WorldWideScience

Sample records for nodal neutronics option

  1. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code.

  2. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code

  3. Discontinuous nodal schemes applied to the bidimensional neutron transport equation

    International Nuclear Information System (INIS)

    Delfin L, A.; Valle G, E. Del; Hennart B, J.P.

    1996-01-01

    In this paper several strong discontinuous nodal schemes are described, starting from the one that has only two interpolation parameters per cell to the one having ten. Their application to the spatial discretization of the neutron transport equation in X-Y geometry is also described, giving, for each one of the nodal schemes, the approximation for the angular neutron flux that includes the set of interpolation parameters and the corresponding polynomial space. Numerical results were obtained for several test problems presenting here the problem with the highest degree of difficulty and their comparison with published results 1,2 . (Author)

  4. Nodal methods for problems in fluid mechanics and neutron transport

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1985-01-01

    A new high-accuracy, coarse-mesh, nodal integral approach is developed for the efficient numerical solution of linear partial differential equations. It is shown that various special cases of this general nodal integral approach correspond to several high efficiency nodal methods developed recently for the numerical solution of neutron diffusion and neutron transport problems. The new approach is extended to the nonlinear Navier-Stokes equations of fluid mechanics; its extension to these equations leads to a new computational method, the nodal integral method which is implemented for the numerical solution of these equations. Application to several test problems demonstrates the superior computational efficiency of this new method over previously developed methods. The solutions obtained for several driven cavity problems are compared with the available experimental data and are shown to be in very good agreement with experiment. Additional comparisons also show that the coarse-mesh, nodal integral method results agree very well with the results of definitive ultra-fine-mesh, finite-difference calculations for the driven cavity problem up to fairly high Reynolds numbers

  5. A comparison of Nodal methods in neutron diffusion calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak [Israel Electric Company, Haifa (Israel) Nuclear Engineering Dept. Research and Development Div.

    1996-12-01

    The nuclear engineering department at IEC uses in the reactor analysis three neutron diffusion codes based on nodal methods. The codes, GNOMERl, ADMARC2 and NOXER3 solve the neutron diffusion equation to obtain flux and power distributions in the core. The resulting flux distributions are used for the furl cycle analysis and for fuel reload optimization. This work presents a comparison of the various nodal methods employed in the above codes. Nodal methods (also called Coarse-mesh methods) have been designed to solve problems that contain relatively coarse areas of homogeneous composition. In the nodal method parts of the equation that present the state in the homogeneous area are solved analytically while, according to various assumptions and continuity requirements, a general solution is sought out. Thus efficiency of the method for this kind of problems, is very high compared with the finite element and finite difference methods. On the other hand, using this method one can get only approximate information about the node vicinity (or coarse-mesh area, usually a feel assembly of a 20 cm size). These characteristics of the nodal method make it suitable for feel cycle analysis and reload optimization. This analysis requires many subsequent calculations of the flux and power distributions for the feel assemblies while there is no need for detailed distribution within the assembly. For obtaining detailed distribution within the assembly methods of power reconstruction may be applied. However homogenization of feel assembly properties, required for the nodal method, may cause difficulties when applied to fuel assemblies with many absorber rods, due to exciting strong neutron properties heterogeneity within the assembly. (author).

  6. Nodal spectrum method for solving neutron diffusion equation

    International Nuclear Information System (INIS)

    Sanchez, D.; Garcia, C. R.; Barros, R. C. de; Milian, D.E.

    1999-01-01

    Presented here is a new numerical nodal method for solving static multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X, Y directions and then considering flat approximations for the current. These flat approximations are the only approximations that are considered in this method, as a result the numerical solutions are completely free from truncation errors. We show numerical results to illustrate the methods accuracy for coarse mesh calculations

  7. Nodal approximations in space and time for neutron kinetics

    International Nuclear Information System (INIS)

    Grossman, L.M.; Hennart, J.P.

    2005-01-01

    A general formalism is described of the nodal type in time and space for the neutron kinetics equations. In space, several nodal methods are given of the Raviart-Thomas type (RT0 and RT1), of the Brezzi-Douglas-Marini type (BDM0 and BDM1) and of the Brezzi-Douglas-Fortin-Marini type (BDFM 1). In time, polynomial and analytical approximations are derived. In the analytical case, they are based on the inclusion of an exponential term in the basis function. They can be continuous or discontinuous in time, leading in particular to the well-known Crank-Nicolson, Backward Euler and θ schemes

  8. Solution and study of nodal neutron transport equation applying the LTSN-DiagExp method

    International Nuclear Information System (INIS)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta; Vilhena, Marco Tullio de; Barros, Ricardo Carvalho de

    2003-01-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtained the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  9. Comparison of neutronic transport equation resolution nodal methods

    International Nuclear Information System (INIS)

    Zamonsky, O.M.; Gho, C.J.

    1990-01-01

    In this work, some transport equation resolution nodal methods are comparatively studied: the constant-constant (CC), linear-nodal (LN) and the constant-quadratic (CQ). A nodal scheme equivalent to finite differences has been used for its programming, permitting its inclusion in existing codes. Some bidimensional problems have been solved, showing that linear-nodal (LN) are, in general, obtained with accuracy in CPU shorter times. (Author) [es

  10. One-dimensional nodal neutronics routines for the TRAC-BD1 thermal-hydraulics program

    International Nuclear Information System (INIS)

    Nigg, D.W.

    1983-09-01

    Nuclear reactor core transient neutronic behavior is currently modeled in the TRAC-BD1 code using a point-reactor kinetics formulation. This report describes a set of subroutines based on the Analytic Nodal Method that were written to provide TRAC-BD1 with a one-dimensional space-dependent neutronics capability. Use of the routines is illustrated with several test problems. The results of these problems show that the Analytic Nodal neutronics routines have desirable accuracy and computing time characteristics and should be a useful addition to TRAC-BD1

  11. Advances in the solution of three-dimensional nodal neutron transport equation

    International Nuclear Information System (INIS)

    Pazos, Ruben Panta; Hauser, Eliete Biasotto; Vilhena, Marco Tullio de

    2003-01-01

    In this paper we study the three-dimensional nodal discrete-ordinates approximations of neutron transport equation in a convex domain with piecewise smooth boundaries. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtaining the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. We give numerical results obtained with an algebraic computer system (for N up to 8) and with a code for higher values of N. We compare our results for the geometry of a box with a source in a vertex and a leakage zone in the opposite with others techniques used in this problem. (author)

  12. Nodal integral method for the neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    The nodal methodology is based on retaining a higher a higher degree of analyticity in the process of deriving the discrete-variable equations compared to conventional numerical methods. As a result, extensive numerical testing of nodal methods developed for a wide variety of partial differential equations and comparison of the results to conventional methods have established the superior accuracy of nodal methods on coarse meshes. Moreover, these tests have shown that nodal methods are more computationally efficient than finite difference and finite-element methods in the sense that they require shorter CPU times to achieve comparable accuracy in the solutions. However, nodal formalisms and the final discrete-variable equations they produce are, in general, more complicated than their conventional counterparts. This, together with anticipated difficulties in applying the transverse-averaging procedure in curvilinear coordinates, has limited the applications of nodal methods, so far, to Cartesian geometry, and with additional approximations to hexagonal geometry. In this paper the authors report recent progress in deriving and numerically implementing a nodal integral method (NIM) for solving the neutron diffusion equation in cylindrical r-z geometry. Also, presented are comparisons of numerical solutions to two test problems with those obtained by the Exterminator-2 code, which indicate the superior accuracy of the nodal integral method solutions on much coarser meshes

  13. Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation

    International Nuclear Information System (INIS)

    Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco

    2002-01-01

    In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S N equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS N method, which consists in the application of the Laplace transform to the set of nodal S N equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S N up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S N equations for N up to 16 and we begin the convergence of the S N nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)

  14. A polygonal nodal SP3 method for whole core Pin-by-Pin neutronics calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunzhao; Wu, Hongchun; Cao, Liangzhi, E-mail: xjtulyz@gmail.com, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Shaanxi (China)

    2011-07-01

    In this polygonal nodal-SP3 method, neutron transport equation is transformed by employing an isotropic SP3 method into two coupled equations that are both in the same mathematic form with the diffusion equation, and then a polygonal nodal method is proposed to solve the two coupled equations. In the polygonal nodal method, adjacent nodes are coupled through partial currents, and a nodal response matrix between incoming and outgoing currents is obtained by expanding detailed nodal flux distribution into a sum of exponential functions. This method avoids the transverse integral technique, which is widely used in regular nodal method and can not be used in triangular geometry because of the mathematical singularity. It is demonstrated by the numerical results of the test problems that the k{sub eff} and power distribution agree well with other codes, the triangular nodal-SP3 method appears faster, and that whole core pin-by-pin transport calculation with fine meshes is feasible after parallelization and acceleration. (author)

  15. Options for the Delft advanced neutron source

    International Nuclear Information System (INIS)

    Gibcus, H.P.M.; Leege, P.F.A. de; Labohm, F.; Vries, J.W. de; Verkooijen, A.H.M.; Valko, J.; Feltes, W.; Heinecke, J.

    2003-01-01

    Results of feasibility studies are presented for options for an advanced neutron source for the Delft reactor including upgrading the HOR, a 2 MW pool-type research reactor at the Delft University of Technology. The primary utilisation of the HOR focuses on beam research applications with neutrons and positrons. The aim of being scientifically competitive in that research area requires a thermal neutron flux level of at least 1x10 14 n/cm 2 /s. The feasibility of an accelerator driven neutron source and upgrading the present core to a super compact core for reaching this goal has been investigated at large from a safety and operational point of view. For the upgraded core, a 3x3 fuel assembly arrangement and beryllium reflected at all sides was chosen. Figures on the system performance, including the merits of a cold neutron source application feeding the neutron guide system, are presented. (author)

  16. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  17. A three-dimensional nodal neutron kinetics capability for relaps

    International Nuclear Information System (INIS)

    Judd, J.L.; Weaver, W.L.

    1996-01-01

    The incorporation of a three-dimensional neutron kinetics capability into the DOE version of the RELAP5/MOD3.2 reactor safety code is discussed. A brief discussion of the kinetics method is given along with a discussion of the cross section parameterization models available in RELAP5/MOD3.2. The RELAP5/MOD3.2 code is then used to perform calculations of the NEACRP rod ejection and rod withdrawal benchmarks, and results are presented

  18. A fast nodal neutron diffusion method for cartesian geometry

    International Nuclear Information System (INIS)

    Makai, M.; Maeder, C.

    1983-01-01

    A numerical method based on an analytical solution to the three-dimensional two-group diffusion equation has been derived assuming that the flux is a sum of the functions of one variable. In each mesh the incoming currents are used as boundary conditions. The final equations for the average flux and the outgoing currents are of the response matrix type. The method is presented in a form that can be extended to the general multigroup case. In the SEXI computer program developed on the basis of this method, the response matrix elements are recalculated in each outer iteration to minimize the data transfer between disk storage and central memory. The efficiency of the method is demonstrated for a light water reactor (LWR) benchmark problem. The SEXI program has been incorporated into the LWR simulator SILWER code as a possible option

  19. An analytical approach for a nodal scheme of two-dimensional neutron transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Cabrera, L.C.; Prolo Filho, J.F.

    2011-01-01

    Research highlights: → Nodal equations for a two-dimensional neutron transport problem. → Analytical Discrete Ordinates Method. → Numerical results compared with the literature. - Abstract: In this work, a solution for a two-dimensional neutron transport problem, in cartesian geometry, is proposed, on the basis of nodal schemes. In this context, one-dimensional equations are generated by an integration process of the multidimensional problem. Here, the integration is performed for the whole domain such that no iterative procedure between nodes is needed. The ADO method is used to develop analytical discrete ordinates solution for the one-dimensional integrated equations, such that final solutions are analytical in terms of the spatial variables. The ADO approach along with a level symmetric quadrature scheme, lead to a significant order reduction of the associated eigenvalues problems. Relations between the averaged fluxes and the unknown fluxes at the boundary are introduced as the usually needed, in nodal schemes, auxiliary equations. Numerical results are presented and compared with test problems.

  20. Numerical solution of the Neutron Transport Equation using discontinuous nodal methods at X-Y geometry

    International Nuclear Information System (INIS)

    Delfin L, A.

    1996-01-01

    The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D c and polynomial space S c corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S c and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S N approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author)

  1. An iterative algorithm for solving the multidimensional neutron diffusion nodal method equations on parallel computers

    International Nuclear Information System (INIS)

    Kirk, B.L.; Azmy, Y.Y.

    1992-01-01

    In this paper the one-group, steady-state neutron diffusion equation in two-dimensional Cartesian geometry is solved using the nodal integral method. The discrete variable equations comprise loosely coupled sets of equations representing the nodal balance of neutrons, as well as neutron current continuity along rows or columns of computational cells. An iterative algorithm that is more suitable for solving large problems concurrently is derived based on the decomposition of the spatial domain and is accelerated using successive overrelaxation. This algorithm is very well suited for parallel computers, especially since the spatial domain decomposition occurs naturally, so that the number of iterations required for convergence does not depend on the number of processors participating in the calculation. Implementation of the authors' algorithm on the Intel iPSC/2 hypercube and Sequent Balance 8000 parallel computer is presented, and measured speedup and efficiency for test problems are reported. The results suggest that the efficiency of the hypercube quickly deteriorates when many processors are used, while the Sequent Balance retains very high efficiency for a comparable number of participating processors. This leads to the conjecture that message-passing parallel computers are not as well suited for this algorithm as shared-memory machines

  2. Solution and study of nodal neutron transport equation applying the LTS{sub N}-DiagExp method

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Faculdade de Matematica]. E-mail: eliete@pucrs.br; rpp@mat.pucrs.br; Vilhena, Marco Tullio de [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Instituto de Matematica]. E-mail: vilhena@mat.ufrgs.br; Barros, Ricardo Carvalho de [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: ricardo@iprj.uerj.br

    2003-07-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S{sub N} equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS{sub N} method, first applying the Laplace transform to the set of the nodal S{sub N} equations and then obtained the solution by symbolic computation. We include the LTS{sub N} method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS{sub N} approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  3. The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2014-01-01

    Full Text Available A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised. Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

  4. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes

    International Nuclear Information System (INIS)

    Mugica R, C.A.; Valle G, E. del

    2005-01-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  5. Pellet by pellet neutron flux calculations coupled with nodal expansion method

    International Nuclear Information System (INIS)

    Aldo, Dall'Osso

    2003-01-01

    We present a technique whose aim is to replace 2-dimensional pin by pin de-homogenization, currently done in core reactor calculations with the nodal expansion method (NEM), by a 3-dimensional finite difference diffusion calculation. This fine calculation is performed as a zoom in each node taking as boundary conditions the results of the NEM calculations. The size of fine mesh is of the order of a fuel pellet. The coupling between fine and NEM calculations is realised by an albedo like boundary condition. Some examples are presented showing fine neutron flux shape near control rods or assembly grids. Other fine flux behaviour as the thermal flux rise in the fuel near the reflector is emphasised. In general the results show the interest of the method in conditions where the separability of radial and axial directions is not granted. (author)

  6. Improvement of neutron kinetics module in TRAC-BF1code: one-dimensional nodal collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Jambrina, Ana; Barrachina, Teresa; Miro, Rafael; Verdu, Gumersindo, E-mail: ajambrina@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Universidade Politecnica de Valencia (UPV), Valencia (Spain); Soler, Amparo, E-mail: asoler@iberdrola.es [SEA Propulsion S.L., Madrid (Spain); Concejal, Alberto, E-mail: acbe@iberdrola.es [Iberdrola Ingenieria y Construcion S.A.U., Madrid (Spain)

    2013-07-01

    The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method. (author)

  7. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    International Nuclear Information System (INIS)

    Filho, J. F. P.; Barichello, L. B.

    2013-01-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  8. The Thermal Neutron Beam Option for NECTAR at MLZ

    Science.gov (United States)

    Mühlbauer, M. J.; Bücherl, T.; Genreith, C.; Knapp, M.; Schulz, M.; Söllradl, S.; Wagner, F. M.; Ehrenberg, H.

    The beam port SR10 at the neutron source FRM II of Heinz Maier-Leibnitz Zentrum (MLZ) is equipped with a moveable assembly of two uranium plates, which can be placed in front of the entrance window of the beam tube via remote control. With these plates placed in their operating position the thermal neutron spectrum produced by the neutron source FRM II is converted to fission neutrons with 1.9 MeV of mean energy. This fission neutron spectrum is routinely used for medical applications at the irradiation facility MEDAPP, for neutron radiography and tomography experiments at the facility NECTAR and for materials testing. If, however, the uranium plates are in their stand-by position far off the tip of the beam tube and the so-called permanent filter for thermal neutrons is removed, thermal neutrons originating from the moderator tank enter the beam tube and a thermal spectrum becomes available for irradiation or activation of samples. By installing a temporary flight tube the beam may be used for thermal neutron radiography and tomography experiments at NECTAR. The thermal neutron beam option not only adds a pure thermal neutron spectrum to the energy ranges available for neutron imaging at MLZ instruments but it also is an unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option for NECTAR is funded by BMBF in frame of research project 05K16VK3.

  9. Neutron transport in hexagonal reactor cores modeled by trigonal-geometry diffusion and simplified P{sub 3} nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Duerigen, Susan

    2013-05-15

    The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies discretized as cells consisting of equilateral triangles is its mesh refinement capability. In this thesis, a diffusion and a simplified P{sub 3} (or SP{sub 3}) neutron transport nodal method are developed based on trigonal geometry. Both models are implemented in the reactor dynamics code DYN3D. As yet, no other well-established nodal core analysis code comprises an SP{sub 3} transport theory model based on trigonal meshes. The development of two methods based on different neutron transport approximations but using identical underlying spatial trigonal discretization allows a profound comparative analysis of both methods with regard to their mathematical derivations, nodal expansion approaches, solution procedures, and their physical performance. The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are based on the transverse-integration procedure, which renders them computationally efficient, and they use a combination of polynomial and exponential functions to represent the neutron flux moments of the SP{sub 3} and diffusion equations, which guarantees high accuracy. The SP{sub 3} equations are derived in within-group form thus being of diffusion type. On this basis, the conventional diffusion solver structure can be retained also for the solution of the SP{sub 3} transport problem. The verification analysis provides proof of the methodological reliability of both trigonal DYN3D models. By means of diverse hexagonal academic benchmark and realistic detailed-geometry full-transport-theory problems, the superiority of the SP{sub 3} transport over the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is, e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.

  10. Evaluation of the use of nodal methods for MTR neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reitsma, F.; Mueller, E.Z.

    1997-08-01

    Although modern nodal methods are used extensively in the nuclear power industry, their use for research reactor analysis has been very limited. The suitability of nodal methods for material testing reactor analysis is investigated with the emphasis on the modelling of the core region (fuel assemblies). The nodal approach`s performance is compared with that of the traditional finite-difference fine mesh approach. The advantages of using nodal methods coupled with integrated cross section generation systems are highlighted, especially with respect to data preparation, simplicity of use and the possibility of performing a great variety of reactor calculations subject to strict time limitations such as are required for the RERTR program.

  11. Numerical solution of the Neutron Transport Equation using discontinuous nodal methods at X-Y geometry; Solucion numerica de la ecuacion de transporte de neutrones usando metodos nodales discontinuos en geometria X-Y

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A

    1997-12-31

    The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D{sub c} and polynomial space S{sub c} corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S{sub c} and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S{sub N} approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author).

  12. A one-dimensional, one-group absorption-production nodal method for neutron flux and power distributions calculations

    International Nuclear Information System (INIS)

    Ferreira, C.R.

    1984-01-01

    It is presented the absorption-production nodal method for steady and dynamical calculations in one-dimension and one group energy. It was elaborated the NOD1D computer code (in FORTRAN-IV language). Calculations of neutron flux and power distributions, burnup, effective multiplication factors and critical boron concentration were made with the NOD1D code and compared with results obtained through the CITATION code, which uses the finite difference method. The nuclear constants were produced by the LEOPARD code. (M.C.K.) [pt

  13. Options for the modified radiation weighting factor of neutrons

    International Nuclear Information System (INIS)

    Kellerer, A. M.; Leuthold, G.; Mares, V.; Schraube, H.

    2004-01-01

    The recent ICRP Report 92 has noted that the current radiation weighting factor, w R , depends on the energy of the incident neutrons in a manner that differs substantially from the dependence, which results from the current convention, Q(L). At all neutron energies, but most conspicuously below 1 MeV, the values of w R exceed those of the effective quality factor, q E . The discrepancy is largely due to the fact that - in the absence of computed values of the effective quality factor for neutrons - w R has been patterned after the values of the ambient quality factor, which accounts insufficiently for the low-linear energy transfer (LET) gamma ray component from neutron capture in the human body. There are different options to remove the discrepancy. Option 1 is to reduce w R substantially at all neutron energies to make it equal to q E for a standard condition, such as isotropic incidence of the neutrons. Since such a reduction may cause problems in those countries where the current w R values are already legally implemented, ICRP 92 has proposed what is here termed Option 2. It recommended to replace Q(L) by the increased value 1.6 Q(L) - 0.6 and, accordingly, to make the radiation weighting factor equal to 1.6 q E - 0.6. With Option 2 the radiation weighting factor needs to be decreased appreciably at low neutron energies, but for fission neutron spectra the overall changes are minor. To guide - regardless which option is chosen - the selection of the numerical values, the effective quality factor, q E , is computed here for different directional distributions of neutrons incident on the anthropomorphic phantoms ADAM and EVA. None of the sex averaged numerical values is found to deviate much from those for isotropic incidence. Isotropic incidence can, thus, be used as an adequate standard condition. A numerical approximation is proposed for the standard q E that is nearly equivalent to a formula invoked by ICRP 92, but is somewhat simpler and provides realistic

  14. A new communication scheme for the neutron diffusion nodal method in a distributed computing environment

    International Nuclear Information System (INIS)

    Kirk, B.L.; Azmy, Y.

    1994-01-01

    A modified scheme is developed for solving the two-dimensional nodal diffusion equations on distributed memory computers. The scheme is aimed at minimizing the volume of communication among processors while maximizing the tasks in parallel. Results show a significant improvement in parallel efficiency on the Intel iPSC/860 hypercube compared to previous algorithms

  15. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes; Solucion de la Ecuacion de transporte de neutrones en geometria hexagonal usando esquemas nodales fuertemente discontinuos

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, C.A.; Valle G, E. del [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: cmugica@ipn.mx

    2005-07-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD{sub 5,3} and WD{sub 12,8} (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD{sub 5,3} and WD{sub 12,8} were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD{sub 3} and SD{sub 8} (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  16. Expanding options in radiation oncology: neutron beam therapy

    International Nuclear Information System (INIS)

    Cohen, L.

    1982-01-01

    Twelve years experience with neutron beam therapy in Britain, the USA, Europe and Japan shows that local control is achievable in late-stage epidermoid cancer somewhat more frequently than with conventional radiotherapy. Tumours reputed to be radioresistant (salivary gland, bladder, rectosigmoid, melanoma, bone and soft-tissue sarcomas) have proved to be particularly responsive to neutrons. Pilot studies in brain and pancreatic tumours suggest promising new approaches to management of cancer in these sites. The availability of neutron therapy in the clinical environment opens new prospects for irradiation of 'radioresistant' tumours, permits more conservative cancer surgery, expands the use of elective chemotherapy and provides a wider range of options for cancer patients. (author)

  17. Development of a computer code for neutronic calculations of a hexagonal lattice of nuclear reactor using the flux expansion nodal method

    Directory of Open Access Journals (Sweden)

    Mohammadnia Meysam

    2013-01-01

    Full Text Available The flux expansion nodal method is a suitable method for considering nodalization effects in node corners. In this paper we used this method to solve the intra-nodal flux analytically. Then, a computer code, named MA.CODE, was developed using the C# programming language. The code is capable of reactor core calculations for hexagonal geometries in two energy groups and three dimensions. The MA.CODE imports two group constants from the WIMS code and calculates the effective multiplication factor, thermal and fast neutron flux in three dimensions, power density, reactivity, and the power peaking factor of each fuel assembly. Some of the code's merits are low calculation time and a user friendly interface. MA.CODE results showed good agreement with IAEA benchmarks, i. e. AER-FCM-101 and AER-FCM-001.

  18. A variational synthesis nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M.

    1999-01-01

    A self-consistent nodal approximation method for computing discrete ordinates neutron flux distributions has been developed from a variational functional for neutron transport theory. The advantage of the new nodal method formulation is that it is self-consistent in its definition of the homogenized nodal parameters, the construction of the global nodal equations, and the reconstruction of the detailed flux distribution. The efficacy of the method is demonstrated by two-dimensional test problems

  19. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation

  20. Spectral nodal methodology for multigroup slab-geometry discrete ordinates neutron transport problems with linearly anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, Amaury M.; Filho, Hermes A.; Silva, Davi M.; Garcia, Carlos R., E-mail: aoliva@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: davijmsilva@yahoo.com.br, E-mail: cgh@instec.cu [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional; Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    In this paper, we propose a numerical methodology for the development of a method of the spectral nodal class that will generate numerical solutions free from spatial truncation errors. This method, denominated Spectral Deterministic Method (SDM), is tested as an initial study of the solutions (spectral analysis) of neutron transport equations in the discrete ordinates (S{sub N}) formulation, in one-dimensional slab geometry, multigroup approximation, with linearly anisotropic scattering, considering homogeneous and heterogeneous domains with fixed source. The unknowns in the methodology are the cell-edge, and cell average angular fluxes, the numerical values calculated for these quantities coincide with the analytic solution of the equations. These numerical results are shown and compared with the traditional ne- mesh method Diamond Difference (DD) and the coarse-mesh method spectral Green's function (SGF) to illustrate the method's accuracy and stability. The solution algorithms problems are implemented in a computer simulator made in C++ language, the same that was used to generate the results of the reference work. (author)

  1. A highly efficient parallel algorithm for solving the neutron diffusion nodal equations on shared-memory computers

    International Nuclear Information System (INIS)

    Azmy, Y.Y.; Kirk, B.L.

    1990-01-01

    Modern parallel computer architectures offer an enormous potential for reducing CPU and wall-clock execution times of large-scale computations commonly performed in various applications in science and engineering. Recently, several authors have reported their efforts in developing and implementing parallel algorithms for solving the neutron diffusion equation on a variety of shared- and distributed-memory parallel computers. Testing of these algorithms for a variety of two- and three-dimensional meshes showed significant speedup of the computation. Even for very large problems (i.e., three-dimensional fine meshes) executed concurrently on a few nodes in serial (nonvector) mode, however, the measured computational efficiency is very low (40 to 86%). In this paper, the authors present a highly efficient (∼85 to 99.9%) algorithm for solving the two-dimensional nodal diffusion equations on the Sequent Balance 8000 parallel computer. Also presented is a model for the performance, represented by the efficiency, as a function of problem size and the number of participating processors. The model is validated through several tests and then extrapolated to larger problems and more processors to predict the performance of the algorithm in more computationally demanding situations

  2. Nodal deterministic simulation for problems of neutron shielding in multigroup formulation

    International Nuclear Information System (INIS)

    Baptista, Josue Costa; Heringer, Juan Diego dos Santos; Santos, Luiz Fernando Trindade; Alves Filho, Hermes

    2013-01-01

    In this paper, we propose the use of some computational tools, with the implementation of numerical methods SGF (Spectral Green's Function), making use of a deterministic model of transport of neutral particles in the study and analysis of a known and simplified problem of nuclear engineering, known in the literature as a problem of neutron shielding, considering the model with two energy groups. These simulations are performed in MatLab platform, version 7.0, and are presented and developed with the help of a Computer Simulator providing a friendly computer application for their utilities

  3. Application of the nodal method RTN-0 for the solution of the neutron diffusion equation dependent of time in hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Esquivel E, J.; Alonso V, G.; Del Valle G, E.

    2015-09-01

    The solution of the neutron diffusion equation either for reactors in steady state or time dependent, is obtained through approximations generated by implementing of nodal methods such as RTN-0 (Raviart-Thomas-Nedelec of zero index), which is used in this study. Since the nodal methods are applied in quadrangular geometries, in this paper a technique in which the hexagonal geometry through the transfinite interpolation of Gordon-Hall becomes the appropriate geometry to make use of the nodal method RTN-0 is presented. As a result, a computer program was developed, whereby is possible to obtain among other results the neutron multiplication effective factor (k eff ), and the distribution of radial and/or axial power. To verify the operation of the code, was applied to three benchmark problems: in the first two reactors VVER and FBR, results k eff and power distribution are obtained, considering the steady state case of reactor; while the third problem a type VVER is analyzed, in its case dependent of time, which qualitative results are presented on the behavior of the reactor power. (Author)

  4. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    International Nuclear Information System (INIS)

    Jacqmin, R.P.

    1991-01-01

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ''modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise

  5. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, Robert P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  6. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  7. An analytical approach for a nodal formulation of a two-dimensional fixed-source neutron transport problem in heterogeneous medium

    Energy Technology Data Exchange (ETDEWEB)

    Basso Barichello, Liliane; Dias da Cunha, Rudnei [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst. de Matematica; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada

    2015-05-15

    A nodal formulation of a fixed-source two-dimensional neutron transport problem, in Cartesian geometry, defined in a heterogeneous medium, is solved by an analytical approach. Explicit expressions, in terms of the spatial variables, are derived for averaged fluxes in each region in which the domain is subdivided. The procedure is an extension of an analytical discrete ordinates method, the ADO method, for the solution of the two-dimensional homogeneous medium case. The scheme is developed from the discrete ordinates version of the two-dimensional transport equation along with the level symmetric quadrature scheme. As usual for nodal schemes, relations between the averaged fluxes and the unknown angular fluxes at the contours are introduced as auxiliary equations. Numerical results are in agreement with results available in the literature.

  8. A procedure for solving the neutron diffusion equation on a parallel micro-processor; modifications to the nodal expansion codes RECNEC and HEXNEC to implement the procedure

    International Nuclear Information System (INIS)

    Putney, J.M.

    1983-05-01

    The characteristics of a simple parallel micro-processor (PMP) are reviewed and its software requirements discussed. One of the more immediate applications is the multi-spatial simulation of a nuclear reactor station. This is of particular interest because 3D reactor simulation might then be possible as part of operating procedure for PFR and CDFR. A major part of a multi-spatial reactor simulator is the solution of the neutron diffusion equation. A procedure is described for solving the equation on a PMP, which is applied to the nodal expansion method with modifications to the nodal expansion codes RECNEC and HEXNEC. Estimations of the micro-processor requirements for the simulation of both PFR and CDFR are given. (U.K.)

  9. New aspects in the implementation of the quasi-static method for the solution of neutron diffusion problems in the framework of a nodal method

    International Nuclear Information System (INIS)

    Caron, D.; Dulla, S.; Ravetto, P.

    2016-01-01

    Highlights: • The implementation of the quasi-static method in 3D nodal diffusion theory model in hexagonal-z geometry is described. • Different formulations of the quasi-static technique are discussed. • The results presented illustrate the features of the various formulations, highlighting advantages and drawbacks. • A novel adaptive procedure for the selection of the time interval between shape recalculations is presented. - Abstract: The ability to accurately model the dynamic behaviour of the neutron distribution in a nuclear system is a fundamental aspect of reactor design and safety assessment. Due to the heavy computational burden associated to the direct time inversion of the full model, the quasi-static method has become a standard approach to the numerical solution of the nuclear reactor dynamic equations on the full phase space. The present paper is opened by an introductory critical review of the basics of the quasi-static scheme for the general neutron kinetic problem. Afterwards, the implementation of the quasi-static method in the context of a three-dimensional nodal diffusion theory model in hexagonal-z geometry is described, including some peculiar aspects of the adjoint nodal equations and the explicit formulation of the quasi-static nodal equations. The presentation includes the discussion of different formulations of the quasi-static technique. The results presented illustrate the features of the various formulations, highlighting the corresponding advantages and drawbacks. An adaptive procedure for the selection of the time interval between shape recalculations is also presented, showing its usefulness in practical applications.

  10. Study of the funtionalization of nodal cross sections in multigrupos for neutronics-thermohydraulic PWR core 3D calculations

    International Nuclear Information System (INIS)

    Sanchez-Cervera, S.; Hueso, C.; Herrero, J. J.

    2011-01-01

    This paper contains the work developed to study the dependencies of the nodal parameters with local variables. After entering the parameter space of operation, are obtained constants homogenized through calculations with deterministic code of transport NEWT with SCALE system codes.

  11. Application of the nodal method RTN-0 for the solution of the neutron diffusion equation dependent of time in hexagonal-Z geometry; Aplicacion del metodo nodal RTN-0 para la solucion de la ecuacion de difusion de neutrones dependiente del tiempo en geometria hexagonal-Z

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel E, J.; Alonso V, G. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: jaime.esquivel@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, 07738 Ciudad de Mexico (Mexico)

    2015-09-15

    The solution of the neutron diffusion equation either for reactors in steady state or time dependent, is obtained through approximations generated by implementing of nodal methods such as RTN-0 (Raviart-Thomas-Nedelec of zero index), which is used in this study. Since the nodal methods are applied in quadrangular geometries, in this paper a technique in which the hexagonal geometry through the transfinite interpolation of Gordon-Hall becomes the appropriate geometry to make use of the nodal method RTN-0 is presented. As a result, a computer program was developed, whereby is possible to obtain among other results the neutron multiplication effective factor (k{sub eff}), and the distribution of radial and/or axial power. To verify the operation of the code, was applied to three benchmark problems: in the first two reactors VVER and FBR, results k{sub eff} and power distribution are obtained, considering the steady state case of reactor; while the third problem a type VVER is analyzed, in its case dependent of time, which qualitative results are presented on the behavior of the reactor power. (Author)

  12. The upgraded cold neutron triple-axis spectrometer FLEXX – enhanced capabilities by new instrumental options

    Directory of Open Access Journals (Sweden)

    Habicht Klaus

    2015-01-01

    Full Text Available The upgrade of the cold neutron triple axis spectrometer FLEXX, a work-horse instrument for inelastic neutron scattering matching the sample environment capabilities at Helmholtz-Zentrum Berlin, has been successfully accomplished. Experiments confirmed an order of magnitude gain in flux now allowing for intensity demanding options to be fully exploited at FLEXX. In this article, we describe the layout and design of two newly available FLEXX instrument options in detail. The new Heusler analyzer gives an increase of the detected polarized neutron flux due to its superior focusing properties, significantly improving the feasibility of future polarized and neutron resonance spin echo experiments. The MultiFLEXX option provides simultaneous access to large regions in wavevector and energy space for inelastic excitations thus adding mapping capabilities to the spectrometer.

  13. Neutronics Study on LEU Nuclear Thermal Rocket Fuel Options

    Energy Technology Data Exchange (ETDEWEB)

    Venneri, Paolo; Kim, Yong Hee [KAIST, Daejeon (Korea, Republic of); Howe, Steven [CSNR, Idaho (United States)

    2014-10-15

    This has resulted in a non-trivial simplification of the tasks needed to develop such an engine and the quick initial development of the concept. There are, however, a series of key core-design choices that are currently under scrutiny in the field that have to be resolved in order for the LEU-NTR to be fully developed. The most important of these is the choice of fuel: carbide composite or tungsten cermet. This study presents a first comparison of the two fuel types specifically in the neutronic application to the LEU-NTR, keeping in mind the unique neutronic environment and the system requirements of the system. The scope of the study itself is limited to a neutronics study of the two fuels and only a cursory overview of the material properties of the fuels themselves... The results of this study have led to two major conclusions. First of all is that the carbide composite fuel is, from a neutronics standpoint, a much better fuel. It has a low absorption cross-section, is inherently a strong moderator, is able to achieve a higher reactivity using smaller amounts of fissile material, and can potentially enable a smaller reactor. Second is that despite its neutronic difficulties (high absorption, inferior moderating abilities, and lower k-infinity values) the tungsten cermet fuel is still able to perform satisfactorily in an LEU-NTR, largely due to its ability to have an extremely high fuel loading.

  14. Options for a next generation neutron source for neutron scattering based on the projected linac facility at JAERI

    International Nuclear Information System (INIS)

    Mezei, F.; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Aizawa, Kazuya; Suzuki, Jun-ichi.

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has a project to construct a high intensity proton accelerator to promote wide basic science using neutrons and nuclear power technologies such as radioactive nuclide transmutation. One of the most important field for utilization of neutron beam is neutron scattering. The energy and the averaged current obtained by the proton accelerator are 1.5 GeV and 4-5.3 mA, respectively and these provide 6-8 MW power. The repetition frequency is 50-60 Hz. Evaluation of options for the use of accelerators for neutron production for neutron scattering research and investigation of the neutron research opportunities offered by sharing the superconducting linac planned at JAERI were discussed. There are two ways of the utilization of proton beams for neutron scattering experiment. One is for long pulse spallation source (LPSS) and the other is for short pulse spallation source (SPSS). Quantitative evaluation of instrument performance with LPSS and SPSS was examined in the intensive discussion, calculations, workshop on this topics with Prof. F. Mezei who stayed at JAERI from October 24 to November 6, 1996. A report of the collaborative workshop will be also published separately. (author)

  15. An object-oriented 3D nodal finite element solver for neutron transport calculations in the Descartes project

    Energy Technology Data Exchange (ETDEWEB)

    Akherraz, B.; Lautard, J.J. [CEA Saclay, Dept. Modelisation de Systemes et Structures, Serv. d' Etudes des Reacteurs et de Modelisation Avancee (DMSS/SERMA), 91 - Gif sur Yvette (France); Erhard, P. [Electricite de France (EDF), Dir. de Recherche et Developpement, Dept. Sinetics, 92 - Clamart (France)

    2003-07-01

    In this paper we present two applications of the Nodal finite elements developed by Hennart and del Valle, first to three-dimensional Cartesian meshes and then to two-dimensional Hexagonal meshes. This work has been achieved within the framework of the DESCARTES project, which is a co-development effort by the 'Commissariat a l'Energie Atomique' (CEA) and 'Electricite de France' (EDF) for the development of a toolbox for reactor core calculations based on object oriented programming. The general structure of this project is based on the object oriented method. By using a mapping technique proposed in Schneider's thesis and del Valle, Mund, we show how this structuration allows us an easy implementation of the hexagonal case from the Cartesian case. The main attractiveness of this methodology is the possibility of a pin-by-pin representation by division of each lozenge into smaller ones. Furthermore, we will explore the use of non structured quadrangles to treat the circular geometry within a hexagon. It remains nevertheless, in the hexagonal case, the implementation of the acceleration of the internal iterations by the DSA (Diffusion Synthetic Acceleration) or the TSA. (authors)

  16. A validation study of the BURNUP and associated options of the MONTE CARLO neutronics code MONK5W

    International Nuclear Information System (INIS)

    Howard, E.A.

    1985-11-01

    This is a report on the validation of the burnup option of the Monte Carlo Neutronics Code MONK5W, together with the associated facilities which allow for control rod movements and power changes. The validation uses reference solutions produced by the Deterministic Neutronics Code LWR-WIMS for a 2D model which represents a whole reactor calculation with control rod movements. (author)

  17. NESTLE: A nodal kinetics code

    International Nuclear Information System (INIS)

    Al-Chalabi, R.M.; Turinsky, P.J.; Faure, F.-X.; Sarsour, H.N.; Engrand, P.R.

    1993-01-01

    The NESTLE nodal kinetics code has been developed for utilization as a stand-alone code for steady-state and transient reactor neutronic analysis and for incorporation into system transient codes, such as TRAC and RELAP. The latter is desirable to increase the simulation fidelity over that obtained from currently employed zero- and one-dimensional neutronic models and now feasible due to advances in computer performance and efficiency of nodal methods. As a stand-alone code, requirements are that it operate on a range of computing platforms from memory-limited personal computers (PCs) to supercomputers with vector processors. This paper summarizes the features of NESTLE that reflect the utilization and requirements just noted

  18. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  19. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo [Korea Advanced Institute of Science and Tehcnology, Daejeon (Korea, Republic of)

    2006-03-15

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis.

  20. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    International Nuclear Information System (INIS)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo

    2006-03-01

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis

  1. KEK NODAL user's guide

    International Nuclear Information System (INIS)

    Akiyama, Atsuyoshi; Katoh, Tadahiko; Kikutani, Eiji; Koiso, Haruyo; Kurokawa, Shin-ichi; Oide, Katsunobu.

    1984-06-01

    NODAL is an interpreter language for accelerator control developed at CERN SPS and has been used successfully since 1974. At present NODAL or NODAL-like languages are used at DESY PETRA and CERN CPS. At KEK, we have also adopted NODAL for the control of TRISTAN, a 30 GeV x 30 GeV electron-positron colliding beam facility. The KEK version of NODAL has the following improvements on the SPS NODAL: (1) the fast execution speed due to the compiler-interpreter scheme, and (2) the full-screen editing facility. This manual explains how to use the KEK NODAL. It is based on the manual of the SPS NODAL, THE NODAL SYSTEM FOR THE SPS, by M.C. Crowley-Milling and G.C. Shering, CERN 78-07. We have made some additions and modifications to make the manual more appropriate for the KEK NODAL system, paying attention to retaining the good features of the original SPS NODAL manual. We acknowledge Professor M.C. Crowley-Milling, Dr G.C. Shering and CERN for their kind permission for this modification. (author)

  2. KEK NODAL system

    International Nuclear Information System (INIS)

    Kurokawa, S.; Abe, K.; Akiyama, A.; Katoh, T.; Kikutani, E.; Koiso, H.; Kurihara, N.; Oide, K.; Shinomoto, M.

    1985-01-01

    The KEK NODAL system, which is based on the NODAL devised at the CERN SPS, works on an optical-fiber token ring network of twenty-four minicomputers (Hitachi HIDIC 80's) to control the TRISTAN accelerator complex, now being constructed at KEK. KEK NODAL retains main features of the original NODAL: the interpreting scheme, the multi-computer programming facility, and the data-module concept. In addition, it has the following characteristics: fast execution due to the compiler-interpreter method, a multicomputer file system, a full-screen editing facility, and a dynamic linkage scheme of data modules and NODAL functions. The structure of the KEK NODAL system under PMS, a real-time multitasking operating system of HIDIC 80, is described; the NODAL file system is also explained

  3. Improved Dose Targeting for a Clinical Epithermal Neutron Capture Beam Using Optional 6Li Filtration

    International Nuclear Information System (INIS)

    Binns, Peter J.; Riley, Kent J.; Ostrovsky, Yakov; Gao Wei; Albritton, J. Raymond; Kiger, W.S.; Harling, Otto K.

    2007-01-01

    Purpose: The aim of this study was to construct a 6 Li filter and to improve penetration of thermal neutrons produced by the fission converter-based epithermal neutron beam (FCB) for brain irradiation during boron neutron capture therapy (BNCT). Methods and Materials: Design of the 6 Li filter was evaluated using Monte Carlo simulations of the existing beam line and radiation transport through an ellipsoidal water phantom. Changes in beam performance were determined using three figures of merit: (1) advantage depth (AD), the depth at which the total biologically weighted dose to tumor equals the maximum weighted dose to normal tissue; (2) advantage ratio (AR), the ratio of the integral tumor dose to that of normal tissue averaged from the surface to the AD; and (3) advantage depth dose rate (ADDR), the therapeutic dose rate at the AD. Dosimetry performed with the new filter installed provided calibration data for treatment planning. Past treatment plans were recalculated to illustrate the clinical potential of the filter. Results: The 8-mm-thick Li filter is more effective for smaller field sizes, increasing the AD from 9.3 to 9.9 cm, leaving the AR unchanged at 5.7 but decreasing the ADDR from 114 to 55 cGy min -1 for the 12 cm diameter aperture. Using the filter increases the minimum deliverable dose to deep seated tumors by up to 9% for the same maximum dose to normal tissue. Conclusions: Optional 6 Li filtration provides an incremental improvement in clinical beam performance of the FCB that could help to establish a therapeutic window in the future treatment of deep-seated tumors

  4. On the non-uniqueness of the nodal mathematical adjoint

    International Nuclear Information System (INIS)

    Müller, Erwin

    2014-01-01

    Highlights: • We evaluate three CMFD schemes for computing the nodal mathematical adjoint. • The nodal mathematical adjoint is not unique and can be non-positive (nonphysical). • Adjoint and forward eigenmodes are compatible if produced by the same CMFD method. • In nodal applications the excited eigenmodes are purely mathematical entities. - Abstract: Computation of the neutron adjoint flux within the framework of modern nodal diffusion methods is often facilitated by reducing the nodal equation system for the forward flux into a simpler coarse-mesh finite-difference form and then transposing the resultant matrix equations. The solution to the transposed problem is known as the nodal mathematical adjoint. Since the coarse-mesh finite-difference reduction of a given nodal formulation can be obtained in a number of ways, different nodal mathematical adjoint solutions can be computed. This non-uniqueness of the nodal mathematical adjoint challenges the credibility of the reduction strategy and demands a verdict as to its suitability in practical applications. This is the matter under consideration in this paper. A selected number of coarse-mesh finite-difference reduction schemes are described and compared. Numerical calculations are utilised to illustrate the differences in the adjoint solutions as well as to appraise the impact on such common applications as the computation of core point kinetics parameters. Recommendations are made for the proper application of the coarse-mesh finite-difference reduction approach to the nodal mathematical adjoint problem

  5. Study of shielding options for lower ports for mitigation of neutron environment and shutdown dose inside the ITER cryostat

    International Nuclear Information System (INIS)

    Pampin, Raul; Suarez, Alejandro; Arnould, Anne; Casal, Natalia; Juarez, Rafael; Martin, Alex; Moro, Fabio; Mota, Fernando; Polunovskiy, Eduard; Sabourin, Flavien

    2016-01-01

    Highlights: • Mitigation of the radiation environment inside the cryostat needed to reduce ITER coil heating and occupational exposure. • Cryopump and diagnostics lower ports are significant contributors, shielding options for both are explored. • Shielding performance studied in terms of neutron transmission and nuclear heating to coils for a range of options. • Benefits/constraints discussed together with other engineering parameters. - Abstract: Mitigation of the neutron environment inside the cryostat, and of the subsequent decay gamma dose field from activated materials, is necessary in order to reduce heating of coils and occupational exposure, thereby facilitating smooth operation and maintenance of ITER. Several lines of action are currently being explored to mitigate crucial contributions, such as the leakage through the lower ports. Results are presented here for the two types of lower ports in ITER: cryopump ports and remote-handling ports. Different shielding configurations and material options are investigated and compared in terms of neutron attenuation, coil heating and shutdown dose rate reduction, whilst also considering other engineering constraints such as weight or pumping power. Results enable informed decision-making of best compromise solutions for subsequent design and integration.

  6. Study of shielding options for lower ports for mitigation of neutron environment and shutdown dose inside the ITER cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Pampin, Raul, E-mail: raul.pampin@f4e.europa.eu [Fusion For Energy, Josep Pla 2, Barcelona 08019 (Spain); Suarez, Alejandro; Arnould, Anne; Casal, Natalia [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul lez Durance Cedex (France); Juarez, Rafael [UNED, Juan del Rosal 12, Madrid 28040 (Spain); Martin, Alex [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul lez Durance Cedex (France); Moro, Fabio [ENEA, Via Enrico Fermi, Frascati, Rome (Italy); Mota, Fernando [CIEMAT, Avenida Complutense 40, Madrid 28040 (Spain); Polunovskiy, Eduard; Sabourin, Flavien [ITER Organization, Route de Vinon sur Verdon, 13067 Saint Paul lez Durance Cedex (France)

    2016-11-01

    Highlights: • Mitigation of the radiation environment inside the cryostat needed to reduce ITER coil heating and occupational exposure. • Cryopump and diagnostics lower ports are significant contributors, shielding options for both are explored. • Shielding performance studied in terms of neutron transmission and nuclear heating to coils for a range of options. • Benefits/constraints discussed together with other engineering parameters. - Abstract: Mitigation of the neutron environment inside the cryostat, and of the subsequent decay gamma dose field from activated materials, is necessary in order to reduce heating of coils and occupational exposure, thereby facilitating smooth operation and maintenance of ITER. Several lines of action are currently being explored to mitigate crucial contributions, such as the leakage through the lower ports. Results are presented here for the two types of lower ports in ITER: cryopump ports and remote-handling ports. Different shielding configurations and material options are investigated and compared in terms of neutron attenuation, coil heating and shutdown dose rate reduction, whilst also considering other engineering constraints such as weight or pumping power. Results enable informed decision-making of best compromise solutions for subsequent design and integration.

  7. Neutron imaging options at the BOA beamline at Paul Scherrer Institut

    International Nuclear Information System (INIS)

    Morgano, M.; Peetermans, S.; Lehmann, E.H.; Panzner, T.; Filges, U.

    2014-01-01

    The BOA beamline at the Swiss spallation neutron source SINQ at Paul Scherrer Institut is a flexible instrument used mainly for testing novel techniques and devices for neutron scattering and optics, but, due to the large and relatively homogeneous field of view, it can be successfully used for experiments in the field of neutron imaging. The beamline allows also for the exploitation of advanced imaging concepts such as polarized neutron imaging and diffractive neutron imaging. In this paper we present the characterization of the BOA beamline in the light of its neutron imaging capabilities. We show also the different techniques that can be employed there as user-friendly plugins for non-standard neutron imaging experiments

  8. Extension of the analytic nodal method to four energy groups

    International Nuclear Information System (INIS)

    Parsons, D.K.; Nigg, D.W.

    1985-01-01

    The Analytic Nodal Method is one of several recently-developed coarse mesh numerical methods for efficiently and accurately solving the multidimensional static and transient neutron diffusion equations. This summary describes a mathematically rigorous extension of the Analytic Nodal Method to the frequently more physically realistic four-group case. A few general theoretical considerations are discussed, followed by some calculated results for a typical steady-state two-dimensional PWR quarter core application. 8 refs

  9. A Hennart nodal method for the diffusion equation

    International Nuclear Information System (INIS)

    Lesaint, P.; Noceir, S.; Verwaerde, D.

    1995-01-01

    A modification of the Hennart nodal method for neutron diffusion problems is presented. The final system of equations obtained by this method is not positive definite. However, a flux elimination technique leads to a simple positive definite system, which can be solved by the traditional iterative methods. Calculations of a two-dimensional International Atomic Energy Agency benchmark problem are performed and compared with results of the original Hennart nodal method and some finite element methods. The high computational efficiency of this modified nodal method is clearly demonstrated

  10. Complex models of nodal nuclear data

    International Nuclear Information System (INIS)

    Dufek, Jan

    2011-01-01

    During the core simulations, nuclear data are required at various nodal thermal-hydraulic and fuel burnup conditions. The nodal data are also partially affected by thermal-hydraulic and fuel burnup conditions in surrounding nodes as these change the neutron energy spectrum in the node. Therefore, the nodal data are functions of many parameters (state variables), and the more state variables are considered by the nodal data models the more accurate and flexible the models get. The existing table and polynomial regression models, however, cannot reflect the data dependences on many state variables. As for the table models, the number of mesh points (and necessary lattice calculations) grows exponentially with the number of variables. As for the polynomial regression models, the number of possible multivariate polynomials exceeds the limits of existing selection algorithms that should identify a few dozens of the most important polynomials. Also, the standard scheme of lattice calculations is not convenient for modelling the data dependences on various burnup conditions since it performs only a single or few burnup calculations at fixed nominal conditions. We suggest a new efficient algorithm for selecting the most important multivariate polynomials for the polynomial regression models so that dependences on many state variables can be considered. We also present a new scheme for lattice calculations where a large number of burnup histories are accomplished at varied nodal conditions. The number of lattice calculations being performed and the number of polynomials being analysed are controlled and minimised while building the nodal data models of a required accuracy. (author)

  11. Radiation damage and waste management options for the sombrero final focus system and neutron dumps

    International Nuclear Information System (INIS)

    Reyes, S.; Latkowski, J.F.; Meier, W.R.; Reyes, S.

    2000-01-01

    Previous studies of the safety and environmental aspects of the SOMBRERO inertial fusion energy (IFE) power plant design did not completely address the issues associated with the final focus system. While past work calculated neutron fluences for a grazing incidence metal mirror (GIMM) and a final focus mirror, scattering off of the final optical component was not included, and thus, fluences in the final focus mirror were significantly underestimated. In addition, past work did not consider neutron-induced gamma-rays. Finally, power plant lifetime waste volumes may have been underestimated as neutron activation of the neutron dumps and building structure were not addressed. In the present work, a modified version of the SOMBRERO target building is presented where a significantly larger open solid-angle fraction (5%) is used to enhance beam smoothing of a diode-pumped solid-state laser (DPSSL). The GIMMs are replaced with transmissive fused silica wedges and have been included in three-dimensional neutron and photon transport calculations. This work shows that a power plant with a large open solid-angle fraction, needed for beam smoothing with a DPSSL, is acceptable from tritium breeding, and neutron activation points-of-view. (authors)

  12. Nodal-chain metals.

    Science.gov (United States)

    Bzdušek, Tomáš; Wu, QuanSheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A

    2016-10-06

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain-a chain of connected loops in momentum space-along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF 4 ), as well as in other compounds of this class of materials. Using IrF 4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  13. A nodalization study of steam separator in real time simulation

    International Nuclear Information System (INIS)

    Horugshyang, Lein; Luh, R.T.J.; Zen-Yow, Wang

    1999-01-01

    The motive of this paper is to investigate the influence of steam separator nodalization on reactor thermohydraulics in terms of stability and level response. Three different nodalizations of steam separator are studied by using THEATRE and REMARK Code in a BWR simulator. The first nodalization is the traditional one with two nodes for steam separator. In this nodalization, the steam separation is modeled in the outer node, i.e., upper downcomer. Separated steam enters the Steen dome node and the liquid goes to the feedwater node. The second nodalization is similar to the first one with the steam separation modeled in the inner node. There is one additional junction connecting steam dome node and the inner node. The liquid fallback junction connects the inner node and feedwater node. The third nodalization is a combination of the former two with an integrated node for steam separator. Boundary conditions in this study are provided by a simplified feedwater and main steam driver. For comparison purpose, three tests including full power steady state initialisation, recirculation pumps runback and reactor scram are conducted. Major parameters such as reactor pressure, reactor level, void fractions, neutronic power and junction flows are recorded for analysis. Test results clearly show that the first nodalization is stable for steady state initialisation. However it has too responsive level performance in core flow reduction transients. The second nodalization is the closest representation of real plant structure, but not the performance. Test results show that an instability occurs in the separator region for both steady state initialisation and transients. This instability is caused by an unbalanced momentum in the dual loop configuration. The magnitude of the oscillation reduces as the power decreases. No superiority to the other nodalizations is shown in the test results. The third nodalization shows both stability and responsiveness in the tests. (author)

  14. A neutronics study of LEU fuel options for the HFR-Petten

    International Nuclear Information System (INIS)

    Deen, J.R.; Snelgrove, J.L.

    1985-01-01

    The standard HEU fuel cycle characteristics are compared with those of several different LEU fuel cycles in the new vessel configuration. The primary design goals were to provide similar reactivity performance and neutron flux profiles with a minimal increase in 235 U loading. The fuel cycle advantages of Cd burnable absorbers over 10 B are presented. The LEU fuel cycle requirements were calculated also for an extended 32-day cycle and for a reload batch size reduction from six to five standard elements for the standard 26-day cycle. The effects of typical in-core experiments upon neutron flux profiles and fuel loading requirements are also presented. (author)

  15. An optional focusing SELENE extension to conventional neutron guides: A case study for the ESS instrument BIFROST

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U.B., E-mail: uhansen@nbi.ku.dk [Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Bertelsen, M. [Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark); Stahn, J. [Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Lefmann, K. [Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen (Denmark)

    2017-04-21

    The high brilliance at the European Spallation Source (ESS) will allow for performing experiments with much smaller samples than at present neutron facilities and in much more complex sample environments. However the higher flux also results in higher background from unwanted neutrons not originating from scattering of the sample. We here present a new design idea for beam delivery, where a 165 m ballistic guide system with good transport properties is followed by a 4–8 m SELENE guide system similar to Montel optics used for X-ray optics. We have investigated the system by detailed Monte-Carlo simulations using McStas. We show that under certain conditions, this set-up works surprisingly well, with a brilliance transfer of 20–60% for neutrons of wavelength 4 Å and above. We demonstrate that the guide system is able to focus the beam almost perfectly onto samples sizes in the range of 0.1–2 mm. We furthermore show that our SELENE system is insensitive to gravity and to realistic values of guide waviness. We argue that this guide system can be useful as an optional guide insert when small samples are used in the vicinity of bulky sample environment, e.g. for high-field or high-pressure experiments.

  16. Benchmarking with high-order nodal diffusion methods

    International Nuclear Information System (INIS)

    Tomasevic, D.; Larsen, E.W.

    1993-01-01

    Significant progress in the solution of multidimensional neutron diffusion problems was made in the late 1970s with the introduction of nodal methods. Modern nodal reactor analysis codes provide significant improvements in both accuracy and computing speed over earlier codes based on fine-mesh finite difference methods. In the past, the performance of advanced nodal methods was determined by comparisons with fine-mesh finite difference codes. More recently, the excellent spatial convergence of nodal methods has permitted their use in establishing reference solutions for some important bench-mark problems. The recent development of the self-consistent high-order nodal diffusion method and its subsequent variational formulation has permitted the calculation of reference solutions with one node per assembly mesh size. In this paper, we compare results for four selected benchmark problems to those obtained by high-order response matrix methods and by two well-known state-of-the-art nodal methods (the open-quotes analyticalclose quotes and open-quotes nodal expansionclose quotes methods)

  17. Experimental discovery of nodal chains

    Science.gov (United States)

    Yan, Qinghui; Liu, Rongjuan; Yan, Zhongbo; Liu, Boyuan; Chen, Hongsheng; Wang, Zhong; Lu, Ling

    2018-05-01

    Three-dimensional Weyl and Dirac nodal points1 have attracted widespread interest across multiple disciplines and in many platforms but allow for few structural variations. In contrast, nodal lines2-4 can have numerous topological configurations in momentum space, forming nodal rings5-9, nodal chains10-15, nodal links16-20 and nodal knots21,22. However, nodal lines are much less explored because of the lack of an ideal experimental realization23-25. For example, in condensed-matter systems, nodal lines are often fragile to spin-orbit coupling, located away from the Fermi level, coexist with energy-degenerate trivial bands or have a degeneracy line that disperses strongly in energy. Here, overcoming all these difficulties, we theoretically predict and experimentally observe nodal chains in a metallic-mesh photonic crystal having frequency-isolated linear band-touching rings chained across the entire Brillouin zone. These nodal chains are protected by mirror symmetry and have a frequency variation of less than 1%. We use angle-resolved transmission measurements to probe the projected bulk dispersion and perform Fourier-transformed field scans to map out the dispersion of the drumhead surface state. Our results establish an ideal nodal-line material for further study of topological line degeneracies with non-trivial connectivity and consequent wave dynamics that are richer than those in Weyl and Dirac materials.

  18. Evaluations of the new LiF-scintillator and optional brightness enhancement films for neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Iikura, H., E-mail: Iikura.hiroshi@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan); Tsutsui, N. [Chichibu Fuji Co., Ltd., Ogano, Chichibu, Saitama 368-0193 (Japan); Nakamura, T.; Katagiri, M.; Kureta, M. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan); Kubo, J. [Nissan Motor Co., Ltd., Atsugi, Kanagawa 243-0126 (Japan); Matsubayashi, M. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki (Japan)

    2011-09-21

    Japan Atomic Energy Agency has developed the neutron scintillator jointly with Chichibu Fuji Co., Ltd. In this study, we evaluated the new ZnS(Ag):Al/{sup 6}Li scintillator developed for neutron imaging. It was confirmed that the brightness increased by about double while maintaining equal performance for the spatial resolution as compared with a conventional scintillator. High frame-rate imaging using a high-speed video camera system and this new scintillator made it possible to image beyond 10 000 frames per second while still having enough brightness. This technique allowed us to obtain a high-frame-rate visualization of oil flow in a running car engine. Furthermore, we devised a technique to increase the light intensity of reception for a camera by adding brightness enhancement films on the output surface of the scintillator. It was confirmed that the spatial resolution degraded more than double, but the brightness increased by about three times.

  19. New procedure for criticality search using coarse mesh nodal methods

    International Nuclear Information System (INIS)

    Pereira, Wanderson F.; Silva, Fernando C. da; Martinez, Aquilino S.

    2011-01-01

    The coarse mesh nodal methods have as their primary goal to calculate the neutron flux inside the reactor core. Many computer systems use a specific form of calculation, which is called nodal method. In classical computing systems that use the criticality search is made after the complete convergence of the iterative process of calculating the neutron flux. In this paper, we proposed a new method for the calculation of criticality, condition which will be over very iterative process of calculating the neutron flux. Thus, the processing time for calculating the neutron flux was reduced by half compared with the procedure developed by the Nuclear Engineering Program of COPPE/UFRJ (PEN/COPPE/UFRJ). (author)

  20. New procedure for criticality search using coarse mesh nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wanderson F.; Silva, Fernando C. da; Martinez, Aquilino S., E-mail: wneto@con.ufrj.b, E-mail: fernando@con.ufrj.b, E-mail: Aquilino@lmp.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    The coarse mesh nodal methods have as their primary goal to calculate the neutron flux inside the reactor core. Many computer systems use a specific form of calculation, which is called nodal method. In classical computing systems that use the criticality search is made after the complete convergence of the iterative process of calculating the neutron flux. In this paper, we proposed a new method for the calculation of criticality, condition which will be over very iterative process of calculating the neutron flux. Thus, the processing time for calculating the neutron flux was reduced by half compared with the procedure developed by the Nuclear Engineering Program of COPPE/UFRJ (PEN/COPPE/UFRJ). (author)

  1. Avoided intersections of nodal lines

    International Nuclear Information System (INIS)

    Monastra, Alejandro G; Smilansky, Uzy; Gnutzmann, Sven

    2003-01-01

    We consider real eigenfunctions of the Schroedinger operator in 2D. The nodal lines of separable systems form a regular grid, and the number of nodal crossings equals the number of nodal domains. In contrast, for wavefunctions of non-integrable systems nodal intersections are rare, and for random waves, the expected number of intersections in any finite area vanishes. However, nodal lines display characteristic avoided crossings which we study in this work. We define a measure for the avoidance range and compute its distribution for the random wave ensemble. We show that the avoidance range distribution of wavefunctions of chaotic systems follows the expected random wave distributions, whereas for wavefunctions of classically integrable but quantum non-separable systems, the distribution is quite different. Thus, the study of the avoidance distribution provides more support to the conjecture that nodal structures of chaotic systems are reproduced by the predictions of the random wave ensemble

  2. Nodal methods in numerical reactor calculations

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del

    2004-01-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  3. Nodal methods in numerical reactor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hennart, J P [UNAM, IIMAS, A.P. 20-726, 01000 Mexico D.F. (Mexico); Valle, E del [National Polytechnic Institute, School of Physics and Mathematics, Department of Nuclear Engineering, Mexico, D.F. (Mexico)

    2004-07-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  4. EURISOL-DS Multi-MW Target Comparative Neutronic Performance of the Baseline Configuration vs. the Hg-Jet Option

    CERN Document Server

    Herrera-Martínez, A

    2006-01-01

    This technical report summarises the comparative study between several design options for the Multi-MW target station performed within Task #2 of the European Isotope Separation On-Line Radioactive Ion Beam Facility Design Study (EURISOL DS) [1]. Previous analyses were carried out, using the Monte Carlo code FLUKA [2], to determine optimal values for relevant parameters in the target design [3] and to analyse a preliminary Multi-MW target assembly configuration [4]. The second report showed that the aimed fission rates, i.e. ~1015 fissions/s, could be achieved with such a configuration. Nevertheless, a preliminary study of the target assembly integration [5] suggested reducing some of the dimensions. Moreover, the yields of specific isotopes have yet to be assessed and compared to other target configurations. This note presents a detailed comparison of the baseline configuration and the Hg-jet option, in terms of primary and neutron distribution, power densities and fission product yields. A scaled-down versi...

  5. Bilinear nodal transport method in weighted diamond difference form

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    Nodal methods have been developed and implemented for the numerical solution of the discrete ordinates neutron transport equation. Numerical testing of these methods and comparison of their results to those obtained by conventional methods have established the high accuracy of nodal methods. Furthermore, it has been suggested that the linear-linear approximation is the most computationally efficient, practical nodal approximation. Indeed, this claim has been substantiated by comparing the accuracy in the solution, and the CPU time required to achieve convergence to that solution by several nodal approximations, as well as the diamond difference scheme. Two types of linear-linear nodal methods have been developed in the literature: analytic linear-linear (NLL) methods, in which the transverse-leakage terms are derived analytically, and approximate linear-linear (PLL) methods, in which these terms are approximated. In spite of their higher accuracy, NLL methods result in very complicated discrete-variable equations that exhibit a high degree of coupling, thus requiring special solution algorithms. On the other hand, the sacrificed accuracy in PLL methods is compensated for by the simple discrete-variable equations and diamond-difference-like solution algorithm. In this paper the authors outline the development of an NLL nodal method, the bilinear method, which can be written in a weighted diamond difference form with one spatial weight per dimension that is analytically derived rather than preassigned in an ad hoc fashion

  6. Five-point form of the nodal diffusion method and comparison with finite-difference

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Nodal Methods have been derived, implemented and numerically tested for several problems in physics and engineering. In the field of nuclear engineering, many nodal formalisms have been used for the neutron diffusion equation, all yielding results which were far more computationally efficient than conventional Finite Difference (FD) and Finite Element (FE) methods. However, not much effort has been devoted to theoretically comparing nodal and FD methods in order to explain the very high accuracy of the former. In this summary we outline the derivation of a simple five-point form for the lowest order nodal method and compare it to the traditional five-point, edge-centered FD scheme. The effect of the observed differences on the accuracy of the respective methods is established by considering a simple test problem. It must be emphasized that the nodal five-point scheme derived here is mathematically equivalent to previously derived lowest order nodal methods. 7 refs., 1 tab

  7. Safety requirements and options for a large size fast neutron reactor

    International Nuclear Information System (INIS)

    Cogne, F.; Megy, J.; Robert, E.; Benmergui, A.; Villeneuve, J.

    1977-01-01

    Starting from the experience gained in the safety evaluation of the PHENIX reactor, and from results already obtained in the safety studies on fast neutron reactors, the French regulatory bodies have defined since 1973 what could be the requirements and the recommendations in the matter of safety for the first large size ''prototype'' fast neutron power plant of 1200 MWe. Those requirements and recommendations, while not being compulsory due to the evolution of this type of reactors, will be used as a basis for the technical regulation that will be established in France in this field. They define particularly the care to be taken in the following areas which are essential for safety: the protection systems, the primary coolant system, the prevention of accidents at the core level, the measures to be taken with regard to the whole core accident and to the containment, the protection against sodium fires, and the design as a function of external aggressions. In applying these recommendations, the CREYS-MALVILLE plant designers have tried to achieve redundancy in the safety related systems and have justified the safety of the design with regard to the various involved phenomena. In particular, the extensive research made at the levels of the fuel and of the core instrumentation makes it possible to achieve the best defence to avoid the development of core accidents. The overall examination of the measures taken, from the standpoint of prevention and surveyance as well as from the standpoint of means of action led the French regulatory bodies to propose the construction permit of the CREYS MALVILLE plant, provided that additional examinations by the regulatory bodies be made during the construction of the plant on some technological aspects not fully clarified at the authorization time. The conservatism of the corresponding requirements should be demonstrated prior to the commissioning of the power plant. To pursue a programme on reactors of this type, or even more

  8. Neutronic performance issues of the breeding blanket options for the European DEMO fusion power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, U., E-mail: ulrich.fischer@kit.edu [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bachmann, C. [EUROfusion—Programme Management Unit, Boltzmannstr. 2, 85748 Garching (Germany); Jaboulay, J.-C. [CEA-Saclay, DEN, DM2S, SERMA, LPEC, 91191 Gif-sur-Yvette (France); Moro, F. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Villari, R. [ENEA, Dipartimento Fusione e tecnologie per la Sicurezza Nucleare, Via E. Fermi 45, 00044 Frascati, Rome (Italy)

    2016-11-01

    Highlights: • Breeder blanket concepts for DEMO—design features. • Neutronic characteristics of breeder blankets. • Evaluation of Tritium breeding potential. • Evaluation of shielding performance. - Abstract: This paper presents nuclear performance issues of the HCPB, HCLL, DCLL and WCLL breeder blankets, which are under development within the PPPT (Power Plant Physics and Technology) programme of EUROfusion, with the objective to assess the potential and suitability of the blankets for the application to DEMO. The assessment is based on the initial design versions of the blankets developed in 2014. The Tritium breeding potential is considered sufficient for all breeder blankets although the initial design versions of the HCPB, HCLL and DCLL blankets were shown to require further design improvements. Suitable measures have been proposed and proven to be sufficient to achieve the required Tritium Breeding Ratio (TBR) ≥ 1.10. The shielding performance was shown to be sufficient to protect the super-conducting toroidal field coil provided that efficient shielding material mixtures including WC or borated water are utilized. The WCLL blanket does not require the use of such shielding materials due to a very compact blanket support structure/manifold configuration which yet requires design verification. The vacuum vessel can be safely operated over the full anticipated DEMO lifetime of 6 full power years for all blanket concepts considered.

  9. The SINTRAN III NODAL system

    International Nuclear Information System (INIS)

    Skaali, T.B.

    1980-10-01

    NODAL is a high level programming language based on FOCAL and SNOBOL4, with some influence from BASIC. The language was developed to operate on the computer network controlling the SPS accelerator at CERN. NODAL is an interpretive language designed for interactive use. This is the most important aspect of the language, and is reflected in its structure. The interactive facilities make it possible to write, debug and modify programs much faster than with compiler based languages like FORTRAN and ALGOL. Apart from a few minor modifications, the basic part of the Oslo University NODAL system does not differ from the CERN version. However, the Oslo University implementation has been expanded with new functions which enable the user to execute many of the SINTRAN III monitor calls from the NODAL level. In particular the most important RT monitor calls have been implemented in this way, a property which renders possible the use of NODAL as a RT program administrator. (JIW)

  10. Super-nodal methods for space-time kinetics

    Science.gov (United States)

    Mertyurek, Ugur

    The purpose of this research has been to develop an advanced Super-Nodal method to reduce the run time of 3-D core neutronics models, such as in the NESTLE reactor core simulator and FORMOSA nuclear fuel management optimization codes. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. However, as the number of spatial nodes decreases, the error in the solution increases. The Super-Nodal method reduces the error associated with the use of coarse nodes in the analyses by providing a new set of cross sections and ADFs (Assembly Discontinuity Factors) for the new nodalization. These so called homogenization parameters are obtained by employing consistent collapsing technique. During this research a new type of singularity, namely "fundamental mode singularity", is addressed in the ANM (Analytical Nodal Method) solution. The "Coordinate Shifting" approach is developed as a method to address this singularity. Also, the "Buckling Shifting" approach is developed as an alternative and more accurate method to address the zero buckling singularity, which is a more common and well known singularity problem in the ANM solution. In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the transverse leakage and collapsed diffusion coefficient, which generally are the two main approximations in the ANM methodology. Unfortunately, the proposed new transverse leakage and diffusion coefficient approximations failed to provide a consistent improvement to the current methodology. However, improvement in the Super-Nodal solution is achieved by updating the homogenization parameters at several time points during a transient. The update is achieved by employing a refinement technique similar to pin-power reconstruction. A simple error analysis based on the relative

  11. Analytic function expansion nodal method for nuclear reactor core design

    International Nuclear Information System (INIS)

    Noh, Hae Man

    1995-02-01

    In most advanced nodal methods the transverse integration is commonly used to reduce the multi-dimensional diffusion equation into equivalent one- dimensional diffusion equations when derving the nodal coupling equations. But the use of the transverse integration results in some limitations. The first limitation is that the transverse leakage term which appears in the transverse integration procedure must be appropriately approximated. The second limitation is that the one-dimensional flux shapes in each spatial direction resulted from the nodal calculation are not accurate enough to be directly used in reconstructing the pinwise flux distributions. Finally the transverse leakage defined for a non-rectangular node such as a hexagonal node or a triangular node is too complicated to be easily handled and may contain non-physical singular terms of step-function and delta-function types. In this thesis, the Analytic Function Expansion Nodal (AFEN) method and its two variations : the Polynomial Expansion Nodal (PEN) method and the hybrid of the AFEN and PEN methods, have been developed to overcome the limitations of the transverse integration procedure. All of the methods solve the multidimensional diffusion equation without the transverse integration. The AFEN method which we believe is the major contribution of this study to the reactor core analysis expands the homogeneous flux distributions within a node in non-separable analytic basis functions satisfying the neutron diffusion equations at any point of the node and expresses the coefficients of the flux expansion in terms of the nodal unknowns which comprise a node-average flux, node-interface fluxes, and corner-point fluxes. Then, the nodal coupling equations composed of the neutron balance equations, the interface current continuity equations, and the corner-point leakage balance equations are solved iteratively to determine all the nodal unknowns. Since the AFEN method does not use the transverse integration in

  12. NODAL interpreter for CP/M

    International Nuclear Information System (INIS)

    Oide, Katsunobu.

    1982-11-01

    A NODAL interpreter which works under CP/M operating system is made for microcomputers. This interpreter language named NODAL-80 has a similar structure to the NODAL of SPS, but its commands, variables, and expressions are modified to increase the flexibility of programming. NODAL-80 also uses a simple intermediate code to make the execution speed fast without imposing any restriction on the dynamic feature of NODAL language. (author)

  13. A nodal model for the simulation of a PWR core

    International Nuclear Information System (INIS)

    Souza Pinto, R. de.

    1981-06-01

    A computer program FORTRAN language was developed to simulate the neutronic and thermal-hydraulic transient behaviour of a PWR reactor core. The reator power is calculated using a point kinectics model with six groups of delayed neutron precursors. The fission product decay heat was considered assuming three effective decay heat groups. A nodal model was employed for the treatment of heat transfer in the fuel rod, with integration of the heat equation by the lumped parameter technique. Axial conduction was neglected. A single-channel nodal model was developed for the thermo-hydrodynamic simulation using mass and energy conservation equations for the control volumes. The effect of the axial pressure variation was neglected. The computer program was tested, with good results, through the simulation of the transient behaviour of postulated accidents in a typical PWR. (Author) [pt

  14. Investigation on generalized Variational Nodal Methods for heterogeneous nodes

    International Nuclear Information System (INIS)

    Wang, Yongping; Wu, Hongchun; Li, Yunzhao; Cao, Liangzhi; Shen, Wei

    2017-01-01

    Highlights: • We developed two heterogeneous nodal methods based on the Variational Nodal Method. • Four problems were solved to evaluate the two heterogeneous nodal methods. • The function expansion method is good at treating continuous-changing heterogeneity. • The finite sub-element method is good at treating discontinuous-changing heterogeneity. - Abstract: The Variational Nodal Method (VNM) is generalized for heterogeneous nodes and applied to four kinds of problems including Molten Salt Reactor (MSR) core problem with continuous cross section profile, Pressurized Water Reactor (PWR) control rod cusping effect problem, PWR whole-core pin-by-pin problem, and heterogeneous PWR core problem without fuel-coolant homogenization in each pin cell. Two approaches have been investigated for the treatment of the nodal heterogeneity in this paper. To concentrate on spatial heterogeneity, diffusion approximation was adopted for the angular variable in neutron transport equation. To provide demonstrative numerical results, the codes in this paper were developed in slab geometry. The first method, named as function expansion (FE) method, expands nodal flux by orthogonal polynomials and the nodal cross sections are also expressed as spatial depended functions. The second path, named as finite sub-element (FS) method, takes advantage of the finite-element method by dividing each node into numbers of homogeneous sub-elements and expanding nodal flux into the combination of linear sub-element trial functions. Numerical tests have been carried out to evaluate the ability of the two nodal (coarse-mesh) heterogeneous VNMs by comparing with the fine-mesh homogeneous VNM. It has been demonstrated that both heterogeneous approaches can handle heterogeneous nodes. The FE method is good at continuous-changing heterogeneity as in the MSR core problem, while the FS method is good at discontinuous-changing heterogeneity such as the PWR pin-by-pin problem and heterogeneous PWR core

  15. Using nodal expansion method in calculation of reactor core with square fuel assemblies

    International Nuclear Information System (INIS)

    Abdollahzadeh, M. Y.; Boroushaki, M.

    2009-01-01

    A polynomial nodal method is developed to solve few-group neutron diffusion equations in cartesian geometry. In this article, the effective multiplication factor, group flux and power distribution based on the nodal polynomial expansion procedure is presented. In addition, by comparison of the results the superiority of nodal expansion method on finite-difference and finite-element are fully demonstrated. The comparison of the results obtained by these method with those of the well known benchmark problems have shown that they are in very good agreement.

  16. A practical implementation of the higher-order transverse-integrated nodal diffusion method

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomašević, Djordje I.; Moraal, Harm

    2014-01-01

    Highlights: • A practical higher-order nodal method is developed for diffusion calculations. • The method resolves the issue of the transverse leakage approximation. • The method achieves much superior accuracy as compared to standard nodal methods. • The calculational cost is only about 50% greater than standard nodal methods. • The method is packaged in a module for connection to existing nodal codes. - Abstract: Transverse-integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming of this approach is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work, an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher-order nodal methods developed some years ago. Further, a number of iteration schemes are developed around this consistent quadratic leakage approximation which yields accurate node average results in much improved calculational times. The most promising of these iteration schemes results from utilizing the consistent leakage approximation as a correction method to the standard quadratic leakage approximation. Numerical results are demonstrated on a set of benchmark problems and further applied to a realistic reactor problem, particularly the SAFARI-1 reactor, operating at Necsa, South Africa. The final optimal solution strategy is packaged into a standalone module which may simply be coupled to existing nodal diffusion codes

  17. Nodal metastasis in thyroid cancer

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    The biological behavior and hence the prognosis of thyroid cancer (TC) depends among other factors on the extent of spread of the disease outside the thyroid bed. This effect is controversial, especially for nodal metastasis of well differentiated thyroid carcinoma (WDC). Nodal metastasis at the time of initial diagnosis behaves differently depending on the histology, age of the patient, presence of extrathyroidal extension, and the sex of the individual. The type of the surgery, administration of 131 I and thyroxin suppression also to some extent influence the rate of recurrence and mortality. Experience has shown that it is not as innocuous as a small intrathyroidal tumor without any invasion outside the thyroid bed and due consideration should be accorded to the management strategies for handling patients with nodal metastasis

  18. The adjoint variational nodal method

    International Nuclear Information System (INIS)

    Laurin-Kovitz, K.; Lewis, E.E.

    1993-01-01

    The widespread use of nodal methods for reactor core calculations in both diffusion and transport approximations has created a demand for the corresponding adjoint solutions as a prerequisite for performing perturbation calculations. With some computational methods, however, the solution of the adjoint problem presents a difficulty; the physical adjoint obtained by discretizing the adjoint equation is not the same as the mathematical adjoint obtained by taking the transpose of the coefficient matrix, which results from the discretization of the forward equation. This difficulty arises, in particular, when interface current nodal methods based on quasi-one-dimensional solution of the diffusion or transport equation are employed. The mathematical adjoint is needed to perform perturbation calculations. The utilization of existing nodal computational algorithms, however, requires the physical adjoint. As a result, similarity transforms or related techniques must be utilized to relate physical and mathematical adjoints. Thus far, such techniques have been developed only for diffusion theory

  19. RELAP 4/MOD 6 boiling water nodalization study

    International Nuclear Information System (INIS)

    Sonneck, G.; Pfau, H.

    1985-09-01

    The risk of nuclear steam supply systems is dominated by the core melt accidents. The first step to a realistic assessment of these sequences is the successful prediction of a loss of coolant event in a test loop. One of the codes for that is RELAP 4/MOD 6 and one of the important options in this code is the nodalization. The base of this work is the test LOCA No. 1 FIX II in Studsvik (Sweden) which also served as the OECD International Standard Problem 15. This report discusses the influence of different nodalizations, of different distributions of pressure, water and structural heat as well as of different bubble rise options, break flow coefficients, and heat transfer time steps. The most important result is that a simple RELAP 4/MOD6 model with less than 10 volumes is able to predict an experiment as LOCA No. 1 in FIX II successfully using only a fraction of the usual computing time. (Author)

  20. Nodal in computerized control systems of accelerators

    International Nuclear Information System (INIS)

    Kagarmanov, A.A.; Koval'tsov, V.I.; Korobov, S.A.

    1994-01-01

    Brief description of the Nodal language programming structure is presented. Its possibilities as high-level programming language for accelerator control systems are considered. The status of the Nodal language in the HEPI is discussed. 3 refs

  1. The implementation of a simplified spherical harmonics semi-analytic nodal method in PANTHER

    International Nuclear Information System (INIS)

    Hall, S.K.; Eaton, M.D.; Knight, M.P.

    2013-01-01

    Highlights: ► An SP N nodal method is proposed. ► Consistent CMFD derived and tested. ► Mark vacuum boundary conditions applied. ► Benchmarked against other diffusions and transport codes. - Abstract: In this paper an SP N nodal method is proposed which can utilise existing multi-group neutron diffusion solvers to obtain the solution. The semi-analytic nodal method is used in conjunction with a coarse mesh finite difference (CMFD) scheme to solve the resulting set of equations. This is compared against various nuclear benchmarks to show that the method is capable of computing an accurate solution for practical cases. A few different CMFD formulations are implemented and their performance compared. It is found that the effective diffusion coefficent (EDC) can provide additional stability and require less power iterations on a coarse mesh. A re-arrangement of the EDC is proposed that allows the iteration matrix to be computed at the beginning of a calculation. Successive nodal updates only modify the source term unlike existing CMFD methods which update the iteration matrix. A set of Mark vacuum boundary conditions are also derived which can be applied to the SP N nodal method extending its validity. This is possible due to a similarity transformation of the angular coupling matrix, which is used when applying the nodal method. It is found that the Marshak vacuum condition can also be derived, but would require the significant modification of existing neutron diffusion codes to implement it

  2. The simplified P3 approach on a trigonal geometry in the nodal reactor code DYN3D

    International Nuclear Information System (INIS)

    Duerigen, S.; Fridman, E.

    2011-01-01

    DYN3D is a three-dimensional nodal diffusion code for steady-state and transient analyses of Light-Water Reactors with square and hexagonal fuel assembly geometries. Currently, several versions of the DYN3D code are available including a multi-group diffusion and a simplified P 3 (SP 3 ) neutron transport option. In this work, the multi-group SP 3 method based on trigonal-z geometry was developed. The method is applicable to the analysis of reactor cores with hexagonal fuel assemblies and allows flexible mesh refinement, which is of particular importance for WWER-type Pressurized Water Reactors as well as for innovative reactor concepts including block type High-Temperature Reactors and Sodium Fast Reactors. In this paper, the theoretical background for the trigonal SP 3 methodology is outlined and the results of a preliminary verification analysis are presented by means of a simplified WWER-440 core test example. The accordant cross sections and reference solutions were produced by the Monte Carlo code SERPENT. The DYN3D results are in good agreement with the reference solutions. The average deviation in the nodal power distribution is about 1%. (Authors)

  3. An alternative solver for the nodal expansion method equations - 106

    International Nuclear Information System (INIS)

    Carvalho da Silva, F.; Carlos Marques Alvim, A.; Senra Martinez, A.

    2010-01-01

    An automated procedure for nuclear reactor core design is accomplished by using a quick and accurate 3D nodal code, aiming at solving the diffusion equation, which describes the spatial neutron distribution in the reactor. This paper deals with an alternative solver for nodal expansion method (NEM), with only two inner iterations (mesh sweeps) per outer iteration, thus having the potential to reduce the time required to calculate the power distribution in nuclear reactors, but with accuracy similar to the ones found in conventional NEM. The proposed solver was implemented into a computational system which, besides solving the diffusion equation, also solves the burnup equations governing the gradual changes in material compositions of the core due to fuel depletion. Results confirm the effectiveness of the method for practical purposes. (authors)

  4. Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)

    International Nuclear Information System (INIS)

    Peng Hong Liem; Surian Pinem; Tagor Malem Sembiring; Tran Hoai Nam

    2015-01-01

    A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the nodal few-group neutron diffusion theory in 3-dimensional Cartesian geometry for a typical pressurized water reactor (PWR) static and transient analyses, especially for reactivity initiated accidents (RIA). The spatial variables are treated by using a polynomial nodal method (PNM) while for the neutron dynamic solver the adiabatic and improved quasi-static methods are adopted. A simple single channel thermal-hydraulics module and its steam table is implemented into the code. Verification works on static and transient benchmarks are being conducting to assess the accuracy of the code. For the static benchmark verification, the IAEA-2D, IAEA-3D, BIBLIS and KOEBERG light water reactor (LWR) benchmark problems were selected, while for the transient benchmark verification, the OECD NEACRP 3-D LWR Core Transient Benchmark and NEA-NSC 3-D/1-D PWR Core Transient Benchmark (Uncontrolled Withdrawal of Control Rods at Zero Power). Excellent agreement of the NODAL3 results with the reference solutions and other validated nodal codes was confirmed. (author)

  5. Nodal lymphomas of the abdomen

    International Nuclear Information System (INIS)

    Bruneton, J.N.; Caramella, E.; Manzino, J.J.

    1986-01-01

    Modern imaging modalities have greatly contributed to current knowledge about intra-abdominal nodal lymphomas. Since both intra and retroperitoneal node involvement can be demonstrated by computed tomography (CT) and ultrasonography, it seems legitimate to treat these two sites together in the same chapter, particularly since the older separation between intraperitoneal and retroperitoneal nodal disease was based to a large degree on the limitations of lymphography. Hodgkin's disease (HD) has benefited less from recent technological advances. The diversity in the incidence of nodal involvement between HD and NHL, the diagnostic capabilities of modern imaging techniques, and the histopathological features of lymphomatous non-Hodgkin and Hodgkin nodes, justify adoption of an investigatory approach which takes all of these factors into account. Details of this investigative strategy are discussed in this paper following a review of available imaging modalities. In current practice, the four main methods for the exploration of abdominal lymph nodes are lymphography, ultrasonography, CT, and radionuclide studies. The first three techniques are also utilized to guide biopsies for staging purposes and for the evaluation of response to treatment

  6. A nodal method applied to a diffusion problem with generalized coefficients

    International Nuclear Information System (INIS)

    Laazizi, A.; Guessous, N.

    1999-01-01

    In this paper, we consider second order neutrons diffusion problem with coefficients in L ∞ (Ω). Nodal method of the lowest order is applied to approximate the problem's solution. The approximation uses special basis functions in which the coefficients appear. The rate of convergence obtained is O(h 2 ) in L 2 (Ω), with a free rectangular triangulation. (authors)

  7. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    International Nuclear Information System (INIS)

    Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.

    2012-01-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  8. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Capilla, M.; Talavera, C. F.; Ginestar, D. [Dept. of Nuclear Engineering, Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)

    2012-07-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  9. Validation of full core geometry model of the NODAL3 code in the PWR transient Benchmark problems

    International Nuclear Information System (INIS)

    T-M Sembiring; S-Pinem; P-H Liem

    2015-01-01

    The coupled neutronic and thermal-hydraulic (T/H) code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR) ejection at peripheral core using a full core geometry model, the C1 and C2 cases. By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM) and the improved quasistatic method (IQS). All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16 % occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4 % for C2 case. All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. (author)

  10. Development of nodal interface conditions for a PN approximation nodal model

    International Nuclear Information System (INIS)

    Feiz, M.

    1993-01-01

    A relation was developed for approximating higher order odd-moments from lower order odd-moments at the nodal interfaces of a Legendre polynomial nodal model. Two sample problems were tested using different order P N expansions in adjacent nodes. The developed relation proved to be adequate and matched the nodal interface flux accurately. The development allows the use of different order expansions in adjacent nodes, and will be used in a hybrid diffusion-transport nodal model. (author)

  11. A quasi-static polynomial nodal method for nuclear reactor analysis

    International Nuclear Information System (INIS)

    Gehin, J.C.

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation

  12. A quasi-static polynomial nodal method for nuclear reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.

  13. Inclusion of nodal option in diffusion conventional codes

    International Nuclear Information System (INIS)

    Prati, A.; Anaf, J.

    1985-01-01

    The GCMDT (Generalized Coarse Mesh Diffusion Theory) is studied to use in the 2DB diffusion conventional code. An adequate formalism for its implementation in codes of 'Mesh-Centered' is developed for retangular, triangular and hexagonal geometries. (M.C.K.) [pt

  14. INTERMITTENT ANTIARYTHMIC THERAPY OF ARIOVENTICULAR NODAL REENTRY TACHYCARDIA IN CHILDREN

    Directory of Open Access Journals (Sweden)

    Boris Djindjic

    2008-04-01

    Full Text Available Until recent advances in pharmacology and clinical cardiology regarding farmacodynamics of antiarrhythmic drugs and their efficiency in patients with refractory paroxysmal supraventricular tachycardia, chronic prophylactic therapy was the only treatment option for patients refusing catheter ablation. Another treatment option, also known by eponym “pill in pocket” have been shown to be equally useful and efficacious.The aim of our study was prospective examination of children with refractory atrioventricular nodal reentry tachycardia (AVNRT who were withdrawn from chronic antiarrhythmic prophylactic therapy and started with intermittent oral beta blocker treatment (propranolol at dosage 1 mg/kg - max 80 mg.Twelve children (8 boys and 4 girls with AVNRT were included in the study. Four children did not have arrhythmia during first six months after withdrawal and 7 were successfully treated without complication.Intermittent antiarrhythmic therapy in children with AVNRT could be very efficacious and useful treatment option which significantly improves their quality of life.

  15. The Nudo, Rollo, Melon codes and nodal correlations

    International Nuclear Information System (INIS)

    Perlado, J.M.; Aragones, J.M.; Minguez, E.; Pena, J.

    1975-01-01

    Analysis of nodal calculation and checking results by the reference reactor experimental data. Nudo code description, adapting experimental data to nodal calculations. Rollo, Melon codes as improvement in the cycle life calculations of albedos, mixing parameters and nodal correlations. (author)

  16. VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2015-10-01

    Full Text Available ABSTRACT VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS. The coupled neutronic and thermal-hydraulic (T/H code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR ejection at peripheral core using a full core geometry model, the C1 and C2 cases.  By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM and the improved quasistatic method (IQS. All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16% occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4% for C2 case.  All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. Keywords: nodal method, coupled neutronic and thermal-hydraulic code, PWR, transient case, control rod ejection.   ABSTRAK VALIDASI MODEL GEOMETRI TERAS PENUH PAKET PROGRAM NODAL3 DALAM PROBLEM BENCHMARK GAYUT WAKTU PWR. Paket program kopel neutronik dan termohidraulika (T/H, NODAL3, telah divalidasi dengan beberapa kasus benchmark statis PWR dan kasus benchmark gayut waktu PWR NEACRP.  Akan tetapi, paket program NODAL3 belum divalidasi dalam kasus benchmark gayut waktu akibat penarikan sebuah perangkat batang kendali (CR di tepi teras menggunakan model geometri teras penuh, yaitu kasus C1 dan C2. Dengan penelitian ini, akurasi paket program

  17. On the treatment of nonlinear local feedbacks within advanced nodal generalized perturbation theory

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Turinsky, P.J.; Kropaczek, D.J.

    1993-01-01

    Recent efforts to upgrade the underlying neutronics formulations within the in-core nuclear fuel management optimization code FORMOSA (Ref. 1) have produced two important developments; first, a computationally efficient and second-order-accurate advanced nodal generalized perturbation theory (GPT) model [derived from the nonlinear iterative nodal expansion method (NEM)] for evaluating core attributes (i.e., k eff and power distribution versus cycle burnup), and second, an equally efficient and accurate treatment of local thermal-hydraulic and fission product feedbacks embedded within NEM GPT. The latter development is the focus of this paper

  18. Spectral nodal method for one-speed X,Y-geometry Eigenvalue diffusion problems

    International Nuclear Information System (INIS)

    Dominguez, Dany S.; Lorenzo, Daniel M.; Hernandez, Carlos G.; Barros, Ricardo C.; Silva, Fernando C. da

    2001-01-01

    Presented here is a new numerical nodal method for steady-state multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the transverse-integrated nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X and Y directions, and then considering flat approximations for the transverse leakage terms. These flat approximations are the only approximations that we consider in this method; as a result the numerical solutions are completely free from truncation errors in slab geometry. We show numerical results to illustrate the method's accuracy for coarse mesh calculations in a heterogeneous medium. (author)

  19. Heterogeneous treatment in the variational nodal method

    International Nuclear Information System (INIS)

    Fanning, T.H.

    1995-01-01

    The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations

  20. Discrete rod burnup analysis capability in the Westinghouse advanced nodal code

    International Nuclear Information System (INIS)

    Buechel, R.J.; Fetterman, R.J.; Petrunyak, M.A.

    1992-01-01

    Core design analysis in the last several years has evolved toward the adoption of nodal-based methods to replace traditional fine-mesh models as the standard neutronic tool for first core and reload design applications throughout the nuclear industry. The accuracy, speed, and reduction in computation requirements associated with the nodal methods have made three-dimensional modeling the preferred approach to obtain the most realistic core model. These methods incorporate detailed rod power reconstruction as well. Certain design applications such as confirmation of fuel rod design limits and fuel reconstitution considerations, for example, require knowledge of the rodwise burnup distribution to avoid unnecessary conservatism in design analyses. The Westinghouse Advanced Nodal Code (ANC) incorporates the capability to generate the intra-assembly pin burnup distribution using an efficient algorithm

  1. Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2017-01-01

    Full Text Available The in-house coupled neutronic and thermal-hydraulic (N/T-H code of BATAN (National Nuclear Energy Agency of Indonesia, NODAL3, based on the few-group neutron diffusion equation in 3-dimensional geometry using the polynomial nodal method, has been verified with static and transient PWR benchmark cases. This paper reports the verification of NODAL3 code in the NEA-NSC PWR uncontrolled control rods withdrawal at zero power benchmark. The objective of this paper is to determine the accuracy of NODAL3 code in solving the continuously slow and fast reactivity insertions due to single and group of control rod bank withdrawn while the power and temperature increment are limited by the Doppler coefficient. The benchmark is chosen since many organizations participated using various methods and approximations, so the calculation results of NODAL3 can be compared to other codes’ results. The calculated parameters are performed for the steady-state, transient core averaged, and transient hot pellet results. The influence of radial and axial nodes number was investigated for all cases. The results of NODAL3 code are in very good agreement with the reference solutions if the radial and axial nodes number is 2 × 2 and 2 × 18 (total axial layers, respectively.

  2. Nodal pricing in a coupled electricity market

    OpenAIRE

    Bjørndal, Endre; Bjørndal, Mette; Cai, Hong

    2014-01-01

    This paper investigates a pricing model for an electricity market with a hybrid congestion management method, i.e. part of the system applies a nodal pricing scheme and the rest applies a zonal pricing scheme. The model clears the zonal and nodal pricing areas simultaneously. The nodal pricing area is affected by the changes in the zonal pricing area since it is directly connected to the zonal pricing area by commercial trading. The model is tested on a 13-node power system. Within the area t...

  3. Hybrid nodal methods in the solution of the diffusion equations in X Y geometry; Metodos nodales hibridos en la solucion de las ecuaciones de difusion en geometria XY

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, N. [CFE, Carretera Cardel-Nautla Km. 43.5, 91680 Veracruz (Mexico); Alonso V, G.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: nhmiranda@mexico.com

    2003-07-01

    In 1979, Hennart and collaborators applied several schemes of classic finite element in the numerical solution of the diffusion equations in X Y geometry and stationary state. Almost two decades then, in 1996, himself and other collaborators carried out a similar work but using nodal schemes type finite element. Continuing in this last direction, in this work a group it is described a set of several Hybrid Nodal schemes denominated (NH) as well as their application to solve the diffusion equations in multigroup in stationary state and X Y geometry. The term hybrid nodal it means that such schemes interpolate not only Legendre moments of face and of cell but also the values of the scalar flow of neutrons in the four corners of each cell or element of the spatial discretization of the domain of interest. All the schemes here considered are polynomials like they were it their predecessors. Particularly, its have developed and applied eight different hybrid nodal schemes that its are very nearby related with those developed by Hennart and collaborators in the past. It is treated of schemes in those that nevertheless that decreases the number of interpolation parameters it is conserved the accurate in relation to the bi-quadratic and bi-cubic schemes. Of these eight, three were described and applied in a previous work. It is the bi-lineal classic scheme as well as the hybrid nodal schemes, bi-quadratic and bi-cubic for that here only are described the other 5 hybrid nodal schemes although they are provided numerical results for several test problems with all them. (Author)

  4. A comparison of two nodal codes : Advanced nodal code (ANC) and analytic function expansion nodal (AFEN) code

    International Nuclear Information System (INIS)

    Chung, S.K.; Hah, C.J.; Lee, H.C.; Kim, Y.H.; Cho, N.Z.

    1996-01-01

    Modern nodal methods usually employs the transverse integration technique in order to reduce a multi-dimensional diffusion equation to one-dimensional diffusion equations. The use of the transverse integration technique requires two major approximations such as a transverse leakage approximation and a one-dimensional flux approximation. Both the transverse leakage and the one-dimensional flux are approximated by polynomials. ANC (Advanced Nodal Code) developed by Westinghouse employs a modern nodal expansion method for the flux calculation, the equivalence theory for the homogenization error reduction and a group theory for pin power recovery. Unlike the conventional modern nodal methods, AFEN (Analytic Function Expansion Nodal) method expands homogeneous flux distributions within a node into non-separable analytic basis functions, which eliminate two major approximations of the modern nodal methods. A comparison study of AFEN with ANC has been performed to see the applicability of AFEN to commercial PWR and different types of reactors such as MOX fueled reactor. The qualification comparison results demonstrate that AFEN methodology is accurate enough to apply for commercial PWR analysis. The results show that AFEN provides very accurate results (core multiplication factor and assembly power distribution) for cores that exhibit strong flux gradients as in a MOX loaded core. (author)

  5. Maternal Nodal inversely affects NODAL and STOX1 expression in the fetal placenta

    Directory of Open Access Journals (Sweden)

    Hari Krishna Thulluru

    2013-08-01

    Full Text Available Nodal, a secreted signaling protein from the TGFβ-super family plays a vital role during early embryonic development. Recently, it was found that maternal decidua-specific Nodal knockout mice show intrauterine growth restriction (IUGR and preterm birth. As the chromosomal location of NODAL is in the same linkage area as the susceptibility gene STOX1, associated with the familial form of early-onset, IUGR-complicated pre-eclampsia, their potential maternal-fetal interaction was investigated. Pre-eclamptic mothers with children who carried the STOX1 susceptibility allele themselves all carried the NODAL H165R SNP, which causes a 50% reduced activity. Surprisingly, in decidua Nodal knockout mice the fetal placenta showed up-regulation of STOX1 and NODAL expression. Conditioned media of human first trimester decidua and a human endometrial stromal cell line (T-HESC treated with siRNAs against NODAL or carrying the H165R SNP were also able to induce NODAL and STOX1 expression when added to SGHPL-5 first trimester extravillous trophoblast cells. Finally, a human TGFß-BMP-Signaling-Pathway PCR-Array on decidua and the T-HESC cell line with Nodal knockdown revealed upregulation of Activin-A, which was confirmed in conditioned media by ELISA. We show that maternal decidua Nodal knockdown gives upregulation of NODAL and STOX1 mRNA expression in fetal extravillous trophoblast cells, potentially via upregulation of Activin-A in the maternal decidua. As both Activin-A and Nodal have been implicated in pre-eclampsia, being increased in serum of pre-eclamptic women and upregulated in pre-eclamptic placentas respectively, this interaction at the maternal-fetal interface might play a substantial role in the development of pre-eclampsia.

  6. Quantum oscillations in nodal line systems

    Science.gov (United States)

    Yang, Hui; Moessner, Roderich; Lim, Lih-King

    2018-04-01

    We study signatures of magnetic quantum oscillations in three-dimensional nodal line semimetals at zero temperature. The extended nature of the degenerate bands can result in a Fermi surface geometry with topological genus one, as well as a Fermi surface of electron and hole pockets encapsulating the nodal line. Moreover, the underlying two-band model to describe a nodal line is not unique, in that there are two classes of Hamiltonian with distinct band topology giving rise to the same Fermi-surface geometry. After identifying the extremal cyclotron orbits in various magnetic field directions, we study their concomitant Landau levels and resulting quantum oscillation signatures. By Landau-fan-diagram analyses, we extract the nontrivial π Berry phase signature for extremal orbits linking the nodal line.

  7. Sensitivity of SBLOCA analysis to model nodalization

    International Nuclear Information System (INIS)

    Lee, C.; Ito, T.; Abramson, P.B.

    1983-01-01

    The recent Semiscale test S-UT-8 indicates the possibility for primary liquid to hang up in the steam generators during a SBLOCA, permitting core uncovery prior to loop-seal clearance. In analysis of Small Break Loss of Coolant Accidents with RELAP5, it is found that resultant transient behavior is quite sensitive to the selection of nodalization for the steam generators. Although global parameters such as integrated mass loss, primary inventory and primary pressure are relatively insensitive to the nodalization, it is found that the predicted distribution of inventory around the primary is significantly affected by nodalization. More detailed nodalization predicts that more of the inventory tends to remain in the steam generators, resulting in less inventory in the reactor vessel and therefore causing earlier and more severe core uncovery

  8. Twisted Vector Bundles on Pointed Nodal Curves

    Indian Academy of Sciences (India)

    Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.

  9. VARIANT: VARIational anisotropic nodal transport for multidimensional Cartesian and hexadgonal geometry calculation

    International Nuclear Information System (INIS)

    Palmiotti, G.; Carrico, C.B.; Lewis, E.E.

    1995-10-01

    The theoretical basis, implementation information and numerical results are presented for VARIANT (VARIational Anisotropic Neutron Transport), a FORTRAN module of the DIF3D code system at Argonne National Laboratory. VARIANT employs the variational nodal method to solve multigroup steady-state neutron diffusion and transport problems. The variational nodal method is a hybrid finite element method that guarantees nodal balance and permits spatial refinement through the use of hierarchical complete polynomial trial functions. Angular variables are expanded with complete or simplified P 1 , P 3 or P 5 5 spherical harmonics approximations with full anisotropic scattering capability. Nodal response matrices are obtained, and the within-group equations are solved by red-black or four-color iteration, accelerated by a partitioned matrix algorithm. Fission source and upscatter iterations strategies follow those of DIF3D. Two- and three-dimensional Cartesian and hexagonal geometries are implemented. Forward and adjoint eigenvalue, fixed source, gamma heating, and criticality (concentration) search problems may be performed

  10. The NODAL system for the SPS

    International Nuclear Information System (INIS)

    Crowley-Milling, M.C.; Shering, G.C.

    1978-01-01

    A comprehensive description is given of the NODAL system used for computer control of the CERN Super-Proton Synchrotron. Details are given of NODAL, a high-level programming language based on FOCAL and SNOBOL4, designed for interactive use. It is shown how this interpretive language is used with a network of computers and how it can be extended by adding machine-code modules. The report updates and replaces an earlier one published in 1974. (Auth.)

  11. Nodal coupling by response matrix principles

    International Nuclear Information System (INIS)

    Ancona, A.; Becker, M.; Beg, M.D.; Harris, D.R.; Menezes, A.D.; VerPlanck, D.M.; Pilat, E.

    1977-01-01

    The response matrix approach has been used in viewing a reactor node in isolation and in characterizing the node by reflection and trans-emission factors. These are then used to generate invariant imbedding parameters, which in turn are used in a nodal reactor simulator code to compute core power distributions in two and three dimensions. Various nodal techniques are analyzed and converted into a single invariant imbedding formalism

  12. Magnonic triply-degenerate nodal points

    Science.gov (United States)

    Owerre, S. A.

    2017-12-01

    We generalize the concept of triply-degenerate nodal points to non-collinear antiferromagnets. Here, we introduce this concept to insulating quantum antiferromagnets on the decorated honeycomb lattice, with spin-1 bosonic quasiparticle excitations known as magnons. We demonstrate the existence of magnonic surface states with constant energy contours that form pairs of magnonic arcs connecting the surface projection of the magnonic triple nodal points. The quasiparticle excitations near the triple nodal points represent three-component bosons beyond that of magnonic Dirac, Weyl, and nodal-line cases. They can be regarded as a direct reflection of the intrinsic spin carried by magnons. Furthermore, we show that the magnonic triple nodal points can split into magnonic Weyl points, as the system transits from a non-collinear spin structure to a non-coplanar one with a non-zero scalar spin chirality. Our results not only apply to insulating antiferromagnets, but also provide a platform to seek for triple nodal points in metallic antiferromagnets.

  13. Group-decoupled multi-group pin power reconstruction utilizing nodal solution 1D flux profiles

    International Nuclear Information System (INIS)

    Yu, Lulin; Lu, Dong; Zhang, Shaohong; Wang, Dezhong

    2014-01-01

    Highlights: • A direct fitting multi-group pin power reconstruction method is developed. • The 1D nodal solution flux profiles are used as the condition. • The least square fit problem is analytically solved. • A slowing down source improvement method is applied. • The method shows good accuracy for even challenging problems. - Abstract: A group-decoupled direct fitting method is developed for multi-group pin power reconstruction, which avoids both the complication of obtaining 2D analytic multi-group flux solution and any group-coupled iteration. A unique feature of the method is that in addition to nodal volume and surface average fluxes and corner fluxes, transversely-integrated 1D nodal solution flux profiles are also used as the condition to determine the 2D intra-nodal flux distribution. For each energy group, a two-dimensional expansion with a nine-term polynomial and eight hyperbolic functions is used to perform a constrained least square fit to the 1D intra-nodal flux solution profiles. The constraints are on the conservation of nodal volume and surface average fluxes and corner fluxes. Instead of solving the constrained least square fit problem numerically, we solve it analytically by fully utilizing the symmetry property of the expansion functions. Each of the 17 unknown expansion coefficients is expressed in terms of nodal volume and surface average fluxes, corner fluxes and transversely-integrated flux values. To determine the unknown corner fluxes, a set of linear algebraic equations involving corner fluxes is established via using the current conservation condition on all corners. Moreover, an optional slowing down source improvement method is also developed to further enhance the accuracy of the reconstructed flux distribution if needed. Two test examples are shown with very good results. One is a four-group BWR mini-core problem with all control blades inserted and the other is the seven-group OECD NEA MOX benchmark, C5G7

  14. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  15. Analysis of the applicability of acceleration methods for a triangular prism geometry nodal diffusion code

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Okumura, Keisuke

    2002-11-01

    A prototype version of a diffusion code has been developed to analyze the hexagonal core as reduced moderation reactor and the applicability of some acceleration methods have been investigated to accelerate the convergence of the iterative solution method. The hexagonal core is divided into regular triangular prisms in the three-dimensional code MOSRA-Prism and a polynomial expansion nodal method is applied to approximate the neutron flux distribution by a cubic polynomial. The multi-group diffusion equation is solved iteratively with ordinal inner and outer iterations and the effectiveness of acceleration methods is ascertained by applying an adaptive acceleration method and a neutron source extrapolation method, respectively. The formulation of the polynomial expansion nodal method is outlined in the report and the local and global effectiveness of the acceleration methods is discussed with various sample calculations. A new general expression of vacuum boundary condition, derived in the formulation is also described. (author)

  16. Two-energy group solution of the diffusion equation by the multidimensional nodal polynomial expansion method

    International Nuclear Information System (INIS)

    Ribeiro, R.D.M.; Vellozo, S.O.; Botelho, D.A.

    1983-01-01

    The EPON computer code based in a Nodal Polynomial Expansion Method, wrote in Fortran IV, for steady-state, square geometry, one-dimensional or two-dimensional geometry and for one or two-energy group is presented. The neutron and power flux distributions for nuclear power plants were calculated, comparing with codes that use similar or different methodologies. The availability, economy and speed of the methodology is demonstrated. (E.G.) [pt

  17. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  18. An Adaptive Approach to Variational Nodal Diffusion Problems

    International Nuclear Information System (INIS)

    Zhang Hui; Lewis, E.E.

    2001-01-01

    An adaptive grid method is presented for the solution of neutron diffusion problems in two dimensions. The primal hybrid finite elements employed in the variational nodal method are used to reduce the diffusion equation to a coupled set of elemental response matrices. An a posteriori error estimator is developed to indicate the magnitude of local errors stemming from the low-order elemental interface approximations. An iterative procedure is implemented in which p refinement is applied locally by increasing the polynomial order of the interface approximations. The automated algorithm utilizes the a posteriori estimator to achieve local error reductions until an acceptable level of accuracy is reached throughout the problem domain. Application to a series of X-Y benchmark problems indicates the reduction of computational effort achievable by replacing uniform with adaptive refinement of the spatial approximations

  19. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  20. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  1. ANDREA: Advanced nodal diffusion code for reactor analysis

    International Nuclear Information System (INIS)

    Belac, J.; Josek, R.; Klecka, L.; Stary, V.; Vocka, R.

    2005-01-01

    A new macro code is being developed at NRI which will allow coupling of the advanced thermal-hydraulics model with neutronics calculations as well as efficient use in core loading pattern optimization process. This paper describes the current stage of the macro code development. The core simulator is based on the nodal expansion method, Helios lattice code is used for few group libraries preparation. Standard features such as pin wise power reconstruction and feedback iterations on critical control rod position, boron concentration and reactor power are implemented. A special attention is paid to the system and code modularity in order to enable flexible and easy implementation of new features in future. Precision of the methods used in the macro code has been verified on available benchmarks. Testing against Temelin PWR operational data is under way (Authors)

  2. Error Estimation and Accuracy Improvements in Nodal Transport Methods

    International Nuclear Information System (INIS)

    Zamonsky, O.M.

    2000-01-01

    The accuracy of the solutions produced by the Discrete Ordinates neutron transport nodal methods is analyzed.The obtained new numerical methodologies increase the accuracy of the analyzed scheems and give a POSTERIORI error estimators. The accuracy improvement is obtained with new equations that make the numerical procedure free of truncation errors and proposing spatial reconstructions of the angular fluxes that are more accurate than those used until present. An a POSTERIORI error estimator is rigurously obtained for one dimensional systems that, in certain type of problems, allows to quantify the accuracy of the solutions. From comparisons with the one dimensional results, an a POSTERIORI error estimator is also obtained for multidimensional systems. LOCAL indicators, which quantify the spatial distribution of the errors, are obtained by the decomposition of the menctioned estimators. This makes the proposed methodology suitable to perform adaptive calculations. Some numerical examples are presented to validate the theoretical developements and to illustrate the ranges where the proposed approximations are valid

  3. The analytic nodal method in cylindrical geometry

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomasevic, Djordje I.

    2008-01-01

    Nodal diffusion methods have been used extensively in nuclear reactor calculations, specifically for their performance advantage, but also for their superior accuracy. More specifically, the Analytic Nodal Method (ANM), utilising the transverse integration principle, has been applied to numerous reactor problems with much success. In this work, a nodal diffusion method is developed for cylindrical geometry. Application of this method to three-dimensional (3D) cylindrical geometry has never been satisfactorily addressed and we propose a solution which entails the use of conformal mapping. A set of 1D-equations with an adjusted, geometrically dependent, inhomogeneous source, is obtained. This work describes the development of the method and associated test code, as well as its application to realistic reactor problems. Numerical results are given for the PBMR-400 MW benchmark problem, as well as for a 'cylindrisized' version of the well-known 3D LWR IAEA benchmark. Results highlight the improved accuracy and performance over finite-difference core solutions and investigate the applicability of nodal methods to 3D PBMR type problems. Results indicate that cylindrical nodal methods definitely have a place within PBMR applications, yielding performance advantage factors of 10 and 20 for 2D and 3D calculations, respectively, and advantage factors of the order of 1000 in the case of the LWR problem

  4. Encapsulation of nodal segments of lobelia chinensis

    Directory of Open Access Journals (Sweden)

    Weng Hing Thong

    2015-04-01

    Full Text Available Lobelia chinensis served as an important herb in traditional chinese medicine. It is rare in the field and infected by some pathogens. Therefore, encapsulation of axillary buds has been developed for in vitro propagation of L. chinensis. Nodal explants of L. chinensis were used as inclusion materials for encapsulation. Various combinations of calcium chloride and sodium alginate were tested. Encapsulation beads produced by mixing 50 mM calcium chloride and 3.5% sodium alginate supported the optimal in vitro conversion potential. The number of multiple shoots formed by encapsulated nodal segments was not significantly different from the average of shoots produced by non-encapsulated nodal segments. The encapsulated nodal segments regenerated in vitro on different medium. The optimal germination and regeneration medium was Murashige-Skoog medium. Plantlets regenerated from the encapsulated nodal segments were hardened, acclimatized and established well in the field, showing similar morphology with parent plants. This encapsulation technology would serve as an alternative in vitro regeneration system for L. chinensis.

  5. An adaptive mesh refinement approach for average current nodal expansion method in 2-D rectangular geometry

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► A new adaptive h-refinement approach has been developed for a class of nodal method. ► The resulting system of nodal equations is more amenable to efficient numerical solution. ► The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. ► Spatially adaptive approach greatly enhances the accuracy of the solution. - Abstract: The aim of this work is to develop a spatially adaptive coarse mesh strategy that progressively refines the nodes in appropriate regions of domain to solve the neutron balance equation by zeroth order nodal expansion method. A flux gradient based a posteriori estimation scheme has been utilized for checking the approximate solutions for various nodes. The relative surface net leakage of nodes has been considered as an assessment criterion. In this approach, the core module is called in by adaptive mesh generator to determine gradients of node surfaces flux to explore the possibility of node refinements in appropriate regions and directions of the problem. The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. For this purpose, a computer program ANRNE-2D, Adaptive Node Refinement Nodal Expansion, has been developed to solve neutron diffusion equation using average current nodal expansion method for 2D rectangular geometries. Implementing the adaptive algorithm confirms its superiority in enhancing the accuracy of the solution without using fine nodes throughout the domain and increasing the number of unknown solution. Some well-known benchmarks have been investigated and improvements are reported

  6. Hybrid nodal methods in the solution of the diffusion equations in X Y geometry

    International Nuclear Information System (INIS)

    Hernandez M, N.; Alonso V, G.; Valle G, E. del

    2003-01-01

    In 1979, Hennart and collaborators applied several schemes of classic finite element in the numerical solution of the diffusion equations in X Y geometry and stationary state. Almost two decades then, in 1996, himself and other collaborators carried out a similar work but using nodal schemes type finite element. Continuing in this last direction, in this work a group it is described a set of several Hybrid Nodal schemes denominated (NH) as well as their application to solve the diffusion equations in multigroup in stationary state and X Y geometry. The term hybrid nodal it means that such schemes interpolate not only Legendre moments of face and of cell but also the values of the scalar flow of neutrons in the four corners of each cell or element of the spatial discretization of the domain of interest. All the schemes here considered are polynomials like they were it their predecessors. Particularly, its have developed and applied eight different hybrid nodal schemes that its are very nearby related with those developed by Hennart and collaborators in the past. It is treated of schemes in those that nevertheless that decreases the number of interpolation parameters it is conserved the accurate in relation to the bi-quadratic and bi-cubic schemes. Of these eight, three were described and applied in a previous work. It is the bi-lineal classic scheme as well as the hybrid nodal schemes, bi-quadratic and bi-cubic for that here only are described the other 5 hybrid nodal schemes although they are provided numerical results for several test problems with all them. (Author)

  7. Current trends in methods for neutron diffusion calculations

    International Nuclear Information System (INIS)

    Adams, C.H.

    1977-01-01

    Current work and trends in the application of neutron diffusion theory to reactor design and analysis are reviewed. Specific topics covered include finite-difference methods, synthesis methods, nodal calculations, finite-elements and perturbation theory

  8. Nodal Structure of the Electronic Wigner Function

    DEFF Research Database (Denmark)

    Schmider, Hartmut; Dahl, Jens Peder

    1996-01-01

    On the example of several atomic and small molecular systems, the regular behavior of nodal patterns in the electronic one-particle reduced Wigner function is demonstrated. An expression found earlier relates the nodal pattern solely to the dot-product of the position and the momentum vector......, if both arguments are large. An argument analogous to the ``bond-oscillatory principle'' for momentum densities links the nuclear framework in a molecule to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic...

  9. Fundamentals of 3-D Neutron Kinetics and Current Status

    International Nuclear Information System (INIS)

    Aragones, J.M.

    2008-01-01

    This lecture includes the following topics: 1) A summary of the cell and lattice calculations used to generate the neutron reaction data for neutron kinetics, including the spectral and burnup calculations of LWR cells and fuel assembly lattices, and the main nodal kinetics parameters: mean neutron generation time and delayed neutron fraction; 2) the features of the advanced nodal methods for 3-D LWR core physics, including the treatment of partially inserted control rods, fuel assembly grids, fuel burnup and xenon and samarium transients, and excore detector responses, that are essential for core surveillance, axial offset control and operating transient analysis; 3) the advanced nodal methods for 3-D LWR core neutron kinetics (best estimate safety analysis, real-time simulation); and 4) example applications to 3-D neutron kinetics problems in transient analysis of PWR cores, including model, benchmark and operational transients without, or with simple, thermal-hydraulics feedback.

  10. Isospectral graphs with identical nodal counts

    International Nuclear Information System (INIS)

    Oren, Idan; Band, Ram

    2012-01-01

    According to a recent conjecture, isospectral objects have different nodal count sequences (Gnutzmann et al 2005 J. Phys. A: Math. Gen. 38 8921–33). We study generalized Laplacians on discrete graphs, and use them to construct the first non-trivial counterexamples to this conjecture. In addition, these examples demonstrate a surprising connection between isospectral discrete and quantum graphs. (paper)

  11. The exponential function expansion of the intra-nodal cross sections for the spectral history gradient correction

    International Nuclear Information System (INIS)

    Cho, J. Y.; Noh, J. M.; Cheong, H. K.; Choo, H. K.

    1998-01-01

    In order to simplify the previous spectral history effect correction based on the polynomial expansion nodal method, a new spectral history effect correction is proposed. The new spectral history correction eliminates four microscopic depletion points out of total 13 depletion points in the previous correction by approximating the group cross sections with exponential function. The neutron flux to homogenize the group cross sections for the correction of the spectral history effect is calculated by the analytic function expansion nodal method in stead of the conventional polynomial expansion nodal method. This spectral history correction model is verified against the three MOX benchmark cores: a checkerboard type, a small core with 25 fuel assemblies, and a large core with 177 fuel assemblies. The benchmark results prove that this new spectral history correction model is superior to the previous one even with the reduced number of the local microscopic depletion points

  12. Numerical nodal simulation of the axial power distribution within nuclear reactors using a kinetics diffusion model. I

    International Nuclear Information System (INIS)

    Barros, R.C. de.

    1992-05-01

    Presented here is a new numerical nodal method for the simulation of the axial power distribution within nuclear reactors using the one-dimensional one speed kinetics diffusion model with one group of delayed neutron precursors. Our method is based on a spectral analysis of the nodal kinetics equations. These equations are obtained by integrating the original kinetics equations separately over a time step and over a spatial node, and then considering flat approximations for the forward difference terms. These flat approximations are the only approximations that are considered in the method. As a result, the spectral nodal method for space - time reactor kinetics generates numerical solutions for space independent problems or for time independent problems that are completely free from truncation errors. We show numerical results to illustrate the method's accuracy for coarse mesh calculations. (author)

  13. Energy options

    International Nuclear Information System (INIS)

    Hampton, Michael

    1999-01-01

    This chapter focuses on energy options as a means of managing exposure to energy prices. An intuitive approach to energy options is presented, and traditional definitions of call and put options are given. The relationship between options and swaps, option value and option exercises, commodity options, and option pricing are described. An end-user's guide to energy option strategy is outlined, and straight options, collars, participating swaps and collars, bull and bear spreads, and swaption are examined. Panels explaining the defining of basis risk, and discussing option pricing and the Greeks, delta hedging, managing oil options using the Black-Scholes model, caps, floors and collars, and guidelines on hedging versus speculation with options are included in the paper

  14. Pathology of nodal marginal zone lymphomas.

    Science.gov (United States)

    Pileri, Stefano; Ponzoni, Maurilio

    Nodal marginal zone B cell lymphomas (NMZLs) are a rare group of lymphoid disorders part of the spectrum of marginal zone B-cell lymphomas, which encompass splenic marginal one B-cell lymphoma (SMZL) and extra nodal marginal zone of B-cell lymphoma (EMZL), often of MALT-type. Two clinicopathological forms of NMZL are recognized: adult-type and pediatric-type, respectively. NMZLs show overlapping features with other types of MZ, but distinctive features as well. In this review, we will focus on the salient distinguishing features of NMZL mostly under morphological/immunophenotypical/molecular perspectives in views of the recent acquisitions and forthcoming updated 2016 WHO classification of lymphoid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Quantum anomalies in nodal line semimetals

    Science.gov (United States)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  16. Temporal quadratic expansion nodal Green's function method

    International Nuclear Information System (INIS)

    Liu Cong; Jing Xingqing; Xu Xiaolin

    2000-01-01

    A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method

  17. Acceleration of the FERM nodal program

    International Nuclear Information System (INIS)

    Nakata, H.

    1985-01-01

    It was tested three acceleration methods trying to reduce the number of outer iterations in the FERM nodal program. The results obtained indicated that the Chebychev polynomial acceleration method with variable degree results in a economy of 50% in the computer time. Otherwise, the acceleration method by source asymptotic extrapolation or by zonal rebalance did not result in economy of the global computer time, however some acceleration had been verified in outer iterations. (M.C.K.) [pt

  18. Acceleration of the nodal program FERM

    International Nuclear Information System (INIS)

    Nakata, H.

    1985-01-01

    Acceleration of the nodal FERM was tried by three acceleration schemes. Results of the calculations showed the best acceleration with the Tchebyshev method where the savings in the computing time were of the order of 50%. Acceleration with the Assymptotic Source Extrapoltation Method and with the Coarse-Mesh Rebalancing Method did not result in any improvement on the global computational time, although a reduction in the number of outer iterations was observed. (Author) [pt

  19. Nodal method for fast reactor analysis

    International Nuclear Information System (INIS)

    Shober, R.A.

    1979-01-01

    In this paper, a nodal method applicable to fast reactor diffusion theory analysis has been developed. This method has been shown to be accurate and efficient in comparison to highly optimized finite difference techniques. The use of an analytic solution to the diffusion equation as a means of determining accurate coupling relationships between nodes has been shown to be highly accurate and efficient in specific two-group applications, as well as in the current multigroup method

  20. Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems

    International Nuclear Information System (INIS)

    Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdú, G.

    2012-01-01

    Highlights: ► The multidimensional P L approximation to the nuclear transport equation is reviewed. ► A nodal collocation method is developed for the spatial discretization of P L equations. ► Advantages of the method are lower dimension and good characterists of the associated algebraic eigenvalue problem. ► The P L nodal collocation method is implemented into the computer code SHNC. ► The SHNC code is verified with 2D and 3D benchmark eigenvalue problems from Takeda and Ikeda, giving satisfactory results. - Abstract: P L equations are classical approximations to the neutron transport equations, which are obtained expanding the angular neutron flux in terms of spherical harmonics. These approximations are useful to study the behavior of reactor cores with complex fuel assemblies, for the homogenization of nuclear cross-sections, etc., and most of these applications are in three-dimensional (3D) geometries. In this work, we review the multi-dimensional P L equations and describe a nodal collocation method for the spatial discretization of these equations for arbitrary odd order L, which is based on the expansion of the spatial dependence of the fields in terms of orthonormal Legendre polynomials. The performance of the nodal collocation method is studied by means of obtaining the k eff and the stationary power distribution of several 3D benchmark problems. The solutions are obtained are compared with a finite element method and a Monte Carlo method.

  1. Radiotherapy for esthesioneuroblastoma: is elective nodal irradiation warranted in the multimodality treatment approach?

    Science.gov (United States)

    Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do

    2011-02-01

    The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Radiotherapy for Esthesioneuroblastoma: Is Elective Nodal Irradiation Warranted in the Multimodality Treatment Approach?

    International Nuclear Information System (INIS)

    Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do

    2011-01-01

    Purpose: The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Methods and Materials: Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Results: Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. Conclusions: ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy.

  3. IFMIF, the European–Japanese efforts under the Broader Approach agreement towards a Li(d,xn neutron source: Current status and future options

    Directory of Open Access Journals (Sweden)

    J. Knaster

    2016-12-01

    Full Text Available The necessity of a neutron source for fusion materials research was identified already in the 70s. Though neutrons induced degradation present similarities on a mechanistic approach, thresholds energies for crucial transmutations are typically above fission neutrons spectrum. The generation of He via 56Fe (n,α 53Cr in future fusion reactors with around 12 appm/dpa will lead to swelling and structural materials embrittlement. Existing neutron sources, namely fission reactors or spallation sources lead to different degradation, attempts for extrapolation are unsuccessful given the absence of experimental observations in the operational ranges of a fusion reactor. Neutrons with a broad peak at 14MeV can be generated with Li(d,xn reactions; the technological efforts that started with FMIT in the early 80s have finally matured with the success of IFMIF/EVEDA under the Broader Approach Agreement. The status today of five technological challenges, perceived in the past as most critical, are addressed. These are: 1. the feasibility of IFMIF accelerators, 2. the long term stability of lithium flow at IFMIF nominal conditions, 3. the potential instabilities in the lithium screen induced by the 2×5 MW impacting deuteron beam, 4. the uniformity of temperature in the specimens during irradiation, and 5. the validity of data provided with small specimens. Other ideas for fusion material testing have been considered, but they possibly are either not technologically feasible if fixed targets are considered or would require the results of a Li(d,xn facility to be reliably designed. In addition, today we know beyond reasonable doubt that the cost of IFMIF, consistently estimated throughout decades, is marginal compared with the cost of a fusion reactor. The less ambitious DEMO reactor performance being considered correlates with a lower need of fusion neutrons flux; thus IFMIF with its two accelerators is possibly not needed since with only one accelerator as

  4. Reconstruction of pin burnup characteristics from nodal calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Yang, W.S.; Finck, P.J.; Khalil, H.S.

    1990-01-01

    A reconstruction method has been developed for recovering pin burnup characteristics from fuel cycle calculations performed in hexagonal-z geometry using the nodal diffusion option of the DIF3D/REBUS-3 code system. Intra-modal distributions of group fluxes, nuclide densities, power density, burnup, and fluence are efficiently computed using polynomial shapes constrained to satisfy nodal information. The accuracy of the method has been tested by performing several numerical benchmark calculations and by comparing predicted local burnups to values measured for experimental assemblies in EBR-11. The results indicate that the reconstruction methods are quite accurate, yielding maximum errors in power and nuclide densities that are less than 2% for driver assemblies and typically less than 5% for blanket assemblies. 14 refs., 2 figs., 5 tabs

  5. Impacts of Contingency Reserve on Nodal Price and Nodal Reliability Risk in Deregulated Power Systems

    DEFF Research Database (Denmark)

    Zhao, Qian; Wang, Peng; Goel, Lalit

    2013-01-01

    The deregulation of power systems allows customers to participate in power market operation. In deregulated power systems, nodal price and nodal reliability are adopted to represent locational operation cost and reliability performance. Since contingency reserve (CR) plays an important role...... in reliable operation, the CR commitment should be considered in operational reliability analysis. In this paper, a CR model based on customer reliability requirements has been formulated and integrated into power market settlement. A two-step market clearing process has been proposed to determine generation...

  6. An evaluation of nodalization/decay heat/ volatile fission product release models in ISAAC code

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yong Mann; Park, Soo Yong; Kim, Dong Ha

    2003-03-01

    An ISAAC computer code, which was developed for a Level-2 PSA during 1995, has developed mainly with fundamental models for CANDU-specific severe accident progression and also the accident-analyzing experiences are limited to Level-2 PSA purposes. Hence the system nodalization model, decay model and volatile fission product release model, which are known to affect fission product behavior directly or indirectly, are evaluated to both enhance understanding for basic models and accumulate accident-analyzing experiences. As a research strategy, sensitivity studies of model parameters and sensitivity coefficients are performed. According to the results from core nodalization sensitivity study, an original 3x3 nodalization (per loop) method which groups horizontal fuel channels into 12 representative channels, is evaluated to be sufficient for an optimal scheme because detailed nodalization methods have no large effect on fuel thermal-hydraulic behavior, total accident progression and fission product behavior. As ANSI/ANS standard model for decay heat prediction after reactor trip has no needs for further model evaluation due to both wide application on accident analysis codes and good comparison results with the ORIGEN code, ISAAC calculational results of decay heat are used as they are. In addition, fission product revaporization in a containment which is caused by the embedded decay heat, is demonstrated. The results for the volatile fission product release model are analyzed. In case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results and for the late release case, NUREG-0772 model shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option shows mitigated conservative results.

  7. A nodal collocation method for the calculation of the lambda modes of the P L equations

    International Nuclear Information System (INIS)

    Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdu, G.

    2005-01-01

    P L equations are classical approximations to the neutron transport equation admitting a diffusive form. Using this property, a nodal collocation method is developed for the P L approximations, which is based on the expansion of the flux in terms of orthonormal Legendre polynomials. This method approximates the differential lambda modes problem by an algebraic eigenvalue problem from which the fundamental and the subcritical modes of the system can be calculated. To test the performance of this method, two problems have been considered, a homogeneous slab, which admits an analytical solution, and a seven-region slab corresponding to a more realistic problem

  8. Development of a polynomial nodal model to the multigroup transport equation in one dimension

    International Nuclear Information System (INIS)

    Feiz, M.

    1986-01-01

    A polynomial nodal model that uses Legendre polynomial expansions was developed for the multigroup transport equation in one dimension. The development depends upon the least-squares minimization of the residuals using the approximate functions over the node. Analytical expressions were developed for the polynomial coefficients. The odd moments of the angular neutron flux over the half ranges were used at the internal interfaces, and the Marshak boundary condition was used at the external boundaries. Sample problems with fine-mesh finite-difference solutions of the diffusion and transport equations were used for comparison with the model

  9. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  10. Twisted vector bundles on pointed nodal curves

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    by identifying the points p1 and p2. If m ≥ 2, let R1,...,Rm−1 be m − 1 copies of the projective line P1 and let xi,yi be two distinct points in Ri. Let R be the nodal curve which arises from the union. R0 ⊔ R1 ⊔···⊔ Rm−1 ⊔ Rm by identifying p1 ∈ R0 and p2 ∈ Rm with x1 ∈ R1 and ym−1 ∈ Rm−1 respectively and by identifying ...

  11. The analytic nodal diffusion solver ANDES in multigroups for 3D rectangular geometry: Development and performance analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Garcia-Herranz, Nuria; Ahnert, Carol; Aragones, Jose-Maria

    2008-01-01

    In this work we address the development and implementation of the analytic coarse-mesh finite-difference (ACMFD) method in a nodal neutron diffusion solver called ANDES. The first version of the solver is implemented in any number of neutron energy groups, and in 3D Cartesian geometries; thus it mainly addresses PWR and BWR core simulations. The details about the generalization to multigroups and 3D, as well as the implementation of the method are given. The transverse integration procedure is the scheme chosen to extend the ACMFD formulation to multidimensional problems. The role of the transverse leakage treatment in the accuracy of the nodal solutions is analyzed in detail: the involved assumptions, the limitations of the method in terms of nodal width, the alternative approaches to implement the transverse leakage terms in nodal methods - implicit or explicit -, and the error assessment due to transverse integration. A new approach for solving the control rod 'cusping' problem, based on the direct application of the ACMFD method, is also developed and implemented in ANDES. The solver architecture turns ANDES into an user-friendly, modular and easily linkable tool, as required to be integrated into common software platforms for multi-scale and multi-physics simulations. ANDES can be used either as a stand-alone nodal code or as a solver to accelerate the convergence of whole core pin-by-pin code systems. The verification and performance of the solver are demonstrated using both proof-of-principle test cases and well-referenced international benchmarks

  12. Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems

    Science.gov (United States)

    Bzdušek, Tomáš; Sigrist, Manfred

    2017-10-01

    Weyl points in three spatial dimensions are characterized by a Z -valued charge—the Chern number—which makes them stable against a wide range of perturbations. A set of Weyl points can mutually annihilate only if their net charge vanishes, a property we refer to as robustness. While nodal loops are usually not robust in this sense, it has recently been shown using homotopy arguments that in the centrosymmetric extension of the AI symmetry class they nevertheless develop a Z2 charge analogous to the Chern number. Nodal loops carrying a nontrivial value of this Z2 charge are robust, i.e., they can be gapped out only by a pairwise annihilation and not on their own. As this is an additional charge independent of the Berry π -phase flowing along the band degeneracy, such nodal loops are, in fact, doubly charged. In this manuscript, we generalize the homotopy discussion to the centrosymmetric extensions of all Atland-Zirnbauer classes. We develop a tailored mathematical framework dubbed the AZ +I classification and show that in three spatial dimensions such robust and multiply charged nodes appear in four of such centrosymmetric extensions, namely, AZ +I classes CI and AI lead to doubly charged nodal lines, while D and BDI support doubly charged nodal surfaces. We remark that no further crystalline symmetries apart from the spatial inversion are necessary for their stability. We provide a description of the corresponding topological charges, and develop simple tight-binding models of various semimetallic and superconducting phases that exhibit these nodes. We also indicate how the concept of robust and multiply charged nodes generalizes to other spatial dimensions.

  13. Radiotherapy of adult nodal non Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Gamen, G.; Thirion, P.

    1999-01-01

    The role of radiotherapy in the treatment of nodal non-Hodgkin's lymphoma has been modified by the introduction of efficient chemotherapy and the development of different pathological classifications. The recommended treatment of early-stage aggressive lymphomas is primarily a combination chemotherapy. The interest of adjuvant radiotherapy remains unclear and has to be established through large prospective trials. If radiation therapy has to be delivered, the historical results of exclusive radiation therapy showed that involved-fields and a dose of 35-40 Gy (daily fraction of 1.8 Gy, 5 days a week) are the optimal schedule. The interest of radiotherapy in the treatment of advanced-stage aggressive lymphoma is yet to be proven. Further studies had to stratify localized stages according to the factors of the International Prognostic Index. For easy-stage low-grade lymphoma, radiotherapy remains the standard treatment. However, the appropriate technique to use is controversial. Involved-field irradiation at a dose of 35 Gy seems to be the optimal schedule, providing a 10 year disease-free survival rate of 50 % and no major toxicity. There is no standard indication of radiotherapy in the treatment advanced-stage low-grade lymphoma. For 'new' nodal lymphoma's types, the indication of radiotherapy cannot be established (mantle-zone lymphoma, marginal zone B-cell lymphoma) or must take into account the natural history (Burkitt's lymphoma, peripheral T-cell lymphoma) and the sensibility to others therapeutic methods. (authors)

  14. Error estimation for variational nodal calculations

    International Nuclear Information System (INIS)

    Zhang, H.; Lewis, E.E.

    1998-01-01

    Adaptive grid methods are widely employed in finite element solutions to both solid and fluid mechanics problems. Either the size of the element is reduced (h refinement) or the order of the trial function is increased (p refinement) locally to improve the accuracy of the solution without a commensurate increase in computational effort. Success of these methods requires effective local error estimates to determine those parts of the problem domain where the solution should be refined. Adaptive methods have recently been applied to the spatial variables of the discrete ordinates equations. As a first step in the development of adaptive methods that are compatible with the variational nodal method, the authors examine error estimates for use in conjunction with spatial variables. The variational nodal method lends itself well to p refinement because the space-angle trial functions are hierarchical. Here they examine an error estimator for use with spatial p refinement for the diffusion approximation. Eventually, angular refinement will also be considered using spherical harmonics approximations

  15. Rehabilitation Options

    Science.gov (United States)

    ... Speech Pathology Occupational Therapy Art Therapy Recreational therapy Neuropsychology Home Care Options Advanced Care Planning Palliative Care ... Speech Pathology Occupational Therapy Art Therapy Recreational therapy Neuropsychology Home Care Options Advanced Care Planning Palliative Care ...

  16. A nodal collocation approximation for the multi-dimensional PL equations - 2D applications

    International Nuclear Information System (INIS)

    Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdu, G.

    2008-01-01

    A classical approach to solve the neutron transport equation is to apply the spherical harmonics method obtaining a finite approximation known as the P L equations. In this work, the derivation of the P L equations for multi-dimensional geometries is reviewed and a nodal collocation method is developed to discretize these equations on a rectangular mesh based on the expansion of the neutronic fluxes in terms of orthogonal Legendre polynomials. The performance of the method and the dominant transport Lambda Modes are obtained for a homogeneous 2D problem, a heterogeneous 2D anisotropic scattering problem, a heterogeneous 2D problem and a benchmark problem corresponding to a MOX fuel reactor core

  17. Two-dimensional analytical solution for nodal calculation of nuclear reactors

    International Nuclear Information System (INIS)

    Silva, Adilson C.; Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2017-01-01

    Highlights: • A proposal for a coarse mesh nodal method is presented. • The proposal uses the analytical solution of the two-dimensional neutrons diffusion equation. • The solution is performed homogeneous nodes with dimensions of the fuel assembly. • The solution uses four average fluxes on the node surfaces as boundary conditions. • The results show good accuracy and efficiency. - Abstract: In this paper, the two-dimensional (2D) neutron diffusion equation is analytically solved for two energy groups (2G). The spatial domain of reactor core is divided into a set of nodes with uniform nuclear parameters. To determine iteratively the multiplication factor and the neutron flux in the reactor we combine the analytical solution of the neutron diffusion equation with an iterative method known as power method. The analytical solution for different types of regions that compose the reactor is obtained, such as fuel and reflector regions. Four average fluxes in the node surfaces are used as boundary conditions for analytical solution. Discontinuity factors on the node surfaces derived from the homogenization process are applied to maintain averages reaction rates and the net current in the fuel assembly (FA). To validate the results obtained by the analytical solution a relative power density distribution in the FAs is determined from the neutron flux distribution and compared with the reference values. The results show good accuracy and efficiency.

  18. Torsionfree Sheaves over a Nodal Curve of Arithmetic Genus One

    Indian Academy of Sciences (India)

    We classify all isomorphism classes of stable torsionfree sheaves on an irreducible nodal curve of arithmetic genus one defined over C C . Let be a nodal curve of arithmetic genus one defined over R R , with exactly one node, such that does not have any real points apart from the node. We classify all isomorphism ...

  19. Wielandt method applied to the diffusion equations discretized by finite element nodal methods

    International Nuclear Information System (INIS)

    Mugica R, A.; Valle G, E. del

    2003-01-01

    Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)

  20. Elaboration of a nodal method to solve the steady state multigroup diffusion equation. Study and use of the multigroup diffusion code DAHRA

    International Nuclear Information System (INIS)

    Halilou, A.; Lounici, A.

    1981-01-01

    The subject is divided in two parts: In the first part a nodal method has been worked out to solve the steady state multigroup diffusion equation. This method belongs to the same set of nodal methods currently used to calculate the exact fission powers and neutron fluxes in a very short computing time. It has been tested on a two dimensional idealized reactors. The effective multiplication factor and the fission powers for each fuel element have been calculated. The second part consists in studying and mastering the multigroup diffusion code DAHRA - a reduced version of DIANE - a two dimensional code using finite difference method

  1. A nodal method of calculating power distributions for LWR-type reactors with square fuel lattices

    International Nuclear Information System (INIS)

    Hoeglund, Randolph.

    1980-06-01

    A nodal model is developed for calculating the power distribution in the core of a light water reactor with a square fuel lattice. The reactor core is divided into a number of more or less cubic nodes and a nodal coupling equation, which gives the thermal power density in one node as a function of the power densities in the neighbour nodes, is derived from the neutron diffusion equations for two energy groups. The three-dimensional power distribution can be computed iteratively using this coupling equation, for example following the point Jacobi, the Gauss-Seidel or the point successive overrelaxation scheme. The method has been included as the neutronic model in a reactor core simulation computer code BOREAS, where it is combined with a thermal-hydraulic model in order to make a simultaneous computation of the interdependent power and void distributions in a boiling water reactor possible. Also described in this report are a method for temporary one-dimensional iteration developed in order to accelerate the iterative solution of the problem and the Haling principle which is widely used in the planning of reloading operations for BWR reactors. (author)

  2. Neutron stars

    International Nuclear Information System (INIS)

    Irvine, J.M.

    1978-01-01

    The subject is covered in chapters entitled: introduction (resume of stellar evolution, gross characteristics of neutron stars); pulsars (pulsar characteristics, pulsars as neutron stars); neutron star temperatures (neutron star cooling, superfluidity and superconductivity in neutron stars); the exterior of neutron stars (the magnetosphere, the neutron star 'atmosphere', pulses); neutron star structure; neutron star equations of state. (U.K.)

  3. Topological surface states in nodal superconductors

    International Nuclear Information System (INIS)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-01-01

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. (topical review)

  4. Nodal aberration theory applied to freeform surfaces

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  5. Feasibility and applications of the spin-echo modulation option for a small angle neutron scattering instrument at the European Spallation Source

    Science.gov (United States)

    Kusmin, A.; Bouwman, W. G.; van Well, A. A.; Pappas, C.

    2017-06-01

    We describe theoretical and practical aspects of spin-echo modulated small-angle neutron scattering (SEMSANS) as well as the potential combination with SANS. Based on the preliminary technical designs of SKADI (a SANS instrument proposed for the European Spallation Source) and a SEMSANS add-on, we assess the practicability, feasibility and scientific merit of a combined SANS and SEMSANS setup by calculating tentative SANS and SEMSANS results for soft matter, geology and advanced material samples that have been previously studied by scattering methods. We conclude that lengths from 1 nm up to 0.01 mm can be observed simultaneously in a single measurement. Thus, the combination of SANS and SEMSANS instrument is suited for the simultaneous observation of a wide range of length scales, e.g. for time-resolved studies of kinetic processes in complex multiscale systems.

  6. 3-D neutron transport benchmarks

    International Nuclear Information System (INIS)

    Takeda, T.; Ikeda, H.

    1991-03-01

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of K eff , control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  7. Error Estimation and Accuracy Improvements in Nodal Transport Methods; Estimacion de Errores y Aumento de la Precision en Metodos Nodales de Transporte

    Energy Technology Data Exchange (ETDEWEB)

    Zamonsky, O M [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    The accuracy of the solutions produced by the Discrete Ordinates neutron transport nodal methods is analyzed.The obtained new numerical methodologies increase the accuracy of the analyzed scheems and give a POSTERIORI error estimators. The accuracy improvement is obtained with new equations that make the numerical procedure free of truncation errors and proposing spatial reconstructions of the angular fluxes that are more accurate than those used until present. An a POSTERIORI error estimator is rigurously obtained for one dimensional systems that, in certain type of problems, allows to quantify the accuracy of the solutions. From comparisons with the one dimensional results, an a POSTERIORI error estimator is also obtained for multidimensional systems. LOCAL indicators, which quantify the spatial distribution of the errors, are obtained by the decomposition of the menctioned estimators. This makes the proposed methodology suitable to perform adaptive calculations. Some numerical examples are presented to validate the theoretical developements and to illustrate the ranges where the proposed approximations are valid.

  8. A nodal expansion method using conformal mapping for hexagonal geometry

    International Nuclear Information System (INIS)

    Chao, Y.A.; Shatilla, Y.A.

    1993-01-01

    Hexagonal nodal methods adopting the same transverse integration process used for square nodal methods face the subtle theoretical problem that this process leads to highly singular nonphysical terms in the diffusion equation. Lawrence, in developing the DIF3D-N code, tried to approximate the singular terms with relatively simple polynomials. In the HEX-NOD code, Wagner ignored the singularities to simplify the diffusion equation and introduced compensating terms in the nodal equations to restore the nodal balance relation. More recently developed hexagonal nodal codes, such as HEXPE-DITE and the hexagonal version of PANTHER, used methods similar to Wagner's. It will be shown that for light water reactor applications, these two different approximations significantly degraded the accuracy of the respective method as compared to the established square nodal methods. Alternatively, the method of conformal mapping was suggested to map a hexagon to a rectangle, with the unique feature of leaving the diffusion operator invariant, thereby fundamentally resolving the problems associated with transverse integration. This method is now implemented in the Westinghouse hexagonal nodal code ANC-H. In this paper we report on the results of comparing the three methods for a variety of problems via benchmarking against the fine-mesh finite difference code

  9. Phase I Trial of Pelvic Nodal Dose Escalation With Hypofractionated IMRT for High-Risk Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Adkison, Jarrod B.; McHaffie, Derek R.; Bentzen, Soren M.; Patel, Rakesh R.; Khuntia, Deepak [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, Madison, WI (United States); Petereit, Daniel G. [Department of Radiation Oncology, John T. Vucurevich Regional Cancer Care Institute, Rapid City Regional Hospital, Rapid City, SD (United States); Hong, Theodore S.; Tome, Wolfgang [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, Madison, WI (United States); Ritter, Mark A., E-mail: ritter@humonc.wisc.edu [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, Madison, WI (United States)

    2012-01-01

    Purpose: Toxicity concerns have limited pelvic nodal prescriptions to doses that may be suboptimal for controlling microscopic disease. In a prospective trial, we tested whether image-guided intensity-modulated radiation therapy (IMRT) can safely deliver escalated nodal doses while treating the prostate with hypofractionated radiotherapy in 5 Vulgar-Fraction-One-Half weeks. Methods and Materials: Pelvic nodal and prostatic image-guided IMRT was delivered to 53 National Comprehensive Cancer Network (NCCN) high-risk patients to a nodal dose of 56 Gy in 2-Gy fractions with concomitant treatment of the prostate to 70 Gy in 28 fractions of 2.5 Gy, and 50 of 53 patients received androgen deprivation for a median duration of 12 months. Results: The median follow-up time was 25.4 months (range, 4.2-57.2). No early Grade 3 Radiation Therapy Oncology Group or Common Terminology Criteria for Adverse Events v.3.0 genitourinary (GU) or gastrointestinal (GI) toxicities were seen. The cumulative actuarial incidence of Grade 2 early GU toxicity (primarily alpha blocker initiation) was 38%. The rate was 32% for Grade 2 early GI toxicity. None of the dose-volume descriptors correlated with GU toxicity, and only the volume of bowel receiving {>=}30 Gy correlated with early GI toxicity (p = 0.029). Maximum late Grades 1, 2, and 3 GU toxicities were seen in 30%, 25%, and 2% of patients, respectively. Maximum late Grades 1 and 2 GI toxicities were seen in 30% and 8% (rectal bleeding requiring cautery) of patients, respectively. The estimated 3-year biochemical control (nadir + 2) was 81.2 {+-} 6.6%. No patient manifested pelvic nodal failure, whereas 2 experienced paraaortic nodal failure outside the field. The six other clinical failures were distant only. Conclusions: Pelvic IMRT nodal dose escalation to 56 Gy was delivered concurrently with 70 Gy of hypofractionated prostate radiotherapy in a convenient, resource-efficient, and well-tolerated 28-fraction schedule. Pelvic nodal dose

  10. Modifying nodal pricing method considering market participants optimality and reliability

    Directory of Open Access Journals (Sweden)

    A. R. Soofiabadi

    2015-06-01

    Full Text Available This paper develops a method for nodal pricing and market clearing mechanism considering reliability of the system. The effects of components reliability on electricity price, market participants’ profit and system social welfare is considered. This paper considers reliability both for evaluation of market participant’s optimality as well as for fair pricing and market clearing mechanism. To achieve fair pricing, nodal price has been obtained through a two stage optimization problem and to achieve fair market clearing mechanism, comprehensive criteria has been introduced for optimality evaluation of market participant. Social welfare of the system and system efficiency are increased under proposed modified nodal pricing method.

  11. PWR in-core nuclear fuel management optimization utilizing nodal (non-linear NEM) generalized perturbation theory

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Turinsky, P.J.; Kropaczek, D.J.

    1993-01-01

    The computational capability of efficiently and accurately evaluate reactor core attributes (i.e., k eff and power distributions as a function of cycle burnup) utilizing a second-order accurate advanced nodal Generalized Perturbation Theory (GPT) model has been developed. The GPT model is derived from the forward non-linear iterative Nodal Expansion Method (NEM) strategy, thereby extending its inherent savings in memory storage and high computational efficiency to also encompass GPT via the preservation of the finite-difference matrix structure. The above development was easily implemented into the existing coarse-mesh finite-difference GPT-based in-core fuel management optimization code FORMOSA-P, thus combining the proven robustness of its adaptive Simulated Annealing (SA) multiple-objective optimization algorithm with a high-fidelity NEM GPT neutronics model to produce a powerful computational tool used to generate families of near-optimum loading patterns for PWRs. (orig.)

  12. Calculation of the power factor using the neutron diffusion hybrid equation

    International Nuclear Information System (INIS)

    Costa da Silva, Adilson; Carvalho da Silva, Fernando; Senra Martinez, Aquilino

    2013-01-01

    Highlights: ► A neutron diffusion hybrid equation with an external neutron source was used. ► Nodal expansion method to obtain the neutron flux was used. ► Nuclear power factors in each fuel element in the reactor core were calculated. ► The results obtained were very accurate. -- Abstract: In this paper, we used a neutron diffusion hybrid equation with an external neutron source to calculate nuclear power factors in each fuel element in the reactor core. We used the nodal expansion method to obtain the neutron flux for a given control rods bank position. The results were compared with results obtained for eigenvalue problem near criticality condition and fixed source problem during the start-up of the reactor, where external neutron sources are extremely important for the stabilization of external neutron detectors.

  13. The correction of pebble bed reactor nodal cross sections for the effects of leakage and depletion history

    Science.gov (United States)

    Hudson, Nathanael Harrison

    An accurate and computationally fast method to generate nodal cross sections for the Pebble Bed Reactor (PBR) was presented. In this method, named Spectral History Correction (SHC), a set of fine group microscopic cross section libraries, pre-computed at specified depletion and moderation states, was coupled with the nodal nuclide densities and group bucklings to compute the new fine group spectrum for each node. The relevant fine group cross-section library was then recollapsed to the local broad group cross-section structure with this new fine group spectrum. This library set was tracked in terms of fuel isotopic densities. Fine group modulation factors (to correct the homogeneous flux for heterogeneous effects) and fission spectra were also stored with the cross section library. As the PBR simulation converges to a steady state fuel cycle, the initial nodal cross section library becomes inaccurate due to the burnup of the fuel and the neutron leakage into and out of the node. Because of the recirculation of discharged fuel pebbles with fresh fuel pebbles, a node can consist of a collection of pebbles at various burnup stages. To account for the nodal burnup, the microscopic cross sections were combined with nodal averaged atom densities to approximate the fine group macroscopic cross-sections for that node. These constructed, homogeneous macroscopic cross sections within the node were used to calculate a numerical solution for the fine group spectrum with B1 theory. This new fine spectrum was used to collapse the pre-computed microscopic cross section library to the broad group structure employed by the fuel cycle code. This SHC technique was developed and practically implemented as a subroutine within the PBR fuel cycle code PEBBED. The SHC subroutine was called to recalculate the broad group cross sections during the code convergence. The result was a fast method that compared favorably to the benchmark scheme of cross section calculation with the lattice

  14. Thermal neutron moderating device

    International Nuclear Information System (INIS)

    Takigami, Hiroyuki.

    1995-01-01

    In a thermal neutron moderating device, superconductive coils for generating magnetic fields capable of applying magnetic fields vertical to the longitudinal direction of a thermal neutron passing tube, and superconductive coils for magnetic field gradient for causing magnetic field gradient in the longitudinal direction of the thermal neutron passing tube are disposed being stacked at the outside of the thermal neutron passing tube. When magnetic field gradient is present vertically to the direction of a magnetic moment, thermal neutrons undergo forces in the direction of the magnetic field gradient in proportion to the magnetic moment. Then, the magnetic moment of the thermal neutrons is aligned with the direction vertical to the passing direction of the thermal neutrons, to cause the magnetic field gradient in the passing direction of the thermal neutrons. The speed of the thermal neutrons can be optionally selected and the wavelength can freely be changed by applying forces to the thermal neutrons and changing the extent and direction of the magnetic field gradient. Superconductive coils are used as the coils for generating magnetic fields and the magnetic field gradient in order to change extremely high energy of the thermal neutrons. (N.H.)

  15. CT simulation in nodal positive breast cancer

    International Nuclear Information System (INIS)

    Horst, E.; Schuck, A.; Moustakis, C.; Schaefer, U.; Micke, O.; Kronholz, H.L.; Willich, N.

    2001-01-01

    Background: A variety of solutions are used to match tangential fields and opposed lymph node fields in irradiation of nodal positive breast cancer. The choice is depending on the technical equipment which is available and the clinical situation. The CT simulation of a non-monoisocentric technique was evaluated in terms of accuracy and reproducibility. Patients, Material and Methods: The field match parameters were adjusted virtually at CT simulation and were compared with parameters derived mathematically. The coordinate transfer from the CT simulator to the conventional simulator was analyzed in 25 consecutive patients. Results: The angles adjusted virtually for a geometrically exact coplanar field match corresponded with the angles calculated for each set-up. The mean isocenter displacement was 5.7 mm and the total uncertainty of the coordinate transfer was 6.7 mm (1 SD). Limitations in the patient set-up became obvious because of the steep arm abduction necessary to fit the 70 cm CT gantry aperture. Required modifications of the arm position and coordinate transfer errors led to a significant shift of the marked matchline of >1.0 cm in eight of 25 patients (32%). Conclusion: The virtual CT simulation allows a precise and graphic definition of the field match parameters. However, modifications of the virtual set-up basically due to technical limitations were required in a total of 32% of cases, so that a hybrid technique was adapted at present that combines virtual adjustment of the ideal field alignment parameters with conventional simulation. (orig.) [de

  16. Present Status of GNF New Nodal Simulator

    International Nuclear Information System (INIS)

    Iwamoto, T.; Tamitani, M.; Moore, B.

    2001-01-01

    This paper presents core simulator consolidation work done at Global Nuclear Fuel (GNF). The unified simulator needs to supercede the capabilities of past simulator packages from the original GNF partners: GE, Hitachi, and Toshiba. At the same time, an effort is being made to produce a simulation package that will be a state-of-the-art analysis tool when released, in terms of the physics solution methodology and functionality. The core simulator will be capable and qualified for (a) high-energy cycles in the U.S. markets, (b) mixed-oxide (MOX) introduction in Japan, and (c) high-power density plants in Europe, etc. The unification of the lattice physics code is also in progress based on a transport model with collision probability methods. The AETNA core simulator is built upon the PANAC11 software base. The goal is to essentially replace the 1.5-energy-group model with a higher-order multigroup nonlinear nodal solution capable of the required modeling fidelity, while keeping highly automated library generation as well as functionality. All required interfaces to PANAC11 will be preserved, which minimizes the impact on users and process automation. Preliminary results show statistical accuracy improvement over the 1.5-group model

  17. BEACON: An application of nodal methods for operational support

    International Nuclear Information System (INIS)

    Boyd, W.A.; Nguyen, T.Q.

    1992-01-01

    A practical application of nodal methods is on-line plant operational support. However, to enable plant personnel to take full advantage of a nodal model to support plant operations, (a) a core nodal model must always be up to date with the current core history and conditions, (b) the nodal methods must be fast enough to allow numerous core calculations to be performed in minutes to support engineering decisions, and (c) the system must be easily accessible to engineering personnel at the reactor, their offices, or any other location considered appropriate. A core operational support package developed by Westinghouse called BEACON (best estimate analysis of core operations - nuclear) has been installed at several plants. Results from these plants and numerous in-core flux maps analyzed have demonstrated the accuracy of the model and the effectiveness of the methodology

  18. Aircraft Nodal Data Acquisition System (ANDAS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) based upon the short haul Zigbee networking standard is proposed. It employs a very thin (135 um)...

  19. Hybrid nodal loop metal: Unconventional magnetoresponse and material realization

    Science.gov (United States)

    Zhang, Xiaoming; Yu, Zhi-Ming; Lu, Yunhao; Sheng, Xian-Lei; Yang, Hui Ying; Yang, Shengyuan A.

    2018-03-01

    A nodal loop is formed by a band crossing along a one-dimensional closed manifold, with each point on the loop a linear nodal point in the transverse dimensions, and can be classified as type I or type II depending on the band dispersion. Here, we propose a class of nodal loops composed of both type-I and type-II points, which are hence termed as hybrid nodal loops. Based on first-principles calculations, we predict the realization of such loops in the existing electride material Ca2As . For a hybrid loop, the Fermi surface consists of coexisting electron and hole pockets that touch at isolated points for an extended range of Fermi energies, without the need for fine-tuning. This leads to unconventional magnetic responses, including the zero-field magnetic breakdown and the momentum-space Klein tunneling observable in the magnetic quantum oscillations, as well as the peculiar anisotropy in the cyclotron resonance.

  20. A nodal method based on matrix-response method

    International Nuclear Information System (INIS)

    Rocamora Junior, F.D.; Menezes, A.

    1982-01-01

    A nodal method based in the matrix-response method, is presented, and its application to spatial gradient problems, such as those that exist in fast reactors, near the core - blanket interface, is investigated. (E.G.) [pt

  1. Nodal prices determination with wind integration for radial ...

    African Journals Online (AJOL)

    With competitive electricity market operation, open access to the transmission and distribution network is essential ... The results have been obtained for IEEE 33 ...... The value of intermittent wind DG under nodal prices and amp – mile tariffs.

  2. Nodal aberration theory for wild-filed asymmetric optical systems

    Science.gov (United States)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  3. STEP- A three-dimensional nodal diffusion code for LMR's

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Il; Kim, Taek Kyum [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    STEP is a three-dimensional multigroup nodal diffusion code for the neutronics analysis of the LMR core. STEP employs DIF3D and HEXNOD nodal methods. In DIF3D, one-dimensional fluxes are approximated by polynomials while HEXNOD analytically solves transverse-integrated one-dimensional diffusion equations. The nodal equations are solved using a conventional fission source iteration procedure accelerated by coarse-mesh rebalancing and asymptotic extrapolation. At each fission source iteration, the interface currents for each group are computed by solving the response matrix equations with a known group source term. These partial currents are used to updata flux moments. This solution is accomplished by inner iteration, a series of sweeps through the spatial mesh. Inner iterations are performed by sweeping the axial mesh plane in a standard red-black checkerboard ordering, i.e. the odd-numbered planes are processed during the first pass, followed by the even-numbered planes on the second pass. On each plane, the nodes are swept in the four-color checkerboard ordering. STEP accepts microscopic cross section data from the CCCC standard interface file ISOTXS currently used for the neutronics analysis of LMR's at KAERI as well as macroscopic cross section data. Material cross sections are obtained by summing the product of atom densities and microscopic cross sections over all isotopes comprising the material. Energy is released from both fission ad capture. The thermal-hydraulics model calculates average fuel and coolant temperatures. STEP takes account of feedback effects from both fuel temperature and coolant temperature changes. The thermal-hydraulics model is a conservative, single channel model where there is no heat transfer between assemblies. Thus, STEP gives conservative results which, however, are of useful information for core design and can be useful tool for neutronics analysis of LMR core design and will be used for the base program of a future

  4. Three-dimensional static and dynamic reactor calculations by the nodal expansion method

    International Nuclear Information System (INIS)

    Christensen, B.

    1985-05-01

    This report reviews various method for the calculation of the neutron-flux- and power distribution in an nuclear reactor. The nodal expansion method (NEM) is especially described in much detail. The nodal expansion method solves the diffusion equation. In this method the reactor core is divided into nodes, typically 10 to 20 cm in each direction, and the average flux in each node is calculated. To obtain the coupling between the nodes the local flux inside each node is expressed by use of a polynomial expansion. The expansion is one-dimensional, so inside each node such three expansions occur. To calculate the expansion coefficients it is necessary that the polynomial expansion is a solution to the one-dimensional diffusion equation. When the one-dimensional diffusion equation is established a term with the transversal leakage occur, and this term is expanded after the same polynomials. The resulting equation system with the expansion coefficients as the unknowns is solved with weigthed residual technique. The nodal expansion method is built into a computer program (also called NEM), which is divided into two parts, one part for steady-state calculations and one part for dynamic calculations. It is possible to take advantage of symmetry properties of the reactor core. The program is very flexible with regard to the number of energy groups, the node size, the flux expansion order and the transverse leakage expansion order. The boundary of the core is described by albedos. The program and input to it are described. The program is tested on a number of examples extending from small theoretical one up to realistic reactor cores. Many calculations are done on the wellknown IAEA benchmark case. The calculations have tested the accuracy and the computing time for various node sizes and polynomial expansions. In the dynamic examples various strategies for variation of the time step-length have been tested. (author)

  5. On the extension of the analytic nodal diffusion solver ANDES to sodium fast reactors

    International Nuclear Information System (INIS)

    Ochoa, R.; Herrero, J.J.; Garcia-Herranz, N.

    2011-01-01

    Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermal-hydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. Here some of the limitations encountered when attempting to apply the Analytical Coarse Mesh Finite Difference (ACMFD) method - implemented inside ANDES - to fast reactor calculations are discussed and the sensitivity of the method to the energy-group structure is studied. In order to reinforce some of the conclusions obtained two calculations are presented. The first one involves a 3D mini-core model in 33 groups, where the ANDES solver presents several issues. And secondly, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry in 4 energy groups is used to verify the good convergence of the code in a few-energy-group structure. (author)

  6. Budget Options

    National Research Council Canada - National Science Library

    2000-01-01

    This volume-part of the Congressional Budget Office's (CBO's) annual report to the House and Senate Committees on the Budget-is intended to help inform policymakers about options for the federal budget...

  7. Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form

    Directory of Open Access Journals (Sweden)

    A. Neamaty

    2015-03-01

    Full Text Available In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.

  8. Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form

    OpenAIRE

    A. Neamaty; Sh. Akbarpoor; A. Dabbaghian

    2015-01-01

    In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.

  9. The ADO-nodal method for solving two-dimensional discrete ordinates transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Picoloto, C.B.; Cunha, R.D. da

    2017-01-01

    Highlights: • Two-dimensional discrete ordinates neutron transport. • Analytical Discrete Ordinates (ADO) nodal method. • Heterogeneous media fixed source problems. • Local solutions. - Abstract: In this work, recent results on the solution of fixed-source two-dimensional transport problems, in Cartesian geometry, are reported. Homogeneous and heterogeneous media problems are considered in order to incorporate the idea of arbitrary number of domain division into regions (nodes) when applying the ADO method, which is a method of analytical features, to those problems. The ADO-nodal formulation is developed, for each node, following previous work devoted to heterogeneous media problem. Here, however, the numerical procedure is extended to higher number of domain divisions. Such extension leads, in some cases, to the use of an iterative method for solving the general linear system which defines the arbitrary constants of the general solution. In addition to solve alternative heterogeneous media configurations than reported in previous works, the present approach allows comparisons with results provided by other metodologies generated with refined meshes. Numerical results indicate the ADO solution may achieve a prescribed accuracy using coarser meshes than other schemes.

  10. Application of nonlinear nodal diffusion generalized perturbation theory to nuclear fuel reload optimization

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Turinsky, P.J.

    1995-01-01

    The determination of the family of optimum core loading patterns for pressurized water reactors (PWRs) involves the assessment of the core attributes for thousands of candidate loading patterns. For this reason, the computational capability to efficiently and accurately evaluate a reactor core's eigenvalue and power distribution versus burnup using a nodal diffusion generalized perturbation theory (GPT) model is developed. The GPT model is derived from the forward nonlinear iterative nodal expansion method (NEM) to explicitly enable the preservation of the finite difference matrix structure. This key feature considerably simplifies the mathematical formulation of NEM GPT and results in reduced memory storage and CPU time requirements versus the traditional response-matrix approach to NEM. In addition, a treatment within NEM GPT can account for localized nonlinear feedbacks, such as that due to fission product buildup and thermal-hydraulic effects. When compared with a standard nonlinear iterative NEM forward flux solve with feedbacks, the NEM GPT model can execute between 8 and 12 times faster. These developments are implemented within the PWR in-core nuclear fuel management optimization code FORMOSA-P, combining the robustness of its adaptive simulated annealing stochastic optimization algorithm with an NEM GPT neutronics model that efficiently and accurately evaluates core attributes associated with objective functions and constraints of candidate loading patterns

  11. Development of a New core/reflector model for coarse-mesh nodal methods

    International Nuclear Information System (INIS)

    Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Il; Kim, Young Jin; Joo, Hyung Kuk; Chang, Moon Hee.

    1997-10-01

    This work presents two approaches for reflector simulation in coarse-mesh nodal methods. The first approach is called Interface Matrix Technique (IMT), which simulates the baffle as a banishingly thin layer having the property of reflection and transmission. We applied this technique within the frame of AFEN (Analytic Function Expansion Nodal) method, and developed the AFEN-IM (Interface Matrix) method. AFEN-IM method shows 1.24% and 0.42 % in maximum and RMS (Root Mean Square) assemblywise power error for ZION-1 benchmark problem. The second approach is L-shaped reflector homogenization method. This method is based on the integral response conservation along the L-shaped core-reflector interface. The reference reflector response is calculated from 2-dimensional spectral calculation and the response of the homogenized reflector is derived from the one-node 2-dimensional AFEN problem solution. This method shows 5 times better accuracy than the 1-dimensional homogenization technique in the assemblywise power. Also, the concept of shroud/reflector homogenization for hexagonal core have been developed. The 1-dimensional spectral calculation was used for the determination of 2 group cross sections. The essence of homogenization concept consists in the calculation of equivalent shroud width, which preserve albedo for the fast neutrons in 2-dimensional reflector. This method shows a relative error less than 0.42% in assemblywise power and a difference of 9x10 -5 in multiplication factor for full-core model. (author). 9 refs., 3 tabs., 28 figs

  12. NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2016-01-01

    Full Text Available This paper reports the results of sensitivity analysis of the multidimension, multigroup neutron diffusion NODAL3 code for the NEACRP 3D LWR core transient benchmarks (PWR. The code input parameters covered in the sensitivity analysis are the radial and axial node sizes (the number of radial node per fuel assembly and the number of axial layers, heat conduction node size in the fuel pellet and cladding, and the maximum time step. The output parameters considered in this analysis followed the above-mentioned core transient benchmarks, that is, power peak, time of power peak, power, averaged Doppler temperature, maximum fuel centerline temperature, and coolant outlet temperature at the end of simulation (5 s. The sensitivity analysis results showed that the radial node size and maximum time step give a significant effect on the transient parameters, especially the time of power peak, for the HZP and HFP conditions. The number of ring divisions for fuel pellet and cladding gives negligible effect on the transient solutions. For productive work of the PWR transient analysis, based on the present sensitivity analysis results, we recommend NODAL3 users to use 2×2 radial nodes per assembly, 1×18 axial layers per assembly, the maximum time step of 10 ms, and 9 and 1 ring divisions for fuel pellet and cladding, respectively.

  13. Application of the HGPT methodology of reactor operation problems with a nodal mixed method

    International Nuclear Information System (INIS)

    Baudron, A.M.; Bruna, G.B.; Gandini, A.; Lautard, J.J.; Monti, S.; Pizzigati, G.

    1998-01-01

    The heuristically based generalized perturbation theory (HGPT), to first and higher order, applied to the neutron field of a reactor system, is discussed in relation to quasistatic problems. This methodology is of particular interest in reactor operation. In this application it may allow an on-line appraisal of the main physical responses of the reactor system when subject to alterations relevant to normal system exploitation, e.g. control rod movement, and/or soluble boron concentration changes to be introduced, for instance, for compensating power level variations following electrical network demands. In this paper, after describing the main features of the theory, its implementation into the diffusion, 3D mixed dual nodal code MINOS of the SAPHYR system is presented. The results from a small scale investigation performed on a simplified PWR system corroborate the validity of the methodology proposed

  14. Implications of inaccurate clinical nodal staging in pancreatic adenocarcinoma.

    Science.gov (United States)

    Swords, Douglas S; Firpo, Matthew A; Johnson, Kirsten M; Boucher, Kenneth M; Scaife, Courtney L; Mulvihill, Sean J

    2017-07-01

    Many patients with stage I-II pancreatic adenocarcinoma do not undergo resection. We hypothesized that (1) clinical staging underestimates nodal involvement, causing stage IIB to have a greater percent of resected patients and (2) this stage-shift causes discrepancies in observed survival. The Surveillance, Epidemiology, and End Results (SEER) research database was used to evaluate cause-specific survival in patients with pancreatic adenocarcinoma from 2004-2012. Survival was compared using the log-rank test. Single-center data on 105 patients who underwent resection of pancreatic adenocarcinoma without neoadjuvant treatment were used to compare clinical and pathologic nodal staging. In SEER data, medium-term survival in stage IIB was superior to IB and IIA, with median cause-specific survival of 14, 9, and 11 months, respectively (P < .001). Seventy-two percent of stage IIB patients underwent resection vs 28% in IB and 36% in IIA (P < .001). In our institutional data, 12.4% of patients had clinical evidence of nodal involvement vs 69.5% by pathologic staging (P < .001). Among clinical stage IA-IIA patients, 71.6% had nodal involvement by pathologic staging. Both SEER and institutional data support substantial underestimation of nodal involvement by clinical staging. This finding has implications in decisions regarding neoadjuvant therapy and analysis of outcomes in the absence of pathologic staging. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Neutronic optimization of solid breeder blankets for STARFIRE design

    International Nuclear Information System (INIS)

    Gohar, Y.; Abdou, M.A.

    1980-01-01

    Extensive neutronic tradeoff studies were carried out to define and optimize the neutronic performance of the different solid breeder options for the STARFIRE blanket design. A set of criteria were employed to select the potential blanket materials. The basic criteria include the neutronic performance, tritium-release characteristics, material compatibility, and chemical stability. Three blanket options were analyzed. The first option is based on separate zones for each basic blanket function where the neutron multiplier is kept in a separate zone. The second option is a heterogeneous blanket type with two tritium breeder zones. In the first zone the tritium breeder is assembled in a neutron multiplier matrix behind the first wall while the second zone has a neutron moderator matrix instead of the neutron multiplier. The third blanket option is similar to the second concept except the tritium breeder and the neutron multiplier form a homogeneous mixture

  16. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  17. Development of an Analytic Nodal Diffusion Solver in Multi-groups for 3D Reactor Cores with Rectangular or Hexagonal Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, Juan Andres; Aragones, Jose Maria; Garcia-Herranz, Nuria [Universidad Politecnica de Madrid, 28006 Jose Gutierrez Abascal 2, Madrid (Spain)

    2008-07-01

    More accurate modelling of physical phenomena involved in present and future nuclear reactors requires a multi-scale and multi-physics approach. This challenge can be accomplished by the coupling of best-estimate core-physics, thermal-hydraulics and multi-physics solvers. In order to make viable that coupling, the current trends in reactor simulations are along the development of a new generation of tools based on user-friendly, modular, easily linkable, faster and more accurate codes to be integrated in common platforms. These premises are in the origin of the NURESIM Integrated Project within the 6. European Framework Program, which is envisaged to provide the initial step towards a Common European Standard Software Platform for nuclear reactors simulations. In the frame of this project and to reach the above-mentioned goals, a 3-D multigroup nodal solver for neutron diffusion calculations called ANDES (Analytic Nodal Diffusion Equation Solver) has been developed and tested in-depth in this Thesis. ANDES solves the steady-state and time-dependent neutron diffusion equation in three-dimensions and any number of energy groups, utilizing the Analytic Coarse-Mesh Finite-Difference (ACMFD) scheme to yield the nodal coupling equations. It can be applied to both Cartesian and triangular-Z geometries, so that simulations of LWR as well as VVER, HTR and fast reactors can be performed. The solver has been implemented in a fully encapsulated way, enabling it as a module to be readily integrated in other codes and platforms. In fact, it can be used either as a stand-alone nodal code or as a solver to accelerate the convergence of whole core pin-by-pin code systems. Verification of performance has shown that ANDES is a code with high order definition for whole core realistic nodal simulations. In this paper, the methodology developed and involved in ANDES is presented. (authors)

  18. Polarized neutrons

    International Nuclear Information System (INIS)

    Williams, W.G.

    1988-01-01

    The book on 'polarized neutrons' is intended to inform researchers in condensed matter physics and chemistry of the diversity of scientific problems that can be investigated using polarized neutron beams. The contents include chapters on:- neutron polarizers and instrumentation, polarized neutron scattering, neutron polarization analysis experiments and precessing neutron polarization. (U.K.)

  19. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  20. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J.V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  1. Neutron--neutron logging

    International Nuclear Information System (INIS)

    Allen, L.S.

    1977-01-01

    A borehole logging tool includes a steady-state source of fast neutrons, two epithermal neutron detectors, and two thermal neutron detectors. A count rate meter is connected to each neutron detector. A first ratio detector provides an indication of the porosity of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two epithermal neutron detectors. A second ratio detector provides an indication of both porosity and macroscopic absorption cross section of the formation surrounding the borehole by determining the ratio of the outputs of the two count rate meters connected to the two thermal neutron detectors. By comparing the signals of the two ratio detectors, oil bearing zones and salt water bearing zones within the formation being logged can be distinguished and the amount of oil saturation can be determined. 6 claims, 2 figures

  2. On the Nodal Lines of Eisenstein Series on Schottky Surfaces

    Science.gov (United States)

    Jakobson, Dmitry; Naud, Frédéric

    2017-04-01

    On convex co-compact hyperbolic surfaces {X=Γ backslash H2}, we investigate the behavior of nodal curves of real valued Eisenstein series {F_λ(z,ξ)}, where {λ} is the spectral parameter, {ξ} the direction at infinity. Eisenstein series are (non-{L^2}) eigenfunctions of the Laplacian {Δ_X} satisfying {Δ_X F_λ=(1/4+λ^2)F_λ}. As {λ} goes to infinity (the high energy limit), we show that, for generic {ξ}, the number of intersections of nodal lines with any compact segment of geodesic grows like {λ}, up to multiplicative constants. Applications to the number of nodal domains inside the convex core of the surface are then derived.

  3. A computational study of nodal-based tetrahedral element behavior.

    Energy Technology Data Exchange (ETDEWEB)

    Gullerud, Arne S.

    2010-09-01

    This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.

  4. A theoretical study on a convergence problem of nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Shaohong, Z.; Ziyong, L. [Shanghai Jiao Tong Univ., 1954 Hua Shan Road, Shanghai, 200030 (China); Chao, Y. A. [Westinghouse Electric Company, P. O. Box 355, Pittsburgh, PA 15230-0355 (United States)

    2006-07-01

    The effectiveness of modern nodal methods is largely due to its use of the information from the analytical flux solution inside a homogeneous node. As a result, the nodal coupling coefficients depend explicitly or implicitly on the evolving Eigen-value of a problem during its solution iteration process. This poses an inherently non-linear matrix Eigen-value iteration problem. This paper points out analytically that, whenever the half wave length of an evolving node interior analytic solution becomes smaller than the size of that node, this non-linear iteration problem can become inherently unstable and theoretically can always be non-convergent or converge to higher order harmonics. This phenomenon is confirmed, demonstrated and analyzed via the simplest 1-D problem solved by the simplest analytic nodal method, the Analytic Coarse Mesh Finite Difference (ACMFD, [1]) method. (authors)

  5. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods

    International Nuclear Information System (INIS)

    Xolocostli M, J.V.

    2002-01-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  6. Wielandt method applied to the diffusion equations discretized by finite element nodal methods; Metodo de Wielandt aplicado a las ecuaciones de difusion discretizadas por metodos nodales de elemento finito

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, A.; Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: mugica@esfm.ipn.mx

    2003-07-01

    Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)

  7. Oddness of least energy nodal solutions on radial domains

    Directory of Open Access Journals (Sweden)

    Christopher Grumiau

    2010-07-01

    Full Text Available In this article, we consider the Lane-Emden problem $$displaylines{ Delta u(x + |{u(x}mathclose|^{p-2}u(x=0, quad hbox{for } xinOmega,cr u(x=0, quad hbox{for } xinpartialOmega, }$$ where $2 < p < 2^{*}$ and $Omega$ is a ball or an annulus in $mathbb{R}^{N}$, $Ngeq 2$. We show that, for p close to 2, least energy nodal solutions are odd with respect to an hyperplane -- which is their nodal surface. The proof ingredients are a constrained implicit function theorem and the fact that the second eigenvalue is simple up to rotations.

  8. Development and validation of a nodal code for core calculation

    International Nuclear Information System (INIS)

    Nowakowski, Pedro Mariano

    2004-01-01

    The code RHENO solves the multigroup three-dimensional diffusion equation using a nodal method of polynomial expansion.A comparative study has been made between this code and present internationals nodal diffusion codes, resulting that the RHENO is up to date.The RHENO has been integrated to a calculation line and has been extend to make burnup calculations.Two methods for pin power reconstruction were developed: modulation and imbedded. The modulation method has been implemented in a program, while the implementation of the imbedded method will be concluded shortly.The validation carried out (that includes experimental data of a MPR) show very good results and calculation efficiency

  9. Nodal algorithm derived from a new variational principle

    International Nuclear Information System (INIS)

    Watson, Fernando V.

    1995-01-01

    As a by-product of the research being carried on by the author on methods of recovering pin power distribution of PWR cores, a nodal algorithm based on a modified variational principle for the two group diffusion equations has been obtained. The main feature of the new algorithm is the low dimensionality achieved by the reduction of the original diffusion equations to a system of algebraic Eigen equations involving the average sources only, instead of sources and interface group currents used in conventional nodal methods. The advantage of this procedure is discussed and results generated by the new algorithm and by a finite difference code are compared. (author). 2 refs, 7 tabs

  10. Regional Nodal Irradiation in Early-Stage Breast Cancer.

    Science.gov (United States)

    Whelan, Timothy J; Olivotto, Ivo A; Parulekar, Wendy R; Ackerman, Ida; Chua, Boon H; Nabid, Abdenour; Vallis, Katherine A; White, Julia R; Rousseau, Pierre; Fortin, Andre; Pierce, Lori J; Manchul, Lee; Chafe, Susan; Nolan, Maureen C; Craighead, Peter; Bowen, Julie; McCready, David R; Pritchard, Kathleen I; Gelmon, Karen; Murray, Yvonne; Chapman, Judy-Anne W; Chen, Bingshu E; Levine, Mark N

    2015-07-23

    Most women with breast cancer who undergo breast-conserving surgery receive whole-breast irradiation. We examined whether the addition of regional nodal irradiation to whole-breast irradiation improved outcomes. We randomly assigned women with node-positive or high-risk node-negative breast cancer who were treated with breast-conserving surgery and adjuvant systemic therapy to undergo either whole-breast irradiation plus regional nodal irradiation (including internal mammary, supraclavicular, and axillary lymph nodes) (nodal-irradiation group) or whole-breast irradiation alone (control group). The primary outcome was overall survival. Secondary outcomes were disease-free survival, isolated locoregional disease-free survival, and distant disease-free survival. Between March 2000 and February 2007, a total of 1832 women were assigned to the nodal-irradiation group or the control group (916 women in each group). The median follow-up was 9.5 years. At the 10-year follow-up, there was no significant between-group difference in survival, with a rate of 82.8% in the nodal-irradiation group and 81.8% in the control group (hazard ratio, 0.91; 95% confidence interval [CI], 0.72 to 1.13; P=0.38). The rates of disease-free survival were 82.0% in the nodal-irradiation group and 77.0% in the control group (hazard ratio, 0.76; 95% CI, 0.61 to 0.94; P=0.01). Patients in the nodal-irradiation group had higher rates of grade 2 or greater acute pneumonitis (1.2% vs. 0.2%, P=0.01) and lymphedema (8.4% vs. 4.5%, P=0.001). Among women with node-positive or high-risk node-negative breast cancer, the addition of regional nodal irradiation to whole-breast irradiation did not improve overall survival but reduced the rate of breast-cancer recurrence. (Funded by the Canadian Cancer Society Research Institute and others; MA.20 ClinicalTrials.gov number, NCT00005957.).

  11. Influence of the external neutron sources in the criticality prediction using 1/M curve

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Valmir [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-972 Rio de Janeiro (Brazil); Carvalho da Silva, Fernando [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-972 Rio de Janeiro (Brazil); Martinez, Aquilino Senra [COPPE/UFRJ, Programa de Engenharia Nuclear, Caixa Postal 68509, 21941-972 Rio de Janeiro (Brazil)]. E-mail: aquilino@lmp.ufrj.br

    2005-11-15

    The influence of external neutron sources in the process to obtain the criticality condition is estimated. To reach this objective, the three-dimensional neutron diffusion equation in two groups of energy is solved, for a subcritical PWR reactor core with external neutron sources. The results are compared with the solution of the corresponding problem without external neutron sources, that is an eigenvalue problem. The method developed for this purposes it makes use of both the nodal method (for calculation of the neutron flux) and the finite differences method (for calculation of the adjoint flux). A coarse mesh finite difference method was developed for the adjoint flux calculation, which uses the output of the nodal expansion method. The results regarding the influence of the external neutron source presence for attaining criticality have shown that far from criticality it is necessary to calculate the reactivity values of the system.

  12. Influence of the external neutron sources in the criticality prediction using 1/M curve

    International Nuclear Information System (INIS)

    Pereira, Valmir; Carvalho da Silva, Fernando; Martinez, Aquilino Senra

    2005-01-01

    The influence of external neutron sources in the process to obtain the criticality condition is estimated. To reach this objective, the three-dimensional neutron diffusion equation in two groups of energy is solved, for a subcritical PWR reactor core with external neutron sources. The results are compared with the solution of the corresponding problem without external neutron sources, that is an eigenvalue problem. The method developed for this purposes it makes use of both the nodal method (for calculation of the neutron flux) and the finite differences method (for calculation of the adjoint flux). A coarse mesh finite difference method was developed for the adjoint flux calculation, which uses the output of the nodal expansion method. The results regarding the influence of the external neutron source presence for attaining criticality have shown that far from criticality it is necessary to calculate the reactivity values of the system

  13. Efficacy and prognostic analysis of chemoradiotherapy in patients with thoracic esophageal squamous carcinoma with cervical lymph nodal metastasis alone

    International Nuclear Information System (INIS)

    Zhang, Peng; Xi, Mian; Zhao, Lei; Li, Qiao-Qiao; He, Li-Ru; Liu, Shi-Liang; Shen, Jing-Xian; Liu, Meng-Zhong

    2014-01-01

    The prognostic factors of thoracic esophageal squamous carcinoma with cervical lymph nodal metastasis (CLNM) have not been specifically investigated. This study was performed to analyze the efficacy and prognostic factors of chemoradiotherapy for thoracic esophageal carcinoma with CLNM alone. From 2002 to 2011, 139 patients with inoperable esophageal cancer who underwent chemoradiotherapy at the Sun Yat-Sen University were retrospectively analyzed. Median radiation doses were 60 Gy (range: 50–68 Gy). Univariate and multivariate analyses were performed to compare overall survival (OS) and progression-free survival (PFS). The 1- and 3-year OS rates were 68.2% and 27.9%, respectively. The 1- and 3-year PFS rates were 51.9% and 20.1%, respectively. The multivariate analysis demonstrated that response to treatment, T stage, pathological grade, and laterality of cervical lymph nodal metastases were independent prognostic factors for thoracic esophageal carcinoma with CLNM. Concurrent chemoradiotherapy is an important and hopeful treatment option for patients with esophageal cancer with CLNM alone. Our study has revealed that response to treatment, T stage, pathological grade and laterality of cervical lymph nodal metastases are significant prognostic factors for long-term survival

  14. Development of Neutron Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Lee, J. S.; Seong, B. S. (and others)

    2007-06-15

    Neutron spectrometers which are used in the basic researches such as physics, chemistry and materials science and applied in the industry were developed at the horizontal beam port of HANARO reactor. In addition, the development of core components for neutron scattering and the upgrade of existing facilities are also performed. The vertical neutron reflectometer was fabricated and installed at ST3 beam port. The performance test of the reflectometer was completed and the reflectometer was opened to users. The several core parts and options were added in the polarized neutron spectrometer. The horizontal neutron reflectometer from Brookhaven National Laboratory was moved to HANARO and installed, and the performance of the reflectometer was examined. The HIPD was developed and the performance test was completed. The base shielding for TAS was fabricated. The soller collimator, Cu mosaic monochromator, Si BPC monochromator and position sensitive detector were developed and applied in the neutron spectrometer as part of core component development activities. In addition, the sputtering machine for mirror device are fabricated and the neutron mirror is made using the sputtering machine. The FCD was upgraded and the performance of the FCD are improved over the factor of 10. The integration and upgrade of the neutron detection system were also performed.

  15. A Nodal and Finite Difference Hybrid Method for Pin-by-Pin Heterogeneous Three-Dimensional Light Water Reactor Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Deokjung; Downar, Thomas J.; Kim, Yonghee

    2004-01-01

    An innovative hybrid spatial discretization method is proposed to improve the computational efficiency of pin-wise heterogeneous three-dimensional light water reactor (LWR) core neutronics analysis. The newly developed method employs the standard finite difference method in the x and y directions and the well-known nodal methods [nodal expansion method (NEM) and analytic nodal method (ANM) as needed] in the z direction. Four variants of the hybrid method are investigated depending on the axial nodal methodologies: HYBRID A, NEM with the conventional quadratic transverse leakage; HYBRID B, the conventional NEM method except that the transverse-leakage shapes are obtained from a fine-mesh local problem (FMLP) around the control rod tip; HYBRID C, the same as HYBRID B except that ANM with a high-order transverse leakage obtained from the FMLP is used in the vicinity of the control rod tip; and HYBRID D, the same as HYBRID C except that the transverse leakage is determined using the buckling approximation instead of the FMLP around the control rod tip. Benchmark calculations demonstrate that all the hybrid algorithms are consistent and stable and that the HYBRID C method provides the best numerical performance in the case of rodded LWR problems with pin-wise homogenized cross sections

  16. Energy exotic options

    International Nuclear Information System (INIS)

    Kaminski, V.; Gibner, S.; Pinnamaneni, K.

    1999-01-01

    This chapter with 88 references focuses on the use of exotic options to control exposure to energy prices. Exotic options are defined, and the conversion of a standard option into an exotic option and pricing models are examined. Pricing and hedging exotic options, path-dependent options, multi-commodity options, options on the minimum-or-maximum of two commodities, compound options, digital options, hybrid and complex structures, and natural gas daily options are described. Formulas for option pricing for vanilla, barrier, compound, options on minimum or maximum of two assets, and look back options are given in an appendix

  17. Extension of the linear nodal method to large concrete building calculations

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.

    1985-01-01

    The implementation of the linear nodal method in the TORT code is described, and the results of a mesh refinement study to test the effectiveness of the linear nodal and weighted diamond difference methods available in TORT are presented

  18. The Nodal Location of Metastases in Melanoma Sentinel Lymph Nodes

    DEFF Research Database (Denmark)

    Riber-Hansen, Rikke; Nyengaard, Jens; Hamilton-Dutoit, Stephen

    2009-01-01

    BACKGROUND: The design of melanoma sentinel lymph node (SLN) histologic protocols is based on the premise that most metastases are found in the central parts of the nodes, but the evidence for this belief has never been thoroughly tested. METHODS: The nodal location of melanoma metastases in 149...

  19. Real-time control of power systems using nodal prices

    NARCIS (Netherlands)

    Jokic, A.; Lazar, M.; Bosch, van den P.P.J.

    2009-01-01

    This article presents a novel control scheme for achieving optimal power balancing and congestion management in electrical power systems via nodal prices. We develop a dynamic controller that guarantees economically optimal steady-state operation while respecting all line flow constraints in

  20. Topological transport in Dirac nodal-line semimetals

    Science.gov (United States)

    Rui, W. B.; Zhao, Y. X.; Schnyder, Andreas P.

    2018-04-01

    Topological nodal-line semimetals are characterized by one-dimensional Dirac nodal rings that are protected by the combined symmetry of inversion P and time-reversal T . The stability of these Dirac rings is guaranteed by a quantized ±π Berry phase and their low-energy physics is described by a one-parameter family of (2+1)-dimensional quantum field theories exhibiting the parity anomaly. Here we study the Berry-phase supported topological transport of P T -invariant nodal-line semimetals. We find that small inversion breaking allows for an electric-field-induced anomalous transverse current, whose universal component originates from the parity anomaly. Due to this Hall-like current, carriers at opposite sides of the Dirac nodal ring flow to opposite surfaces when an electric field is applied. To detect the topological currents, we propose a dumbbell device, which uses surface states to filter charges based on their momenta. Suggestions for experiments and device applications are discussed.

  1. Hyoid bone chondrosarcoma with cervical nodal metastasis: A case ...

    African Journals Online (AJOL)

    Background: Hyoid bone chondrosarcoma is a very rare condition. This study presents a case report of low-grade chondrosarcoma of hyoid bone with cervical nodal metastasis. The study also presents preoperative radiological investigations, pathological examination and the follow-up of the case. Case presentation: A 42 ...

  2. Note on the nodal line of the p-Laplacian

    Directory of Open Access Journals (Sweden)

    Abdel R. El Amrouss

    2006-09-01

    Full Text Available In this paper, we prove that the length of the nodal line of the eigenfunctions associated to the second eigenvalue of the problem $$ -Delta_p u = lambda ho (x |u|^{p-2}u quad hbox{in } Omega $$ with the Dirichlet conditions is not bounded uniformly with respect to the weight.

  3. A nodal method based on the response-matrix method

    International Nuclear Information System (INIS)

    Cunha Menezes Filho, A. da; Rocamora Junior, F.D.

    1983-02-01

    A nodal approach based on the Response-Matrix method is presented with the purpose of investigating the possibility of mixing two different allocations in the same problem. It is found that the use of allocation of albedo combined with allocation of direct reflection produces good results for homogeneous fast reactor configurations. (Author) [pt

  4. CRY 1AB trangenic cowpea obtained by nodal electroporation ...

    African Journals Online (AJOL)

    Electroporation-mediated genetic transformation was used to introduce Cry 1 Ab insecticidal gene into cowpea. Nodal buds were electroporated in planta with a plasmid carrying the Cry 1Ab and antibiotic resistance npt II genes driven by a 35S CaMV promoter. T1 seeds derived from electroporated branches were selected ...

  5. Ultracold neutrons

    International Nuclear Information System (INIS)

    Steenstrup, S.

    Briefly surveys recent developments in research work with ultracold neutrons (neutrons of very low velocity, up to 10 m/s at up to 10 -7 eV and 10 -3 K). Slow neutrons can be detected in an ionisation chamber filled with B 10 F 3 . Very slow neutrons can be used for investigations into the dipole moment of neutrons. Neutrons of large wave length have properties similar to those of light. The limit angle for total reflection is governed by the wave length and by the material. Total reflection can be used to filter ultracold neutrons out of the moderator material of a reactor. Total reflection can also be used to store ultracold neutrons but certain problems with storage have not yet been clarified. Slow neutrons can be made to lose speed in a neutron turbine, and come out as ultracold neutrons. A beam of ultracold neutrons could be used in a neutron microscope. (J.S.)

  6. Numerical solution of the 1D kinetics equations using a cubic reduced nodal scheme

    International Nuclear Information System (INIS)

    Gomez T, A.M.; Valle G, E. del; Delfin L, A.; Alonso V, G.

    2003-01-01

    In this work a finite differences technique centered in mesh based on a cubic reduced nodal scheme type finite element to solve the equations of the kinetics 1 D that include the equations corresponding to the concentrations of precursors of delayed neutrons is described. The technique of finite elements used is that of Galerkin where so much the neutron flux as the concentrations of precursors its are spatially approached by means of a three grade polynomial. The matrices of rigidity and of mass that arise during this discretization process are numerically evaluated using the open quadrature non standard of Newton-Cotes and that of Radau respectively. The purpose of the application of these quadratures is the one of to eliminate in the global matrices the couplings among the values of the flow in points of the discretization with the consequent advantages as for the reduction of the order of the matrix associated to the discreet problem that is to solve. As for the time dependent part the classical integration scheme known as Θ scheme is applied. After carrying out the one reordering of unknown and equations it arrives to a reduced system that it can be solved but quickly. With the McKin compute program developed its were solved three benchmark problems and those results are shown for the relative powers. (Author)

  7. Modification of the ANC Nodal Code for analysis of PWR assembly bow

    International Nuclear Information System (INIS)

    Franceschini, Fausto; Fetterman, Robert J.; Little, David C.

    2008-01-01

    Refueling operations at certain PWR cores have revealed fuel assemblies with assembly bow that was higher than expected. As the fuel assemblies bow, the gaps between assemblies change from the uniform nominal configuration. This causes a change in the water volume which affects neutron moderation and thereby power distribution, fuel depletion history, rod internal pressure, etc., with non-trivial impacts on the safety analysis. Westinghouse has developed a new methodology for incorporation of assembly bow in its reload safety analysis package. As part of the new process, the standard Westinghouse reactor physics tool for core analysis, the Advanced Nodal Code ANC, has been modified. The modified ANC, ANCGAP, enables explicit treatment of three-dimensional gap distributions in its neutronic calculations; its accuracy is similar to that of the standard ANC, as demonstrated through an extensive benchmark campaign conducted over a variety of fuel compositions and challenging gap configurations. These features make ANCGAP a crucial tool in the Westinghouse assembly bow package. (authors)

  8. Modification of the ANC Nodal Code for analysis of PWR assembly bow

    Energy Technology Data Exchange (ETDEWEB)

    Franceschini, Fausto; Fetterman, Robert J.; Little, David C. [Westinghouse Electric Company LLC, Pittsburgh PA (United States)

    2008-07-01

    Refueling operations at certain PWR cores have revealed fuel assemblies with assembly bow that was higher than expected. As the fuel assemblies bow, the gaps between assemblies change from the uniform nominal configuration. This causes a change in the water volume which affects neutron moderation and thereby power distribution, fuel depletion history, rod internal pressure, etc., with non-trivial impacts on the safety analysis. Westinghouse has developed a new methodology for incorporation of assembly bow in its reload safety analysis package. As part of the new process, the standard Westinghouse reactor physics tool for core analysis, the Advanced Nodal Code ANC, has been modified. The modified ANC, ANCGAP, enables explicit treatment of three-dimensional gap distributions in its neutronic calculations; its accuracy is similar to that of the standard ANC, as demonstrated through an extensive benchmark campaign conducted over a variety of fuel compositions and challenging gap configurations. These features make ANCGAP a crucial tool in the Westinghouse assembly bow package. (authors)

  9. Options theory

    International Nuclear Information System (INIS)

    Markland, J.T.

    1992-01-01

    Techniques used in conventional project appraisal are mathematically very simple in comparison to those used in reservoir modelling, and in the geosciences. Clearly it would be possible to value assets in mathematically more sophisticated ways if it were meaningful and worthwhile so to do. The DCf approach in common use has recognized limitations; the inability to select a meaningful discount rate being particularly significant. Financial Theory has advanced enormously over the last few years, along with computational techniques, and methods are beginning to appear which may change the way we do project evaluations in practice. The starting point for all of this was a paper by Black and Scholes, which asserts that almost all corporate liabilities can be viewed as options of varying degrees of complexity. Although the financial presentation may be unfamiliar to engineers and geoscientists, some of the concepts used will not be. This paper outlines, in plain English, the basis of option pricing theory for assessing the market value of a project. it also attempts to assess the future role of this type of approach in practical Petroleum Exploration and Engineering economics. Reference is made to relevant published Natural Resource literature

  10. 47 CFR 101.503 - Digital Electronic Message Service Nodal Stations.

    Science.gov (United States)

    2010-10-01

    ... Service § 101.503 Digital Electronic Message Service Nodal Stations. 10.6 GHz DEMS Nodal Stations may be... 47 Telecommunication 5 2010-10-01 2010-10-01 false Digital Electronic Message Service Nodal Stations. 101.503 Section 101.503 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY...

  11. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  12. Analysis of 2D reactor core using linear perturbation theory and nodal finite element methods

    International Nuclear Information System (INIS)

    Adrian Mugica; Edmundo del Valle

    2005-01-01

    In this work the multigroup steady state neutron diffusion equations are solved using the nodal finite element method (NFEM) and the Linear Perturbation Theory (LPT) for XY geometry. The NFEM used corresponds to the Raviart-Thomas schemes RT0 and RT1, interpolating 5 and 12 parameters respectively in each node of the space discretization. The accuracy of these methods is related with the dimension of the space approximation and the mesh size. Therefore, using fine meshes and the RT0 or RT1 nodal methods leads to a large an interesting eigenvalue problem. The finite element method used to discretize the weak formulation of the diffusion equations is the Galerkin one. The algebraic structure of the discrete eigenvalue problem is obtained and solved using the Wielandt technique and the BGSTAB iterative method using the SPARSKIT package developed by Yousef Saad. The results obtained with LPT show good agreement with the results obtained directly for the perturbed problem. In fact, the cpu time to solve a single problem, the unperturbed and the perturbed one, is practically the same but when one is focused in shuffling many times two different assemblies in the core then the LPT technique becomes quite useful to get good approximations in a short time. This particular problem was solved for one quarter-core with NFEM. Thus, the computer program based on LPT can be used to perform like an analysis tool in the fuel reload optimization or combinatory analysis to get reload patterns in nuclear power plants once that it had been incorporated with the thermohydraulic aspects needed to simulate accurately a real problem. The maximum differences between the NFEM and LPT for the three LWR reactor cores are about 250 pcm. This quantity is considered an acceptable value for this kind of analysis. (authors)

  13. Non-linear triangle-based polynomial expansion nodal method for hexagonal core analysis

    International Nuclear Information System (INIS)

    Cho, Jin Young; Cho, Byung Oh; Joo, Han Gyu; Zee, Sung Qunn; Park, Sang Yong

    2000-09-01

    This report is for the implementation of triangle-based polynomial expansion nodal (TPEN) method to MASTER code in conjunction with the coarse mesh finite difference(CMFD) framework for hexagonal core design and analysis. The TPEN method is a variation of the higher order polynomial expansion nodal (HOPEN) method that solves the multi-group neutron diffusion equation in the hexagonal-z geometry. In contrast with the HOPEN method, only two-dimensional intranodal expansion is considered in the TPEN method for a triangular domain. The axial dependence of the intranodal flux is incorporated separately here and it is determined by the nodal expansion method (NEM) for a hexagonal node. For the consistency of node geometry of the MASTER code which is based on hexagon, TPEN solver is coded to solve one hexagonal node which is composed of 6 triangular nodes directly with Gauss elimination scheme. To solve the CMFD linear system efficiently, stabilized bi-conjugate gradient(BiCG) algorithm and Wielandt eigenvalue shift method are adopted. And for the construction of the efficient preconditioner of BiCG algorithm, the incomplete LU(ILU) factorization scheme which has been widely used in two-dimensional problems is used. To apply the ILU factorization scheme to three-dimensional problem, a symmetric Gauss-Seidel Factorization scheme is used. In order to examine the accuracy of the TPEN solution, several eigenvalue benchmark problems and two transient problems, i.e., a realistic VVER1000 and VVER440 rod ejection benchmark problems, were solved and compared with respective references. The results of eigenvalue benchmark problems indicate that non-linear TPEN method is very accurate showing less than 15 pcm of eigenvalue errors and 1% of maximum power errors, and fast enough to solve the three-dimensional VVER-440 problem within 5 seconds on 733MHz PENTIUM-III. In the case of the transient problems, the non-linear TPEN method also shows good results within a few minute of

  14. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

    1983-01-01

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  15. Development and verification of an efficient spatial neutron kinetics method for reactivity-initiated event analyses

    International Nuclear Information System (INIS)

    Ikeda, Hideaki; Takeda, Toshikazu

    2001-01-01

    A space/time nodal diffusion code based on the nodal expansion method (NEM), EPISODE, was developed in order to evaluate transient neutron behavior in light water reactor cores. The present code employs the improved quasistatic (IQS) method for spatial neutron kinetics, and neutron flux distribution is numerically obtained by solving the neutron diffusion equation with the nonlinear iteration scheme to achieve fast computation. A predictor-corrector (PC) method developed in the present study enabled to apply a coarse time mesh to the transient spatial neutron calculation than that applicable in the conventional IQS model, which improved computational efficiency further. Its computational advantage was demonstrated by applying to the numerical benchmark problems that simulate reactivity-initiated events, showing reduction of computational times up to a factor of three than the conventional IQS. The thermohydraulics model was also incorporated in EPISODE, and the capability of realistic reactivity event analyses was verified using the SPERT-III/E-Core experimental data. (author)

  16. The variational nodal method: history and recent accomplishments

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2004-01-01

    The variational nodal method combines spherical harmonics expansions in angle with hybrid finite element techniques is space to obtain multigroup transport response matrix algorithms applicable to both deep penetration and reactor core physics problems. This survey briefly recounts the method's history and reviews its capabilities. The variational basis for the approach is presented and two methods for obtaining discretized equations in the form of response matrices are detailed. The first is that contained the widely used VARIANT code, while the second incorporates newly developed integral transport techniques into the variational nodal framework. The two approaches are combined with a finite sub element formulation to treat heterogeneous nodes. Applications are presented for both a deep penetration problem and to an OECD benchmark consisting of LWR MOX fuel assemblies. Ongoing work is discussed. (Author)

  17. Radiological signs of extra nodal abdominal involvements in lymphoma

    International Nuclear Information System (INIS)

    Carro, A.I.; Alegre, N.; Cervera, J.L.; Montero, A.I.

    1998-01-01

    To assess abdominal CT images in lymphoma patients for the study of extra nodal abdominal involvement. Ninety-two patients diagnosed as having lymphoma were studied retrospectively. All the patients underwent abdominopelvic CT with oral and intravenous contrast (except in one patient who was allergic). In every case, the diagnosis was confirmed by biopsy or radiological follow-up after treatment had been completed. Fifty-two patients (56.5%) presented infiltration of extra nodal organs. The organs most frequently involved were liver and spleen, followed by the gastrointestinal tract, the musculoskeletal system and the genitourinary tract. The findings in this study coincide with those reported elsewhere with the exception of the splenic involvement the incidence of which was lower in the present series. (Author) 17 refs

  18. On the nodal structure of atomic and molecular Wigner functions

    International Nuclear Information System (INIS)

    Dahl, J.P.; Schmider, H.

    1996-01-01

    In previous work on the phase-space representation of quantum mechanics, we have presented detailed pictures of the electronic one-particle reduced Wigner function for atoms and small molecules. In this communication, we focus upon the nodal structure of the function. On the basis of the simplest systems, we present an expression which relates the oscillatory decay of the Wigner function solely to the dot product of the position and momentum vector, if both arguments are large. We then demonstrate the regular behavior of nodal patterns for the larger systems. For the molecular systems, an argument analogous to the open-quotes bond-oscillatory principleclose quotes for momentum densities links the nuclear framework to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic nodes

  19. Topological and trivial magnetic oscillations in nodal loop semimetals

    Science.gov (United States)

    Oroszlány, László; Dóra, Balázs; Cserti, József; Cortijo, Alberto

    2018-05-01

    Nodal loop semimetals are close descendants of Weyl semimetals and possess a topologically dressed band structure. We argue by combining the conventional theory of magnetic oscillation with topological arguments that nodal loop semimetals host coexisting topological and trivial magnetic oscillations. These originate from mapping the topological properties of the extremal Fermi surface cross sections onto the physics of two dimensional semi-Dirac systems, stemming from merging two massless Dirac cones. By tuning the chemical potential and the direction of magnetic field, a sharp transition is identified from purely trivial oscillations, arising from the Landau levels of a normal two dimensional (2D) electron gas, to a phase where oscillations of topological and trivial origin coexist, originating from 2D massless Dirac and semi-Dirac points, respectively. These could in principle be directly identified in current experiments.

  20. Ischemic stroke associated with radio frequency ablation for nodal reentry

    International Nuclear Information System (INIS)

    Diaz M, Juan C; Duran R, Carlos E; Perafan B, Pablo; Pava M, Luis F

    2010-01-01

    Atrioventricular nodal reentry tachycardia is the most common type of paroxysmal supraventricular tachycardia. In those patients in whom drug therapy is not effective or not desired, radio frequency ablation is an excellent therapeutic method. Although overall these procedures are fast and safe, several complications among which ischemic stroke stands out, have been reported. We present the case of a 41 year old female patient with repetitive episodes of tachycardia due to nodal reentry who was treated with radiofrequency ablation. Immediately after the procedure she presented focal neurologic deficit consistent with ischemic stroke in the right medial cerebral artery territory. Angiography with angioplastia and abxicimab was performed and then tissue plasminogen activator (rtPA) was locally infused, with appropriate clinical and angiographic outcome.

  1. The variational nodal method: some history and recent activity

    International Nuclear Information System (INIS)

    Lewis, E.E.; Smith, M.A.; Palmiotti, G.

    2005-01-01

    The variational nodal method combines spherical harmonics expansions in angle with hybrid finite element techniques in space to obtain multigroup transport response matrix algorithms applicable to a wide variety of reactor physics problems. This survey briefly recounts the method's history and reviews its capabilities. Two methods for obtaining discretized equations in the form of response matrices are compared. The first is that contained the widely used VARIANT code, while the second incorporates more recently developed integral transport techniques into the variational nodal framework. The two approaches are combined with a finite sub-element formulation to treat heterogeneous nodes. Results are presented for application to a deep penetration problem and to an OECD benchmark consisting of LWR Mox fuel assemblies. Ongoing work is discussed. (authors)

  2. Hybrid microscopic depletion model in nodal code DYN3D

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kotlyar, D.; Shwageraus, E.; Fridman, E.; Kliem, S.

    2016-01-01

    Highlights: • A new hybrid method of accounting for spectral history effects is proposed. • Local concentrations of over 1000 nuclides are calculated using micro depletion. • The new method is implemented in nodal code DYN3D and verified. - Abstract: The paper presents a general hybrid method that combines the micro-depletion technique with correction of micro- and macro-diffusion parameters to account for the spectral history effects. The fuel in a core is subjected to time- and space-dependent operational conditions (e.g. coolant density), which cannot be predicted in advance. However, lattice codes assume some average conditions to generate cross sections (XS) for nodal diffusion codes such as DYN3D. Deviation of local operational history from average conditions leads to accumulation of errors in XS, which is referred as spectral history effects. Various methods to account for the spectral history effects, such as spectral index, burnup-averaged operational parameters and micro-depletion, were implemented in some nodal codes. Recently, an alternative method, which characterizes fuel depletion state by burnup and 239 Pu concentration (denoted as Pu-correction) was proposed, implemented in nodal code DYN3D and verified for a wide range of history effects. The method is computationally efficient, however, it has applicability limitations. The current study seeks to improve the accuracy and applicability range of Pu-correction method. The proposed hybrid method combines the micro-depletion method with a XS characterization technique similar to the Pu-correction method. The method was implemented in DYN3D and verified on multiple test cases. The results obtained with DYN3D were compared to those obtained with Monte Carlo code Serpent, which was also used to generate the XS. The observed differences are within the statistical uncertainties.

  3. SPANDOM - source projection analytic nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Kim, Tae Hyeong; Cho, Nam Zin

    1994-01-01

    We describe a new discrete ordinates nodal method for the two-dimensional transport equation. We solve the discrete ordinates equation analytically after the source term is projected and represented in polynomials. The method is applied to two fast reactor benchmark problems and compared with the TWOHEX code. The results indicate that the present method accurately predicts not only multiplication factor but also flux distribution

  4. HEXAN - a hexagonal nodal code for solving the diffusion equation

    International Nuclear Information System (INIS)

    Makai, M.

    1982-07-01

    This report describes the theory of and provides a user's manual for the HEXAN program, which is a nodal program for the solution of the few-group diffusion equation in hexagonal geometry. Based upon symmetry considerations, the theory provides an analytical solution in a homogeneous node. WWER and HTGR test problem solutions are presented. The equivalence of the finite-difference scheme and the response matrix method is proven. The properties of a symmetric node's response matrix are investigated. (author)

  5. NOMAD: a nodal microscopic analysis method for nuclear fuel depletion

    International Nuclear Information System (INIS)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Recently developed assembly homogenization techniques made possible very efficient global burnup calculations based on modern nodal methods. There are two possible ways of modeling the global depletion process: macroscopic and microscopic depletion models. Using a microscopic global depletion approach NOMAD (NOdal Microscopic Analysis Method for Nuclear Fuel Depletion), a multigroup, two- and three-dimensional, multicycle depletion code was devised. The code uses the ILLICO nodal diffusion model. The formalism of the ILLICO methodology is extended to treat changes in the macroscopic cross sections during a depletion cycle without recomputing the coupling coefficients. This results in a computationally very efficient method. The code was tested against a well-known depletion benchmark problem. In this problem a two-dimensional pressurized water reactor is depleted through two cycles. Both cycles were run with 1 x 1 and 2 x 2 nodes per assembly. It is obvious that the one node per assembly solution gives unacceptable results while the 2 x 2 solution gives relative power errors consistently below 2%

  6. Applications of a systematic homogenization theory for nodal diffusion methods

    International Nuclear Information System (INIS)

    Zhang, Hong-bin; Dorning, J.J.

    1992-01-01

    The authors recently have developed a self-consistent and systematic lattice cell and fuel bundle homogenization theory based on a multiple spatial scales asymptotic expansion of the transport equation in the ratio of the mean free path to the reactor characteristics dimension for use with nodal diffusion methods. The mathematical development leads naturally to self-consistent analytical expressions for homogenized diffusion coefficients and cross sections and flux discontinuity factors to be used in nodal diffusion calculations. The expressions for the homogenized nuclear parameters that follow from the systematic homogenization theory (SHT) are different from those for the traditional flux and volume-weighted (FVW) parameters. The calculations summarized here show that the systematic homogenization theory developed recently for nodal diffusion methods yields accurate values for k eff and assembly powers even when compared with the results of a fine mesh transport calculation. Thus, it provides a practical alternative to equivalence theory and GET (Ref. 3) and to simplified equivalence theory, which requires auxiliary fine-mesh calculations for assemblies embedded in a typical environment to determine the discontinuity factors and the equivalent diffusion coefficient for a homogenized assembly

  7. Flow-based market coupling. Stepping stone towards nodal pricing?

    International Nuclear Information System (INIS)

    Van der Welle, A.J.

    2012-07-01

    For achieving one internal energy market for electricity by 2014, market coupling is deployed to integrate national markets into regional markets and ultimately one European electricity market. The extent to which markets can be coupled depends on the available transmission capacities between countries. Since interconnections are congested from time to time, congestion management methods are deployed to divide the scarce available transmission capacities over market participants. For further optimization of the use of available transmission capacities while maintaining current security of supply levels, flow-based market coupling (FBMC) will be implemented in the CWE region by 2013. Although this is an important step forward, important hurdles for efficient congestion management remain. Hence, flow based market coupling is compared to nodal pricing, which is often considered as the most optimal solution from theoretical perspective. In the context of decarbonised power systems it is concluded that advantages of nodal pricing are likely to exceed its disadvantages, warranting further development of FBMC in the direction of nodal pricing.

  8. Neutron reflectometry

    International Nuclear Information System (INIS)

    Van Well, A.A.

    1999-01-01

    Neutron research where reflection, refraction, and interference play an essential role is generally referred to as 'neutron optics'. The neutron wavelength, the scattering length density and the magnetic properties of the material determine the critical angle for total reflection. The theoretical background of neutron reflection, experimental methods and the interpretation of reflection data are presented. (K.A.)

  9. Patterns of practice of regional nodal irradiation in breast cancer: results of the European Organization for Research and Treatment of Cancer (EORTC) NOdal Radiotherapy (NORA) survey

    NARCIS (Netherlands)

    Belkacemi, Y.; Kaidar-Person, O.; Poortmans, P.; Ozsahin, M.; Valli, M.-C.; Russell, N.; Kunkler, I.; Hermans, J.; Kuten, A.; van Tienhoven, G.; Westenberg, H.

    2015-01-01

    Predicting outcome of breast cancer (BC) patients based on sentinel lymph node (SLN) status without axillary lymph node dissection (ALND) is an area of uncertainty. It influences the decision-making for regional nodal irradiation (RNI). The aim of the NORA (NOdal RAdiotherapy) survey was to examine

  10. Neutron radiography with ultracold neutrons

    International Nuclear Information System (INIS)

    Bates, J.C.

    1981-01-01

    The neutron transmission factor of very thin films may be low if the neutron energy is comparable to the pseudo-potential of the film material. Surprisingly, perhaps, it is relatively easy to obtain neutrons with such low energies in sufficient numbers to produce neutron radiographs. (orig.)

  11. Explicit formulation of a nodal transport method for discrete ordinates calculations in two-dimensional fixed-source problems

    Energy Technology Data Exchange (ETDEWEB)

    Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica

    2014-04-15

    In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)

  12. Improvement of spatial discretization error on the semi-analytic nodal method using the scattered source subtraction method

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Tatsumi, Masahiro

    2006-01-01

    In this paper, the scattered source subtraction (SSS) method is newly proposed to improve the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. In the SSS method, the scattered source is subtracted from both side of the diffusion or the transport equation to make spatial variation of the source term to be small. The same neutron balance equation is still used in the SSS method. Since the SSS method just modifies coefficients of node coupling equations (those used in evaluation for the response of partial currents), its implementation is easy. Validity of the present method is verified through test calculations that are carried out in PWR multi-assemblies configurations. The calculation results show that the SSS method can significantly improve the spatial discretization error. Since the SSS method does not have any negative impact on execution time, convergence behavior and memory requirement, it will be useful to reduce the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. (author)

  13. Neutron Skins and Neutron Stars

    OpenAIRE

    Piekarewicz, J.

    2013-01-01

    The neutron-skin thickness of heavy nuclei provides a fundamental link to the equation of state of neutron-rich matter, and hence to the properties of neutron stars. The Lead Radius Experiment ("PREX") at Jefferson Laboratory has recently provided the first model-independence evidence on the existence of a neutron-rich skin in 208Pb. In this contribution we examine how the increased accuracy in the determination of neutron skins expected from the commissioning of intense polarized electron be...

  14. The Gel Generator option

    International Nuclear Information System (INIS)

    Boyd, R.E.

    1999-01-01

    The development of a national policy for guaranteeing an ample supply of 99m Tc to nuclear medicine, involves issues which go beyond the means by which radioactivation is achieved. Indeed, in such an exercise the pragmatic dictates of business and the sensitivities of politics must also be taken into account. Furthermore where a preference towards the nuclear reactor or the potential of cyclotrons is being questioned, the debate is incomplete if the only options that are considered are the fission-based 99 Mo generator versus the direct cyclotron production of 99m Tc. There is a third option (also neutron γ-based), an alternative to the fission 99 Mo generator, which ought not be overlooked. The application of low specific activity (n,γ) 99 Mo to a new type of generator, the Gel Generator, has been the focus of much research, particularly in Australia and more recently in China. After the initial concept had been established in the laboratory, the Australian researchers then undertook a comprehensive program of tests on the Gel Generator to assess its potential, either in the clinical laboratory or the centralised radiopharmacy, for supplying 99m Tc suitable for nuclear medicine. The outcome of this program was a clear indication that the Gel Generator innovation had the capability to provide both technical and economic advantages to the nuclear medicine industry. These advantages are described. Since that time the Gel Generator has been selected for routine use in China where it now satisfies more than 30% of the 99m Tc demand. (author)

  15. Solution of the transport equation in stationary state and X Y geometry, using continuous and discontinuous hybrid nodal schemes; Solucion de la ecuacion de transporte en estado estacionario y geometria X Y, usando esquemas nodales hibridos continuos y discontinuos

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, V.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico); Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: xvicente@hotmail.com

    2003-07-01

    In this work it is described the development and the application of the NH-FEM schemes, Hybrid Nodal schemes using the Finite Element method in the solution of the neutron transport equation in stationary state and X Y geometry, of which two families of schemes were developed, one of which corresponds to the continuous and the other to the discontinuous ones, inside those first its are had the Bi-Quadratic Bi Q, and to the Bi-cubic BiC, while for the seconds the Discontinuous Bi-lineal DBiL and the Discontinuous Bi-quadratic DBiQ. These schemes were implemented in a program to which was denominated TNHXY, Transport of neutrons with Hybrid Nodal schemes in X Y geometry. One of the immediate applications of the schemes NH-FEM it will be in the analysis of assemblies of nuclear fuel, particularly of the BWR type. The validation of the TNHXY program was made with two test problems or benchmark, already solved by other authors with numerical techniques and to compare results. The first of them consists in an it BWR fuel assemble in an arrangement 7x7 without rod and with control rod providing numerical results. The second is a fuel assemble of mixed oxides (MOX) in an arrangement 10x10. This last problem it is known as the Benchmark problem WPPR of the NEA Data Bank and the results are compared with those of other commercial codes as HELIOS, MCNP-4B and CPM-3. (Author)

  16. Neutron Dosimetry

    International Nuclear Information System (INIS)

    Vanhavere, F.

    2001-01-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding

  17. Neutron Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Vanhavere, F

    2001-04-01

    The objective of SCK-CEN's R and D programme on neutron dosimetry is to improve the determination of neutron doses by studying neutron spectra, neutron dosemeters and shielding adaptations. In 2000, R and D focused on the contiued investigation of the bubble detectors type BD-PND and BDT, in particular their sensitivity and temperature dependence; the updating of SCK-CEN's criticality dosemeter, the investigation of the characteristics of new thermoluminescent materials and their use in neutron dosemetry; and the investigation of neutron shielding.

  18. Radiotherapy studies and extra-nodal non-Hodgkin lymphomas, progress and challenges

    DEFF Research Database (Denmark)

    Specht, L

    2012-01-01

    Extra-nodal lymphomas may arise in any organ, and different histological subtypes occur in distinct patterns. Prognosis and treatment depend not only on the histological subtype and disease extent, but also on the particular involved extra-nodal organ. The clinical course and response to treatment...... for the more common extra-nodal organs, e.g. stomach, Waldeyer's ring, skin and brain, are fairly well known and show significant variation. A few randomised trials have been carried out testing the role of radiotherapy in these lymphomas. However, for most extra-nodal lymphomas, randomised trials have...... not been carried out, and treatment decisions are made on small patient series and extrapolations from nodal lymphomas. Hopefully, wide international collaboration will make controlled clinical trials possible in the less common extra-nodal lymphomas. Modern highly conformal radiotherapy allows better...

  19. A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality

    Science.gov (United States)

    Noël, Emily S.; Verhoeven, Manon; Lagendijk, Anne Karine; Tessadori, Federico; Smith, Kelly; Choorapoikayil, Suma; den Hertog, Jeroen; Bakkers, Jeroen

    2013-11-01

    Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.

  20. Elsevier Trophoblast Research Award lecture: The multifaceted role of Nodal signaling during mammalian reproduction.

    Science.gov (United States)

    Park, C B; Dufort, D

    2011-03-01

    Nodal, a secreted signaling protein in the transforming growth factor-beta (TGF-β) superfamily, has established roles in vertebrate development. However, components of the Nodal signaling pathway are also expressed at the maternal-fetal interface and have been implicated in many processes of mammalian reproduction. Emerging evidence indicates that Nodal and its extracellular inhibitor Lefty are expressed in the uterus and complex interactions between the two proteins mediate menstruation, decidualization and embryo implantation. Furthermore, several studies have shown that Nodal from both fetal and maternal sources may regulate trophoblast cell fate and facilitate placentation as both embryonic and uterine-specific Nodal knockout mouse strains exhibit disrupted placenta morphology. Here we review the established and prospective roles of Nodal signaling in facilitating successful pregnancy, including recent evidence supporting a potential link to parturition and preterm birth. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Reactivity Coefficient Calculation for AP1000 Reactor Using the NODAL3 Code

    Science.gov (United States)

    Pinem, Surian; Malem Sembiring, Tagor; Tukiran; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    The reactivity coefficient is a very important parameter for inherent safety and stability of nuclear reactors operation. To provide the safety analysis of the reactor, the calculation of changes in reactivity caused by temperature is necessary because it is related to the reactor operation. In this paper, the temperature reactivity coefficients of fuel and moderator of the AP1000 core are calculated, as well as the moderator density and boron concentration. All of these coefficients are calculated at the hot full power condition (HFP). All neutron diffusion constant as a function of temperature, water density and boron concentration were generated by the SRAC2006 code. The core calculations for determination of the reactivity coefficient parameter are done by using NODAL3 code. The calculation results show that the fuel temperature, moderator temperature and boron reactivity coefficients are in the range between -2.613 pcm/°C to -4.657pcm/°C, -1.00518 pcm/°C to 1.00649 pcm/°C and -9.11361 pcm/ppm to -8.0751 pcm/ppm, respectively. For the water density reactivity coefficients, the positive reactivity occurs at the water temperature less than 190 °C. The calculation results show that the reactivity coefficients are accurate because the results have a very good agreement with the design value.

  2. Influence of reactor vessel nodalization in the coupled code analysis of Asymmetric Main Feedwater Isolation

    International Nuclear Information System (INIS)

    Bencik, V.; Feretic, D.; Grgic, D.

    2001-01-01

    Asymmetric Main Feedwater Isolation (AMFWI) transient in one Steam Generator (SG) for NPP Krsko using RELAP5 standalone code and coupled code RELAP5- QUABOX/CUBBOX (R5QC) was analyzed. In the RELAP5 standalone calculation, a point kinetics model was used, while in the coupled code a three-dimensional (3D) neutronics model of QUABOX with different RELAP5 nodalization schemes of reactor vessel was used. Both code versions use best-estimate thermal-hydraulic system code for all components in the plant and include realistic description of plant protection and control systems. Two different types of calculations were performed: with and without automatic control rod system available. The AMFWI transient causes the great asymmetry of the transferred heat in the SGs and subsequently the asymmetry of the power produced across the core due to different reactivity feedback resulting from the thermal-hydraulic channels assigned to different loops. The work presented in the paper is a part of validation of the 3D coupled code R5QC in the analysis of asymmetric transients.(author)

  3. Benchmarking of the PHOENIX-P/ANC [Advanced Nodal Code] advanced nuclear design system

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Liu, Y.S.; Durston, C.; Casadei, A.L.

    1988-01-01

    At Westinghouse, an advanced neutronic methods program was designed to improve the quality of the predictions, enhance flexibility in designing advanced fuel and related products, and improve design lead time. Extensive benchmarking data is presented to demonstrate the accuracy of the Advanced Nodal Code (ANC) and the PHOENIX-P advanced lattice code. Qualification data to demonstrate the accuracy of ANC include comparison of key physics parameters against a fine-mesh diffusion theory code, TORTISE. Benchmarking data to demonstrate the validity of the PHOENIX-P methodologies include comparison of physics predictions against critical experiments, isotopics measurements and measured power distributions from spatial criticals. The accuracy of the PHOENIX-P/ANC Advanced Design System is demonstrated by comparing predictions of hot zero power physics parameters and hot full power core follow against measured data from operating reactors. The excellent performance of this system for a broad range of comparisons establishes the basis for implementation of these tools for core design, licensing and operational follow of PWR [pressurized water reactor] cores at Westinghouse

  4. MOSRA-Light; high speed three-dimensional nodal diffusion code for vector computers

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Keisuke [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    MOSRA-Light is a three-dimensional neutron diffusion calculation code for X-Y-Z geometry. It is based on the 4th order polynomial nodal expansion method (NEM). As the 4th order NEM is not sensitive to mesh sizes, accurate calculation is possible by the use of coarse meshes of about 20 cm. The drastic decrease of number of unknowns in a 3-dimensional problem results in very fast computation. Furthermore, it employs newly developed computation algorithm `boundary separated checkerboard sweep method` appropriate to vector computers. This method is very efficient because the speedup factor by vectorization increases, as a scale of problem becomes larger. Speed-up factor compared to the scalar calculation is from 20 to 40 in the case of PWR core calculation. Considering the both effects by the vectorization and the coarse mesh method, total speedup factor is more than 1000 as compared with conventional scalar code with the finite difference method. MOSRA-Light can be available on most of vector or scalar computers with the UNIX or it`s similar operating systems (e.g. freeware like Linux). Users can easily install it by the help of the conversation style installer. This report contains the general theory of NEM, the fast computation algorithm, benchmark calculation results and detailed information for usage of this code including input data instructions and sample input data. (author)

  5. MOSRA-Light; high speed three-dimensional nodal diffusion code for vector computers

    International Nuclear Information System (INIS)

    Okumura, Keisuke

    1998-10-01

    MOSRA-Light is a three-dimensional neutron diffusion calculation code for X-Y-Z geometry. It is based on the 4th order polynomial nodal expansion method (NEM). As the 4th order NEM is not sensitive to mesh sizes, accurate calculation is possible by the use of coarse meshes of about 20 cm. The drastic decrease of number of unknowns in a 3-dimensional problem results in very fast computation. Furthermore, it employs newly developed computation algorithm 'boundary separated checkerboard sweep method' appropriate to vector computers. This method is very efficient because the speedup factor by vectorization increases, as a scale of problem becomes larger. Speed-up factor compared to the scalar calculation is from 20 to 40 in the case of PWR core calculation. Considering the both effects by the vectorization and the coarse mesh method, total speedup factor is more than 1000 as compared with conventional scalar code with the finite difference method. MOSRA-Light can be available on most of vector or scalar computers with the UNIX or it's similar operating systems (e.g. freeware like Linux). Users can easily install it by the help of the conversation style installer. This report contains the general theory of NEM, the fast computation algorithm, benchmark calculation results and detailed information for usage of this code including input data instructions and sample input data. (author)

  6. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E.; Ruggieri, J.M. [CEA Cadarache (DER/SPRC/LEPH), 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs; Santandrea, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures DM2S/SERMA/LENR, 91 - Gif sur Yvette (France)

    2005-07-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  7. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2005-01-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  8. Solution of the transport equation in stationary state and X Y geometry, using continuous and discontinuous hybrid nodal schemes

    International Nuclear Information System (INIS)

    Xolocostli M, V.; Valle G, E. del; Alonso V, G.

    2003-01-01

    In this work it is described the development and the application of the NH-FEM schemes, Hybrid Nodal schemes using the Finite Element method in the solution of the neutron transport equation in stationary state and X Y geometry, of which two families of schemes were developed, one of which corresponds to the continuous and the other to the discontinuous ones, inside those first its are had the Bi-Quadratic Bi Q, and to the Bi-cubic BiC, while for the seconds the Discontinuous Bi-lineal DBiL and the Discontinuous Bi-quadratic DBiQ. These schemes were implemented in a program to which was denominated TNHXY, Transport of neutrons with Hybrid Nodal schemes in X Y geometry. One of the immediate applications of the schemes NH-FEM it will be in the analysis of assemblies of nuclear fuel, particularly of the BWR type. The validation of the TNHXY program was made with two test problems or benchmark, already solved by other authors with numerical techniques and to compare results. The first of them consists in an it BWR fuel assemble in an arrangement 7x7 without rod and with control rod providing numerical results. The second is a fuel assemble of mixed oxides (MOX) in an arrangement 10x10. This last problem it is known as the Benchmark problem WPPR of the NEA Data Bank and the results are compared with those of other commercial codes as HELIOS, MCNP-4B and CPM-3. (Author)

  9. Nodal wear model: corrosion in carbon blast furnace hearths

    International Nuclear Information System (INIS)

    Verdeja, L. F.; Gonzalez, R.; Alfonso, A.; Barbes, M. F.

    2003-01-01

    Criteria developed for the Nodal Wear Model (NWM) were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node) of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid. (Author) 31 refs

  10. Mechanism of polyuria and natriuresis in atrioventricular nodal tachycardia.

    Science.gov (United States)

    Canepa-Anson, R; Williams, M; Marshall, J; Mitsuoka, T; Lightman, S; Sutton, R

    1984-01-01

    A woman with tachycardia associated with polyuria was investigated. Electrophysiological analysis showed that the tachycardia was an atrioventricular nodal re-entrant tachycardia. Programmed stimulation was then used to provoke and sustain the tachycardia for 40 minutes. Polyuria, with an appreciable increase in free water clearance, was observed. This was associated with reduction in plasma and urinary arginine vasopressin concentrations. Appreciable natriuresis also developed. These results support the hypothesis that the polyuria with increased free water clearance and the natriuresis occurring during sustained tachycardia in man are due to inhibition of secretion of vasopressin and the release of natriuretic factor. PMID:6434116

  11. Approximate Schur complement preconditioning of the lowest order nodal discretizations

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, J.D.; Ascher, U.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada); Morel, J.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.

  12. Nodal line optimization and its application to violin top plate design

    Science.gov (United States)

    Yu, Yonggyun; Jang, In Gwun; Kim, In Kyum; Kwak, Byung Man

    2010-10-01

    In the literature, most problems of structural vibration have been formulated to adjust a specific natural frequency: for example, to maximize the first natural frequency. In musical instruments like a violin; however, mode shapes are equally important because they are related to sound quality in the way that natural frequencies are related to the octave. The shapes of nodal lines, which represent the natural mode shapes, are generally known to have a unique feature for good violins. Among the few studies on mode shape optimization, one typical study addresses the optimization of nodal point location for reducing vibration in a one-dimensional beam structure. However, nodal line optimization, which is required in violin plate design, has not yet been considered. In this paper, the central idea of controlling the shape of the nodal lines is proposed and then applied to violin top plate design. Finite element model for a violin top plate was constructed using shell elements. Then, optimization was performed to minimize the square sum of the displacement of selected nodes located along the target nodal lines by varying the thicknesses of the top plate. We conducted nodal line optimization for the second and the fifth modes together at the same time, and the results showed that the nodal lines obtained match well with the target nodal lines. The information on plate thickness distribution from nodal line optimization would be valuable for tailored trimming of a violin top plate for the given performances.

  13. Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish

    Directory of Open Access Journals (Sweden)

    Dougan Scott T

    2007-03-01

    Full Text Available Abstract Background The vertebrate body plan is generated during gastrulation with the formation of the three germ layers. Members of the Nodal-related subclass of the TGF-β superfamily induce and pattern the mesoderm and endoderm in all vertebrates. In zebrafish, two nodal-related genes, called squint and cyclops, are required in a dosage-dependent manner for the formation of all derivatives of the mesoderm and endoderm. These genes are expressed dynamically during the blastula stages and may have different roles at different times. This question has been difficult to address because conditions that alter the timing of nodal-related gene expression also change Nodal levels. We utilized a pharmacological approach to conditionally inactivate the ALK 4, 5 and 7 receptors during the blastula stages without disturbing earlier signaling activity. This permitted us to directly examine when Nodal signals specify cell types independently of dosage effects. Results We show that two drugs, SB-431542 and SB-505124, completely block the response to Nodal signals when added to embryos after the mid-blastula transition. By blocking Nodal receptor activity at later stages, we demonstrate that Nodal signaling is required from the mid-to-late blastula period to specify sequentially, the somites, notochord, blood, Kupffer's vesicle, hatching gland, heart, and endoderm. Blocking Nodal signaling at late times prevents specification of cell types derived from the embryo margin, but not those from more animal regions. This suggests a linkage between cell fate and length of exposure to Nodal signals. Confirming this, cells exposed to a uniform Nodal dose adopt progressively more marginal fates with increasing lengths of exposure. Finally, cell fate specification is delayed in squint mutants and accelerated when Nodal levels are elevated. Conclusion We conclude that (1 Nodal signals are most active during the mid-to-late blastula stages, when nodal-related gene

  14. Neutron radiography

    International Nuclear Information System (INIS)

    Hrdlicka, Z.

    1977-01-01

    Neutron radiography is a radiographic method using a neutron beam of a defined geometry. The neutron source usually consists of a research reactor, a specialized neutron radiography reactor or the 252 Cf radioisotope source. There are two types of the neutron radiography display system, viz., a system producing neutron radiography images by a photographic process or a system allowing a visual display, eg., using a television monitor. The method can be used wherever X-ray radiography is used except applications in the radiography of humans. The neutron radiography unit at UJV uses the WWR-S reactor as the neutron source and both types of the above mentioned display system. (J.P.)

  15. Treatment Options for Retinoblastoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other places in the body. Treatment Option Overview Key Points There are different types of ...

  16. The neutron

    International Nuclear Information System (INIS)

    Kredov, B.M.

    1979-01-01

    The history of the neutron is displayed on the basis of contributions by scientists who produced outstanding results in neutron research (part 1), of summarizing discoveries and theories which led to the discovery of the neutron and the resulting development of nuclear physics (part 2), and of fundamental papers written by Rutherford, Chadwick, Iwanenko, and others (appendix). Of interest to physicists, historians, and students

  17. Neutron techniques

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1986-01-01

    The way in which neutrons interact with matter such as slowing-down, diffusion, neutron absorption and moderation are described. The use of neutron techniques in industry, in moisture gages, level and interface measurements, the detection of blockages, boron analysis in ore feedstock and industrial radiography are discussed. (author)

  18. Neutron Transport Methods for Accelerator-Driven Systems

    International Nuclear Information System (INIS)

    Nicholas Tsoulfanidis; Elmer Lewis

    2005-01-01

    The objective of this project has been to develop computational methods that will enable more effective analysis of Accelerator Driven Systems (ADS). The work is centered at the University of Missouri at Rolla, with a subcontract at Northwestern University, and close cooperation with the Nuclear Engineering Division at Argonne National Laboratory. The work has fallen into three categories. First, the treatment of the source for neutrons originating from the spallation target which drives the neutronics calculations of the ADS. Second, the generalization of the nodal variational method to treat the R-Z geometry configurations frequently needed for scoping calculations in Accelerator Driven Systems. Third, the treatment of void regions within variational nodal methods as needed to treat the accelerator beam tube

  19. SUSANS With Polarized Neutrons.

    Science.gov (United States)

    Wagh, Apoorva G; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang

    2005-01-01

    Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10(-4) nm(-1) to 10(-3) nm(-1) afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 10(4) A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10(-3) nm(-1) range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples.

  20. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems

    CERN Document Server

    Li, Tatsien; Gu, Qilong

    2016-01-01

    This book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications. This kind of controllability is useful in practice as it does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien's monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyp...

  1. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Ferrer, R.M.

    2010-01-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these 'spread' the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.

  2. Hereditary bone dysplasia with pathological fractures and nodal osteoarthropathy

    International Nuclear Information System (INIS)

    Arendse, Regan; Brink, Paul; Beighton, Peter

    2009-01-01

    A father and daughter both had multiple pathological fractures and nodal osteoarthropathy. The father, aged 50 years, had at least 20 healed fractures of the axial and appendicular skeleton, sustained by minor trauma over his 50-year lifespan, many of which had been surgically fixed prior to his first presentation to us. Fractures of the clavicles, thoracic cage and long bones of the arms and legs, had healed with malalignment and deformity. Healed fractures were complicated by ankylosis of the cervical vertebrae and both elbows. He also had osteoarthritis of the hands, with exuberant osteophytosis, and profound perceptive deafness. His general health was good, his intellect and facies were normal, and his sclerae were white. The daughter, aged 27 years, had sustained at least seven fractures of the axial and appendicular skeleton following trivial injuries, in distribution similar to those of the father. She had also experienced painful swelling of the fingers, which preceded progressive development of nodal osteoarthropathy. Her hearing was normal. In both individuals, biochemical and immunological investigations yielded normal results. It was not possible for molecular studies to be undertaken. Pedigree data were consistent with autosomal dominant transmission, and this disorder appeared to be a previously undocumented heritable skeletal dysplasia. (orig.)

  3. Hereditary bone dysplasia with pathological fractures and nodal osteoarthropathy

    Energy Technology Data Exchange (ETDEWEB)

    Arendse, Regan [University of Stellenbosch, Department of Medicine, Tygerberg Hospital, Stellenbosch (South Africa); University of Cape Town, Division of Rheumatology, Groote Schuur Hospital, Cape Town (South Africa); Brink, Paul [University of Stellenbosch, Department of Medicine, Tygerberg Hospital, Stellenbosch (South Africa); Beighton, Peter [University of Cape Town, Division of Human Genetics, Faculty of Health Sciences, Cape Town (South Africa)

    2009-12-15

    A father and daughter both had multiple pathological fractures and nodal osteoarthropathy. The father, aged 50 years, had at least 20 healed fractures of the axial and appendicular skeleton, sustained by minor trauma over his 50-year lifespan, many of which had been surgically fixed prior to his first presentation to us. Fractures of the clavicles, thoracic cage and long bones of the arms and legs, had healed with malalignment and deformity. Healed fractures were complicated by ankylosis of the cervical vertebrae and both elbows. He also had osteoarthritis of the hands, with exuberant osteophytosis, and profound perceptive deafness. His general health was good, his intellect and facies were normal, and his sclerae were white. The daughter, aged 27 years, had sustained at least seven fractures of the axial and appendicular skeleton following trivial injuries, in distribution similar to those of the father. She had also experienced painful swelling of the fingers, which preceded progressive development of nodal osteoarthropathy. Her hearing was normal. In both individuals, biochemical and immunological investigations yielded normal results. It was not possible for molecular studies to be undertaken. Pedigree data were consistent with autosomal dominant transmission, and this disorder appeared to be a previously undocumented heritable skeletal dysplasia. (orig.)

  4. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets.

    Science.gov (United States)

    Owerre, S A

    2017-07-31

    In this report, we propose a new concept of one-dimensional (1D) closed lines of Dirac magnon nodes in two-dimensional (2D) momentum space of quasi-2D quantum magnetic systems. They are termed "2D Dirac magnon nodal-line loops". We utilize the bilayer honeycomb ferromagnets with intralayer coupling J and interlayer coupling J L , which is realizable in the honeycomb chromium compounds CrX 3 (X ≡ Br, Cl, and I). However, our results can also exist in other layered quasi-2D quantum magnetic systems. Here, we show that the magnon bands of the bilayer honeycomb ferromagnets overlap for J L  ≠ 0 and form 1D closed lines of Dirac magnon nodes in 2D momentum space. The 2D Dirac magnon nodal-line loops are topologically protected by inversion and time-reversal symmetry. Furthermore, we show that they are robust against weak Dzyaloshinskii-Moriya interaction Δ DM  magnon edge modes.

  5. Local field radiotherapy without elective nodal irradiation for postoperative loco-regional recurrence of esophageal cancer.

    Science.gov (United States)

    Kimoto, Takuya; Yamazaki, Hideya; Suzuki, Gen; Aibe, Norihiro; Masui, Koji; Tatekawa, Kotoha; Sasaki, Naomi; Fujiwara, Hitoshi; Shiozaki, Atsushi; Konishi, Hirotaka; Nakamura, Satoaki; Yamada, Kei

    2017-09-01

    Radiotherapy is an effective treatment for the postoperative loco-regional recurrence of esophageal cancer; however, the optimal treatment field remains controversial. This study aims to evaluate the outcome of local field radiotherapy without elective nodal irradiation for postoperative loco-regional recurrence of esophageal cancer. We retrospectively investigated 35 patients treated for a postoperative loco-regional recurrence of esophageal cancer with local field radiotherapy between December 2008 and March 2016. The median irradiation dose was 60 Gy (range: 50-67.5 Gy). Thirty-one (88.6%) patients received concurrent chemotherapy. The median follow-up period was 18 months (range: 5-94 months). The 2-year overall survival was 55.7%, with a median survival time of 29.9 months. In the univariate analysis, the maximal diameter ≤20 mm (P = 0.0383), solitary lesion (P = 0.0352), and the complete remission after treatment (P = 0.00411) had a significantly better prognosis. A total of 27 of 35 patients (77.1%) had progressive disease (loco-regional failure [n = 9], distant metastasis [n = 7], and both loco-regional failure and distant metastasis [n = 11]). No patients had Grade 3 or greater mucositis. Local field radiotherapy is a considerable treatment option for postoperative loco-regional recurrence of esophageal cancer. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  6. Imaging with cold neutrons

    International Nuclear Information System (INIS)

    Lehmann, E.H.; Kaestner, A.; Josic, L.; Hartmann, S.; Mannes, D.

    2011-01-01

    Neutrons for imaging purposes are provided mainly from thermal beam lines at suitable facilities around the world. The access to cold neutrons is presently limited to very few places only. However, many challenging options for imaging with cold neutrons have been found out, given by the interaction behavior of the observed materials with neutrons in the cold energy range (3-10 A). For absorbing materials, the interaction probability increases proportionally with the wavelength with the consequence of more contrast but less transmission with cold neutrons. Many materials are predominantly scattering neutrons, in particular most of crystalline structural materials. In these cases, cold neutrons play an important role by covering the energy range of the most important Bragg edges given by the lattice planes of the crystallites. This particular behavior can be used for at least two important aspects-choosing the right energy of the initial beam enables to have a material more or less transparent, and a direct macroscopic visualization of the crystalline structure and its change in a manufacturing process. Since 2006, PSI operates its second beam line for neutron imaging, where cold neutrons are provided from a liquid deuterium cold source (operated at 25 K). It has been designed to cover the most current aspects in neutron imaging research with the help of high flexibility. This has been done with changeable inlet apertures, a turbine based velocity selector, two beam positions and variable detector systems, satisfying the demands of the individual investigation. The most important detection system was found to be a micro-tomography system that enables studies in the presently best spatial resolution. In this case, the high contrast from the sample interaction process and the high detection probability for the cold neutrons combines in an ideal combination for the best possible performance. Recently, it was found out that the energy selective studies might become a

  7. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    Energy Technology Data Exchange (ETDEWEB)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J. [Delft University of Technology, NL-2629 JB Delft (Netherlands)

    1998-07-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  8. Core design optimization by integration of a fast 3-D nodal code in a heuristic search procedure

    International Nuclear Information System (INIS)

    Geemert, R. van; Leege, P.F.A. de; Hoogenboom, J.E.; Quist, A.J.

    1998-01-01

    An automated design tool is being developed for the Hoger Onderwijs Reactor (HOR) in Delft, the Netherlands, which is a 2 MWth swimming-pool type research reactor. As a black box evaluator, the 3-D nodal code SILWER, which up to now has been used only for evaluation of predetermined core designs, is integrated in the core optimization procedure. SILWER is a part of PSl's ELCOS package and features optional additional thermal-hydraulic, control rods and xenon poisoning calculations. This allows for fast and accurate evaluation of different core designs during the optimization search. Special attention is paid to handling the in- and output files for SILWER such that no adjustment of the code itself is required for its integration in the optimization programme. The optimization objective, the safety and operation constraints, as well as the optimization procedure, are discussed. (author)

  9. Australian Asian Options

    OpenAIRE

    Manuel Moreno; Javier F. Navas

    2003-01-01

    We study European options on the ratio of the stock price to its average and viceversa. Some of these options are traded in the Australian Stock Exchange since 1992, thus we call them Australian Asian options. For geometric averages, we obtain closed-form expressions for option prices. For arithmetic means, we use different approximations that produce very similar results.

  10. Options with Extreme Strikes

    Directory of Open Access Journals (Sweden)

    Lingjiong Zhu

    2015-07-01

    Full Text Available In this short paper, we study the asymptotics for the price of call options for very large strikes and put options for very small strikes. The stock price is assumed to follow the Black–Scholes models. We analyze European, Asian, American, Parisian and perpetual options and conclude that the tail asymptotics for these option types fall into four scenarios.

  11. Assessment of Effect on LBLOCA PCT for Change in Upper Head Nodalization

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Huh, Byung Gil; Yoo, Seung Hun; Bang, Youngseok; Seul, Kwangwon; Cho, Daehyung

    2014-01-01

    In this study, the best estimate plus uncertainty (BEPU) analysis of LBLOCA for original and modified nodalizations was performed, and the effect on LBLOCA PCT for change in upper head nodalization was assessed. In this study, the best estimate plus uncertainty (BEPU) analysis of LBLOCA for original and modified nodalizations was performed, and the effect on LBLOCA PCT for change in upper head nodalization was assessed. It is confirmed that modification of upper head nodalization influences PCT behavior, especially in the reflood phase. In conclusions, the modification of nodalization to reflect design characteristic of upper head temperature should be done to predict PCT behavior accurately in LBLOCA analysis. In the best estimate (BE) method with the uncertainty evaluation, the system nodalization is determined by the comparative studies of the experimental data. Up to now, it was assumed that the temperature of the upper dome in OPR-1000 was close to that of the cold leg. However, it was found that the temperature of the upper head/dome might be a little lower than or similar to that of the hot leg through the evaluation of the detailed design data. Since the higher upper head temperature affects blowdown quenching and peak cladding temperature in the reflood phase, the nodalization for upper head should be modified

  12. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    Energy Technology Data Exchange (ETDEWEB)

    Aragones, J M; Ahnert, C; Gomez Santamaria, J; Rodriguez Olabarria, I

    1985-07-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs.

  13. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals

    Science.gov (United States)

    Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.

    2018-04-01

    Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

  14. LOLA SYSTEM: A code block for nodal PWR simulation. Part. I - Simula-3 Code

    International Nuclear Information System (INIS)

    Aragones, J. M.; Ahnert, C.; Gomez Santamaria, J.; Rodriguez Olabarria, I.

    1985-01-01

    Description of the theory and users manual of the SIMULA-3 code, which is part of the core calculation system by nodal theory in one group, called LOLA SYSTEM. SIMULA-3 is the main module of the system, it uses a modified nodal theory, with interface leakages equivalent to the diffusion theory. (Author) 4 refs

  15. Nondestructive inspection using neutron beams

    International Nuclear Information System (INIS)

    2013-01-01

    Neutron-abased experimental techniques such as neutronography, diffraction, or composition and elemental analysis are well established. They have important advantages in the non-destructive analysis of materials, making them a suitable option for quality-control protocols in industrial production lines. In addition, they are highly complementary to other non-destructive techniques, particularly X-ray analysis. Examples of industrial use include studies of pipes and ducts, concrete, or aeronautical components. Notwithstanding the above, the high cost associated with the construction and operation of the requisite neutron facilities has been an important limiting factor for their widespread use by the industrial sector. In this brief contribution, we explore the emerging (and already demonstrated) possibility of using compact, proton-accelerator-based neutron sources. these novel sources can be built and ran at a cost as low as a few ME, making them a competitive option to the more intense spallation or fission-based facilities for industrial applications. (Author)

  16. Application of the RT-0 nodal methods and NRMPO matrix-response to the cycles 1 and 2 of the LVC

    International Nuclear Information System (INIS)

    Delfin L, A.; Hernandez L, H.; Alonso V, G.

    2005-01-01

    The nodal methods the same as that of matrix-response are used to develop numeric calculations, so much in static as dynamics of reactors, in one, two and three dimensions. The topic of this work is to apply the equations modeled in the RPM0 program, obtained when using the nodal scheme RT-0 (Raviart-Thomas index zero) in the neutron diffusion equation in stationary state X Y geometry, applying finite differences centered in mesh and lineal reactivity; also, to use those equations captured in the NRMPO program developed by E. Malambu that uses the matrix-response method in X Y geometry. The numeric results of the radial distribution of power by fuel assembly of the unit 1, in the cycles 1 and 2 of the CLV obtained by both methods, they are compared with the calculations obtained with the CM-PRESTO code that is a neutronic-thermo hydraulic simulator in three dimensions. The comparison of the radial distribution of power in the cycles 1 and 2 of the CLV with the CM-PRESTO code, it presents for RPM0 maximum errors of 8.2% and 12.4% and for NRMPO 31.2% and 61.3% respectively. The results show that it can be feasible to use the program RPM0 like a quick and efficient tool in the multicycle analysis in the fuel management. (Author)

  17. Neutron radiography

    International Nuclear Information System (INIS)

    Hiraoka, Eiichi

    1988-01-01

    The thermal neutron absorption coefficient is essentially different from the X-ray absorption coefficient. Each substance has a characteristic absorption coefficient regardless of its density. Neutron deams have the following features: (1) neutrons are not transmitted efficiently by low molecular weight substances, (2) they are transmitted efficiently by heavy metals, and (3) the transmittance differs among isotopes. Thus, neutron beams are suitable for cheking for foreign matters in heavy metals and testing of composites consisting of both heavy and light materials. A neutron source generates fast neutrons, which should be converted into thermal neutrons by reducing their energy. Major neutron souces include nuclear reactors, radioisotopes and particle accelerators. Photographic films and television systems are mainly used to observe neutron transmission images. Computers are employed for image processing, computerized tomography and three-dimensional analysis. The major applications of neutron radiography include inspection of neclear fuel; evaluation of material for airplane; observation of fuel in the engine and oil in the hydraulic systems in airplanes; testing of composite materials; etc. (Nogami, K.)

  18. Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva.

    Directory of Open Access Journals (Sweden)

    Yi-Jyun Luo

    Full Text Available Nodal and BMP signals are important for establishing left-right (LR asymmetry in vertebrates. In sea urchins, Nodal signaling prevents the formation of the rudiment on the right side. However, the opposing pathway to Nodal signaling during LR axis establishment is not clear. Here, we revealed that BMP signaling is activated in the left coelomic pouch, specifically in the veg2 lineage, but not in the small micromeres. By perturbing BMP activities, we demonstrated that BMP signaling is required for activating the expression of the left-sided genes and the formation of the left-sided structures. On the other hand, Nodal signals on the right side inhibit BMP signaling and control LR asymmetric separation and apoptosis of the small micromeres. Our findings show that BMP signaling is the positive signal for left-sided development in sea urchins, suggesting that the opposing roles of Nodal and BMP signals in establishing LR asymmetry are conserved in deuterostomes.

  19. A spectral nodal method for discrete ordinates problems in x,y geometry

    International Nuclear Information System (INIS)

    Barros, R.C. de; Larsen, E.W.

    1991-06-01

    A new nodal method is proposed for the solution of S N problems in x- y-geometry. This method uses the Spectral Green's Function (SGF) scheme for solving the one-dimensional transverse-integrated nodal transport equations with no spatial truncation error. Thus, the only approximations in the x, y-geometry nodal method occur in the transverse leakage terms, as in diffusion theory. We approximate these leakage terms using a flat or constant approximation, and we refer to the resulting method as the SGF-Constant Nodal (SGF-CN) method. We show in numerical calculations that the SGF-CN method is much more accurate than other well-known transport nodal methods for coarse-mesh deep-penetration S N problems, even though the transverse leakage terms are approximated rather simply. (author)

  20. Dual Atrioventricular Nodal Pathways Physiology: A Review of Relevant Anatomy, Electrophysiology, and Electrocardiographic Manifestations

    Directory of Open Access Journals (Sweden)

    Bhalaghuru Chokkalingam Mani, MD

    2014-01-01

    Full Text Available More than half a century has passed since the concept of dual atrioventricular (AV nodal pathways physiology was conceived. Dual AV nodal pathways have been shown to be responsible for many clinical arrhythmia syndromes, most notably AV nodal reentrant tachycardia. Although there has been a considerable amount of research on this topic, the subject of dual AV nodal pathways physiology remains heavily debated and discussed. Despite advances in understanding arrhythmia mechanisms and the widespread use of invasive electrophysiologic studies, there is still disagreement on the anatomy and physiology of the AV node that is the basis of discontinuous antegrade AV conduction. The purpose of this paper is to review the concept of dual AV nodal pathways physiology and its varied electrocardiographic manifestations.

  1. Neutron Generators for Spent Fuel Assay

    International Nuclear Information System (INIS)

    Ludewigt, Bernhard A.

    2010-01-01

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  2. Numerical solution of the 1D kinetics equations using a cubic reduced nodal scheme; Solucion numerica de las ecuaciones de la cinetica 1D usando un esquema nodal cubico reducido

    Energy Technology Data Exchange (ETDEWEB)

    Gomez T, A.M.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico); Delfin L, A.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)] e-mail: armagotorres@aol.com

    2003-07-01

    In this work a finite differences technique centered in mesh based on a cubic reduced nodal scheme type finite element to solve the equations of the kinetics 1 D that include the equations corresponding to the concentrations of precursors of delayed neutrons is described. The technique of finite elements used is that of Galerkin where so much the neutron flux as the concentrations of precursors its are spatially approached by means of a three grade polynomial. The matrices of rigidity and of mass that arise during this discretization process are numerically evaluated using the open quadrature non standard of Newton-Cotes and that of Radau respectively. The purpose of the application of these quadratures is the one of to eliminate in the global matrices the couplings among the values of the flow in points of the discretization with the consequent advantages as for the reduction of the order of the matrix associated to the discreet problem that is to solve. As for the time dependent part the classical integration scheme known as {theta} scheme is applied. After carrying out the one reordering of unknown and equations it arrives to a reduced system that it can be solved but quickly. With the McKin compute program developed its were solved three benchmark problems and those results are shown for the relative powers. (Author)

  3. An integral nodal variational method for multigroup criticality calculations

    International Nuclear Information System (INIS)

    Lewis, E.E.; Tsoulfanidis, N.

    2003-01-01

    An integral formulation of the variational nodal method is presented and applied to a series of benchmark critically problems. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Either homogeneous or heterogeneous nodes may be employed. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the standard spherical harmonics expansion using the same spatial approximations. (author)

  4. On-line application of the PANTHER advanced nodal code

    International Nuclear Information System (INIS)

    Hutt, P.K.; Knight, M.P.

    1992-01-01

    Over the last few years, Nuclear Electric has developed an integrated core performance code package for both light water reactors (LWRs) and advanced gas-cooled reactors (AGRs) that can perform a comprehensive range of calculations for fuel cycle design, safety analysis, and on-line operational support for such plants. The package consists of the following codes: WIMS for lattice physics, PANTHER whole reactor nodal flux and AGR thermal hydraulics, VIPRE for LWR thermal hydraulics, and ENIGMA for fuel performance. These codes are integrated within a UNIX-based interactive system called the Reactor Physics Workbench (RPW), which provides an interactive graphic user interface and quality assurance records/data management. The RPW can also control calculational sequences and data flows. The package has been designed to run both off-line and on-line accessing plant data through the RPW

  5. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

    Science.gov (United States)

    Leuschner, Matthias; Fritzen, Felix

    2017-11-01

    Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

  6. Nodal domains on isospectral quantum graphs: the resolution of isospectrality?

    International Nuclear Information System (INIS)

    Band, Ram; Shapira, Talia; Smilansky, Uzy

    2006-01-01

    We present and discuss isospectral quantum graphs which are not isometric. These graphs are the analogues of the isospectral domains in R 2 which were introduced recently in Gordon et al (1992 Bull. Am. Math. Soc. 27 134-8), Chapman (1995 Am. Math. Mon. 102 124), Buser et al (1994 Int. Math. Res. Not. 9 391-400), Okada and Shudo (2001 J. Phys. A: Math. Gen. 34 5911-22), Jakobson et al (2006 J. Comput. Appl. Math. 194 141-55) and Levitin et al (2006 J. Phys. A: Math. Gen. 39 2073-82)) all based on Sunada's construction of isospectral domains (Sunada T 1985 Ann. Math. 121 196-86). After presenting some of the properties of these graphs, we discuss a few examples which support the conjecture that by counting the nodal domains of the corresponding eigenfunctions one can resolve the isospectral ambiguity

  7. CAISO flicks switch on nodal scheme and lights stay on

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    In 2000-01, two years after introducing a competitive wholesale power auction in California - with a separate day-ahead zonal market operated by the California Power Exchange and a zonal market for ancillary services and balancing energy operated by the California Independent System Operator (CAISO) - the California market collapsed from exorbitant prices, flagrant gaming, and abuse of market power. Nine years later, CAISO introduced a nodal pricing auction for the wholesale market in April, replacing the zonal scheme, which was among many causes of the original market's demise. With nearly 3,000 nodes on the network, high prices in one region do not affect prices everywhere on the system. After investing some $200 million to upgrade the software, countless delays, and 18 months of market simulation and testing, the new auction was introduced and nothing unusual happened.

  8. Ultrasound beam characteristics of a symmetric nodal origami based array

    Science.gov (United States)

    Bilgunde, Prathamesh N.; Bond, Leonard J.

    2018-04-01

    Origami-the ancient art of paper folding-is being explored in acoustics for effective focusing of sound. In this short communication, we present a numerical investigation of beam characteristics for an origami based ultrasound array. A spatial re-configuration of array elements is performed based upon the symmetric nodal origami. The effect of fold angle on the ultrasound beam is evaluated using frequency domain and transient finite element analysis. It was found that increase in the fold angle reduces near field length by 58% and also doubles the beam intensity as compared to the linear array. Transient analysis also indicated 80% reduction in the -6dB beam width, which can improve the lateral resolution of phased array. Such a spatially re-configurable array could potentially be used in the future to reduce the cost of electronics in the phased array instrumentation.

  9. Space-angle approximations in the variational nodal method

    International Nuclear Information System (INIS)

    Lewis, E. E.; Palmiotti, G.; Taiwo, T.

    1999-01-01

    The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared

  10. Comparison of PANTHER nodal solutions in hexagonal-z geometry

    International Nuclear Information System (INIS)

    Knight, M.; Hutt, P.; Lewis, I.

    1995-01-01

    The reactor physics code PANTHER has been extended to hexagonal geometries. Steady-state, depletion, and transient calculations with feedback can all be performed. Two hexagonal nodal flux solutions have been developed. In the first method, transverse integration is performed exactly as in the rectangular case. The resulting transverse integrated equation has singular terms, which are simply ignored. The second approach applies a conformal mapping that transforms the hexagon onto a rectangle. Pin power reconstruction has also been developed with both methods. For a benchmark VVER-1000 reactor depletion problem, both methods give accurate results for standard depletion calculations. In the more extreme situation with all rods inserted, the simpler method breaks down. However, the accuracy of the conformal solution was found to be excellent in all cases studied

  11. Static benchmarking of the NESTLE advanced nodal code

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1997-01-01

    Results from the NESTLE advanced nodal code are presented for multidimensional numerical benchmarks representing four different types of reactors, and predictions from NESTLE are compared with measured data from pressurized water reactors (PWRs). The numerical benchmarks include cases representative of PWRs, boiling water reactors (BWRs), CANDU heavy water reactors (HWRs), and high-temperature gas-cooled reactors (HTGRs). The measured PWR data include critical soluble boron concentrations and isothermal temperature coefficients of reactivity. The results demonstrate that NESTLE correctly solves the multigroup diffusion equations for both Cartesian and hexagonal geometries, that it reliably calculates k eff and reactivity coefficients for PWRs, and that--subsequent to the incorporation of additional thermal-hydraulic models--it will be able to perform accurate calculations for the corresponding parameters in BWRs, HWRs, and HTGRs as well

  12. Contemporary Management of Recurrent Nodal Disease in Differentiated Thyroid Carcinoma

    Science.gov (United States)

    Na’ara, Shorook; Amit, Moran; Fridman, Eran; Gil, Ziv

    2016-01-01

    Differentiated thyroid carcinoma (DTC) comprises over 90% of thyroid tumors and includes papillary and follicular carcinomas. Patients with DTC have an excellent prognosis, with a 10-year survival rate of over 90%. However, the risk of recurrent tumor ranges between 5% and 30% within 10 years of the initial diagnosis. Cervical lymph node disease accounts for the majority of recurrences and in most cases is detected during follow-up by ultrasound or elevated levels of serum thyroglobulin. Recurrent disease is accompanied by increased morbidity. The mainstay of treatment of nodal recurrence is surgical management. We provide an overview of the literature addressing surgical management of recurrent or persistent lymph node disease in patients with DTC. PMID:26886954

  13. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  14. Fusion neutronics

    CERN Document Server

    Wu, Yican

    2017-01-01

    This book provides a systematic and comprehensive introduction to fusion neutronics, covering all key topics from the fundamental theories and methodologies, as well as a wide range of fusion system designs and experiments. It is the first-ever book focusing on the subject of fusion neutronics research. Compared with other nuclear devices such as fission reactors and accelerators, fusion systems are normally characterized by their complex geometry and nuclear physics, which entail new challenges for neutronics such as complicated modeling, deep penetration, low simulation efficiency, multi-physics coupling, etc. The book focuses on the neutronics characteristics of fusion systems and introduces a series of theories and methodologies that were developed to address the challenges of fusion neutronics, and which have since been widely applied all over the world. Further, it introduces readers to neutronics design’s unique principles and procedures, experimental methodologies and technologies for fusion systems...

  15. Neutron spectometers

    International Nuclear Information System (INIS)

    Poortmans, F.

    1977-01-01

    Experimental work in the field of low-energy neutron physics can be subdivided into two classes: 1)Study of the decay process of the compound-nucleus state as for example the study of the capture gamma rays and of the neutron induced fission process; 2)Study of the reaction mechanism, mainly by measuring the reaction cross-sections and resonance parameters. These neutron cross-sections and resonance parameters are also important data required for many technological applications especially for reactor development programmes. In general, the second class of experiments impose other requirements on the neutron spectrometer than the first class. In most cases, a better neutron energy resolution and a broader neutron energy range are required for the study of the reaction mechanism than for the study of various aspects of the decay process. (author)

  16. Nodal wear model: corrosion in carbon blast furnace hearths

    Directory of Open Access Journals (Sweden)

    Verdeja, L. F.

    2003-06-01

    Full Text Available Criterions developed for the Nodal Wear Model (NWM were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid.

    Se aplican los criterios del Modelo de Desgaste Nodal (MDN para la estimación de los perfiles de corrosión que podría ir adquiriendo el crisol de un homo alto durante su campaña. Atendiendo al propio diseño del crisol, a las condiciones límites de contorno, a las características del material refractario utilizado y a las condiciones de operación del horno, se consiguen simular perfiles de desgaste con "pozo central", con "forma de seta" ó de "pie de elefante". Los fundamentos del MDN se apoyan en la idea de considerar que la corrosión del refractario es función de la temperatura que el sistema pueda presentar en cada punto (nodo de la intercara refractario-fundido y de las correspondientes características físico-químicas del fluido corrosivo.

  17. Calculation of accurate albedo boundary conditions for three-dimensional nodal diffusion codes by the method of characteristics

    International Nuclear Information System (INIS)

    Petkov, Petko T.

    2000-01-01

    Most of the few-group three-dimensional nodal diffusion codes used for neutronics calculations of the WWER reactors use albedo type boundary conditions on the core-reflector boundary. The conventional albedo are group-to-group reflection probabilities, defined on each outer node face. The method of characteristics is used to calculate accurate albedo by the following procedure. A many-group two-dimensional heterogeneous core-reflector problem, including a sufficient part of the core and detailed description of the adjacent reflector, is solved first. From this solution the angular flux on the core-reflector boundary is calculated in all groups for all traced neutron directions. Accurate boundary conditions can be calculated for the radial, top and bottom reflectors as well as for the absorber part of the WWER-440 reactor control assemblies. The algorithm can be used to estimate also albedo, coupling outer node faces on the radial reflector in the axial direction. Numerical results for the WWER-440 reactor are presented. (Authors)

  18. Neutron exposure

    International Nuclear Information System (INIS)

    Prillinger, G.; Konynenburg, R.A. van

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 6, LWR-PV neutron transport calculations and dosimetry methods and how they are combined to evaluate the neutron exposure of the steel of pressure vessels are discussed. An effort to correlate neutron exposure parameters with damage is made

  19. Atmospheric neutrons

    International Nuclear Information System (INIS)

    Preszler, A.M.; Moon, S.; White, R.S.

    1976-01-01

    Additional calibrations of the University of California double-scatter neutron and additional analysis corrections lead to the slightly changed neutron fluxes reported here. The theoretical angular distributions of Merker (1975) are in general agreement with our experimental fluxes but do not give the peaks for vertical upward and downward moving neutrons. The theoretical neutron escape current J 2 /sub pi/ (Merker, 1972; Armstrong et al., 1973) is in agreement with the experimental values from 10 to 100 MeV. Our experimental fluxes agree with those of the Kanbach et al. (1974) in the overlap region from 70 to 100 MeV

  20. Neutron Albedo

    CERN Document Server

    Ignatovich, V K

    2005-01-01

    A new, algebraic, method is applied to calculation of neutron albedo from substance to check the claim that use of ultradispersive fuel and moderator of an active core can help to gain in size and mass of the reactor. In a model of isotropic distribution of incident and reflected neutrons it is shown that coherent scattering on separate grains in the case of thermal neutrons increases transport cross section negligibly, however it decreases albedo from a wall of finite thickness because of decrease of substance density. A visible increase of albedo takes place only for neutrons with wave length of the order of the size of a single grain.

  1. FY17 Status Report on NEAMS Neutronics Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C. H. [Argonne National Lab. (ANL), Argonne, IL (United States); Jung, Y. S. [Argonne National Lab. (ANL), Argonne, IL (United States); Smith, M. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-09-30

    Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H) capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.

  2. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    International Nuclear Information System (INIS)

    Shih, Helen A.; Harisinghani, Mukesh; Zietman, Anthony L.; Wolfgang, John A.; Saksena, Mansi; Weissleder, Ralph

    2005-01-01

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to a common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities

  3. Development of 3D multi-group neutron diffusion code for hexagonal geometry

    International Nuclear Information System (INIS)

    Sun Wei; Wang Kan; Ni Dongyang; Li Qing

    2013-01-01

    Based on the theory of new flux expansion nodal method to solve the neutron diffusion equations, the intra-nodal fluence rate distribution was expanded in a series of analytic basic functions for each group. In order to improve the accuracy of calculation result, continuities of neutron fluence rate and current were utilized across the nodal surfaces. According to the boundary conditions, the iteration method was adopted to solve the diffusion equation, where inner iteration speedup method is Gauss-Seidel method and outer is Lyusternik-Wagner. A new speedup method (one-outer-iteration and multi-inner-iteration method) was proposed according to the characteristic that the convergence speed of multiplication factor is faster than that of neutron fluence rate and the update of inner iteration matrix is slow. Based on the proposed model, the code HANDF-D was developed and tested by 3D two-group vver440 benchmark, experiment 2 of HFETR, 3D four-group thermal reactor benchmark, and 3D seven-group fast reactor benchmark. The numerical results show that HANDF-D can predict accurately the multiplication factor and nodal powers. (authors)

  4. A simple nodal force distribution method in refined finite element meshes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.

  5. Nodal price volatility reduction and reliability enhancement of restructured power systems considering demand-price elasticity

    International Nuclear Information System (INIS)

    Goel, L.; Wu, Qiuwei; Wang, Peng

    2008-01-01

    With the development of restructured power systems, the conventional 'same for all customers' electricity price is getting replaced by nodal prices. Electricity prices will fluctuate with time and nodes. In restructured power systems, electricity demands will interact mutually with prices. Customers may shift some of their electricity consumption from time slots of high electricity prices to those of low electricity prices if there is a commensurate price incentive. The demand side load shift will influence nodal prices in return. This interaction between demand and price can be depicted using demand-price elasticity. This paper proposes an evaluation technique incorporating the impact of the demand-price elasticity on nodal prices, system reliability and nodal reliabilities of restructured power systems. In this technique, demand and price correlations are represented using the demand-price elasticity matrix which consists of self/cross-elasticity coefficients. Nodal prices are determined using optimal power flow (OPF). The OPF and customer damage functions (CDFs) are combined in the proposed reliability evaluation technique to assess the reliability enhancement of restructured power systems considering demand-price elasticity. The IEEE reliability test system (RTS) is simulated to illustrate the developed techniques. The simulation results show that demand-price elasticity reduces the nodal price volatility and improves both the system reliability and nodal reliabilities of restructured power systems. Demand-price elasticity can therefore be utilized as a possible efficient tool to reduce price volatility and to enhance the reliability of restructured power systems. (author)

  6. Type-I and type-II topological nodal superconductors with s -wave interaction

    Science.gov (United States)

    Huang, Beibing; Yang, Xiaosen; Xu, Ning; Gong, Ming

    2018-01-01

    Topological nodal superconductors with protected gapless points in momentum space are generally realized based on unconventional pairings. In this work we propose a minimal model to realize these topological nodal phases with only s -wave interaction. In our model the linear and quadratic spin-orbit couplings along the two orthogonal directions introduce anisotropic effective unconventional pairings in momentum space. This model may support different nodal superconducting phases characterized by either an integer winding number in BDI class or a Z2 index in D class at the particle-hole invariant axes. In the vicinity of the nodal points the effective Hamiltonian can be described by either type-I or type-II Dirac equations, and the Lifshitz transition from type-I nodal phases to type-II nodal phases can be driven by external in-plane magnetic fields. We show that these nodal phases are robust against weak impurities, which only slightly renormalizes the momentum-independent parameters in the impurity-averaged Hamiltonian, thus these phases are possible to be realized in experiments with real semi-Dirac materials. The smoking-gun evidences to verify these phases based on scanning tunneling spectroscopy method are also briefly discussed.

  7. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  8. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1994-12-31

    A neutron irradiation facility was designed and built in order to establish a procedure for calibrating neutron monitors and dosemeters. A 185 GBq {sup 241} Am Be source of known is used as a reference source. The irradiation facility using this source in the air provides neutron dose rates between 9 nSv s{sup -1} and 0,5 {sup {mu}}Sv s{sup -1}. A calibrated 50 nSv s{sup -1} thermal neutron field is obtained by using a specially designed paraffin block in conjunction with the {sup 241} Am Be source. A Bonner multisphere spectrometer was calibrated, using a procedure based on three methods proposed by international standards. The unfold {sup 241} Am Be neutron spectrum was determined from the Bonner spheres data and resulted in a good agreement with expected values for fluence rate, dose rate and mean energy. A dosimetric system based on the electrochemical etching of CR-39 was developed for personal dosimetry. The dosemeter badge using a (n,{alpha}) converter, the etching chamber and high frequency power supply were designed and built specially for this project. The electrochemical etching (ECE) parameters used were: a 6N KOH solution, 59 deg C, 20 kV{sub pp} cm{sup -1}, 2,0 kHz, 3 hours of ECE for thermal and intermediate neutrons and 6 hours for fast neutrons. The calibration factors for thermal, intermediate and fast neutrons were determined for this personal dosemeter. The sensitivities determined for the developed dosimetric system were (1,46{+-} 0,09) 10{sup 4} tracks cm{sup -2} mSv{sup -1} for thermal neutrons, (9{+-}3) 10{sup 2} tracks cm{sup -2} mSV{sup -1} for intermediate neutrons and (26{+-}4) tracks cm{sup -2} mSv{sup -1} for fast neutrons. The lower and upper limits of detection were respectively 0,002 mSv and 0,6 mSv for thermal neutrons, 0,04 mSv and 8 mSv for intermediate neutrons and 1 mSv and 12 mSv for fast neutrons. In view of the 1990`s ICRP recommendations, it is possible to conclude that the personal dosemeter described in this work is

  9. Traditional preventive treatment options

    DEFF Research Database (Denmark)

    Longbottom, C; Ekstrand, K; Zero, D

    2009-01-01

    Preventive treatment options can be divided into primary, secondary and tertiary prevention techniques, which can involve patient- or professionally applied methods. These include: oral hygiene (instruction), pit and fissure sealants ('temporary' or 'permanent'), fluoride applications (patient...... options....

  10. Breast Cancer: Treatment Options

    Science.gov (United States)

    ... Breast Cancer > Breast Cancer: Treatment Options Request Permissions Breast Cancer: Treatment Options Approved by the Cancer.Net Editorial ... can be addressed as quickly as possible. Recurrent breast cancer If the cancer does return after treatment for ...

  11. Nodal-dependent mesendoderm specification requires the combinatorial activities of FoxH1 and Eomesodermin.

    Directory of Open Access Journals (Sweden)

    Christopher E Slagle

    2011-05-01

    Full Text Available Vertebrate mesendoderm specification requires the Nodal signaling pathway and its transcriptional effector FoxH1. However, loss of FoxH1 in several species does not reliably cause the full range of loss-of-Nodal phenotypes, indicating that Nodal signals through additional transcription factors during early development. We investigated the FoxH1-dependent and -independent roles of Nodal signaling during mesendoderm patterning using a novel recessive zebrafish FoxH1 mutation called midway, which produces a C-terminally truncated FoxH1 protein lacking the Smad-interaction domain but retaining DNA-binding capability. Using a combination of gel shift assays, Nodal overexpression experiments, and genetic epistasis analyses, we demonstrate that midway more accurately represents a complete loss of FoxH1-dependent Nodal signaling than the existing zebrafish FoxH1 mutant schmalspur. Maternal-zygotic midway mutants lack notochords, in agreement with FoxH1 loss in other organisms, but retain near wild-type expression of markers of endoderm and various nonaxial mesoderm fates, including paraxial and intermediate mesoderm and blood precursors. We found that the activity of the T-box transcription factor Eomesodermin accounts for specification of these tissues in midway embryos. Inhibition of Eomesodermin in midway mutants severely reduces the specification of these tissues and effectively phenocopies the defects seen upon complete loss of Nodal signaling. Our results indicate that the specific combinations of transcription factors available for signal transduction play critical and separable roles in determining Nodal pathway output during mesendoderm patterning. Our findings also offer novel insights into the co-evolution of the Nodal signaling pathway, the notochord specification program, and the chordate branch of the deuterostome family of animals.

  12. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  13. Neutron polarization

    International Nuclear Information System (INIS)

    Firk, F.W.K.

    1976-01-01

    Some recent experiments involving polarized neutrons are discussed; they demonstrate how polarization studies provide information on fundamental aspects of nuclear structure that cannot be obtained from more traditional neutron studies. Until recently, neutron polarization studies tended to be limited either to very low energies or to restricted regions at higher energies, determined by the kinematics of favorable (p, vector n) and (d, vector n) reactions. With the advent of high intensity pulsed electron and proton accelerators and of beams of vector polarized deuterons, this is no longer the case. One has entered an era in which neutron polarization experiments are now being carried out, in a routine way, throughout the entire range from thermal energies to tens-of-MeV. The significance of neutron polarization studies is illustrated in discussions of a wide variety of experiments that include the measurement of T-invariance in the β-decay of polarized neutrons, a search for the effects of meson exchange currents in the photo-disintegration of the deuteron, the determination of quantum numbers of states in the fission of aligned 235 U and 237 Np induced by polarized neutrons, and the double- and triple-scattering of fast neutrons by light nuclei

  14. Neutron holography

    International Nuclear Information System (INIS)

    Beynon, T.D.

    1986-01-01

    the paper concerns neutron holography, which allows an image to be constructed of the surfaces, as well as the interiors, of objects. The technique of neutron holography and its applications are described. Present and future use of the method is briefly outlined. (U.K.)

  15. Neutron source

    International Nuclear Information System (INIS)

    Cason, J.L. Jr.; Shaw, C.B.

    1975-01-01

    A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap

  16. Neutron transport

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Coste-Delclaux, Mireille; M'Backe Diop, Cheikh; Nicolas, Anne; Andrieux, Catherine; Archier, Pascal; Baudron, Anne-Marie; Bernard, David; Biaise, Patrick; Blanc-Tranchant, Patrick; Bonin, Bernard; Bouland, Olivier; Bourganel, Stephane; Calvin, Christophe; Chiron, Maurice; Damian, Frederic; Dumonteil, Eric; Fausser, Clement; Fougeras, Philippe; Gabriel, Franck; Gagnier, Emmanuel; Gallo, Daniele; Hudelot, Jean-Pascal; Hugot, Francois-Xavier; Dat Huynh, Tan; Jouanne, Cedric; Lautard, Jean-Jacques; Laye, Frederic; Lee, Yi-Kang; Lenain, Richard; Leray, Sylvie; Litaize, Olivier; Magnaud, Christine; Malvagi, Fausto; Mijuin, Dominique; Mounier, Claude; Naury, Sylvie; Nicolas, Anne; Noguere, Gilles; Palau, Jean-Marc; Le Pallec, Jean-Charles; Peneliau, Yannick; Petit, Odile; Poinot-Salanon, Christine; Raepsaet, Xavier; Reuss, Paul; Richebois, Edwige; Roque, Benedicte; Royer, Eric; Saint-Jean, Cyrille de; Santamarina, Alain; Serot, Olivier; Soldevila, Michel; Tommasi, Jean; Trama, Jean-Christophe; Tsilanizara, Aime; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2013-10-01

    This bibliographical note presents a reference book which addresses the study of neutron transport in matter, the study of conditions for a chain reaction and the study of modifications of matter composition due to nuclear reactions. This book presents the main nuclear data, their measurement, assessment and processing, and the spallation. It proposes an overview of methods applied for the study of neutron transport: basic equations and their derived forms, deterministic methods and Monte Carlo method of resolution of the Boltzmann equation, methods of resolution of generalized Bateman equations, methods of time resolution of space kinetics coupled equations. It presents the main calculation codes, discusses the qualification and experimental aspects, and gives an overview of neutron transport applications: neutron transport calculation of reactors, neutron transport coupled with other disciplines, physics of fuel cycle, criticality

  17. Moderator Configuration Options for ESS

    DEFF Research Database (Denmark)

    Zanini, L.; Batkov, K.; Klinkby, Esben Bryndt

    2016-01-01

    The current, still evolving status of the design and the optimization work for the moderator configuration for the European Spallation Source is described. The moderator design has been strongly driven by the low-dimensional moderator concept recently proposed for use in spallation neutron sources...... or reactors. Quasi-two dimensional, disc- or tube-shaped moderators,can provide strong brightness increase (factor of 3 or more) with respect to volume para-H2moderators, which constitute the reference, state-of-the-art technology for high-intensity coupled moderators. In the design process other, more...... conventional, principles were also considered,such as the importance of moderator positioning, of the premoderator, and beam extraction considerations. Different design and configuration options are evaluated and compared with the reference volume moderator configuration described in the ESS Technical Design...

  18. Face centered cubic SnSe as a Z2 trivial Dirac nodal line material

    OpenAIRE

    Tateishi, Ikuma; Matsuura, Hiroyasu

    2018-01-01

    The presence of Dirac nodal line in the time-reversal and inversion symmetric system is dictated by Z2 index when spin-orbit interaction is absent. With the first principles calculation, we show that the Dirac nodal line can emerge in Z2 trivial material by calculating the band structure of SnSe of face centered cubic lattice as an example and it becomes a topological crystalline insulator when spin-orbit interaction is taken into account. We clarify the origin of the Dirac nodal line by obta...

  19. NUMERICAL SOLUTION OF SINGULAR INVERSE NODAL PROBLEM BY USING CHEBYSHEV POLYNOMIALS

    OpenAIRE

    NEAMATY, ABDOLALI; YILMAZ, EMRAH; AKBARPOOR, SHAHRBANOO; DABBAGHIAN, ABDOLHADI

    2017-01-01

    In this study, we consider Sturm-Liouville problem in two cases: the first case having no singularity and the second case having a singularity at zero. Then, we calculate the eigenvalues and the nodal points and present the uniqueness theorem for the solution of the inverse problem by using a dense subset of the nodal points in two given cases. Also, we use Chebyshev polynomials of the first kind for calculating the approximate solution of the inverse nodal problem in these cases. Finally, we...

  20. [Method for optimal sensor placement in water distribution systems with nodal demand uncertainties].

    Science.gov (United States)

    Liu, Shu-Ming; Wu, Xue; Ouyang, Le-Yan

    2013-08-01

    The notion of identification fitness was proposed for optimizing sensor placement in water distribution systems. Nondominated Sorting Genetic Algorithm II was used to find the Pareto front between minimum overlap of possible detection times of two events and the best probability of detection, taking nodal demand uncertainties into account. This methodology was applied to an example network. The solutions show that the probability of detection and the number of possible locations are not remarkably affected by nodal demand uncertainties, but the sources identification accuracy declines with nodal demand uncertainties.

  1. The application of modern nodal methods to PWR reactor physics analysis

    International Nuclear Information System (INIS)

    Knight, M.P.

    1988-06-01

    The objective of this research is to develop efficient computational procedures for PWR reactor calculations, based on modern nodal methods. The analytic nodal method, which is characterised by the use of exact exponential expansions in transverse-integrated equations, is implemented within an existing finite-difference code. This shows considerable accuracy and efficiency on standard benchmark problems, very much in line with existing experience with nodal methods., Assembly powers can be calculated to within 2.0% with just one mesh per assembly. (author)

  2. A variational nodal diffusion method of high accuracy; Varijaciona nodalna difuziona metoda visoke tachnosti

    Energy Technology Data Exchange (ETDEWEB)

    Tomasevic, Dj; Altiparmarkov, D [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    A variational nodal diffusion method with accurate treatment of transverse leakage shape is developed and presented in this paper. Using Legendre expansion in transverse coordinates higher order quasi-one-dimensional nodal equations are formulated. Numerical solution has been carried out using analytical solutions in alternating directions assuming Legendre expansion of the RHS term. The method has been tested against 2D and 3D IAEA benchmark problem, as well as 2D CANDU benchmark problem. The results are highly accurate. The first order approximation yields to the same order of accuracy as the standard nodal methods with quadratic leakage approximation, while the second order reaches reference solution. (author)

  3. Distributed Energy Implementation Options

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chandralata N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    This presentation covers the options for implementing distributed energy projects. It distinguishes between options available for distributed energy that is government owned versus privately owned, with a focus on the privately owned options including Energy Savings Performance Contract Energy Sales Agreements (ESPC ESAs). The presentation covers the new ESPC ESA Toolkit and other Federal Energy Management Program resources.

  4. Regional nodal relapse in surgically staged Merkel cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hoeller, Ulrike; Mueller, Thomas; Schubert, Tina; Budach, Volker; Ghadjar, Pirus [Charite Universitaetsmedizin Berlin, Department of Radiation Oncology, Berlin (Germany); Brenner, Winfried [Charite Universitaetsmedizin Berlin, Department of Nuclear Medicine, Berlin (Germany); Kiecker, Felix [Charite Universitaetsmedizin Berlin, Department of Dermatology, Berlin (Germany); Schicke, Bernd [Tumor Center Berlin, Berlin (Germany); Haase, Oliver [Charite Universitaetsmedizin Berlin, Department of Surgery, Berlin (Germany)

    2014-10-08

    The nodal relapse pattern of surgically staged Merkel cell carcinoma (MCC) with/without elective nodal radiotherapy (RT) was studied in a single institution. A total of 51 patients with MCC, 33 % UICC stage I, 14 % II, 53 % III (4 lymph node metastases of unknown primary) were eligible. All patients had surgical staging: 23 patients sentinel node biopsy (SNB), 22 patients SNB followed by lymphadenectomy (LAD) and 6 patients LAD. In all, 94 % of the primary tumors (PT) were completely resected; 57 % of patients received RT, 51 % of known PT sites, 33 % (8/24 patients) regional RT to snN0 nodes and 68 % (17/27 patients) to pN+ nodes, mean reference dose 51.5 and 50 Gy, respectively. Mean follow-up was 6 years (range 2-14 years). A total of 22 % (11/51) patients developed regional relapses (RR); the 5-year RR rate was 27 %. In snN0 sites (stage I/II), relapse occurred in 5 of 14 nonirradiated vs. none of 8 irradiated sites (p = 0.054), resulting in a 5-year RR rate of 33 % versus 0 % (p = 0.16). The crude RR rate was lower in stage I (12 %, 2/17 patients) than for stage II (43 %, 3/7 patients). In stage III (pN+), RR appeared to be less frequent in irradiated sites (18 %, 3/14 patients) compared with nonirradiated sites (33 %, 3/10 patients, p = 0.45) with 5-year RR rates of 23 % vs. 34 %, respectively. Our data suggest that adjuvant nodal RT plays a major role even if the sentinel nodes were negative. Adjuvant RT of the lymph nodes in patients with stage IIa tumors and RT after LAD in stage III tumors is proposed and should be evaluated prospectively. (orig.) [German] Untersucht wurde das regionaere Rezidivmuster des Merkelzell-Karzinoms (MCC) nach chirurgischem Staging und stadienadaptierter Therapie. Eingeschlossen wurden 51 Patienten mit lokalisiertem MCC: 33 % hatten UICC-Stadium-I-, 14 % -II-, 53 % -III-Tumoren (davon 4 Lymphknotenmetastasen eines unbekannten Primaertumors). Alle Patienten erhielten ein chirurgisches Staging: 23 Waechterlymphknotenbiopsien (SNB

  5. J-NSE: Neutron spin echo spectrometer

    Directory of Open Access Journals (Sweden)

    Olaf Holderer

    2015-08-01

    Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.

  6. Application of the RT-0 nodal methods and NRMPO matrix-response to the cycles 1 and 2 of the LVC; Aplicacion de los metodos nodal RT-0 y matriz respuesta NRMPO a los ciclos 1 y 2 de la CLV

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Hernandez L, H.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-07-01

    The nodal methods the same as that of matrix-response are used to develop numeric calculations, so much in static as dynamics of reactors, in one, two and three dimensions. The topic of this work is to apply the equations modeled in the RPM0 program, obtained when using the nodal scheme RT-0 (Raviart-Thomas index zero) in the neutron diffusion equation in stationary state X Y geometry, applying finite differences centered in mesh and lineal reactivity; also, to use those equations captured in the NRMPO program developed by E. Malambu that uses the matrix-response method in X Y geometry. The numeric results of the radial distribution of power by fuel assembly of the unit 1, in the cycles 1 and 2 of the CLV obtained by both methods, they are compared with the calculations obtained with the CM-PRESTO code that is a neutronic-thermo hydraulic simulator in three dimensions. The comparison of the radial distribution of power in the cycles 1 and 2 of the CLV with the CM-PRESTO code, it presents for RPM0 maximum errors of 8.2% and 12.4% and for NRMPO 31.2% and 61.3% respectively. The results show that it can be feasible to use the program RPM0 like a quick and efficient tool in the multicycle analysis in the fuel management. (Author)

  7. TANK SPACE OPTIONS REPORT

    International Nuclear Information System (INIS)

    Willis, W.L.; Ahrendt, M.R.

    2009-01-01

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  8. Neutron therapy

    International Nuclear Information System (INIS)

    Riesler, Rudi

    1995-01-01

    Standard radiotherapy uses Xrays or electrons which have low LET (linear energy transfer); in contrast, particles such as neutrons with high LET have different radiobiological responses. In the late 1960s, clinical trials by Mary Catterall at the Hammersmith Hospital in London indicated that fast neutron radiation had clinical advantages for certain malignant tumours. Following these early clinical trials, several cyclotron facilities were built in the 1980s for fast neutron therapy, for example at the University of Washington, Seattle, and at UCLA. Most of these newer machines use extracted cyclotron proton beams in the range 42 to 66 MeV with beam intensities of 15 to 60 microamps. The proton beams are transported to dedicated therapy rooms, where neutrons are produced from beryllium targets. Second-generation clinical trials showed that accurate neutron beam delivery to the tumour site is more critical than for photon therapy. In order to achieve precise beam geometries, the extracted proton beams have to be transported through a gantry which can rotate around the patient and deliver beams from any angle; also the neutron beam outline (''field shape'') must be adjusted to extremely irregular shapes using a flexible collimation system. A therapy procedure has to be appropriately organized, with physicians, radiotherapists, nurses, medical physicists and other staff in attendance; other specialized equipment, such as CT or MRI scanners and radiation simulators must be made available. Neutron therapy is usually performed only in radiation oncology departments of major medical centres

  9. Canine nodal marginal zone lymphoma: Descriptive insight into the biological behaviour.

    Science.gov (United States)

    Cozzi, M; Marconato, L; Martini, V; Aresu, L; Riondato, F; Rossi, F; Stefanello, D; Comazzi, S

    2018-06-01

    Canine nodal marginal zone lymphoma (nMZL) is classified as an indolent lymphoma. Such lymphomas are typified by low mitotic rate and slow clinical progression. While the clinical behaviour of canine splenic MZL has been described, characterized by an indolent course and a good prognosis following splenectomy, there are no studies specifically describing nMZL. The aim of this study was to describe the clinical features of and outcome for canine nMZL. Dogs with histologically confirmed nMZL undergoing a complete staging work-up (including blood analysis, flow cytometry [FC] on lymph node [LN], peripheral blood and bone marrow, imaging, histology and immunohistochemistry on a surgically removed peripheral LN) were retrospectively enrolled. Treatment consisted of chemotherapy or chemo-immunotherapy. Endpoints were response rate (RR), time to progression (TTP) and lymphoma-specific survival (LSS). A total of 35 cases were enrolled. At diagnosis, all dogs showed generalized lymphadenopathy. One-third was systemically unwell. All dogs had stage V disease; one-third also had extranodal involvement. The LN population was mainly composed of medium-sized CD21+ cells with scant resident normal lymphocytes. Histology revealed diffuse LN involvement, referring to "late-stage" MZL. Median TTP and LSS were 149 and 259 days, respectively. Increased LDH activity and substage b were significantly associated with a shorter LSS. Dogs with nMZL may show generalized lymphadenopathy and an advanced disease stage. Overall, the outcome is poor, despite the "indolent" designation. The best treatment option still needs to be defined. © 2017 John Wiley & Sons Ltd.

  10. Neutron radiography

    International Nuclear Information System (INIS)

    Alaa eldin, M.T.

    2011-01-01

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H 2 O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  11. Molecular pathogenesis of splenic and nodal marginal zone lymphoma.

    Science.gov (United States)

    Spina, Valeria; Rossi, Davide

    Genomic studies have improved our understanding of the biological basis of splenic (SMZL) and nodal (NMZL) marginal zone lymphoma by providing a comprehensive and unbiased view of the genes/pathways that are deregulated in these diseases. Consistent with the physiological involvement of NOTCH, NF-κB, B-cell receptor and toll-like receptor signaling in mature B-cells differentiation into the marginal zone B-cells, many oncogenic mutations of genes involved in these pathways have been identified in SMZL and NMZL. Beside genetic lesions, also epigenetic and post-transcriptional modifications contribute to the deregulation of marginal zone B-cell differentiation pathways in SMZL and NMZL. This review describes the progress in understanding the molecular mechanism underlying SMZL and NMZL, including molecular and post-transcriptional modifications, and discusses how information gained from these efforts has provided new insights on potential targets of diagnostic, prognostic and therapeutic relevance in SMZL and NMZL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Micropropagation of Calophyllum brasiliense (Cambess.) from nodal segments.

    Science.gov (United States)

    Silveira, S S; Cordeiro-Silva, R; Degenhardt-Goldbach, J; Quoirin, M

    2016-05-03

    Micropropagation of Calophyllum brasiliense Cambess. (Clusiaceae) is a way to overcome difficulties in achieving large-scale plant production, given the recalcitrant nature of the seeds, irregular fructification and absence of natural vegetative propagation of the species. Cultures were established using nodal segments 2 cm in length, obtained from 1-2 year old seedlings, maintained in a greenhouse. Mercury chloride and Plant Preservative Mixture™ were used in the surface sterilizing stage, better results being achieved with Plant Preservative Mixture™ incorporation in culture medium, at any concentration. Polyvinylpyrrolidone, activated charcoal, cysteine, ascorbic acid or citric acid were added to the culture medium to avoid oxidation. After 30 days of culture, polyvinylpirrolidone and ascorbic acid gave better results, eliminating oxidation in most explants. For shoot multiplication, benzylaminopurine was used in concentrations of 4.4 and 8.8 µM in Woody Plant Medium, resulting in an average of 4.43 and 4.68 shoots per explant, respectively, after 90 days. Indole-3-butyric acid and α-naphthalene acetic acid were used to induce root formation, reaching a maximum rooting rate of 24% with 20µM α-naphthalene acetic acid. For acclimatization. the rooted plants were transferred to Plantmax® substrate and cultured in a greenhouse, reaching 79% of survival after 30 days and 60% after one year.

  13. Relevance of regional nodal management in multimodality esophageal cancer treatment

    International Nuclear Information System (INIS)

    Wong, J.; Perez-Tamayo, C.; Takasugi, B.; Orringer, M.B.; Flint, A.; Lichter, A.S.

    1986-01-01

    A prospective study has been undertaken at the University of Michigan Hospital, where patients with distal esophageal carcinoma receive concurrent radiation therapy (3,750 cGy delivered in 15 fractions) and systemic chemotherapy (cisplatin, Velban, 5-FU), followed by blunt esophagectomy with exploration and lymph node sampling. Strict pathologic screening and handling of nodal tissue and esophagectomy specimens were analyzed. Eighteen patients with distal esophageal lesions ranging from 5 to 12 cm (average, 7 cm) detected on the initial barium swallow study have been seen to date. In three of these patients celiac axis involvement has been demonstrated on CT. All primary lesions were confirmed by biopsy. Five were found to be squamous cell carcinoma and thirteen were adenocarcinomas. One of 15 of the presently evaluable patients (5%) had microscopic involvement of a celiac node at surgery. Celiac, lesser curvature, and superior gastric nodes where all encompassed in the radiation therapy portals to the aforementioned dose. CT scan planning was done in all patients. This added volume was well tolerated by the patients without morbidity

  14. Topological Nodal Cooper Pairing in Doped Weyl Metals

    Science.gov (United States)

    Li, Yi; Haldane, F. D. M.

    2018-02-01

    We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.

  15. Application of the SPH method in nodal diffusion analyses of SFR cores

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Evgeny; Fridman, Emil [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety; Mikityuk, K. [Paul Scherrer Institut, Villigen (Switzerland)

    2016-07-01

    The current study investigated the potential of the SPH method, applied to correct the few-group XS produced by Serpent, to further improve the accuracy of the nodal diffusion solutions. The procedure for the generation of SPH-corrected few-group XS is presented in the paper. The performance of the SPH method was tested on a large oxide SFR core from the OECD/NEA SFR benchmark. The reference SFR core was modeled with the DYN3D and PARCS nodal diffusion codes using the SPH-corrected few-group XS generated by Serpent. The nodal diffusion results obtained with and without SPH correction were compared to the reference full-core Serpent MC solution. It was demonstrated that the application of the SPH method improves the accuracy of the nodal diffusion solutions, particularly for the rodded core state.

  16. A Hybrid Interpolation Method for Geometric Nonlinear Spatial Beam Elements with Explicit Nodal Force

    Directory of Open Access Journals (Sweden)

    Huiqing Fang

    2016-01-01

    Full Text Available Based on geometrically exact beam theory, a hybrid interpolation is proposed for geometric nonlinear spatial Euler-Bernoulli beam elements. First, the Hermitian interpolation of the beam centerline was used for calculating nodal curvatures for two ends. Then, internal curvatures of the beam were interpolated with a second interpolation. At this point, C1 continuity was satisfied and nodal strain measures could be consistently derived from nodal displacement and rotation parameters. The explicit expression of nodal force without integration, as a function of global parameters, was founded by using the hybrid interpolation. Furthermore, the proposed beam element can be degenerated into linear beam element under the condition of small deformation. Objectivity of strain measures and patch tests are also discussed. Finally, four numerical examples are discussed to prove the validity and effectivity of the proposed beam element.

  17. ANOVA-HDMR structure of the higher order nodal diffusion solution

    International Nuclear Information System (INIS)

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-01-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  18. Concomitant occurrence of sinus histiocytosis with massive lymphadenopathy and nodal marginal zone lymphoma.

    Science.gov (United States)

    Pang, Changlee S; Grier, David D; Beaty, Michael W

    2011-03-01

    Sinus histiocytosis with massive lymphadenopathy (SHML), also known as Rosai-Dorfman disease, is a rare self-limiting disorder of histiocytes with unknown etiology. Sinus histiocytosis with massive lymphadenopathy is most common in children and young adults and is characterized by painless lymphadenopathy. Histologically there is a proliferation of sinus histiocytes with lymphophagocytosis or emperipolesis. On rare occasions, SHML has been associated with lymphoma, usually involving different anatomic sites and developing at different times. We report a case of concomitant SHML and nodal marginal zone lymphoma involving the same lymph node without involvement of other nodal or extranodal sites. The presence of concomitant SHML within the lymph node involved by nodal marginal zone lymphoma may represent the responsiveness of SHML histiocytes to B-cell-derived cytokines in lymphoproliferative disorders. To our knowledge, this is the first description of concomitant occurrence of SHML and nodal marginal zone lymphoma.

  19. MicroRNA expression in nodal and extranodal Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Mandrup, Charlotte; Petersen, Anders; Højfeldt, Anne Dirks

    MicroRNA expression in nodal and extranodal Diffuse Large B-cell Lymphoma   C. Mandrup1, A. Petersen1, A. D. Hoejfeldt1, H. F. Thomsen1, J. Madsen1, J. Dahlgaard1, P. Johansen2, A. Bukh1, K. Dybkaer1 and H. E Johnsen1. 1Department of Hematology, 2Pathological Institute, Aalborg Hospital, Aarhus...... University Hospital, Aalborg, Denmark Introduction: The aim of this project was to analyse microRNA (miRNA) expression in nodal and extranodal diffuse large B-cell lymphoma (DLBCL). Manifestation at diagnosis may be nodal and/or extranodal. At present, there are no known determinants for none...... of the manifestations, and no way to predict the potential progression from nodal to extranodal disease. miRNA are small regulatory RNA molecules with core function to repress/cleave sequence complementary mRNA targets. Abnormalities in miRNA genetics and expression are known to affect initiation and development...

  20. Neutronics codes

    International Nuclear Information System (INIS)

    Buckel, G.

    1983-01-01

    The objectives are the development, testing and cultivation of reliable, efficient and user-optimized neutron-physical calculation methods and conformity with users' requirements concerning design of power reactors, planning and analysis of experiments necessary for their protection as well as research on physical key problems. A short outline of available computing programmes for the following objectives is given: - Provision of macroscopic group constants, - Calculation of neutron flux distribution in transport theory and diffusion approximation, - Evaluation of neutron flux-distribution, - Execution of disturbance calculations for the determination reactivity coefficients, and - graphical representation of results. (orig./RW) [de

  1. Exclusion of elective nodal irradiation is associated with minimal elective nodal failure in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Cox James D

    2009-01-01

    Full Text Available Abstract Background Controversy still exists regarding the long-term outcome of patients whose uninvolved lymph node stations are not prophylactically irradiated for non-small cell lung cancer (NSCLC treated with definitive radiotherapy. To determine the frequency of elective nodal failure (ENF and in-field failure (IFF, we examined a large cohort of patients with NSCLC staged with positron emission tomography (PET/computed tomography (CT and treated with 3-dimensional conformal radiotherapy (3D-CRT that excluded uninvolved lymph node stations. Methods We retrospectively reviewed the records of 115 patients with non-small cell lung cancer treated at our institution with definitive radiation therapy with or without concurrent chemotherapy (CHT. All patients were treated with 3D-CRT, including nodal regions determined by CT or PET to be disease involved. Concurrent platinum-based CHT was administered for locally advanced disease. Patients were analyzed in follow-up for survival, local regional recurrence, and distant metastases (DM. Results The median follow-up time was 18 months (3 to 44 months among all patients and 27 months (6 to 44 months among survivors. The median overall survival, 2-year actuarial overall survival and disease-free survival were 19 months, 38%, and 28%, respectively. The majority of patients died from DM, the overall rate of which was 36%. Of the 31 patients with local regional failure, 26 (22.6% had IFF, 5 (4.3% had ENF and 2 (1.7% had isolated ENF. For 88 patients with stage IIIA/B, the frequencies of IFF, any ENF, isolated ENF, and DM were 23 (26%, 3 (9%, 1 (1.1% and 36 (40.9%, respectively. The comparable rates for the 22 patients with early stage node-negative disease (stage IA/IB were 3 (13.6%, 1(4.5%, 0 (0%, and 5 (22.7%, respectively. Conclusion We observed only a 4.3% recurrence of any ENF and a 1.7% recurrence of isolated ENF in patients with NSCLC treated with definitive 3D-CRT without prophylactic irradiation of

  2. Exclusion of elective nodal irradiation is associated with minimal elective nodal failure in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Sulman, Erik P; Komaki, Ritsuko; Klopp, Ann H; Cox, James D; Chang, Joe Y

    2009-01-01

    Controversy still exists regarding the long-term outcome of patients whose uninvolved lymph node stations are not prophylactically irradiated for non-small cell lung cancer (NSCLC) treated with definitive radiotherapy. To determine the frequency of elective nodal failure (ENF) and in-field failure (IFF), we examined a large cohort of patients with NSCLC staged with positron emission tomography (PET)/computed tomography (CT) and treated with 3-dimensional conformal radiotherapy (3D-CRT) that excluded uninvolved lymph node stations. We retrospectively reviewed the records of 115 patients with non-small cell lung cancer treated at our institution with definitive radiation therapy with or without concurrent chemotherapy (CHT). All patients were treated with 3D-CRT, including nodal regions determined by CT or PET to be disease involved. Concurrent platinum-based CHT was administered for locally advanced disease. Patients were analyzed in follow-up for survival, local regional recurrence, and distant metastases (DM). The median follow-up time was 18 months (3 to 44 months) among all patients and 27 months (6 to 44 months) among survivors. The median overall survival, 2-year actuarial overall survival and disease-free survival were 19 months, 38%, and 28%, respectively. The majority of patients died from DM, the overall rate of which was 36%. Of the 31 patients with local regional failure, 26 (22.6%) had IFF, 5 (4.3%) had ENF and 2 (1.7%) had isolated ENF. For 88 patients with stage IIIA/B, the frequencies of IFF, any ENF, isolated ENF, and DM were 23 (26%), 3 (9%), 1 (1.1%) and 36 (40.9%), respectively. The comparable rates for the 22 patients with early stage node-negative disease (stage IA/IB) were 3 (13.6%), 1(4.5%), 0 (0%), and 5 (22.7%), respectively. We observed only a 4.3% recurrence of any ENF and a 1.7% recurrence of isolated ENF in patients with NSCLC treated with definitive 3D-CRT without prophylactic irradiation of uninvolved lymph node stations. Thus

  3. Intra nodal reconstruction of the numerical solution generated by the spectro nodal constant for Sn problems of eigenvalues in two-dimensional rectangular geometry

    International Nuclear Information System (INIS)

    Menezes, Welton Alves de

    2009-01-01

    In this dissertation the spectral nodal method SD-SGF-CN, cf. spectral diamond - spectral Green's function - constant nodal, is used to determine the angular fluxes averaged along the edges of the homogenized nodes in heterogeneous domains. Using these results, we developed an algorithm for the reconstruction of the node-edge average angular fluxes within the nodes of the spatial grid set up on the domain, since more localized numerical solutions are not generated by coarse-mesh numerical methods. Numerical results are presented to illustrate the accuracy of the algorithm we offer. (author)

  4. A study of the literature on nodal methods in reactor physics calculations

    International Nuclear Information System (INIS)

    Van de Wetering, T.F.H.

    1993-01-01

    During the last few decades several calculation methods have been developed for the three-dimensional analysis of a reactor core. A literature survey was carried out to gain insights in the starting points and method of operation of the advanced nodal methods. These methods are applied in reactor core analyses of large nuclear power reactors, because of their high computing speed. The so-called Nodal-Expansion method is described in detail

  5. Cilia are required for asymmetric nodal induction in the sea urchin embryo.

    Science.gov (United States)

    Tisler, Matthias; Wetzel, Franziska; Mantino, Sabrina; Kremnyov, Stanislav; Thumberger, Thomas; Schweickert, Axel; Blum, Martin; Vick, Philipp

    2016-08-23

    Left-right (LR) organ asymmetries are a common feature of metazoan animals. In many cases, laterality is established by a conserved asymmetric Nodal signaling cascade during embryogenesis. In most vertebrates, asymmetric nodal induction results from a cilia-driven leftward fluid flow at the left-right organizer (LRO), a ciliated epithelium present during gastrula/neurula stages. Conservation of LRO and flow beyond the vertebrates has not been reported yet. Here we study sea urchin embryos, which use nodal to establish larval LR asymmetry as well. Cilia were found in the archenteron of embryos undergoing gastrulation. Expression of foxj1 and dnah9 suggested that archenteron cilia were motile. Cilia were polarized to the posterior pole of cells, a prerequisite of directed flow. High-speed videography revealed rotating cilia in the archenteron slightly before asymmetric nodal induction. Removal of cilia through brief high salt treatments resulted in aberrant patterns of nodal expression. Our data demonstrate that cilia - like in vertebrates - are required for asymmetric nodal induction in sea urchin embryos. Based on these results we argue that the anterior archenteron represents a bona fide LRO and propose that cilia-based symmetry breakage is a synapomorphy of the deuterostomes.

  6. Multiarea Transmission Cost Allocation in Large Power Systems Using the Nodal Pricing Control Approach

    Directory of Open Access Journals (Sweden)

    M. Ghayeni

    2010-12-01

    Full Text Available This paper proposes an algorithm for transmission cost allocation (TCA in a large power system based on nodal pricing approach using the multi-area scheme. The nodal pricing approach is introduced to allocate the transmission costs by the control of nodal prices in a single area network. As the number of equations is dependent on the number of buses and generators, this method will be very time consuming for large power systems. To solve this problem, the present paper proposes a new algorithm based on multi-area approach for regulating the nodal prices, so that the simulation time is greatly reduced and therefore the TCA problem with nodal pricing approach will be applicable for large power systems. In addition, in this method the transmission costs are allocated to users more equitable. Since the higher transmission costs in an area having a higher reliability are paid only by users of that area in contrast with the single area method, in which these costs are allocated to all users regardless of their locations. The proposed method is implemented on the IEEE 118 bus test system which comprises three areas. Results show that with application of multi-area approach, the simulation time is greatly reduced and the transmission costs are also allocated to users with less variation in new nodal prices with respect to the single area approach.

  7. Topological crystalline superconductivity and second-order topological superconductivity in nodal-loop materials

    Science.gov (United States)

    Shapourian, Hassan; Wang, Yuxuan; Ryu, Shinsei

    2018-03-01

    We study the intrinsic fully gapped odd-parity superconducting order in doped nodal-loop materials with a torus-shaped Fermi surface. We show that the mirror symmetry, which protects the nodal loop in the normal state, also protects the superconducting state as a topological crystalline superconductor. As a result, the surfaces preserving the mirror symmetry host gapless Majorana cones. Moreover, for a Weyl-loop system (twofold degenerate at the nodal loop), the surfaces that break the mirror symmetry (those parallel to the bulk nodal loop) contribute a Chern (winding) number to the quasi-two-dimensional system in a slab geometry, which leads to a quantized thermal Hall effect and a single Majorana zero mode bound at a vortex line penetrating the system. This Chern number can be viewed as a higher-order topological invariant, which supports hinge modes in a cubic sample when mirror symmetry is broken. For a Dirac-loop system (fourfold degenerate at the nodal loop), the fully gapped odd-parity state can be either time-reversal symmetry-breaking or symmetric, similar to the A and B phases of 3He. In a slab geometry, the A phase has a Chern number two, while the B phase carries a nontrivial Z2 invariant. We discuss the experimental relevance of our results to nodal-loop materials such as CaAgAs.

  8. Optical conductivity of three and two dimensional topological nodal-line semimetals

    Science.gov (United States)

    Barati, Shahin; Abedinpour, Saeed H.

    2017-10-01

    The peculiar shape of the Fermi surface of topological nodal-line semimetals at low carrier concentrations results in their unusual optical and transport properties. We analytically investigate the linear optical responses of three- and two-dimensional nodal-line semimetals using the Kubo formula. The optical conductivity of a three-dimensional nodal-line semimetal is anisotropic. Along the axial direction (i.e., the direction perpendicular to the nodal-ring plane), the Drude weight has a linear dependence on the chemical potential at both low and high carrier dopings. For the radial direction (i.e., the direction parallel to the nodal-ring plane), this dependence changes from linear into quadratic in the transition from low into high carrier concentration. The interband contribution into optical conductivity is also anisotropic. In particular, at large frequencies, it saturates to a constant value for the axial direction and linearly increases with frequency along the radial direction. In two-dimensional nodal-line semimetals, no interband optical transition could be induced and the only contribution to the optical conductivity arises from the intraband excitations. The corresponding Drude weight is independent of the carrier density at low carrier concentrations and linearly increases with chemical potential at high carrier doping.

  9. Neutron reflectometry

    DEFF Research Database (Denmark)

    Klösgen-Buchkremer, Beate Maria

    2014-01-01

    of desired information. In the course, an introduction into the method and an overview on selected instruments at large scale facilities will be presented. Examples will be given that illustrate the potential of the method, mostly based on organic films. Results from the investigation of layered films......Neutron (and X-ray) reflectometry constitute complementary interfacially sensitive techniques that open access to studying the structure within thin films of both soft and hard condensed matter. Film thickness starts oxide surfaces on bulk substrates, proceeding to (pauci-)molecular layers and up...... films or films with magnetic properties. The reason is the peculiar property of neutron light since the mass of a neutron is close to the one of a proton, and since it bears a magnetic moment. The optical properties of matter, when interacting with neutrons, are described by a refractive index...

  10. Neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1993-01-01

    This report contains the text of 16 lectures given at the Summer School and the report on a panel discussion entitled ''the relative merits and complementarities of x-rays, synchrotron radiation, steady- and pulsed neutron sources''. figs., tabs., refs

  11. Spectrometers for compact neutron sources

    Science.gov (United States)

    Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.

    2018-03-01

    We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.

  12. Neutron storage

    International Nuclear Information System (INIS)

    Strelkov, A.V.

    2004-01-01

    The report is devoted to neutron storage (NS) and describes the history of experiments on the NS development. Great attention is paid to ultracold neutron (UCN) storage. The experiments on the UCN generation, transport, spectroscopy, storage and detection are described. Experiments on searching the UCN electric-dipole moment and electric charge are continued. Possible using of UCN for studying the nanoparticles is discussed [ru

  13. Neutron radiography

    International Nuclear Information System (INIS)

    Bayon, G.

    1989-01-01

    Neutronography or neutron radiography, a non-destructive test method which is similar in its principle to conventional X-ray photography, presently occupies a marginal position among non-destructive test methods (NDT) (no source of suitable performance or cost). Neutron radiography associated with the ORPHEE reactor permits industrial testing; it can very quickly meet a cost requirement comparable to that of conventional test methods. In 1988, 2500 parts were tested on this unit [fr

  14. Neutron detector

    International Nuclear Information System (INIS)

    Endo, Hiroshi.

    1993-01-01

    The device of the present invention detects neutrons in a reactor container under a high temperature and reduces the noise level in an FBR type reactor. That is, the detection section comprises a high heat resistant vessel containing a scintillator therein for detecting neutrons. Neutron signals sent from the detection section are inputted to a neutron measuring section by way of a signal transmission section. The detection section is disposed at the inside of the reactor container. Further, the signal transmission section is connected optically to the detection section. With such a constitution, since the detection section comprising the high temperature resistant vessel is disposed at the inside of the reactor container, neutron fluxes can be detected and measured at high sensitivity even under a high temperature circumstance. Since the signal transmission section is optically connected to the detection section, influence of radiation rays upon transmission of the neutron detection signals can be reduced. Accordingly, the noise level can be kept low. (I.S.)

  15. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  16. Massively parallel performance of neutron transport response matrix algorithms

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1993-01-01

    Massively parallel red/black response matrix algorithms for the solution of within-group neutron transport problems are implemented on the Connection Machines-2, 200 and 5. The response matrices are dericed from the diamond-differences and linear-linear nodal discrete ordinate and variational nodal P 3 approximations. The unaccelerated performance of the iterative procedure is examined relative to the maximum rated performances of the machines. The effects of processor partitions size, of virtual processor ratio and of problems size are examined in detail. For the red/black algorithm, the ratio of inter-node communication to computing times is found to be quite small, normally of the order of ten percent or less. Performance increases with problems size and with virtual processor ratio, within the memeory per physical processor limitation. Algorithm adaptation to courser grain machines is straight-forward, with total computing time being virtually inversely proportional to the number of physical processors. (orig.)

  17. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways

    International Nuclear Information System (INIS)

    Sun, Jing; Liu, Su-zhi; Lin, Yan; Cao, Xiao-pan; Liu, Jia-ming

    2014-01-01

    Highlights: •TGF-β promoted Nodal expression in glioma cells. •TGF-β promoted Nodal expression via activating Smad and ERK1/2 pathways. •TGF-β promotes glioma cell growth via activating Nodal expression. -- Abstract: While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy

  18. The orphan receptor ALK7 and the Activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development

    Science.gov (United States)

    Reissmann, Eva; Jörnvall, Henrik; Blokzijl, Andries; Andersson, Olov; Chang, Chenbei; Minchiotti, Gabriella; Persico, M. Graziella; Ibáñez, Carlos F.; Brivanlou, Ali H.

    2001-01-01

    Nodal proteins have crucial roles in mesendoderm formation and left–right patterning during vertebrate development. The molecular mechanisms of signal transduction by Nodal and related ligands, however, are not fully understood. In this paper, we present biochemical and functional evidence that the orphan type I serine/threonine kinase receptor ALK7 acts as a receptor for mouse Nodal and Xenopus Nodal-related 1 (Xnr1). Receptor reconstitution experiments indicate that ALK7 collaborates with ActRIIB to confer responsiveness to Xnr1 and Nodal. Both receptors can independently bind Xnr1. In addition, Cripto, an extracellular protein genetically implicated in Nodal signaling, can independently interact with both Xnr1 and ALK7, and its expression greatly enhances the ability of ALK7 and ActRIIB to respond to Nodal ligands. The Activin receptor ALK4 is also able to mediate Nodal signaling but only in the presence of Cripto, with which it can also interact directly. A constitutively activated form of ALK7 mimics the mesendoderm-inducing activity of Xnr1 in Xenopus embryos, whereas a dominant-negative ALK7 specifically blocks the activities of Nodal and Xnr1 but has little effect on other related ligands. In contrast, a dominant-negative ALK4 blocks all mesoderm-inducing ligands tested, including Nodal, Xnr1, Xnr2, Xnr4, and Activin. In agreement with a role in Nodal signaling, ALK7 mRNA is localized to the ectodermal and organizer regions of Xenopus gastrula embryos and is expressed during early stages of mouse embryonic development. Therefore, our results indicate that both ALK4 and ALK7 can mediate signal transduction by Nodal proteins, although ALK7 appears to be a receptor more specifically dedicated to Nodal signaling. PMID:11485994

  19. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  20. Extension of the analytic nodal diffusion solver ANDES to triangular-Z geometry and coupling with COBRA-IIIc for hexagonal core analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Jimenez, Javier; Garcia-Herranz, Nuria; Aragones, Jose-Maria

    2010-01-01

    In this paper the extension of the multigroup nodal diffusion code ANDES, based on the Analytic Coarse Mesh Finite Difference (ACMFD) method, from Cartesian to hexagonal geometry is presented, as well as its coupling with the thermal-hydraulic (TH) code COBRA-IIIc for hexagonal core analysis. In extending the ACMFD method to hexagonal assemblies, triangular-Z nodes are used. In the radial plane, a direct transverse integration procedure is applied along the three directions that are orthogonal to the triangle interfaces. The triangular nodalization avoids the singularities, that appear when applying transverse integration to hexagonal nodes, and allows the advantage of the mesh subdivision capabilities implicit within that geometry. As for the thermal-hydraulics, the extension of the coupling scheme to hexagonal geometry has been performed with the capability to model the core using either assembly-wise channels (hexagonal mesh) or a higher refinement with six channels per fuel assembly (triangular mesh). Achieving this level of TH mesh refinement with COBRA-IIIc code provides a better estimation of the in-core 3D flow distribution, improving the TH core modelling. The neutronics and thermal-hydraulics coupled code, ANDES/COBRA-IIIc, previously verified in Cartesian geometry core analysis, can also be applied now to full three-dimensional VVER core problems, as well as to other thermal and fast hexagonal core designs. Verification results are provided, corresponding to the different cases of the OECD/NEA-NSC VVER-1000 Coolant Transient Benchmarks.

  1. Systematic homogenization and self-consistent flux and pin power reconstruction for nodal diffusion methods. 1: Diffusion equation-based theory

    International Nuclear Information System (INIS)

    Zhang, H.; Rizwan-uddin; Dorning, J.J.

    1995-01-01

    A diffusion equation-based systematic homogenization theory and a self-consistent dehomogenization theory for fuel assemblies have been developed for use with coarse-mesh nodal diffusion calculations of light water reactors. The theoretical development is based on a multiple-scales asymptotic expansion carried out through second order in a small parameter, the ratio of the average diffusion length to the reactor characteristic dimension. By starting from the neutron diffusion equation for a three-dimensional heterogeneous medium and introducing two spatial scales, the development systematically yields an assembly-homogenized global diffusion equation with self-consistent expressions for the assembly-homogenized diffusion tensor elements and cross sections and assembly-surface-flux discontinuity factors. The rector eigenvalue 1/k eff is shown to be obtained to the second order in the small parameter, and the heterogeneous diffusion theory flux is shown to be obtained to leading order in that parameter. The latter of these two results provides a natural procedure for the reconstruction of the local fluxes and the determination of pin powers, even though homogenized assemblies are used in the global nodal diffusion calculation

  2. A modular spherical harmonics approach to the neutron transport equation

    International Nuclear Information System (INIS)

    Inanc, F.; Rohach, A.F.

    1989-01-01

    A modular nodal method was developed for solving the neutron transport equation in 2-D xy coordinates. The spherical harmonic expansion was used for approximating the second-order even-parity form of the neutron transport equation. The boundary conditions of the spherical harmonics approximation were derived in a form to have forms analogous to the partial currents in the neutron diffusion equation. Relations were developed for generating both the second-order spherical harmonic equations and the boundary conditions in an automated computational algorithm. Nodes using different orders of the spherical harmonics approximation to the transport equation were interfaced through mixed-type boundary conditions. The determination of spherical harmonic orders implemented in the nodes were determined by the scheme in an automated manner. Results of the method compared favorably to benchmark problems. (author)

  3. Real time neutronic evolution CNE (Embalse nuclear power plant)

    International Nuclear Information System (INIS)

    Notari, C.; Waldman, R.M.

    1993-01-01

    The simulator of the Embalse nuclear power plant uses a Point Reactor Model(PRM) for the neutronic evolution calculation. As this model is not conservative for transients produced by the sudden or localized reactivity insertion in big cores, it is convenient to use spatial models in these cases. In this report we show the results obtained using a nodal model (codes NODOS-TIEMPO). This model has been fitted against a more exact solution for the neutron flux and delayed neutron precursors. This has been done for the reactor at full power with nominal values for the reactivity control devices (liquid zones and adjusters rods). Transients corresponding to the global variation of the liquid zones and to the insertion of fresh fuel in some channels are shown. The results are compared with calculations made with the quasi-static model of the PUMA code. (author). 1 ref

  4. The origins of options.

    Science.gov (United States)

    Smaldino, Paul E; Richerson, Peter J

    2012-01-01

    Most research on decision making has focused on how human or animal decision makers choose between two or more options, posed in advance by the researchers. The mechanisms by which options are generated for most decisions, however, are not well understood. Models of sequential search have examined the trade-off between continued exploration and choosing one's current best option, but still cannot explain the processes by which new options are generated. We argue that understanding the origins of options is a crucial but untapped area for decision making research. We explore a number of factors which influence the generation of options, which fall broadly into two categories: psycho-biological and socio-cultural. The former category includes factors such as perceptual biases and associative memory networks. The latter category relies on the incredible human capacity for culture and social learning, which doubtless shape not only our choices but the options available for choice. Our intention is to start a discussion that brings us closer toward understanding the origins of options.

  5. Americal options analyzed differently

    NARCIS (Netherlands)

    Nieuwenhuis, J.W.

    2003-01-01

    In this note we analyze in a discrete-time context and with a finite outcome space American options starting with the idea that every tradable should be a martingale under a certain measure. We believe that in this way American options become more understandable to people with a good working

  6. Churchill regulates cell movement and mesoderm specification by repressing Nodal signaling

    Directory of Open Access Journals (Sweden)

    Mentzer Laura

    2007-11-01

    Full Text Available Abstract Background Cell movements are essential to the determination of cell fates during development. The zinc-finger transcription factor, Churchill (ChCh has been proposed to regulate cell fate by regulating cell movements during gastrulation in the chick. However, the mechanism of action of ChCh is not understood. Results We demonstrate that ChCh acts to repress the response to Nodal-related signals in zebrafish. When ChCh function is abrogated the expression of mesodermal markers is enhanced while ectodermal markers are expressed at decreased levels. In cell transplant assays, we observed that ChCh-deficient cells are more motile than wild-type cells. When placed in wild-type hosts, ChCh-deficient cells often leave the epiblast, migrate to the germ ring and are later found in mesodermal structures. We demonstrate that both movement of ChCh-compromised cells to the germ ring and acquisition of mesodermal character depend on the ability of the donor cells to respond to Nodal signals. Blocking Nodal signaling in the donor cells at the levels of Oep, Alk receptors or Fast1 inhibited migration to the germ ring and mesodermal fate change in the donor cells. We also detect additional unusual movements of transplanted ChCh-deficient cells which suggests that movement and acquisition of mesodermal character can be uncoupled. Finally, we demonstrate that ChCh is required to limit the transcriptional response to Nodal. Conclusion These data establish a broad role for ChCh in regulating both cell movement and Nodal signaling during early zebrafish development. We show that chch is required to limit mesodermal gene expression, inhibit Nodal-dependant movement of presumptive ectodermal cells and repress the transcriptional response to Nodal signaling. These findings reveal a dynamic role for chch in regulating cell movement and fate during early development.

  7. Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma.

    Science.gov (United States)

    Seol, Ki Ho; Lee, Jeong Eun

    2016-03-01

    To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC.

  8. Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Ki Ho; Lee, Jeong Eun [Dept. of Radiation Oncology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2016-03-15

    To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC.

  9. Patterns of failure after the reduced volume approach for elective nodal irradiation in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Seol, Ki Ho; Lee, Jeong Eun

    2016-01-01

    To evaluate the patterns of nodal failure after radiotherapy (RT) with the reduced volume approach for elective neck nodal irradiation (ENI) in nasopharyngeal carcinoma (NPC). Fifty-six NPC patients who underwent definitive chemoradiotherapy with the reduced volume approach for ENI were reviewed. The ENI included retropharyngeal and level II lymph nodes, and only encompassed the echelon inferior to the involved level to eliminate the entire neck irradiation. Patients received either moderate hypofractionated intensity-modulated RT for a total of 72.6 Gy (49.5 Gy to elective nodal areas) or a conventional fractionated three-dimensional conformal RT for a total of 68.4-72 Gy (39.6-45 Gy to elective nodal areas). Patterns of failure, locoregional control, and survival were analyzed. The median follow-up was 38 months (range, 3 to 80 months). The out-of-field nodal failure when omitting ENI was none. Three patients developed neck recurrences (one in-field recurrence in the 72.6 Gy irradiated nodal area and two in the elective irradiated region of 39.6 Gy). Overall disease failure at any site developed in 11 patients (19.6%). Among these, there were six local failures (10.7%), three regional failures (5.4%), and five distant metastases (8.9%). The 3-year locoregional control rate was 87.1%, and the distant failure-free rate was 90.4%; disease-free survival and overall survival at 3 years was 80% and 86.8%, respectively. No patient developed nodal failure in the omitted ENI site. Our investigation has demonstrated that the reduced volume approach for ENI appears to be a safe treatment approach in NPC

  10. Ultrasound-guided core biopsy: an effective method of detecting axillary nodal metastases.

    LENUS (Irish Health Repository)

    Solon, Jacqueline G

    2012-02-01

    BACKGROUND: Axillary nodal status is an important prognostic predictor in patients with breast cancer. This study evaluated the sensitivity and specificity of ultrasound-guided core biopsy (Ax US-CB) at detecting axillary nodal metastases in patients with primary breast cancer, thereby determining how often sentinel lymph node biopsy could be avoided in node positive patients. STUDY DESIGN: Records of patients presenting to a breast unit between January 2007 and June 2010 were reviewed retrospectively. Patients who underwent axillary ultrasonography with or without preoperative core biopsy were identified. Sensitivity, specificity, positive predictive value, and negative predictive value for ultrasonography and percutaneous biopsy were evaluated. RESULTS: Records of 718 patients were reviewed, with 445 fulfilling inclusion criteria. Forty-seven percent (n = 210\\/445) had nodal metastases, with 110 detected by Ax US-CB (sensitivity 52.4%, specificity 100%, positive predictive value 100%, negative predictive value 70.1%). Axillary ultrasonography without biopsy had sensitivity and specificity of 54.3% and 97%, respectively. Lymphovascular invasion was an independent predictor of nodal metastases (sensitivity 60.8%, specificity 80%). Ultrasound-guided core biopsy detected more than half of all nodal metastases, sparing more than one-quarter of all breast cancer patients an unnecessary sentinel lymph node biopsy. CONCLUSIONS: Axillary ultrasonography, when combined with core biopsy, is a valuable component of the management of patients with primary breast cancer. Its ability to definitively identify nodal metastases before surgical intervention can greatly facilitate a patient\\'s preoperative integrated treatment plan. In this regard, we believe our study adds considerably to the increasing data, which indicate the benefit of Ax US-CB in the preoperative detection of nodal metastases.

  11. The effect of nodalization and temperature of reactor upper region: Sensitivity analysis for APR-1400 LBLOCA

    International Nuclear Information System (INIS)

    Kang, Dong Gu

    2017-01-01

    Highlights: • The nodalization of APR-1400 was modified to reflect the characteristic of upper region temperature. • The effect of nodalization and temperature of reactor upper region on LBLOCA consequence was evaluated. • The modification of nodalization is an essential prerequisite in APR-1400 LBLOCA analysis. - Abstract: In best estimate (BE) calculation, the definition of system nodalization is important step influencing the prediction accuracy for specific thermal-hydraulic phenomena. The upper region of reactor is defined as the region of the upper guide structure (UGS) and upper dome. It has been assumed that the temperature of upper region is close to average temperature in most large break loss of coolant accident (LBLOCA) analysis cases. However, it was recently found that the temperature of upper region of APR-1400 reactor might be little lower than or similar to hot leg temperature through the review of detailed design data. In this study, the nodalization of APR-1400 was modified to reflect the characteristic of upper region temperature, and the effect of nodalization and temperature of reactor upper region on LBLOCA consequence was evaluated by sensitivity analysis including best estimate plus uncertainty (BEPU) calculation. In basecase calculation, in case of modified version, the peak cladding temperature (PCT) in blowdown phase became higher and the blowdown quenching (or cooling) was significantly deteriorated as compared to original case, and as a result, the cladding temperature in reflood phase became higher and the final quenching was also delayed. In addition, thermal-hydraulic parameters were compared and analyzed to investigate the effect of change of upper region on cladding temperature. In BEPU analysis, the 95 percentile PCT used in current regulatory practice was increased due to the modification of upper region nodalization, and it occurred in the reflood phase unlike original case.

  12. Extra-nodal extension is a significant prognostic factor in lymph node positive breast cancer.

    Directory of Open Access Journals (Sweden)

    Sura Aziz

    Full Text Available Presence of lymph node (LN metastasis is a strong prognostic factor in breast cancer, whereas the importance of extra-nodal extension and other nodal tumor features have not yet been fully recognized. Here, we examined microscopic features of lymph node metastases and their prognostic value in a population-based cohort of node positive breast cancer (n = 218, as part of the prospective Norwegian Breast Cancer Screening Program NBCSP (1996-2009. Sections were reviewed for the largest metastatic tumor diameter (TD-MET, nodal afferent and efferent vascular invasion (AVI and EVI, extra-nodal extension (ENE, number of ENE foci, as well as circumferential (CD-ENE and perpendicular (PD-ENE diameter of extra-nodal growth. Number of positive lymph nodes, EVI, and PD-ENE were significantly increased with larger primary tumor (PT diameter. Univariate survival analysis showed that several features of nodal metastases were associated with disease-free (DFS or breast cancer specific survival (BCSS. Multivariate analysis demonstrated an independent prognostic value of PD-ENE (with 3 mm as cut-off value in predicting DFS and BCSS, along with number of positive nodes and histologic grade of the primary tumor (for DFS: P = 0.01, P = 0.02, P = 0.01, respectively; for BCSS: P = 0.02, P = 0.008, P = 0.02, respectively. To conclude, the extent of ENE by its perpendicular diameter was independently prognostic and should be considered in line with nodal tumor burden in treatment decisions of node positive breast cancer.

  13. Development of an object oriented nodal code using the refined AFEN derived from the method of component decomposition

    International Nuclear Information System (INIS)

    Noh, J. M.; Yoo, J. W.; Joo, H. K.

    2004-01-01

    In this study, we invented a method of component decomposition to derive the systematic inter-nodal coupled equations of the refined AFEN method and developed an object oriented nodal code to solve the derived coupled equations. The method of component decomposition decomposes the intra-nodal flux expansion of a nodal method into even and odd components in three dimensions to reduce the large coupled linear system equation into several small single equations. This method requires no additional technique to accelerate the iteration process to solve the inter-nodal coupled equations, since the derived equations can automatically act as the coarse mesh re-balance equations. By utilizing the object oriented programming concepts such as abstraction, encapsulation, inheritance and polymorphism, dynamic memory allocation, and operator overloading, we developed an object oriented nodal code that can facilitate the input/output and the dynamic control of the memories, and can make the maintenance easy. (authors)

  14. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... 2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  15. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    2007-01-01

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... 2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  16. Neutron spin optics: Fundamentals and verification

    Energy Technology Data Exchange (ETDEWEB)

    Pleshanov, N.K., E-mail: pleshanov_nk@pnpi.nrcki.ru

    2017-05-01

    Neutron spin optics (NSO) based on quantum aspects of the neutron interaction with magnetically anisotropic layers signifies transition in polarized neutron optics from 1D (spin selection) to 3D (spin manipulations). It may essentially widen the functionality of neutron optics. Among the advantages of NSO are compactness, zero-field option (guide fields are optional) and multi-functionality (beam spectrum, beam divergence and spin manipulations can be handled at the same time). Prospects in improving and developing neutron mirror spin turners (incl. flippers) are discussed. Two approaches to measurement of the efficiency of mirror flippers are introduced. The efficiency of a multilayer-backed neutron mirror flipper for monochromatic beams was found to be 97.5±0.5%. Such mirror flippers can combine monochromatization of a polarized beam with flipping spins of the monochromatized neutrons. To improve their performance, account of the spin-dependent refraction in the magnetic layer should be taken. For a monochromatic beam, supermirror-backed flippers are shown to be more advantageous, with a gain in intensity up to 4 times.

  17. Implementation of burnup in FERM nodal computer code

    International Nuclear Information System (INIS)

    Yoriyaz, H.; Nakata, H.

    1986-01-01

    In this work a spatial burnup scheme and feedback effects has been implemented into the FERM [1] ('Finite Element Response Matrix') program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assemblywise calculation and pointwise calculation. The results have been compared with the results obtained by CITATION [2] program and showed that the processing time in the FERM code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author) [pt

  18. A multi-level surface rebalancing approach for efficient convergence acceleration of 3D full core multi-group fine grid nodal diffusion iterations

    International Nuclear Information System (INIS)

    Geemert, René van

    2014-01-01

    Highlights: • New type of multi-level rebalancing approach for nodal transport. • Generally improved and more mesh-independent convergence behavior. • Importance for intended regime of 3D pin-by-pin core computations. - Abstract: A new multi-level surface rebalancing (MLSR) approach has been developed, aimed at enabling an improved non-linear acceleration of nodal flux iteration convergence in 3D steady-state and transient reactor simulation. This development is meant specifically for anticipating computational needs for solving envisaged multi-group diffusion-like SP N calculations with enhanced mesh resolution (i.e. 3D multi-box up to 3D pin-by-pin grid). For the latter grid refinement regime, the previously available multi-level coarse mesh rebalancing (MLCMR) strategy has been observed to become increasingly inefficient with increasing 3D mesh resolution. Furthermore, for very fine 3D grids that feature a very fine axial mesh as well, non-convergence phenomena have been observed to emerge. In the verifications pursued up to now, these problems have been resolved by the new approach. The novelty arises from taking the interface current balance equations defined over all Cartesian box edges, instead of the nodal volume-integrated process-rate balance equation, as an appropriate restriction basis for setting up multi-level acceleration of fine grid interface current iterations. The new restriction strategy calls for the use of a newly derived set of adjoint spectral equations that are needed for computing a limited set of spectral response vectors per node. This enables a straightforward determination of group-condensed interface current spectral coupling operators that are of crucial relevance in the new rebalancing setup. Another novelty in the approach is a new variational method for computing the neutronic eigenvalue. Within this context, the latter is treated as a control parameter for driving another, newly defined and numerically more fundamental

  19. neutron radiography

    International Nuclear Information System (INIS)

    Barton, J.P.

    1993-01-01

    Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)

  20. Activation analysis for ITER design options

    International Nuclear Information System (INIS)

    Attaya, H.

    1995-09-01

    This paper presents a summary of the activation analyses that have been performed for the shielding blanket (SS/water) and for the breeding blanket (Li/V) of ITER design options. The activation code RACC-P, which has been modified for pulsed operation, has been used in these calculations. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal cylindrical geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loadings of 0.91 and 1.2 MW/m 2 respectively

  1. NEUTRONIC REACTOR

    Science.gov (United States)

    Wigner, E.P.; Weinberg, A.W.; Young, G.J.

    1958-04-15

    A nuclear reactor which uses uranium in the form of elongated tubes as fuel elements and liquid as a coolant is described. Elongated tubular uranium bodies are vertically disposed in an efficient neutron slowing agent, such as graphite, for example, to form a lattice structure which is disposed between upper and lower coolant tanks. Fluid coolant tubes extend through the uranium bodies and communicate with the upper and lower tanks and serve to convey the coolant through the uranium body. The reactor is also provided with means for circulating the cooling fluid through the coolant tanks and coolant tubes, suitable neutron and gnmma ray shields, and control means.

  2. Neutron dosimeter

    International Nuclear Information System (INIS)

    Bartko, J.; Schoch, K.F. Jr.; Congedo, T.V.; Anderson, S.L. Jr.

    1989-01-01

    This patent describes a nuclear reactor. It comprises a reactor core; a thermal shield surrounding the reactor core; a pressure vessel surrounding the thermal shield; a neutron dosimeter positioned outside of the thermal shield, the neutron dosimeter comprising a layer of fissile material and a second layer made of a material having an electrical conductivity which permanently varies as a function of its cumulative ion radiation dose; and means, outside the pressure vessel and electrically connected to the layer of second material, for measuring electrical conductivity of the layer of second material

  3. The synchrotron option for a multi-megawatt proton driver

    CERN Document Server

    Prior, C R

    2006-01-01

    Of the three main options for a proton driver for a neutrino facility, synchrotron-based designs feature in proposals from J-PARC, Brookhaven and the Rutherford Appleton Laboratory. There are also synchrotron and linac options being considered in parallel at Fermilab. The Japanese machine has been developed from initial plans for a 3 GeV neutron source into a multi-purpose facility, with the addition of a 50 GeV proton synchrotron in a phased programme of construction. Brookhaven's ideas are based on upgrading the AGS, first to 1 MW and then to 4 MW. Fermilab is looking for a design to bypass the bottleneck that is the existing booster. At RAL, several designs have emerged, including one specifically based on upgrading the ISIS spallation neutron source into a possible dual neutron- neutrino facility.

  4. Polish Toxic Currency Options

    Directory of Open Access Journals (Sweden)

    Waldemar Gontarski

    2009-06-01

    Full Text Available Toxic currency options are defined on the basis of the opposition to the nature (essence of an option contract, which is justified in terms of norms founded on the general law clause of characteristics (nature of a relation (which represents an independent premise for imposing restrictions on the freedom of contracts. So-understood toxic currency options are unlawful. Indeed they contravene iuris cogentis regulations. These include for instance option contracts, which are concluded with a bank, if the bank has not informed about option risk before concluding the contract; or the barrier options, which focus only on the protection of bank’s interests. Therefore, such options may appear to be invalid. Therefore, performing contracts for toxic currency options may be qualified as a criminal mismanagement. For the sake of security, the manager should then take into consideration filing a claim for stating invalidity (which can be made in a court verdict. At the same time, if the supervisory board member in a commercial company, who can also be a subject to mismanagement offences, commits an omission involving lack of reaction (for example, if he/she fails to notify of the suspected offence committed by the management board members acting to the company’s detriment when the management board makes the company conclude option contracts which are charged with absolute invalidity the supervisory board member so acting may be considered to act to the company’s detriment. In the most recent Polish jurisprudence and judicature the standard of a “good host” is treated to be the last resort for determining whether the manager’s powers resulting from criminal regulations were performed. The manager of the exporter should not, as a rule, issue any options. Issuing options always means assuming an obligation. In the case of currency put options it is an absolute obligation to purchase a given amount in euro at exchange rate set in advance. On the

  5. 2005 resource options report

    International Nuclear Information System (INIS)

    Morris, T.

    2005-01-01

    This resource options report (ROR) fulfils regulatory requirements in British Columbia's two-year resource planning process. It identifies a wide range of resources and technologies that could be used to meet BC Hydro's future electricity demand. As such, it facilitates a transparent public review of resource options which include both supply-side and demand-side options. The resource options that will be used in the 2005 integrated electricity plan (IEP) were characterized. This ROR also documents where there is a general agreement or disagreement on the resource type characterization, based on the First Nations and Stakeholder engagement. BC Hydro used current information to provide realistic ranges on volume and cost to characterize environmental and social attributes. The BC Hydro system was modelled to assess the benefit and cost of various resource options. The information resulting from this ROR and IEP will help in making decisions on how to structure competitive acquisition calls and to determine the level of transmission services needed to advance certain BC Hydro projects. The IEP forecasts the nature and quantity of domestic resources required over the next 20 years. A strategic direction on how those needs will be met has been created to guide the management of BC Hydro's energy resources. Supply-side options include near-commercial technologies such as energy storage, ocean waves, tidal, fuel cells and integrated coal gasification combined cycle technology. Supply-side options also include natural gas, coal, biomass, geothermal, wind, and hydro. 120 refs., 39 tabs., 21 figs., 6 appendices

  6. Geometrical shape optimization of a cold neutron source using artificial intelligence strategies

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1989-01-01

    A new approach is developed for optimizing the geometrical shape of a cold neutron source to maximize its cold neutron outward leakage. An analogy is drawn between the shape optimization problem and a state space search, which is the fundamental problem in Artificial Intelligence applications. The new optimization concept is implemented in the computer code DAIT in which the physical model is represented by a two group, r-z geometry nodal diffusion method, and the state space search is conducted via the Nearest Neighbor algorithm. The accuracy of the nodal diffusion method solution is established on meshes of interest, and is shown to behave qualitatively the same as transport theory solutions. The dependence of the optimum shape and its value on several physical and search parameters is examined via numerical experimentation. 10 refs., 6 figs., 2 tabs

  7. Recognizing nodal marginal zone lymphoma: recent advances and pitfalls. A systematic review

    Science.gov (United States)

    van den Brand, Michiel; van Krieken, J. Han J.M.

    2013-01-01

    The diagnosis of nodal marginal zone lymphoma is one of the remaining problem areas in hematopathology. Because no established positive markers exist for this lymphoma, it is frequently a diagnosis of exclusion, making distinction from other low-grade B-cell lymphomas difficult or even impossible. This systematic review summarizes and discusses the current knowledge on nodal marginal zone lymphoma, including clinical features, epidemiology and etiology, histology, and cytogenetic and molecular features. In particular, recent advances in diagnostics and pathogenesis are discussed. New immunohistochemical markers have become available that could be used as positive markers for nodal marginal zone lymphoma. These markers could be used to ensure more homogeneous study groups in future research. Also, recent gene expression studies and studies describing specific gene mutations have provided clues to the pathogenesis of nodal marginal zone lymphoma, suggesting deregulation of the nuclear factor kappa B pathway. Nevertheless, nodal marginal zone lymphoma remains an enigmatic entity, requiring further study to define its pathogenesis to allow an accurate diagnosis and tailored treatment. However, recent data indicate that it is not related to splenic or extranodal lymphoma, and that it is also not related to lymphoplasmacytic lymphoma. Thus, even though the diagnosis is not always easy, it is clearly a separate entity. PMID:23813646

  8. A new diffusion nodal method based on analytic basis function expansion

    International Nuclear Information System (INIS)

    Noh, J.M.; Cho, N.Z.

    1993-01-01

    The transverse integration procedure commonly used in most advanced nodal methods results in some limitations. The first is that the transverse leakage term that appears in the transverse integration procedure must be appropriately approximated. In most advanced nodal methods, this term is expanded in a quadratic polynomial. The second arises when reconstructing the pinwise flux distribution within a node. The available one-dimensional flux shapes from nodal calculation in each spatial direction cannot be used directly in the flux reconstruction. Finally, the transverse leakage defined for a hexagonal node becomes so complicated as not to be easily handled and contains nonphysical singular terms. In this paper, a new nodal method called the analytic function expansion nodal (AFEN) method is described for both the rectangular geometry and the hexagonal geometry in order to overcome these limitations. This method does not solve the transverse-integrated one-dimensional diffusion equations but instead solves directly the original multidimensional diffusion equation within a node. This is a accomplished by expanding the solution (or the intranodal homogeneous flux distribution) in terms of nonseparable analytic basis functions satisfying the diffusion equation at any point in the node

  9. Interplay between short-range correlated disorder and Coulomb interaction in nodal-line semimetals

    Science.gov (United States)

    Wang, Yuxuan; Nandkishore, Rahul M.

    2017-09-01

    In nodal-line semimetals, Coulomb interactions and short-range correlated disorder are both marginal perturbations to the clean noninteracting Hamiltonian. We analyze their interplay using a weak-coupling renormalization group approach. In the clean case, the Coulomb interaction has been found to be marginally irrelevant, leading to Fermi liquid behavior. We extend the analysis to incorporate the effects of disorder. The nodal line structure gives rise to kinematical constraints similar to that for a two-dimensional Fermi surface, which plays a crucial role in the one-loop renormalization of the disorder couplings. For a twofold degenerate nodal loop (Weyl loop), we show that disorder flows to strong coupling along a unique fixed trajectory in the space of symmetry inequivalent disorder couplings. Along this fixed trajectory, all symmetry inequivalent disorder strengths become equal. For a fourfold degenerate nodal loop (Dirac loop), disorder also flows to strong coupling, however, the strengths of symmetry inequivalent disorder couplings remain different. We show that feedback from disorder reverses the sign of the beta function for the Coulomb interaction, causing the Coulomb interaction to flow to strong coupling as well. However, the Coulomb interaction flows to strong coupling asymptotically more slowly than disorder. Extrapolating our results to strong coupling, we conjecture that at low energies nodal line semimetals should be described by a noninteracting nonlinear sigma model. We discuss the relation of our results with possible many-body localization at zero temperatures in such materials.

  10. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    Directory of Open Access Journals (Sweden)

    Moges Woldemeskel

    2014-11-01

    Full Text Available Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4 was significantly higher (p < 0.05 than that in the control (0.83 ± 0.3 and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009. Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended.

  11. Sensitivity analysis of MIDAS tests using SPACE code. Effect of nodalization

    International Nuclear Information System (INIS)

    Eom, Shin; Oh, Seung-Jong; Diab, Aya

    2018-01-01

    The nodalization sensitivity analysis for the ECCS (Emergency Core Cooling System) bypass phe�nomena was performed using the SPACE (Safety and Performance Analysis CodE) thermal hydraulic analysis computer code. The results of MIDAS (Multi-�dimensional Investigation in Downcomer Annulus Simulation) test were used. The MIDAS test was conducted by the KAERI (Korea Atomic Energy Research Institute) for the performance evaluation of the ECC (Emergency Core Cooling) bypass phenomenon in the DVI (Direct Vessel Injection) system. The main aim of this study is to examine the sensitivity of the SPACE code results to the number of thermal hydraulic channels used to model the annulus region in the MIDAS experiment. The numerical model involves three nodalization cases (4, 6, and 12 channels) and the result show that the effect of nodalization on the bypass fraction for the high steam flow rate MIDAS tests is minimal. For computational efficiency, a 4 channel representation is recommended for the SPACE code nodalization. For the low steam flow rate tests, the SPACE code over-�predicts the bypass fraction irrespective of the nodalization finesse. The over-�prediction at low steam flow may be attributed to the difficulty to accurately represent the flow regime in the vicinity of the broken cold leg.

  12. Nodalization effects on RELAP5 results related to MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The present work deals with the anal y sis of RELAP5 results obtained from the evaluation study of the total loss of flow transient with the deficiency of the heat removal system in a research reactor using two different nodalizations. It focuses on the effect of nodalization on the thermal-hydraulic evaluation of the re search reactor. The analysis of RELAP5 results has shown that nodalization has a big effect on the predicted scenario of the postulated transient. There fore, great care should be taken during the nodalization of the reactor, especially when the avail able experimental or measured data are insufficient for making a complete qualification of the nodalization. Our analysis also shows that the research reactor pool simulation has a great effect on the evaluation of natural circulation flow and on other thermal-hydraulic parameters during the loss of flow transient. For example, the on set time of core boiling changes from less than 2000 s to 15000 s, starting from the beginning of the transient. This occurs if the pool is simulated by two vertical volumes in stead of one vertical volume.

  13. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    Science.gov (United States)

    Mann, Elizabeth; Whittington, Lisa

    2014-01-01

    Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752

  14. Sensitivity analysis of MIDAS tests using SPACE code. Effect of nodalization

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Shin; Oh, Seung-Jong; Diab, Aya [KEPCO International Nuclear Graduate School (KINGS), Ulsan (Korea, Republic of). Dept. of NPP Engineering

    2018-02-15

    The nodalization sensitivity analysis for the ECCS (Emergency Core Cooling System) bypass phe�nomena was performed using the SPACE (Safety and Performance Analysis CodE) thermal hydraulic analysis computer code. The results of MIDAS (Multi-�dimensional Investigation in Downcomer Annulus Simulation) test were used. The MIDAS test was conducted by the KAERI (Korea Atomic Energy Research Institute) for the performance evaluation of the ECC (Emergency Core Cooling) bypass phenomenon in the DVI (Direct Vessel Injection) system. The main aim of this study is to examine the sensitivity of the SPACE code results to the number of thermal hydraulic channels used to model the annulus region in the MIDAS experiment. The numerical model involves three nodalization cases (4, 6, and 12 channels) and the result show that the effect of nodalization on the bypass fraction for the high steam flow rate MIDAS tests is minimal. For computational efficiency, a 4 channel representation is recommended for the SPACE code nodalization. For the low steam flow rate tests, the SPACE code over-�predicts the bypass fraction irrespective of the nodalization finesse. The over-�prediction at low steam flow may be attributed to the difficulty to accurately represent the flow regime in the vicinity of the broken cold leg.

  15. Expensing options solves nothing.

    Science.gov (United States)

    Sahlman, William A

    2002-12-01

    The use of stock options for executive compensation has become a lightning rod for public anger, and it's easy to see why. Many top executives grew hugely rich on the back of the gains they made on their options, profits they've been able to keep even as the value they were supposed to create disappeared. The supposed scam works like this: Current accounting regulations let companies ignore the cost of option grants on their income statements, so they can award valuable option packages without affecting reported earnings. Not charging the cost of the grants supposedly leads to overstated earnings, which purportedly translate into unrealistically high share prices, permitting top executives to realize big gains when they exercise their options. If an accounting anomaly is the problem, then the solution seems obvious: Write off executive share options against the current year's revenues. The trouble is, Sahlman writes, expensing option grants won't give us a more accurate view of earnings, won't add any information not already included in the financial statements, and won't even lead to equal treatment of different forms of executive pay. Far worse, expensing evades the real issue, which is whether compensation (options and other-wise) does what it's supposed to do--namely, help a company recruit, retain, and provide the right people with appropriate performance incentives. Any performance-based compensation system has the potential to encourage cheating. Only ethical management, sensible governance, adequate internal control systems, and comprehensive disclosure will save the investor from disaster. If, Sahlman warns, we pass laws that require the expensing of options, thinking that's fixed the fundamental flaws in corporate America's accounting, we will have missed a golden opportunity to focus on the much more extensive defects in the present system.

  16. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  17. Neutronics of pulsed spallation neutron sources

    CERN Document Server

    Watanabe, N

    2003-01-01

    Various topics and issues on the neutronics of pulsed spallation neutron sources, mainly for neutron scattering experiments, are reviewed to give a wide circle of readers a better understanding of these sources in order to achieve a high neutronic performance. Starting from what neutrons are needed, what the spallation reaction is and how to produce slow-neutrons more efficiently, the outline of the target and moderator neutronics are explained. Various efforts with some new concepts or ideas have already been devoted to obtaining the highest possible slow-neutron intensity with desired pulse characteristics. This paper also reviews the recent progress of such efforts, mainly focused on moderator neutronics, since moderators are the final devices of a neutron source, which determine the source performance. Various governing parameters for neutron-pulse characteristics such as material issues, geometrical parameters (shape and dimensions), the target-moderator coupling scheme, the ortho-para-hydrogen ratio, po...

  18. Preliminary study of possible ORELA replacement options

    International Nuclear Information System (INIS)

    Olsen, D.K.; Martin, J.A.; Horen, D.J.

    1984-06-01

    Based on two conceptual design studies performed by the LANL Accelerator Technology Division, the possibilities in terms of accelerator systems for replacing ORELA with a more intense Maxwellian-type continuous-energy neutron source are summarized and discussed. The neutron intensities from ORELA are compared with those from existing or potential accelerator systems used for cross-section and condensed-matter studies. The best replacement options seem to involve a spallation source from 200- to 400-MeV protons on an ORELA-like target. Pulsing and intensity desiderata with such a source are discussed which correspond to a spectrum-averaged 100-fold improved figure of merit over ORELA for TOF measurements with only a tenfold increased source strength. Existing accelerator designs seem to be inadequate for such a source. Consequently, two conceptual designs were developed for this study by the LANL Accelerator Technology Division. The first conceptual design is for a 200-MeV large linac capable of accelerating 1.3 A during a macropulse; this linac standing alone could serve as an ORELA replacement source. The second conceptual design is for a much smaller 250-MeV PIGMI linac with a 28-mA macropulse current which feeds a proton accumulator ring and bunch-compressor transport line. This linac-ring-compressor (LIRIC) option would give a more cost-effective neutron source for cross-section measurements, whereas the large linac, or a modified version of it, would give a much simpler system more suitable for expansion. In particular, both conceptual designs would incorporate the present ORELA building and would provide approximately 100-fold improved neutron sources over ORELA for cross-section measurements. The total estimated cost of the LIRIC system would be $43M (1984), whereas the cost of the large linac would be about a factor of two more. 55 references, 11 figures, 19 tables

  19. Early Option Exercise

    DEFF Research Database (Denmark)

    Heje Pedersen, Lasse; Jensen, Mads Vestergaard

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  20. Early Option Exercise

    DEFF Research Database (Denmark)

    Jensen, Mads Vestergaard; Heje Pedersen, Lasse

    2016-01-01

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  1. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    The method of operating a water-cooled neutronic reactor having a graphite moderator is described which comprises flowing a gaseous mixture of carbon dioxide and helium, in which the helium comprises 40--60 volume percent of the mixture, in contact with the graphite moderator. 2 claims, 4 figures

  2. Neutron reflectivity

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.

  3. Thermometers: Understand the Options

    Science.gov (United States)

    ... the options Thermometers come in a variety of styles. Understand the different types of thermometers and how ... MA. Fever in infants and children: Pathophysiology and management. http://www.uptodate.com/home. Accessed July 23, ...

  4. A simplified presentation of the multigroup analytic nodal method in 2-D Cartesian geometry

    International Nuclear Information System (INIS)

    Hebert, Alain

    2008-01-01

    The nodal diffusion algorithms used in many production reactor simulation codes are originating from a common ancestry developed in the 1970s, the analytic nodal method (ANM) of the QUANDRY code. However, this original presentation of the ANM is complex and makes difficult the calculation of the nodal coupling matrices. Moreover, QUANDRY is limited to two-energy groups and its generalization to more groups appears laborious. We are presenting a simplified implementation of the ANM requiring only limited programming work. This formulation is consistent with the initial QUANDRY implementation and is easily generalizable to arbitrary G-group problems. A Matlab script is provided to highlight the simplicity of our presentation. For the sake of clarity, our implementation is limited to G-group, 2-D Cartesian geometry

  5. Cryopreservation of in vitro grown nodal segments of Rauvolfia serpentina by PVS2 vitrification.

    Science.gov (United States)

    Ray, Avik; Bhattacharya, Sabita

    2008-01-01

    This paper describes the cryopreservation by PVS2 vitrification of Rauvolfia serpentina (L.) Benth ex kurz, an important tropical medicinal plant. The effects of type and size of explants, sucrose preculture (duration and concentration) and vitrification treatment were tested. Preliminary experiments with PVS1, 2 and 3 produced shoot growth only for PVS2. When optimizing the PVS2 vitrification of nodal segments, those of 0.31 - 0.39 cm in size were better than other nodal sizes and or apices. Sucrose preculture had a positive role in survival and subsequent regrowth of the cryopreserved explants. Seven days on 0.5 M sucrose solution significantly improved the viability of nodal segments. PVS2 incubation for 45 minutes combined with a 7-day preculture gave the optimum result of 66 percent. Plantlets derived after cryopreservation resumed growth and regenerated normally.

  6. cmpXLatt: Westinghouse automated testing tool for nodal cross section models

    International Nuclear Information System (INIS)

    Guimaraes, Petri Forslund; Rönnberg, Kristian

    2011-01-01

    The procedure for evaluating the merits of different nodal cross section representation models is normally both cumbersome and time consuming, and includes many manual steps when preparing appropriate benchmark problems. Therefore, a computer tool called cmpXLatt has been developed at Westinghouse in order to facilitate the process of performing comparisons between nodal diffusion theory results and corresponding transport theory results on a single node basis. Due to the large number of state points that can be evaluated by cmpXLatt, a systematic and comprehensive way of performing verification and validation of nodal cross section models is provided. This paper presents the main features of cmpXLatt and demonstrates the benefits of using cmpXLatt in a real life application. (author)

  7. Isospectral discrete and quantum graphs with the same flip counts and nodal counts

    Science.gov (United States)

    Juul, Jonas S.; Joyner, Christopher H.

    2018-06-01

    The existence of non-isomorphic graphs which share the same Laplace spectrum (to be referred to as isospectral graphs) leads naturally to the following question: what additional information is required in order to resolve isospectral graphs? It was suggested by Band, Shapira and Smilansky that this might be achieved by either counting the number of nodal domains or the number of times the eigenfunctions change sign (the so-called flip count) (Band et al 2006 J. Phys. A: Math. Gen. 39 13999–4014 Band and Smilansky 2007 Eur. Phys. J. Spec. Top. 145 171–9). Recent examples of (discrete) isospectral graphs with the same flip count and nodal count have been constructed by Ammann by utilising Godsil–McKay switching (Ammann private communication). Here, we provide a simple alternative mechanism that produces systematic examples of both discrete and quantum isospectral graphs with the same flip and nodal counts.

  8. SIRIUS - A one-dimensional multigroup analytic nodal diffusion theory code

    Energy Technology Data Exchange (ETDEWEB)

    Forslund, P. [Westinghouse Atom AB, Vaesteraas (Sweden)

    2000-09-01

    In order to evaluate relative merits of some proposed intranodal cross sections models, a computer code called Sirius has been developed. Sirius is a one-dimensional, multigroup analytic nodal diffusion theory code with microscopic depletion capability. Sirius provides the possibility of performing a spatial homogenization and energy collapsing of cross sections. In addition a so called pin power reconstruction method is available for the purpose of reconstructing 'heterogeneous' pin qualities. consequently, Sirius has the capability of performing all the calculations (incl. depletion calculations) which are an integral part of the nodal calculation procedure. In this way, an unambiguous numerical analysis of intranodal cross section models is made possible. In this report, the theory of the nodal models implemented in sirius as well as the verification of the most important features of these models are addressed.

  9. Options for human intrusion

    International Nuclear Information System (INIS)

    Bauser, M.; Williams, R.

    1993-01-01

    This paper addresses options for dealing with human intrusion in terms of performance requirements and repository siting and design requirements. Options are presented, along with the advantages and disadvantages of certain approaches. At the conclusion, a conceptual approach is offered emphasizing both the minimization of subjective judgements concerning future human activity, and specification of repository requirements to minimize the likelihood of human intrusion and any resulting, harmful effects should intrusion occur

  10. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  11. Neutron stars as cosmic neutron matter laboratories

    International Nuclear Information System (INIS)

    Pines, D.

    1986-01-01

    Recent developments which have radically changed our understanding of the dynamics of neutron star superfluids and the free precession of neutron stars are summarized, and the extent to which neutron stars are cosmic neutron matter laboratories is discussed. 17 refs., 1 tab

  12. A transient, Hex-Z nodal code corrected by discontinuity factors

    International Nuclear Information System (INIS)

    Shatilla, Y.A.M.; Henry, A.F.

    1993-01-01

    This document constitutes Volume 1 of the Final Report of a three-year study supported by the special Research Grant Program for Nuclear Energy Research set up by the US Department of Energy. The original motivation for the work was to provide a fast and accurate computer program for the analysis of transients in heavy water or graphite-moderated reactors being considered as candidates for the New Production Reactor. Thus, part of the funding was by way of pass-through money from the Savannah River Laboratory. With this intent in mind, a three-dimensional (Hex-Z), general-energy-group transient, nodal code was created, programmed, and tested. In order to improve accuracy, correction terms, called open-quotes discontinuity factors,close quotes were incorporated into the nodal equations. Ideal values of these factors force the nodal equations to provide node-integrated reaction rates and leakage rates across nodal surfaces that match exactly those edited from a more exact reference calculation. Since the exact reference solution is needed to compute the ideal discontinuity factors, the fact that they result in exact nodal equations would be of little practical interest were it not that approximate discontinuity factors, found at a greatly reduced cost, often yield very accurate results. For example, for light-water reactors, discontinuity factors found from two-dimensional, fine-mesh, multigroup transport solutions for two-dimensional cuts of a fuel assembly provide very accurate predictions of three-dimensional, full-core power distributions. The present document (volume 1) deals primarily with the specification, programming and testing of the three-dimensional, Hex-Z computer program. The program solves both the static (eigenvalue) and transient, general-energy-group, nodal equations corrected by user-supplied discontinuity factors

  13. Fluorine-18-Fluorodeoxyglucose PET in the mediastinal nodal staging of bronchogenic carcinoma.

    Energy Technology Data Exchange (ETDEWEB)

    Berlangieri, S.U.; Scott, A.M.; Knight, S.; Pointon, O.; Thomas, D.L.; O``Keefe, G.; Chan, J.G.; Egen, G.F.; Tochon-Danguy, H.J.; Clarke, C.P.; McKay, W.J. [Austin Hospital, Melbourne, VIC (Australia). Centre for Positron Emission Tomography and the Departments of Nuclear Medicine and Thoracic Surgery

    1998-03-01

    Full text: Non-invasive methods of pre-operative staging of non-small cell bronchogenic carcinoma are inaccurate. To determine the clinical role of positron emission tomography (PET) in the mediastinal staging of lung carcinoma, {sup 18}F-fluorodeoxyglucose (FDG) studies were performed in 25 patients with suspected non-small cell bronchogenic carcinoma and correlated with pathology. The patients comprised 20 men and 5 women (mean age 63; range 43-78 y). All patients had proven non-small cell lung carcinoma, except two, one patient with benign inflammatory disease and the other with small cell carcinoma. The FDG PET studies were acquired on a Siemens 951131R body tomography over 2-3 bed positions to include the thorax and mediastinum. The PET images were interpreted for tumour involvement of mediastinal nodes according to the American Thoracic Society classification and scored for confidence of tumour presence on a 5 point scale. The intensity of glucose metabolism was compared to mediastinal blood pool activity and graded on a 4 point scale. FDG PET correctly excluded ipsilateral mediastinal nodal (N2) disease in 16 of 16 patients. Six of nine patients with N2 disease were correctly identified by FDG PET. Of the three patients with N2 nodal involvement not detected by PET, each had single station nodal disease, and in two patients the primary lesions abutted the involved nodal group. A total of 104 nodal stations were sampled or examined at surgery. FDG PET correctly excluded disease in 83/83 (100% specificity) negative nodal stations. FDG PET is a promising non-invasive functional imaging modality for the mediastinal staging of bronchogenic carcinoma.

  14. A geometrically exact beam element based on the absolute nodal coordinate formulation

    International Nuclear Information System (INIS)

    Gerstmayr, Johannes; Matikainen, Marko K.; Mikkola, Aki M.

    2008-01-01

    In this study, Reissner's classical nonlinear rod formulation, as implemented by Simo and Vu-Quoc by means of the large rotation vector approach, is implemented into the framework of the absolute nodal coordinate formulation. The implementation is accomplished in the planar case accounting for coupled axial, bending, and shear deformation. By employing the virtual work of elastic forces similarly to Simo and Vu-Quoc in the absolute nodal coordinate formulation, the numerical results of the formulation are identical to those of the large rotation vector formulation. It is noteworthy, however, that the material definition in the absolute nodal coordinate formulation can differ from the material definition used in Reissner's beam formulation. Based on an analytical eigenvalue analysis, it turns out that the high frequencies of cross section deformation modes in the absolute nodal coordinate formulation are only slightly higher than frequencies of common shear modes, which are present in the classical large rotation vector formulation of Simo and Vu-Quoc, as well. Thus, previous claims that the absolute nodal coordinate formulation is inefficient or would lead to ill-conditioned finite element matrices, as compared to classical approaches, could be refuted. In the introduced beam element, locking is prevented by means of reduced integration of certain parts of the elastic forces. Several classical large deformation static and dynamic examples as well as an eigenvalue analysis document the equivalence of classical nonlinear rod theories and the absolute nodal coordinate formulation for the case of appropriate material definitions. The results also agree highly with those computed in commercial finite element codes

  15. Nevada Transportation Options Study

    International Nuclear Information System (INIS)

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-01-01

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  16. Options Study - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  17. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  18. Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates

    Science.gov (United States)

    Chang, Shu-Ming; Lin, Chang-Shou; Lin, Tai-Chia; Lin, Wen-Wei

    2004-09-01

    In this paper, we study the distribution of m segregated nodal domains of the m-mixture of Bose-Einstein condensates under positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple verticillate structures. In addition, our proposed Gauss-Seidel-type iteration method is very effective in that it converges linearly in 10-20 steps.

  19. [Does nodal irradiation (clavicular and internal mammary chains) increase the toxicity of adjuvant breast radiotherapy?].

    Science.gov (United States)

    Riou, O; Bourgier, C; Fenoglietto, P; Azria, D

    2015-06-01

    Treatment volume is a major risk factor of radiation-induced toxicity. As nodal irradiation increases treatment volume, radiation toxicity should be greater. Nevertheless, scientific randomised data do not support this fact. However, a radiation-induced toxicity is possible outside tangential fields in the nodal volumes not related to breast-only treatment. Treatment should not be adapted only to the disease but personalized to the individual risk of toxicity for each patient. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  20. A self-consistent nodal method in response matrix formalism for the multigroup diffusion equations

    International Nuclear Information System (INIS)

    Malambu, E.M.; Mund, E.H.

    1996-01-01

    We develop a nodal method for the multigroup diffusion equations, based on the transverse integration procedure (TIP). The efficiency of the method rests upon the convergence properties of a high-order multidimensional nodal expansion and upon numerical implementation aspects. The discrete 1D equations are cast in response matrix formalism. The derivation of the transverse leakage moments is self-consistent i.e. does not require additional assumptions. An outstanding feature of the method lies in the linear spatial shape of the local transverse leakage for the first-order scheme. The method is described in the two-dimensional case. The method is validated on some classical benchmark problems. (author)

  1. Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish

    OpenAIRE

    Xiang, Fan; Hagos, Engda G.; Xu, Bo; Sias, Christina; Kawakami, Koichi; Burdine, Rebecca D.; Dougan, Scott T.

    2007-01-01

    In many vertebrates, extra-embryonic tissues are important signaling centers that induce and pattern the germ layers. In teleosts, the mechanism by which the extra-embryonic yolk syncytial layer (YSL) patterns the embryo is not understood. Although the Nodal-related protein Squint is expressed in the YSL, its role in this tissue is not known. We generated a series of stable transgenic lines with GFP under the control of squint genomic sequences. In all species, nodal-related genes induce thei...

  2. Incidental Prophylactic Nodal Irradiation and Patterns of Nodal Relapse in Inoperable Early Stage NSCLC Patients Treated With SBRT: A Case-Matched Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lao, Louis [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Auckland City Hospital, Auckland (New Zealand); Hope, Andrew J. [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Maganti, Manjula [Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Brade, Anthony; Bezjak, Andrea; Saibishkumar, Elantholi P.; Giuliani, Meredith; Sun, Alexander [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Cho, B. C. John, E-mail: john.cho@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada)

    2014-09-01

    Purpose: Reported rates of non-small cell lung cancer (NSCLC) nodal failure following stereotactic body radiation therapy (SBRT) are lower than those reported in the surgical series when matched for stage. We hypothesized that this effect was due to incidental prophylactic nodal irradiation. Methods and Materials: A prospectively collected group of medically inoperable early stage NSCLC patients from 2004 to 2010 was used to identify cases with nodal relapses. Controls were matched to cases, 2:1, controlling for tumor volume (ie, same or greater) and tumor location (ie, same lobe). Reference (normalized to equivalent dose for 2-Gy fractions [EQD2]) point doses at the ipsilateral hilum and carina, demographic data, and clinical outcomes were extracted from the medical records. Univariate conditional logistical regression analyses were performed with variables of interest. Results: Cases and controls were well matched except for size. The controls, as expected, had larger gross tumor volumes (P=.02). The mean ipsilateral hilar doses were 9.6 Gy and 22.4 Gy for cases and controls, respectively (P=.014). The mean carinal doses were 7.0 Gy and 9.2 Gy, respectively (P=.13). Mediastinal nodal relapses, with and without ipsilateral hilar relapse, were associated with mean ipsilateral hilar doses of 3.6 Gy and 19.8 Gy, respectively (P=.01). The conditional density plot appears to demonstrate an inverse dose-effect relationship between ipsilateral hilar normalized total dose and risk of ipsilateral hilar relapse. Conclusions: Incidental hilar dose greater than 20 Gy is significantly associated with fewer ipsilateral hilar relapses in inoperable early stage NSCLC patients treated with SBRT.

  3. Incidental Prophylactic Nodal Irradiation and Patterns of Nodal Relapse in Inoperable Early Stage NSCLC Patients Treated With SBRT: A Case-Matched Analysis

    International Nuclear Information System (INIS)

    Lao, Louis; Hope, Andrew J.; Maganti, Manjula; Brade, Anthony; Bezjak, Andrea; Saibishkumar, Elantholi P.; Giuliani, Meredith; Sun, Alexander; Cho, B. C. John

    2014-01-01

    Purpose: Reported rates of non-small cell lung cancer (NSCLC) nodal failure following stereotactic body radiation therapy (SBRT) are lower than those reported in the surgical series when matched for stage. We hypothesized that this effect was due to incidental prophylactic nodal irradiation. Methods and Materials: A prospectively collected group of medically inoperable early stage NSCLC patients from 2004 to 2010 was used to identify cases with nodal relapses. Controls were matched to cases, 2:1, controlling for tumor volume (ie, same or greater) and tumor location (ie, same lobe). Reference (normalized to equivalent dose for 2-Gy fractions [EQD2]) point doses at the ipsilateral hilum and carina, demographic data, and clinical outcomes were extracted from the medical records. Univariate conditional logistical regression analyses were performed with variables of interest. Results: Cases and controls were well matched except for size. The controls, as expected, had larger gross tumor volumes (P=.02). The mean ipsilateral hilar doses were 9.6 Gy and 22.4 Gy for cases and controls, respectively (P=.014). The mean carinal doses were 7.0 Gy and 9.2 Gy, respectively (P=.13). Mediastinal nodal relapses, with and without ipsilateral hilar relapse, were associated with mean ipsilateral hilar doses of 3.6 Gy and 19.8 Gy, respectively (P=.01). The conditional density plot appears to demonstrate an inverse dose-effect relationship between ipsilateral hilar normalized total dose and risk of ipsilateral hilar relapse. Conclusions: Incidental hilar dose greater than 20 Gy is significantly associated with fewer ipsilateral hilar relapses in inoperable early stage NSCLC patients treated with SBRT

  4. Can involved-field irradiation replace elective nodal irradiation in chemoradiotherapy for esophageal cancer? A systematic review and meta-analysis.

    Science.gov (United States)

    Wang, Xiaoyue; Miao, Chuanwang; Chen, Zhen; Li, Wanhu; Yuan, Shuanghu; Yu, Jinming; Hu, Xudong

    2017-01-01

    Chemoradiotherapy is the most common treatment for inoperable esophageal cancer. However, there is no consensus on the delineation of the clinical target volume. Elective nodal irradiation (ENI) is recommended for inoperable esophageal cancer. A few studies have reported a decrease in the incidence of radiation-related toxicity of involved-field irradiation (IFI) for esophageal cancer. A systematic review and pooled analysis were performed to determine whether IFI in definitive chemoradiotherapy was more beneficial than ENI for esophageal cancer. The results showed no significant differences in the overall survival and local control rates between the IFI and ENI arms. Meanwhile, the incidences of esophageal and lung toxicities were significantly decreased in the IFI arm. These results suggest that IFI is a feasible treatment option for locally advanced esophageal cancer, especially to minimize irradiation-related toxicity.

  5. Treatment Options for Wilms Tumor

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... come back) after it has been treated. Treatment Option Overview Key Points There are different types of ...

  6. Treatment Options for Myelodysplastic Syndromes

    Science.gov (United States)

    ... special light. Certain factors affect prognosis and treatment options. The prognosis (chance of recovery) and treatment options ... age and general health of the patient. Treatment Option Overview Key Points There are different types of ...

  7. Treatment Option Overview (Prostate Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  8. Treatment Option Overview (Myelodysplastic Syndromes)

    Science.gov (United States)

    ... special light. Certain factors affect prognosis and treatment options. The prognosis (chance of recovery) and treatment options ... age and general health of the patient. Treatment Option Overview Key Points There are different types of ...

  9. Treatment Option Overview (Esophageal Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  10. Treatment Option Overview (Childhood Rhabdomyosarcoma)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  11. Treatment Option Overview (Penile Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  12. Treatment Option Overview (Vulvar Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  13. Treatment Option Overview (Pancreatic Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  14. Treatment Option Overview (Adrenocortical Carcinoma)

    Science.gov (United States)

    ... affect the prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  15. Treatment Options for Childhood Rhabdomyosarcoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  16. Treatment Options for Kaposi Sarcoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  17. Treatment Options for Childhood Craniopharyngioma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... the brain where it was first found. Treatment Option Overview Key Points There are different types of ...

  18. Amplification and protein overexpression of cyclin D1: Predictor of occult nodal metastasis in early oral cancer.

    Science.gov (United States)

    Noorlag, Rob; Boeve, Koos; Witjes, Max J H; Koole, Ronald; Peeters, Ton L M; Schuuring, Ed; Willems, Stefan M; van Es, Robert J J

    2017-02-01

    Accurate nodal staging is pivotal for treatment planning in early (stage I-II) oral cancer. Unfortunately, current imaging modalities lack sensitivity to detect occult nodal metastases. Chromosomal region 11q13, including genes CCND1, Fas-associated death domain (FADD), and CTTN, is often amplified in oral cancer with nodal metastases. However, evidence in predicting occult nodal metastases is limited. In 158 patients with early tongue and floor of mouth (FOM) squamous cell carcinomas, both CCND1 amplification and cyclin D1, FADD, and cortactin protein expression were correlated with occult nodal metastases. CCND1 amplification and cyclin D1 expression correlated with occult nodal metastases. Cyclin D1 expression was validated in an independent multicenter cohort, confirming the correlation with occult nodal metastases in early FOM cancers. Cyclin D1 is a predictive biomarker for occult nodal metastases in early FOM cancers. Prospective research on biopsy material should confirm these results before implementing its use in routine clinical practice. © 2016 Wiley Periodicals, Inc. Head Neck 39: 326-333, 2017. © 2016 Wiley Periodicals, Inc.

  19. Biomedical neutron research at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1998-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy. (author)

  20. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1997-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  1. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2013-01-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, nanostructures investigated by small-angle neutron scattering, structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic neutron scattering, strongly correlated electrons, polymer dynamics, applications of neutron scattering. (HSI)

  2. Neutron scattering. Lectures

    International Nuclear Information System (INIS)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner

    2012-01-01

    The following topics are dealt with: Neutron scattering in contemporary research, neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  3. Pulsed neutron generator

    International Nuclear Information System (INIS)

    Bespalov, D.F.; Bykovskii, Yu.A.; Vergun, I.I.; Kozlovskii, K.I.; Kozyrev, Yu.P.; Leonov, R.K.; Simagin, B.I.; Tsybin, A.S.; Shikanov, A.Ie.

    1986-03-01

    The paper describes a new device for generating pulsed neutron fields, utilized in nuclear geophysics for carrying out pulsed neutron logging and activation analysis under field conditions. The invention employs a sealed-off neutron tube with a laser ion source which increases neutron yield to the level of 10 neutrons per second or higher. 2 refs., 1 fig

  4. Strategies in edge plasma simulation using adaptive dynamic nodalization techniques

    International Nuclear Information System (INIS)

    Kainz, A.; Weimann, G.; Kamelander, G.

    2003-01-01

    A wide span of steady-state and transient edge plasma processes simulation problems require accurate discretization techniques and can then be treated with Finite Element (FE) and Finite Volume (FV) methods. The software used here to meet these meshing requirements is a 2D finite element grid generator. It allows to produce adaptive unstructured grids taking into consideration the flux surface characteristics. To comply with the common mesh handling features of FE/FV packages, some options have been added to the basic generation tool. These enhancements include quadrilateral meshes without non-regular transition elements obtained by substituting them by transition constructions consisting of regular quadrilateral elements. Furthermore triangular grids can be created with one edge parallel to the magnetic field and modified by the basic adaptation/realignment techniques. Enhanced code operation properties and processing capabilities are expected. (author)

  5. Neutron scattering

    International Nuclear Information System (INIS)

    1991-02-01

    The annual report on hand gives an overview of the research work carried out in the Laboratory for Neutron Scattering (LNS) of the ETH Zuerich in 1990. Using the method of neutron scattering, it is possible to examine in detail the static and dynamic properties of the condensed material. In accordance with the multidisciplined character of the method, the LNS has for years maintained a system of intensive co-operation with numerous institutes in the areas of biology, chemistry, solid-state physics, crystallography and materials research. In 1990 over 100 scientists from more than 40 research groups both at home and abroad took part in the experiments. It was again a pleasure to see the number of graduate students present, who were studying for a doctorate and who could be introduced into the neutron scattering during their stay at the LNS and thus were in the position to touch on central ways of looking at a problem in their dissertation using this modern experimental method of solid-state research. In addition to the numerous and interesting ways of formulating the questions to explain the structure, nowadays the scientific programme increasingly includes particularly topical studies in connection with high temperature-supraconductors and materials research

  6. Neutron radiotherapy

    International Nuclear Information System (INIS)

    Thomas, F.J.

    1987-01-01

    The rationale for the application of neutron radiation for the treatment of malignancies is well established based on radiobiological studies. These factors include the presence of tissue hypoxia, radiation response as a function of cell cycle kinetics, the repair capacity of the malignant cells and the regeneration of malignant cells during a fractionated course of radiation. Despite the constraints under which the clinical trials to date have been conducted, promising results have been obtained. Randomized trials have demonstrated that neutron therapy is the treatment of choice for inoperable salivary gland carcinomas. A randomized trial of the RTOG has demonstrated a probable advantage for neutron radiation in the treatment of advanced prostate carcinomas but is yet to be confirmed. An improvement in local control has also been observed for selected sarcomas. Equivocal or contradictory results have been obtained for squamous cell carcinomas of the head and neck, bronchogenic carcinomas, advanced rectal, transitional cell carcinomas of the bladder and cervical carcinomas. The practical consequences of these radiobiological and clinical observations on the current generation of clinical trials is discussed

  7. PHISICS multi-group transport neutronic capabilities for RELAP5

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, A.; Rabiti, C.; Alfonsi, A.; Wang, Y.; Cogliati, J.; Strydom, G. [Idaho National Laboratory (INL), 2525 N. Fremont Ave., Idaho Falls, ID 83402 (United States)

    2012-07-01

    PHISICS is a neutronic code system currently under development at INL. Its goal is to provide state of the art simulation capability to reactor designers. This paper reports on the effort of coupling this package to the thermal hydraulic system code RELAP5. This will enable full prismatic core and system modeling and the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5 (NESTLE). The paper describes the capabilities of the coupling and illustrates them with a set of sample problems. (authors)

  8. 233U breeding and neutron multiplying blankets for fusion reactors

    International Nuclear Information System (INIS)

    Cook, A.G.; Maniscalco, J.A.

    1975-01-01

    In this work, along with a previous paper three possible uses of 14-MeV deuterium--tritium fusion neutrons are investigated: energy production, neutron multiplication, and fissile-fuel breeding. The results presented include neutronic studies of fissioning and nonfissioning thorium systems, tritium breeding systems, various fuel options (UO 2 , UC, UC 2 , etc.), and uranium as well as refractory metal first-wall neutron-multiplying regions. A brief energy balance and an estimate of potential revenues for fusion devices are given to help illustrate the potentials of these designs

  9. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL... § 416.2035 Optional supplementation: Additional State options. (a) Residency requirement. A State or...

  10. Novel preventive treatment options

    DEFF Research Database (Denmark)

    Longbottom, C; Ekstrand, K; Zero, D

    2009-01-01

    A number of novel preventive treatment options which, as with traditional methods, can be differentiated into 3 categories of prevention (primary, secondary and tertiary), have been and are being currently investigated. Those reviewed are either commercially available or appear relatively close...... of these techniques show considerable promise and dentists should be aware of these developments and follow their progress, the evidence for each of these novel preventive treatment options is currently insufficient to make widespread recommendations. Changes in dental practice should be explored to see how oral...

  11. Tank Space Options Report

    International Nuclear Information System (INIS)

    BOYLES, V.C.

    2001-01-01

    A risk-based priority for the retrieval of Hanford Site waste from the 149 single-shell tanks (SSTs) has been adopted as a result of changes to the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1997) negotiated in 2000. Retrieval of the first three tanks in the retrieval sequence fills available capacity in the double-shell tanks (DSTs) by 2007. As a result, the HFFACO change established a milestone (M-45-12-TO1) requiring the determination of options that could increase waste storage capacity for single-shell tank waste retrieval. The information will be considered in future negotiations. This document fulfills the milestone requirement. This study presents options that were reviewed for the purpose of increasing waste storage capacity. Eight options are identified that have the potential for increasing capacity from 5 to 10 million gallons, thus allowing uninterrupted single-shell tank retrieval until the planned Waste Treatment Plant begins processing substantial volumes of waste from the double-shell tanks in 2009. The cost of implementing these options is estimated to range from less than $1 per gallon to more than $14 per gallon. Construction of new double-shell tanks is estimated to cost about $63 per gallon. Providing 5 to 10 million gallons of available double-shell tank space could enable early retrieval of 5 to 9 high-risk single-shell tanks beyond those identified for retrieval by 2007. These tanks are A-101, AX-101, AX-103, BY-102, C-107, S-105, S-106, S-108, and S-109 (Garfield et al. 2000). This represents a potential to retrieve approximately 14 million total curies, including 3,200 curies of long-lived mobile radionuclides. The results of the study reflect qualitative analyses conducted to identify promising options. The estimated costs are rough-order-of magnitude and, therefore, subject to change. Implementing some of the options would represent a departure from the current baseline and may adversely impact the

  12. Alternative energy options

    International Nuclear Information System (INIS)

    Bennett, K.F.

    1983-01-01

    It is accepted that coal will continue to play the major role in the supply of energy to the country for the remainder of the century. In this paper, however, emphasis has been directed to those options which could supplement coal in an economic and technically sound manner. The general conclusion is that certain forms of solar energy hold the most promise and it is in this direction that research, development and implementation programmes should be directed. Tidal energy, fusion energy, geothermal energy, hydrogen energy and fuel cells are also discussed as alternative energy options

  13. Thermal test options

    International Nuclear Information System (INIS)

    Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

    1993-02-01

    Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods

  14. Lighting Options for Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  15. Nodal involvement in Hodgkin disease and non-Hodgkin lymphoma assessed by magnetic resonance

    International Nuclear Information System (INIS)

    Tesoro Tess, J.D.; Balzarini, L.; Ceglia, E.; Petrillo, R.; Musumeci, R.

    1990-01-01

    Magnetic Resonance Imaging (MRI) demonstrates a good capability in distinguishing nodal involvement in hodgkin disease and nonhodgkin lymphoma both in the chest and in the retroperitoneal areas the initial presentation of the disease. However CT and lymphangiography demonstrated comparable or superior values of accuracy and sensitivity. (H.W.) 4 refs.; 2 tabs

  16. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  17. Unbounded planar domains whose second nodal line does not touch the boundary

    Czech Academy of Sciences Publication Activity Database

    Freitas, P.; Krejčiřík, David

    2007-01-01

    Roč. 14, č. 1 (2007), s. 107-111 ISSN 1073-2780 R&D Projects: GA MŠk LC06002 Institutional research plan: CEZ:AV0Z10480505 Keywords : Dirichlet Laplacian * eigenfunctions * nodal line Subject RIV: BA - General Mathematics Impact factor: 0.702, year: 2007

  18. Computation of Steady State Nodal Voltages for Fast Security Assessment in Power Systems

    DEFF Research Database (Denmark)

    Møller, Jakob Glarbo; Jóhannsson, Hjörtur; Østergaard, Jacob

    2014-01-01

    Development of a method for real-time assess-ment of post-contingency nodal voltages is introduced. Linear network theory is applied in an algorithm that utilizes Thevenin equivalent representation of power systems as seen from every voltage-controlled node in a network. The method is evaluated b...

  19. Short-term displacement and reproducibility of the breast and nodal targets under active breathing control

    NARCIS (Netherlands)

    Moran, Jean M.; Balter, James M.; Ben-David, Merav A.; Marsh, Robin B.; van Herk, Marcel; Pierce, Lori J.

    2007-01-01

    PURPOSE: The short-term displacement and reproducibility of the breast or chest wall, and the internal mammary (IM), infraclavicular (ICV), and supraclavicular (SCV) nodal regions have been assessed as a function of breath-hold state using an active breathing control (ABC) device for patients

  20. An error bound estimate and convergence of the Nodal-LTS N solution in a rectangle

    International Nuclear Information System (INIS)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta; Tullio de Vilhena, Marco

    2005-01-01

    In this work, we report the mathematical analysis concerning error bound estimate and convergence of the Nodal-LTS N solution in a rectangle. For such we present an efficient algorithm, called LTS N 2D-Diag solution for Cartesian geometry