and 2D NMR techniques. The relative configuration of this new AOA was determined as 5R*,8S*,9S* on the basis of the results obtained from the combination of NOE experiments and Monte Carlo conformational search calculations. Assuming, as for the described diastereoisomers, that the new AOA comes from the natural oleuropein aglycone (OA), the absolute configuration was proposed as 5S,8R,9R.

  20. Bentonite pore structure based on SAXS, chloride exclusion and NMR studies

    International Nuclear Information System (INIS)

    Muurinen, A.; Carlsson, T.

    2013-11-01

    Water-saturated bentonite is planned to be used in many countries as an important barrier component in high-level nuclear waste (HLW) repositories. Knowledge about the microstructure of the bentonite and the distribution of water between interlayer and non-interlayer pores is important for modelling of long-term processes. In this work the microstructure of water-saturated samples prepared from Na montmorillonite, Ca-montmorillonite, sodium bentonite MX-80 and calcium bentonite Deponit CaN were studied with nuclear magnetic resonance (NMR) and small-angle xray scattering spectroscopy (SAXS). The sample dry densities ranged between 0.3 and 1.6 g/cm 3 . The NMR technique was used to get information about the volumes of different water types in the bentonite samples. The results were obtained using 1H NMR spin-lattice T 1ρ relaxation time measurements using the short inter-pulse method. The interpretation of the NMR results was made by fitting distributions of exponentials to observed decay curves. The SAXS measurements were used to get information about the size distribution of the interlayer distance of montmorillonite. The chloride porosity measurements and Donnan exclusion calculations were used together with the SAXS results for evaluation of the bentonite microstructure. The NMR studies and SAXS studies coupled with Cl porosity measurements provided very similar pictures of how the porewater is divided in interlayer and non-interlayer water in MX-80 bentonite. In the case where MX-80 of a dry density 1.6 g/cm 3 was equilibrated with 0.1 M NaCl solution, the results indicated an interlayer porosity of 30 % and non-interlayer porosity of 12 %. The interlayer space mainly contained two water layers but also spaces with more water layers were present. The average size of the non-interlayer pores was evaluated to be 120 - 150 A. From the montmorillonite surface area 98 % was interlayer and 2 % non-interlayer. Evaluation of the interlayer and non

  1. Non-polymeric asymmetric binary glass-formers. II. Secondary relaxation studied by dielectric, 2H NMR, and 31P NMR spectroscopy

    Science.gov (United States)

    Pötzschner, B.; Mohamed, F.; Bächer, C.; Wagner, E.; Lichtinger, A.; Bock, D.; Kreger, K.; Schmidt, H.-W.; Rössler, E. A.

    2017-04-01

    We investigate the secondary (β-) relaxations of an asymmetric binary glass former consisting of a spirobichroman derivative (SBC; Tg = 356 K) as the high-Tg component and the low-Tg component tripropyl phosphate (TPP; Tg = 134 K). The main relaxations are studied in Paper I [B. Pötzschner et al., J. Chem. Phys. 146, 164503 (2017)]. A high Tg contrast of ΔTg = 222 K is put into effect in a non-polymeric system. Component-selective studies are carried out by combining results from dielectric spectroscopy (DS) for mass concentrations cTPP ≥ 60% and those from different methods of 2H and 31P NMR spectroscopy. In the case of NMR, the full concentration range (10% ≤ cTPP ≤ 100%) is covered. The neat components exhibit a β-relaxation (β1 (SBC) and β2 (TPP)). The latter is rediscovered by DS in the mixtures for all concentrations with unchanged time constants. NMR spectroscopy identifies the β-relaxations as being alike to those in neat glasses. A spatially highly restricted motion with angular displacement below ±10° encompassing all molecules is involved. In the low temperature range, where TPP shows the typical 31P NMR echo spectra of the β2-process, very similar spectral features are observed for the (deuterated) SBC component by 2H NMR, in addition to its "own" β1-process observed at high temperatures. Apparently, the small TPP molecules enslave the large SBC molecules to perform a common hindered reorientation. The temperature dependence of the spin-lattice relaxation time of both components is the same and reveals an angular displacement of the SBC molecules somewhat smaller than that of TPP, though the time constants τβ2 are the same. Furthermore, T1(T) of TPP in the temperature region of the β2-process is absolutely the same as in the mixture TPP/polystyrene investigated previously. It appears that the manifestations of the β-process introduced by one component are essentially independent of the second component. Finally, at cTPP ≤ 20% one

  2. Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance {sup 13}C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Daley, Margaret E.; Sykes, Brian D. [University of Alberta, Department of Biochemistry, CIHR Group in Protein Structure and Function and Protein Engineering Network of Centres of Excellence (Canada)

    2004-06-15

    The dynamics of threonine side chains of the Tenebrio molitor antifreeze protein (TmAFP) were investigated using natural abundance {sup 13}C NMR. In TmAFP, the array of threonine residues on one face of the protein is responsible for conferring its ability to bind crystalline ice and inhibit its growth. Heteronuclear longitudinal and transverse relaxation rates and the {sup 1}H-{sup 13}C NOE were determined in this study. The C{alpha}H relaxation measurements were compared to the previously measured {sup 15}N backbone parameters and these are found to be in agreement. For the analysis of the threonine side chain motions, the model of restricted rotational diffusion about the {chi}{sub 1} dihedral angle was employed [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. We demonstrate that the motion experienced by the ice binding threonine side chains is highly restricted, with an approximate upper limit of less than {+-}25 deg.

  3. Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Daley, Margaret E.; Sykes, Brian D.

    2004-01-01

    The dynamics of threonine side chains of the Tenebrio molitor antifreeze protein (TmAFP) were investigated using natural abundance 13 C NMR. In TmAFP, the array of threonine residues on one face of the protein is responsible for conferring its ability to bind crystalline ice and inhibit its growth. Heteronuclear longitudinal and transverse relaxation rates and the 1 H- 13 C NOE were determined in this study. The CαH relaxation measurements were compared to the previously measured 15 N backbone parameters and these are found to be in agreement. For the analysis of the threonine side chain motions, the model of restricted rotational diffusion about the χ 1 dihedral angle was employed [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. We demonstrate that the motion experienced by the ice binding threonine side chains is highly restricted, with an approximate upper limit of less than ±25 deg

  4. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.; Abdul Jameel, Abdul Gani; Hourani, Nadim; Emwas, Abdul-Hamid M.; Sarathy, Mani; Roberts, William L.

    2015-01-01

    infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC

  5. Xenon NMR of liquid crystals confined to cylindrical nanocavities: a simulation study.

    Science.gov (United States)

    Karjalainen, Jouni; Vaara, Juha; Straka, Michal; Lantto, Perttu

    2015-03-21

    independent of temperature. Our results show that the combination of CG simulations and a QC pre-parameterised (129)Xe NMR shielding allows efficient studies of the phase behaviour and structure of complex systems containing thousands of molecules, and brings us closer to the simulation of NMR experiments.

  6. Experimental studies of hydrogen on boron nitride: II. NMR studies of orientational ordering of H2

    International Nuclear Information System (INIS)

    Evans, M.D.; Sullivan, N.S.

    1995-01-01

    The authors report the results of NMR studies of thin films of hydrogen adsorbed on hexagonal boron nitride. Orientational ordering is observed below 1 K but the ordering is not complete, and a clear two-component ordering is observed. Molecules are either (i) almost completely ordered with local order parameters σ=left-angle 1-3/2Jz 2 right-angle clustered close to a maximum value of σ congruent 0.94 (comparable to the values for long range ordering in bulk samples at high ortho concentrations), and (ii) a large fraction of the molecules that remain nearly disordered with σ≤0.25. The degree of orientational ordering depends on the number of hydrogen layers and on the ortho-hydrogen concentration, and these studies indicate that ordering occurs principally in the first four layers closest to the substrate, with weaker orientational ordering in the outer layers near the free surface even at temperatures as low as 210 mK

  7. Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins

    International Nuclear Information System (INIS)

    Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune

    2012-01-01

    NOEs between the β-protons of cysteine residues across disulfide bonds in proteins provide direct information on the connectivities and conformations of these important cross-links, which are otherwise difficult to investigate. With conventional [U- 13 C, 15 N]-proteins, however, fast spin diffusion processes mediated by strong dipolar interactions between geminal β-protons prohibit the quantitative measurements and thus the analyses of long-range NOEs across disulfide bonds. We describe a robust approach for alleviating such difficulties, by using proteins selectively labeled with an equimolar mixture of (2R, 3S)-[β- 13 C; α,β- 2 H 2 ] Cys and (2R, 3R)-[β- 13 C; α,β- 2 H 2 ] Cys, but otherwise fully deuterated. Since either one of the prochiral methylene protons, namely β2 (proS) or β3 (proR), is always replaced with a deuteron and no other protons remain in proteins prepared by this labeling scheme, all four of the expected NOEs for the β-protons across disulfide bonds could be measured without any spin diffusion interference, even with long mixing times. Therefore, the NOEs for the β2 and β3 pairs across each of the disulfide bonds could be observed at high sensitivity, even though they are 25% of the theoretical maximum for each pair. With the NOE information, the disulfide bond connectivities can be unambiguously established for proteins with multiple disulfide bonds. In addition, the conformations around disulfide bonds, namely χ 2 and χ 3 , can be determined based on the precise proton distances of the four β-proton pairs, by quantitative measurements of the NOEs across the disulfide bonds. The feasibility of this method is demonstrated for bovine pancreatic trypsin inhibitor, which has three disulfide bonds.

  8. Metabonomic study of human serum in gallbladder cancer by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Sonkar, Kanchan; Sinha, Neeraj; Behari, Anu; Kapoor, V.K.

    2012-01-01

    Gallbladder carcinoma (GBC) is one of the most lethal malignancies of upper gastrointestinal tract and it has the highest mortality rate in Chile and India. It has a very high incidence rates in northern India therefore it is also called as an Indian disease. There are several factors which play important role in development of gallbladder cancer including long-standing stones in gallbladder and alterations in composition of bile. Studies on gallstones and gallbladder tissues revealed that benign group can easily be discriminated from malignant group. Many proteomic studies have been performed for different cancers and several responsible serum protein markers have been identified but there is no such metabonomics study that shows the presence of any biomarker associated with gallbladder carcinoma. Identification of such biomarker would help immensely in the diagnostic of GBC. For this study we have collected blood samples (70; including patients from Chronic Cholecystitis (CC), XanthoGranulomatous Cholecystitis (XGC) and Gallbladder Cancer (GBC)) post-operatively (immediately after surgery) from patient undergoing cholecystectomy in Department of Surgical Gastroenterology, SGPGIMS. Control samples were also collected from 20 volunteers after 12 hrs of fasting. 4 ml of blood sample was collected and was allowed to clot in plastic tube for 30 min at room temperature in incubator. The serum was collected by centrifugation and samples were stored at -80 deg C till NMR experiments. 400 μL of serum was used for recording NMR spectra. NMR spectra were recorded at Bruker Avance 800 MHz spectrometer using CPMG pulse sequence with water presaturation. Control serum shows presence of various amino acids and low molecular weight metabolites. Detailed multivariate analysis along with markers found in serum associated with GBC will be presented. (author)

  9. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    International Nuclear Information System (INIS)

    Foerland, Kjersti

    2005-01-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41

  10. NMR studies of organic liquids confined in mesoporous materials: (1) Pore size distribution and (2) Phase behaviour and dynamic studies in restricted geometry

    Energy Technology Data Exchange (ETDEWEB)

    Foerland, Kjersti

    2005-07-01

    In the thesis NMR spectroscopy is used for studying liquids confined in various porous materials. In the first part, pore size distributions of mesoporous silicas and controlled pore glasses were determined by measuring the 1H NMR signal from the non-frozen fraction of the confined liquid as a function of temperature, using benzene, acetonitrile and HMDS as probe molecules. In the second part, the molecular dynamics of acetonitrile, hexamethyldisilane, cyclohexane and cyclopentane confined in mesoporous materials were studied as a function of temperature. 6 papers are included with titles: 1) Pore-size determination of mesoporous materials by 1H NMR spectroscopy. 2) Pore-size distribution in mesoporous materials as studied by 1H NMR. 3) Dynamic 1H and 2H NMR investigations of acetonitrile confined in porous silica. 4) NMR investigations of hexamethyldisilane confined in controlled pore glasses: Pore size distribution and molecular dynamics studies. 5) 1H and 2H NMR studies of cyclohexane nano crystals in controlled pore glasses. 6) 1H NMR relaxation and diffusion studies of cyclohexane and cyclopentane confined in MCM-41.

  11. NMR studies of liquid crystals and molecules dissolved in liquid crystal solvents

    Energy Technology Data Exchange (ETDEWEB)

    Drobny, Gary Peter [Univ. of California, Berkeley, CA (United States)

    1982-11-01

    This thesis describes several studies in which nuclear magnetic resonance (nmr) spectroscopy has been used to probe the structure, orientation and dynamics of liquid crystal mesogens and molecules dissolved in liquid crystalline phases. In addition, a modern high field nmr spectrometer is described which has been used to perform such nmr studies. Chapter 1 introduces the quantum mechanical formalisms used throughout this thesis and briefly reviews the fundamentals of nuclear spin physics and pulsed nmr spectroscopy. First the density operator is described and a specific form for the canonical ensemble is derived. Then Clebsch-Gordon coefficients, Wigner rotation matrices, and irreducible tensor operators are reviewed. An expression for the equilibrium (Curie) magnetization is obtained and the linear response of a spin system to a strong pulsed r.f. irradiation is described. Finally, the spin interaction Hamiltonians relevant to this work are reviewed together with their truncated forms. Chapter 2 is a deuterium magnetic resonance study of two 'nom' liquid crystals which possess several low temperature mesomorphic phases. Specifically, deuterium quadrupolar echo spectroscopy is used to determine the orientation of the liquid crystal molecules in smectic phases, the changes in molecular orientation and motion that occur at smectic-smectic phase transitions, and the order of the phase transitions. For both compounds, the phase sequence is determined to be isotropic, nematic, smectic A, smectic C, smectic BA, smectic BC, and crystalline. The structure of the smectic A phase is found to be consistent with the well-known model of a two dimensional liquid in which molecules are rapidly rotating about their long axes and oriented at right angles to the plane of the layers. Molecules in the smectic C phase are found to have their long axes tilted with respect to the layer normal, and the tilt angle is temperature dependent, increasing from

  12. 1H NMR study of fermented cocoa (Theobroma cacao L.) beans.

    Science.gov (United States)

    Caligiani, Augusta; Acquotti, Domenico; Cirlini, Martina; Palla, Gerardo

    2010-12-08

    This study reports for the first time the metabolic profile of cocoa (Theobroma cacao L.) beans using the (1)H NMR technique applied to polar extracts of fermented cocoa beans. The simultaneous detection and quantification of amino acids, polyalcohols, organic acids, sugars, methylxanthines, catechins, and phenols were obtained by assigning the major signals of the spectra for different varieties of cocoa beans (Forastero, Criollo, and Trinitario) from different countries (Ecuador, Ghana, Grenada, and Trinidad). The data set obtained, representative of all classes of soluble compounds of cocoa, was useful to characterize the fermented cocoa beans as a function of the variety and geographic origin.

  13. Unconventional superconductivity in PuRhGa5: Ga NMR/NQR study

    International Nuclear Information System (INIS)

    Sakai, H.; Tokunaga, Y.; Fujimoto, T.; Kambe, S.; Walstedt, R.E.; Yasuoka, H.; Aoki, D.; Homma, Y.; Yamamoto, E.; Nakamura, A.; Shiokawa, Y.; Nakajima, K.; Arai, Y.; Matsuda, T.D.; Haga, Y.; Onuki, Y.

    2006-01-01

    69,71 Ga NMR/NQR studies have been performed on a single crystal of the transuranium superconductor PuRhGa 5 with T c ∼9K. The spin-lattice relaxation rate 1/T 1 reveals that PuRhGa 5 is an unconventional superconductor having an anisotropic superconducting gap. Moreover, Korringa behavior (1/T 1 T=const.) is observed in the normal state below ∼30K. This result suggests that the superconductivity sets in after the formation of a Fermi liquid state in this compound

  14. Xenon-129 NMR study of the microporous structure of clays and pillared clays

    International Nuclear Information System (INIS)

    Tsiao, C.; Carrado, K.A.

    1990-01-01

    129 Xe NMR studies have been carried out using xenon gas adsorbed in clays and pillared clays. Data from the measurements provide information on the pore structure of clays before and after pillaring. The results indicate that the effective pore diameter of montmorillonite increases, for example, from 5.4 Angstrom to 8.0 Angstrom after pillaring cheto-montmorillonite with aluminum polyoxohydroxy Keggin cations. The data are consistent with X-ray powder diffraction results, which show a corresponding increase in the interlamellar gallery height from 5.6 Angstrom to 8.4 Angstrom

  15. NMR study of novel heavy fermion superconductor CePt{sub 3}Si

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, K. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)]. E-mail: ueda@sci.u-hyogo.ac.jp; Kohara, T. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Motoyama, G. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Oda, Y. [Graduate School of Material Science, University of Hyogo, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan)

    2007-03-15

    Si29 NMR experiments were performed to study microscopically the normal and superconducting states in Si29 enriched CePt{sub 3}Si. A Si29 Knight shift parallel to the c-axis did not decrease below the T{sub c}. The 1/T{sub 1} result taken with a field cycling method showed no distinct coherence peak just below T{sub c} and a steep decrease below T{sub c} on cooling. The estimated value of the superconducting energy gap was about 2{delta}=3.6k{sub B}T{sub c}. These results may be an evidence for triplet pairing superconductivity.

  16. Palm oil based polymer materials obtained by ROMP: study by low field NMR

    International Nuclear Information System (INIS)

    Fernandes, Henrique; Azevedo, Eduardo R. de; Lima-Neto, Benedito S.

    2015-01-01

    Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)

  17. Broad line and pulsed NMR study of molecular motion in furfuryl alcohol resins

    International Nuclear Information System (INIS)

    Glowinkowski, S.; Pajak, Z.

    1978-01-01

    Broad line and pulsed nuclear magnetic resonance studies are carried out on a number of furfuryl alcohol resins differentiated by viscosity. Proton NMR spectra and relaxation times T 1 and Tsub(1rho) are measured over a wide temperature range and the results are interpreted in terms of molecular motion. The marked decrease in second moment and existence of high temperature spin-lattice relaxation times minima are presumed to result from rotational motion of polymer chains. The relaxation processes at low temperature are believed to be due to rotational motion of methyl endgroup and paramagnetic centres. (author)

  18. Low field NMR study of the latex derived from Brosimum parinarioides - Moraceae

    International Nuclear Information System (INIS)

    Miguez, Eduardo; Tavares, Maria Ines B.

    2009-01-01

    Brosimum parinarioides is a tree found in the Amazonia forest and its latex (Leite de Amapa) is often used like food and by the popular medicine in the treatment of tuberculosis and asthma. Being swallowed in nature, its necessary determinate the stability degree of this latex in the storage conditions in which is used in Amazonia. The analyses of T 2 data showed that the limit of stability is not longer than six month in the storage conditions used by the population of Amazonia. The Low field NMR proved to be an efficient method for this kind of study. (author)

  19. Brain atrophy during aging. Quantitative studies with X-CT and NMR-CT

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, Taiju; Yamada, Kenji; Yamada, Susumu; Ono, Shuichi; Takeda, Shunpei; Hatazawa, Jun; Ito, Masatoshi; Kubota, Kazuo

    1985-12-01

    Age-related brain atrophy was investigated in thousands of persons with no neurologic disturbances using X-CT and NMR-CT. Brain atrophy was minimal in 34-35 years old in both sexes, increased exponentially to the increasing age after 34-35 years, and probably resulted in dementia, such as vascular or multi-infarct dementia. Brain atrophy was significantly greater in men than in women at all ages. Brain volumes were maximal in 34-35 years old in both sexes with minimal individual differences which increased proportionally to the increasing age. Remarkable individual differences in the extent of brain atrophy (20 - 30 %) existed among aged subjects. Progression of brain atrophy was closely related to loss of mental activities independently of their ages. Our longitudinal study has revealed that the most important factors promoting brain atrophy during aging was the decrease in the cerebral blood flow. We have classified brain atrophy into sulcal and cisternal enlargement type (type I), ventricular enlargement type (type II) and mixed type (type III) according to the clinical study using NMR-CT. Brain atrophy of type I progresses significantly in almost all of the geriatric disorders. This type of brain atrophy progresses significantly in heavy smokers and drinkers. Therefore this type of brain atrophy might be caused by the decline in the blood flow in anterior and middle cerebral arteries. Brain atrophy of type II was caused by the disturbance of cerebrospinal fluid circulation after cerebral bleeding and subarachnoid bleeding. Brain atrophy of type III was seen in vascular dementia or multi-infarct dementia which was caused by loss of brain matter after multiple infarction, and was seen also in dementia of Alzheimer type in which degeneration of nerve cells results in brain atrophy. NMR-CT can easily detect small infarction (lacunae) and edematous lesions resulting from ischemia and hypertensive encephalopathy. (J.P.N.).

  20. Nuclear Magnetic Resonance (NMR Study for the Detection and Quantitation of Cholesterol in HSV529 Therapeutic Vaccine Candidate

    Directory of Open Access Journals (Sweden)

    Rahima Khatun

    Full Text Available This study describes the NMR-based method to determine the limit of quantitation (LOQ and limit of detection (LOD of cholesterol, a process-related impurity in the replication-deficient Herpes Simplex Virus (HSV type 2 candidate vaccine HSV529. Three signature peaks from the 1D 1H NMR of a cholesterol reference spectrum were selected for the identification of cholesterol. The LOQ for a cholesterol working standard was found to be 1 μg/mL, and the LOD was found to be 0.1 μg/mL. The identity of cholesterol, separated from the formulation of growth supplement by thin layer chromatography (TLC, was confirmed by 1D 1H NMR and 2D 1H-13C HSQC NMR. The three signature peaks of cholesterol were detected only in a six-times concentrated sample of HSV529 candidate vaccine sample and not in the single dose HSV529 vaccine sample under similar experimental conditions. Taken together, the results demonstrated that NMR is a direct method that can successfully identify and quantify cholesterol in viral vaccine samples, such as HSV529, and as well as in the growth supplement used during the upstream stages of HSV529 manufacturing. Keywords: Herpes simplex virus type 2 (HSV-2, Viral vaccine, NMR, Residuals, LOD and LOQ, TLC, Growth supplement

  1. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    Energy Technology Data Exchange (ETDEWEB)

    Ekman, D.R. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)], E-mail: ekman.drew@epa.gov; Teng, Q. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States); Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T. [Mid-Continent Ecology Division, U.S. EPA, 6201 Congdon Boulevard, Duluth, MN 55804 (United States); Collette, T.W. [Ecosystems Research Division, U.S. EPA, 960 College Station Road, Athens, GA 30605 (United States)

    2007-11-30

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D {sup 1}H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D {sup 1}H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of {sup 1}H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 {mu}g/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish.

  2. NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures

    International Nuclear Information System (INIS)

    Ekman, D.R.; Teng, Q.; Jensen, K.M.; Martinovic, D.; Villeneuve, D.L.; Ankley, G.T.; Collette, T.W.

    2007-01-01

    The potential for profiling metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one-dimensional (1D) and two-dimensional (2D) NMR spectroscopy was used for the assignment of metabolites in urine from unexposed fish. Because fathead minnow urine is dilute, we lyophilized these samples prior to analysis. Furthermore, 1D 1 H NMR spectra of unlyophilized urine from unexposed male fathead minnow and Sprague-Dawley rat were acquired to qualitatively compare rat and fish metabolite profiles and to provide an estimate of the total urinary metabolite pool concentration difference. As a small proof-of-concept study, lyophilized urine samples from male fathead minnows exposed to three different concentrations of the antiandrogen vinclozolin were analyzed by 1D 1 H NMR to assess exposure-induced changes. Through a combination of principal components analysis (PCA) and measurements of 1 H NMR peak intensities, several metabolites were identified as changing with statistical significance in response to exposure. Among those changes occurring in response to exposure to the highest concentration (450 μg/L) of vinclozolin were large increases in taurine, lactate, acetate, and formate. These increases coincided with a marked decrease in hippurate, a combination potentially indicative of hepatotoxicity. The results of these investigations clearly demonstrate the potential utility of an NMR-based approach for assessing chemical exposures in male fathead minnow, using urine collected from individual fish

  3. Rapid Determination of Protein Solubility and Stability Conditions for NMR Studies Using Incomplete Factorial Design

    International Nuclear Information System (INIS)

    Ducat, Thierry; Declerck, Nathalie; Gostan, Thierry; Kochoyan, Michel; Demene, Helene

    2006-01-01

    Sample preparation constitutes a crucial and limiting step in structural studies of proteins by NMR. The determination of the solubility and stability (SAS) conditions of biomolecules at millimolar concentrations stays today empirical and hence time- and material-consuming. Only few studies have been recently done in this field and they have highlighted the interest of using crystallogenesis tools to optimise sample conditions. In this study, we have adapted a method based on incomplete factorial design and making use of crystallisation plates to quantify the influence of physico-chemical parameters such as buffer pH and salts on protein SAS. A description of the experimental set up and an evaluation of the method are given by case studies on two functional domains from the bacterial regulatory protein LicT as well as two other proteins. Using this method, we could rapidly determine optimised conditions for extracting soluble proteins from bacterial cells and for preparing purified protein samples sufficiently concentrated and stable for NMR characterisation. The drastic reduction in the time and number of experiments required for searching protein SAS conditions makes this method particularly well-adapted for a systematic investigation on a large range of physico-chemical parameters

  4. TG/DTG, FT-ICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil

    KAUST Repository

    Elbaz, Ayman M.

    2015-11-12

    There is an increasing interest in the comprehensive study of heavy fuel oil (HFO) due to its growing use in furnaces, boilers, marines, and recently in gas turbines. In this work, the thermal combustion characteristics and chemical composition of HFO were investigated using a range of techniques. Thermogravimetric analysis (TGA) was conducted to study the nonisothermal HFO combustion behavior. Chemical characterization of HFO was accomplished using various standard methods in addition to direct infusion atmospheric pressure chemical ionization Fourier transform ion cyclotron resonance mass spectrometry (APCI-FTICR MS), high resolution 1H nuclear magnetic resonance (NMR), 13C NMR, and two-dimensional heteronuclear multiple bond correlation (HMBC) spectroscopy. By analyzing thermogravimetry and differential thermogravimetry (TG/DTG) results, three different reaction regions were identified in the combustion of HFO with air, specifically, low temperature oxidation region (LTO), fuel deposition (FD), and high temperature oxidation (HTO) region. At the high end of the LTO region, a mass transfer resistance (skin effect) was evident. Kinetic analysis in LTO and HTO regions was conducted using two different kinetic models to calculate the apparent activation energy. In both models, HTO activation energies are higher than those for LTO. The FT-ICR MS technique resolved thousands of aromatic and sulfur containing compounds in the HFO sample and provided compositional details for individual molecules of three major class species. The major classes of compounds included species with one sulfur atom (S1), with two sulfur atoms (S2), and purely hydrocarbons (HC). The DBE (double bond equivalent) abundance plots established for S1 and HC provided additional information on their distributions in the HFO sample. The 1H NMR and 13C NMR results revealed that nearly 59% of the 1H nuclei were distributed as paraffinic CH2 and 5% were in aromatic groups. Nearly 21% of 13C nuclei were

  5. NMR studies of abasic sites in DNA duplexes: Deoxyadenosine stacks into the helix opposite acyclic lesions

    International Nuclear Information System (INIS)

    Kalnik, M.W.; Chang, Chienneng; Johnson, F.; Grollman, A.P.; Patel, D.J.

    1989-01-01

    Proton and phosphorus NMR studies are reported for two complementary nonanucleotide duplexes containing acyclic abasic sites. The first duplex, d(C-A-T-G-A-G-T-A-C)·d(G-T-A-C-P-C-A-T-G), contains an acyclic propanyl moiety, P, located opposite a deoxyadenosine at the center of the helix (designated AP P 9-mer duplex). The second duplex, d(C-A-T-G-A-G-T-A-C-)·d(G-T-A-C-E-C-A-T-G), contains a similarly located acyclic ethanyl moiety, E (designated AP E 9-mer duplex). The ethanyl moiety is one carbon shorter than the natural carbon-phosphodiester backbone of a single nucleotide unit of DNA. The majority of the exchangeable and nonexchangeable base and sugar protons in both the AP P 9-mer and AP E 9-mer duplexes, including those at the abasic site, have been assigned by recording and analyzing two-dimensional phase-sensitive NOESY data sets in H 2 O and D 2 O solution between -5 and 5 degree C. These spectroscopic observations establish that A5 inserts into the helix opposite the abasic site (P14 and El14) and stacks between the flanking G4·C15 and G6·C13 Watson-Crick base pairs in both the AP P 9-mer and AP E 9-mer duplexes. Proton NMR parameters for the Ap P 9-mer and AP E 9-mer duplexes are similar to those reported previously. These proton NMR experiments demonstrate that the structures at abasic sites are very similar whether the five-membered ring is open or closed or whether the phosphodiester backbone is shortened by one carbon atom. Phosphorus spectra of the AP P 9-mer and AP E 9-mer duplexes (5 degree C) indicate that the backbone conformation is similarly perturbed at three phosphodiester backbone torsion angles

  6. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems

    International Nuclear Information System (INIS)

    Rottstegge, J.; Arnold, M.; Herschke, L.; Glasser, G.; Wilhelm, M.; Spiess, H.W.; Hergeth, W.D.

    2005-01-01

    Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulk composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by 27 Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite

  7. Interaction of melittin with mixed phospholipid membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine studied by deuterium NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dempsey, C.; Bitbol, M.; Watts, A. (Oxford Univ. (England))

    1989-08-08

    The interaction of bee venom melittin with mixed phospholipid bilayers composed of dimyristoylphosphatidylcholine deuterated in the {alpha}- and {beta}-methylenes of the choline head group (DMPC-d{sub 4}) and dimyristoylphosphatidylserine deuterated in the {alpha}-methylene and {beta}-CH positions of the serine head group (DMPS-d{sub 3}) was studied in ternary mixtures by using deuterium NMR spectroscopy. The changes in the deuterium quadrupole splittings of the head-group deuteriomethylenes of DMPC-d{sub 4} induced by DMPS in binary mixtures were systematically reversed by increasing concentrations of melittin, so that at a melittin concentration of 4 mol % relative to total lipid the deuterium NMR spectrum from DMPC-d{sub 4} in the ternary mixture was similar to the spectrum from pure DMPC-d{sub 4} bilayers. The absence of deuterium NMR signals arising from melittin-bound DMPS in ternary mixtures containing DMPS-d{sub 3} indicates that the reversal by melittin of the effects of DMPS on the quadrupole splittings of DMPC-d{sub 4} results from the response of the choline head group to the net surface charge rather than from phase separation of melittin-DMPS complexes. The similarity in the effects of the two cationic but otherwise dissimilar peptides indicates that the DMPS head group responds to the surface charge resulting from the presence in the bilayer of charged amphiphiles, in a manner analogous to the response of the choline head group of phosphatidylcholine to the bilayer surface charge. The presence of DMPS greatly stabilized DMPC bilayers with respect to melittin-induced micellization, indicating that the latter effect of melittin may not be important for the hemolytic activity of the peptide.

  8. Interaction of melittin with mixed phospholipid membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine studied by deuterium NMR

    International Nuclear Information System (INIS)

    Dempsey, C.; Bitbol, M.; Watts, A.

    1989-01-01

    The interaction of bee venom melittin with mixed phospholipid bilayers composed of dimyristoylphosphatidylcholine deuterated in the α- and β-methylenes of the choline head group (DMPC-d 4 ) and dimyristoylphosphatidylserine deuterated in the α-methylene and β-CH positions of the serine head group (DMPS-d 3 ) was studied in ternary mixtures by using deuterium NMR spectroscopy. The changes in the deuterium quadrupole splittings of the head-group deuteriomethylenes of DMPC-d 4 induced by DMPS in binary mixtures were systematically reversed by increasing concentrations of melittin, so that at a melittin concentration of 4 mol % relative to total lipid the deuterium NMR spectrum from DMPC-d 4 in the ternary mixture was similar to the spectrum from pure DMPC-d 4 bilayers. The absence of deuterium NMR signals arising from melittin-bound DMPS in ternary mixtures containing DMPS-d 3 indicates that the reversal by melittin of the effects of DMPS on the quadrupole splittings of DMPC-d 4 results from the response of the choline head group to the net surface charge rather than from phase separation of melittin-DMPS complexes. The similarity in the effects of the two cationic but otherwise dissimilar peptides indicates that the DMPS head group responds to the surface charge resulting from the presence in the bilayer of charged amphiphiles, in a manner analogous to the response of the choline head group of phosphatidylcholine to the bilayer surface charge. The presence of DMPS greatly stabilized DMPC bilayers with respect to melittin-induced micellization, indicating that the latter effect of melittin may not be important for the hemolytic activity of the peptide

  9. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Brian Finley [Univ. of California, Berkeley, CA (United States)

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a "receiver domain" in the family of "two-component" regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  10. Metabolic profiling studies on the toxicological effects of realgar in rats by 1H NMR spectroscopy

    International Nuclear Information System (INIS)

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing; Pei Fengkui; Li Weisheng; Wu Yijie

    2009-01-01

    The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of 1 H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. 1 H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine

  11. Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins

    International Nuclear Information System (INIS)

    Kucharska, Iga; Edrington, Thomas C.; Liang, Binyong; Tamm, Lukas K.

    2015-01-01

    Solution NMR spectroscopy has become a robust method to determine structures and explore the dynamics of integral membrane proteins. The vast majority of previous studies on membrane proteins by solution NMR have been conducted in lipid micelles. Contrary to the lipids that form a lipid bilayer in biological membranes, micellar lipids typically contain only a single hydrocarbon chain or two chains that are too short to form a bilayer. Therefore, there is a need to explore alternative more bilayer-like media to mimic the natural environment of membrane proteins. Lipid bicelles and lipid nanodiscs have emerged as two alternative membrane mimetics that are compatible with solution NMR spectroscopy. Here, we have conducted a comprehensive comparison of the physical and spectroscopic behavior of two outer membrane proteins from Pseudomonas aeruginosa, OprG and OprH, in lipid micelles, bicelles, and nanodiscs of five different sizes. Bicelles stabilized with a fraction of negatively charged lipids yielded spectra of almost comparable quality as in the best micellar solutions and the secondary structures were found to be almost indistinguishable in the two environments. Of the five nanodiscs tested, nanodiscs assembled from MSP1D1ΔH5 performed the best with both proteins in terms of sample stability and spectral resolution. Even in these optimal nanodiscs some broad signals from the membrane embedded barrel were severely overlapped with sharp signals from the flexible loops making their assignments difficult. A mutant OprH that had two of the flexible loops truncated yielded very promising spectra for further structural and dynamical analysis in MSP1D1ΔH5 nanodiscs

  12. J-UNIO protocol used for NMR structure determination of the 206-residue protein NP-346487.1 from Streptococcus pneumoniae TIGR4

    Energy Technology Data Exchange (ETDEWEB)

    Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Geralt, Michael; Serrano, Pedro; Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    The NMR structure of the 206-residue protein NP-346487.1 was determined with the J-UNIO protocol, which includes extensive automation of the structure determination. With input from three APSY-NMR experiments, UNIO-MATCH automatically yielded 77 % of the backbone assignments, which were interactively validated and extended to 97 %. With an input of the near-complete backbone assignments and three 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra, automated side chain assignment with UNIO-ATNOS/ASCAN resulted in 77 % of the expected assignments, which was extended interactively to about 90 %. Automated NOE assignment and structure calculation with UNIO-ATNOS/CANDID in combination with CYANA was used for the structure determination of this two-domain protein. The individual domains in the NMR structure coincide closely with the crystal structure, and the NMR studies further imply that the two domains undergo restricted hinge motions relative to each other in solution. NP-346487.1 is so far the largest polypeptide chain to which the J-UNIO structure determination protocol has successfully been applied.

  13. Solid state multinuclear NMR. A versatile tool for studying the reactivity of solid systems

    Energy Technology Data Exchange (ETDEWEB)

    MacKenzie, Kenneth J.D. [MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington (New Zealand)

    2004-08-31

    Traditionally, X-ray powder diffraction has been a favoured method for studying chemical reactions in the solid state, but the increasing importance of energy-efficient synthesis methods for solids (e.g. sol-gel synthesis, mechanochemical synthesis) has led to the need for an analytical method not dependent on long-range structural periodicity. Multinuclear solid state nuclear magnetic resonance (NMR) represents a technique which is equally applicable to amorphous or crystalline solids, and is now used in increasing numbers of solid state studies.This paper briefly outlines the principles and practical details of this powerful technique and gives examples of its use in solid-state chemistry, particularly in very recent studies of mechanochemical synthesis of advanced sialon ceramics. The temperature at which these technically important silicon aluminium oxynitride compounds are formed can be significantly lowered by high-energy grinding of their components to produce X-ray amorphous precursors. Solid-state NMR has been used to provide detailed information which could not have been obtained by any other means about the chemical environment of the Si and Al atoms in these amorphous precursors, and the various atomic movements undergone as they crystallise to the final product.

  14. Adiabatic fast passage application in solid state NMR study of cross relaxation and molecular dynamics in heteronuclear systems.

    Science.gov (United States)

    Baranowski, M; Woźniak-Braszak, A; Jurga, K

    2016-01-01

    The paper presents the benefits of using fast adiabatic passage for the study of molecular dynamics in the solid state heteronuclear systems in the laboratory frame. A homemade pulse spectrometer operating at the frequency of 30.2MHz and 28.411MHz for protons and fluorines, respectively, has been enhanced with microcontroller direct digital synthesizer DDS controller [1-4]. This work briefly describes how to construct a low-cost and easy-to-assemble adiabatic extension set for homemade and commercial spectrometers based on recently very popular Arduino shields. The described set was designed for fast adiabatic generation. Timing and synchronization problems are discussed. The cross-relaxation experiments with different initial states of the two spin systems have been performed. Contrary to our previous work [5] where the steady-state NOE experiments were conducted now proton spins (1)H are polarized in the magnetic field B0 while fluorine spins (19)F are perturbed by selective saturation for a short time and then the system is allowed to evolve for a period in the absence of a saturating field. The adiabatic passage application leads to a reversal of magnetization of fluorine spins and increases the amplitude of the signal. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A transition radiation detector interleaved with low-density targets for the NOE experiment

    CERN Document Server

    Alexandrov, K V; Bernardini, P; Brigida, M; Campana, D; Candela, A M; Caruso, R; Cassese, F; Ceres, A; D'Aquino, B; De Cataldo, G; De Mitri, I; Di Credico, A; Favuzzi, C; Fusco, P; Gargano, F; Giglietto, N; Giordano, F; Grillo, A; Guarino, F; Gustavino, C; Lamanna, E; Lauro, A; Leone, A; Loparco, F; Mancarella, G; Martello, D; Mazziotta, M N; Mikheyev, S P; Mongelli, M; Osteria, G; Palladino, Vittorio; Passeggio, G; Perchiazzi, M; Pontoniere, G; Rainó, A; Rocco, R; Romanucci, E; Rubizzo, U; Sacchetti, A; Scapparone, E; Spinelli, P; Tikhomirov, V; Vaccina, A; Vanzanella, E; Weber, M

    2001-01-01

    The NOE Collaboration has proposed a transition radiation detector (TRD) interleaved with marble targets to tag the electron decay channel of tau leptons produced by nu /sub tau /, eventually originated by nu /sub mu / oscillations in a long base line experiment. A reduced scale TRD detector prototype has been built and exposed to an electron/pion beam at the CERN PS. Discrimination capabilities between electrons and both charged and neutral pions, representing the main source of background for our measurement, have been determined obtaining rejection factors of the order of the tenth of percent for charged pions, and of a few percent for the neutral pion, matching the experiment requirements. The capabilities of this detector to measure the energy released by particles that start showering inside the targets are shown. A momentum resolution sigma /sub p//P

  16. Combined solid state and solution NMR studies of α,ε-15N labeled bovine rhodopsin

    International Nuclear Information System (INIS)

    Werner, Karla; Lehner, Ines; Dhiman, Harpreet Kaur; Richter, Christian; Glaubitz, Clemens; Schwalbe, Harald; Klein-Seetharaman, Judith; Khorana, H. Gobind

    2007-01-01

    Rhodopsin is the visual pigment of the vertebrate rod photoreceptor cell and is the only member of the G protein coupled receptor family for which a crystal structure is available. Towards the study of dynamics in rhodopsin, we report NMR-spectroscopic investigations of α,ε- 15 N-tryptophan labeled rhodopsin in detergent micelles and reconstituted in phospholipids. Using a combination of solid state 13 C, 15 N-REDOR and HETCOR experiments of all possible 13 C' i-1 carbonyl/ 15 N i -tryptophan isotope labeled amide pairs, and H/D exchange 1 H, 15 N-HSQC experiments conducted in solution, we assigned chemical shifts to all five rhodopsin tryptophan backbone 15 N nuclei and partially to their bound protons. 1 H, 15 N chemical shift assignment was achieved for indole side chains of Trp35 1.30 and Trp175 4.65 . 15 N chemical shifts were found to be similar when comparing those obtained in the native like reconstituted lipid environment and those obtained in detergent micelles for all tryptophans except Trp175 4.65 at the membrane interface. The results suggest that the integrated solution and solid state NMR approach presented provides highly complementary information in the study of structure and dynamics of large membrane proteins like rhodopsin

  17. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  18. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study.

    Science.gov (United States)

    Furlan, Aurélien L; Jobin, Marie-Lise; Buchoux, Sébastien; Grélard, Axelle; Dufourc, Erick J; Géan, Julie

    2014-12-01

    Dietary polyphenols widespread in vegetables and beverages like red wine and tea have been reported to possess antioxidant properties that could have positive effects on human health. In this study, we propose a new in situ and non-invasive method based on proton liquid-state nuclear magnetic resonance (NMR) to determine the antioxidant efficiency of red wine tannins on a twice-unsaturated phospholipid, 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (DLiPC), embedded in a membrane model. Four tannins were studied: (+)-catechin (C), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG). The lipid degradation kinetics was determined by measuring the loss of the bis-allylic protons during oxidation induced by a radical initiator, 2,2'-Azobis(2-methylpropionamidine) dihydrochloride (AAPH). The antioxidant efficiency, i.e. the ability of tannins to slow down the lipid oxidation rate, was shown to be higher for galloylated tannins, ECG and EGCG. Furthermore, the mixture of four tannins was more efficient than the most effective tannin, EGCG, demonstrating a synergistic effect. To better understand the antioxidant action mechanism of polyphenols on lipid membranes, the tannin location was investigated by NMR and molecular dynamics. A correlation between antioxidant action of tannins and their location at the membrane interface (inserted at the glycerol backbone level) could thus be established. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. NMR study of the interactions of polymyxin B, gramicidin S, and valinomycin with dimyristoyllecithin bilayers

    International Nuclear Information System (INIS)

    Zidovetzki, R.; Banerjee, U.; Harrington, D.W.; Chan, S.I.

    1988-01-01

    The interactions of three polypeptide antibiotics (polymyxin B, gramicidin S, and valinomycin) with artificial lecithin membranes were studied by nuclear magnetic resonance (NMR). Combination of 31 P and 2 H NMR allowed observation of perturbations of the bilayer membrane structure induced by each of the antibiotics in the regions of the polar headgroups and acyl side chains of the phospholipids. The comparative study of the effects of these membrane-active antibiotics and the lipid bilayer structure demonstrated distinct types of antibiotic-membrane interactions in each case. Thus, the results showed the absence of interaction of polymyxin B with the dimyristoyllecithin membranes. In contrast, gramicidin S exhibited strong interaction with the lipid above the gel to liquid-crystalline phase transition temperature: disordering of the acyl side chains was evident. Increasing the concentration of gramicidin S led to disintegration of the bilayer membrane structure. At a molar ratio of 1:16 of gramicidin S to lecithin, the results are consistent with coexistence of gel and liquid-crystalline phases of the phospholipids near the phase transition temperature. Valinomycin decreased the phase transition temperature of the lipids and increased the order parameters of the lipid side chains. Such behavior is consistent with penetration of the valinomycin molecule into the interior of the lipid bilayers

  20. Sepsis does not alter red blood cell glucose metabolism or Na+ concentration: A 2H-, 23Na-NMR study

    International Nuclear Information System (INIS)

    Hotchkiss, R.S.; Song, S.K.; Ling, C.S.; Ackerman, J.J.; Karl, I.E.

    1990-01-01

    The effects of sepsis on intracellular Na+ concentration ([Na+]i) and glucose metabolism were examined in rat red blood cells (RBCs) by using 23Na- and 2H-nuclear magnetic resonance (NMR) spectroscopy. Sepsis was induced in 15 halothane-anesthetized female Sprague-Dawley rats by using the cecal ligation and perforation technique; 14 control rats underwent cecal manipulation without ligation. The animals were fasted for 36 h, but allowed free access to water. At 36 h postsurgery, RBCs were examined by 23Na-NMR by using dysprosium tripolyphosphate as a chemical shift reagent. Human RBCs from 17 critically ill nonseptic patients and from 7 patients who were diagnosed as septic were also examined for [Na+]i. Five rat RBC specimens had [Na+]i determined by both 23Na-NMR and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). For glucose metabolism studies, RBCs from septic and control rats were suspended in modified Krebs-Henseleit buffer containing [6,6-2H2]glucose and examined by 2H-NMR. No significant differences in [Na+]i or glucose utilization were found in RBCs from control or septic rats. There were no differences in [Na+]i in the two groups of patients. The [Na+]i determined by NMR spectroscopy agreed closely with measurements using ICP-AES and establish that 100% of the [Na+]i of the RBC is visible by NMR. Glucose measurements determined by 2H-NMR correlated closely (correlation coefficient = 0.93) with enzymatic analysis. These studies showed no evidence that sepsis disturbed RBC membrane function or metabolism

  1. N7- and N9-substituted purine derivatives: a N-15 NMR study

    Czech Academy of Sciences Publication Activity Database

    Marek, R.; Brus, Jiří; Toušek, J.; Kovács, L.; Hocková, Dana

    2002-01-01

    Roč. 40, č. 5 (2002), s. 353-360 ISSN 0749-1581 R&D Projects: GA ČR GA203/98/P026; GA MŠk LN00A016 Institutional research plan: CEZ:AV0Z4050913 Keywords : NMR * H-1 NMR * N-15 NMR Subject RIV: CE - Biochemistry Impact factor: 0.994, year: 2002

  2. Assessment of protein solution versus crystal structure determination using spin- diffusion-suppressed NOE and heteronuclear relaxation data

    International Nuclear Information System (INIS)

    LeMaster, David M.

    1997-01-01

    A spin-diffusion-suppressed NOE buildup series has been measured for E. coli thioredoxin.The extensive 13C and 15N relaxation data previously reported for this protein allow for direct interpretation of dynamical contributions to the 1H-1H cross-relaxation rates for a large proportion of the NOE cross peaks. Estimates of the average accuracy for these derived NOE distances are bounded by 4% and 10%, based on a comparison to the corresponding X-ray distances. An independent fluctuation model is proposed for prediction of the dynamical corrections to 1H-1H cross-relaxation rates, based solely on experimental structural and heteronuclear relaxation data. This analysis is aided by the demonstration that heteronuclear order parameters greater than 0.6 depend only on the variance of the H-X bond orientation,independent of the motional model in either one- or two-dimensional diffusion (i.e., 1- S2 = 3/4 sin2 2 θσ). The combination of spin-diffusion-suppressed NOE data and analysis of dynamical corrections to 1H-1H cross-relaxation rates based on heteronuclear relaxation data has allowed for a detailed interpretation of various discrepancies between the reported solution and crystal structures

  3. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques

    International Nuclear Information System (INIS)

    Weber, J.K.R.; Benmore, C.J.; Tailor, A.N.; Tumber, S.K.; Neuefeind, J.; Cherry, B.; Yarger, J.L.; Mou, Q.; Weber, W.; Byrn, S.R.

    2013-01-01

    Highlights: • Acoustic levitation was used to make phase-pure glassy forms of pharmaceutical compounds. • Neutrons, X-rays and NMR were used to characterize the glasses. • The glass comprised of slightly distorted molecules packed in a random network. • Potential for new drug synthesis routes is discussed. - Abstract: Acoustic levitation was used to trap 1–3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses

  4. NMR Techniques in Metabolomic Studies: A Quick Overview on Examples of Utilization.

    Science.gov (United States)

    Kruk, Joanna; Doskocz, Marek; Jodłowska, Elżbieta; Zacharzewska, Anna; Łakomiec, Joanna; Czaja, Kornelia; Kujawski, Jacek

    2017-01-01

    Metabolomics is a rapidly developing branch of science that concentrates on identifying biologically active molecules with potential biomarker properties. To define the best biomarkers for diseases, metabolomics uses both models (in vitro, animals) and human, as well as, various techniques such as mass spectroscopy, gas chromatography, liquid chromatography, infrared and UV-VIS spectroscopy and nuclear magnetic resonance. The last one takes advantage of the magnetic properties of certain nuclei, such as 1 H, 13 C, 31 P, 19 F, especially their ability to absorb and emit energy, what is crucial for analyzing samples. Among many spectroscopic NMR techniques not only one-dimensional (1D) techniques are known, but for many years two-dimensional (2D, for example, COSY, DOSY, JRES, HETCORE, HMQS), three-dimensional (3D, DART-MS, HRMAS, HSQC, HMBC) and solid-state NMR have been used. In this paper, authors taking apart fundamental division of nuclear magnetic resonance techniques intend to shown their wide application in metabolomic studies, especially in identifying biomarkers.

  5. Sequences of 12 monoclonal anti-dinitrophenyl spin-label antibodies for NMR studies

    International Nuclear Information System (INIS)

    Leahy, D.J.; Rule, G.S.; Whittaker, M.M.; McConnell, H.M.

    1988-01-01

    Eleven monoclonal antibodies specific for a spin-labeled dinitrophenyl hapten (DNP-SL) have been produces for use in NMR studies. They have been named AN01 and ANO3-AN12. The stability constants for the association of these antibodies with DNP-SL and related haptens were measured by fluorescence quenching. cDNA clones coding for the heavy and light chains of each antibody and of an additional anti-DNP-SL monoclonal antibody, ANO2, have been isolated. The nucleic acid sequence of the 5' end of each clone has been determined, and the amino acid sequence of the variable regions of each antibody has been deduced from the cDNA sequence. The sequences are relatively heterogeneous, but both the heavy and the light chains of ANO1 and ANO3 are derived from the same variable-region gene families as those of the ANO2 antibody. ANO7 has a heavy chain that is related to that of ANO2, and ANO9 has a related light chain. ANO5 and ANO6 are unrelated to ANO2 but share virtually identical heavy and light chains. Preliminary NMR difference spectra comparing related antibodies show that sequence-specific assignment of resonances is possible. Such spectra also provide a measure of structural relatedness

  6. A neutron-X-ray, NMR and calorimetric study of glassy Probucol synthesized using containerless techniques

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J.K.R., E-mail: rweber@anl.gov [Materials Development, Inc., Arlington Heights, IL 60004 (United States); Argonne National Laboratory, Argonne, IL 60439 (United States); Benmore, C.J. [Argonne National Laboratory, Argonne, IL 60439 (United States); Department of Physics, Arizona State University, AZ 85287 (United States); Tailor, A.N.; Tumber, S.K. [Materials Development, Inc., Arlington Heights, IL 60004 (United States); Neuefeind, J. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cherry, B. [Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Yarger, J.L. [Department of Physics, Arizona State University, AZ 85287 (United States); Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Mou, Q. [Magnetic Resonance Research Center, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Weber, W. [Department of Physics, Arizona State University, AZ 85287 (United States); Department of Chemistry and Biochemistry, Arizona State University, AZ 85287 (United States); Byrn, S.R. [Department of Industrial and Physical Pharmacy, Purdue University, IN 47907 (United States)

    2013-10-16

    Highlights: • Acoustic levitation was used to make phase-pure glassy forms of pharmaceutical compounds. • Neutrons, X-rays and NMR were used to characterize the glasses. • The glass comprised of slightly distorted molecules packed in a random network. • Potential for new drug synthesis routes is discussed. - Abstract: Acoustic levitation was used to trap 1–3 mm diameter drops of Probucol and other pharmaceutical materials in containerless conditions. Samples were studied in situ using X-ray diffraction and ex situ using neutron diffraction, NMR and DSC techniques. The materials were brought into non-equilibrium states by supersaturating solutions or by supercooling melts. The glass transition and crystallization temperatures of glassy Probucol were 29 ± 1 and 71 ± 1 °C respectively. The glassy form was stable with a shelf life of at least 8 months. A neutron/X-ray difference function of the glass showed that while molecular sub-groups remain rigid, many of the hydrogen correlations observed in the crystal become smeared out in the disordered material. The glass is principally comprised of slightly distorted Form I Probucol molecules with disordered packing rather than large changes in the individual molecular structure. Avoiding surface contact-induced nucleation provided access to highly non-equilibrium phases and enabled synthesis of phase-pure glasses.

  7. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  8. Location of radiation-induced grafted chains in polymers studied by solid-state NMR

    International Nuclear Information System (INIS)

    Whittacker, A.; Liu, H.

    1998-01-01

    In this study styrene and N-phenyl maleimide monomers were grafted onto poly(ethylene) (PE) chains using gamma radiation. Of main interest is the distribution of grafted chains within the polymer matrix, as this will determine the efficacy of mixing with the glassy polymers. It is expected that grafting will occur within the amorphous regions, and especially near the interface of the crystalline and amorphous regions. A suitable method for characterising the location of the grafted chains is solid-state 13 C NMR spectroscopy. The 13 C CPMAS spectrum of the blend of PE and N-phenyl maleimide mixed in the melt at 150 deg C , prior to reaction, is shown above. The spectrum shows the typical peaks for poly(ethylene) due to the amorphous and crystalline phase at 30.5 and 32.5 ppm, respectively. Peaks are also seen in the aromatic and carbonyl region due to the maleimide (not plotted). Experiments will be described where the NMR magnetisation is prepared in either the crystalline and amorphous regions of the poly(ethylene) prior to spin diffusion to the maleimide and styrene fractions. The location of the grafted monomers can then be determined by monitoring the changes in signal of polymer and graft with time

  9. 31P-NMR studies on turnover rates of phosphocreatine in superfused cerebral tissues

    International Nuclear Information System (INIS)

    Bachelard, H.S.; Cox, D.W.G.; Morris, P.G.; Feeney, J.

    1986-01-01

    The spectra obtained using 31 P-NMR on superfused cerebral cortex preparations in vitro are comparable with those reported for in vivo studies. The rate constants for creatine kinase, measured by saturation transfer techniques, were 0.23s -1 for the forward reaction (transfer of phosphate from creatine phosphate to ADP) and 0.55s -1 for the reverse reaction. Calculated flux rates were similar for the two reactions, at ca 0.7 μmol s -1 g -1 . Mild hypoxia caused a 30 to 50% decrease in creatine phosphate without detectable change in ATP;the rate constant for the forward reaction was increased by about 50%. The sensitivity of the energy state was similar to that found in parallel experiments for synaptic function. In contrast, lowering the glucose to 0.5 mM had no effect on the 31 P-NMR spectrum, so confirming that the energy state is far less sensitive to hypoglycaemia than synaptic function (which becomes impaired below 2mM glucose). Further lowering of the glucose to 0.2mM caused a 30% decrease in creatine phosphate, and unlike hypoxia, the ATP also fell by 30%. No change was detected in the rate constant. The results of preliminary experiments on even lower glucose (0.1mM) suggest that the rate constant may increase under these conditions but this needs confirmation from further experiments

  10. 1D AND 2D NMR STUDIES OF BENZYL O–VANILLIN

    Directory of Open Access Journals (Sweden)

    Mohammed Hadi Al–Douh

    2010-06-01

    Full Text Available The reaction of o-vanillin A with benzyl bromide B2 in acetone as the solvent and K2CO3 as a base in the presence of tetra-n-butylammonium iodide (TBAI as catalyst formed benzyl o-vanillin, C. The complete assignments of C using PROTON, APT, DEPT-135, COSY, NOESY, HMQC and HMBC NMR in both CDCl3 and acetone-d6 are discussed, and the coupling constants J are reported in Hertz (Hz.     Keywords: 1H NMR; 13C NMR; 2D NMR; Benzyl o-Vanillin

  11. Studies of metal-biomolecule systems in liquids with beta-detected NMR

    CERN Document Server

    Walczak, Michal

    2017-01-01

    My internship took place within a small research team funded via the European Research Council (ERC Starting Grant: Beta-Drop NMR) at ISOLDE. It was devoted to laser spin-polarization and beta-detected NMR techniques and their future applications in chemistry and biology. I was involved in the design and tests of the beta-NMR spectrometer which will be used in the upcoming experiments. In this way I have been exposed to many topics in physics (atomic and nuclear physics), experimental techniques (vacuum technology, lasers, beta detectors, electronics, DAQ software), as well as chemistry and biology (NMR on metal ions, metal ion binding to biomolecules, quantum chemistry calculations).

  12. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanyan [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm)2, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of ~3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites

  13. Internal motion time scales of a small, highly stable and disulfide-rich protein: A 15N, 13C NMR and molecular dynamics study

    International Nuclear Information System (INIS)

    Guenneugues, Marc; Gilquin, Bernard; Wolff, Nicolas; Menez, Andre; Zinn-Justin, Sophie

    1999-01-01

    Motions of the backbone CαHα and threonine CβHβ bonds of toxin α were investigated using natural abundance 13C NMR and molecular dynamics. Measurement of the 13C longitudinal and transverse relaxation rates employed ACCORDION techniques together with coherence selection by pulsed field gradients and sensitivity enhancement through the use of preservation of equivalent pathway, thus allowing a considerable reduction of the required spectrometer time. 13C R1, R2, 1H → 13C NOE were obtained, as well as the variations of R1ρ(90 deg.) as a function of the rf field strength. These data were compared to those recorded by 1H and 15N NMR on a labelled sample of the toxin [Guenneugues et al. (1997) Biochemistry, 36, 16097-16108]. Both sets of data showed that picosecond to nanosecond time scale motions are well correlated to the secondary structure of the protein. This was further reinforced by the analysis of a 1 ns molecular dynamics simulation in water. Several CαHα and threonine CβHβ experimentally exhibit fast motions with a correlation time longer than 500 ps, that cannot be sampled along the simulation. In addition, the backbone exhibits motions on the microsecond to millisecond time scale on more than half of its length. Thus, toxin α, a highly stable protein (Tm=75 deg. C at acidic pH) containing 61 amino acids and 4 disulfides, shows important internal motions on time scales ranging from 0.1-0.5 ps, to 10-100 ps, 1 ns, and about 30 μs to 10 ms

  14. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  15. A new Labdane Diterpene and Other Constituents from Marrubium deserti Noe ex coss.

    Directory of Open Access Journals (Sweden)

    Hocine Dendougui

    2011-01-01

    Full Text Available The phytochemical study of the chloroform soluble part of the hydroalcoholic extract of Marrubium deserti allowed us to describe a new labdane diterpene, 6-dehydroxy-19-acetyl-marrubenol (3 beside three other diterpenes : 19-acetyl-marrubenol (6 , 6-acetyl-marrubenol (7 and 16-epoxy-9-hydroxy-labda-13(16, 14- diene (1. This latter derivative is described for the first time as natural compound. Phytol (2, and three sterols: b -sitosterol (4, stigmasterol (5 and b -sitosterol 3-O-glucoside (8 were also isolated from this species. Structure elucidation of the isolated compounds was accomplished by means of spectroscopic techniques, especially NMR spectroscopy and mass spectrometry.

  16. 1 H NMR study and multivariate data analysis of reindeer skin tanning methods.

    Science.gov (United States)

    Zhu, Lizheng; Ilott, Andrew J; Del Federico, Eleonora; Kehlet, Cindie; Klokkernes, Torunn; Jerschow, Alexej

    2017-04-01

    Reindeer skin clothing has been an essential component in the lives of indigenous people of the arctic and sub-arctic regions, keeping them warm during harsh winters. However, the skin processing technology, which often conveys the history and tradition of the indigenous group, has not been well documented. In this study, NMR spectra and relaxation behaviors of reindeer skin samples treated with a variety of vegetable tannin extracts, oils and fatty substances are studied and compared. With the assistance of principal component analysis (PCA), one can recognize patterns and identify groupings of differently treated samples. These methods could be important aids in efforts to conserve museum leather artifacts with unknown treatment methods and in the analysis of reindeer skin tanning processes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. NMR Study of Solvation Effect on Geometry of Proton-Bound Homodimers of Increasing Size

    KAUST Repository

    Gurinov, Andrei A.; Denisov, Gleb S.; Borissova, Alexandra O.; Goloveshkin, Alexander S.; Greindl, Julian; Limbach, Hans-Heinrich; Shenderovich, Ilya G.

    2017-01-01

    Hydrogen bond geometries in the proton-bound homodimers of quinoline and acridine derivatives in an aprotic polar solution have been experimentally studied using 1H NMR at 120 K. The reported results show that increase of the dielec-tric permittivity of the medium results in contraction of the N…N distance. The degree of contraction depends on the homodimer's size and its substituent-specific solvation features. Neither of these effects can be reproduced using conven-tional implicit solvent models employed in computational studies. In general, the N…N distance in the homodimers of pyridine, quinoline, and acridine derivatives decreases in the sequence gas phase > solid state > polar solvent.

  18. NMR Study of Solvation Effect on Geometry of Proton-Bound Homodimers of Increasing Size

    KAUST Repository

    Gurinov, Andrei A.

    2017-10-24

    Hydrogen bond geometries in the proton-bound homodimers of quinoline and acridine derivatives in an aprotic polar solution have been experimentally studied using 1H NMR at 120 K. The reported results show that increase of the dielec-tric permittivity of the medium results in contraction of the N…N distance. The degree of contraction depends on the homodimer\\'s size and its substituent-specific solvation features. Neither of these effects can be reproduced using conven-tional implicit solvent models employed in computational studies. In general, the N…N distance in the homodimers of pyridine, quinoline, and acridine derivatives decreases in the sequence gas phase > solid state > polar solvent.

  19. NMR diffusion and relaxation studies of 2-nitroimidazole and albumin interactions

    Science.gov (United States)

    Wijesekera, Dj; Willis, Scott A.; Gupta, Abhishek; Torres, Allan M.; Zheng, Gang; Price, William S.

    2018-03-01

    Nitroimidazole derivatives are of current interest in the development of hypoxia targeting agents and show potential in the establishment of quantitative measures of tumor hypoxia. In this study, the binding of 2-nitroimidazole to albumin was probed using NMR diffusion and relaxation measurements. Binding studies were conducted at three different protein concentrations (0.23, 0.30 and 0.38 mM) with drug concentrations ranging from 0.005-0.16 M at 298 K. Quantitative assessments of the binding model were made by evaluating the number of binding sites, n, and association constant, K. These were determined to be 21 ± 3 and 53 ± 4 M- 1, respectively.

  20. Dynamic NMR studies of restricted arene rotation in the chromiu tricarbonyl thiophene and selenophene complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sanger, Michael J. [Iowa State Univ., Ames, IA (United States)

    1994-05-27

    This thesis contains the results of organometallic studies of thiophene and selenophene coordination in transition metal complexes. Chromium tricarbonyl complexes of thiophene, selenophene, and their alkyl-substituted derivatives were prepared and variable-temperature 13C NMR spectra of these complexes were recorded in dimethyl ether. Bandshape analyses of these spectra yielded activation parameters for restricted rotation of the thiophene and selenophene ligands in these complexes. Extended Hueckel molecular orbital calculations (EHMO) of the free thiophene and selenophene ligands and selected chromium tricarbonyl thiophene complexes were performed to better explain the activation barriers of these complexes. The structure of Cr(CO)35-2,5-dimethylthiophene) was established by a single crystal X-ray diffraction study.

  1. Slow molecular dynamics in the β relaxation of semicrystalline polymers studied by pure exchange 13C solid state NMR

    International Nuclear Information System (INIS)

    Azevedo, Eduardo R. de; Becker-Guedes, Fabio; Bonagamba, Tito J.; Schmidt-Rohr, Klaus; Iowa State University, Ames, IA

    2001-01-01

    The dynamics in the amorphous regions of semicrystalline polymers exert important influences on mechanical properties, but have been notoriously difficult to characterize. Two new solid-state NMR techniques, PUREX (pure exchange) and CODEX (center band-only detection of exchange) NMR, make it possible to analyze the molecular motions near the glass transition in the amorphous regions of semicrystalline polymers. This is achieved by selectively suppressing the otherwise dominant signals of the static segments in the crystallites. We have applied both NMR techniques to study the slow motions near the glass transition in semicrystalline polymers (β relaxation) and in fully amorphous samples for reference. The studied polymers were isotactic poly(1-butene) (iPB1) (form I), syndiotactic and atactic polypropylenes (sPP, and aPP, respectively), as well as polyisobutylene (PIB). We have analyzed the geometry and time scale of the slow molecular motion for all samples and determined the apparent activation energies. (author)

  2. Detergent/nanodisc screening for high-resolution NMR studies of an integral membrane protein containing a cytoplasmic domain.

    Directory of Open Access Journals (Sweden)

    Christos Tzitzilonis

    Full Text Available Because membrane proteins need to be extracted from their natural environment and reconstituted in artificial milieus for the 3D structure determination by X-ray crystallography or NMR, the search for membrane mimetic that conserve the native structure and functional activities remains challenging. We demonstrate here a detergent/nanodisc screening study by NMR of the bacterial α-helical membrane protein YgaP containing a cytoplasmic rhodanese domain. The analysis of 2D [(15N,(1H]-TROSY spectra shows that only a careful usage of low amounts of mixed detergents did not perturb the cytoplasmic domain while solubilizing in parallel the transmembrane segments with good spectral quality. In contrast, the incorporation of YgaP into nanodiscs appeared to be straightforward and yielded a surprisingly high quality [(15N,(1H]-TROSY spectrum opening an avenue for the structural studies of a helical membrane protein in a bilayer system by solution state NMR.

  3. A 55Mn NMR study of the La0.75Sr0.25MnO3 nanoparticles

    International Nuclear Information System (INIS)

    Rybicki, D.; Sikora, M.; Kapusta, Cz.; Riedi, P.C.; Jirak, Z.; Knizek, K.; Marysko, M.; Pollert, E.; Veverka, P.

    2006-01-01

    We report on a 55 Mn NMR study of the La 0.75 Sr 0.25 MnO 3 nanoparticles of the average grain size 33 nm and 114 nm at 4.2 K and 77 K and at applied field of 0, 0.2 and 0.5T. A dominant signal from the double exchange (DE) controlled metallic ferromagnetic interior of the grains as well as a small signal from insulating ferromagnetic regions is observed. From a comparison with bulk magnetization measurement the thickness of the nonferromagnetic outer layer of the grains and the amount of the ferromagnetic insulating phase was determined. The relative amount of these phases with respect to the ferromagnetic metallic phase increases with decreasing grain size. The DE line in the NMR spectrum shows a frequency shift with applied field according to a full 55 Mn gyromagnetic ratio. A value of the demagnetizing field close to zero is obtained, which indicates a single domain state of the nanoparticles. For the sample with larger grains a higher NMR enhancement is observed, which indicates a higher magnetic susceptibility of the sample at the NMR frequencies. A comparison with the NMR data obtained on a microcrystalline material is made. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Schot, Gijs van der [Uppsala University, Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology (Sweden); Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Faculty of Science – Chemistry, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-08-15

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution.

  5. Performance of the WeNMR CS-Rosetta3 web server in CASD-NMR

    International Nuclear Information System (INIS)

    Schot, Gijs van der; Bonvin, Alexandre M. J. J.

    2015-01-01

    We present here the performance of the WeNMR CS-Rosetta3 web server in CASD-NMR, the critical assessment of automated structure determination by NMR. The CS-Rosetta server uses only chemical shifts for structure prediction, in combination, when available, with a post-scoring procedure based on unassigned NOE lists (Huang et al. in J Am Chem Soc 127:1665–1674, 2005b, doi: 10.1021/ja047109h 10.1021/ja047109h ). We compare the original submissions using a previous version of the server based on Rosetta version 2.6 with recalculated targets using the new R3FP fragment picker for fragment selection and implementing a new annotation of prediction reliability (van der Schot et al. in J Biomol NMR 57:27–35, 2013, doi: 10.1007/s10858-013-9762-6 10.1007/s10858-013-9762-6 ), both implemented in the CS-Rosetta3 WeNMR server. In this second round of CASD-NMR, the WeNMR CS-Rosetta server has demonstrated a much better performance than in the first round since only converged targets were submitted. Further, recalculation of all CASD-NMR targets using the new version of the server demonstrates that our new annotation of prediction quality is giving reliable results. Predictions annotated as weak are often found to provide useful models, but only for a fraction of the sequence, and should therefore only be used with caution

  6. 1H and 13C NMR studies of palladium(2) and platinium(2) complexes with S-Methyl-L-Cysteine

    International Nuclear Information System (INIS)

    Allain, A.; Jezowska-Trzebiatowska, B.; Kozlowski, H.

    1979-01-01

    Our recent 1 H NMR studies on Pd(2)-S-Methyl-L-Cysteine(SMC) complexes have shown that the use of a conformational analysis to establish the complexed species existing in solution may provide clearer results than considering the proton chemical shift only. However, the use of the vicinal coupling constant of ABC spectrum of αCH-βCH 2 proton unit to estimate the rotational isomer fractions, may contain some ambiguity, especially on the proton assignment of the methylene group. For this reason 13 C NMR method has been applied to study these systems. (author)

  7. Photochemically induced dynamic nuclear polarization NMR study of yeast and horse muscle phosphoglycerate kinase

    International Nuclear Information System (INIS)

    Scheffler, J.E.; Cohn, M.

    1986-01-01

    A photochemically induced dynamic nuclear polarization (photo-CIDNP) study of yeast and horse muscle phosphoglycerate kinase with flavin dyes was undertaken to identify the histidine, tryptophan, and tyrosine resonances in the aromatic region of the simplified 1 H NMR spectra of these enzymes and to investigate the effect of substrates on the resonances observable by CIDNP. Identification of the CIDNP-enhanced resonances with respect to the type of amino acid residue has been achieved since only tyrosine yields emission peaks and the dye 8-aminoriboflavin enhances tryptophan but not histidine. By use of the known amino acid sequences and structures derived from X-ray crystallographic studies of the enzymes from the two species, assignment of the specific residues in the protein sequences giving rise to the CIDNP spectra was partially achieved. In addition, flavin dye accessibility was used to probe any changes in enzyme structure induced by substrate binding. The accessibility of a tyrosine to photoexcited flavin is reduced in the presence of MgATP. Since the tyrosine residues are located some distance from the MgATP binding site of the catalytic center, it is proposed either that this change is due to a distant conformational change or that a second metal-ATP site inferred from other studies lies close to one of the tyrosines. Horse muscle phosphoglycerate kinase exhibits seven resonances by CIDNP NMR. The addition of 3-phosphoglycerate and MgATP results in the appearance of two additional resonances in the CIDNP spectrum due to a histidine residue that is inaccessible to flavin in both the enzyme alone and its binary complex with 3-phosphoglycerate. The CIDNP spectra are consistent with the suggestions that binding of 3-phosphoglycerate alone is insufficient to effect domain movement and that binding of both substrates are required for conversion of the horse muscle enzyme to its catalytically active form

  8. Analysis of the structural quality of the CASD-NMR 2013 entries

    Energy Technology Data Exchange (ETDEWEB)

    Ragan, Timothy J.; Fogh, Rasmus H. [University of Leicester, Department of Biochemistry, School of Biological Sciences (United Kingdom); Tejero, Roberto [Universidad de Valencia, Departamento de Química Física (Spain); Vranken, Wim [Vrije Universiteit Brussel, Structural Biology Brussels (Belgium); Montelione, Gaetano T. [Rutgers, The State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium (United States); Rosato, Antonio [University of Florence, Magnetic Resonance Center, Department of Chemistry (Italy); Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Biochemistry, School of Biological Sciences (United Kingdom)

    2015-08-15

    We performed a comprehensive structure validation of both automated and manually generated structures of the 10 targets of the CASD-NMR-2013 effort. We established that automated structure determination protocols are capable of reliably producing structures of comparable accuracy and quality to those generated by a skilled researcher, at least for small, single domain proteins such as the ten targets tested. The most robust results appear to be obtained when NOESY peak lists are used either as the primary input data or to augment chemical shift data without the need to manually filter such lists. A detailed analysis of the long-range NOE restraints generated by the different programs from the same data showed a surprisingly low degree of overlap. Additionally, we found that there was no significant correlation between the extent of the NOE restraint overlap and the accuracy of the structure. This result was surprising given the importance of NOE data in producing good quality structures. We suggest that this could be explained by the information redundancy present in NOEs between atoms contained within a fixed covalent network.

  9. NMR Studies of the Structure and Function of the HIV-1 5′-Leader

    Directory of Open Access Journals (Sweden)

    Sarah C. Keane

    2016-12-01

    Full Text Available The 5′-leader of the human immunodeficiency virus type 1 (HIV-1 genome plays several critical roles during viral replication, including differentially establishing mRNA versus genomic RNA (gRNA fates. As observed for proteins, the function of the RNA is tightly regulated by its structure, and a common paradigm has been that genome function is temporally modulated by structural changes in the 5′-leader. Over the past 30 years, combinations of nucleotide reactivity mapping experiments with biochemistry, mutagenesis, and phylogenetic studies have provided clues regarding the secondary structures of stretches of residues within the leader that adopt functionally discrete domains. More recently, nuclear magnetic resonance (NMR spectroscopy approaches have been developed that enable direct detection of intra- and inter-molecular interactions within the intact leader, providing detailed insights into the structural determinants and mechanisms that regulate HIV-1 genome packaging and function.

  10. Theoretical Study of the NMR Chemical Shift of Xe in Supercritical Condition

    DEFF Research Database (Denmark)

    Lacerda Junior, Evanildo Gomes; Sauer, Stephan P. A.; Mikkelsen, Kurt Valentin

    2018-01-01

    In this work we investigate the level of theory necessary for reproducing the non-linear variation of the 129Xe nuclear magnetic resonance (NMR) chemical shift with the density of Xe in supercritical conditions. In detail we study how the 129Xe chemical shift depends under these conditions...... on electron correlation, relativistic and many-body effects. The latter are included using a sequential-QM/MM methodology, in which a classical MD simulation is performed first and the chemical shift is then obtained as an average of quantum calculations of 250 MD snapshots conformations carried out for Xen...... this approach we obtain very good agreement with the experimental data, showing that the chemical shift of 129Xe in supercritical conditions is very well described by cluster calculations at the HF level, with small contributions from relativistic and electron correlation effects....

  11. NMR studies of a new family of DNA binding proteins: the THAP proteins

    International Nuclear Information System (INIS)

    Gervais, Virginie; Campagne, Sébastien; Durand, Jade; Muller, Isabelle; Milon, Alain

    2013-01-01

    The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer.

  12. Study of the hydration of globular proteins by broad NMR lines method

    Energy Technology Data Exchange (ETDEWEB)

    Blicharska, B [Uniwersytet Jagiellonski, Krakow (Poland). Instytut Fizyki

    1973-01-01

    Spectra of proteins and polypeptides obtained by means of a NMR broad line spectrometer consist of broad and thin lines. These broad and thin lines are attributed to proteins and to water absorbed on the surfaces of proteins respectively. The behaviour of the thin line in the spectra of lyophilizated albumin of the egg white has been studied in the temperature range from -42 to 20/sup 0/C. The amount of water has been found by the simple method of weighing and has been equal about 7% of the total weight. It has been found that the water absorbed on the surface of the lyophilizated proteins gives a thinner line in comparison to the water absorbed on molecules of proteins in water solutions and that the correlation time is about 10/sup 3/ times greater.

  13. NMR studies in the half-Heusler type compound YbPtSb

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T; Abe, M; Mito, T; Ueda, K; Kohara, T [Graduate School of Material Science, University of Hyogo, Kamigori, Hyogo 678-1297 (Japan); Suzuki, H S, E-mail: t-koyama@sci.u-hyogo.ac.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan)

    2011-01-01

    {sup 121}Sb and {sup 19B}Pt nuclear magnetic resonance (NMR) has been studied in the half-Heusler type compound YbPtSb to obtain information on local magnetic behavior. The characteristics of the localized 4f spins are observed in the Cuire-Weiss type behavior of the Knight shifts K for both {sup 121}Sb and {sup 19B}Pt. From the slope of K-{sub {chi}} plots we estimated hyperfine coupling constants of -3.8 and -4.6 kOe/{mu}{sub B} at Sb and Pt sites, respectively. It was found that the spin-echo decay rate 1/T{sub 2} of {sup 121}Sb shows a clear peaks at 10 K. Similar tendency was also observed in case of {sup 19B}Pt. However, static properties do not show any anomalies near 10 K.

  14. Metabolism of 5-fluorouracil in human liver: an in vivo 19F NMR study

    International Nuclear Information System (INIS)

    Mohankrishnan, P.; Sprigg, J.; Cardwell, D.; Komoroski, R.A.; Hutchins, L.; Nauke, S.; Williamson, M.R.; Jagannathan, N.R.

    1999-01-01

    In vivo fluorine-19 nuclear magnetic resonance ( 19 F NMR) spectroscopy was used to study the metabolism and pharmacokinetics of 5-fluorouracil (5-FU) in human liver. Nine patients received 5-FU, and additional chemotherapeutic agents (methotrexate, leucovorin, or levamisole) either prophylactically after breast cancer surgery or for colorectal cancer. The time constant for the disappearance of 5-FU from the liver in vivo varied from 5 to 17 min, while the time constant for the appearance of α-fluoro-β-alanine (the major catabolite of 5 FU) varied from 7 to 86 min. The modulators of 5-FU metabolism did not appear to affect the time constant for the disappearance of 5-FU from the liver or for the appearance of α-fluoro-β-alanine. Results obtained indicate that the pharmacokinetics of 5-FU and α-fluoro-β-alanine may vary substantially at different times in a given individual. (author)

  15. NMR studies of a new family of DNA binding proteins: the THAP proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, Virginie, E-mail: virginie.gervais@ipbs.fr [IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS (France); Campagne, Sebastien [ETH Zurich (Switzerland); Durand, Jade; Muller, Isabelle; Milon, Alain, E-mail: alain.milon@ipbs.fr [IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS (France)

    2013-05-15

    The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer.

  16. Observation of isolated carbon atoms and the study of their mobility on Pt clusters by NMR

    International Nuclear Information System (INIS)

    Wang, P.; Ansermet, J.; Slichter, C.P.; Sinfelt, J.H.

    1985-01-01

    The authors have used NMR to determine the structure of surface species after the C-C bond scission of adsorbed acetylene and ethylene on Pt clusters produced by heating the samples to 690 K. They have found the species to be predominantly isolated carbon atoms adsorbed on Pt surfaces. They have studied the mobility of adsorbed carbon atoms from motional narrowing of the 13 C line shapes and motion-induced shortening of the spin-lattice relaxation times. They have found that the carbon atoms on Pt clusters are very mobile, their activation energy of 7 +- 1 kcal/mole for translational motion being less than half that of CO on Pt clusters

  17. NMR strategies to study the local magnetic properties of carbon nanotubes

    KAUST Repository

    Abou-Hamad, Edy; Kim, Younghyun; Bouhrara, Mohamed; Saih, Youssef; Wå gberg, Thomas; Luzzi, David E.; Goze-Bac, Christophe

    2012-01-01

    The local magnetic properties of the one dimensional inner space of the nanotubes are investigated using 13C nuclear magnetic resonance spectroscopy of encapsulated fullerene molecules inside single walled carbon nanotubes. Isotope engineering and magnetically purified nanotubes have been advantageously used on our study to discriminate between the different diamagnetic and paramagnetic shifts of the resonances. Ring currents originating from the π electrons circulating on the nanotube, are found to actively screen the applied magnetic field by -36.9 ppm. Defects and holes in the nanotube walls cancel this screening locally. What is interesting, that at high magnetic fields, the modifications of the NMR resonances of the molecules from free to encapsulated can be exploited to determine some structural characteristics of the surrounding nanotubes, never observed experimentally. © 2011 Elsevier B.V. All rights reserved.

  18. NMR strategies to study the local magnetic properties of carbon nanotubes

    KAUST Repository

    Abou-Hamad, Edy

    2012-02-01

    The local magnetic properties of the one dimensional inner space of the nanotubes are investigated using 13C nuclear magnetic resonance spectroscopy of encapsulated fullerene molecules inside single walled carbon nanotubes. Isotope engineering and magnetically purified nanotubes have been advantageously used on our study to discriminate between the different diamagnetic and paramagnetic shifts of the resonances. Ring currents originating from the π electrons circulating on the nanotube, are found to actively screen the applied magnetic field by -36.9 ppm. Defects and holes in the nanotube walls cancel this screening locally. What is interesting, that at high magnetic fields, the modifications of the NMR resonances of the molecules from free to encapsulated can be exploited to determine some structural characteristics of the surrounding nanotubes, never observed experimentally. © 2011 Elsevier B.V. All rights reserved.

  19. Multipulse NMR study of the lamellar mesophase of some liquid crystals

    International Nuclear Information System (INIS)

    Jasinski, A.; Morris, P.G.; Mansfield, P.

    1977-01-01

    Multipulse NMR techniques have been used to investigate the dynamic jproperties of cesium perfluoro-octanoate (CsPFO) and ammonium perfluoro-octanoate (APFO) + water systems, which are liquid crystals, over a wide range of temperautre and concentration. Axially symmetric fluorine chemical shift tensors have been measured for the CF 2 and CF 3 groups by performing a rotation study of an aligned sample (50% CsPFO : 50% D 2 O) at room temperature. The order parameter S in the lamellar mesophase of 72,2% CsPFO : 27,8% D 2 O and 70% APFO : 30% D 2 O has been obtained over as temperature range 20 0 C - 85 0 C by fitting the multipulse spectra. (author)

  20. NMR study of electric quadrupole interactions in GdCo2

    International Nuclear Information System (INIS)

    Barata, A.C.; Guimaraes, A.P.

    1984-01-01

    Quadrupole oscillations have been observed with 59 Co pulsed NMR in the intermetallic compound GdCo 2 . From theses oscillations the nuclear electric quadrupoles interaction (EQI) has been studied as a function of temperature in the range 4K-312K. The value measured at 4K, ν sub(Q)=672 +-3 KHz, is the largest so far reported for the cobalt EQI in the RCo 2 intermetallics. The EQI decreases with increasing temperature, reaching 432 +- 10 KHz at 312K. The amplitude of the oscillations tends to decrease with temperature, being also dependent on the easy direction of magnetization of the compound. Thus, above 200K, as the direction of magnetization changes, large oscillations are again visible in the satellite line; the main line shows no oscillations in this range. The observed temperature dependence of the EQI is roughly linear, as found in other transition metal systems. (Author) [pt

  1. Exploring abiotic stress on asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Winning, H.; Viereck, N.; Wollenweber, B.

    2009-01-01

    at the vegetative growth stage had little effect on the parameters investigated. For the first time, H-1 HR-MAS NMR spectra of grains taken during grain-filling were analysed by an advanced multiway model. In addition to the results from the chemical protein analysis and the H-1 HR-MAS NMR spectra of single kernels...... was to examine the implications of different drought treatments on the protein fractions in grains of winter wheat using H-1 nuclear magnetic resonance spectroscopy followed by chemometric analysis. Triticum aestivum L. cv. Vinjett was studied in a semi-field experiment and subjected to drought episodes either...... at terminal spikelet, during grain-filling or at both stages. Principal component trajectories of the total protein content and the protein fractions of flour as well as the H-1 NMR spectra of single wheat kernels, wheat flour, and wheat methanol extracts were analysed to elucidate the metabolic development...

  2. Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1

    Energy Technology Data Exchange (ETDEWEB)

    Dolenc, Jozica [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland); Missimer, John H.; Steinmetz, Michel O. [Paul Scherrer Institut, Biomolecular Research (Switzerland); Gunsteren, Wilfred F. van, E-mail: wfvgn@igc.phys.chem.ethz.c [Swiss Federal Institute of Technology, Laboratory of Physical Chemistry, ETH (Switzerland)

    2010-07-15

    The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16-31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 {phi} torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular {alpha}-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured {sup 3}J(H{sub N}-H{sub C{alpha}})-coupling constants, indicating that different conformers of GCN4p16-31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and {sup 3}J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and {sup 3}J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16-31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16-31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.

  3. An NMR relaxometry and gravimetric study of gelatin-free aqueous polyacrylamide dosimeters

    International Nuclear Information System (INIS)

    Babic, Steven; Schreiner, L John

    2006-01-01

    In conformal radiation therapy, a high dose of radiation is given to a target volume to increase the probability of cure, and care is taken to minimize the dose to surrounding healthy tissue. The techniques used to achieve this are very complicated and the precise verification of the resulting three-dimensional (3D) dose distribution is required. Polyacrylamide gelatin (PAG) dosimeters with magnetic resonance imaging and optical computed tomography scanning provide the required 3D dosimetry with high spatial resolution. Many basic studies have characterized these chemical dosimeters that polymerize under irradiation. However, the investigation of the fundamental properties of the radiation-induced polymerization in PAG dosimeters is complicated by the presence of the background gelatin matrix. In this work, a gelatin-free model system for the study of the basic radiation-induced polymerization in PAG dosimeters has been developed. Experiments were performed on gelatin-free dosimeters, named aqueous polyacrylamide (APA) dosimeters, containing equal amounts of acrylamide and N,N'-methylene-bisacrylamide. The APA dosimeters were prepared with four different total monomer concentrations (2, 4, 6 and 8% by weight). Nuclear magnetic resonance (NMR) spin-spin and spin-lattice proton relaxation measurements at 20 MHz, and gravimetric analyses performed on all four dosimeters, show a continuous degree of polymerization over the dose range of 0-25 Gy. The developed NMR model explains the relationship observed between the relaxation data and the amount of crosslinked polymer formed at each dose. This model can be extended with gelatin relaxation data to provide a fundamental understanding of radiation-induced polymerization in the conventional PAG dosimeters

  4. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    Science.gov (United States)

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  5. 1H NMR methods for the noninvasive study of metabolism and other processes involving small molecules in intact erythrocytes

    International Nuclear Information System (INIS)

    Rabenstein, D.L.

    1984-01-01

    1 H NMR methods are described with which resolved resonances can be obtained for many of the small molecules in intact erythrocytes. In one method, the more intense hemoglobin resonances are suppressed by transfer of saturation throughout the hemoglobin spin system by cross relaxation following a selective saturation pulse. In a second method, the hemoglobin resonances are eliminated with the spin-echo pulse sequence by using a between-pulse delay time long enough for complete elimination of the hemoglobin resonances by spin-spin relaxation. Selected examples of the study of erythrocyte biochemistry by 1 H NMR are discussed. (Auth.)

  6. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.

    Science.gov (United States)

    Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K

    1995-04-01

    The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. NMR/NQR study of the superconductor Y2Ba4Cu7O15

    International Nuclear Information System (INIS)

    Stern, R.

    1995-01-01

    This dissertation concentrates on several important aspects of the high temperature superconductivity research. Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies in Y-Ba-O compounds contribute information regarding various aspects, ranging from the direct observation of strong coupling between the adjacent planes in the double plane to conclusions concerning the spatial symmetry of paring state in these cuprates. We report the first results in the 93 K superconductor Y 2 Ba 4 Cu 7 O 15 . This compound turns out to be a structure containing differently doped CuO 2 planes. The planes in the 1-2-3(1-2-4) block are only slightly lower (higher) doped than those in the corresponding parent compounds YBa 2 Cu 3 O 7 and YBa 2 Cu 4 O 8 . The results obtained from measurements on oxygen depleted Y 2 Ba 4 Cu 7 O 15-x show two new features which could explain the dissimilar variation of T c with oxygen content compared to YBa 2 Cu 3 O 7-x : i) the double chains donate charge carriers to the planes and ii) the chain fragments which survive when emptying single chains are longer than in YBa 2 Cu 3 O 7-x . The pressure induced charge transfer from chain to plane in each block of Y 2 Ba 4 Cu 7 O 15 is the same as in the corresponding parent compound. We explore the strong coupling between nonequivalent planes in this compound using the three main NMR/NQR quantities, K spin , 1/T 1 ; and T 2G,ind , and estimate its approximate strength directly from spin-echo double resonance (SEDOR) experiments. We obtain for the ratio of the effective inter- and intraplane exchange-coupling constants the value of 0.3 just above T c . This ratio decreases with increasing temperature. (author) figs., tabs., refs

  8. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Nohaile, Michael James [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five α-helices and a five-stranded β-sheet in a (β/α)5 topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  9. Hydrothermal reaction of albite and a sodium aluminosilicate glass: A solid-state NMR study

    Science.gov (United States)

    Yang, Wang-hong Alex; Kirkpatrick, R. James

    1989-04-01

    We present here a solid-state NMR study of the structure and chemical composition of the products and mechanisms of the reaction of crystalline low albite and a glass of nearly albite composition with aqueous solutions of pH from 1 to 11 at 250°C. For the crystalline albite, there are no detectable bulk or surface structural changes due to aqueous attack, consistent with the idea that both cation exchange and disruption of the aluminosilicate framework occur only near the mineral/solution interface and that the hydrated surface layer, if it exists, is not more than about 30 Å thick. This reaction occurs by solution/reprecipitation, and its rate decreases with increasing solution pH, supporting the idea that the dissolution of feldspar is initiated by cation-exchange. For the glass, the reaction proceeds by cation exchange of protons for Na +, incorporation of molecular water into the bulk glass, and a small amount of depolymerization of the aluminosilicate framework in the interior of the glass. Cation exchange becomes less important with increasing solution pH. The incorporation of molecular water and cation-exchange cause structural changes in the glass via solidstate adjustment without dissolution/reprecipitation. The large cations in the hydrated glass (Na and K) probably have a shell of water molecules around them, with a maximum average coordination number of six. The secondary phases formed from both albite and the glass are often amorphous and can be well characterized by NMR. The compositional and structural variations of the amorphous phases are important factors in these reactions and cannot be ignored in theoretical models of aluminosilicate dissolution. As expected, the aluminum coordination in the secondary phases changes from six-fold to four-fold as the solution pH increases.

  10. Altered metabolism of growth hormone receptor mutant mice: a combined NMR metabonomics and microarray study.

    Directory of Open Access Journals (Sweden)

    Horst Joachim Schirra

    Full Text Available BACKGROUND: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. CONCLUSIONS/SIGNIFICANCE: The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone

  11. Pulsed NMR studies of crosslinking and entanglements in high molecular weight linear polydimethylsiloxanes

    International Nuclear Information System (INIS)

    Folland, R.; Charlesby, A.

    1977-01-01

    Pulsed NMR studies of proton spin relaxation are used to investigate both radiation-induced cross linking and entanglements in three high molecular weight linear polydimethylsiloxanes (Msub(w) = 26,000, 63,000 and 110,000). Particular emphasis is placed on the spin-spin relaxation since this is determined by the slower relative translational motions of the polymer chains and hence profoundly affected by the presence of intermolecular couplings such as crosslinks or entanglements. The spin-lattice relaxation times, T 1 , are determined by the fast anisotropic chain rotations and are rather insensitive to such intermolecular couplings. The spin-spin relaxation in these materials is represented by a double exponential decay involving two time constants, Tsub(2S) and Tsub(2L). The shorter component, Tsub(2S), is attributed to network material, which may be either of a dynamic form arising from temporary entanglements or of a permanent nature due to crosslinks. The concentration of entanglements depends on the initial molecular weight of the sample whereas the concentration of crosslinks is a function of the radiation dose. The longer component, Tsub(2L), is attributed to the non-network molecules. On the time scale of the NMR measurements the entanglements are shown to act in the same way as crosslinks. The variation of the relative proportions of network and non-network material with dose is shown to be accounted for by using standard gelation theory when allowance is made for the initial effective crosslink density due to entanglements. The analysis provides a value for the average molecular weight per entanglement point of 27,000 +- 1000 which is consistent with the critical molecular weight for entanglements of 29,000. The dependences of Tsub(2S) and Tsub(2L) on dose and molecular weight are also discussed in terms of the molecular motion. (author)

  12. Uniform and selective deuteration in two-dimensional NMR of proteins

    International Nuclear Information System (INIS)

    LeMaster, D.M.

    1990-01-01

    This paper reports on the practicality of isotopic labeling, particularly deuteration, that has received considerable impetus from advances in molecular biology, which have allowed ready production of NMR quantities of labeled proteins. Protein expression in Escherichia coli allows use of the considerable metabolic genetics known for the organism in shaping the biosynthetic process to meet the labeling demands of the NMR experiments. In addition to deuteration's common use in spectral assignment problems, it also offers considerable potential for enhancing the quality of the nuclear Overhauser effect (NOE) distance and dihedral angle constraints used for solution structural analysis of proteins. Recent reviews emphasize the sample preparation and spectral benefits of protein deuteration

  13. Chemical behavior of methylpyranomalvidin-3-O-glucoside in aqueous solution studied by NMR and UV-visible spectroscopy.

    Science.gov (United States)

    Oliveira, Joana; Petrov, Vesselin; Parola, A Jorge; Pina, Fernando; Azevedo, Joana; Teixeira, Natércia; Brás, Natércia F; Fernandes, Pedro A; Mateus, Nuno; Ramos, Maria João; de Freitas, Victor

    2011-02-17

    In the present work, the proton-transfer reactions of the methylpyranomalvidin-3-O-glucoside pigment in water with different pH values was studied by NMR and UV-visible spectroscopies. The results showed four equilibrium forms: the methylpyranomalvidin-3-O-glucoside cation, the neutral quinoidal base, the respective anionic quinoidal base, and a dianionic base unprotonated at the methyl group. According to the NMR data, it seems that for methylpyranomalvidin-3-O-glucoside besides the acid-base equilibrium between the pyranoflavylium cation and the neutral quinoidal base, a new species is formed at pD 4.88-6.10. This is corroborated by the appearance of a new set of signals in the NMR spectrum that may be assigned to the formation of hemiketal/cis-chalcone species to a small extent. The two ionization constants (pK(a1) and pK(a2)) obtained by both methods (NMR and UV-visible) for methylpyranomalvidin-3-O-glucoside are in agreement (pK(a1) = 5.17 ± 0.03; pK(a2) = 8.85 ± 0.08; and pK(a1) = 4.57 ± 0.07; pK(a2) = 8.23 ± 0.04 obtained by NMR and UV-visible spectroscopies, respectively). Moreover, the fully dianionic unprotonated form (at the methyl group) of the methylpyranomalvidin-3-O-glucoside is converted slowly into a new structure that displays a yellow color at basic pH. On the basis of the results obtained through LC-MS and NMR, the proposed structure was found to correspond to the flavonol syringetin-3-glucoside.

  14. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  15. Quantum tunneling of magnetization in molecular nanomagnet Fe8 studied by NMR

    International Nuclear Information System (INIS)

    Maegawa, Satoru; Ueda, Miki

    2003-01-01

    Magnetization and NMR measurements have been performed for single crystals of molecular magnet Fe8. The field and temperature dependences of magnetization below 25 K are well described in terms of the isolated clusters with the total spin S=10. The stepwise recoveries of 1 H-NMR signals at the level crossing fields caused by the resonant quantum tunneling of magnetization were observed below 400 mK. The recovery of the NMR signals are explained by the fluctuation caused by the transition between the energy states of Fe magnetizations governed by Landau-Zener quantum transitions

  16. Mössbauer and NMR study of novel Tin(IV)-lactames

    International Nuclear Information System (INIS)

    Kuzmann, Erno; Szalay, Roland; Homonnay, Zoltan; Nagy, Sandor

    2012-01-01

    N-tributylstannylated 2-pyrrolidinone was reacted with tributyltin triflate in different molar ratios and the complex formation monitored using 1 H-NMR, 13 C-NMR and 119 Sn Mössbauer spectroscopy. Comparing the carbon NMR and tin Mössbauer results, a reaction scheme is suggested for the complexation which assumes the formation of a simultaneously O- and N-tributylstannylated pyrrolidinone cation. The formation of the only O-stannylated pyrrolidinone is also assumed to account for the non-constant Mössbauer parameters of the two tin environments in the distannylated pyrrolidinone cation when the ratio of tributyltin triflate is increased in the reaction.

  17. Study of a Conformational Equilibrium of Lisinopril by HPLC, NMR, and DFT

    Directory of Open Access Journals (Sweden)

    Sondes Bouabdallah

    2014-01-01

    Full Text Available The isomerization of lisinopril has been investigated using chromatographic, NMR spectroscopic, and theoretical calculations. The NMR data, particularly the NOEDIFF experiments, show that the major species that was eluted first is the trans form. The proportion was 77% and 23% for the trans and cis, respectively. The thermodynamic parameters (ΔH, ΔS, and ΔG were determined by varying the temperature in the NMR experiments. The interpretations of the experimental data were further supported by DFT/B3LYP calculations.

  18. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Daigle

    2018-01-01

    Full Text Available We report the analysis of comb-like polymers by solid-state NMR. The polymers were previously evaluated as solid-polymer-electrolytes (SPE for lithium-polymer-metal batteries that have suitable ionic conductivity at 60 °C. We propose to develop a correlation between 13C solid-state NMR measurements and phase segregation. 13C solid-state NMR is a perfect tool for differentiating polymer phases with fast or slow motions. 7Li was used to monitor the motion of lithium ions in the polymer, and activation energies were calculated.

  19. Interaction of the Saccharomyces cerevisiae α-factor with phospholipid vesicles as revealed by proton and phosphorus NMR

    International Nuclear Information System (INIS)

    Jelicks, L.A.; Broido, M.S.; Becker, J.M.; Naider, F.R.

    1989-01-01

    Proton and phosphorus-31 nuclear magnetic resonance ( 1 H and 31 P NMR) studies of the interaction between a tridecapeptide pheromone, the α-factor of Saccharomyces cerevisiae, and sonicated lipid vesicles are reported. 31 P NMR studies demonstrate that there is interaction of the peptide with the phosphorus headgroups, and quasielastic light scattering (QLS) studies indicate that lipid vesicles increase in size upon addition of peptide. Previous solution (aqueous and DMSO) studies from this laboratory indicate that α-factor is highly flexible with only one long-lived identifiable structural feature, a type II β-turn spanning the central portion of the peptide. Two-dimensional (2D) 1 H nuclear Overhauser effect spectroscopy (NOESY) studies demonstrate a marked ordering of the peptide upon interaction with lipid, suggesting a compact N-terminus, in addition to a stabilized β-turn. In contrast to these results in both solution and lipid environment, Wakamatsu et al. proposed a lipid environment conformation, on the basis of one-dimensional transferred NOE studies in D 2 O, which does not include the β-turn

  20. Study concerning the compatibility of the mixture of nylon-6 and poly(propylene oxide) through solid state NMR

    International Nuclear Information System (INIS)

    Tavares, Maria I.B.; Costa, D.A.; Menezes, Sonia M.C.

    1993-01-01

    NMR has been frequently used for the determination of polymers compatibility. The utilization of the simple pulse technique together with the contact time variation technique has been enabling the evaluation of the compatibility of polymeric systems. This work presents the study of the behaviour of the mixture composed by nylon-6 with poly(propylene oxide) using these techniques. Results are presented

  1. A preliminary study of the relation between adsorption and CP-MAS-NMR characteristics of fused silica model substrates

    NARCIS (Netherlands)

    Scholten, A.B.; Janssen, J.G.M.; Haan, de J.W.; Cramers, C.A.M.G.; Sandra, P.J.F.; Devos, G.; Sandra, P.

    1993-01-01

    The fumed silica model substrate Aerosil was trimethylsilylated to different extents and studied by the combination of IGC and 29Si CP-MAS-NMR. Dihydroxydisiloxane groups were shown to be chemically more reactive than monohydroxytrisiloxane groups. Chromatographic experiments showed that these

  2. PFG NMR Study of Liquid n-Hexane Self-Diffusion in the Bed of Porous Glass Beads

    Czech Academy of Sciences Publication Activity Database

    Peksa, M.; Lang, J.; Kočiřík, Milan

    2009-01-01

    Roč. 11, č. 36 (2009), s. 1-2 ISSN 1862-4138 R&D Projects: GA ČR GA203/09/1353 Institutional research plan: CEZ:AV0Z40400503 Keywords : PFG NMR Study * porous glass beads Subject RIV: CF - Physical ; Theoretical Chemistry http://www.uni-leipzig.de/diffusion/journal/index.html

  3. In vivo 31P NMR studies on the role of the vacuole in phosphate metabolism in yeasts

    NARCIS (Netherlands)

    Nicolaij, K.; Scheffers, W.A.; Bruinenberg, P.M.; Kaptein, R.

    1983-01-01

    31P NMR was used to study the dynamics of phosphate pools during substrate utilization by aerobic and anaerobic suspensions of the yeast Candida utilis and by aerobic suspensions of the yeast Brettanomyces intermedius. In both yeast, the cytoplasmic pH was monitored; in C. utilis also the vacuolar

  4. Study of kinetics of 2,3-diphosphoglycerate degradation by 31P-NMR technique in depleted human erythrocytes

    International Nuclear Information System (INIS)

    Ataullakhanov, F.I.; Vitvitskii, V.M.; Dubinskaya, E.I.; Dubinskii, V.Z.

    1986-01-01

    The kinetics of 2,3-diphosphoglycerate degradation in depleted human erythrocytes was studied by the high-resolution 31 P-NMR technique. A plateau was found on the kinetic curve in the first 1.5-2 h after the beginning of depletion. The mechanisms that may be responsible for the existence of such a plateau are discussed

  5. The bonded in the chestnut-tree (Aesculus hippocastanum L.) bark water freezing process studied by means NMR method

    International Nuclear Information System (INIS)

    Haranczyk, H.; Weglarz, W.

    1994-01-01

    The bonded in the chestnut-tree (Aesculus hippocastanum L.) bark water freezing process was studied by means NMR method. The measured relaxation time (as a function of temperature) shows two compounds. First from solid state water (T 2 * 20 μs) and the second one from liquid water (T 2 * = 1 ms). This results are presented and discussed

  6. Total synthesis of (-)-basiliskamide A and NMR studies on the conversion of basiliskamide A to basiliskamide B

    International Nuclear Information System (INIS)

    Dias, Luiz C.; Goncalves, Caroline C.S.

    2010-01-01

    We describe herein our approach to the total synthesis of the antifungal polyketide (-)-basiliskamide A, as well as 1 H NMR studies on the migration of the cinnamoyl side chain of basiliskamide A to form basiliskamide B in CDCl 3 solution. (author)

  7. NMR studies of granular media and two-phase flow in porous media

    Science.gov (United States)

    Yang, Xiaoyu

    This dissertation describes two experimental studies of a vibrofluidized granular medium and a preliminary study of two-phase fluid flow in a porous medium using Nuclear Magnetic Resonance (NMR). The first study of granular medium is to test a scaling law of the rise in center of mass in a three-dimensional vibrofluidized granular system. Our granular system consisted of mustard seeds vibrated vertically at 40 Hz from 0g to 14g. We used Magnetic Resonance Imaging (MRI) to measure density profile in vibrated direction. We observed that the rise in center of mass scaled as nu 0alpha/Nlbeta with alpha = 1.0 +/- 0.2 and beta = 0.5 +/- 0.1, where nu 0 is the vibration velocity and Nl is the number of layers of grains in the container. A simple theory was proposed to explain the scaling exponents. In the second study we measured both density and velocity information in the same setup of the first study. Pulsed Field Gradient (PFG)-NMR combined with MRI was used to do this measurement. The granular system was fully fluidized at 14.85g 50 Hz with Nl ≤ 4. The velocity distributions at horizontal and vertical direction at different height were measured. The distributions were nearly-Gaussian far from sample bottom and non-Gaussian near sample bottom. Granular temperature profiles were calculated from the velocity distributions. The density and temperature profile were fit to a hydrodynamic theory. The theory agreed with experiments very well. A temperature inversion near top was also observed and explained by additional transport coefficient from granular hydrodynamics. The third study was the preliminary density measurement of invading phase profile in a two-phase flow in porous media. The purpose of this study was to test an invasion percolation with gradient (IPG) theory in two-phase flow of porous media. Two phases are dodecane and water doped with CuSO4. The porous medium was packed glass beads. The front tail width sigma and front width of invading phase were

  8. Photochromism of indolino-benzopyrans studied by NMR and UV-visible spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Delbaere

    2006-01-01

    is described. The structures of photomerocyanines elucidated by NMR spectroscopy and spectrokinetic data (λmax⁡ of colored form, colorability, and rate constant of bleaching obtained by UV-visible spectroscopy are reported.

  9. Metabolic studies with NMR spectroscopy of the alga Dunaliella salina trapped within agarose beads.

    Science.gov (United States)

    Bental, M; Pick, U; Avron, M; Degani, H

    1990-02-22

    A technique for the entrapment of the unicellular algae Dunaliella salina in agarose beads and their perfusion during NMR measurements is presented. The trapped cells maintained their ability to proliferate under normal growth conditions, and remained viable and stable under steady-state conditions for long periods during NMR measurements. Following osmotic shock in the dark, prominent changes were observed in the intracellular level of ATP and polyphosphates, but little to no changes in the intracellular pH or orthoposphate content. When cells were subjected to hyperosmotic shock, the ATP level decreased. The content of NMR-visible polyphosphates decreased as well, presumably due to the production of longer, NMR-invisible structures. Following hypoosmotic shock, the ATP content increased and longer polyphosphates were broken down to shorter, more mobile polymers.

  10. Chemical-exchange-sensitive MRI of amide, amine and NOE at 9.4 T versus 15.2 T.

    Science.gov (United States)

    Chung, Julius Juhyun; Choi, Wonmin; Jin, Tao; Lee, Jung Hee; Kim, Seong-Gi

    2017-09-01

    Chemical exchange (CE)-sensitive MRI benefits greatly from stronger magnetic fields; however, field effects on CE-sensitive imaging have not yet been studied well in vivo. We have compared CE-sensitive Z-spectra and maps obtained at the fields of 9.4 T and 15.2 T in phantoms and rats with off-resonance chemical-exchange-sensitive spin lock (CESL), which is similar to conventional chemical exchange saturation transfer. At higher fields, the background peak at water resonance has less spread and the exchange rate relative to chemical shift decreases, thus CESL intensity is dependent on B 0 . For the in vivo amide and nuclear Overhauser enhancement (NOE) composite resonances of rat brains, intensities were similar for both magnetic fields, but effective amide proton transfer and NOE values obtained with three-point quantification or a curve fitting method were larger at 15.2 T due to the reduced spread of attenuation at the direct water resonance. When using intermediate exchange-sensitive irradiation parameters, the amine proton signal was 65% higher at 15.2 T than at 9.4 T due to a reduced ratio of exchange rate to chemical shift. In summary, increasing magnetic field provides enhancements to CE-sensitive signals in the intermediate exchange regime and reduces contamination from background signals in the slow exchange regime. Consequently, ultrahigh magnetic field is advantageous for CE-sensitive MRI, especially for amine and hydroxyl protons. Copyright © 2017 John Wiley & Sons, Ltd.

  11. 2D NMR studies on muscle and cerebral metabolism in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Gillet, B.; Doan, B.T.; Verre-Sebrie, C.; Fedeli, O.; Beloeil, J.C. (Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France). Inst. de Chimie des Substances Naturelles); Peres, M. (CERMA-CEV, 91 - Bretigny-sur-Orge (France)); Barrere, B.; Seylaz, J. (Paris-7 Univ., 75 (France)); Morin, S.; Koenig, J. (Bordeaux-1 Univ., 33 - Talence (France)); Sebille, A. (Faculte de Medecine Saint-Antoine, 75 - Paris (France))

    1994-06-01

    New developments in in vivo 2D[sup 1]H NMR spectroscopy now allow several metabolites, which are not resolved by 1D NMR to be assigned. This report describes the use of this technique to follow the time courses of changes in the concentration of metabolites in the rat brain during physiological and pathophysiological processes (hyperglycemia and hypoxia) and to compare the fatty acid components of normal and dystrophic mouse gastrocnemius muscle. (authors). 15 refs., 5 figs.

  12. Metabolic engineering applications of in vivo 31P and 13C NMR studies of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Shanks, J.V.

    1989-01-01

    With intent to quantify NMR measurements as much as possible, analysis techniques of the in vivo 31 P NMR spectrum are developed. A systematic procedure is formulated for estimating the relative intracellular concentrations of the sugar phosphates in S. cerevisiae from the 31 P NMR spectrum. In addition, in vivo correlation of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, β-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6-phosphate are determined. Also, a method was developed for elucidation of the cytoplasmic and vacuolar components of inorganic phosphate in the 31 P NMR spectrum of S. cerevisiae. An in vivo correlation relating the inorganic phosphate chemical shift of the vacuole with the chemical shift of the resonance for pyrophosphate and the terminal phosphate of polyphosphate (PP 1 ) is established. Transient measurements provided by 31 P NMR are applied to reg1 mutant and standard strains. 31 P and 13 C NMR measurements are used to analyze the performance of recombinant strains in which the glucose phosphorylation step had been altered

  13. A 55Mn NMR Study of the La0.75Sr0.25MnO3 Nanoparticles

    International Nuclear Information System (INIS)

    Kapusta, Cz.; Rybicki, D.; Sikora, M.

    2005-01-01

    We report on a 55 Mn NMR study of the La 0.75 Sr 0.25 MnO 3 nanoparticles with the average grain size of 33 nm and 114 nm at 4.2 K and at the applied field 0, 0.2 and 0.5 T. A dominant signal from the double exchange (DE) controlled metallic ferromagnetic interior of the grains as well as a small signal from insulating ferromagnetic surface regions of the grains are observed. The DE resonant line shows a frequency shift in the applied field according to a full gyromagnetic ratio and a value of the demagnetizing field much smaller than 0.2 T is obtained. In both samples studied a two-exponential nuclear spin-spin (T 2 ) relaxation is observed at zero field, whereas a single-exponential relaxation is observed at the applied field of 0.5 T. For the sample with larger grains a higher NMR enhancement is observed, which indicates a higher magnetic susceptibility of the sample at the NMR frequencies. A comparison to the NMR data obtained on a bulk material is made. The results are discussed in terms of the influence of the grain size and on the presence of domain walls or other magnetic inhomogeneities and on the magnetic anisotropy

  14. Intracellular pH and inorganic phosphate content of heart in vivo: A 31P-NMR study

    International Nuclear Information System (INIS)

    Katz, L.A.; Swain, J.A.; Portman, M.A.; Balaban, R.S.

    1988-01-01

    Studies were performed to determine the contribution of red blood cells to the 31 P-nuclear magnetic resonance (NMR) spectrum of the canine heart in vivo and the feasibility of measuring myocardial intracellular phosphate and pH. This was accomplished by replacing whole blood with a perfluorochemical perfusion emulsion blood substitute, Oxypherol, and noting the difference in the 31 P-NMR spectrum of the heart. NMR data were collected with a NMR transmitter-receiver coil on the surface of the distal portion of the left ventricle. These studies demonstrated that a small contribution from 2,3-diphosphoglycerate (2,3-DPG) and phosphodiesters in the blood could be detected. The magnitude and shift of these blood-borne signals permitted the relative quantification of intracellular inorganic phosphate (P i ) content as well as intracellular pH. Under resting conditions, the intracellular ATP/P i was 7.0 ± 0.08. This corresponds to a free intracellular P 1 content of ∼ 0.8 μmol./g wet wt. The intracellular pH was 7.10 ± 0.01. Acute respiratory alkalosis and acidosis, with the arterial pH ranging from ∼7.0 to 7.7, resulted in only small changes in the intracellular pH. These latter results demonstrate an effective myocardial intracellular proton-buffering mechanism in vivo

  15. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    Science.gov (United States)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  16. Comparative Study of the Methods Used for the Computer Resolution of Composite Gamma-Ray Spectra; Etude Comparative des Methodes Utilisees pour la Resolution de Spectres Gamma Complexes au Moyen d'un Ordinateur; Sravnitel'noe izuchenie metodov razresheniya sostavnykh gamma-spektrov pri pomoshchi schetno-reshayushchego ustrojstva; Estudio Comparativo de los Metodos Aplicados para Resolver Espectros Gamma Complejos Mediante Calculadoras

    Energy Technology Data Exchange (ETDEWEB)

    DeHaan, A. Jr.; Leventhal, L.; Benson, P. [Tracerlab, Richmond, CA (United States)

    1965-10-15

    mnogokomponentnye sistemy. Vyrabotan metod ispol'zovanija schetno-reshajushhego ustrojstva, normalizujushhij gamma-spektry dlja svedenija k minimumu jeffekta smeshhenija spektrometra, kotoryj projavljaetsja s techeniem vremeni, i prevrashhajushhij spektr v jenergeticheskuju sistemu koordinat. Pri pomoshhi razlichnyh metodov i s osobym uporom na proby s maloj aktivnost'ju issledovalis' jeffekty ''neozhidannogo fotopika'', komponenta nulevoj intensivnosti i perekryvajushhihsja pikov na kachestvo razreshenija. Issledovany naibolee shiroko rasprostranennye matematicheskie metody razlozhenija sostavnyh gamma-spektro v na sostavnye chasti. Bol'shaja chast' jetih metodov vedet k opredeleniju koncentracij razlichnyh gamma-izluchatelej pri pomoshhi odnogo iz sledujushhih sposobov: 1 . Posledovatel'noe iskljuchenie radioizotopov s fotopikami naibol'shih jenergij, dlja chego chistyj individual'nyj spektr vychitaetsja iz sostavnogo spektra vplot' do ego polnogo razreshenija. 2. Razreshenie pika bez otdelenija produktov delenija. 3. Sostavlenie rjada odnovremennyh linejnyh uravnenij, chislo kotoryh ravno chislu vhodjashhih v smes' radioizotopov, i razreshenie jetih uravnenij. 4. Opredelenie neizvestnyh koncentracij po metodu prostyh ili vzveshennyh naimen'shih kvadratov. 5. Sovmeshhenie statisticheskogo metoda s metodom naimen'shih kvadratov putem ispol'zovanija stupenchatoj mnogokratnoj linejnoj regressii, chto javljaetsja popytkoj vkljuchit' v analiz processy rassuzhdenij. Dlja kazhdogo analiticheskogo metoda, v sluchae primenenija ego k mnogosostavnym smesjam radioizotopov, dajutsja statisticheskie ocenki velichiny pogreshnosti, s kotoroj mozhet byt' opredelena ih koncentracija. (author)

  17. A natural and readily available crowding agent: NMR studies of proteins in hen egg white.

    Science.gov (United States)

    Martorell, Gabriel; Adrover, Miquel; Kelly, Geoff; Temussi, Piero Andrea; Pastore, Annalisa

    2011-05-01

    In vitro studies of biological macromolecules are usually performed in dilute, buffered solutions containing one or just a few different biological macromolecules. Under these conditions, the interactions among molecules are diffusion limited. On the contrary, in living systems, macromolecules of a given type are surrounded by many others, at very high total concentrations. In the last few years, there has been an increasing effort to study biological macromolecules directly in natural crowded environments, as in intact bacterial cells or by mimicking natural crowding by adding proteins, polysaccharides, or even synthetic polymers. Here, we propose the use of hen egg white (HEW) as a simple natural medium, with all features of the media of crowded cells, that could be used by any researcher without difficulty and inexpensively. We present a study of the stability and dynamics behavior of model proteins in HEW, chosen as a prototypical, readily accessible natural medium that can mimic cytosol. We show that two typical globular proteins, dissolved in HEW, give NMR spectra very similar to those obtained in dilute buffers, although dynamic parameters are clearly affected by the crowded medium. The thermal stability of one of these proteins, measured in a range comprising both heat and cold denaturation, is also similar to that in buffer. Our data open new possibilities to the study of proteins in natural crowded media. Copyright © 2010 Wiley-Liss, Inc.

  18. NMR studies on the structure and dynamics of lac operator DNA

    International Nuclear Information System (INIS)

    Lee, S.C.

    1985-01-01

    Nuclear Magnetic Resonance spectroscopy was used to elucidate the relationships between structure, dynamics and function of the gene regulatory sequence corresponding to the lactose operon operator of Escherichia coli. The length of the DNA fragments examined varied from 13 to 36 base pair, containing all or part of the operator sequence. These DNA fragments are either derived genetically or synthesized chemically. Resonances of the imino protons were assigned by one dimensional inter-base pair nuclear Overhauser enhancement (NOE) measurements. Imino proton exchange rates were measured by saturation recovery methods. Results from the kinetic measurements show an interesting dynamic heterogeneity with a maximum opening rate centered about a GTG/CAC sequence which correlates with the biological function of the operator DNA. This particular three base pair sequence occurs frequently and often symmetrically in prokaryotic nd eukaryotic DNA sites where one anticipates specific protein interaction for gene regulation. The observed sequence dependent imino proton exchange rate may be a reflection of variation of the local structure of regulatory DNA. The results also indicate that the observed imino proton exchange rates are length dependent

  19. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    Science.gov (United States)

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. U. Blossing, G. Imsen & L. Moos (eds., The Nordic Education Model: ´A School for All´ Encounters Noe-Liberal Policy (Dordrecht: Springer, 2014

    Directory of Open Access Journals (Sweden)

    Þorlákur Axel Jónsson

    2016-03-01

    Full Text Available Book review of: Blossing, G. Imsen & L. Moos (eds, The Nordic Education Model: ´A School for All´ Encounters Noe-Liberal Policy (Dordrecht: Springer, Policy Implications of Research in Education 1, 2014

  1. Prostate Cancer Diagnosis: experimental and Clinical Studies With HRMAS NMR Spectroscopy

    International Nuclear Information System (INIS)

    Stenman, Katarina

    2011-01-01

    and 2D high-resolution magic angle spinning (HRMAS) NMR spectroscopy combined with histopathology on intact prostatectomy specimens was evaluated in this research project. The non-destructive nature of HRMAS NMR enables spectroscopic analysis of intact tissue samples with consecutive histological examinations under light microscope. Metabolomics aids in the unraveling and the discovery of organ-specific endogenous metabolites that have the potential to be reliable indicators of organ function and viability, extrinsic and intrinsic perturbations, as well as valuable markers for treatment response. The results may, therefore, be applied clinically to characterize an organ by utilizing bio-markers that have the capacity to distinguish between disease and health. The aim was to characterize the human and the rat prostate in terms of its intermediary metabolism, which is shown here to differ between species and anatomical regions. Furthermore, the aim is to seek the verification of HRMAS NMR derived metabolites which are known to be a part of the prostate metabolome such as, citrate, choline, and the polyamines which were performed, but also the identification of metabolites not previously identified as part of the local prostate metabolism, such as Omega-6, which was detected in tumors. The extended aim was to elucidate novel bio-markers with clinical potential. In this study, the common phyto-nutrient, inositol, which appears to possess protective properties, was identified as being a potentially important PCa bio-marker for the distinction between the more indolent Gleason score 6 and the more aggressive Gleason score 7 in non-malignant prostate tissues with tumors elsewhere in the organ. Further studies in this area of PCa research are therefore warranted

  2. Prostate Cancer Diagnosis: experimental and Clinical Studies With HRMAS NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stenman, Katarina

    2011-07-01

    approach using 1D and 2D high-resolution magic angle spinning (HRMAS) NMR spectroscopy combined with histopathology on intact prostatectomy specimens was evaluated in this research project. The non-destructive nature of HRMAS NMR enables spectroscopic analysis of intact tissue samples with consecutive histological examinations under light microscope. Metabolomics aids in the unraveling and the discovery of organ-specific endogenous metabolites that have the potential to be reliable indicators of organ function and viability, extrinsic and intrinsic perturbations, as well as valuable markers for treatment response. The results may, therefore, be applied clinically to characterize an organ by utilizing bio-markers that have the capacity to distinguish between disease and health. The aim was to characterize the human and the rat prostate in terms of its intermediary metabolism, which is shown here to differ between species and anatomical regions. Furthermore, the aim is to seek the verification of HRMAS NMR derived metabolites which are known to be a part of the prostate metabolome such as, citrate, choline, and the polyamines which were performed, but also the identification of metabolites not previously identified as part of the local prostate metabolism, such as Omega-6, which was detected in tumors. The extended aim was to elucidate novel bio-markers with clinical potential. In this study, the common phyto-nutrient, inositol, which appears to possess protective properties, was identified as being a potentially important PCa bio-marker for the distinction between the more indolent Gleason score 6 and the more aggressive Gleason score 7 in non-malignant prostate tissues with tumors elsewhere in the organ. Further studies in this area of PCa research are therefore warranted

  3. Plasma and Serum Metabolite Association Networks: Comparability within and between Studies Using NMR and MS Profiling.

    Science.gov (United States)

    Suarez-Diez, Maria; Adam, Jonathan; Adamski, Jerzy; Chasapi, Styliani A; Luchinat, Claudio; Peters, Annette; Prehn, Cornelia; Santucci, Claudio; Spyridonidis, Alexandros; Spyroulias, Georgios A; Tenori, Leonardo; Wang-Sattler, Rui; Saccenti, Edoardo

    2017-07-07

    Blood is one of the most used biofluids in metabolomics studies, and the serum and plasma fractions are routinely used as a proxy for blood itself. Here we investigated the association networks of an array of 29 metabolites identified and quantified via NMR in the plasma and serum samples of two cohorts of ∼1000 healthy blood donors each. A second study of 377 individuals was used to extract plasma and serum samples from the same individual on which a set of 122 metabolites were detected and quantified using FIA-MS/MS. Four different inference algorithms (ARANCE, CLR, CORR, and PCLRC) were used to obtain consensus networks. The plasma and serum networks obtained from different studies showed different topological properties with the serum network being more connected than the plasma network. On a global level, metabolite association networks from plasma and serum fractions obtained from the same blood sample of healthy people show similar topologies, and at a local level, some differences arise like in the case of amino acids.

  4. A Study of Spectral Integration and Normalization in NMR-based Metabonomic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Lowry, David F.; Jarman, Kristin H.; Harbo, Sam J.; Meng, Quanxin; Fuciarelli, Alfred F.; Pounds, Joel G.; Lee, Monica T.

    2005-09-15

    Metabonomics involves the quantitation of the dynamic multivariate metabolic response of an organism to a pathological event or genetic modification (Nicholson, Lindon and Holmes, 1999). The analysis of these data involves the use of appropriate multivariate statistical methods. Exploratory Data Analysis (EDA) linear projection methods, primarily Principal Component Analysis (PCA), have been documented as a valuable pattern recognition technique for 1H NMR spectral data (Brindle et al., 2002, Potts et al., 2001, Robertson et al., 2000, Robosky et al., 2002). Prior to PCA the raw data is typically processed through four steps; (1) baseline correction, (2) endogenous peak removal, (3) integration over spectral regions to reduce the number of variables, and (4) normalization. The effect of the size of spectral integration regions and normalization has not been well studied. We assess the variability structure and classification accuracy on two distinctly different datasets via PCA and a leave-one-out cross-validation approach under two normalization approaches and an array of spectral integration regions. This study indicates that independent of the normalization method the classification accuracy achieved from metabonomic studies is not highly sensitive to the size of the spectral integration region. Additionally, both datasets scaled to mean zero and unity variance (auto-scaled) has higher variability within classification accuracy over spectral integration window widths than data scaled to the total intensity of the spectrum.

  5. Iminium ion chemistry of mitosene DNA alkylating agents. Enriched 13C NMR and isolation studies.

    Science.gov (United States)

    Ouyang, A; Skibo, E B

    2000-05-16

    Described herein is a study of the reductive alkylation chemistry of mitosene antitumor agents. We employed a 13C-enriched electrophilic center to probe the fate of the iminium ion resulting from reductive activation. The 13C-labeled center permitted the identification of complex products resulting from alkylation reactions. In the case of DNA reductive alkylation, the type and number of alkylation sites were readily assessed by 13C NMR. Although there has been much excellent work done in the area of mitosene chemistry and biochemistry, the present study provides a number of new findings: (1) The major fate of the iminium ion is head-to-tail polymerization, even in dilute solutions. (2) Dithionite reductive activation results in the formation of mitosene sulfite esters as well as the previously observed sulfonate adducts. (3) The mitosene iminium ion alkylates the adenosine 6-amino group as well as the guanosine 2-amino group. The identification of the latter adduct was greatly facilitated by the 13C-label at the electrophilic center. (4) The mitosene iminium ion alkylates DNA at both nitrogen and oxygen centers without any apparent base selectivity. The complexity of mitosene reductive alkylation of DNA will require continued adduct isolation studies.

  6. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  7. Synthesis and proton-NMR studies of oligonucleotides containing an apurinic (AP) site

    International Nuclear Information System (INIS)

    Raap, J.; Dreef, C.E.; van der Marel, G.A.; van Boom, J.H.; Hilbers, C.W.

    1987-01-01

    In order to elucidate the conformational properties of base-deleted oligodeoxyribonucleotides, the molecules d-CpS(pCpG)n (n = 1,2; S = sugar) were synthesized by the phosphotriester method and characterized by 1H-NMR spectroscopy. Complete assignment of all non-exchangeable proton resonances of both compounds was obtained by 1D- and 2D-NMR techniques. In combination with computer simulation, these spectra yielded proton-proton and proton-phosphorus coupling constants of high accuracy. These data provide valuable information about the sugar and the backbone conformation. It appears that d-Cp1Sp2Cp3G4 does not form a duplex under any of the conditions studied. On the contrary, the base-deleted hexamer d-Cp1Sp2Cp3Gp4Cp5G6 occurs as a right-handed' staggered' DNA duplex at 280 K: the core of this duplex is formed by the residues C(3)-G(6); two 'dangling' residues C(1) and S(2) are located at the two 5'-ends of the duplex. The assignment of the corresponding imino proton resonances for [d-CpS(pCpG)2]2 was based on their thermal behavior: the line broadening of these resonances was studied as a function of temperature. The chemical shift and the number of imino proton resonances accord well with the number and type of Watson-Crick base pairs which can be formed in the staggered duplex described above. Thermodynamic parameters of duplex formation were obtained from an analysis of the chemical shift versus temperature profiles of aromatic base and H-1' protons. It is suggested that the cytosine ring of C(1) stacks, at least part of the time, with the guanine ring on the nucleotide residue, G(6), situated in the complementary strand. The binding of Lys-Trp-Lys to [d-CpS(pCpG)2]2 as well as to [d-CpGpCpG]1 was investigated

  8. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, Patricia A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  9. Liquid-Liquid Phase Separation in Model Nuclear Waste Glasses: A Solid-State Double-Resonance NMR Study

    Energy Technology Data Exchange (ETDEWEB)

    Martineau, Ch.; Michaelis, V.K.; Kroeker, S. [Univ Manitoba, Dept Chem, Winnipeg, MB R3T 2N2 (Canada); Schuller, S. [CEA Valrho Marcoule, LDMC, SECM, DTCD, DEN, F-30207 Bagnols Sur Ceze (France)

    2010-07-01

    Double-resonance nuclear magnetic resonance (NMR) techniques are used in addition to single-resonance NMR experiments to probe the degree of mixing between network-forming cations Si and B, along with the modifier cations Cs{sup +} and Na{sup +} in two molybdenum-bearing model nuclear waste glasses. The double-resonance experiments involving {sup 29}Si in natural abundance are made possible by the implementation of a CPMG pulse-train during the acquisition period of the usual REDOR experiments. For the glass with lower Mo content, the NMR results show a high degree of Si-B mixing, as well as an homogeneous distribution of the cations within the borosilicate network, characteristic of a non-phase-separated glass. For the higher-Mo glass, a decrease of B-Si(Q{sup 4}) mixing is observed, indicating phase separation. {sup 23}Na and {sup 133}Cs NMR results show that although the Cs{sup +} cations, which do not seem to be influenced by the molybdenum content, are spread within the borate network, there is a clustering of the Na{sup +} cations, very likely around the molybdate units. The segregation of a Mo-rich region with Na{sup +} cations appears to shift the bulk borosilicate glass composition toward the metastable liquid liquid immiscibility region and induce additional phase separation. Although no crystallization is observed in the present case, this liquid liquid phase separation is likely to be the first stage of crystallization that can occur at higher Mo loadings or be driven by heat treatment. From this study emerges a consistent picture of the nature and extent of such phase separation phenomena in Mo-bearing glasses, and demonstrates the potential of double-resonance NMR methods for the investigation of phase separation in amorphous materials. (authors)

  10. NMR studies of chemical structural variation of insoluble organic matter from different carbonaceous chondrite groups

    Science.gov (United States)

    Cody, George D.; Alexander, Conel M. O.'D.

    2005-02-01

    Solid-state 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopic experiments have been performed on isolated meteoritic Insoluble Organic Matter (IOM) spanning four different carbonaceous chondrite meteorite groups; a CR2 (EET92042), a CI1 (Orgueil), a CM2 (Murchison), and the unique C2 meteorite, Tagish Lake. These solid state NMR experiments reveal considerable variation in bulk organic composition across the different meteorite group's IOM. The fraction of aromatic carbon increases as CR2 meteorite groups. Single pulse (SP) 13C magic angle spinning (MAS) NMR experiments reveal the presence of nanodiamonds with an apparent concentration ranking in the IOM of CR2 IOM of all four meteoritic IOM fractions are highly substituted. Fast spinning SP 1H MAS NMR spectral data combined with other NMR experimental data reveal that the average hydrogen content of sp 3 bonded carbon functional groups is low, requiring a high degree of aliphatic chain branching in each IOM fraction. The variation in chemistry across the meteorite groups is consistent with alteration by low temperature chemical oxidation. It is concluded that such chemistry principally affected the aliphatic moieties whereas the aromatic moieties and nanodiamonds may have been largely unaffected.

  11. NMR and computational study of Ba8CuxGe46-x clathrate semiconductors

    International Nuclear Information System (INIS)

    Chen, Jing-Han; Sirusi Arvij, Ali; Zheng, Xiang; Rodriguez, Sergio Y.; Ross, Joseph H.

    2014-01-01

    Highlights: • Quadrupole NMR with first-principles calculations probes local site preferences. • Cu/Ge ratio is clarified vs. the ideal Zintl composition. • Modified Becke–Johnson exchange potential agrees well with NMR Knight shifts. - Abstract: Ba 8 Cu x Ge 46-x is a type-I clathrate material that forms as a semiconductor in a narrow composition range corresponding to the electron-balanced Zintl composition, with x = 5.3. We use NMR spectroscopy combined with ab initio electronic structure calculations to probe the electronic and structural behavior of these materials. Computational results based on a superstructure model for the atomic configuration of the alloy provide good agreement with the electric quadrupole-broadened NMR lineshapes. Modeling using the modified Becke–Johnson (TB-mBJ) exchange potential is also shown to agree well with experimental NMR Knight shifts. The results indicate that the Cu–Ge balance is the main factor determining the carrier density, within a narrow stability range near the ideal Zintl composition

  12. Contrast-enhanced NMR imaging: animal studies using gadolinium-DTPA complex

    International Nuclear Information System (INIS)

    Brasch, R.C.; Weinmann, H.J.; Wesbey, G.E.

    1984-01-01

    Gadolinium (Gd)-DTPA complex was assessed as a nuclear magnetic resonance (NMR) contrast-enhancing agent by experimentally imaging normal and diseased animals. After intravenous injection, Gd-DTPA, a strongly paramagnetic complex by virtue of unpaired electrons, was rapidly excreted into the urine of rats, producing an easily observable contrast enhancement on NMR images in kidney parenchyma and urine. Sterile soft-tissue abscesses demonstrated an obvious rim pattern of enhancement. A focus of radiation-induced brain damage in a canine model was only faintly detectable on spin-echo NMR images before contrast administration; after 0.5 mmol/kg Gd-DTPA administration, the lesion intensity increased from 3867 to 5590. In comparison, the normal brain with an intact blood-brain barrier remained unchanged in NMR characterization. Gd-DTPA is a promising new NMR contrast enhancer for the clinical assessment of renal function, of inflammatory lesions, and of focal disruption of the blood-brain barrier

  13. μSR and NMR study of the superconducting Heusler compound YPd2Sn

    Science.gov (United States)

    Saadaoui, H.; Shiroka, T.; Amato, A.; Baines, C.; Luetkens, H.; Pomjakushina, E.; Pomjakushin, V.; Mesot, J.; Pikulski, M.; Morenzoni, E.

    2013-09-01

    We report on muon-spin rotation and relaxation (μSR) and 119Sn nuclear magnetic resonance (NMR) measurements to study the microscopic superconducting and magnetic properties of the Heusler compound with the highest superconducting transition temperature, YPd2Sn (Tc=5.4 K). Measurements in the vortex state provide the temperature dependence of the effective magnetic penetration depth λ(T) and the field dependence of the superconducting gap Δ(0). The results are consistent with a very dirty s-wave BCS superconductor with a gap Δ(0)=0.85(3) meV, λ(0)=212(1) nm, and a Ginzburg-Landau coherence length ξGL(0)≅23 nm. In spite of its very dirty character, the effective density of condensed charge carriers is high compared to that in the normal state. The μSR data in a broad range of applied fields are well reproduced by taking into account a field-related reduction of the effective superconducting gap. Zero-field μSR measurements, sensitive to the possible presence of very small magnetic moments, do not show any indications of magnetism in this compound.

  14. Metabolomics study of Saw palmetto extracts based on 1H NMR spectroscopy.

    Science.gov (United States)

    de Combarieu, Eric; Martinelli, Ernesto Marco; Pace, Roberto; Sardone, Nicola

    2015-04-01

    Preparations containing Saw palmetto extracts are used in traditional medicine to treat benign prostatic hyperplasia. According to the European and the American Pharmacopoeias, the extract is obtained from comminuted Saw palmetto berries by a suitable extracting procedure using ethanol or supercritical carbon dioxide or a mixture of n-hexane and methylpentanes. In the present study an approach to metabolomics profiling using nuclear magnetic resonance (NMR) has been used as a finger-printing tool to assess the overall composition of the extracts. The phytochemical analysis coupled with principal component analysis (PCA) showed the same composition of the Saw palmetto extracts obtained with carbon dioxide and hexane with minor not significant differences for extracts obtained with ethanol. In fact these differences are anyhow lower than the batch-to-batch variability ascribable to the natural-occurring variability in the Saw palmetto fruits' phytochemical composition. The fingerprinting analysis combined with chemometric method, is a technique, which would provide a tool to comprehensively assess the quality control of Saw palmetto extracts. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Relation of cardiac energy metabolism to workload studied with 31P NMR

    International Nuclear Information System (INIS)

    Ligeti, L.; Osbakken, M.; Clark, B.J.; Schnall, M.; Bolinger, L.; Subramanian, H.; Leigh, J.S.; Chance, B.

    1986-01-01

    The relationship between myocardial work and concentration of mediators of oxidative phosphorylation (ATP, PCr, Pi) was studied in vivo in 6 dogs and 4 cats with 31 P NMR. The heart was exposed via thoracotomy for placement of surface coils and pacing electrodes. Work (defined as heart rate X blood pressure product) was increased by pacing the heart from 2Hz (rest) to 5Hz. In cats, an increase in work from 1.9 x 10 4 +/- .32 to 2.4 x 10 4 +/- .08 was associated with an increase in Pi/PCr ratio from .29 +/- .08 to .68 +/- .33; in dogs, work increase from 1.74 x 10 4 .82 to 3.4 x 10 4 +/- .84 did not cause significant change in Pi/PCr (.29 +/- .15 to .30 +/- .17). If these data are analyzed via the Michaelis-Menten algorithm, the cat heart can be considered to be set closer to V/sub max/ and the dog heart set closer to V/sub o/ (i.e. having a larger metabolic reserve). The difference between the 2 species could be due to microvascular and/or metabolic control mechanisms. Delineation of the different metabolic responses to work in these animal models may be helpful in understanding the physiological basis of heart disease

  16. Plastering mortar with antibacterial and antifungal properties studied by 1H NMR relaxometry

    Science.gov (United States)

    Jumate, E.; Aciu, C.; Manea, D. L.; Moldovan, D.; Chelcea, R.; Fechete, R.

    2017-12-01

    The Plastering mortars, with good antibacterial (in particular Escherichia coli, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa) and antifungal (Aspergillus niger and Penicillium chrysogenum) properties, were studied by 1D NMR relaxometry and internal humidity measurements. Three recipes based on plastering mortar with variable content (0, 5 and 10 %) of Ag/ZnO nanopowders and with adequate physical characteristics regarding the mechanical strengths (CS IV), good adhesion to the substrate and low water absorption by capillarity (W2) were considered. The distributions of transverse relaxation times T2 were measured at 2 h after preparation (for mortar pasta) and then for the same samples at 2, 7, and 28 days during the hydration of mineralogical components. The T2 distributions are characterized by four components associated with hydration water and water in three types of pores of different dimension. The dimension of pores formed during hydration process are strongly dependent on the Ag/ZnO nanopowders content but finally at 28 days the pores distributions, as resulted from the T2 distributions, looks similar. Finally, the transverse relaxation ratio was linearly correlated to the compressive strength and the hydration behaviour during 132 days measured with a dedicated humidity sensor embedded inside sampled was discussed.

  17. Respiratory control in the glucose perfused heart. A /sup 31/P NMR and NADH fluorescence study

    Energy Technology Data Exchange (ETDEWEB)

    Katz, L A; Koretsky, A P; Balaban, R S

    1987-09-14

    The phosphate metabolites, adenosine diphosphate (ADP), inorganic phosphate (P/sub i/), and adenosine triphosphate (ATP), are potentially important regulators of mitochondrial respiration in vivo. However, previous studies on the heart in vivo and in vitro have not consistently demonstrated an appropriate correlation between the concentration of these phosphate metabolites and moderate changes in work and respiration. Recently, mitochondrial NAD(P)H levels have been proposed as a potential regulator of cardiac respiration during alterations in work output. In order to understand better the mechanism of respiratory control under these conditions, we investigated the relationship between the phosphate metabolites, the NAD(P)H levels, and oxygen consumption (Q/sub O(sub 2)/) in the isovolumic perfused rat heart during alterations in work output with pacing. ATP, creatine phosphate (CrP), P/sub i/ and intracellular pH were measured using /sup 31/P NMR. Mitochondrial NAD(P)H levels were monitored using spectrofluorometric techniques. 33 refs.; 3 figs.; 2 tabs.

  18. Potentiometric and NMR complexation studies of phenylboronic acid PBA and its aminophosphonate analog with selected catecholamines

    Science.gov (United States)

    Ptak, Tomasz; Młynarz, Piotr; Dobosz, Agnieszka; Rydzewska, Agata; Prokopowicz, Monika

    2013-05-01

    Boronic acids are a class of intensively explored compounds, which according to their specific properties have been intensively explored in last decades. Among them phenylboronic acids and their derivatives are most frequently examined as receptors for diverse carbohydrates. In turn, there is a large gap in basic research concerning complexation of catecholamines by these compounds. Therefore, we decided to undertake studies on interaction of chosen catecholamines, namely: noradrenaline (norephinephrine), dopamine, L-DOPA, DOPA-P (phosphonic analog of L-DOPA) and catechol, with simple phenyl boronic acid PBA by means of potentiometry and NMR spectroscopy. For comparison, the binding properties of recently synthesized phenylboronic receptor 1 bearing aminophosphonate function in meta-position were investigated and showed promising ability to bind catecholamines. The protonation and stability constants of PBA and receptor 1 complexes were examined by potentiometry. The obtained results demonstrated that PBA binds the catecholamines with the following affinity order: noradrenaline ⩾ dopamine ≈ L-DOPA > catechol > DOPA-P, while its modified analog 1 reveals slightly different preferences: dopamine > noradrenaline > catechol > L-DOPA > DOPA-P.

  19. NMR study of the synthesis of Di 2-ethylhexylphosphoric acid with P4O10

    International Nuclear Information System (INIS)

    Elias, A.; Azouz, A.; Rodehueser, L.

    1991-12-01

    Various aspects of Di 2-ethylhexylphosphoric acid (DEHPA) synthesis were investigated using 1 H, 13 C and 31 P NMR techniques. The first step of the present work consists of the identification and the determination of DEHPA, its derivatives and other intermediates in the reaction mixture without previous separation or purification. The second step is devoted to the study of the effects of the main factors, i.e. the reaction temperature, ROH/P 2 O 5 mole ratio, the reaction time and the presence of some additives upon the reaction. The spectra and the distribution of the reaction products were also discussed. As an important conclusion which can be withdrawn from the present investigations one can suggest that the -26 ppm triplet is due to the presence of triphosphorus compounds. Such compounds should result from the direct interaction between 2-ethylhexanol and the polymeric phosphorus anhydride during the first 40 minutes after the beginning of the reaction. Pyrophosphates i.e. diphosphorus intermediates and the monoester which exhibit a relatively higher stability were also yielded

  20. NMR and luminescence spectroscopy study of formation of mixed β-diketonate europium complexes

    International Nuclear Information System (INIS)

    Kavun, V.Ya.; Kalinovskaya, I.V.; Karasev, V.E.; Chernyshov, B.N.; Steblevskaya, N.I.

    1987-01-01

    Methods of NMR ('H, 19 F) and luminescent spectroscopy were applied to study ligand substitution in Eu(β-dik) 3 phen-CDCl 3 -(β-dik)' systems, where β-dik-acetylacetone (AA) and hexafluoroacetyl-acetone (HFAA), phen-1.10-phenathroline at different mole ratio (m) of competing ligands (m=AA/HFAA). Formation of mixed Eu(AA) 2 (HFAA)phen and Eu(AA)(HFAA) 2 phen complexes is proved; calculation of the stark structure of 5 D 0 - 7 F j (j=0,1,2) transitions in low-temperature luminescence spectra is conducted for these complexes. It is stated that at minimum HFAA concentration in the solution the latter replaces AA from europium coordination sphere. It is shown that depending on the value in substitution of acidoligands proceeds successfully by the equations Eu(AA) 3 phen+(NHFAA) n → Eu(AA) 3-n → (HFAA) n phen+(NAA) n ; (n=1,2,3)

  1. Theoretical and NMR conformational studies of β-proline oligopeptides with alternating chirality of pyrrolidine units

    Science.gov (United States)

    Mantsyzov, Alexey B.; Savelyev, Oleg Y.; Ivantcova, Polina M.; Bräse, Stefan; Kudryavtsev, Konstantin V.; Polshakov, Vladimir I.

    2018-03-01

    Synthetic β-peptides are potential functional mimetics of native α-proteins. A recently developed, novel, synthetic approach provides an effective route to the broad group of β-proline oligomers with alternating patterns of stereogenic centers. Conformation of the pyrrolidine ring, Z/E isomerism of β-peptide bonds, and hindered rotation of the neighboring monomers determine the spatial structure of this group of β-proline oligopeptides. Preferences in structural organization and corresponding thermodynamic properties are determined by NMR spectroscopy, restrained molecular dynamics and quantum mechanics. The studied β-proline oligopeptides exist in dimethyl sulfoxide solution in a limited number of conformers, with compatible energy of formation and different spatial organization. In the β-proline tetrapeptide with alternating chirality of composing pyrrolidine units, one of three peptide bonds may exist in an E configuration. For the alternating β-proline pentapeptide, the presence of an E configuration for at least of one β-peptide bond is mandatory. In this case, three peptide bonds synchronously change their configurations. Larger polypeptides may only exist in the presence of several E configurations of β-peptide bonds forming a wave-like extended structure.

  2. Hairpin and duplex formation in DNA fragments CCAATTTTGG, CCAATTTTTTGG, and CCATTTTTGG: a proton NMR study

    International Nuclear Information System (INIS)

    Pramanik, P.; Kanhouwa, N.; Kan, L.

    1988-01-01

    Three DNA fragments, CCAATTTTGG (1), CCAATTTTTTGG (2), AND CCATTTTTGG (3), were studied by proton NMR spectroscopy in aqueous solution. All these oligodeoxyribonucleotides contain common sequences at the 5' and 3' ends (5'-CCA and TGG-3'). 2 as well as 3 forms only hairpin structures with four unpaired thymidylyl units, four and three base pair stems, respectively, in neutral solution under low and high NaCl concentrations. At high salt concentration the oligomer 1 forms a duplex structure with -TT- internal loop. On the other hand, the same oligomer forms a stable hairpin structure at low salt and low strand concentrations at pH 7. The hairpin structure of 1 has a stem containing only three base pairs (CCA x TGG) and a loop containing four nucleotides (-ATTT-) that includes a dissociated A x T base pair. The two secondary structures of 1 coexist in an aqueous solution containing 0.1 M NaCl, at pH 7. The equilibrium shifts to the hairpin side when the temperature is raised. The stabilities and base-stacking modes of all three oligonucleotides in tow different structures are reported

  3. NMR studies of renal phosphate metabolites in vivo: Effects of hydration and dehydration

    International Nuclear Information System (INIS)

    Wolff, S.D.; Eng, C.; Balaban, R.S.

    1988-01-01

    The present study characterizes the 31 P-nuclear magnetic resonance (NMR) spectrum of rabbit kidneys in vivo and evaluates the effect of hydration on phosphorous metabolites including the organic solute glycerophosphorylcholine (GPC). Cortical phosphorylethanolamine is the predominant component of the phosphomonoester region of the 31 P spectrum. The contribution of blood to the spectrum is mainly from 2,3 diphosphoglycerate, which comprises ∼30% of the inorganic phosphate region. Acute infusion of 0.9% saline decreases the sodium content of the inner medulla by >50% in 15 min as shown by 23 Na imaging. Despite this medullary Na dilution, no change in renal GPC content was observed for >1 h even with the addition of furosemide or furosemide and antidiuretic hormone. However, 20 h of chronic dehydration with 0.45% saline did result in a 30% decrease in renal GPC content when compared with dehydrated animals. These findings are consistent with GPC not playing a role in the short-term regulation of the medullary intracellular milieu in response to acute reductions in medullary Na content

  4. Theoretical and NMR Conformational Studies of β-Proline Oligopeptides With Alternating Chirality of Pyrrolidine Units

    Directory of Open Access Journals (Sweden)

    Alexey B. Mantsyzov

    2018-03-01

    Full Text Available Synthetic β-peptides are potential functional mimetics of native α-proteins. A recently developed, novel, synthetic approach provides an effective route to the broad group of β-proline oligomers with alternating patterns of stereogenic centers. Conformation of the pyrrolidine ring, Z/E isomerism of β-peptide bonds, and hindered rotation of the neighboring monomers determine the spatial structure of this group of β-proline oligopeptides. Preferences in their structural organization and corresponding thermodynamic properties are determined by NMR spectroscopy, restrained molecular dynamics and quantum mechanics. The studied β-proline oligopeptides exist in dimethyl sulfoxide solution in a limited number of conformers, with compatible energy of formation and different spatial organization. In the β-proline tetrapeptide with alternating chirality of composing pyrrolidine units, one of three peptide bonds may exist in an E configuration. For the alternating β-proline pentapeptide, the presence of an E configuration for at least of one β-peptide bond is mandatory. In this case, three peptide bonds synchronously change their configurations. Larger polypeptides may only exist in the presence of several E configurations of β-peptide bonds forming a wave-like extended structure.

  5. Study on 1H-NMR fingerprinting of Rhodiolae Crenulatae Radix et Rhizoma.

    Science.gov (United States)

    Wen, Shi-yuan; Zhou, Jiang-tao; Chen, Yan-yan; Ding, Li-qin; Jiang, Miao-miao

    2015-07-01

    Nuclear magnetic resonance (1H-NMR) fingerprint of Rhodiola rosea medicinal materials was established, and used to distinguish the quality of raw materials from different sources. Pulse sequence for water peak inhibition was employed to acquire 1H-NMR spectra with the temperature at 298 K and spectrometer frequency of 400.13 MHz. Through subsection integral method, the obtained NMR data was subjected to similarity analysis and principal component analysis (PCA). 10 batches raw materials of Rhodiola rosea from different origins were successfully distinguished by PCA. The statistical results indicated that rhodiola glucoside, butyl alcohol, maleic acid and alanine were the main differential ingredients. This method provides an auxiliary method of Chinese quality approach to evaluate the quality of Rhodiola crenulata without using natural reference substances.

  6. Proton NMR study of α-MnH 0.06

    Science.gov (United States)

    Soloninin, A. V.; Skripov, A. V.; Buzlukov, A. L.; Antonov, V. E.; Antonova, T. E.

    2004-07-01

    Proton nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation rates for the solid solution α-MnH 0.06 have been measured over the temperature range 11-297 K and the resonance frequency range 20-90 MHz. A considerable shift and broadening of the proton NMR line and a sharp peak of the spin-lattice relaxation rate are observed near 130 K. These effects are attributed to the onset of antiferromagnetic ordering below the Néel temperature TN≈130 K. The proton NMR line does not disappear in the antiferromagnetic phase; this suggests a small magnitude of the local magnetic fields at H-sites in α-MnH 0.06. The spin-lattice relaxation rate in the paramagnetic phase is dominated by the effects of spin fluctuations.

  7. sup 1 sup 1 B nutation NMR study of powdered borosilicates

    CERN Document Server

    Woo, A J; Han, D Y

    1998-01-01

    In this work, we applied the 1D sup 1 sup 1 B nutation NMR method for the analysis of the local structural environments in powdered borosilicates (SiO sub 2 -B sub 2 O sub 3). Spin dynamics during a rf irradiation for spin I=3/2 was analytically calculated with a density matrix formalism. Spectral simulation programs were written in MATLAB on a PC. Two borosilicates prepared by the sol-gel process at different stabilization temperature were used for the 1D sup 1 sup 1 B nutation NMR experiment. The sup 1 sup 1 B NMR parameters, quadrupole coupling constants (e sup 2 qQ/h) and asymmetry parameters (eta), for each borosilicate were extracted from the nonlinear least-squares fitting. The effects of heat treatments on the local structures of boron sites in borosilicates were discussed.

  8. Solid-phase extraction NMR studies of chromatographic fractions of saponins from Quillaja saponaria.

    Science.gov (United States)

    Nyberg, Nils T; Baumann, Herbert; Kenne, Lennart

    2003-01-15

    The saponin mixture QH-B from the tree Quillaja saponaria var. Molina was fractionated by RP-HPLC in several steps. The fractions were analyzed by solid-phase extraction NMR (SPE-NMR), a technique combining the workup by solid-phase extraction with on-line coupling to an NMR flow probe. Together with MALDI-TOF mass spectrometry and comparison with chemical shifts of similar saponins, the structures of both major and minor components in QH-B could be obtained. The procedure described is a simple method to determine the structure of components in a complex mixture. The two major fractions of the mixture were found to contain at least 28 saponins, differing in the carbohydrate substructures. Eight of these have not previously been determined. The 28 saponins formed 14 equilibrium pairs by the migration of an O-acyl group between two adjacent positions on a fucosyl residue.

  9. Positional enrichment by proton analysis (PEPA). A one-dimensional "1H-NMR approach for "1"3C stable isotope tracer studies in metabolomics

    International Nuclear Information System (INIS)

    Vinaixa, Maria; Yanes, Oscar; Rodriguez, Miguel A.; Capellades, Jordi; Aivio, Suvi; Stracker, Travis H.; Gomez, Josep; Canyellas, Nicolau

    2017-01-01

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of "1"3C-satellite peaks using 1D-"1H-NMR spectra. In comparison with "1"3C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of "1"3C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of "1H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  10. Positional enrichment by proton analysis (PEPA). A one-dimensional {sup 1}H-NMR approach for {sup 13}C stable isotope tracer studies in metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Vinaixa, Maria; Yanes, Oscar [Department of Electronic Engineering-Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Rodriguez, Miguel A.; Capellades, Jordi [Universitat Rovira i Virgili, Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus (Spain); Aivio, Suvi; Stracker, Travis H. [Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (Spain); Gomez, Josep; Canyellas, Nicolau [Department of Electronic Engineering-, Universitat Rovira i Virgili, Tarragona (Spain)

    2017-03-20

    A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of {sup 13}C-satellite peaks using 1D-{sup 1}H-NMR spectra. In comparison with {sup 13}C-NMR, TOCSY and HSQC, PEPA improves sensitivity, accelerates the elucidation of {sup 13}C positions in labeled metabolites and the quantification of the percentage of stable isotope enrichment. Altogether, PEPA provides a novel framework for extending the high-throughput of {sup 1}H-NMR metabolic profiling to stable isotope tracing in metabolomics, facilitating and complementing the information derived from 2D-NMR experiments and expanding the range of isotopically enriched metabolites detected in cellular extracts. (copyright 2017 The Authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA.)

  11. Conformation of flexibly linked triterpene dimers by using RDC-enhanced NMR spectroscopy

    Science.gov (United States)

    Lakshmi, Jerripothula K.; Pattnaik, Banita; Kavitha, Rachineni; Mallavadhani, Uppuluri V.; Jagadeesh, Bharatam

    2018-06-01

    Dimers of flexibly linked pentacyclic triterpene ursolic acid (UA) and its related frameworks such as asiatic acid (AA) and oleanolic acid (OA) have recently attracted significant attention due to their enhanced anti-cancer and anti-HCV activity compared to their respective monomers. Determination of conformation/inter-monomer orientation of these molecules is very important to understand their structure-activity relationship and to develop new scaffolds, which, however, is difficult through conventional NOE based solution-state NMR spectroscopy, due to lack of long-range NOEs. In the present work, we report a precise determination of conformation of two 1,2,3-triazole-linked triterpene dimer molecules, UA-AA and UA-OA, by employing one-bond Csbnd H residual dipolar couplings (RDCs) as additional long-range orientational restraints, measured in anisotropic PDMS/CDCl3 solvent medium.

  12. NMR study of lignins model-trimers of the type 5-5'/β-0-4'

    International Nuclear Information System (INIS)

    Pilo-Veloso, Dorila; Stefani, Guglielmo M.; Drumond, Mariza Guimaraes; Alves, Vera Lucia

    1997-01-01

    Lignins are very abundant macromolecules in vegetables. In addition to be an important sub product in pulp and paper industry, these compounds are also a source of chemical raw materials. One of the most important methodologies for the chemical structural study of these compounds is solid state nuclear magnetic resonance. This work presents the NMR study of three unedited lignins compounds derived from Eucalyptus grandis

  13. NMR study of heteroligand lanthanide complexes. Structure and stoichiometry of chelates of cerium subgroup with 18-member polyethers

    International Nuclear Information System (INIS)

    Bajbalov, S.P.; Kriger, Yu.G.

    1993-01-01

    Different ligand complexes of lanthanides were studied by the method of 1 H NMR, the results being presented. The literature data on the study of complexes of the class in solution were generalized. Detection of lanthanide-induced splitting of group CH 2 diastereotopic proton signals of macrocyclic polyethers in the complexes is enough to identify kinetically stable complexes, having inclusive type structure. 16 refs., 2 figs., 2 tabs

  14. Protolytic properties of polyamine wasp toxin analogues studied by 13C NMR spectroscopy

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Piazzi, Lorna; Olsen, Christian A

    2006-01-01

    Acid-base properties of the natural polyamine wasp toxin PhTX-433 (1) and seven synthetic analogues [PhTX-343 (2), PhTX-334 (3), PhTX-443 (4), PhTX-434 (5), PhTX-344 (6), PhTX-444 (7), and PhTX-333 (8)], each having four protolytic sites, were characterized by 13C NMR spectroscopy. Nonlinear......, multiparameter, simultaneous fit of all chemical shift data obtained from the NMR titration curves yielded macroscopic pKa values as well as intrinsic chemical shift data of all differently protonated macrospecies. Analyses of the chemical shift data demonstrated strong interactions between all four sites...

  15. {sup 77}Se NMR study of nonmagnetic-magnetic transition in (TMTSF){sub 2}X

    Energy Technology Data Exchange (ETDEWEB)

    Mito, T., E-mail: mito_takeshi@hotmail.co [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Nishiyama, K.; Koyama, T.; Ueda, K.; Kohara, T.; Takeuchi, K.; Akutsu, H.; Yamada, J. [Graduate School of Material Science, University of Hyogo, Hyogo 678-1297 (Japan); Kornilov, A.; Pudalov, V.M. [P.N. Lebedev Physics Institute, Moscow 119991 (Russian Federation); Qualls, J.S. [Sonoma State University, Rohnert Park, CA 94928 (United States)

    2010-12-15

    {sup 77}Se NMR measurements have been carried out on (TMTSF){sub 2}X (X = PF{sub 6} and AsF{sub 6}) single crystals. For both compounds, NMR lines split into double-peaked spectra in the SDW state, which is explained with sinusoidal internal field at Se nucleus positions having the same incommensurate wave number with that of the SDW order. No change in the lineshape was observed at T{sub x} at which the spin-relaxation rate shows a kink, suggesting that this anomaly does not cause significant static changes in internal field at the Se-site.

  16. NMR as a tool for kinetic studies: application to the assessment of organo tin reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, E.; Roulet, T. [Bordeaux-1 Univ., 33 - Talence (France); Pianet, I. [Bordeaux-1 Univ., 33 -Talence (France) CNRS, Centre d`Etudes Structurales et d`Analyse des Molecules Organiques; Willem, R. [Brussels University (VUB), Brussels (Belgium)

    1998-02-01

    There is a growing interest for the research of an answer to the environmental problems related to the industrial use of tetra organo tins. An interesting alternative would be to develop the chemistry of mono organo tins because of their lower toxicity and of the easy removal of ``inorganic`` tin side products. In this work, halogen exchange rates are measured for various mono organo tins with NMR techniques (EXSY spectra and 1 D {sup 119} Sn NMR), and an exchange mechanism is proposed. A correlation between kinetic data and the reactivity of the mono organo tins is then exemplified with radical allylic transfer and palladium catalyzed coupling reactions. (authors) 14 refs.

  17. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the {chi}{sub 2} conformation by intra-residue NOEs

    Energy Technology Data Exchange (ETDEWEB)

    Miyanoiri, Yohei; Takeda, Mitsuhiro [Nagoya University, Graduate School of Science, Structural Biology Research Center (Japan); Jee, JunGoo; Ono, Akira M.; Okuma, Kosuke; Terauchi, Tsutomu [Tokyo Metropolitan University, Center for Priority Areas (Japan); Kainosho, Masatsune, E-mail: kainosho@nagoya-u.jp [Nagoya University, Graduate School of Science, Structural Biology Research Center (Japan)

    2011-12-15

    Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U-{sup 13}C,{sup 15}N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the {sup 13}C-{sup 13}C and {sup 13}C-{sup 1}H spin coupling networks (Kainosho et al. in Nature 440:52-57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [{zeta}2,{zeta}3-{sup 2}H{sub 2}; {delta}1,{epsilon}3,{eta}2-{sup 13}C{sub 3}; {epsilon}1-{sup 15}N]-indole ring ([{sup 12}C{sub {gamma},}{sup 12}C{sub {epsilon}2}] SAIL-Trp), which provides a more robust way to correlate the {sup 1}H{sub {beta}}, {sup 1}H{sub {alpha}}, and {sup 1}H{sub N} to the {sup 1}H{sub {delta}1} and {sup 1}H{sub {epsilon}3} through the intra-residue NOEs. The assignment of the {sup 1}H{sub {delta}1}/{sup 13}C{sub {delta}1} and {sup 1}H{sub {epsilon}3}/{sup 13}C{sub {epsilon}3} signals can thus be transferred to the {sup 1}H{sub {epsilon}1}/{sup 15}N{sub {epsilon}1} and {sup 1}H{sub {eta}2}/{sup 13}C{sub {eta}2} signals, as with the previous type of SAIL-Trp, which has an extra {sup 13}C at the C{sub {gamma}} of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral {beta}-methylene protons, which was {sup 1}H{sub {beta}2} in this experiment, one can determine the side-chain conformation of the Trp residue including the {chi}{sub 2} angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [{sup 12}C{sub {gamma}},{sup 12}C

  18. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ2 conformation by intra-residue NOEs

    International Nuclear Information System (INIS)

    Miyanoiri, Yohei; Takeda, Mitsuhiro; Jee, JunGoo; Ono, Akira M.; Okuma, Kosuke; Terauchi, Tsutomu; Kainosho, Masatsune

    2011-01-01

    Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U– 13 C, 15 N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the 13 C– 13 C and 13 C– 1 H spin coupling networks (Kainosho et al. in Nature 440:52–57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3- 2 H 2 ; δ1,ε3,η2- 13 C 3 ; ε1- 15 N]-indole ring ([ 12 C γ, 12 C ε2 ] SAIL-Trp), which provides a more robust way to correlate the 1 H β , 1 H α , and 1 H N to the 1 H δ1 and 1 H ε3 through the intra-residue NOEs. The assignment of the 1 H δ1 / 13 C δ1 and 1 H ε3 / 13 C ε3 signals can thus be transferred to the 1 H ε1 / 15 N ε1 and 1 H η2 / 13 C η2 signals, as with the previous type of SAIL-Trp, which has an extra 13 C at the C γ of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was 1 H β2 in this experiment, one can determine the side-chain conformation of the Trp residue including the χ 2 angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [ 12 C γ , 12 C ε2 ] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.

  19. Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ(2) conformation by intra-residue NOEs.

    Science.gov (United States)

    Miyanoiri, Yohei; Takeda, Mitsuhiro; Jee, JunGoo; Ono, Akira M; Okuma, Kosuke; Terauchi, Tsutomu; Kainosho, Masatsune

    2011-12-01

    Tryptophan (Trp) residues are frequently found in the hydrophobic cores of proteins, and therefore, their side-chain conformations, especially the precise locations of the bulky indole rings, are critical for determining structures by NMR. However, when analyzing [U-(13)C,(15)N]-proteins, the observation and assignment of the ring signals are often hampered by excessive overlaps and tight spin couplings. These difficulties have been greatly alleviated by using stereo-array isotope labeled (SAIL) proteins, which are composed of isotope-labeled amino acids optimized for unambiguous side-chain NMR assignment, exclusively through the (13)C-(13)C and (13)C-(1)H spin coupling networks (Kainosho et al. in Nature 440:52-57, 2006). In this paper, we propose an alternative type of SAIL-Trp with the [ζ2,ζ3-(2)H(2); δ1,ε3,η2-(13)C(3); ε1-(15)N]-indole ring ([(12)C (γ,) ( 12) C(ε2)] SAIL-Trp), which provides a more robust way to correlate the (1)H(β), (1)H(α), and (1)H(N) to the (1)H(δ1) and (1)H(ε3) through the intra-residue NOEs. The assignment of the (1)H(δ1)/(13)C(δ1) and (1)H(ε3)/(13)C(ε3) signals can thus be transferred to the (1)H(ε1)/(15)N(ε1) and (1)H(η2)/(13)C(η2) signals, as with the previous type of SAIL-Trp, which has an extra (13)C at the C(γ) of the ring. By taking advantage of the stereospecific deuteration of one of the prochiral β-methylene protons, which was (1)H(β2) in this experiment, one can determine the side-chain conformation of the Trp residue including the χ(2) angle, which is especially important for Trp residues, as they can adopt three preferred conformations. We demonstrated the usefulness of [(12)C(γ),(12)C(ε2)] SAIL-Trp for the 12 kDa DNA binding domain of mouse c-Myb protein (Myb-R2R3), which contains six Trp residues.

  20. Unambiguous Determination of Intermolecular Hydrogen Bond of NMR Structure by Molecular Dynamics Refinement Using All-Atom Force Field and Implicit Solvent Model

    International Nuclear Information System (INIS)

    Jee, Jun Goo

    2010-01-01

    It has been shown that AMD refinement is very useful for defining an intermolecular hydrogen bond in NMR structure calculation. The refined structure also provides a clue for explaining the pH dependence in Ub and UIM complexes. As reported by Choi et al., serine-mediated hydrogen bonds are the third most populated hydrogen bonds found in protein-protein intermolecular interactions, after the backbone-backbone and backbone-aspartate ones. The abundance imposes the requirement of an method to determine the interface of protein-protein complexes. The precise geometry is particularly important in the complex structures between Ub and UBDs. Ub recognizes various targets with the same surface, where both hydrophobic and hydrophobic interactions are involved. Hence, the details of the hydrophilic interactions are necessary to find the common binding modes. The structure determination of a biomolecule by NMR depends heavily on the distance restraints derived by the NOE cross peaks that are observed between two protons within 6 A through space. Therefore, the existence of the NOE peaks and their correct assignments to two corresponding protons are essential for an accurate and precise structure determination. Recent developments of NOE assignment and calculation algorithms have enabled the determination of protein 3D structures without any manual interpretation, provided chemical shifts are assigned in most atoms and sufficient NOE peaks exist. Along with these advances, the necessity of determining complicated structures such as complexes is increasing

  1. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

    KAUST Repository

    Emwas, Abdul-Hamid M.

    2014-11-21

    The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.

  2. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review.

    Science.gov (United States)

    Emwas, Abdul-Hamid; Luchinat, Claudio; Turano, Paola; Tenori, Leonardo; Roy, Raja; Salek, Reza M; Ryan, Danielle; Merzaban, Jasmeen S; Kaddurah-Daouk, Rima; Zeri, Ana Carolina; Nagana Gowda, G A; Raftery, Daniel; Wang, Yulan; Brennan, Lorraine; Wishart, David S

    The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.

  3. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review

    KAUST Repository

    Emwas, Abdul-Hamid M.; Luchinat, Claudio; Turano, Paola; Tenori, Leonardo; Roy, Raja; Salek, Reza M.; Ryan, Danielle; Merzaban, Jasmeen; Kaddurah-Daouk, Rima; Zeri, Ana Carolina; Nagana Gowda, G. A.; Raftery, Daniel; Wang, Yulan; Brennan, Lorraine; Wishart, David S.

    2014-01-01

    The metabolic composition of human biofluids can provide important diagnostic and prognostic information. Among the biofluids most commonly analyzed in metabolomic studies, urine appears to be particularly useful. It is abundant, readily available, easily stored and can be collected by simple, noninvasive techniques. Moreover, given its chemical complexity, urine is particularly rich in potential disease biomarkers. This makes it an ideal biofluid for detecting or monitoring disease processes. Among the metabolomic tools available for urine analysis, NMR spectroscopy has proven to be particularly well-suited, because the technique is highly reproducible and requires minimal sample handling. As it permits the identification and quantification of a wide range of compounds, independent of their chemical properties, NMR spectroscopy has been frequently used to detect or discover disease fingerprints and biomarkers in urine. Although protocols for NMR data acquisition and processing have been standardized, no consensus on protocols for urine sample selection, collection, storage and preparation in NMR-based metabolomic studies have been developed. This lack of consensus may be leading to spurious biomarkers being reported and may account for a general lack of reproducibility between laboratories. Here, we review a large number of published studies on NMR-based urine metabolic profiling with the aim of identifying key variables that may affect the results of metabolomics studies. From this survey, we identify a number of issues that require either standardization or careful accounting in experimental design and provide some recommendations for urine collection, sample preparation and data acquisition.

  4. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts

    Directory of Open Access Journals (Sweden)

    Simone Di Micco

    2013-12-01

    Full Text Available In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of 13C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of 13C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

  5. Postprandial metabolomics: A pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal

    International Nuclear Information System (INIS)

    Karimpour, Masoumeh; Surowiec, Izabella; Wu, Junfang; Gouveia-Figueira, Sandra; Pinto, Rui; Trygg, Johan; Zivkovic, Angela M.; Nording, Malin L.

    2016-01-01

    The study of postprandial metabolism is relevant for understanding metabolic diseases and characterizing personal responses to diet. We combined three analytical platforms – gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) – to validate a multi-platform approach for characterizing individual variation in the postprandial state. We analyzed the postprandial plasma metabolome by introducing, at three occasions, meal challenges on a usual diet, and 1.5 years later, on a modified background diet. The postprandial response was stable over time and largely independent of the background diet as revealed by all three analytical platforms. Coverage of the metabolome between NMR and GC-MS included more polar metabolites detectable only by NMR and more hydrophobic compounds detected by GC-MS. The variability across three separate testing occasions among the identified metabolites was in the range of 1.1–86% for GC-MS and 0.9–42% for NMR in the fasting state at baseline. For the LC-MS analysis, the coefficients of variation of the detected compounds in the fasting state at baseline were in the range of 2–97% for the positive and 4–69% for the negative mode. Multivariate analysis (MVA) of metabolites detected with GC-MS revealed that for both background diets, levels of postprandial amino acids and sugars increased whereas those of fatty acids decreased at 0.5 h after the meal was consumed, reflecting the expected response to the challenge meal. MVA of NMR data revealed increasing postprandial levels of amino acids and other organic acids together with decreasing levels of acetoacetate and 3-hydroxybutanoic acid, also independent of the background diet. Together these data show that the postprandial response to the same challenge meal was stable even though it was tested 1.5 years apart, and that it was largely independent of background diet. This work demonstrates the efficacy of a

  6. Postprandial metabolomics: A pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal

    Energy Technology Data Exchange (ETDEWEB)

    Karimpour, Masoumeh; Surowiec, Izabella; Wu, Junfang [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Gouveia-Figueira, Sandra [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå (Sweden); Pinto, Rui [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Bioinformatics Infrastructure for Life Sciences (Sweden); Trygg, Johan [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden); Zivkovic, Angela M. [Department of Nutrition, University of California, Davis, One Shields Ave, CA 95616 (United States); Nording, Malin L., E-mail: malin.nording@umu.se [Computational Life Science Cluster (CLiC), Department of Chemistry, Umeå University, 90187 Umeå (Sweden)

    2016-02-18

    The study of postprandial metabolism is relevant for understanding metabolic diseases and characterizing personal responses to diet. We combined three analytical platforms – gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) – to validate a multi-platform approach for characterizing individual variation in the postprandial state. We analyzed the postprandial plasma metabolome by introducing, at three occasions, meal challenges on a usual diet, and 1.5 years later, on a modified background diet. The postprandial response was stable over time and largely independent of the background diet as revealed by all three analytical platforms. Coverage of the metabolome between NMR and GC-MS included more polar metabolites detectable only by NMR and more hydrophobic compounds detected by GC-MS. The variability across three separate testing occasions among the identified metabolites was in the range of 1.1–86% for GC-MS and 0.9–42% for NMR in the fasting state at baseline. For the LC-MS analysis, the coefficients of variation of the detected compounds in the fasting state at baseline were in the range of 2–97% for the positive and 4–69% for the negative mode. Multivariate analysis (MVA) of metabolites detected with GC-MS revealed that for both background diets, levels of postprandial amino acids and sugars increased whereas those of fatty acids decreased at 0.5 h after the meal was consumed, reflecting the expected response to the challenge meal. MVA of NMR data revealed increasing postprandial levels of amino acids and other organic acids together with decreasing levels of acetoacetate and 3-hydroxybutanoic acid, also independent of the background diet. Together these data show that the postprandial response to the same challenge meal was stable even though it was tested 1.5 years apart, and that it was largely independent of background diet. This work demonstrates the efficacy of a

  7. Experimental (FT-IR, FT-Raman, 1H, 13C NMR) and theoretical study of alkali metal 2-aminobenzoates

    Science.gov (United States)

    Samsonowicz, M.; Świsłocka, R.; Regulska, E.; Lewandowski, W.

    2008-09-01

    The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the 2-aminobenzoic acid was studied by the methods of molecular spectroscopy. The vibrational (FT-IR, FT-Raman) and NMR ( 1H and 13C) spectra for 2-aminobenzoic acid and its alkali metal salts were recorded. The assignment of vibrational spectra was done on the basis of literature data, theoretical calculations and our previous experience. Characteristic shifts of bands and changes in intensities of bands along the metal series were observed. The changes of chemical shifts of protons ( 1H NMR) and carbons ( 13C NMR) in the series of studied alkali metal 2-aminobenzoates were observed too. Optimized geometrical structures of studied compounds were calculated by B3LYP method using 6-311++G ∗∗ basis set. Geometric aromaticity indices, dipole moments and energies were also calculated. The theoretical wavenumbers and intensities of IR and Raman spectra were obtained. The calculated parameters were compared to experimental characteristic of studied compounds.

  8. NMR studies on the chemical alteration of soil organic matter precursors during controlled charring

    Science.gov (United States)

    Knicker, Heike

    2010-05-01

    Beside the production of volatiles, vegetation fire transforms various amounts of labile organic components into recalcitrant dark colored and highly aromatic structures. They are incorporated into soils and are assumed to represent an important sink within the global carbon cycle. In order to elucidate the real importance of PyOM as a C-sink, a good understanding of its chemistry is crucial. Although several 'Black Carbon' (BC) models are reported, a commonly accepted view of the chemistry involved in its formation is still missing. Its biogeochemical recalcitrance is commonly associated with a highly condensed aromatic structure. However, recent studies indicated that this view may be oversimplified for PyOM derived from vegetation fire. In order to bring some more light on the structural properties of PyOM produced during vegetation fire, charred plant residues and model chars derived from typical plant macromolecules (casein, cellulose, lignin and condensed tannins) were subjected to controlled charring under oxic conditions (350°C and 450°C) and then characterized by nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. Subsequently, the chemical features of the PyOM were related to its chemical recalcitrance as determined by chemical oxidation with acid potassium dichromate. Charring cellulose (350°C, 8 min) yielded in a low C-recovery (11%). Treating casein in the same way resulted in a survival of 62% of its C and 46% of its N. Comparable high C-recoveries are reported for lignin. After charring Lolium perenne, 34% of its N and C were recovered. NMR-spectroscopic studies revealed that for this sample most of the charred N and C occurred in pyrrole-type structures. Our studies further indicate that the aromatic skeleton of char accumulating after a vegetation fire must contain remains of the lignin backbone and considerable contributions of furans and anhydrosugars from thermally altered cellulose. Enhancing the temperature during the

  9. Pre-physical treatment: an important procedure to improve spectral resolution in polymers microstructure studies using 13C solution NMR

    International Nuclear Information System (INIS)

    Pedroza, Oscar J.O.; Tavares, Maria I.B.

    2004-01-01

    Changes in physical properties of polymeric materials can be evaluated from their microstructures, which can be investigated using solution carbon-13 nuclear magnetic resonance (NMR). In this type of study spectral resolution is very important, which obviously depend on the sample and solvent. A pre physical treatment allows for an improvement in the spectral resolution. Consequently, more information on chain linking can be obtained, thus facilitating the determination of the stereo sequences. (author)

  10. NMR and Solvent Effect Study on the Thymine-Adenine-Thymine ...

    African Journals Online (AJOL)

    ... discussed about the plotted graphs of relative energies versus dielectric constants of our considered solvents. Thus, we can drastically conclude that the dielectric permittivity of the solvent is a key factor that determines the chemical behavior of DNA in solution. Keywords: TAT sequence; solvent effect; NMR parameters; ...

  11. Experimental and theoretical NMR study of 4-(1-pyrrolidinyl)piperidine

    African Journals Online (AJOL)

    Solvent effects on nuclear magnetic shielding tensors have been investigated using chloroform-d, methanol-d, acetone-d, dimethylsulfoxide-d and water-d. The magnitude of nJ(C,H) (n = 1, 2, 3) coupling constants of 4-pypp have been determined with selective 1H decoupled 13C NMR techniques. 1H, 13C, 15N NMR ...

  12. 31P NMR studies of pH homeostasis in intact adult Fasciola hepatica

    NARCIS (Netherlands)

    Tielens, A.G.M.; Nicolaij, K.; Bergh, van S.G.

    1982-01-01

    31P NMR was used to measure the intracellular pH in live adult Fasciola hepatica. The results demonstrate that at external pH values above 7.0, pH homeostasis keeps the intracellular pH at 7.0. At external pH values below 7.0 the intracellular pH is less strictly regulated.

  13. Microstructure study of ethylene, propylene and 1-decene terpolymers by 13C-NMR

    International Nuclear Information System (INIS)

    Ferreira, Marcio; Escher, Fernanda Nunes; Galland, Griselda Barrera

    2001-01-01

    Terpolymers of ethylene-propylene-1-decene with different composition of monomers were obtained using the metallocenes catalyst rac-EtInd 2 ZrCl 2 . The complete 13 C-NMR characterization of these terpolymers was done qualitatively and quantitatively. Chemical shifts, carbon assignments and corresponding integrals for each triad sequence are presented. (author)

  14. Xenon NMR of liquid crystals confined to cylindrical nanocavities: a simulation study

    Czech Academy of Sciences Publication Activity Database

    Karjalainen, J.; Vaara, J.; Straka, Michal; Lantto, P.

    2015-01-01

    Roč. 17, č. 11 (2015), s. 7158-7171 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : 129Xe NMR * liquid crystals * cylindrical cavities * phase transition s * Monte-Carlo simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015

  15. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HRMAS NMR) for Studies of Reactive Fabrics

    Science.gov (United States)

    2015-11-01

    spectroscopy (NMR) Self- decontaminating fabric Reactive fabric...reactions of reagents including chemical weapons on materials like concrete, soil , and sand, as well as reactive polymers.3,4,5,6,7 There are...sample. The rotor and cap can be cleaned by rinsing with solvent or decontamination solution and reused. 12.0 DATA ANALYSIS AND CALCULATIONS 12.1

  16. DFT study of zigzag (n, 0) single-walled carbon nanotubes: C-13 NMR chemical shifts

    Czech Academy of Sciences Publication Activity Database

    Kupka, T.; Stachów, M.; Stobinski, L.; Kaminský, Jakub

    2016-01-01

    Roč. 67, Jun (2016), s. 14-19 ISSN 1093-3263 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : zigzag SWCNT * cyclacenes * theoretical modeling * DFT * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.754, year: 2016

  17. 6Li MAS NMR Study of Lithium Insertion into Hydrothermally Prepared Li-Ti-O Spinel

    Czech Academy of Sciences Publication Activity Database

    Krtil, Petr; Dědeček, Jiří; Kostlánová, Tereza; Brus, Jiří

    2004-01-01

    Roč. 7, č. 7 (2004), A163-A166 ISSN 1099-0062 R&D Projects: GA ČR GA203/03/0823 Institutional research plan: CEZ:AV0Z4040901 Keywords : lithium insertion * spinel * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.271, year: 2004

  18. Hg-II/Ag-I-mediated base pairs and their NMR spectroscopic studies

    Czech Academy of Sciences Publication Activity Database

    Dairaku, T.; Furuita, K.; Sato, H.; Šebera, Jakub; Nakashima, K.; Ono, A.; Sychrovský, Vladimír; Kojima, C.; Tanaka, Y.

    2016-01-01

    Roč. 452, Oct 1 (2016), s. 34-42 ISSN 0020-1693 R&D Projects: GA ČR GAP205/10/0228 Institutional support: RVO:61388963 Keywords : NMR * Hg * Ag * metal-DNA Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.002, year: 2016

  19. Configurations and conformations in acyclic, unsaturated hydrocarbons. A 13C NMR study

    NARCIS (Netherlands)

    Haan, de J.W.; Ven, van de L.J.M.

    1973-01-01

    13C NMR (CMR) spectra of a number of di- and trisubstituted ethylenes have been measured. Very consistent values are found for the differential shieldings of allylic carbons in a number of linear, (Z)- and (E)-disubstituted ethylenes. The discrepancies between the several structural elements are

  20. Regioselectivity in lithiation of 1-methylpyrazole: experimental, density functional theory and multinuclear NMR study

    DEFF Research Database (Denmark)

    Balle, Thomas; Begtrup, Mikael; Jaroszewski, Jerzy W.

    2006-01-01

    -position. The observed regioselectivity can be correctly predicted, at least qualitatively, using density functional B3LYP/6-31+G(d,p) calculations only when solvation effects (IEFPCM) are taken into account. The 1H,6Li HOESY and NOESY NMR spectra of the thermodynamic product 5-lithio-1-methylpyrazole (5...

  1. Photochromism of indolino-benzopyrans studied by NMR and UV-visible spectroscopy

    OpenAIRE

    S. Delbaere; J. Berthet; M. A. Salvador; G. Vermeersch; M. M. Oliveira

    2006-01-01

    The synthesis of photochromic 3,3-di(4′-fluorophenyl)-3H-benzopyrans fused to an indole moiety is described. The structures of photomerocyanines elucidated by NMR spectroscopy and spectrokinetic data (λmax⁡ of colored form, colorability, and rate constant of bleaching) obtained by UV-visible spectroscopy are reported.

  2. NMR study of Gd2(Co1-xFex)14B compounds

    International Nuclear Information System (INIS)

    Hayashi, M.; Myojin, T.; Kasamatsu, Y.; Imaeda, Y.; Ushida, T.; Tsujimura, A.; Hihara, T.

    1992-01-01

    59 Co NMR measurements in Gd 2 (Co 1-x Fe x ) 14 B have been carried out at 4.2 K. The resonance line corresponding to each site of the Co atoms shifts gradually to a higher frequency region as the value of x increases, and when the value exceeds 0.3 the resonance line seems to be disturbed. (orig.)

  3. Solid state 13 C NMR quantitative study of wood tar pitches

    International Nuclear Information System (INIS)

    Prauchner, Marcos Juliano; Pasa, Vanya Marcia Duarte; Menezes, Sonia Maria Cabral de

    1999-01-01

    In this work, solid-state 13 C NMR is used with other techniques to characterize Eucalyptus tar pitches and to follow their polymerization reactions. The pitches are the residues of distillation (about 50% m;m) of the tar generated in Eucalyptus slow pyrolysis for charcoal production in metal industry

  4. Solid-state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers

    KAUST Repository

    Chu, Shidong; Maltsev, Sergey B.; Emwas, Abdul-Hamid M.; Lorigan, Gary A.

    2010-01-01

    A new approach for determining the membrane immersion depth of a spin-labeled probe has been developed using paramagnetic relaxation enhancement (PRE) in solid-state NMR spectroscopy. A DOXYL spin label was placed at different sites of 1-palmitoyl-2

  5. Study on optimization of YBCO thin film stack for compact NMR magnets

    International Nuclear Information System (INIS)

    Kim, S.B.; Kimoto, T.; Hahn, S.; Iwasa, Y.; Voccio, J.; Tomita, M.

    2013-01-01

    Highlights: ► Stacking methods for compact NMR magnet using YBCO thin films were tested. ► The stacking angles are 0°, 22.5° and 90° against the rolling direction. ► The best spatial field homogeneity was obtained in rotation angle of 22.5°. ► The maximum trapped magnetic fields of 0.4 T was obtained at 77.4 K. ► The maximum trapped magnetic fields of 0.95 T was obtained at 21 K. -- Abstract: A compact high temperature superconducting (HTS) magnet, which consists of a stack of 500 HTS thin film annuli, was constructed and tested. Each thin film annulus, manufactured by the AMSC using the Rolling Assisted Bi-axially Textured Substrate (RABiTS) method, has a square cross-section of 40 mm × 40 mm with a thickness of 80 m. It has a 25-mm center hole created by machining. This paper reports a study on the anisotropic J c issue due to the rolling procedure of the Ni substrate direction and its impact on field homogeneity. Also, three different stacking methods with rotation angles of 22.5°, 90°, and 0° against the rolling direction have been tested to study their impacts on strength, spatial homogeneity, and temporal stability of trapped fields. Finally, the 500-annulus magnet was tested at 21 K under a cryogen-free environment using a GM cryocooler. The spatial field homogeneity and temporal stability were measured at 21 K and compared with those obtained in a bath of liquid nitrogen at 77 K

  6. Investigation of new NMR methods for structural and dynamic studies in the liquid state

    International Nuclear Information System (INIS)

    Desvaux, H.

    1993-01-01

    After a short presentation of the NMR fundements, three new methods of spin -lattice relaxation in liquids are reported. (1) The method consists of measuring the steady-state nuclear magnetization under strong off-resonance rf irradiation as a function of the angle θ between external field and effective field. For purely dipolar relaxation between homonuclear spins under isotropic Brownian molecular rotation, this variation yields the value of the local correlation time. A departure from the theoretical shape reveals the existence of complex motions or complex relaxation mechanisms. These results have been verified by experimental illustrations. Some numerical simulations have been performed for studying the effects of the distribution of chemical shift and for studying the coherence of the local correlation time concept. (2) The improvements of a modified ROESY experiment are discussed. The use of a time-modulated strong off-resonances rf irradiation permits to suppress totally the problems of the NOESY (suppression of cross-relaxation peaks for molecules where ωτ c ≅ 1.1) and of the ROESY (HOHAHA transfer and angular dispersion due to the chemical shift distribution). The angle θ defined previously can be used as a constraint: either to obtain a ratio of the cross over direct dipolar relaxation rates independent on the correlation time value, or to observe the sole chemical exchange. (3) The difference of the relaxation rates of the coherences at zero and two quanta is always exactly the cross relaxation rates measured by the NOESY experiment. The experimental illustration is presented

  7. Study of lignin standard-substances type biphenyl by {sup 13} C NMR; Estudo de substancias-modelo de lignina do tipo bifenila, por RMN de {sup 13} C

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Marcia Alves; Drumond, Mariza Guimaraes; Veloso, Dorila Pilo [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Quimica

    1995-12-31

    Lignins structural study by NMR has utilized standard-substances spectral comparative analysis. This work has present relaxation time studies for lignin standard-substance, and {sup 13} C NMR chemical shift values were also shown and compared for several compounds. NMR spectra were commented besides experimental data analysis 2 figs., 4 tabs.

  8. Two-site jumps in dimethyl sulfone studied by one- and two-dimensional 17O NMR spectroscopy

    Science.gov (United States)

    Beerwerth, J.; Storek, M.; Greim, D.; Lueg, J.; Siegel, R.; Cetinkaya, B.; Hiller, W.; Zimmermann, H.; Senker, J.; Böhmer, R.

    2018-03-01

    Polycrystalline dimethyl sulfone is studied using central-transition oxygen-17 exchange NMR. The quadrupolar and chemical shift tensors are determined by combining quantum chemical calculations with line shape analyses of rigid-lattice spectra measured for stationary and rotating samples at several external magnetic fields. Quantum chemical computations predict that the largest principal axes of the chemical shift anisotropy and electrical field gradient tensors enclose an angle of about 73°. This prediction is successfully tested by comparison with absorption spectra recorded at three different external magnetic fields. The experimental one-dimensional motionally narrowed spectra and the two-dimensional exchange spectrum are compatible with model calculations involving jumps of the molecules about their two-fold symmetry axis. This motion is additionally investigated by means of two-time stimulated-echo spectroscopy which allows for a determination of motional correlation functions over a wider temperature range than previously reported using carbon and deuteron NMR. On the basis of suitable second-order quadrupolar frequency distributions, sin-sin stimulated-echo amplitudes are calculated for a two-site model in the limit of vanishing evolution time and compared with experimental findings. The present study thus establishes oxygen-17 NMR as a powerful method that will be particularly useful for the study of solids and liquids devoid of nuclei governed by first-order anisotropies.

  9. Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy.

    Science.gov (United States)

    Chekmenev, Eduard Y; Gor'kov, Peter L; Cross, Timothy A; Alaouie, Ali M; Smirnov, Alex I

    2006-10-15

    A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.

  10. The structure of phosphate and borosilicate glasses and their structural evolution at high temperatures as studied with solid state NMR spectroscopy: Phase separation, crystallisation and dynamic species exchange

    International Nuclear Information System (INIS)

    Wegner, S.; Van Wullen, L.; Tricot, G.; Tricot, G.

    2010-01-01

    In this contribution we present an in-depth study of the network structure of different phosphate based and borosilicate glasses and its evolution at high temperatures. Employing a range of advanced solid state NMR methodologies, complemented by the results of XPS, the structural motifs on short and intermediate length scales are identified. For the phosphate based glasses, at temperatures above the glass transition temperature Tg, structural relaxation processes and the devitrification of the glasses were monitored in situ employing MAS NMR spectroscopy and X-ray diffraction. Dynamic species exchange involving rapid P-O-P and P-O-Al bond breaking and reforming was observed employing in situ 27 Al and 31 P MAS NMR spectroscopy and could be linked to viscous flow. For the borosilicate glasses, an atomic scale investigation of the phase separation processes was possible in a combined effort of ex situ NMR studies on glass samples with different thermal histories and in situ NMR studies using high temperature MAS NMR spectroscopy including 11 B MAS, 29 Si MAS and in situ 29 Si{ 11 B} REAPDOR NMR spectroscopy. (authors)

  11. 5-Chlorouracil and 5-bromouracil acid-base equilibrium study in water and DMSO by NMR spectroscopy

    Science.gov (United States)

    Abdrakhimova, G. S.; Ovchinnikov, M. Yu; Lobov, A. N.; Spirikhin, L. V.; Khursan, S. L.; Ivanov, S. P.

    2018-04-01

    Mechanism of 5-chloro- and 5-bromouracil deprotonation in water and dimethyl sulfoxide (DMSO) has been studied by the 13C and 1H NMR spectroscopy. NMR spectra were interpreted using DFT quantum chemical calculations at the CSGT-PCM-TPSSTPSS/6-311+G(d, p) level of theory. It was found that 5-chloro- (5ClU) and 5-bromouracil (5BrU) are present as a mixture of two anionic forms where the deprotonation is realized at the first (N1) and the third (N3) positions of the pyrimidine ring. N1 form is major for water-alkaline [xAN1/xAN3 (5ClU) = 0.65/0.35 and xAN1/xAN3 (5BrU) = 0.72/0.28, x - molar fraction] and the only one for DMSO solution.

  12. Gamma-radiation induced cross-links in ethylene-propylene rubber studied by CP-MAS NMR

    International Nuclear Information System (INIS)

    Sohma, J.; Shiotani, M.; Murakami, S.

    1983-01-01

    A new technique of 13 C-NMR, the CP-MAS method, was applied to study a chemistry of cross-links induced by #betta#-irradiation of ethylene-propylene rubber. The chemical species of cross-linking points were specified with their relative concentrations by the analysis of the CP-MAS spectra obtained before and after the irradiation. It was found that the short branches were also formed by the irradiation. A comparison was made between the cross-links detected by the CP-MAS method and those obtained by the Charlesby-Pinner analysis of the gelation caused by the #betta#-irradiation. The conventional 13 C-NMR of the cross-linked and swollen EPR provided us an information on the sol parts of the sample but little information on the cross-links in the gel parts. (author)

  13. Computational Protocols for Prediction of Solute NMR Relative Chemical Shifts. A Case Study of L-Tryptophan in Aqueous Solution

    DEFF Research Database (Denmark)

    Eriksen, Janus J.; Olsen, Jógvan Magnus H.; Aidas, Kestutis

    2011-01-01

    to the results stemming from the conformations extracted from the MM conformational search in terms of replicating an experimental reference as well as in achieving the correct sequence of the NMR relative chemical shifts of L-tryptophan in aqueous solution. We find this to be due to missing conformations......In this study, we have applied two different spanning protocols for obtaining the molecular conformations of L-tryptophan in aqueous solution, namely a molecular dynamics simulation and a molecular mechanics conformational search with subsequent geometry re-optimization of the stable conformers...... using a quantum mechanically based method. These spanning protocols represent standard ways of obtaining a set of conformations on which NMR calculations may be performed. The results stemming from the solute–solvent configurations extracted from the MD simulation at 300 K are found to be inferior...

  14. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo (Japan))

    1991-07-02

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with {sup 13}C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with (1-{sup 13}C)Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how {sup 13}C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule.

  15. Carbon-13 NMR study of switch variant anti-dansyl antibodies: Antigen binding and domain-domain interactions

    International Nuclear Information System (INIS)

    Kato, Koichi; Matsunaga, Chigusa; Odaka, Asano; Yamato, Sumie; Takaha, Wakana; Shimada, Ichio; Arata, Yoji

    1991-01-01

    A 13 C NMR study is reported of switch variant anti-dansyl antibodies, which possess the identical V H , V L , and C L domains in conjunction with highly homologous but not identical heavy-chain constant regions. Each of the antibodies has been selectively labeled with 13 C at the carbonyl carbon of Trp, Tyr, His, or Cys residue by growing hybridoma cells in serum-free medium. Spectral assignments have been made by folowing the procedure described previously for the switch variant antibodies labeled with [1- 13 C]Met. On the basis of the spectral data collected for the antibodies and their proteolytic fragments, the authors discuss how 13 C NMR spectroscopy can be used for the structural analyses of antigen binding and also of domain-domain interactions in the antibody molecule

  16. The study of NMR relaxation time spectra multi-exponential inversion based on Lloyd–Max optimal quantization

    International Nuclear Information System (INIS)

    Li, Xuewei; Kong, Li; Cheng, Jingjing; Wu, Lei

    2015-01-01

    The multi-exponential inversion of a NMR relaxation signal plays a key role in core analysis and logging interpretation in the formation of porous media. To find an efficient metod of inverting high-resolution relaxation time spectra rapidly, this paper studies the effect of inversion which is based on the discretization of the original echo in a time domain by using a simulation model. This paper analyzes the ill-condition of discrete equations on the basis of the NMR inversion model and method, determines the appropriate number of discrete echoes and acquires the optimal distribution of discrete echo points by the Lloyd–Max optimal quantization method, in considering the inverse precision and computational complexity comprehensively. The result shows that this method can effectively improve the efficiency of the relaxation time spectra inversion while guaranteeing inversed accuracy. (paper)

  17. NMR study of the possible interaction in solution of angiotensin II with a peptide encoded by angiotensin II complementary RNA

    International Nuclear Information System (INIS)

    Eaton, H.L.; Fesik, S.W.; Austin, R.E.; Martin, S.F.

    1989-01-01

    The potential binding of angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) (AII) to a peptide encoded by its complementary RNA (Lys-Gly-Val-Asp-Val-Try-Ala-Val) (IIA) has been studied by monitoring the 1 H NMR spectrum of IIA in aqueous phosphate or Tris·HCl buffer ( 2 H 2 O) as it is titrated with AII. For molar ratios of AII/IIA ranging from 0.2 to 1.8, the NMR spectra are unchanged as compared to the spectra of the isolated peptides. Based on these findings, the K d for the putative biomolecular complex of the two peptides under these conditions is calculated to be >10 -4 M. This result does not support the suggestion of Elton et al. that AII and IIA engage in high-affinity binding (K d ∼ 5 x 10 -8 M) with each other

  18. The pH behavior of a 2-aminoethyl dihydrogen phosphate zwitterion studied with NMR-titrations

    Science.gov (United States)

    Myller, A. T.; Karhe, J. J.; Haukka, M.; Pakkanen, T. T.

    2013-02-01

    In this study a bifunctional 2-aminoethyl dihydrogen phosphate (AEPH2) was 1H and 31P NMR characterized in a pH range of 1-12 in order to determine the zwitterion properties in different pH regions in H2O and D2O solutions. NMR was also used to determine the pH range where AEPH2 exists as a zwitterion. The phosphate group has two deprotonation points, around pH 1 and 6, while the amino group deprotonates at pH 11. The zwitterion form of AEPH2 (NH3+sbnd CHsbnd CHsbnd OPOH) exists as the main ion between pH 1 and 6 in water solutions and also in the solid state.

  19. Phase Transitions in CsSnCl3 and CsPbBr3 An NMR and NQR Study

    Science.gov (United States)

    Sharma, Surendra; Weiden, Norbert; Weiss, Alarich

    1991-04-01

    The phase transitions in CsSnCl3 and CsPbBr3 have been studied by X-ray powder diffraction, by 81Br-NQR and by 'H-, 119Sn-, and 113Cs-NMR. At room temperature in air CsSnCl3 forms a hydrate which can be dehydrated to the monoclinic phase II of CsSnCl3. The high temperature phase I has the Perovskite structure, as the X-ray and NMR experiments show. The three phases of CsPbBr3, known from literature, have been corroborated. The results are discussed in the framework of the group ABX3, A = alkalimetal ion, B = IV main group ion, and X = Halogen ion

  20. NMR imaging

    International Nuclear Information System (INIS)

    Ouchi, Toshihiro; Steiner, R.E.

    1984-01-01

    Three epidermoid and two dermoid tumours, pathologically proven, were examined by NMR and CT scans. Although most brain tumours have a low signal with a long T 1 , a dermoid cyst and one of the two components of the other dermoid tumour had a high signal and therefore a short T 1 . All three epidermoid tumours had a low signal and a long T 1 . Because of the high level contrast between some of the tumours and cerebrospinal fluid, NMR is helpful to detect the lesion. Neither of the liquid fluid levels in the tumour cysts or floating fat in the subarachnoid space was recognized in one patients, but the fine leakage of the content from the epidermoid cyst into the lateral ventricle was detected on a saturation recovery 1000 image in one case. (author)

  1. Proliferating cell nuclear antigen (PCNA interactions in solution studied by NMR.

    Directory of Open Access Journals (Sweden)

    Alfredo De Biasio

    Full Text Available PCNA is an essential factor for DNA replication and repair. It forms a ring shaped structure of 86 kDa by the symmetric association of three identical protomers. The ring encircles the DNA and acts as a docking platform for other proteins, most of them containing the PCNA Interaction Protein sequence (PIP-box. We have used NMR to characterize the interactions of PCNA with several other proteins and fragments in solution. The binding of the PIP-box peptide of the cell cycle inhibitor p21 to PCNA is consistent with the crystal structure of the complex. A shorter p21 peptide binds with reduced affinity but retains most of the molecular recognition determinants. However the binding of the corresponding peptide of the tumor suppressor ING1 is extremely weak, indicating that slight deviations from the consensus PIP-box sequence dramatically reduce the affinity for PCNA, in contrast with a proposed less stringent PIP-box sequence requirement. We could not detect any binding between PCNA and the MCL-1 or the CDK2 protein, reported to interact with PCNA in biochemical assays. This suggests that they do not bind directly to PCNA, or they do but very weakly, with additional unidentified factors stabilizing the interactions in the cell. Backbone dynamics measurements show three PCNA regions with high relative flexibility, including the interdomain connector loop (IDCL and the C-terminus, both of them involved in the interaction with the PIP-box. Our work provides the basis for high resolution studies of direct ligand binding to PCNA in solution.

  2. NMR Studies of the Dynamics of Nitrophorin 2 Bound to Nitric Oxide†

    Science.gov (United States)

    Muthu, Dhanasekaran; Berry, Robert E.; Zhang, Hongjun; Walker, F. Ann

    2013-01-01

    The Rhodnius nitrophorins are β-barrel proteins of the lipocalin fold with a heme protruding from the open end of the barrel. They are found in the saliva of the blood-sucking insect Rhodnius prolixus, which synthesizes and stores nitric oxide (NO) in the salivary glands, where NO is bound to iron. NO is released by dilution and pH rise when the insect spits its saliva into the tissues of a victim, to aid in obtaining a blood meal. In the adult insect there are four nitrophorins, NP1, NP2, NP3 and NP4. At pH 7.3, NP4 releases NO 17 times faster than does NP2, as measured by stopped-flow kinetics. A number of crystal structures of the least abundant protein, NP4, are available. These structures have been used to propose that two loops between adjacent β-strands at the front opening of the protein, the A-B and G-H loops, determine the rate of NO release. In order to learn how the protein loops contribute to release of NO for each of the nitrophorins, the dynamics of these proteins are being studied in our laboratory. In this work, the NP2-NO complex has been investigated by NMR relaxation measurements to probe the pico- to nanosecond and micro- to millisecond time scale motions at three pH values, 5.0, 6.5, and 7.3. It is found that at pH 5.0 and 6.5, NP2-NO is rigid and only a few residues in the loop regions show dynamics, while at pH 7.3 somewhat more dynamics, particularly of the A-B loop, are observed. Comparison to other lipocalins shows that all are relatively rigid, and that the dynamics of lipocalins in general are much more subtle than those of mainly α-helical proteins. PMID:24116947

  3. 1H-NMR studies on the interaction of calmodulin with melittin

    International Nuclear Information System (INIS)

    Seeholzer, S.H.; Cohn, M.; Wand, A.J.

    1986-01-01

    Melittin (Mel), a basic amphipathic peptide from bee venom binds to Ca ++ -calmodulin (CaM) with high affinity and competitively inhibits the activation of enzymes by CaM. The CaM:Mel complex is being studied as a model system for understanding the nature of CaM's interaction with other tight binding peptides and target enzymes. The authors report here some preliminary results. Gel filtration experiments have shown that CaM binds 2 Mels with high affinity at pH 6.5 in the absence of salt yet it binds only 1 Mel in the presence of 0.15 M KC1. Hence, electrostatic forces may dominate the binding of the second Mel. The titration of CaM with from 0 to 2 Mels/CaM was followed by 1 H-NMR spectroscopy. The major changes in chemical shift of CaM resonances occur upon binding of the first Mel. Relatively fewer and smaller effects attend binding of the second Mel. Titration of CaM with from 0 through 1 Mel/CaM shifts the relative proportion of the His107-H2 resonance from 8.07 to 7.92 ppm. These two resonances are in slow exchange, the titration is complete at 1 Mel/CaM, and pH titrations are planned to see if these data are consistent with a Mel-induced pK shift of 0.5 pH units. The trimethyllysine resonance is shifted from 3.104 to 3.092 ppm by Mel. The relative proportion of these slowly exchanging peaks continuously changes during the titration from 0 to 2 Mels/CaM, being about 50% of each at 1 Mel/CaM. Data regarding the assignment and structure of Mel in various model solvent systems will also be reported

  4. /sup 1/H-NMR studies on the interaction of calmodulin with melittin

    Energy Technology Data Exchange (ETDEWEB)

    Seeholzer, S.H.; Cohn, M.; Wand, A.J.

    1986-05-01

    Melittin (Mel), a basic amphipathic peptide from bee venom binds to Ca/sup + +/-calmodulin (CaM) with high affinity and competitively inhibits the activation of enzymes by CaM. The CaM:Mel complex is being studied as a model system for understanding the nature of CaM's interaction with other tight binding peptides and target enzymes. The authors report here some preliminary results. Gel filtration experiments have shown that CaM binds 2 Mels with high affinity at pH 6.5 in the absence of salt yet it binds only 1 Mel in the presence of 0.15 M KC1. Hence, electrostatic forces may dominate the binding of the second Mel. The titration of CaM with from 0 to 2 Mels/CaM was followed by /sup 1/H-NMR spectroscopy. The major changes in chemical shift of CaM resonances occur upon binding of the first Mel. Relatively fewer and smaller effects attend binding of the second Mel. Titration of CaM with from 0 through 1 Mel/CaM shifts the relative proportion of the His107-H2 resonance from 8.07 to 7.92 ppm. These two resonances are in slow exchange, the titration is complete at 1 Mel/CaM, and pH titrations are planned to see if these data are consistent with a Mel-induced pK shift of 0.5 pH units. The trimethyllysine resonance is shifted from 3.104 to 3.092 ppm by Mel. The relative proportion of these slowly exchanging peaks continuously changes during the titration from 0 to 2 Mels/CaM, being about 50% of each at 1 Mel/CaM. Data regarding the assignment and structure of Mel in various model solvent systems will also be reported.

  5. Changes in mouse brain metabolism following a convulsive dose of soman: A proton HRMAS NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Fauvelle, F. [Unite de Biophysique Cellulaire et Moleculaire, Institut de Recherche Biomedicale des Armees, Centre de Recherches du Service Sante des Armees, BP87, 38 702 La Tronche Cedex (France); Dorandeu, F.; Carpentier, P.; Foquin, A. [Departement de Toxicologie, Institut de Recherche Biomedicale des Armees, Centre de Recherches du Service Sante des Armees, 24 avenue des Maquis du Gresivaudan, BP87, 38 702 La Tronche Cedex (France); Rabeson, H.; Graveron-Demilly, D. [Universite Lyon 1, Laboratoire Creatis-LRMN, CNRS UMR 5220, INSERM U630, INSA de Lyon (France); Arvers, P. [Unite de Biophysique Cellulaire et Moleculaire, Institut de Recherche Biomedicale des Armees, Centre de Recherches du Service Sante des Armees, BP87, 38 702 La Tronche Cedex (France); Testylier, G., E-mail: guytestylier@crssa.net [Departement de Toxicologie, Institut de Recherche Biomedicale des Armees, Centre de Recherches du Service Sante des Armees, 24 avenue des Maquis du Gresivaudan, BP87, 38 702 La Tronche Cedex (France)

    2010-01-12

    Soman, an irreversible organophosphorus cholinesterase inhibitor, induces status epilepticus and, in sensitive brain areas, seizure-related brain damage (e.g. brain edema and neuronal loss). The brain metabolic disturbances associated with these events are ill known. In the present study, we thus evaluated these changes in a murine model of soman-induced status epilepticus up to 7 days after intoxication. Mice, protected by HI-6 and atropine methyl nitrate, were poisoned with soman (172 μg/kg) and then sacrificed at set time points, from 1 h to 7 days. Brain biopsies from the piriform cortex (Pir) and cerebellum (Cer) were analyzed by {sup 1}H HRMAS NMR spectroscopy. Spectra were then analyzed using both a supervised multivariate analysis and the QUEST procedure of jMRUI for the quantification of 17 metabolites. The multivariate analysis clearly showed the metabolic differences between a damaged structure (Pir) and a structure with less prominent changes (cerebellum) and helped to globally assess the time course of metabolic changes. Analysis of the individual metabolites showed that the major changes took place in the piriform cortex but that cerebellum was not change-free. The most prominent changes in the former were an early (1-4 h) increase in alanine and acetate, a delayed increase in lactate, glycerophosphocholine and glutamine as well as a delayed decrease in myo-inositol and N-acetylaspartate. A week after poisoning, some metabolic disturbances were still present. Further research will be necessary to clarify what could be the involvement of these metabolites in physiological processes and how they might become useful surrogate markers of brain damage and repair.

  6. Changes in mouse brain metabolism following a convulsive dose of soman: A proton HRMAS NMR study

    International Nuclear Information System (INIS)

    Fauvelle, F.; Dorandeu, F.; Carpentier, P.; Foquin, A.; Rabeson, H.; Graveron-Demilly, D.; Arvers, P.; Testylier, G.

    2010-01-01

    Soman, an irreversible organophosphorus cholinesterase inhibitor, induces status epilepticus and, in sensitive brain areas, seizure-related brain damage (e.g. brain edema and neuronal loss). The brain metabolic disturbances associated with these events are ill known. In the present study, we thus evaluated these changes in a murine model of soman-induced status epilepticus up to 7 days after intoxication. Mice, protected by HI-6 and atropine methyl nitrate, were poisoned with soman (172 μg/kg) and then sacrificed at set time points, from 1 h to 7 days. Brain biopsies from the piriform cortex (Pir) and cerebellum (Cer) were analyzed by 1 H HRMAS NMR spectroscopy. Spectra were then analyzed using both a supervised multivariate analysis and the QUEST procedure of jMRUI for the quantification of 17 metabolites. The multivariate analysis clearly showed the metabolic differences between a damaged structure (Pir) and a structure with less prominent changes (cerebellum) and helped to globally assess the time course of metabolic changes. Analysis of the individual metabolites showed that the major changes took place in the piriform cortex but that cerebellum was not change-free. The most prominent changes in the former were an early (1-4 h) increase in alanine and acetate, a delayed increase in lactate, glycerophosphocholine and glutamine as well as a delayed decrease in myo-inositol and N-acetylaspartate. A week after poisoning, some metabolic disturbances were still present. Further research will be necessary to clarify what could be the involvement of these metabolites in physiological processes and how they might become useful surrogate markers of brain damage and repair.

  7. NMR spectroscopy and drug development

    International Nuclear Information System (INIS)

    Craik, D.; Munro, S.

    1990-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy for structural and conformational studies on drug molecules, the three-dimensional investigation of proteins structure and their interactions with ligands are discussed. In-vivo NMR studies of the effects of drugs on metabolism in perfused organs and whole animals are also briefly presented. 5 refs., ills

  8. The influence of feedstock and production temperature on biochar carbon chemistry: A solid-state 13C NMR study

    International Nuclear Information System (INIS)

    McBeath, Anna V.; Smernik, Ronald J.; Krull, Evelyn S.; Lehmann, Johannes

    2014-01-01

    Solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy was used to evaluate the carbon chemistry of twenty-six biochars produced from eleven different feedstocks at production temperatures ranging from 350 °C to 600 °C. Carbon-13 NMR spectra were acquired using both cross-polarisation (CP) and direct polarisation (DP) techniques. Overall, the corresponding CP and DP spectra were similar, although aromaticity was slightly higher and observability much higher when DP was used. The relative size and purity of the aromatic ring structures (i.e. aromatic condensation) were also gauged using the ring current technique. Both aromaticity and aromatic condensation increased with increasing production temperature, regardless of the feedstock source. However, there were clear differences in these two measures for biochars produced at the same temperature but from different feedstocks. Based on a relationship previously established in a long-term incubation study between aromatic condensation and the mean residence time (MRT) of biochar, the MRT of the biochars was estimated to range from 1400 years. This study demonstrates how the combination of feedstock composition and production temperature influences the composition of aromatic domains in biochars, which in turn is likely to be related to their recalcitrance and ultimately their carbon sequestration value. -- Highlights: • Sensitive NMR techniques were used to gauge differences in biochar carbon chemistry. • Varying pyrolysis conditions influences biochars recalcitrant properties. • The MRT of contrasting biochars varies considerably from 1400 years

  9. N-15 NMR study of the immobilization of 2,4- and 2,6-dinitrotoluene in aerobic compost

    Science.gov (United States)

    Thorn, K.A.; Pennington, J.C.; Kennedy, K.R.; Cox, L.G.; Hayes, C.A.; Porter, B.E.

    2008-01-01

    Large-scale aerobic windrow composting has been used to bioremediate washout lagoon soils contaminated with the explosives TNT (2,4,6- trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) at several sites within the United States. We previously used 15N NMR to investigate the reduction and binding of T15NT in aerobic bench -scale reactors simulating the conditions of windrow composting. These studies have been extended to 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT), which, as impurities in TNT, are usually present wherever soils have been contaminated with TNT. Liquid-state 15N NMR analyses of laboratory reactions between 4-methyl-3-nitroaniline-15N, the major monoamine reduction product of 2,4DNT, and the Elliot soil humic acid, both in the presence and absence of horseradish peroxidase, indicated that the amine underwent covalent binding with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and non-heterocyclic condensation products. Liquid-state 15N NMR analyses of the methanol extracts of 20 day aerobic bench-scale composts of 2,4-di-15N-nitrotoluene and 2,6-di-15N-nitrotoluene revealed the presence of nitrite and monoamine, but not diamine, reduction products, indicating the occurrence of both dioxygenase enzyme and reductive degradation pathways. Solid-state CP/MAS 15N NMR analyses of the whole composts, however, suggested that reduction to monoamines followed by covalent binding of the amines to organic matter was the predominant pathway. ?? 2008 American Chemical Society.

  10. NMR and Moessbauer studies of the amorphous system Fe79P/sub 21-x/B/sub x/

    International Nuclear Information System (INIS)

    Amamou, A.; Durand, J.

    1977-05-01

    Combined NMR, spin-echo and Moessbauer experiments have been performed to obtain hyperfine field distributions of the transition metal and metalloid elements in splat-cooled amorphous Fe 79 P 21 /sub -x/B/sub x/ alloys. These distributions are related to the local environments of the elements. The NMR signals are observed in the low frequency range 20-60 MHz and all the nuclei, i.e. Fe, P and B, may contribute to the spectral distribution. The resolution of the spectra into that due to Fe and (P + B) nuclei was made possible by using samples prepared with an Fe 56 isotope. The Fe distribution thus obtaned shows general agreement with the Moessbauer field distribution. From a careful analysis of the NMR data, the hyperfine field at the B nuclei in these amorphous alloys is found to range from 24 to 26 KG increasing with B content. An upper limit of 8 KG for the half-width is attributed to this distribution. The Moessbauer spectra of the Fe 57 nuclei resemble those for the crystalline Fe 75 P 25 /sub -x/B/sub x/ alloys. A fit of the spectra shows a field distribution which suggests the presence of structure. Such a structure may correspond to various Fe sites, also seen in the crystalline alloys. The distributions generally lie between about 160 and 330 KG, with a maximum at about 260 KG. These spectra do not show the presence of Fe nuclei with essentially zero hyperfine field as was obtained for amorphous Fe-Pd-P by Sharon et al. and for amorphous Fe-P by Logan et al. With increasing B content the center of gravity of the Fe distribution shifts to higher values. From a systematic study of the NMR lines and other considerations it is concluded that the P field distribution is broad and its hyperfine field is between 20 and 35 KG for the higher P concentration alloys

  11. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    Science.gov (United States)

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  12. A solid state NMR study of layered double hydroxides intercalated with para-amino salicylate, a tuberculosis drug

    DEFF Research Database (Denmark)

    Jensen, Nicholai Daugaard; Bjerring, Morten; Nielsen, Ulla Gro

    2016-01-01

    Para-amino salicylate (PAS), a tubercolosis drug, was intercalated in three different layered double hydroxides (MgAl, ZnAl, and CaAl-LDH) and the samples were studied by multi-nuclear (1H, 13C, and 27Al) solid state NMR (SSNMR) spectroscopy in combination with powder X-ray diffraction (PXRD....... Moreover, 13C MAS NMR and infra-red spectroscopy show that PAS did not decompose during synthesis. Large amounts (20-41%) of amorphous aluminum impurities were detected in the structure using 27Al single pulse and 3QMAS NMR spectra, which in combination with 1H single and double quantum experiments also...... showed that the M(II):Al ratio was higher than predicted from the bulk metal composition of MgAl-PAS and ZnAl-PAS. Moreover, the first high-resolution 1H SSNMR spectra of a CaAl LDH is reported and assigned using 1H single and double quantum experiments in combination with 27Al{1H} HETCOR....

  13. Use of proton-enhanced, natural abundance /sup 13/C NMR to study the molecular dynamics of model and biological membranes

    Energy Technology Data Exchange (ETDEWEB)

    Cornell, B A [Commonwealth Scientific and Industrial Research Organization, North Ryde (Australia). Div. of Food Research; Keniry, M [Sydney Univ. (Australia). Dept. of Physical Chemistry; Hiller, R G [Macquarie Univ., North Ryde (Australia). School of Biological Sciences; Smith, R [La Trobe Univ., Bundoora (Australia). Dept. of Biochemistry

    1980-06-16

    Proton-enhanced NMR of the natural abundance /sup 13/C nuclei is used to study the lipid mobility in dispersions containing cholesterol, the polypeptide gramicidin A, and in membrane proparations derived from spinach chloroplasts and bovine brain myelin.

  14. Push-through Direction Injectin NMR Automation

    Science.gov (United States)

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  15. NMR studies of 55Mn in amorphous CexMn100-x alloys

    International Nuclear Information System (INIS)

    Niki, H.; Okamura, K.; Yogi, M.; Amakai, Y.; Takano, H.; Murayama, S.; Obi, Y.

    2008-01-01

    In order to investigate the heavy-fermion like behavior of amorphous alloy Ce x Mn 100-x , the NMR measurements of 55 Mn (I=5/2 ) in Ce 65 Mn 35 have been carried out from 4.2 to 270 K using powdered sample. A broadened NMR spectrum containing five NQR lines split due to NQR interaction is observed. Quadrupole coupling constant 3e 2 Qq/2I(2I-1)h is gradually changed from about 1.8 MHz at 4.2 K to about 1.6 MHz at 270 K. Temperature dependence of the line width is expressed in the Curie-Weiss law with θ p =-10.5K. The value of Knight shift would be almost constant from 4.2 to 270 K

  16. NMR studies on magnetic properties of intermetallic compounds Er1-xYxCo3

    International Nuclear Information System (INIS)

    Niki, H.; Kinjo, T.; Yogi, M.; Pieper, M.W.; Gratz, E.; Markosyan, A.S.

    2007-01-01

    Field dependence of 59 Co NMR in ferrimagnetic Er 1-x Y x Co 3 was measured up to 8T at 4.2K using aligned powdered samples. For pure ErCo 3 in fields perpendicular to the c axis the resonance frequencies change discontinuously between 2 and 3T due to a field induced metamagnetic transition. The easy axis is found to be along the c axis for x=0 and 0.1. An average angle for the Co moments of 45+/-5 o from the c axis is obtained from field dependence of 59 Co NMR at x=0.3. Directions of Co moments are also found to be inclined from the c axis for x=0.5

  17. NMR Study on the Inclusion Complexes of β-Cyclodextrin with Isoflavones

    Directory of Open Access Journals (Sweden)

    Rui Zhao

    2016-03-01

    Full Text Available The structure of the inclusion complexes of β-cyclodextrin (β-CD with daidzein and daidzin in D2O were investigated using NMR spectroscopy. For the β-CD and daidzein system, two types of 1:1 complexes were formed with the daidzein deeply inserted into the CD cavity with different orientations. For the β-CD/daidzin system, a 1:1 complex was formed with the flavonoid part of daidzin entering the CD cavity from the wide rim. The inclusion complexes determined by NMR were constructed using molecular docking. Furthermore, the mixture of puerarin, daidzein and daidzin, which are the major isoflavonoid components present in Radix puerariae, was analyzed by diffusion-ordered spectroscopy (DOSY alone and upon addition of β-CD in order to mimic chromatographic conditions and compare their binding affinities.

  18. NMR studies of hydrogen diffusion in hydrogen uranyl phosphate tetrahydrate (HUP)

    International Nuclear Information System (INIS)

    Metcalfe, K.

    1988-01-01

    1 H NMR spin-lattice relaxation times, T 1 (Zeeman) and T 1p (rotating frame) and spin-spin relaxation times, T 2 , and 31 P NMR solid-echoes are reported for phase I and II of hydrogen uranyl phosphate tetrahydrate (HUP) at temperatures in the range 200-323 K. The spectral density functions extracted from the measured relaxation times for phases I and II are consistent with a 2D diffusion mechanism for hydrogen motion. 31 P second moments determined from the solid-echoes show that all the hydrogens diffuse rapidly in phase I, and that the hydrogen-bond site nearest to the phosphate oxygen is not occupied in phase II. The mechanism for diffusion in phase II is discussed. 30 refs.; 6 figs.; 2 tabs

  19. Study of relaxation times of nanocomposites of starch/montmorillonite employing low field NMR

    International Nuclear Information System (INIS)

    Brito, Luciana M.; Tavares, Maria Ines B.

    2011-01-01

    Due to its various applications and features, especially in therapies for controlled release of pharmaceuticals, polymers are among the most widely used excipients in pharmaceutical technology. One of the most promising nanocomposites is formed from organic polymer and inorganic clay minerals. Nanocomposites of starch/montmorillonite were prepared employing solution intercalation and characterized by proton spin-lattice relaxation time, through NMR relaxometry. The characterization of nanocomposites was done by X-ray diffraction and by nuclear magnetic resonance. The results showed that nanostructured films were obtained by intercalation from solution. Furthermore, the use of low field NMR, T1H, provided more precise information about the movement of materials, being complementary to the results obtained by X-ray diffraction. (author)

  20. Solid state NMR studies for a new carbonization process with high temperature preheating

    Science.gov (United States)

    Saito, Koji; Hatakeyama, Moriaki; Komaki, Ikuo; Katoh, Kenji

    2002-01-01

    A new carbonization process with rapid preheating and coke discharging at medium temperature has been developed in Japan. The result of this process shows that even when no or slightly coking coal is by 50 wt% the coking property is improved and a coking coke with cold strength usable at blast furnace can be manufactured with the new carbonization process. The mechanism of the coking property improvement was examined by coal properties using mainly solid state NMR ( 1H CRAMPS and 13C SPE/MAS, CP/MAS) and NMR imaging (single point imaging, in-situ imaging). It has been clarified that the molecular structure of coal is relaxed by the rapid heating treatment and, in addition, there is a close relation between hydrogen bonding and relaxation of the molecular structure of coal.