WorldWideScience

Sample records for nodal method applied

  1. Solution and study of nodal neutron transport equation applying the LTSN-DiagExp method

    International Nuclear Information System (INIS)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta; Vilhena, Marco Tullio de; Barros, Ricardo Carvalho de

    2003-01-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtained the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  2. A nodal method applied to a diffusion problem with generalized coefficients

    International Nuclear Information System (INIS)

    Laazizi, A.; Guessous, N.

    1999-01-01

    In this paper, we consider second order neutrons diffusion problem with coefficients in L ∞ (Ω). Nodal method of the lowest order is applied to approximate the problem's solution. The approximation uses special basis functions in which the coefficients appear. The rate of convergence obtained is O(h 2 ) in L 2 (Ω), with a free rectangular triangulation. (authors)

  3. Wielandt method applied to the diffusion equations discretized by finite element nodal methods

    International Nuclear Information System (INIS)

    Mugica R, A.; Valle G, E. del

    2003-01-01

    Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)

  4. Solution and study of nodal neutron transport equation applying the LTS{sub N}-DiagExp method

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, Eliete Biasotto; Pazos, Ruben Panta [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Faculdade de Matematica]. E-mail: eliete@pucrs.br; rpp@mat.pucrs.br; Vilhena, Marco Tullio de [Pontificia Univ. Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil). Instituto de Matematica]. E-mail: vilhena@mat.ufrgs.br; Barros, Ricardo Carvalho de [Universidade do Estado, Nova Friburgo, RJ (Brazil). Instituto Politecnico]. E-mail: ricardo@iprj.uerj.br

    2003-07-01

    In this paper we report advances about the three-dimensional nodal discrete-ordinates approximations of neutron transport equation for Cartesian geometry. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S{sub N} equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS{sub N} method, first applying the Laplace transform to the set of the nodal S{sub N} equations and then obtained the solution by symbolic computation. We include the LTS{sub N} method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS{sub N} approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. (author)

  5. Advances in Spectral Nodal Methods applied to SN Nuclear Reactor Global calculations in Cartesian Geometry

    International Nuclear Information System (INIS)

    Barros, R.C.; Filho, H.A.; Oliveira, F.B.S.; Silva, F.C. da

    2004-01-01

    Presented here are the advances in spectral nodal methods for discrete ordinates (SN) eigenvalue problems in Cartesian geometry. These coarse-mesh methods are based on three ingredients: (i) the use of the standard discretized spatial balance SN equations; (ii) the use of the non-standard spectral diamond (SD) auxiliary equations in the multiplying regions of the domain, e.g. fuel assemblies; and (iii) the use of the non-standard spectral Green's function (SGF) auxiliary equations in the non-multiplying regions of the domain, e.g., the reflector. In slab-geometry the hybrid SD-SGF method generates numerical results that are completely free of spatial truncation errors. In X,Y-geometry, we obtain a system of two 'slab-geometry' SN equations for the node-edge average angular fluxes by transverse-integrating the X,Y-geometry SN equations separately in the y- and then in the x-directions within an arbitrary node of the spatial grid set up on the domain. In this paper, we approximate the transverse leakage terms by constants. These are the only approximations considered in the SD-SGF-constant nodal method, as the source terms, that include scattering and eventually fission events, are treated exactly. Moreover, we describe in this paper the progress of the approximate SN albedo boundary conditions for substituting the non-multiplying regions around the nuclear reactor core. We show numerical results to typical model problems to illustrate the accuracy of spectral nodal methods for coarse-mesh SN criticality calculations. (Author)

  6. The adjoint variational nodal method

    International Nuclear Information System (INIS)

    Laurin-Kovitz, K.; Lewis, E.E.

    1993-01-01

    The widespread use of nodal methods for reactor core calculations in both diffusion and transport approximations has created a demand for the corresponding adjoint solutions as a prerequisite for performing perturbation calculations. With some computational methods, however, the solution of the adjoint problem presents a difficulty; the physical adjoint obtained by discretizing the adjoint equation is not the same as the mathematical adjoint obtained by taking the transpose of the coefficient matrix, which results from the discretization of the forward equation. This difficulty arises, in particular, when interface current nodal methods based on quasi-one-dimensional solution of the diffusion or transport equation are employed. The mathematical adjoint is needed to perform perturbation calculations. The utilization of existing nodal computational algorithms, however, requires the physical adjoint. As a result, similarity transforms or related techniques must be utilized to relate physical and mathematical adjoints. Thus far, such techniques have been developed only for diffusion theory

  7. The analytic nodal method in cylindrical geometry

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomasevic, Djordje I.

    2008-01-01

    Nodal diffusion methods have been used extensively in nuclear reactor calculations, specifically for their performance advantage, but also for their superior accuracy. More specifically, the Analytic Nodal Method (ANM), utilising the transverse integration principle, has been applied to numerous reactor problems with much success. In this work, a nodal diffusion method is developed for cylindrical geometry. Application of this method to three-dimensional (3D) cylindrical geometry has never been satisfactorily addressed and we propose a solution which entails the use of conformal mapping. A set of 1D-equations with an adjusted, geometrically dependent, inhomogeneous source, is obtained. This work describes the development of the method and associated test code, as well as its application to realistic reactor problems. Numerical results are given for the PBMR-400 MW benchmark problem, as well as for a 'cylindrisized' version of the well-known 3D LWR IAEA benchmark. Results highlight the improved accuracy and performance over finite-difference core solutions and investigate the applicability of nodal methods to 3D PBMR type problems. Results indicate that cylindrical nodal methods definitely have a place within PBMR applications, yielding performance advantage factors of 10 and 20 for 2D and 3D calculations, respectively, and advantage factors of the order of 1000 in the case of the LWR problem

  8. A variational synthesis nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Favorite, J.A.; Stacey, W.M.

    1999-01-01

    A self-consistent nodal approximation method for computing discrete ordinates neutron flux distributions has been developed from a variational functional for neutron transport theory. The advantage of the new nodal method formulation is that it is self-consistent in its definition of the homogenized nodal parameters, the construction of the global nodal equations, and the reconstruction of the detailed flux distribution. The efficacy of the method is demonstrated by two-dimensional test problems

  9. Nodal aberration theory applied to freeform surfaces

    Science.gov (United States)

    Fuerschbach, Kyle; Rolland, Jannick P.; Thompson, Kevin P.

    2014-12-01

    When new three-dimensional packages are developed for imaging optical systems, the rotational symmetry of the optical system is often broken, changing its imaging behavior and making the optical performance worse. A method to restore the performance is to use freeform optical surfaces that compensate directly the aberrations introduced from tilting and decentering the optical surfaces. In order to effectively optimize the shape of a freeform surface to restore optical functionality, it is helpful to understand the aberration effect the surface may induce. Using nodal aberration theory the aberration fields induced by a freeform surface in an optical system are explored. These theoretical predications are experimentally validated with the design and implementation of an aberration generating telescope.

  10. Wielandt method applied to the diffusion equations discretized by finite element nodal methods; Metodo de Wielandt aplicado a las ecuaciones de difusion discretizadas por metodos nodales de elemento finito

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, A.; Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: mugica@esfm.ipn.mx

    2003-07-01

    Nowadays the numerical methods of solution to the diffusion equation by means of algorithms and computer programs result so extensive due to the great number of routines and calculations that should carry out, this rebounds directly in the execution times of this programs, being obtained results in relatively long times. This work shows the application of an acceleration method of the convergence of the classic method of those powers that it reduces notably the number of necessary iterations for to obtain reliable results, what means that the compute times they see reduced in great measure. This method is known in the literature like Wielandt method and it has incorporated to a computer program that is based on the discretization of the neutron diffusion equations in plate geometry and stationary state by polynomial nodal methods. In this work the neutron diffusion equations are described for several energy groups and their discretization by means of those called physical nodal methods, being illustrated in particular the quadratic case. It is described a model problem widely described in the literature which is solved for the physical nodal grade schemes 1, 2, 3 and 4 in three different ways: to) with the classic method of the powers, b) method of the powers with the Wielandt acceleration and c) method of the powers with the Wielandt modified acceleration. The results for the model problem as well as for two additional problems known as benchmark problems are reported. Such acceleration method can also be implemented to problems of different geometry to the proposal in this work, besides being possible to extend their application to problems in 2 or 3 dimensions. (Author)

  11. Heterogeneous treatment in the variational nodal method

    International Nuclear Information System (INIS)

    Fanning, T.H.

    1995-01-01

    The variational nodal transport method is reduced to its diffusion form and generalized for the treatment of heterogeneous nodes while maintaining nodal balances. Adapting variational methods to heterogeneous nodes requires the ability to integrate over a node with discontinuous cross sections. In this work, integrals are evaluated using composite gaussian quadrature rules, which permit accurate integration while minimizing computing time. Allowing structure within a nodal solution scheme avoids some of the necessity of cross section homogenization, and more accurately defines the intra-nodal flux shape. Ideally, any desired heterogeneity can be constructed within the node; but in reality, the finite set of basis functions limits the practical resolution to which fine detail can be defined within the node. Preliminary comparison tests show that the heterogeneous variational nodal method provides satisfactory results even if some improvements are needed for very difficult, configurations

  12. A comparison of Nodal methods in neutron diffusion calculations

    Energy Technology Data Exchange (ETDEWEB)

    Tavron, Barak [Israel Electric Company, Haifa (Israel) Nuclear Engineering Dept. Research and Development Div.

    1996-12-01

    The nuclear engineering department at IEC uses in the reactor analysis three neutron diffusion codes based on nodal methods. The codes, GNOMERl, ADMARC2 and NOXER3 solve the neutron diffusion equation to obtain flux and power distributions in the core. The resulting flux distributions are used for the furl cycle analysis and for fuel reload optimization. This work presents a comparison of the various nodal methods employed in the above codes. Nodal methods (also called Coarse-mesh methods) have been designed to solve problems that contain relatively coarse areas of homogeneous composition. In the nodal method parts of the equation that present the state in the homogeneous area are solved analytically while, according to various assumptions and continuity requirements, a general solution is sought out. Thus efficiency of the method for this kind of problems, is very high compared with the finite element and finite difference methods. On the other hand, using this method one can get only approximate information about the node vicinity (or coarse-mesh area, usually a feel assembly of a 20 cm size). These characteristics of the nodal method make it suitable for feel cycle analysis and reload optimization. This analysis requires many subsequent calculations of the flux and power distributions for the feel assemblies while there is no need for detailed distribution within the assembly. For obtaining detailed distribution within the assembly methods of power reconstruction may be applied. However homogenization of feel assembly properties, required for the nodal method, may cause difficulties when applied to fuel assemblies with many absorber rods, due to exciting strong neutron properties heterogeneity within the assembly. (author).

  13. Investigation on generalized Variational Nodal Methods for heterogeneous nodes

    International Nuclear Information System (INIS)

    Wang, Yongping; Wu, Hongchun; Li, Yunzhao; Cao, Liangzhi; Shen, Wei

    2017-01-01

    Highlights: • We developed two heterogeneous nodal methods based on the Variational Nodal Method. • Four problems were solved to evaluate the two heterogeneous nodal methods. • The function expansion method is good at treating continuous-changing heterogeneity. • The finite sub-element method is good at treating discontinuous-changing heterogeneity. - Abstract: The Variational Nodal Method (VNM) is generalized for heterogeneous nodes and applied to four kinds of problems including Molten Salt Reactor (MSR) core problem with continuous cross section profile, Pressurized Water Reactor (PWR) control rod cusping effect problem, PWR whole-core pin-by-pin problem, and heterogeneous PWR core problem without fuel-coolant homogenization in each pin cell. Two approaches have been investigated for the treatment of the nodal heterogeneity in this paper. To concentrate on spatial heterogeneity, diffusion approximation was adopted for the angular variable in neutron transport equation. To provide demonstrative numerical results, the codes in this paper were developed in slab geometry. The first method, named as function expansion (FE) method, expands nodal flux by orthogonal polynomials and the nodal cross sections are also expressed as spatial depended functions. The second path, named as finite sub-element (FS) method, takes advantage of the finite-element method by dividing each node into numbers of homogeneous sub-elements and expanding nodal flux into the combination of linear sub-element trial functions. Numerical tests have been carried out to evaluate the ability of the two nodal (coarse-mesh) heterogeneous VNMs by comparing with the fine-mesh homogeneous VNM. It has been demonstrated that both heterogeneous approaches can handle heterogeneous nodes. The FE method is good at continuous-changing heterogeneity as in the MSR core problem, while the FS method is good at discontinuous-changing heterogeneity such as the PWR pin-by-pin problem and heterogeneous PWR core

  14. Temporal quadratic expansion nodal Green's function method

    International Nuclear Information System (INIS)

    Liu Cong; Jing Xingqing; Xu Xiaolin

    2000-01-01

    A new approach is presented to efficiently solve the three-dimensional space-time reactor dynamics equation which overcomes the disadvantages of current methods. In the Temporal Quadratic Expansion Nodal Green's Function Method (TQE/NGFM), the Quadratic Expansion Method (QEM) is used for the temporal solution with the Nodal Green's Function Method (NGFM) employed for the spatial solution. Test calculational results using TQE/NGFM show that its time step size can be 5-20 times larger than that of the Fully Implicit Method (FIM) for similar precision. Additionally, the spatial mesh size with NGFM can be nearly 20 times larger than that using the finite difference method. So, TQE/NGFM is proved to be an efficient reactor dynamics analysis method

  15. Nodal method for fast reactor analysis

    International Nuclear Information System (INIS)

    Shober, R.A.

    1979-01-01

    In this paper, a nodal method applicable to fast reactor diffusion theory analysis has been developed. This method has been shown to be accurate and efficient in comparison to highly optimized finite difference techniques. The use of an analytic solution to the diffusion equation as a means of determining accurate coupling relationships between nodes has been shown to be highly accurate and efficient in specific two-group applications, as well as in the current multigroup method

  16. Nodal methods in numerical reactor calculations

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del

    2004-01-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  17. Nodal methods in numerical reactor calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hennart, J P [UNAM, IIMAS, A.P. 20-726, 01000 Mexico D.F. (Mexico); Valle, E del [National Polytechnic Institute, School of Physics and Mathematics, Department of Nuclear Engineering, Mexico, D.F. (Mexico)

    2004-07-01

    The present work describes the antecedents, developments and applications started in 1972 with Prof. Hennart who was invited to be part of the staff of the Nuclear Engineering Department at the School of Physics and Mathematics of the National Polytechnic Institute. Since that time and up to 1981, several master theses based on classical finite element methods were developed with applications in point kinetics and in the steady state as well as the time dependent multigroup diffusion equations. After this period the emphasis moved to nodal finite elements in 1, 2 and 3D cartesian geometries. All the thesis were devoted to the numerical solution of the neutron multigroup diffusion and transport equations, few of them including the time dependence, most of them related with steady state diffusion equations. The main contributions were as follows: high order nodal schemes for the primal and mixed forms of the diffusion equations, block-centered finite-differences methods, post-processing, composite nodal finite elements for hexagons, and weakly and strongly discontinuous schemes for the transport equation. Some of these are now being used by several researchers involved in nuclear fuel management. (Author)

  18. SPANDOM - source projection analytic nodal discrete ordinates method

    International Nuclear Information System (INIS)

    Kim, Tae Hyeong; Cho, Nam Zin

    1994-01-01

    We describe a new discrete ordinates nodal method for the two-dimensional transport equation. We solve the discrete ordinates equation analytically after the source term is projected and represented in polynomials. The method is applied to two fast reactor benchmark problems and compared with the TWOHEX code. The results indicate that the present method accurately predicts not only multiplication factor but also flux distribution

  19. A nodal method based on matrix-response method

    International Nuclear Information System (INIS)

    Rocamora Junior, F.D.; Menezes, A.

    1982-01-01

    A nodal method based in the matrix-response method, is presented, and its application to spatial gradient problems, such as those that exist in fast reactors, near the core - blanket interface, is investigated. (E.G.) [pt

  20. Comparison of neutronic transport equation resolution nodal methods

    International Nuclear Information System (INIS)

    Zamonsky, O.M.; Gho, C.J.

    1990-01-01

    In this work, some transport equation resolution nodal methods are comparatively studied: the constant-constant (CC), linear-nodal (LN) and the constant-quadratic (CQ). A nodal scheme equivalent to finite differences has been used for its programming, permitting its inclusion in existing codes. Some bidimensional problems have been solved, showing that linear-nodal (LN) are, in general, obtained with accuracy in CPU shorter times. (Author) [es

  1. A practical implementation of the higher-order transverse-integrated nodal diffusion method

    International Nuclear Information System (INIS)

    Prinsloo, Rian H.; Tomašević, Djordje I.; Moraal, Harm

    2014-01-01

    Highlights: • A practical higher-order nodal method is developed for diffusion calculations. • The method resolves the issue of the transverse leakage approximation. • The method achieves much superior accuracy as compared to standard nodal methods. • The calculational cost is only about 50% greater than standard nodal methods. • The method is packaged in a module for connection to existing nodal codes. - Abstract: Transverse-integrated nodal diffusion methods currently represent the standard in full core neutronic simulation. The primary shortcoming of this approach is the utilization of the quadratic transverse leakage approximation. This approach, although proven to work well for typical LWR problems, is not consistent with the formulation of nodal methods and can cause accuracy and convergence problems. In this work, an improved, consistent quadratic leakage approximation is formulated, which derives from the class of higher-order nodal methods developed some years ago. Further, a number of iteration schemes are developed around this consistent quadratic leakage approximation which yields accurate node average results in much improved calculational times. The most promising of these iteration schemes results from utilizing the consistent leakage approximation as a correction method to the standard quadratic leakage approximation. Numerical results are demonstrated on a set of benchmark problems and further applied to a realistic reactor problem, particularly the SAFARI-1 reactor, operating at Necsa, South Africa. The final optimal solution strategy is packaged into a standalone module which may simply be coupled to existing nodal diffusion codes

  2. Nodal integral method for the neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    The nodal methodology is based on retaining a higher a higher degree of analyticity in the process of deriving the discrete-variable equations compared to conventional numerical methods. As a result, extensive numerical testing of nodal methods developed for a wide variety of partial differential equations and comparison of the results to conventional methods have established the superior accuracy of nodal methods on coarse meshes. Moreover, these tests have shown that nodal methods are more computationally efficient than finite difference and finite-element methods in the sense that they require shorter CPU times to achieve comparable accuracy in the solutions. However, nodal formalisms and the final discrete-variable equations they produce are, in general, more complicated than their conventional counterparts. This, together with anticipated difficulties in applying the transverse-averaging procedure in curvilinear coordinates, has limited the applications of nodal methods, so far, to Cartesian geometry, and with additional approximations to hexagonal geometry. In this paper the authors report recent progress in deriving and numerically implementing a nodal integral method (NIM) for solving the neutron diffusion equation in cylindrical r-z geometry. Also, presented are comparisons of numerical solutions to two test problems with those obtained by the Exterminator-2 code, which indicate the superior accuracy of the nodal integral method solutions on much coarser meshes

  3. A study of the literature on nodal methods in reactor physics calculations

    International Nuclear Information System (INIS)

    Van de Wetering, T.F.H.

    1993-01-01

    During the last few decades several calculation methods have been developed for the three-dimensional analysis of a reactor core. A literature survey was carried out to gain insights in the starting points and method of operation of the advanced nodal methods. These methods are applied in reactor core analyses of large nuclear power reactors, because of their high computing speed. The so-called Nodal-Expansion method is described in detail

  4. A nodal method based on the response-matrix method

    International Nuclear Information System (INIS)

    Cunha Menezes Filho, A. da; Rocamora Junior, F.D.

    1983-02-01

    A nodal approach based on the Response-Matrix method is presented with the purpose of investigating the possibility of mixing two different allocations in the same problem. It is found that the use of allocation of albedo combined with allocation of direct reflection produces good results for homogeneous fast reactor configurations. (Author) [pt

  5. A Hennart nodal method for the diffusion equation

    International Nuclear Information System (INIS)

    Lesaint, P.; Noceir, S.; Verwaerde, D.

    1995-01-01

    A modification of the Hennart nodal method for neutron diffusion problems is presented. The final system of equations obtained by this method is not positive definite. However, a flux elimination technique leads to a simple positive definite system, which can be solved by the traditional iterative methods. Calculations of a two-dimensional International Atomic Energy Agency benchmark problem are performed and compared with results of the original Hennart nodal method and some finite element methods. The high computational efficiency of this modified nodal method is clearly demonstrated

  6. A nodal expansion method using conformal mapping for hexagonal geometry

    International Nuclear Information System (INIS)

    Chao, Y.A.; Shatilla, Y.A.

    1993-01-01

    Hexagonal nodal methods adopting the same transverse integration process used for square nodal methods face the subtle theoretical problem that this process leads to highly singular nonphysical terms in the diffusion equation. Lawrence, in developing the DIF3D-N code, tried to approximate the singular terms with relatively simple polynomials. In the HEX-NOD code, Wagner ignored the singularities to simplify the diffusion equation and introduced compensating terms in the nodal equations to restore the nodal balance relation. More recently developed hexagonal nodal codes, such as HEXPE-DITE and the hexagonal version of PANTHER, used methods similar to Wagner's. It will be shown that for light water reactor applications, these two different approximations significantly degraded the accuracy of the respective method as compared to the established square nodal methods. Alternatively, the method of conformal mapping was suggested to map a hexagon to a rectangle, with the unique feature of leaving the diffusion operator invariant, thereby fundamentally resolving the problems associated with transverse integration. This method is now implemented in the Westinghouse hexagonal nodal code ANC-H. In this paper we report on the results of comparing the three methods for a variety of problems via benchmarking against the fine-mesh finite difference code

  7. Benchmarking with high-order nodal diffusion methods

    International Nuclear Information System (INIS)

    Tomasevic, D.; Larsen, E.W.

    1993-01-01

    Significant progress in the solution of multidimensional neutron diffusion problems was made in the late 1970s with the introduction of nodal methods. Modern nodal reactor analysis codes provide significant improvements in both accuracy and computing speed over earlier codes based on fine-mesh finite difference methods. In the past, the performance of advanced nodal methods was determined by comparisons with fine-mesh finite difference codes. More recently, the excellent spatial convergence of nodal methods has permitted their use in establishing reference solutions for some important bench-mark problems. The recent development of the self-consistent high-order nodal diffusion method and its subsequent variational formulation has permitted the calculation of reference solutions with one node per assembly mesh size. In this paper, we compare results for four selected benchmark problems to those obtained by high-order response matrix methods and by two well-known state-of-the-art nodal methods (the open-quotes analyticalclose quotes and open-quotes nodal expansionclose quotes methods)

  8. Bilinear nodal transport method in weighted diamond difference form

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    Nodal methods have been developed and implemented for the numerical solution of the discrete ordinates neutron transport equation. Numerical testing of these methods and comparison of their results to those obtained by conventional methods have established the high accuracy of nodal methods. Furthermore, it has been suggested that the linear-linear approximation is the most computationally efficient, practical nodal approximation. Indeed, this claim has been substantiated by comparing the accuracy in the solution, and the CPU time required to achieve convergence to that solution by several nodal approximations, as well as the diamond difference scheme. Two types of linear-linear nodal methods have been developed in the literature: analytic linear-linear (NLL) methods, in which the transverse-leakage terms are derived analytically, and approximate linear-linear (PLL) methods, in which these terms are approximated. In spite of their higher accuracy, NLL methods result in very complicated discrete-variable equations that exhibit a high degree of coupling, thus requiring special solution algorithms. On the other hand, the sacrificed accuracy in PLL methods is compensated for by the simple discrete-variable equations and diamond-difference-like solution algorithm. In this paper the authors outline the development of an NLL nodal method, the bilinear method, which can be written in a weighted diamond difference form with one spatial weight per dimension that is analytically derived rather than preassigned in an ad hoc fashion

  9. Modifying nodal pricing method considering market participants optimality and reliability

    Directory of Open Access Journals (Sweden)

    A. R. Soofiabadi

    2015-06-01

    Full Text Available This paper develops a method for nodal pricing and market clearing mechanism considering reliability of the system. The effects of components reliability on electricity price, market participants’ profit and system social welfare is considered. This paper considers reliability both for evaluation of market participant’s optimality as well as for fair pricing and market clearing mechanism. To achieve fair pricing, nodal price has been obtained through a two stage optimization problem and to achieve fair market clearing mechanism, comprehensive criteria has been introduced for optimality evaluation of market participant. Social welfare of the system and system efficiency are increased under proposed modified nodal pricing method.

  10. Extension of the analytic nodal method to four energy groups

    International Nuclear Information System (INIS)

    Parsons, D.K.; Nigg, D.W.

    1985-01-01

    The Analytic Nodal Method is one of several recently-developed coarse mesh numerical methods for efficiently and accurately solving the multidimensional static and transient neutron diffusion equations. This summary describes a mathematically rigorous extension of the Analytic Nodal Method to the frequently more physically realistic four-group case. A few general theoretical considerations are discussed, followed by some calculated results for a typical steady-state two-dimensional PWR quarter core application. 8 refs

  11. The implementation of a simplified spherical harmonics semi-analytic nodal method in PANTHER

    International Nuclear Information System (INIS)

    Hall, S.K.; Eaton, M.D.; Knight, M.P.

    2013-01-01

    Highlights: ► An SP N nodal method is proposed. ► Consistent CMFD derived and tested. ► Mark vacuum boundary conditions applied. ► Benchmarked against other diffusions and transport codes. - Abstract: In this paper an SP N nodal method is proposed which can utilise existing multi-group neutron diffusion solvers to obtain the solution. The semi-analytic nodal method is used in conjunction with a coarse mesh finite difference (CMFD) scheme to solve the resulting set of equations. This is compared against various nuclear benchmarks to show that the method is capable of computing an accurate solution for practical cases. A few different CMFD formulations are implemented and their performance compared. It is found that the effective diffusion coefficent (EDC) can provide additional stability and require less power iterations on a coarse mesh. A re-arrangement of the EDC is proposed that allows the iteration matrix to be computed at the beginning of a calculation. Successive nodal updates only modify the source term unlike existing CMFD methods which update the iteration matrix. A set of Mark vacuum boundary conditions are also derived which can be applied to the SP N nodal method extending its validity. This is possible due to a similarity transformation of the angular coupling matrix, which is used when applying the nodal method. It is found that the Marshak vacuum condition can also be derived, but would require the significant modification of existing neutron diffusion codes to implement it

  12. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  13. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  14. BEACON: An application of nodal methods for operational support

    International Nuclear Information System (INIS)

    Boyd, W.A.; Nguyen, T.Q.

    1992-01-01

    A practical application of nodal methods is on-line plant operational support. However, to enable plant personnel to take full advantage of a nodal model to support plant operations, (a) a core nodal model must always be up to date with the current core history and conditions, (b) the nodal methods must be fast enough to allow numerous core calculations to be performed in minutes to support engineering decisions, and (c) the system must be easily accessible to engineering personnel at the reactor, their offices, or any other location considered appropriate. A core operational support package developed by Westinghouse called BEACON (best estimate analysis of core operations - nuclear) has been installed at several plants. Results from these plants and numerous in-core flux maps analyzed have demonstrated the accuracy of the model and the effectiveness of the methodology

  15. An integral nodal variational method for multigroup criticality calculations

    International Nuclear Information System (INIS)

    Lewis, E.E.; Tsoulfanidis, N.

    2003-01-01

    An integral formulation of the variational nodal method is presented and applied to a series of benchmark critically problems. The method combines an integral transport treatment of the even-parity flux within the spatial node with an odd-parity spherical harmonics expansion of the Lagrange multipliers at the node interfaces. The response matrices that result from this formulation are compatible with those in the VARIANT code at Argonne National Laboratory. Either homogeneous or heterogeneous nodes may be employed. In general, for calculations requiring higher-order angular approximations, the integral method yields solutions with comparable accuracy while requiring substantially less CPU time and memory than the standard spherical harmonics expansion using the same spatial approximations. (author)

  16. Application of the SPH method in nodal diffusion analyses of SFR cores

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Evgeny; Fridman, Emil [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety; Mikityuk, K. [Paul Scherrer Institut, Villigen (Switzerland)

    2016-07-01

    The current study investigated the potential of the SPH method, applied to correct the few-group XS produced by Serpent, to further improve the accuracy of the nodal diffusion solutions. The procedure for the generation of SPH-corrected few-group XS is presented in the paper. The performance of the SPH method was tested on a large oxide SFR core from the OECD/NEA SFR benchmark. The reference SFR core was modeled with the DYN3D and PARCS nodal diffusion codes using the SPH-corrected few-group XS generated by Serpent. The nodal diffusion results obtained with and without SPH correction were compared to the reference full-core Serpent MC solution. It was demonstrated that the application of the SPH method improves the accuracy of the nodal diffusion solutions, particularly for the rodded core state.

  17. Discontinuous nodal schemes applied to the bidimensional neutron transport equation

    International Nuclear Information System (INIS)

    Delfin L, A.; Valle G, E. Del; Hennart B, J.P.

    1996-01-01

    In this paper several strong discontinuous nodal schemes are described, starting from the one that has only two interpolation parameters per cell to the one having ten. Their application to the spatial discretization of the neutron transport equation in X-Y geometry is also described, giving, for each one of the nodal schemes, the approximation for the angular neutron flux that includes the set of interpolation parameters and the corresponding polynomial space. Numerical results were obtained for several test problems presenting here the problem with the highest degree of difficulty and their comparison with published results 1,2 . (Author)

  18. Analytic function expansion nodal method for nuclear reactor core design

    International Nuclear Information System (INIS)

    Noh, Hae Man

    1995-02-01

    In most advanced nodal methods the transverse integration is commonly used to reduce the multi-dimensional diffusion equation into equivalent one- dimensional diffusion equations when derving the nodal coupling equations. But the use of the transverse integration results in some limitations. The first limitation is that the transverse leakage term which appears in the transverse integration procedure must be appropriately approximated. The second limitation is that the one-dimensional flux shapes in each spatial direction resulted from the nodal calculation are not accurate enough to be directly used in reconstructing the pinwise flux distributions. Finally the transverse leakage defined for a non-rectangular node such as a hexagonal node or a triangular node is too complicated to be easily handled and may contain non-physical singular terms of step-function and delta-function types. In this thesis, the Analytic Function Expansion Nodal (AFEN) method and its two variations : the Polynomial Expansion Nodal (PEN) method and the hybrid of the AFEN and PEN methods, have been developed to overcome the limitations of the transverse integration procedure. All of the methods solve the multidimensional diffusion equation without the transverse integration. The AFEN method which we believe is the major contribution of this study to the reactor core analysis expands the homogeneous flux distributions within a node in non-separable analytic basis functions satisfying the neutron diffusion equations at any point of the node and expresses the coefficients of the flux expansion in terms of the nodal unknowns which comprise a node-average flux, node-interface fluxes, and corner-point fluxes. Then, the nodal coupling equations composed of the neutron balance equations, the interface current continuity equations, and the corner-point leakage balance equations are solved iteratively to determine all the nodal unknowns. Since the AFEN method does not use the transverse integration in

  19. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  20. Nodal methods for problems in fluid mechanics and neutron transport

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1985-01-01

    A new high-accuracy, coarse-mesh, nodal integral approach is developed for the efficient numerical solution of linear partial differential equations. It is shown that various special cases of this general nodal integral approach correspond to several high efficiency nodal methods developed recently for the numerical solution of neutron diffusion and neutron transport problems. The new approach is extended to the nonlinear Navier-Stokes equations of fluid mechanics; its extension to these equations leads to a new computational method, the nodal integral method which is implemented for the numerical solution of these equations. Application to several test problems demonstrates the superior computational efficiency of this new method over previously developed methods. The solutions obtained for several driven cavity problems are compared with the available experimental data and are shown to be in very good agreement with experiment. Additional comparisons also show that the coarse-mesh, nodal integral method results agree very well with the results of definitive ultra-fine-mesh, finite-difference calculations for the driven cavity problem up to fairly high Reynolds numbers

  1. Space-angle approximations in the variational nodal method

    International Nuclear Information System (INIS)

    Lewis, E. E.; Palmiotti, G.; Taiwo, T.

    1999-01-01

    The variational nodal method is formulated such that the angular and spatial approximations maybe examined separately. Spherical harmonic, simplified spherical harmonic, and discrete ordinate approximations are coupled to the primal hybrid finite element treatment of the spatial variables. Within this framework, two classes of spatial trial functions are presented: (1) orthogonal polynomials for the treatment of homogeneous nodes and (2) bilinear finite subelement trial functions for the treatment of fuel assembly sized nodes in which fuel-pin cell cross sections are represented explicitly. Polynomial and subelement trial functions are applied to benchmark water-reactor problems containing MOX fuel using spherical harmonic and simplified spherical harmonic approximations. The resulting accuracy and computing costs are compared

  2. Nodal spectrum method for solving neutron diffusion equation

    International Nuclear Information System (INIS)

    Sanchez, D.; Garcia, C. R.; Barros, R. C. de; Milian, D.E.

    1999-01-01

    Presented here is a new numerical nodal method for solving static multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X, Y directions and then considering flat approximations for the current. These flat approximations are the only approximations that are considered in this method, as a result the numerical solutions are completely free from truncation errors. We show numerical results to illustrate the methods accuracy for coarse mesh calculations

  3. A theoretical study on a convergence problem of nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Shaohong, Z.; Ziyong, L. [Shanghai Jiao Tong Univ., 1954 Hua Shan Road, Shanghai, 200030 (China); Chao, Y. A. [Westinghouse Electric Company, P. O. Box 355, Pittsburgh, PA 15230-0355 (United States)

    2006-07-01

    The effectiveness of modern nodal methods is largely due to its use of the information from the analytical flux solution inside a homogeneous node. As a result, the nodal coupling coefficients depend explicitly or implicitly on the evolving Eigen-value of a problem during its solution iteration process. This poses an inherently non-linear matrix Eigen-value iteration problem. This paper points out analytically that, whenever the half wave length of an evolving node interior analytic solution becomes smaller than the size of that node, this non-linear iteration problem can become inherently unstable and theoretically can always be non-convergent or converge to higher order harmonics. This phenomenon is confirmed, demonstrated and analyzed via the simplest 1-D problem solved by the simplest analytic nodal method, the Analytic Coarse Mesh Finite Difference (ACMFD, [1]) method. (authors)

  4. Super-nodal methods for space-time kinetics

    Science.gov (United States)

    Mertyurek, Ugur

    The purpose of this research has been to develop an advanced Super-Nodal method to reduce the run time of 3-D core neutronics models, such as in the NESTLE reactor core simulator and FORMOSA nuclear fuel management optimization codes. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. However, as the number of spatial nodes decreases, the error in the solution increases. The Super-Nodal method reduces the error associated with the use of coarse nodes in the analyses by providing a new set of cross sections and ADFs (Assembly Discontinuity Factors) for the new nodalization. These so called homogenization parameters are obtained by employing consistent collapsing technique. During this research a new type of singularity, namely "fundamental mode singularity", is addressed in the ANM (Analytical Nodal Method) solution. The "Coordinate Shifting" approach is developed as a method to address this singularity. Also, the "Buckling Shifting" approach is developed as an alternative and more accurate method to address the zero buckling singularity, which is a more common and well known singularity problem in the ANM solution. In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the transverse leakage and collapsed diffusion coefficient, which generally are the two main approximations in the ANM methodology. Unfortunately, the proposed new transverse leakage and diffusion coefficient approximations failed to provide a consistent improvement to the current methodology. However, improvement in the Super-Nodal solution is achieved by updating the homogenization parameters at several time points during a transient. The update is achieved by employing a refinement technique similar to pin-power reconstruction. A simple error analysis based on the relative

  5. Extension of the linear nodal method to large concrete building calculations

    International Nuclear Information System (INIS)

    Childs, R.L.; Rhoades, W.A.

    1985-01-01

    The implementation of the linear nodal method in the TORT code is described, and the results of a mesh refinement study to test the effectiveness of the linear nodal and weighted diamond difference methods available in TORT are presented

  6. New procedure for criticality search using coarse mesh nodal methods

    International Nuclear Information System (INIS)

    Pereira, Wanderson F.; Silva, Fernando C. da; Martinez, Aquilino S.

    2011-01-01

    The coarse mesh nodal methods have as their primary goal to calculate the neutron flux inside the reactor core. Many computer systems use a specific form of calculation, which is called nodal method. In classical computing systems that use the criticality search is made after the complete convergence of the iterative process of calculating the neutron flux. In this paper, we proposed a new method for the calculation of criticality, condition which will be over very iterative process of calculating the neutron flux. Thus, the processing time for calculating the neutron flux was reduced by half compared with the procedure developed by the Nuclear Engineering Program of COPPE/UFRJ (PEN/COPPE/UFRJ). (author)

  7. New procedure for criticality search using coarse mesh nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Wanderson F.; Silva, Fernando C. da; Martinez, Aquilino S., E-mail: wneto@con.ufrj.b, E-mail: fernando@con.ufrj.b, E-mail: Aquilino@lmp.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    The coarse mesh nodal methods have as their primary goal to calculate the neutron flux inside the reactor core. Many computer systems use a specific form of calculation, which is called nodal method. In classical computing systems that use the criticality search is made after the complete convergence of the iterative process of calculating the neutron flux. In this paper, we proposed a new method for the calculation of criticality, condition which will be over very iterative process of calculating the neutron flux. Thus, the processing time for calculating the neutron flux was reduced by half compared with the procedure developed by the Nuclear Engineering Program of COPPE/UFRJ (PEN/COPPE/UFRJ). (author)

  8. The variational nodal method: history and recent accomplishments

    International Nuclear Information System (INIS)

    Lewis, E.E.

    2004-01-01

    The variational nodal method combines spherical harmonics expansions in angle with hybrid finite element techniques is space to obtain multigroup transport response matrix algorithms applicable to both deep penetration and reactor core physics problems. This survey briefly recounts the method's history and reviews its capabilities. The variational basis for the approach is presented and two methods for obtaining discretized equations in the form of response matrices are detailed. The first is that contained the widely used VARIANT code, while the second incorporates newly developed integral transport techniques into the variational nodal framework. The two approaches are combined with a finite sub element formulation to treat heterogeneous nodes. Applications are presented for both a deep penetration problem and to an OECD benchmark consisting of LWR MOX fuel assemblies. Ongoing work is discussed. (Author)

  9. The variational nodal method: some history and recent activity

    International Nuclear Information System (INIS)

    Lewis, E.E.; Smith, M.A.; Palmiotti, G.

    2005-01-01

    The variational nodal method combines spherical harmonics expansions in angle with hybrid finite element techniques in space to obtain multigroup transport response matrix algorithms applicable to a wide variety of reactor physics problems. This survey briefly recounts the method's history and reviews its capabilities. Two methods for obtaining discretized equations in the form of response matrices are compared. The first is that contained the widely used VARIANT code, while the second incorporates more recently developed integral transport techniques into the variational nodal framework. The two approaches are combined with a finite sub-element formulation to treat heterogeneous nodes. Results are presented for application to a deep penetration problem and to an OECD benchmark consisting of LWR Mox fuel assemblies. Ongoing work is discussed. (authors)

  10. Analysis of the applicability of acceleration methods for a triangular prism geometry nodal diffusion code

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Okumura, Keisuke

    2002-11-01

    A prototype version of a diffusion code has been developed to analyze the hexagonal core as reduced moderation reactor and the applicability of some acceleration methods have been investigated to accelerate the convergence of the iterative solution method. The hexagonal core is divided into regular triangular prisms in the three-dimensional code MOSRA-Prism and a polynomial expansion nodal method is applied to approximate the neutron flux distribution by a cubic polynomial. The multi-group diffusion equation is solved iteratively with ordinal inner and outer iterations and the effectiveness of acceleration methods is ascertained by applying an adaptive acceleration method and a neutron source extrapolation method, respectively. The formulation of the polynomial expansion nodal method is outlined in the report and the local and global effectiveness of the acceleration methods is discussed with various sample calculations. A new general expression of vacuum boundary condition, derived in the formulation is also described. (author)

  11. An alternative solver for the nodal expansion method equations - 106

    International Nuclear Information System (INIS)

    Carvalho da Silva, F.; Carlos Marques Alvim, A.; Senra Martinez, A.

    2010-01-01

    An automated procedure for nuclear reactor core design is accomplished by using a quick and accurate 3D nodal code, aiming at solving the diffusion equation, which describes the spatial neutron distribution in the reactor. This paper deals with an alternative solver for nodal expansion method (NEM), with only two inner iterations (mesh sweeps) per outer iteration, thus having the potential to reduce the time required to calculate the power distribution in nuclear reactors, but with accuracy similar to the ones found in conventional NEM. The proposed solver was implemented into a computational system which, besides solving the diffusion equation, also solves the burnup equations governing the gradual changes in material compositions of the core due to fuel depletion. Results confirm the effectiveness of the method for practical purposes. (authors)

  12. NOMAD: a nodal microscopic analysis method for nuclear fuel depletion

    International Nuclear Information System (INIS)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Recently developed assembly homogenization techniques made possible very efficient global burnup calculations based on modern nodal methods. There are two possible ways of modeling the global depletion process: macroscopic and microscopic depletion models. Using a microscopic global depletion approach NOMAD (NOdal Microscopic Analysis Method for Nuclear Fuel Depletion), a multigroup, two- and three-dimensional, multicycle depletion code was devised. The code uses the ILLICO nodal diffusion model. The formalism of the ILLICO methodology is extended to treat changes in the macroscopic cross sections during a depletion cycle without recomputing the coupling coefficients. This results in a computationally very efficient method. The code was tested against a well-known depletion benchmark problem. In this problem a two-dimensional pressurized water reactor is depleted through two cycles. Both cycles were run with 1 x 1 and 2 x 2 nodes per assembly. It is obvious that the one node per assembly solution gives unacceptable results while the 2 x 2 solution gives relative power errors consistently below 2%

  13. Applications of a systematic homogenization theory for nodal diffusion methods

    International Nuclear Information System (INIS)

    Zhang, Hong-bin; Dorning, J.J.

    1992-01-01

    The authors recently have developed a self-consistent and systematic lattice cell and fuel bundle homogenization theory based on a multiple spatial scales asymptotic expansion of the transport equation in the ratio of the mean free path to the reactor characteristics dimension for use with nodal diffusion methods. The mathematical development leads naturally to self-consistent analytical expressions for homogenized diffusion coefficients and cross sections and flux discontinuity factors to be used in nodal diffusion calculations. The expressions for the homogenized nuclear parameters that follow from the systematic homogenization theory (SHT) are different from those for the traditional flux and volume-weighted (FVW) parameters. The calculations summarized here show that the systematic homogenization theory developed recently for nodal diffusion methods yields accurate values for k eff and assembly powers even when compared with the results of a fine mesh transport calculation. Thus, it provides a practical alternative to equivalence theory and GET (Ref. 3) and to simplified equivalence theory, which requires auxiliary fine-mesh calculations for assemblies embedded in a typical environment to determine the discontinuity factors and the equivalent diffusion coefficient for a homogenized assembly

  14. Application of nonlinear nodal diffusion method for a small research reactor

    International Nuclear Information System (INIS)

    Jaradat, Mustafa K.; Alawneh, Luay M.; Park, Chang Je; Lee, Byungchul

    2014-01-01

    Highlights: • We applied nonlinear unified nodal method for 10 MW IAEA MTR benchmark problem. • TRITION–NEWT system was used to obtain two-group burnup dependent cross sections. • The criticality and power distribution compared with reference (IAEA-TECDOC-233). • Comparison between different fuel materials was conducted. • Satisfactory results were provided using UNM for MTR core calculations. - Abstract: Nodal diffusion methods are usually used for LWR calculations and rarely used for research reactor calculations. A unified nodal method with an implementation of the coarse mesh finite difference acceleration was developed for use in plate type research reactor calculations. It was validated for two PWR benchmark problems and then applied for IAEA MTR benchmark problem for static calculations to check the validity and accuracy of the method. This work was conducted to investigate the unified nodal method capability to treat material testing reactor cores. A 10 MW research reactor core is considered with three calculation cases for low enriched uranium fuel depending on the core burnup status of fresh, beginning-of-life, and end-of-life cores. The validation work included criticality calculations, flux distribution, and power distribution; in addition, a comparison between different fuel materials with the same uranium content was conducted. The homogenized two-group cross sections were generated using the TRITON–NEWT system. The results were compared with a reference, which was taken from IAEA-TECDOC-233. The unified nodal method provides satisfactory results for an all-rod out case, and the three-dimensional, two-group diffusion model can be considered accurate enough for MTR core calculations

  15. Five-point form of the nodal diffusion method and comparison with finite-difference

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1988-01-01

    Nodal Methods have been derived, implemented and numerically tested for several problems in physics and engineering. In the field of nuclear engineering, many nodal formalisms have been used for the neutron diffusion equation, all yielding results which were far more computationally efficient than conventional Finite Difference (FD) and Finite Element (FE) methods. However, not much effort has been devoted to theoretically comparing nodal and FD methods in order to explain the very high accuracy of the former. In this summary we outline the derivation of a simple five-point form for the lowest order nodal method and compare it to the traditional five-point, edge-centered FD scheme. The effect of the observed differences on the accuracy of the respective methods is established by considering a simple test problem. It must be emphasized that the nodal five-point scheme derived here is mathematically equivalent to previously derived lowest order nodal methods. 7 refs., 1 tab

  16. Numerical divergence effects of equivalence theory in the nodal expansion method

    International Nuclear Information System (INIS)

    Zika, M.R.; Downar, T.J.

    1993-01-01

    Accurate solutions of the advanced nodal equations require the use of discontinuity factors (DFs) to account for the homogenization errors that are inherent in all coarse-mesh nodal methods. During the last several years, nodal equivalence theory (NET) has successfully been implemented for the Cartesian geometry and has received widespread acceptance in the light water reactor industry. The extension of NET to other reactor types has had limited success. Recent efforts to implement NET within the framework of the nodal expansion method have successfully been applied to the fast breeder reactor. However, attempts to apply the same methods to thermal reactors such as the Modular High-Temperature Gas Reactor (MHTGR) have led to numerical divergence problems that can be attributed directly to the magnitude of the DFs. In the work performed here, it was found that the numerical problems occur in the inner and upscatter iterations of the solution algorithm. These iterations use a Gauss-Seidel iterative technique that is always convergent for problems with unity DFs. However, for an MHTGR model that requires large DFs, both the inner and upscatter iterations were divergent. Initial investigations into methods for bounding the DFs have proven unsatisfactory as a means of remedying the convergence problems. Although the DFs could be bounded to yield a convergent solution, several cases were encountered where the resulting flux solution was less accurate than the solution without DFs. For the specific case of problems without upscattering, an alternate numerical method for the inner iteration, an LU decomposition, was identified and shown to be feasible

  17. Evaluation of the use of nodal methods for MTR neutronic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reitsma, F.; Mueller, E.Z.

    1997-08-01

    Although modern nodal methods are used extensively in the nuclear power industry, their use for research reactor analysis has been very limited. The suitability of nodal methods for material testing reactor analysis is investigated with the emphasis on the modelling of the core region (fuel assemblies). The nodal approach`s performance is compared with that of the traditional finite-difference fine mesh approach. The advantages of using nodal methods coupled with integrated cross section generation systems are highlighted, especially with respect to data preparation, simplicity of use and the possibility of performing a great variety of reactor calculations subject to strict time limitations such as are required for the RERTR program.

  18. Error Estimation and Accuracy Improvements in Nodal Transport Methods

    International Nuclear Information System (INIS)

    Zamonsky, O.M.

    2000-01-01

    The accuracy of the solutions produced by the Discrete Ordinates neutron transport nodal methods is analyzed.The obtained new numerical methodologies increase the accuracy of the analyzed scheems and give a POSTERIORI error estimators. The accuracy improvement is obtained with new equations that make the numerical procedure free of truncation errors and proposing spatial reconstructions of the angular fluxes that are more accurate than those used until present. An a POSTERIORI error estimator is rigurously obtained for one dimensional systems that, in certain type of problems, allows to quantify the accuracy of the solutions. From comparisons with the one dimensional results, an a POSTERIORI error estimator is also obtained for multidimensional systems. LOCAL indicators, which quantify the spatial distribution of the errors, are obtained by the decomposition of the menctioned estimators. This makes the proposed methodology suitable to perform adaptive calculations. Some numerical examples are presented to validate the theoretical developements and to illustrate the ranges where the proposed approximations are valid

  19. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    International Nuclear Information System (INIS)

    Verdu, G.; Capilla, M.; Talavera, C. F.; Ginestar, D.

    2012-01-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  20. Nodal collocation approximation for the multidimensional PL equations applied to transport source problems

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain); Capilla, M.; Talavera, C. F.; Ginestar, D. [Dept. of Nuclear Engineering, Departamento de Matematica Aplicada, Universitat Politecnica de Valencia, Cami de Vera, 14, 46022. Valencia (Spain)

    2012-07-01

    PL equations are classical high order approximations to the transport equations which are based on the expansion of the angular dependence of the angular neutron flux and the nuclear cross sections in terms of spherical harmonics. A nodal collocation method is used to discretize the PL equations associated with a neutron source transport problem. The performance of the method is tested solving two 1D problems with analytical solution for the transport equation and a classical 2D problem. (authors)

  1. A spectral nodal method for discrete ordinates problems in x,y geometry

    International Nuclear Information System (INIS)

    Barros, R.C. de; Larsen, E.W.

    1991-06-01

    A new nodal method is proposed for the solution of S N problems in x- y-geometry. This method uses the Spectral Green's Function (SGF) scheme for solving the one-dimensional transverse-integrated nodal transport equations with no spatial truncation error. Thus, the only approximations in the x, y-geometry nodal method occur in the transverse leakage terms, as in diffusion theory. We approximate these leakage terms using a flat or constant approximation, and we refer to the resulting method as the SGF-Constant Nodal (SGF-CN) method. We show in numerical calculations that the SGF-CN method is much more accurate than other well-known transport nodal methods for coarse-mesh deep-penetration S N problems, even though the transverse leakage terms are approximated rather simply. (author)

  2. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, E.; Ruggieri, J.M. [CEA Cadarache (DER/SPRC/LEPH), 13 - Saint-Paul-lez-Durance (France). Dept. d' Etudes des Reacteurs; Santandrea, S. [CEA Saclay, Dept. Modelisation de Systemes et Structures DM2S/SERMA/LENR, 91 - Gif sur Yvette (France)

    2005-07-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  3. Unstructured characteristic method embedded with variational nodal method using domain decomposition techniques

    International Nuclear Information System (INIS)

    Girardi, E.; Ruggieri, J.M.

    2005-01-01

    This paper describes a recently-developed extension of our 'Multi-methods,multi-domains' (MM-MD) method for the solution of the multigroup transport equation. Based on a domain decomposition technique, our approach allows us to treat the one-group equation by cooperatively employing several numerical methods together. In this work, we describe the coupling between the Method of Characteristics (integro-differential equation, unstructured meshes) with the Variational Nodal Method (even parity equation, cartesian meshes). Then, the coupling method is applied to the benchmark model of the Phebus experimental facility (Cea Cadarache). Our domain decomposition method give us the capability to employ a very fine mesh in describing a particular fuel bundle with an appropriate numerical method (MOC), while using a much large mesh size in the rest of the core, in conjunction with a coarse-mesh method (VNM). This application shows the benefits of our MM-MD approach, in terms of accuracy and computing time: the domain decomposition method allows us to reduce the Cpu time, while preserving a good accuracy of the neutronic indicators: reactivity, core-to-bundle power coupling coefficient and flux error. (authors)

  4. Nodal methods with non linear feedback for the three dimensional resolution of the diffusion's multigroup equations

    International Nuclear Information System (INIS)

    Ferri, A.A.

    1986-01-01

    Nodal methods applied in order to calculate the power distribution in a nuclear reactor core are presented. These methods have received special attention, because they yield accurate results in short computing times. Present nodal schemes contain several unknowns per node and per group. In the methods presented here, non linear feedback of the coupling coefficients has been applied to reduce this number to only one unknown per node and per group. The resulting algorithm is a 7- points formula, and the iterative process has proved stable in the response matrix scheme. The intranodal flux shape is determined by partial integration of the diffusion equations over two of the coordinates, leading to a set of three coupled one-dimensional equations. These can be solved by using a polynomial approximation or by integration (analytic solution). The tranverse net leakage is responsible for the coupling between the spatial directions, and two alternative methods are presented to evaluate its shape: direct parabolic approximation and local model expansion. Numerical results, which include the IAEA two-dimensional benchmark problem illustrate the efficiency of the developed methods. (M.E.L.) [es

  5. Development of a New core/reflector model for coarse-mesh nodal methods

    International Nuclear Information System (INIS)

    Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Il; Kim, Young Jin; Joo, Hyung Kuk; Chang, Moon Hee.

    1997-10-01

    This work presents two approaches for reflector simulation in coarse-mesh nodal methods. The first approach is called Interface Matrix Technique (IMT), which simulates the baffle as a banishingly thin layer having the property of reflection and transmission. We applied this technique within the frame of AFEN (Analytic Function Expansion Nodal) method, and developed the AFEN-IM (Interface Matrix) method. AFEN-IM method shows 1.24% and 0.42 % in maximum and RMS (Root Mean Square) assemblywise power error for ZION-1 benchmark problem. The second approach is L-shaped reflector homogenization method. This method is based on the integral response conservation along the L-shaped core-reflector interface. The reference reflector response is calculated from 2-dimensional spectral calculation and the response of the homogenized reflector is derived from the one-node 2-dimensional AFEN problem solution. This method shows 5 times better accuracy than the 1-dimensional homogenization technique in the assemblywise power. Also, the concept of shroud/reflector homogenization for hexagonal core have been developed. The 1-dimensional spectral calculation was used for the determination of 2 group cross sections. The essence of homogenization concept consists in the calculation of equivalent shroud width, which preserve albedo for the fast neutrons in 2-dimensional reflector. This method shows a relative error less than 0.42% in assemblywise power and a difference of 9x10 -5 in multiplication factor for full-core model. (author). 9 refs., 3 tabs., 28 figs

  6. A polygonal nodal SP3 method for whole core Pin-by-Pin neutronics calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunzhao; Wu, Hongchun; Cao, Liangzhi, E-mail: xjtulyz@gmail.com, E-mail: hongchun@mail.xjtu.edu.cn, E-mail: caolz@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi' an Jiaotong University, Shaanxi (China)

    2011-07-01

    In this polygonal nodal-SP3 method, neutron transport equation is transformed by employing an isotropic SP3 method into two coupled equations that are both in the same mathematic form with the diffusion equation, and then a polygonal nodal method is proposed to solve the two coupled equations. In the polygonal nodal method, adjacent nodes are coupled through partial currents, and a nodal response matrix between incoming and outgoing currents is obtained by expanding detailed nodal flux distribution into a sum of exponential functions. This method avoids the transverse integral technique, which is widely used in regular nodal method and can not be used in triangular geometry because of the mathematical singularity. It is demonstrated by the numerical results of the test problems that the k{sub eff} and power distribution agree well with other codes, the triangular nodal-SP3 method appears faster, and that whole core pin-by-pin transport calculation with fine meshes is feasible after parallelization and acceleration. (author)

  7. Using nodal expansion method in calculation of reactor core with square fuel assemblies

    International Nuclear Information System (INIS)

    Abdollahzadeh, M. Y.; Boroushaki, M.

    2009-01-01

    A polynomial nodal method is developed to solve few-group neutron diffusion equations in cartesian geometry. In this article, the effective multiplication factor, group flux and power distribution based on the nodal polynomial expansion procedure is presented. In addition, by comparison of the results the superiority of nodal expansion method on finite-difference and finite-element are fully demonstrated. The comparison of the results obtained by these method with those of the well known benchmark problems have shown that they are in very good agreement.

  8. The application of modern nodal methods to PWR reactor physics analysis

    International Nuclear Information System (INIS)

    Knight, M.P.

    1988-06-01

    The objective of this research is to develop efficient computational procedures for PWR reactor calculations, based on modern nodal methods. The analytic nodal method, which is characterised by the use of exact exponential expansions in transverse-integrated equations, is implemented within an existing finite-difference code. This shows considerable accuracy and efficiency on standard benchmark problems, very much in line with existing experience with nodal methods., Assembly powers can be calculated to within 2.0% with just one mesh per assembly. (author)

  9. A variational nodal diffusion method of high accuracy; Varijaciona nodalna difuziona metoda visoke tachnosti

    Energy Technology Data Exchange (ETDEWEB)

    Tomasevic, Dj; Altiparmarkov, D [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    A variational nodal diffusion method with accurate treatment of transverse leakage shape is developed and presented in this paper. Using Legendre expansion in transverse coordinates higher order quasi-one-dimensional nodal equations are formulated. Numerical solution has been carried out using analytical solutions in alternating directions assuming Legendre expansion of the RHS term. The method has been tested against 2D and 3D IAEA benchmark problem, as well as 2D CANDU benchmark problem. The results are highly accurate. The first order approximation yields to the same order of accuracy as the standard nodal methods with quadratic leakage approximation, while the second order reaches reference solution. (author)

  10. [Method for optimal sensor placement in water distribution systems with nodal demand uncertainties].

    Science.gov (United States)

    Liu, Shu-Ming; Wu, Xue; Ouyang, Le-Yan

    2013-08-01

    The notion of identification fitness was proposed for optimizing sensor placement in water distribution systems. Nondominated Sorting Genetic Algorithm II was used to find the Pareto front between minimum overlap of possible detection times of two events and the best probability of detection, taking nodal demand uncertainties into account. This methodology was applied to an example network. The solutions show that the probability of detection and the number of possible locations are not remarkably affected by nodal demand uncertainties, but the sources identification accuracy declines with nodal demand uncertainties.

  11. A simple nodal force distribution method in refined finite element meshes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.

  12. A quasi-static polynomial nodal method for nuclear reactor analysis

    International Nuclear Information System (INIS)

    Gehin, J.C.

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation

  13. A quasi-static polynomial nodal method for nuclear reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gehin, Jess C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-09-01

    Modern nodal methods are currently available which can accurately and efficiently solve the static and transient neutron diffusion equations. Most of the methods, however, are limited to two energy groups for practical application. The objective of this research is the development of a static and transient, multidimensional nodal method which allows more than two energy groups and uses a non-linear iterative method for efficient solution of the nodal equations. For both the static and transient methods, finite-difference equations which are corrected by the use of discontinuity factors are derived. The discontinuity factors are computed from a polynomial nodal method using a non-linear iteration technique. The polynomial nodal method is based upon a quartic approximation and utilizes a quadratic transverse-leakage approximation. The solution of the time-dependent equations is performed by the use of a quasi-static method in which the node-averaged fluxes are factored into shape and amplitude functions. The application of the quasi-static polynomial method to several benchmark problems demonstrates that the accuracy is consistent with that of other nodal methods. The use of the quasi-static method is shown to substantially reduce the computation time over the traditional fully-implicit time-integration method. Problems involving thermal-hydraulic feedback are accurately, and efficiently, solved by performing several reactivity/thermal-hydraulic updates per shape calculation.

  14. Study of flow over object problems by a nodal discontinuous Galerkin-lattice Boltzmann method

    Science.gov (United States)

    Wu, Jie; Shen, Meng; Liu, Chen

    2018-04-01

    The flow over object problems are studied by a nodal discontinuous Galerkin-lattice Boltzmann method (NDG-LBM) in this work. Different from the standard lattice Boltzmann method, the current method applies the nodal discontinuous Galerkin method into the streaming process in LBM to solve the resultant pure convection equation, in which the spatial discretization is completed on unstructured grids and the low-storage explicit Runge-Kutta scheme is used for time marching. The present method then overcomes the disadvantage of standard LBM for depending on the uniform meshes. Moreover, the collision process in the LBM is completed by using the multiple-relaxation-time scheme. After the validation of the NDG-LBM by simulating the lid-driven cavity flow, the simulations of flows over a fixed circular cylinder, a stationary airfoil and rotating-stationary cylinders are performed. Good agreement of present results with previous results is achieved, which indicates that the current NDG-LBM is accurate and effective for flow over object problems.

  15. The ADO-nodal method for solving two-dimensional discrete ordinates transport problems

    International Nuclear Information System (INIS)

    Barichello, L.B.; Picoloto, C.B.; Cunha, R.D. da

    2017-01-01

    Highlights: • Two-dimensional discrete ordinates neutron transport. • Analytical Discrete Ordinates (ADO) nodal method. • Heterogeneous media fixed source problems. • Local solutions. - Abstract: In this work, recent results on the solution of fixed-source two-dimensional transport problems, in Cartesian geometry, are reported. Homogeneous and heterogeneous media problems are considered in order to incorporate the idea of arbitrary number of domain division into regions (nodes) when applying the ADO method, which is a method of analytical features, to those problems. The ADO-nodal formulation is developed, for each node, following previous work devoted to heterogeneous media problem. Here, however, the numerical procedure is extended to higher number of domain divisions. Such extension leads, in some cases, to the use of an iterative method for solving the general linear system which defines the arbitrary constants of the general solution. In addition to solve alternative heterogeneous media configurations than reported in previous works, the present approach allows comparisons with results provided by other metodologies generated with refined meshes. Numerical results indicate the ADO solution may achieve a prescribed accuracy using coarser meshes than other schemes.

  16. Improvement of neutron kinetics module in TRAC-BF1code: one-dimensional nodal collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Jambrina, Ana; Barrachina, Teresa; Miro, Rafael; Verdu, Gumersindo, E-mail: ajambrina@iqn.upv.es, E-mail: tbarrachina@iqn.upv.es, E-mail: rmiro@iqn.upv.es, E-mail: gverdu@iqn.upv.es [Universidade Politecnica de Valencia (UPV), Valencia (Spain); Soler, Amparo, E-mail: asoler@iberdrola.es [SEA Propulsion S.L., Madrid (Spain); Concejal, Alberto, E-mail: acbe@iberdrola.es [Iberdrola Ingenieria y Construcion S.A.U., Madrid (Spain)

    2013-07-01

    The TRAC-BF1 one-dimensional kinetic model is a formulation of the neutron diffusion equation in the two energy groups' approximation, based on the analytical nodal method (ANM). The advantage compared with a zero-dimensional kinetic model is that the axial power profile may vary with time due to thermal-hydraulic parameter changes and/or actions of the control systems but at has the disadvantages that in unusual situations it fails to converge. The nodal collocation method developed for the neutron diffusion equation and applied to the kinetics resolution of TRAC-BF1 thermal-hydraulics, is an adaptation of the traditional collocation methods for the discretization of partial differential equations, based on the development of the solution as a linear combination of analytical functions. It has chosen to use a nodal collocation method based on a development of Legendre polynomials of neutron fluxes in each cell. The qualification is carried out by the analysis of the turbine trip transient from the NEA benchmark in Peach Bottom NPP using both the original 1D kinetics implemented in TRAC-BF1 and the 1D nodal collocation method. (author)

  17. Non-linear triangle-based polynomial expansion nodal method for hexagonal core analysis

    International Nuclear Information System (INIS)

    Cho, Jin Young; Cho, Byung Oh; Joo, Han Gyu; Zee, Sung Qunn; Park, Sang Yong

    2000-09-01

    This report is for the implementation of triangle-based polynomial expansion nodal (TPEN) method to MASTER code in conjunction with the coarse mesh finite difference(CMFD) framework for hexagonal core design and analysis. The TPEN method is a variation of the higher order polynomial expansion nodal (HOPEN) method that solves the multi-group neutron diffusion equation in the hexagonal-z geometry. In contrast with the HOPEN method, only two-dimensional intranodal expansion is considered in the TPEN method for a triangular domain. The axial dependence of the intranodal flux is incorporated separately here and it is determined by the nodal expansion method (NEM) for a hexagonal node. For the consistency of node geometry of the MASTER code which is based on hexagon, TPEN solver is coded to solve one hexagonal node which is composed of 6 triangular nodes directly with Gauss elimination scheme. To solve the CMFD linear system efficiently, stabilized bi-conjugate gradient(BiCG) algorithm and Wielandt eigenvalue shift method are adopted. And for the construction of the efficient preconditioner of BiCG algorithm, the incomplete LU(ILU) factorization scheme which has been widely used in two-dimensional problems is used. To apply the ILU factorization scheme to three-dimensional problem, a symmetric Gauss-Seidel Factorization scheme is used. In order to examine the accuracy of the TPEN solution, several eigenvalue benchmark problems and two transient problems, i.e., a realistic VVER1000 and VVER440 rod ejection benchmark problems, were solved and compared with respective references. The results of eigenvalue benchmark problems indicate that non-linear TPEN method is very accurate showing less than 15 pcm of eigenvalue errors and 1% of maximum power errors, and fast enough to solve the three-dimensional VVER-440 problem within 5 seconds on 733MHz PENTIUM-III. In the case of the transient problems, the non-linear TPEN method also shows good results within a few minute of

  18. A coarse-mesh nodal method-diffusive-mesh finite difference method

    International Nuclear Information System (INIS)

    Joo, H.; Nichols, W.R.

    1994-01-01

    Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper

  19. A self-consistent nodal method in response matrix formalism for the multigroup diffusion equations

    International Nuclear Information System (INIS)

    Malambu, E.M.; Mund, E.H.

    1996-01-01

    We develop a nodal method for the multigroup diffusion equations, based on the transverse integration procedure (TIP). The efficiency of the method rests upon the convergence properties of a high-order multidimensional nodal expansion and upon numerical implementation aspects. The discrete 1D equations are cast in response matrix formalism. The derivation of the transverse leakage moments is self-consistent i.e. does not require additional assumptions. An outstanding feature of the method lies in the linear spatial shape of the local transverse leakage for the first-order scheme. The method is described in the two-dimensional case. The method is validated on some classical benchmark problems. (author)

  20. A new diffusion nodal method based on analytic basis function expansion

    International Nuclear Information System (INIS)

    Noh, J.M.; Cho, N.Z.

    1993-01-01

    The transverse integration procedure commonly used in most advanced nodal methods results in some limitations. The first is that the transverse leakage term that appears in the transverse integration procedure must be appropriately approximated. In most advanced nodal methods, this term is expanded in a quadratic polynomial. The second arises when reconstructing the pinwise flux distribution within a node. The available one-dimensional flux shapes from nodal calculation in each spatial direction cannot be used directly in the flux reconstruction. Finally, the transverse leakage defined for a hexagonal node becomes so complicated as not to be easily handled and contains nonphysical singular terms. In this paper, a new nodal method called the analytic function expansion nodal (AFEN) method is described for both the rectangular geometry and the hexagonal geometry in order to overcome these limitations. This method does not solve the transverse-integrated one-dimensional diffusion equations but instead solves directly the original multidimensional diffusion equation within a node. This is a accomplished by expanding the solution (or the intranodal homogeneous flux distribution) in terms of nonseparable analytic basis functions satisfying the diffusion equation at any point in the node

  1. Spectral nodal method for one-speed X,Y-geometry Eigenvalue diffusion problems

    International Nuclear Information System (INIS)

    Dominguez, Dany S.; Lorenzo, Daniel M.; Hernandez, Carlos G.; Barros, Ricardo C.; Silva, Fernando C. da

    2001-01-01

    Presented here is a new numerical nodal method for steady-state multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the transverse-integrated nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X and Y directions, and then considering flat approximations for the transverse leakage terms. These flat approximations are the only approximations that we consider in this method; as a result the numerical solutions are completely free from truncation errors in slab geometry. We show numerical results to illustrate the method's accuracy for coarse mesh calculations in a heterogeneous medium. (author)

  2. Hybrid nodal methods in the solution of the diffusion equations in X Y geometry

    International Nuclear Information System (INIS)

    Hernandez M, N.; Alonso V, G.; Valle G, E. del

    2003-01-01

    In 1979, Hennart and collaborators applied several schemes of classic finite element in the numerical solution of the diffusion equations in X Y geometry and stationary state. Almost two decades then, in 1996, himself and other collaborators carried out a similar work but using nodal schemes type finite element. Continuing in this last direction, in this work a group it is described a set of several Hybrid Nodal schemes denominated (NH) as well as their application to solve the diffusion equations in multigroup in stationary state and X Y geometry. The term hybrid nodal it means that such schemes interpolate not only Legendre moments of face and of cell but also the values of the scalar flow of neutrons in the four corners of each cell or element of the spatial discretization of the domain of interest. All the schemes here considered are polynomials like they were it their predecessors. Particularly, its have developed and applied eight different hybrid nodal schemes that its are very nearby related with those developed by Hennart and collaborators in the past. It is treated of schemes in those that nevertheless that decreases the number of interpolation parameters it is conserved the accurate in relation to the bi-quadratic and bi-cubic schemes. Of these eight, three were described and applied in a previous work. It is the bi-lineal classic scheme as well as the hybrid nodal schemes, bi-quadratic and bi-cubic for that here only are described the other 5 hybrid nodal schemes although they are provided numerical results for several test problems with all them. (Author)

  3. Development of an object oriented nodal code using the refined AFEN derived from the method of component decomposition

    International Nuclear Information System (INIS)

    Noh, J. M.; Yoo, J. W.; Joo, H. K.

    2004-01-01

    In this study, we invented a method of component decomposition to derive the systematic inter-nodal coupled equations of the refined AFEN method and developed an object oriented nodal code to solve the derived coupled equations. The method of component decomposition decomposes the intra-nodal flux expansion of a nodal method into even and odd components in three dimensions to reduce the large coupled linear system equation into several small single equations. This method requires no additional technique to accelerate the iteration process to solve the inter-nodal coupled equations, since the derived equations can automatically act as the coarse mesh re-balance equations. By utilizing the object oriented programming concepts such as abstraction, encapsulation, inheritance and polymorphism, dynamic memory allocation, and operator overloading, we developed an object oriented nodal code that can facilitate the input/output and the dynamic control of the memories, and can make the maintenance easy. (authors)

  4. Hybrid nodal methods in the solution of the diffusion equations in X Y geometry; Metodos nodales hibridos en la solucion de las ecuaciones de difusion en geometria XY

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, N. [CFE, Carretera Cardel-Nautla Km. 43.5, 91680 Veracruz (Mexico); Alonso V, G.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico)]. e-mail: nhmiranda@mexico.com

    2003-07-01

    In 1979, Hennart and collaborators applied several schemes of classic finite element in the numerical solution of the diffusion equations in X Y geometry and stationary state. Almost two decades then, in 1996, himself and other collaborators carried out a similar work but using nodal schemes type finite element. Continuing in this last direction, in this work a group it is described a set of several Hybrid Nodal schemes denominated (NH) as well as their application to solve the diffusion equations in multigroup in stationary state and X Y geometry. The term hybrid nodal it means that such schemes interpolate not only Legendre moments of face and of cell but also the values of the scalar flow of neutrons in the four corners of each cell or element of the spatial discretization of the domain of interest. All the schemes here considered are polynomials like they were it their predecessors. Particularly, its have developed and applied eight different hybrid nodal schemes that its are very nearby related with those developed by Hennart and collaborators in the past. It is treated of schemes in those that nevertheless that decreases the number of interpolation parameters it is conserved the accurate in relation to the bi-quadratic and bi-cubic schemes. Of these eight, three were described and applied in a previous work. It is the bi-lineal classic scheme as well as the hybrid nodal schemes, bi-quadratic and bi-cubic for that here only are described the other 5 hybrid nodal schemes although they are provided numerical results for several test problems with all them. (Author)

  5. A simplified presentation of the multigroup analytic nodal method in 2-D Cartesian geometry

    International Nuclear Information System (INIS)

    Hebert, Alain

    2008-01-01

    The nodal diffusion algorithms used in many production reactor simulation codes are originating from a common ancestry developed in the 1970s, the analytic nodal method (ANM) of the QUANDRY code. However, this original presentation of the ANM is complex and makes difficult the calculation of the nodal coupling matrices. Moreover, QUANDRY is limited to two-energy groups and its generalization to more groups appears laborious. We are presenting a simplified implementation of the ANM requiring only limited programming work. This formulation is consistent with the initial QUANDRY implementation and is easily generalizable to arbitrary G-group problems. A Matlab script is provided to highlight the simplicity of our presentation. For the sake of clarity, our implementation is limited to G-group, 2-D Cartesian geometry

  6. A nodal Grean's function method of reactor core fuel management code, NGCFM2D

    International Nuclear Information System (INIS)

    Li Dongsheng; Yao Dong.

    1987-01-01

    This paper presents the mathematical model and program structure of the nodal Green's function method of reactor core fuel management code, NGCFM2D. Computing results of some reactor cores by NGCFM2D are analysed and compared with other codes

  7. A new nodal kinetics method for analyzing fast control rod motions in nuclear reactor cores

    International Nuclear Information System (INIS)

    Kaya, S.; Yavuz, H.

    2001-01-01

    A new nodal kinetics approach is developed for analyzing large reactivity accidents in nuclear reactor cores. This method shows promising that it has capability of inspecting promt criticality transients and it gives comparable results with respect to those of other techniques. (orig.)

  8. An analytical nodal method for time-dependent one-dimensional discrete ordinates problems

    International Nuclear Information System (INIS)

    Barros, R.C. de

    1992-01-01

    In recent years, relatively little work has been done in developing time-dependent discrete ordinates (S N ) computer codes. Therefore, the topic of time integration methods certainly deserves further attention. In this paper, we describe a new coarse-mesh method for time-dependent monoenergetic S N transport problesm in slab geometry. This numerical method preserves the analytic solution of the transverse-integrated S N nodal equations by constants, so we call our method the analytical constant nodal (ACN) method. For time-independent S N problems in finite slab geometry and for time-dependent infinite-medium S N problems, the ACN method generates numerical solutions that are completely free of truncation errors. Bsed on this positive feature, we expect the ACN method to be more accurate than conventional numerical methods for S N transport calculations on coarse space-time grids

  9. An adaptive mesh refinement approach for average current nodal expansion method in 2-D rectangular geometry

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► A new adaptive h-refinement approach has been developed for a class of nodal method. ► The resulting system of nodal equations is more amenable to efficient numerical solution. ► The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. ► Spatially adaptive approach greatly enhances the accuracy of the solution. - Abstract: The aim of this work is to develop a spatially adaptive coarse mesh strategy that progressively refines the nodes in appropriate regions of domain to solve the neutron balance equation by zeroth order nodal expansion method. A flux gradient based a posteriori estimation scheme has been utilized for checking the approximate solutions for various nodes. The relative surface net leakage of nodes has been considered as an assessment criterion. In this approach, the core module is called in by adaptive mesh generator to determine gradients of node surfaces flux to explore the possibility of node refinements in appropriate regions and directions of the problem. The benefit of the approach is reducing computational efforts relative to the uniform fine mesh modeling. For this purpose, a computer program ANRNE-2D, Adaptive Node Refinement Nodal Expansion, has been developed to solve neutron diffusion equation using average current nodal expansion method for 2D rectangular geometries. Implementing the adaptive algorithm confirms its superiority in enhancing the accuracy of the solution without using fine nodes throughout the domain and increasing the number of unknown solution. Some well-known benchmarks have been investigated and improvements are reported

  10. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  11. Improved quasi-static nodal green's function method

    International Nuclear Information System (INIS)

    Li Junli; Jing Xingqing; Hu Dapu

    1997-01-01

    Improved Quasi-Static Green's Function Method (IQS/NGFM) is presented, as an new kinetic method. To solve the three-dimensional transient problem, improved Quasi-Static Method is adopted to deal with the temporal problem, which will increase the time step as long as possible so as to decrease the number of times of space calculation. The time step of IQS/NGFM can be increased to 5∼10 times longer than that of Full Implicit Differential Method. In spatial calculation, the NGFM is used to get the distribution of shape function, and it's spatial mesh can be nearly 20 times larger than that of Definite Differential Method. So the IQS/NGFM is considered as an efficient kinetic method

  12. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  13. A fast nodal neutron diffusion method for cartesian geometry

    International Nuclear Information System (INIS)

    Makai, M.; Maeder, C.

    1983-01-01

    A numerical method based on an analytical solution to the three-dimensional two-group diffusion equation has been derived assuming that the flux is a sum of the functions of one variable. In each mesh the incoming currents are used as boundary conditions. The final equations for the average flux and the outgoing currents are of the response matrix type. The method is presented in a form that can be extended to the general multigroup case. In the SEXI computer program developed on the basis of this method, the response matrix elements are recalculated in each outer iteration to minimize the data transfer between disk storage and central memory. The efficiency of the method is demonstrated for a light water reactor (LWR) benchmark problem. The SEXI program has been incorporated into the LWR simulator SILWER code as a possible option

  14. A least squares principle unifying finite element, finite difference and nodal methods for diffusion theory

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1987-01-01

    A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)

  15. Two-energy group solution of the diffusion equation by the multidimensional nodal polynomial expansion method

    International Nuclear Information System (INIS)

    Ribeiro, R.D.M.; Vellozo, S.O.; Botelho, D.A.

    1983-01-01

    The EPON computer code based in a Nodal Polynomial Expansion Method, wrote in Fortran IV, for steady-state, square geometry, one-dimensional or two-dimensional geometry and for one or two-energy group is presented. The neutron and power flux distributions for nuclear power plants were calculated, comparing with codes that use similar or different methodologies. The availability, economy and speed of the methodology is demonstrated. (E.G.) [pt

  16. A block-iterative nodal integral method for forced convection problems

    International Nuclear Information System (INIS)

    Decker, W.J.; Dorning, J.J.

    1992-01-01

    A new efficient iterative nodal integral method for the time-dependent two- and three-dimensional incompressible Navier-Stokes equations has been developed. Using the approach introduced by Azmy and Droning to develop nodal mehtods with high accuracy on coarse spatial grids for two-dimensional steady-state problems and extended to coarse two-dimensional space-time grids by Wilson et al. for thermal convection problems, we have developed a new iterative nodal integral method for the time-dependent Navier-Stokes equations for mechanically forced convection. A new, extremely efficient block iterative scheme is employed to invert the Jacobian within each of the Newton-Raphson iterations used to solve the final nonlinear discrete-variable equations. By taking advantage of the special structure of the Jacobian, this scheme greatly reduces memory requirements. The accuracy of the overall method is illustrated by appliying it to the time-dependent version of the classic two-dimensional driven cavity problem of computational fluid dynamics

  17. Development of an environment-insensitive PWR radial reflector model applicable to modern nodal reactor analysis method

    International Nuclear Information System (INIS)

    Mueller, E.M.

    1989-05-01

    This research is concerned with the development and analysis of methods for generating equivalent nodal diffusion parameters for the radial reflector of a PWR. The requirement that the equivalent reflector data be insensitive to changing core conditions is set as a principle objective. Hence, the environment dependence of the currently most reputable nodal reflector models, almost all of which are based on the nodal equivalence theory homgenization methods of Koebke and Smith, is investigated in detail. For this purpose, a special 1-D nodal equivalence theory reflector model, called the NGET model, is developed and used in 1-D and 2-D numerical experiments. The results demonstrate that these modern radial reflector models exhibit sufficient sensitivity to core conditions to warrant the development of alternative models. A new 1-D nodal reflector model, which is based on a novel combination of the nodal equivalence theory and the response matrix homogenization methods, is developed. Numerical results varify that this homogenized baffle/reflector model, which is called the NGET-RM model, is highly insensitive to changing core conditions. It is also shown that the NGET-RM model is not inferior to any of the existing 1-D nodal reflector models and that it has features which makes it an attractive alternative model for multi-dimensional reactor analysis. 61 refs., 40 figs., 36 tabs

  18. KEK NODAL system

    International Nuclear Information System (INIS)

    Kurokawa, S.; Abe, K.; Akiyama, A.; Katoh, T.; Kikutani, E.; Koiso, H.; Kurihara, N.; Oide, K.; Shinomoto, M.

    1985-01-01

    The KEK NODAL system, which is based on the NODAL devised at the CERN SPS, works on an optical-fiber token ring network of twenty-four minicomputers (Hitachi HIDIC 80's) to control the TRISTAN accelerator complex, now being constructed at KEK. KEK NODAL retains main features of the original NODAL: the interpreting scheme, the multi-computer programming facility, and the data-module concept. In addition, it has the following characteristics: fast execution due to the compiler-interpreter method, a multicomputer file system, a full-screen editing facility, and a dynamic linkage scheme of data modules and NODAL functions. The structure of the KEK NODAL system under PMS, a real-time multitasking operating system of HIDIC 80, is described; the NODAL file system is also explained

  19. Spectral Method with the Tensor-Product Nodal Basis for the Steklov Eigenvalue Problem

    Directory of Open Access Journals (Sweden)

    Xuqing Zhang

    2013-01-01

    Full Text Available This paper discusses spectral method with the tensor-product nodal basis at the Legendre-Gauss-Lobatto points for solving the Steklov eigenvalue problem. A priori error estimates of spectral method are discussed, and based on the work of Melenk and Wohlmuth (2001, a posterior error estimator of the residual type is given and analyzed. In addition, this paper combines the shifted-inverse iterative method and spectral method to establish an efficient scheme. Finally, numerical experiments with MATLAB program are reported.

  20. Numerical solution of the Neutron Transport Equation using discontinuous nodal methods at X-Y geometry

    International Nuclear Information System (INIS)

    Delfin L, A.

    1996-01-01

    The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D c and polynomial space S c corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S c and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S N approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author)

  1. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    International Nuclear Information System (INIS)

    Zhou, Xiafeng; Guo, Jiong; Li, Fu

    2015-01-01

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  2. Stability, accuracy and numerical diffusion analysis of nodal expansion method for steady convection diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiafeng, E-mail: zhou-xf11@mails.tsinghua.edu.cn; Guo, Jiong, E-mail: guojiong12@tsinghua.edu.cn; Li, Fu, E-mail: lifu@tsinghua.edu.cn

    2015-12-15

    Highlights: • NEMs are innovatively applied to solve convection diffusion equation. • Stability, accuracy and numerical diffusion for NEM are analyzed for the first time. • Stability and numerical diffusion depend on the NEM expansion order and its parity. • NEMs have higher accuracy than both second order upwind and QUICK scheme. • NEMs with different expansion orders are integrated into a unified discrete form. - Abstract: The traditional finite difference method or finite volume method (FDM or FVM) is used for HTGR thermal-hydraulic calculation at present. However, both FDM and FVM require the fine mesh sizes to achieve the desired precision and thus result in a limited efficiency. Therefore, a more efficient and accurate numerical method needs to be developed. Nodal expansion method (NEM) can achieve high accuracy even on the coarse meshes in the reactor physics analysis so that the number of spatial meshes and computational cost can be largely decreased. Because of higher efficiency and accuracy, NEM can be innovatively applied to thermal-hydraulic calculation. In the paper, NEMs with different orders of basis functions are successfully developed and applied to multi-dimensional steady convection diffusion equation. Numerical results show that NEMs with three or higher order basis functions can track the reference solutions very well and are superior to second order upwind scheme and QUICK scheme. However, the false diffusion and unphysical oscillation behavior are discovered for NEMs. To explain the reasons for the above-mentioned behaviors, the stability, accuracy and numerical diffusion properties of NEM are analyzed by the Fourier analysis, and by comparing with exact solutions of difference and differential equation. The theoretical analysis results show that the accuracy of NEM increases with the expansion order. However, the stability and numerical diffusion properties depend not only on the order of basis functions but also on the parity of

  3. A nodal collocation method for the calculation of the lambda modes of the P L equations

    International Nuclear Information System (INIS)

    Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdu, G.

    2005-01-01

    P L equations are classical approximations to the neutron transport equation admitting a diffusive form. Using this property, a nodal collocation method is developed for the P L approximations, which is based on the expansion of the flux in terms of orthonormal Legendre polynomials. This method approximates the differential lambda modes problem by an algebraic eigenvalue problem from which the fundamental and the subcritical modes of the system can be calculated. To test the performance of this method, two problems have been considered, a homogeneous slab, which admits an analytical solution, and a seven-region slab corresponding to a more realistic problem

  4. Nodal pricing in a coupled electricity market

    OpenAIRE

    Bjørndal, Endre; Bjørndal, Mette; Cai, Hong

    2014-01-01

    This paper investigates a pricing model for an electricity market with a hybrid congestion management method, i.e. part of the system applies a nodal pricing scheme and the rest applies a zonal pricing scheme. The model clears the zonal and nodal pricing areas simultaneously. The nodal pricing area is affected by the changes in the zonal pricing area since it is directly connected to the zonal pricing area by commercial trading. The model is tested on a 13-node power system. Within the area t...

  5. Three-dimensional static and dynamic reactor calculations by the nodal expansion method

    International Nuclear Information System (INIS)

    Christensen, B.

    1985-05-01

    This report reviews various method for the calculation of the neutron-flux- and power distribution in an nuclear reactor. The nodal expansion method (NEM) is especially described in much detail. The nodal expansion method solves the diffusion equation. In this method the reactor core is divided into nodes, typically 10 to 20 cm in each direction, and the average flux in each node is calculated. To obtain the coupling between the nodes the local flux inside each node is expressed by use of a polynomial expansion. The expansion is one-dimensional, so inside each node such three expansions occur. To calculate the expansion coefficients it is necessary that the polynomial expansion is a solution to the one-dimensional diffusion equation. When the one-dimensional diffusion equation is established a term with the transversal leakage occur, and this term is expanded after the same polynomials. The resulting equation system with the expansion coefficients as the unknowns is solved with weigthed residual technique. The nodal expansion method is built into a computer program (also called NEM), which is divided into two parts, one part for steady-state calculations and one part for dynamic calculations. It is possible to take advantage of symmetry properties of the reactor core. The program is very flexible with regard to the number of energy groups, the node size, the flux expansion order and the transverse leakage expansion order. The boundary of the core is described by albedos. The program and input to it are described. The program is tested on a number of examples extending from small theoretical one up to realistic reactor cores. Many calculations are done on the wellknown IAEA benchmark case. The calculations have tested the accuracy and the computing time for various node sizes and polynomial expansions. In the dynamic examples various strategies for variation of the time step-length have been tested. (author)

  6. Development of a code in three-dimensional cylindrical geometry based on analytic function expansion nodal (AFEN) method

    International Nuclear Information System (INIS)

    Lee, Joo Hee

    2006-02-01

    There is growing interest in developing pebble bed reactors (PBRs) as a candidate of very high temperature gas-cooled reactors (VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. But for realistic analysis of PBRs, there is strong desire of making available high fidelity nodal codes in three-dimensional (r,θ,z) cylindrical geometry. Recently, the Analytic Function Expansion Nodal (AFEN) method developed quite extensively in Cartesian (x,y,z) geometry and in hexagonal-z geometry was extended to two-group (r,z) cylindrical geometry, and gave very accurate results. In this thesis, we develop a method for the full three-dimensional cylindrical (r,θ,z) geometry and implement the method into a code named TOPS. The AFEN methodology in this geometry as in hexagonal geometry is 'robus' (e.g., no occurrence of singularity), due to the unique feature of the AFEN method that it does not use the transverse integration. The transverse integration in the usual nodal methods, however, leads to an impasse, that is, failure of the azimuthal term to be transverse-integrated over r-z surface. We use 13 nodal unknowns in an outer node and 7 nodal unknowns in an innermost node. The general solution of the node can be expressed in terms of that nodal unknowns, and can be updated using the nodal balance equation and the current continuity condition. For more realistic analysis of PBRs, we implemented em Marshak boundary condition to treat the incoming current zero boundary condition and the partial current translation (PCT) method to treat voids in the core. The TOPS code was verified in the various numerical tests derived from Dodds problem and PBMR-400 benchmark problem. The results of the TOPS code show high accuracy and fast computing time than the VENTURE code that is based on finite difference method (FDM)

  7. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods

    International Nuclear Information System (INIS)

    Xolocostli M, J.V.

    2002-01-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  8. Two-dimensional semi-analytic nodal method for multigroup pin power reconstruction

    International Nuclear Information System (INIS)

    Seung Gyou, Baek; Han Gyu, Joo; Un Chul, Lee

    2007-01-01

    A pin power reconstruction method applicable to multigroup problems involving square fuel assemblies is presented. The method is based on a two-dimensional semi-analytic nodal solution which consists of eight exponential terms and 13 polynomial terms. The 13 polynomial terms represent the particular solution obtained under the condition of a 2-dimensional 13 term source expansion. In order to achieve better approximation of the source distribution, the least square fitting method is employed. The 8 exponential terms represent a part of the analytically obtained homogeneous solution and the 8 coefficients are determined by imposing constraints on the 4 surface average currents and 4 corner point fluxes. The surface average currents determined from a transverse-integrated nodal solution are used directly whereas the corner point fluxes are determined during the course of the reconstruction by employing an iterative scheme that would realize the corner point balance condition. The outgoing current based corner point flux determination scheme is newly introduced. The accuracy of the proposed method is demonstrated with the L336C5 benchmark problem. (authors)

  9. A nodal method of calculating power distributions for LWR-type reactors with square fuel lattices

    International Nuclear Information System (INIS)

    Hoeglund, Randolph.

    1980-06-01

    A nodal model is developed for calculating the power distribution in the core of a light water reactor with a square fuel lattice. The reactor core is divided into a number of more or less cubic nodes and a nodal coupling equation, which gives the thermal power density in one node as a function of the power densities in the neighbour nodes, is derived from the neutron diffusion equations for two energy groups. The three-dimensional power distribution can be computed iteratively using this coupling equation, for example following the point Jacobi, the Gauss-Seidel or the point successive overrelaxation scheme. The method has been included as the neutronic model in a reactor core simulation computer code BOREAS, where it is combined with a thermal-hydraulic model in order to make a simultaneous computation of the interdependent power and void distributions in a boiling water reactor possible. Also described in this report are a method for temporary one-dimensional iteration developed in order to accelerate the iterative solution of the problem and the Haling principle which is widely used in the planning of reloading operations for BWR reactors. (author)

  10. A stabilised nodal spectral element method for fully nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele

    2016-01-01

    can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively......We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...

  11. An iterative algorithm for solving the multidimensional neutron diffusion nodal method equations on parallel computers

    International Nuclear Information System (INIS)

    Kirk, B.L.; Azmy, Y.Y.

    1992-01-01

    In this paper the one-group, steady-state neutron diffusion equation in two-dimensional Cartesian geometry is solved using the nodal integral method. The discrete variable equations comprise loosely coupled sets of equations representing the nodal balance of neutrons, as well as neutron current continuity along rows or columns of computational cells. An iterative algorithm that is more suitable for solving large problems concurrently is derived based on the decomposition of the spatial domain and is accelerated using successive overrelaxation. This algorithm is very well suited for parallel computers, especially since the spatial domain decomposition occurs naturally, so that the number of iterations required for convergence does not depend on the number of processors participating in the calculation. Implementation of the authors' algorithm on the Intel iPSC/2 hypercube and Sequent Balance 8000 parallel computer is presented, and measured speedup and efficiency for test problems are reported. The results suggest that the efficiency of the hypercube quickly deteriorates when many processors are used, while the Sequent Balance retains very high efficiency for a comparable number of participating processors. This leads to the conjecture that message-passing parallel computers are not as well suited for this algorithm as shared-memory machines

  12. The Nodal Polynomial Expansion method to solve the multigroup diffusion equations

    International Nuclear Information System (INIS)

    Ribeiro, R.D.M.

    1983-03-01

    The methodology of the solutions of the multigroup diffusion equations and uses the Nodal Polynomial Expansion Method is covered. The EPON code was developed based upon the above mentioned method for stationary state, rectangular geometry, one-dimensional or two-dimensional and for one or two energy groups. Then, one can study some effects such as the influence of the baffle on the thermal flux by calculating the flux and power distribution in nuclear reactors. Furthermore, a comparative study with other programs which use Finite Difference (CITATION and PDQ5) and Finite Element (CHD and FEMB) Methods was undertaken. As a result, the coherence, feasibility, speed and accuracy of the methodology used were demonstrated. (Author) [pt

  13. Application of the HGPT methodology of reactor operation problems with a nodal mixed method

    International Nuclear Information System (INIS)

    Baudron, A.M.; Bruna, G.B.; Gandini, A.; Lautard, J.J.; Monti, S.; Pizzigati, G.

    1998-01-01

    The heuristically based generalized perturbation theory (HGPT), to first and higher order, applied to the neutron field of a reactor system, is discussed in relation to quasistatic problems. This methodology is of particular interest in reactor operation. In this application it may allow an on-line appraisal of the main physical responses of the reactor system when subject to alterations relevant to normal system exploitation, e.g. control rod movement, and/or soluble boron concentration changes to be introduced, for instance, for compensating power level variations following electrical network demands. In this paper, after describing the main features of the theory, its implementation into the diffusion, 3D mixed dual nodal code MINOS of the SAPHYR system is presented. The results from a small scale investigation performed on a simplified PWR system corroborate the validity of the methodology proposed

  14. Development and Validation of NODAL-LAMBDA Program for the Calculation of the Sub-criticality of LAMDA MODES By Nodal Methods in BWR reactors

    International Nuclear Information System (INIS)

    Munoz-Cobo, J. L.; Merino, R.; Escriva, A.; Melara, J.; Concejal, A.

    2014-01-01

    We have developed a 3D code with two energy groups and diffusion theory that is capable of calculating eigenvalues lambda of a BWR reactor using nodal methods and boundary conditions that calculates ALBEDO NODAL-LAMBDA from the properties of the reflector code itself. The code calculates the sub-criticality of the first harmonic, which is involved in the stability against oscillations reactor out of phase, and which is needed for calculating the decay rate for data out of phase oscillations. The code is very fast and in a few seconds is able to make a calculation of the first eigenvalues and eigenvectors, discretized solving the problem with different matrix elements zero. The code uses the LAPACK and ARPACK libraries. It was necessary to modify the LAPACK library to perform various operations with five non-diagonal matrices simultaneously in order to reduce the number of calls to bookstores and simplify the procedure for calculating the matrices in compressed format CSR. The code is validated by comparing it with the results for SIMULATE different cases and making 3D BENCHMAR of the IAEA. (Author)

  15. A two-dimensional, semi-analytic expansion method for nodal calculations

    International Nuclear Information System (INIS)

    Palmtag, S.P.

    1995-08-01

    Most modern nodal methods used today are based upon the transverse integration procedure in which the multi-dimensional flux shape is integrated over the transverse directions in order to produce a set of coupled one-dimensional flux shapes. The one-dimensional flux shapes are then solved either analytically or by representing the flux shape by a finite polynomial expansion. While these methods have been verified for most light-water reactor applications, they have been found to have difficulty predicting the large thermal flux gradients near the interfaces of highly-enriched MOX fuel assemblies. A new method is presented here in which the neutron flux is represented by a non-seperable, two-dimensional, semi-analytic flux expansion. The main features of this method are (1) the leakage terms from the node are modeled explicitly and therefore, the transverse integration procedure is not used, (2) the corner point flux values for each node are directly edited from the solution method, and a corner-point interpolation is not needed in the flux reconstruction, (3) the thermal flux expansion contains hyperbolic terms representing analytic solutions to the thermal flux diffusion equation, and (4) the thermal flux expansion contains a thermal to fast flux ratio term which reduces the number of polynomial expansion functions needed to represent the thermal flux. This new nodal method has been incorporated into the computer code COLOR2G and has been used to solve a two-dimensional, two-group colorset problem containing uranium and highly-enriched MOX fuel assemblies. The results from this calculation are compared to the results found using a code based on the traditional transverse integration procedure

  16. Application of the nodal method RTN-0 for the solution of the neutron diffusion equation dependent of time in hexagonal-Z geometry

    International Nuclear Information System (INIS)

    Esquivel E, J.; Alonso V, G.; Del Valle G, E.

    2015-09-01

    The solution of the neutron diffusion equation either for reactors in steady state or time dependent, is obtained through approximations generated by implementing of nodal methods such as RTN-0 (Raviart-Thomas-Nedelec of zero index), which is used in this study. Since the nodal methods are applied in quadrangular geometries, in this paper a technique in which the hexagonal geometry through the transfinite interpolation of Gordon-Hall becomes the appropriate geometry to make use of the nodal method RTN-0 is presented. As a result, a computer program was developed, whereby is possible to obtain among other results the neutron multiplication effective factor (k eff ), and the distribution of radial and/or axial power. To verify the operation of the code, was applied to three benchmark problems: in the first two reactors VVER and FBR, results k eff and power distribution are obtained, considering the steady state case of reactor; while the third problem a type VVER is analyzed, in its case dependent of time, which qualitative results are presented on the behavior of the reactor power. (Author)

  17. Analysis of 2D reactor core using linear perturbation theory and nodal finite element methods

    International Nuclear Information System (INIS)

    Adrian Mugica; Edmundo del Valle

    2005-01-01

    In this work the multigroup steady state neutron diffusion equations are solved using the nodal finite element method (NFEM) and the Linear Perturbation Theory (LPT) for XY geometry. The NFEM used corresponds to the Raviart-Thomas schemes RT0 and RT1, interpolating 5 and 12 parameters respectively in each node of the space discretization. The accuracy of these methods is related with the dimension of the space approximation and the mesh size. Therefore, using fine meshes and the RT0 or RT1 nodal methods leads to a large an interesting eigenvalue problem. The finite element method used to discretize the weak formulation of the diffusion equations is the Galerkin one. The algebraic structure of the discrete eigenvalue problem is obtained and solved using the Wielandt technique and the BGSTAB iterative method using the SPARSKIT package developed by Yousef Saad. The results obtained with LPT show good agreement with the results obtained directly for the perturbed problem. In fact, the cpu time to solve a single problem, the unperturbed and the perturbed one, is practically the same but when one is focused in shuffling many times two different assemblies in the core then the LPT technique becomes quite useful to get good approximations in a short time. This particular problem was solved for one quarter-core with NFEM. Thus, the computer program based on LPT can be used to perform like an analysis tool in the fuel reload optimization or combinatory analysis to get reload patterns in nuclear power plants once that it had been incorporated with the thermohydraulic aspects needed to simulate accurately a real problem. The maximum differences between the NFEM and LPT for the three LWR reactor cores are about 250 pcm. This quantity is considered an acceptable value for this kind of analysis. (authors)

  18. Pellet by pellet neutron flux calculations coupled with nodal expansion method

    International Nuclear Information System (INIS)

    Aldo, Dall'Osso

    2003-01-01

    We present a technique whose aim is to replace 2-dimensional pin by pin de-homogenization, currently done in core reactor calculations with the nodal expansion method (NEM), by a 3-dimensional finite difference diffusion calculation. This fine calculation is performed as a zoom in each node taking as boundary conditions the results of the NEM calculations. The size of fine mesh is of the order of a fuel pellet. The coupling between fine and NEM calculations is realised by an albedo like boundary condition. Some examples are presented showing fine neutron flux shape near control rods or assembly grids. Other fine flux behaviour as the thermal flux rise in the fuel near the reflector is emphasised. In general the results show the interest of the method in conditions where the separability of radial and axial directions is not granted. (author)

  19. Nodal methods for calculating nuclear reactor transients, control rod patterns, and fuel pin powers

    International Nuclear Information System (INIS)

    Cho, Byungoh.

    1990-01-01

    Nodal methods which are used to calculate reactor transients, control rod patterns, and fuel pin powers are investigated. The 3-D nodal code, STORM, has been modified to perform these calculations. Several numerical examples lead to the following conclusions: (1) By employing a thermal leakage-to-absorption ratio (TLAR) approximation for the spatial shape of the thermal fluxes for the 3-D Langenbuch-Maurer-Werner (LMW) and the superprompt critical transient problems, the convergence of the conventional two-group scheme is accelerated. (2) By employing the steepest-ascent hill climbing search with heuristic strategies, Optimum Control Rod Pattern Searcher (OCRPS) is developed for solving control rod positioning problem in BWRs. Using the method of approximation programming the objective function and the nuclear and thermal-hydraulic constraints are modified as heuristic functions that guide the search. The test calculations have demonstrated that, for the first cycle of the Edwin Hatch Unit number-sign 2 reactor, OCRPS shows excellent performance for finding a series of optimum control rod patterns for six burnup steps during the operating cycle. (3) For the modified two-dimensional EPRI-9R problem, the least square second-order polynomial flux expansion method was demonstrated to be computationally about 30 times faster than a fine-mesh finite difference calculation in order to achieve comparable accuracy for pin powers. The basic assumption of this method is that the reconstructed flux can be expressed as a product of an assembly form function and a second-order polynomial function

  20. Improvement of spatial discretization error on the semi-analytic nodal method using the scattered source subtraction method

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Tatsumi, Masahiro

    2006-01-01

    In this paper, the scattered source subtraction (SSS) method is newly proposed to improve the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. In the SSS method, the scattered source is subtracted from both side of the diffusion or the transport equation to make spatial variation of the source term to be small. The same neutron balance equation is still used in the SSS method. Since the SSS method just modifies coefficients of node coupling equations (those used in evaluation for the response of partial currents), its implementation is easy. Validity of the present method is verified through test calculations that are carried out in PWR multi-assemblies configurations. The calculation results show that the SSS method can significantly improve the spatial discretization error. Since the SSS method does not have any negative impact on execution time, convergence behavior and memory requirement, it will be useful to reduce the spatial discretization error of the semi-analytic nodal method with the flat-source approximation. (author)

  1. A comparison of two nodal codes : Advanced nodal code (ANC) and analytic function expansion nodal (AFEN) code

    International Nuclear Information System (INIS)

    Chung, S.K.; Hah, C.J.; Lee, H.C.; Kim, Y.H.; Cho, N.Z.

    1996-01-01

    Modern nodal methods usually employs the transverse integration technique in order to reduce a multi-dimensional diffusion equation to one-dimensional diffusion equations. The use of the transverse integration technique requires two major approximations such as a transverse leakage approximation and a one-dimensional flux approximation. Both the transverse leakage and the one-dimensional flux are approximated by polynomials. ANC (Advanced Nodal Code) developed by Westinghouse employs a modern nodal expansion method for the flux calculation, the equivalence theory for the homogenization error reduction and a group theory for pin power recovery. Unlike the conventional modern nodal methods, AFEN (Analytic Function Expansion Nodal) method expands homogeneous flux distributions within a node into non-separable analytic basis functions, which eliminate two major approximations of the modern nodal methods. A comparison study of AFEN with ANC has been performed to see the applicability of AFEN to commercial PWR and different types of reactors such as MOX fueled reactor. The qualification comparison results demonstrate that AFEN methodology is accurate enough to apply for commercial PWR analysis. The results show that AFEN provides very accurate results (core multiplication factor and assembly power distribution) for cores that exhibit strong flux gradients as in a MOX loaded core. (author)

  2. Error Estimation and Accuracy Improvements in Nodal Transport Methods; Estimacion de Errores y Aumento de la Precision en Metodos Nodales de Transporte

    Energy Technology Data Exchange (ETDEWEB)

    Zamonsky, O M [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    The accuracy of the solutions produced by the Discrete Ordinates neutron transport nodal methods is analyzed.The obtained new numerical methodologies increase the accuracy of the analyzed scheems and give a POSTERIORI error estimators. The accuracy improvement is obtained with new equations that make the numerical procedure free of truncation errors and proposing spatial reconstructions of the angular fluxes that are more accurate than those used until present. An a POSTERIORI error estimator is rigurously obtained for one dimensional systems that, in certain type of problems, allows to quantify the accuracy of the solutions. From comparisons with the one dimensional results, an a POSTERIORI error estimator is also obtained for multidimensional systems. LOCAL indicators, which quantify the spatial distribution of the errors, are obtained by the decomposition of the menctioned estimators. This makes the proposed methodology suitable to perform adaptive calculations. Some numerical examples are presented to validate the theoretical developements and to illustrate the ranges where the proposed approximations are valid.

  3. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  4. Solution of the transport equation in stationary state, in one and two dimensions, for BWR assemblies using nodal methods; Solucion de la ecuacion de transporte en estado estacionario, en 1 y 2 dimensiones, para ensambles tipo BWR usando metodos nodales

    Energy Technology Data Exchange (ETDEWEB)

    Xolocostli M, J.V

    2002-07-01

    The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points

  5. Systematic assembly homogenization and local flux reconstruction for nodal method calculations of fast reactor power distributions

    International Nuclear Information System (INIS)

    Dorning, J.J.

    1991-01-01

    A simultaneous pin lattice cell and fuel bundle homogenization theory has been developed for use with nodal diffusion calculations of practical reactors. The theoretical development of the homogenization theory, which is based on multiple-scales asymptotic expansion methods carried out through fourth order in a small parameter, starts from the transport equation and systematically yields: a cell-homogenized bundled diffusion equation with self-consistent expressions for the cell-homogenized cross sections and diffusion tensor elements; and a bundle-homogenized global reactor diffusion equation with self-consistent expressions for the bundle-homogenized cross sections and diffusion tensor elements. The continuity of the angular flux at cell and bundle interfaces also systematically yields jump conditions for the scaler flux or so-called flux discontinuity factors on the cell and bundle interfaces in terms of the two adjacent cell or bundle eigenfunctions. The expressions required for the reconstruction of the angular flux or the 'de-homogenization' theory were obtained as an integral part of the development; hence the leading order transport theory angular flux is easily reconstructed throughout the reactor including the regions in the interior of the fuel bundles or computational nodes and in the interiors of the pin lattice cells. The theoretical development shows that the exact transport theory angular flux is obtained to first order from the whole-reactor nodal diffusion calculations, done using the homogenized nuclear data and discontinuity factors, is a product of three computed quantities: a ''cell shape function''; a ''bundle shape function''; and a ''global shape function''. 10 refs

  6. A posteriori error estimator and AMR for discrete ordinates nodal transport methods

    International Nuclear Information System (INIS)

    Duo, Jose I.; Azmy, Yousry Y.; Zikatanov, Ludmil T.

    2009-01-01

    In the development of high fidelity transport solvers, optimization of the use of available computational resources and access to a tool for assessing quality of the solution are key to the success of large-scale nuclear systems' simulation. In this regard, error control provides the analyst with a confidence level in the numerical solution and enables for optimization of resources through Adaptive Mesh Refinement (AMR). In this paper, we derive an a posteriori error estimator based on the nodal solution of the Arbitrarily High Order Transport Method of the Nodal type (AHOT-N). Furthermore, by making assumptions on the regularity of the solution, we represent the error estimator as a function of computable volume and element-edges residuals. The global L 2 error norm is proved to be bound by the estimator. To lighten the computational load, we present a numerical approximation to the aforementioned residuals and split the global norm error estimator into local error indicators. These indicators are used to drive an AMR strategy for the spatial discretization. However, the indicators based on forward solution residuals alone do not bound the cell-wise error. The estimator and AMR strategy are tested in two problems featuring strong heterogeneity and highly transport streaming regime with strong flux gradients. The results show that the error estimator indeed bounds the global error norms and that the error indicator follows the cell-error's spatial distribution pattern closely. The AMR strategy proves beneficial to optimize resources, primarily by reducing the number of unknowns solved for to achieve prescribed solution accuracy in global L 2 error norm. Likewise, AMR achieves higher accuracy compared to uniform refinement when resolving sharp flux gradients, for the same number of unknowns

  7. Acceleration of nodal diffusion code by Chebychev polynomial extrapolation method; Ubrzanje spoljasnjih iteracija difuzionog nodalnog proracuna Chebisevijevom ekstrapolacionom metodom

    Energy Technology Data Exchange (ETDEWEB)

    Zmijarevic, I; Tomashevic, Dj [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    This paper presents Chebychev acceleration of outer iterations of a nodal diffusion code of high accuracy. Extrapolation parameters, unique for all moments are calculated using the node integrated distribution of fission source. Sample calculations are presented indicating the efficiency of method. (author)

  8. Applied Bayesian hierarchical methods

    National Research Council Canada - National Science Library

    Congdon, P

    2010-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Posterior Inference from Bayes Formula . . . . . . . . . . . . 1.3 Markov Chain Monte Carlo Sampling in Relation to Monte Carlo Methods: Obtaining Posterior...

  9. Methods of applied mathematics

    CERN Document Server

    Hildebrand, Francis B

    1992-01-01

    This invaluable book offers engineers and physicists working knowledge of a number of mathematical facts and techniques not commonly treated in courses in advanced calculus, but nevertheless extremely useful when applied to typical problems in many different fields. It deals principally with linear algebraic equations, quadratic and Hermitian forms, operations with vectors and matrices, the calculus of variations, and the formulations and theory of linear integral equations. Annotated problems and exercises accompany each chapter.

  10. A Hybrid Interpolation Method for Geometric Nonlinear Spatial Beam Elements with Explicit Nodal Force

    Directory of Open Access Journals (Sweden)

    Huiqing Fang

    2016-01-01

    Full Text Available Based on geometrically exact beam theory, a hybrid interpolation is proposed for geometric nonlinear spatial Euler-Bernoulli beam elements. First, the Hermitian interpolation of the beam centerline was used for calculating nodal curvatures for two ends. Then, internal curvatures of the beam were interpolated with a second interpolation. At this point, C1 continuity was satisfied and nodal strain measures could be consistently derived from nodal displacement and rotation parameters. The explicit expression of nodal force without integration, as a function of global parameters, was founded by using the hybrid interpolation. Furthermore, the proposed beam element can be degenerated into linear beam element under the condition of small deformation. Objectivity of strain measures and patch tests are also discussed. Finally, four numerical examples are discussed to prove the validity and effectivity of the proposed beam element.

  11. Neutron transport in hexagonal reactor cores modeled by trigonal-geometry diffusion and simplified P{sub 3} nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Duerigen, Susan

    2013-05-15

    The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies discretized as cells consisting of equilateral triangles is its mesh refinement capability. In this thesis, a diffusion and a simplified P{sub 3} (or SP{sub 3}) neutron transport nodal method are developed based on trigonal geometry. Both models are implemented in the reactor dynamics code DYN3D. As yet, no other well-established nodal core analysis code comprises an SP{sub 3} transport theory model based on trigonal meshes. The development of two methods based on different neutron transport approximations but using identical underlying spatial trigonal discretization allows a profound comparative analysis of both methods with regard to their mathematical derivations, nodal expansion approaches, solution procedures, and their physical performance. The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are based on the transverse-integration procedure, which renders them computationally efficient, and they use a combination of polynomial and exponential functions to represent the neutron flux moments of the SP{sub 3} and diffusion equations, which guarantees high accuracy. The SP{sub 3} equations are derived in within-group form thus being of diffusion type. On this basis, the conventional diffusion solver structure can be retained also for the solution of the SP{sub 3} transport problem. The verification analysis provides proof of the methodological reliability of both trigonal DYN3D models. By means of diverse hexagonal academic benchmark and realistic detailed-geometry full-transport-theory problems, the superiority of the SP{sub 3} transport over the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is, e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.

  12. A simple method for microtuber production in dioscorea opposita using single nodal segments

    International Nuclear Information System (INIS)

    Li, M.; Wang, Y; Liu, W.; Li, S.

    2015-01-01

    Dioscorea opposita Thunb. (Chinese yam) is an important tuber crop in East Asia because of its dual benefits edible and medicinal properties. Microtubers may provide a feasible alternative to in-vitro-grown plantlets as a means of micropropagation and a way to exchange healthy planting material. In this study, we have developed a simplified culture method for In vitro production of microtubers from D. opposita cv. Tiegun. In this method, microtubers formed in 98% of the internodes of single nodal segments after four weeks of dark-incubation when cultured in MS medium supplemented with 60 g sucrose 1-1 with shaking. Anatomical observations strongly supported the process of tuberization. We also found that 66% of the microtubers produced In vitro sprouted two months after transfer to vermiculite. The protocol presented here provides a simple model for studying the physiological, biochemical, and molecular mechanisms of tuberization in D. opposita, and shows good potential for large-scale production of microtubers as well. (author)

  13. Ultrasound-guided core biopsy: an effective method of detecting axillary nodal metastases.

    LENUS (Irish Health Repository)

    Solon, Jacqueline G

    2012-02-01

    BACKGROUND: Axillary nodal status is an important prognostic predictor in patients with breast cancer. This study evaluated the sensitivity and specificity of ultrasound-guided core biopsy (Ax US-CB) at detecting axillary nodal metastases in patients with primary breast cancer, thereby determining how often sentinel lymph node biopsy could be avoided in node positive patients. STUDY DESIGN: Records of patients presenting to a breast unit between January 2007 and June 2010 were reviewed retrospectively. Patients who underwent axillary ultrasonography with or without preoperative core biopsy were identified. Sensitivity, specificity, positive predictive value, and negative predictive value for ultrasonography and percutaneous biopsy were evaluated. RESULTS: Records of 718 patients were reviewed, with 445 fulfilling inclusion criteria. Forty-seven percent (n = 210\\/445) had nodal metastases, with 110 detected by Ax US-CB (sensitivity 52.4%, specificity 100%, positive predictive value 100%, negative predictive value 70.1%). Axillary ultrasonography without biopsy had sensitivity and specificity of 54.3% and 97%, respectively. Lymphovascular invasion was an independent predictor of nodal metastases (sensitivity 60.8%, specificity 80%). Ultrasound-guided core biopsy detected more than half of all nodal metastases, sparing more than one-quarter of all breast cancer patients an unnecessary sentinel lymph node biopsy. CONCLUSIONS: Axillary ultrasonography, when combined with core biopsy, is a valuable component of the management of patients with primary breast cancer. Its ability to definitively identify nodal metastases before surgical intervention can greatly facilitate a patient\\'s preoperative integrated treatment plan. In this regard, we believe our study adds considerably to the increasing data, which indicate the benefit of Ax US-CB in the preoperative detection of nodal metastases.

  14. Nodal head method with matric operation in analysis of mine ventilation networks. Matrics kaiho wo mochiita setten ho ni yoru tsuki mo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Miyakoshi, H. (Akita Univ., Akita (Japan). Mining College); Kinoshita, H.; Onozuka, T. (Hanaoka Mining Co. Ltd., Akita (Japan))

    1990-09-25

    In this report, the method of analyzing mine ventilation networks is explained in which the direct matric operation method is applied to the solution of the linear equation system introduced from the fundamental equation of the nodal head method. In other words, the fundamental equation was expressed by genelarized equation composition by using connecting functions between nodes and the algorism of a computer program was clarified. And the calculation method necessary for other ventilation netwrks analysis was shown in a concrete form. For solving the linear equation system, the matric operation method based on the modified Choleski's method was used in order to speed up the calculation and stabilize the convergence process of the solution. As examples, calculation was made on the ventilation networks of total numbers of the nodes of 8, 14, 51 and 141. From these ventilation network analyses, using a linear equation system concerning the nodal pressure correction, it was found that in the system with convergence acceleration coefficient of 1.4, the number of sequential repeating frequency of approximation Mc which was required for convergence was in the order of Mc {approx equal} 13 (cycle) for the condition that the fan pressure was constant and the convergence condition was {vert bar} AQi {vert bar}{sub max} {lt} 0.1m {sup 3}/min. 14 refs., 12 figs., 3 tabs.

  15. Application of the RT-0 nodal methods and NRMPO matrix-response to the cycles 1 and 2 of the LVC

    International Nuclear Information System (INIS)

    Delfin L, A.; Hernandez L, H.; Alonso V, G.

    2005-01-01

    The nodal methods the same as that of matrix-response are used to develop numeric calculations, so much in static as dynamics of reactors, in one, two and three dimensions. The topic of this work is to apply the equations modeled in the RPM0 program, obtained when using the nodal scheme RT-0 (Raviart-Thomas index zero) in the neutron diffusion equation in stationary state X Y geometry, applying finite differences centered in mesh and lineal reactivity; also, to use those equations captured in the NRMPO program developed by E. Malambu that uses the matrix-response method in X Y geometry. The numeric results of the radial distribution of power by fuel assembly of the unit 1, in the cycles 1 and 2 of the CLV obtained by both methods, they are compared with the calculations obtained with the CM-PRESTO code that is a neutronic-thermo hydraulic simulator in three dimensions. The comparison of the radial distribution of power in the cycles 1 and 2 of the CLV with the CM-PRESTO code, it presents for RPM0 maximum errors of 8.2% and 12.4% and for NRMPO 31.2% and 61.3% respectively. The results show that it can be feasible to use the program RPM0 like a quick and efficient tool in the multicycle analysis in the fuel management. (Author)

  16. A new communication scheme for the neutron diffusion nodal method in a distributed computing environment

    International Nuclear Information System (INIS)

    Kirk, B.L.; Azmy, Y.

    1994-01-01

    A modified scheme is developed for solving the two-dimensional nodal diffusion equations on distributed memory computers. The scheme is aimed at minimizing the volume of communication among processors while maximizing the tasks in parallel. Results show a significant improvement in parallel efficiency on the Intel iPSC/860 hypercube compared to previous algorithms

  17. Depletion Calculations for MTR Core Using MCNPX and Multi-Group Nodal Diffusion Methods

    International Nuclear Information System (INIS)

    Jaradata, Mustafa K.; Park, Chang Je; Lee, Byungchul

    2013-01-01

    In order to maintain a self-sustaining steady-state chain reaction, more fuel than is necessary in order to maintain a steady state chain reaction must be loaded. The introduction of this excess fuel increases the net multiplication capability of the system. In this paper MCNPX and multi-group nodal diffusion theory will be used for depletion calculations for MTR core. The eigenvalue and power distribution in the core will be compared for different burnup. Multi-group nodal diffusion theory with combination of NEWT-TRITON system was used to perform depletion calculations for 3Χ3 MTR core. 2G and 6G approximations were used and compared with MCNPX results for 2G approximation the maximum difference from MCNPX was 40 mk and for 6G approximation was 6 mk which is comparable to the MCNPX results. The calculated power using nodal code was almost the same MCNPX results. Finally the results of the multi-group nodal theory were acceptable and comparable to the calculated using MCNPX

  18. On the relationship between some nodal schemes and the finite element method in static diffusion calculations

    International Nuclear Information System (INIS)

    Fedon-Magnaud, C.; Hennart, J.P.; Lautard, J.J.

    1983-03-01

    An unified formulation of non conforming finite elements with quadrature formula and simple nodal scheme is presented. The theoretical convergence is obtained for the previous scheme when the mesh is refined. Numerical tests are provided in order to bear out the theorical results

  19. Solving two-dimensions heat conduction problem for fuel elements in reactor by nodal green's function method

    International Nuclear Information System (INIS)

    Tang Jian; Peng Muzhang; Cao Dongxing

    1989-01-01

    A new numerical method-nodal green's function method is used for solving heat conduction function. A heat conduction problem in cylindrical geometry with axial conduction is solved in this paper. The Kirchhoff transformation is used to deal with the problem with temperature dependent conductivity. Therefor, the calculation for the function is simplified. On the basis of the formulas developed, the code named NGMEFC is programmed. A sample problem which has been calculated by the code COBRA-IV is chosen as checking. A good agreement between both codes is achieved. The calculation shows that the calculation efficiency of the nodel green's function method is much higher than that of finite difference method

  20. Determination of power distribution in reactor with nodal expansion method; Izrachun porazdelitve mochi v reaktorju z metodo nodalne ekspanzije

    Energy Technology Data Exchange (ETDEWEB)

    Kromar, M; Trkov, A [Institut Jozef Stefan, Ljubljana (Yugoslavia); Pregl, G [Tehnishka Fakulteta Maribor Univ. (Yugoslavia)

    1988-07-01

    Nodal expansion method (NEM) is one of the advanced coarse-mesh methods based on integral form of few-group diffusion equation. NEM can be characterized by high accuracy and computational efficiency. Method was tested by development of computer code NEXT. Validation of the code was performed by calculation of 2-D and 3-D IAEA benchmark problem. NEXT was compared with codes based on other methods (finite differences, finite elements) and has been found to be accurate as well as fast. (author)

  1. A PURE NODAL-ANALYSIS METHOD SUITABLE FOR ANALOG CIRCUITS USING NULLORS

    OpenAIRE

    E. Tlelo-Cuautle; L.A. Sarmiento-Reyes

    2003-01-01

    A novel technique suitable for computer-aided analysis of analog integrated circuits (ICs) is introduced. This technique uses the features of both nodal-analysis (NA) and symbolic analysis, at nullor level. First, the nullor is used to model the ideal behavior of several analog devices, namely: transistors, opamps, OTAs, and current conveyors. From this modeling approach, it is shown how to transform circuits working in voltage-mode to current-mode and vice-versa. Second, it is demonstrated t...

  2. Application of the nodal method RTN-0 for the solution of the neutron diffusion equation dependent of time in hexagonal-Z geometry; Aplicacion del metodo nodal RTN-0 para la solucion de la ecuacion de difusion de neutrones dependiente del tiempo en geometria hexagonal-Z

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel E, J.; Alonso V, G. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: jaime.esquivel@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. Lindavista, 07738 Ciudad de Mexico (Mexico)

    2015-09-15

    The solution of the neutron diffusion equation either for reactors in steady state or time dependent, is obtained through approximations generated by implementing of nodal methods such as RTN-0 (Raviart-Thomas-Nedelec of zero index), which is used in this study. Since the nodal methods are applied in quadrangular geometries, in this paper a technique in which the hexagonal geometry through the transfinite interpolation of Gordon-Hall becomes the appropriate geometry to make use of the nodal method RTN-0 is presented. As a result, a computer program was developed, whereby is possible to obtain among other results the neutron multiplication effective factor (k{sub eff}), and the distribution of radial and/or axial power. To verify the operation of the code, was applied to three benchmark problems: in the first two reactors VVER and FBR, results k{sub eff} and power distribution are obtained, considering the steady state case of reactor; while the third problem a type VVER is analyzed, in its case dependent of time, which qualitative results are presented on the behavior of the reactor power. (Author)

  3. A one-dimensional, one-group absorption-production nodal method for neutron flux and power distributions calculations

    International Nuclear Information System (INIS)

    Ferreira, C.R.

    1984-01-01

    It is presented the absorption-production nodal method for steady and dynamical calculations in one-dimension and one group energy. It was elaborated the NOD1D computer code (in FORTRAN-IV language). Calculations of neutron flux and power distributions, burnup, effective multiplication factors and critical boron concentration were made with the NOD1D code and compared with results obtained through the CITATION code, which uses the finite difference method. The nuclear constants were produced by the LEOPARD code. (M.C.K.) [pt

  4. Parallel algorithms for solving the diffusion equation by finite elements methods and by nodal methods

    International Nuclear Information System (INIS)

    Coulomb, F.

    1989-06-01

    The aim of this work is to study methods for solving the diffusion equation, based on a primal or mixed-dual finite elements discretization and well suited for use on multiprocessors computers; domain decomposition methods are the subject of the main part of this study, the linear systems being solved by the block-Jacobi method. The origin of the diffusion equation is explained in short, and various variational formulations are reminded. A survey of iterative methods is given. The elemination of the flux or current is treated in the case of a mixed method. Numerical tests are performed on two examples of reactors, in order to compare mixed elements and Lagrange elements. A theoretical study of domain decomposition is led in the case of Lagrange finite elements, and convergence conditions for the block-Jacobi method are derived; the dissection decomposition is previously the purpose of a particular numerical analysis. In the case of mixed-dual finite elements, a study is led on examples and is confirmed by numerical tests performed for the dissection decomposition; furthermore, after being justified, decompositions along axes of symmetry are numerically tested. In the case of a decomposition into two subdomains, the dissection decomposition and the decomposition with an integrated interface are compared. Alternative directions methods are defined; the convergence of those relative to Lagrange elements is shown; in the case of mixed elements, convergence conditions are found [fr

  5. An analytical spatial reconstruction algorithm for the SD-SGF-CN hybrid nodal method for one-speed X,Y-geometry SN eigenvalue problems

    International Nuclear Information System (INIS)

    Menezes, Welton Alves; Alves Filho, Hermes; Barros, Ricardo C.

    2009-01-01

    In this paper the X,Y-geometry SD-SGF-CN spectral nodal method, cf. spectral diamond-spectral Green's function-constant nodal, is used to determine the one-speed node-edge average angular fluxes in heterogeneous domains. This hybrid spectral nodal method uses the spectral diamond (SD) auxiliary equation for the multiplying regions and the spectral Green's function (SGF) auxiliary equation for the non-multiplying regions of the domain. Moreover, we consider constant approximations for the transverse-leakage terms in the transverse integrated S N nodal equations. We solve the SD-SGF-CN equations using the one-node block inversion (NBI) iterative scheme, which uses the most recent estimates available for the node-entering fluxes to evaluate the node-exiting fluxes in the directions that constitute the incoming fluxes for the adjacent node. Using these results, we offer an algorithm for analytical reconstruction of the coarse-mesh nodal solution within each spatial node, as localized numerical solutions are not generated by usual accurate nodal methods. Numerical results are presented to illustrate the accuracy of the present algorithm. (author)

  6. Computational methods and modeling. 3. Adaptive Mesh Refinement for the Nodal Integral Method and Application to the Convection-Diffusion Equation

    International Nuclear Information System (INIS)

    Torej, Allen J.; Rizwan-Uddin

    2001-01-01

    The nodal integral method (NIM) has been developed for several problems, including the Navier-Stokes equations, the convection-diffusion equation, and the multigroup neutron diffusion equations. The coarse-mesh efficiency of the NIM is not fully realized in problems characterized by a wide range of spatial scales. However, the combination of adaptive mesh refinement (AMR) capability with the NIM can recover the coarse mesh efficiency by allowing high degrees of resolution in specific localized areas where it is needed and by using a lower resolution everywhere else. Furthermore, certain features of the NIM can be fruitfully exploited in the application of the AMR process. In this paper, we outline a general approach to couple nodal schemes with AMR and then apply it to the convection-diffusion (energy) equation. The development of the NIM with AMR capability (NIMAMR) is based on the well-known Berger-Oliger method for structured AMR. In general, the main components of all AMR schemes are 1. the solver; 2. the level-grid hierarchy; 3. the selection algorithm; 4. the communication procedures; 5. the governing algorithm. The first component, the solver, consists of the numerical scheme for the governing partial differential equations and the algorithm used to solve the resulting system of discrete algebraic equations. In the case of the NIM-AMR, the solver is the iterative approach to the solution of the set of discrete equations obtained by applying the NIM. Furthermore, in the NIM-AMR, the level-grid hierarchy (the second component) is based on the Hierarchical Adaptive Mesh Refinement (HAMR) system,6 and hence, the details of the hierarchy are omitted here. In the selection algorithm, regions of the domain that require mesh refinement are identified. The criterion to select regions for mesh refinement can be based on the magnitude of the gradient or on the Richardson truncation error estimate. Although an excellent choice for the selection criterion, the Richardson

  7. A closed-form solution for the two-dimensional transport equation by the LTSN nodal method in the range of Compton Effect

    International Nuclear Information System (INIS)

    Rodriguez, Barbara D.A.; Tullio de Vilhena, Marco; Hoff, Gabriela

    2008-01-01

    In this paper we report a two-dimensional LTS N nodal solution for homogeneous and heterogeneous rectangular domains, assuming the Klein-Nishina scattering kernel and multigroup model. The main idea relies on the solution of the two one-dimensional S N equations resulting from transverse integration of the S N equations in the rectangular domain by the LTS N nodal method, considering the leakage angular fluxes approximated by exponential, which allow us to determine a closed-form solution for the photons transport equation. The angular flux and the parameters of the medium are used for the calculation of the absorbed energy in rectangular domains with different dimensions and compositions. The incoming photons will be tracked until their whole energy is deposited and/or they leave the domain of interest. In this study, the absorbed energy by Compton Effect will be considered. The remaining effects will not be taken into account. We present numerical simulations and comparisons with results obtained by using Geant4 (version 9.1) program which applies the Monte Carlo's technique to low energy libraries for a two-dimensional problem assuming the Klein-Nishina scattering kernel. (authors)

  8. Incorporating the Uncertainties of Nodal-Plane Orientation in the Seismo-Lineament Analysis Method (SLAM)

    Science.gov (United States)

    Cronin, V.; Sverdrup, K. A.

    2013-05-01

    The process of delineating a seismo-lineament has evolved since the first description of the Seismo-Lineament Analysis Method (SLAM) by Cronin et al. (2008, Env & Eng Geol 14(3) 199-219). SLAM is a reconnaissance tool to find the trace of the fault that produced an shallow-focus earthquake by projecting the corresponding nodal planes (NP) upward to their intersections with the ground surface, as represented by a DEM or topographic map. A seismo-lineament is formed by the intersection of the uncertainty volume associated with a given NP and the ground surface. The ground-surface trace of the fault that produced the earthquake is likely to be within one of the two seismo-lineaments associated with the two NPs derived from the earthquake's focal mechanism solution. When no uncertainty estimate has been reported for the NP orientation, the uncertainty volume associated with a given NP is bounded by parallel planes that are [1] tangent to the ellipsoidal uncertainty volume around the focus and [2] parallel to the NP. If the ground surface is planar, the resulting seismo-lineament is bounded by parallel lines. When an uncertainty is reported for the NP orientation, the seismo-lineament resembles a bow tie, with the epicenter located adjacent to or within the "knot." Some published lists of focal mechanisms include only one NP with associated uncertainties. The NP orientation uncertainties in strike azimuth (+/- gamma), dip angle (+/- epsilon) and rake that are output from an FPFIT analysis (Reasenberg and Oppenheimer, 1985, USGS OFR 85-739) are taken to be the same for both NPs (Oppenheimer, 2013, pers com). The boundaries of the NP uncertainty volume are each comprised by planes that are tangent to the focal uncertainty ellipsoid. One boundary, whose nearest horizontal distance from the epicenter is greater than or equal to that of the other boundary, is formed by the set of all planes with strike azimuths equal to the reported NP strike azimuth +/- gamma, and dip angle

  9. Explicit formulation of a nodal transport method for discrete ordinates calculations in two-dimensional fixed-source problems

    Energy Technology Data Exchange (ETDEWEB)

    Tres, Anderson [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Matematica Aplicada; Becker Picoloto, Camila [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Prolo Filho, Joao Francisco [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica, Estatistica e Fisica; Dias da Cunha, Rudnei; Basso Barichello, Liliane [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Inst de Matematica

    2014-04-15

    In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature. (orig.)

  10. Elaboration of a nodal method to solve the steady state multigroup diffusion equation. Study and use of the multigroup diffusion code DAHRA

    International Nuclear Information System (INIS)

    Halilou, A.; Lounici, A.

    1981-01-01

    The subject is divided in two parts: In the first part a nodal method has been worked out to solve the steady state multigroup diffusion equation. This method belongs to the same set of nodal methods currently used to calculate the exact fission powers and neutron fluxes in a very short computing time. It has been tested on a two dimensional idealized reactors. The effective multiplication factor and the fission powers for each fuel element have been calculated. The second part consists in studying and mastering the multigroup diffusion code DAHRA - a reduced version of DIANE - a two dimensional code using finite difference method

  11. Long-time stability effects of quadrature and artificial viscosity on nodal discontinuous Galerkin methods for gas dynamics

    Science.gov (United States)

    Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan

    2017-11-01

    Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.

  12. Numerical solution of the Neutron Transport Equation using discontinuous nodal methods at X-Y geometry; Solucion numerica de la ecuacion de transporte de neutrones usando metodos nodales discontinuos en geometria X-Y

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A

    1997-12-31

    The purpose of this work is to solve the neutron transport equation in discrete-ordinates and X-Y geometry by developing and using the strong discontinuous and strong modified discontinuous nodal finite element schemes. The strong discontinuous and modified strong discontinuous nodal finite element schemes go from two to ten interpolation parameters per cell. They are describing giving a set D{sub c} and polynomial space S{sub c} corresponding for each scheme BDMO, RTO, BL, BDM1, HdV, BDFM1, RT1, BQ and BDM2. The solution is obtained solving the neutron transport equation moments for each nodal scheme by developing the basis functions defined by Pascal triangle and the Legendre moments giving in the polynomial space S{sub c} and, finally, looking for the non singularity of the resulting linear system. The linear system is numerically solved using a computer program for each scheme mentioned . It uses the LU method and forward and backward substitution and makes a partition of the domain in cells. The source terms and angular flux are calculated, using the directions and weights associated to the S{sub N} approximation and solving the angular flux moments to find the effective multiplication constant. The programs are written in Fortran language, using the dynamic allocation of memory to increase efficiently the available memory of the computing equipment. (Author).

  13. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo [Korea Advanced Institute of Science and Tehcnology, Daejeon (Korea, Republic of)

    2006-03-15

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis.

  14. Development of a neutronics code based on analytic function expansion nodal method for pebble-type High Temperature Gas-cooled Reactor design

    International Nuclear Information System (INIS)

    Cho, Nam Zin; Lee, Joo Hee; Lee, Jae Jun; Yu, Hui; Lee, Gil Soo

    2006-03-01

    There is growing interest in developing Pebble Bed Reactors(PBRs) as a candidate of Very High Temperature gas-cooled Reactors(VHTRs). Until now, most existing methods of nuclear design analysis for this type of reactors are base on old finite-difference solvers or on statistical methods. And other existing nodal cannot be adapted for this kind of reactors because of transverse integration problem. In this project, we developed the TOPS code in three dimensional cylindrical geometry based on Analytic Function Expansion Nodal (AFEN) method developed at KAIST. The TOPS code showed better results in computing time than FDM and MCNP. Also TOPS showed very accurate results in reactor analysis

  15. Development of a computer code for neutronic calculations of a hexagonal lattice of nuclear reactor using the flux expansion nodal method

    Directory of Open Access Journals (Sweden)

    Mohammadnia Meysam

    2013-01-01

    Full Text Available The flux expansion nodal method is a suitable method for considering nodalization effects in node corners. In this paper we used this method to solve the intra-nodal flux analytically. Then, a computer code, named MA.CODE, was developed using the C# programming language. The code is capable of reactor core calculations for hexagonal geometries in two energy groups and three dimensions. The MA.CODE imports two group constants from the WIMS code and calculates the effective multiplication factor, thermal and fast neutron flux in three dimensions, power density, reactivity, and the power peaking factor of each fuel assembly. Some of the code's merits are low calculation time and a user friendly interface. MA.CODE results showed good agreement with IAEA benchmarks, i. e. AER-FCM-101 and AER-FCM-001.

  16. New aspects in the implementation of the quasi-static method for the solution of neutron diffusion problems in the framework of a nodal method

    International Nuclear Information System (INIS)

    Caron, D.; Dulla, S.; Ravetto, P.

    2016-01-01

    Highlights: • The implementation of the quasi-static method in 3D nodal diffusion theory model in hexagonal-z geometry is described. • Different formulations of the quasi-static technique are discussed. • The results presented illustrate the features of the various formulations, highlighting advantages and drawbacks. • A novel adaptive procedure for the selection of the time interval between shape recalculations is presented. - Abstract: The ability to accurately model the dynamic behaviour of the neutron distribution in a nuclear system is a fundamental aspect of reactor design and safety assessment. Due to the heavy computational burden associated to the direct time inversion of the full model, the quasi-static method has become a standard approach to the numerical solution of the nuclear reactor dynamic equations on the full phase space. The present paper is opened by an introductory critical review of the basics of the quasi-static scheme for the general neutron kinetic problem. Afterwards, the implementation of the quasi-static method in the context of a three-dimensional nodal diffusion theory model in hexagonal-z geometry is described, including some peculiar aspects of the adjoint nodal equations and the explicit formulation of the quasi-static nodal equations. The presentation includes the discussion of different formulations of the quasi-static technique. The results presented illustrate the features of the various formulations, highlighting the corresponding advantages and drawbacks. An adaptive procedure for the selection of the time interval between shape recalculations is also presented, showing its usefulness in practical applications.

  17. Need for higher order polynomial basis for polynomial nodal methods employed in LWR calculations

    International Nuclear Information System (INIS)

    Taiwo, T.A.; Palmiotti, G.

    1997-01-01

    The paper evaluates the accuracy and efficiency of sixth order polynomial solutions and the use of one radial node per core assembly for pressurized water reactor (PWR) core power distributions and reactivities. The computer code VARIANT was modified to calculate sixth order polynomial solutions for a hot zero power benchmark problem in which a control assembly along a core axis is assumed to be out of the core. Results are presented for the VARIANT, DIF3D-NODAL, and DIF3D-finite difference codes. The VARIANT results indicate that second order expansion of the within-node source and linear representation of the node surface currents are adequate for this problem. The results also demonstrate the improvement in the VARIANT solution when the order of the polynomial expansion of the within-node flux is increased from fourth to sixth order. There is a substantial saving in computational time for using one radial node per assembly with the sixth order expansion compared to using four or more nodes per assembly and fourth order polynomial solutions. 11 refs., 1 tab

  18. A Nodal and Finite Difference Hybrid Method for Pin-by-Pin Heterogeneous Three-Dimensional Light Water Reactor Diffusion Calculations

    International Nuclear Information System (INIS)

    Lee, Deokjung; Downar, Thomas J.; Kim, Yonghee

    2004-01-01

    An innovative hybrid spatial discretization method is proposed to improve the computational efficiency of pin-wise heterogeneous three-dimensional light water reactor (LWR) core neutronics analysis. The newly developed method employs the standard finite difference method in the x and y directions and the well-known nodal methods [nodal expansion method (NEM) and analytic nodal method (ANM) as needed] in the z direction. Four variants of the hybrid method are investigated depending on the axial nodal methodologies: HYBRID A, NEM with the conventional quadratic transverse leakage; HYBRID B, the conventional NEM method except that the transverse-leakage shapes are obtained from a fine-mesh local problem (FMLP) around the control rod tip; HYBRID C, the same as HYBRID B except that ANM with a high-order transverse leakage obtained from the FMLP is used in the vicinity of the control rod tip; and HYBRID D, the same as HYBRID C except that the transverse leakage is determined using the buckling approximation instead of the FMLP around the control rod tip. Benchmark calculations demonstrate that all the hybrid algorithms are consistent and stable and that the HYBRID C method provides the best numerical performance in the case of rodded LWR problems with pin-wise homogenized cross sections

  19. Application of the RT-0 nodal methods and NRMPO matrix-response to the cycles 1 and 2 of the LVC; Aplicacion de los metodos nodal RT-0 y matriz respuesta NRMPO a los ciclos 1 y 2 de la CLV

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Hernandez L, H.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-07-01

    The nodal methods the same as that of matrix-response are used to develop numeric calculations, so much in static as dynamics of reactors, in one, two and three dimensions. The topic of this work is to apply the equations modeled in the RPM0 program, obtained when using the nodal scheme RT-0 (Raviart-Thomas index zero) in the neutron diffusion equation in stationary state X Y geometry, applying finite differences centered in mesh and lineal reactivity; also, to use those equations captured in the NRMPO program developed by E. Malambu that uses the matrix-response method in X Y geometry. The numeric results of the radial distribution of power by fuel assembly of the unit 1, in the cycles 1 and 2 of the CLV obtained by both methods, they are compared with the calculations obtained with the CM-PRESTO code that is a neutronic-thermo hydraulic simulator in three dimensions. The comparison of the radial distribution of power in the cycles 1 and 2 of the CLV with the CM-PRESTO code, it presents for RPM0 maximum errors of 8.2% and 12.4% and for NRMPO 31.2% and 61.3% respectively. The results show that it can be feasible to use the program RPM0 like a quick and efficient tool in the multicycle analysis in the fuel management. (Author)

  20. A spectral nodal method for eigenvalue S{sub N} transport problems in two-dimensional rectangular geometry for energy multigroup nuclear reactor global calculations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Davi Jose M.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: davijmsilva@yahoo.com.br, E-mail: halves@iprj.uerj.br, E-mail: rcbarros@pq.cnpq.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Programa de Pos-Graduacao em Modelagem Computacional

    2015-07-01

    A spectral nodal method is developed for multigroup x,y-geometry discrete ordinates (S{sub N}) eigenvalue problems for nuclear reactor global calculations. This method uses the conventional multigroup SN discretized spatial balance nodal equations with two non-standard auxiliary equations: the spectral diamond (SD) auxiliary equations for the discretization nodes inside the fuel regions, and the spectral Green's function (SGF) auxiliary equations for the non-multiplying regions, such as the baffle and the reactor. This spectral nodal method is derived from the analytical general solution of the SN transverse integrated nodal equations with constant approximations for the transverse leakage terms within each discretization node. The SD and SGF auxiliary equations have parameters, which are determined to preserve the homogeneous and the particular components of these local general solutions. Therefore, we refer to the offered method as the hybrid SD-SGF-Constant Nodal (SD-SGF-CN) method. The S{sub N} discretized spatial balance equations, together with the SD and the SGF auxiliary equations form the SD-SGF-CN equations. We solve the SD-SGF-CN equations by using the one-node block inversion inner iterations (NBI), wherein the most recent estimates for the incoming group node-edge average or prescribed boundary conditions are used to evaluate the outgoing group node-edge average fluxes in the directions of the S{sub N} transport sweeps, for each estimate of the dominant eigenvalue in the conventional Power outer iterations. We show in numerical calculations that the SD-SGF-CN method is very accurate for coarse-mesh multigroup S{sub N} eigenvalue problems, even though the transverse leakage terms are approximated rather simply. (author)

  1. A spectral nodal method for eigenvalue SN transport problems in two-dimensional rectangular geometry for energy multigroup nuclear reactor global calculations

    International Nuclear Information System (INIS)

    Silva, Davi Jose M.; Alves Filho, Hermes; Barros, Ricardo C.

    2015-01-01

    A spectral nodal method is developed for multigroup x,y-geometry discrete ordinates (S N ) eigenvalue problems for nuclear reactor global calculations. This method uses the conventional multigroup SN discretized spatial balance nodal equations with two non-standard auxiliary equations: the spectral diamond (SD) auxiliary equations for the discretization nodes inside the fuel regions, and the spectral Green's function (SGF) auxiliary equations for the non-multiplying regions, such as the baffle and the reactor. This spectral nodal method is derived from the analytical general solution of the SN transverse integrated nodal equations with constant approximations for the transverse leakage terms within each discretization node. The SD and SGF auxiliary equations have parameters, which are determined to preserve the homogeneous and the particular components of these local general solutions. Therefore, we refer to the offered method as the hybrid SD-SGF-Constant Nodal (SD-SGF-CN) method. The S N discretized spatial balance equations, together with the SD and the SGF auxiliary equations form the SD-SGF-CN equations. We solve the SD-SGF-CN equations by using the one-node block inversion inner iterations (NBI), wherein the most recent estimates for the incoming group node-edge average or prescribed boundary conditions are used to evaluate the outgoing group node-edge average fluxes in the directions of the S N transport sweeps, for each estimate of the dominant eigenvalue in the conventional Power outer iterations. We show in numerical calculations that the SD-SGF-CN method is very accurate for coarse-mesh multigroup S N eigenvalue problems, even though the transverse leakage terms are approximated rather simply. (author)

  2. Sub-cell balanced nodal expansion methods using S4 eigenfunctions for multi-group SN transport problems in slab geometry

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Lee, Deokjung

    2015-01-01

    A highly accurate S 4 eigenfunction-based nodal method has been developed to solve multi-group discrete ordinate neutral particle transport problems with a linearly anisotropic scattering in slab geometry. The new method solves the even-parity form of discrete ordinates transport equation with an arbitrary S N order angular quadrature using two sub-cell balance equations and the S 4 eigenfunctions of within-group transport equation. The four eigenfunctions from S 4 approximation have been chosen as basis functions for the spatial expansion of the angular flux in each mesh. The constant and cubic polynomial approximations are adopted for the scattering source terms from other energy groups and fission source. A nodal method using the conventional polynomial expansion and the sub-cell balances was also developed to be used for demonstrating the high accuracy of the new methods. Using the new methods, a multi-group eigenvalue problem has been solved as well as fixed source problems. The numerical test results of one-group problem show that the new method has third-order accuracy as mesh size is finely refined and it has much higher accuracies for large meshes than the diamond differencing method and the nodal method using sub-cell balances and polynomial expansion of angular flux. For multi-group problems including eigenvalue problem, it was demonstrated that the new method using the cubic polynomial approximation of the sources could produce very accurate solutions even with large mesh sizes. (author)

  3. Calculation of accurate albedo boundary conditions for three-dimensional nodal diffusion codes by the method of characteristics

    International Nuclear Information System (INIS)

    Petkov, Petko T.

    2000-01-01

    Most of the few-group three-dimensional nodal diffusion codes used for neutronics calculations of the WWER reactors use albedo type boundary conditions on the core-reflector boundary. The conventional albedo are group-to-group reflection probabilities, defined on each outer node face. The method of characteristics is used to calculate accurate albedo by the following procedure. A many-group two-dimensional heterogeneous core-reflector problem, including a sufficient part of the core and detailed description of the adjacent reflector, is solved first. From this solution the angular flux on the core-reflector boundary is calculated in all groups for all traced neutron directions. Accurate boundary conditions can be calculated for the radial, top and bottom reflectors as well as for the absorber part of the WWER-440 reactor control assemblies. The algorithm can be used to estimate also albedo, coupling outer node faces on the radial reflector in the axial direction. Numerical results for the WWER-440 reactor are presented. (Authors)

  4. Improving the Efficiency of the Nodal Integral Method With the Portable, Extensible Tool-kit for Scientific Computation

    International Nuclear Information System (INIS)

    Toreja, Allen J.; Uddin, Rizwan

    2002-01-01

    An existing implementation of the nodal integral method for the time-dependent convection-diffusion equation is modified to incorporate various PETSc (Portable, Extensible Tool-kit for Scientific Computation) solver and pre-conditioner routines. In the modified implementation, the default iterative Gauss-Seidel solver is replaced with one of the following PETSc iterative linear solver routines: Generalized Minimal Residuals, Stabilized Bi-conjugate Gradients, or Transpose-Free Quasi-Minimal Residuals. For each solver, a Jacobi or a Successive Over-Relaxation pre-conditioner is used. Two sample problems, one with a low Peclet number and one with a high Peclet number, are solved using the new implementation. In all the cases tested, the new implementation with the PETSc solver routines outperforms the original Gauss-Seidel implementation. Moreover, the PETSc Stabilized Bi-conjugate Gradients routine performs the best on the two sample problems leading to CPU times that are less than half the CPU times of the original implementation. (authors)

  5. Applied Formal Methods for Elections

    DEFF Research Database (Denmark)

    Wang, Jian

    development time, or second dynamically, i.e. monitoring while an implementation is used during an election, or after the election is over, for forensic analysis. This thesis contains two chapters on this subject: the chapter Analyzing Implementations of Election Technologies describes a technique...... process. The chapter Measuring Voter Lines describes an automated data collection method for measuring voters' waiting time, and discusses statistical models designed to provide an understanding of the voter behavior in polling stations....

  6. Applied Formal Methods for Elections

    DEFF Research Database (Denmark)

    Wang, Jian

    Information technology is changing the way elections are organized. Technology renders the electoral process more efficient, but things could also go wrong: Voting software is complex, it consists of over thousands of lines of code, which makes it error-prone. Technical problems may cause delays...... bounded model-checking and satisfiability modulo theories (SMT) solvers can be used to check these criteria. Voter Experience: Technology profoundly affects the voter experience. These effects need to be measured and the data should be used to make decisions regarding the implementation of the electoral...... at polling stations, or even delay the announcement of the final result. This thesis describes a set of methods to be used, for example, by system developers, administrators, or decision makers to examine election technologies, social choice algorithms and voter experience. Technology: Verifiability refers...

  7. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    O'Dell, R.D.; Stepanek, J.; Wagner, M.R.

    1983-01-01

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  8. KEK NODAL user's guide

    International Nuclear Information System (INIS)

    Akiyama, Atsuyoshi; Katoh, Tadahiko; Kikutani, Eiji; Koiso, Haruyo; Kurokawa, Shin-ichi; Oide, Katsunobu.

    1984-06-01

    NODAL is an interpreter language for accelerator control developed at CERN SPS and has been used successfully since 1974. At present NODAL or NODAL-like languages are used at DESY PETRA and CERN CPS. At KEK, we have also adopted NODAL for the control of TRISTAN, a 30 GeV x 30 GeV electron-positron colliding beam facility. The KEK version of NODAL has the following improvements on the SPS NODAL: (1) the fast execution speed due to the compiler-interpreter scheme, and (2) the full-screen editing facility. This manual explains how to use the KEK NODAL. It is based on the manual of the SPS NODAL, THE NODAL SYSTEM FOR THE SPS, by M.C. Crowley-Milling and G.C. Shering, CERN 78-07. We have made some additions and modifications to make the manual more appropriate for the KEK NODAL system, paying attention to retaining the good features of the original SPS NODAL manual. We acknowledge Professor M.C. Crowley-Milling, Dr G.C. Shering and CERN for their kind permission for this modification. (author)

  9. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation

  10. ANOVA-HDMR structure of the higher order nodal diffusion solution

    International Nuclear Information System (INIS)

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-01-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  11. Development of one-energy group, two-dimensional, frequency dependent detector adjoint function based on the nodal method

    International Nuclear Information System (INIS)

    Khericha, Soli T.

    2000-01-01

    One-energy group, two-dimensional computer code was developed to calculate the response of a detector to a vibrating absorber in a reactor core. A concept of local/global components, based on the frequency dependent detector adjoint function, and a nodalization technique were utilized. The frequency dependent detector adjoint functions presented by complex equations were expanded into real and imaginary parts. In the nodalization technique, the flux is expanded into polynomials about the center point of each node. The phase angle and the magnitude of the one-energy group detector adjoint function were calculated for a detector located in the center of a 200x200 cm reactor using a two-dimensional nodalization technique, the computer code EXTERMINATOR, and the analytical solution. The purpose of this research was to investigate the applicability of a polynomial nodal model technique to the calculations of the real and the imaginary parts of the detector adjoint function for one-energy group two-dimensional polynomial nodal model technique. From the results as discussed earlier, it is concluded that the nodal model technique can be used to calculate the detector adjoint function and the phase angle. Using the computer code developed for nodal model technique, the magnitude of one energy group frequency dependent detector adjoint function and the phase angle were calculated for the detector located in the center of a 200x200 cm homogenous reactor. The real part of the detector adjoint function was compared with the results obtained from the EXTERMINATOR computer code as well as the analytical solution based on a double sine series expansion using the classical Green's Function solution. The values were found to be less than 1% greater at 20 cm away from the source region and about 3% greater closer to the source compared to the values obtained from the analytical solution and the EXTERMINATOR code. The currents at the node interface matched within 1% of the average

  12. Error estimation for variational nodal calculations

    International Nuclear Information System (INIS)

    Zhang, H.; Lewis, E.E.

    1998-01-01

    Adaptive grid methods are widely employed in finite element solutions to both solid and fluid mechanics problems. Either the size of the element is reduced (h refinement) or the order of the trial function is increased (p refinement) locally to improve the accuracy of the solution without a commensurate increase in computational effort. Success of these methods requires effective local error estimates to determine those parts of the problem domain where the solution should be refined. Adaptive methods have recently been applied to the spatial variables of the discrete ordinates equations. As a first step in the development of adaptive methods that are compatible with the variational nodal method, the authors examine error estimates for use in conjunction with spatial variables. The variational nodal method lends itself well to p refinement because the space-angle trial functions are hierarchical. Here they examine an error estimator for use with spatial p refinement for the diffusion approximation. Eventually, angular refinement will also be considered using spherical harmonics approximations

  13. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    International Nuclear Information System (INIS)

    Jacqmin, R.P.

    1991-01-01

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ''modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise

  14. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, Robert P. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  15. A semi-experimental nodal synthesis method for the on-line reconstruction of three-dimensional neutron flux-shapes and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Jacqmin, R.P.

    1991-12-10

    The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.

  16. A 3D nodal mixed dual method for nuclear reactor kinetics with improved quasistatic model and a semi-implicit scheme to solve the precursor equations

    International Nuclear Information System (INIS)

    Dahmani, M.; Baudron, A.M.; Lautard, J.J.; Erradi, L.

    2001-01-01

    The mixed dual nodal method MINOS is used to solve the reactor kinetics equations with improved quasistatic IQS model and the θ method is used to solve the precursor equations. The speed of calculation which is the main advantage of the MINOS method and the possibility to use the large time step for shape flux calculation permitted by the IQS method, allow us to reduce considerably the computing time. The IQS/MINOS method is implemented in CRONOS 3D reactor code. Numerical tests on different transient benchmarks show that the results obtained with the IQS/MINOS method and the direct numerical method used to solve the kinetics equations, are very close and the total computing time is largely reduced

  17. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in S{sub N} formulation

    Energy Technology Data Exchange (ETDEWEB)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C. [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico. Programa de Pos-graduacao em Modelagem Computacional; Garcia, Carlos R., E-mail: cgh@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba)

    2017-07-01

    Presented here is the application of the adjoint technique for solving source-detector discrete ordinates (S{sub N}) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF{sup †}) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non-zero prescribed boundary conditions for the forward S{sub N} transport problems. The SGF{sup †} method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF{sup †} equations, we use the partial adjoint one-node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  18. Generalization of Spectral Green's Function nodal method for slab-geometry fixed-source adjoint transport problems in SN formulation

    International Nuclear Information System (INIS)

    Curbelo, Jesus P.; Silva, Odair P. da; Barros, Ricardo C.

    2017-01-01

    Presented here is the application of the adjoint technique for solving source{detector discrete ordinates (S N ) transport problems by using a spectral nodal method. For slab-geometry adjoint S-N model, the adjoint spectral Green's function method (SGF † ) is extended to multigroup problems considering arbitrary L'th-order of scattering anisotropy, and the possibility of non{zero prescribed boundary conditions for the forward S N transport problems. The SGF † method converges numerical solutions that are completely free from spatial truncation errors. In order to generate numerical solutions of the SGF † equations, we use the partial adjoint one{node block inversion (NBI) iterative scheme. Partial adjoint NBI scheme uses the most recent estimates for the node-edge adjoint angular Fluxes in the outgoing directions of a given discretization node, to solve the resulting adjoint SN problem in that node for all the adjoint angular fluxes in the incoming directions, which constitute the outgoing adjoint angular fluxes for the adjacent node in the sweeping directions. Numerical results are given to illustrate the present spectral nodal method features and some advantages of using the adjoint technique in source-detector problems. author)

  19. Advances in the solution of three-dimensional nodal neutron transport equation

    International Nuclear Information System (INIS)

    Pazos, Ruben Panta; Hauser, Eliete Biasotto; Vilhena, Marco Tullio de

    2003-01-01

    In this paper we study the three-dimensional nodal discrete-ordinates approximations of neutron transport equation in a convex domain with piecewise smooth boundaries. We use the combined collocation method of the angular variables and nodal approach for the spatial variables. By nodal approach we mean the iterated transverse integration of the S N equations. This procedure leads to the set of one-dimensional averages angular fluxes in each spatial variable. The resulting system of equations is solved with the LTS N method, first applying the Laplace transform to the set of the nodal S N equations and then obtaining the solution by symbolic computation. We include the LTS N method by diagonalization to solve the nodal neutron transport equation and then we outline the convergence of these nodal-LTS N approximations with the help of a norm associated to the quadrature formula used to approximate the integral term of the neutron transport equation. We give numerical results obtained with an algebraic computer system (for N up to 8) and with a code for higher values of N. We compare our results for the geometry of a box with a source in a vertex and a leakage zone in the opposite with others techniques used in this problem. (author)

  20. Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form

    Directory of Open Access Journals (Sweden)

    A. Neamaty

    2015-03-01

    Full Text Available In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.

  1. Uniqueness Theorem for the Inverse Aftereffect Problem and Representation the Nodal Points Form

    OpenAIRE

    A. Neamaty; Sh. Akbarpoor; A. Dabbaghian

    2015-01-01

    In this paper, we consider a boundary value problem with aftereffect on a finite interval. Then, the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length are studied. We also calculate the numerical values of the nodal points and the nodal length. Finally, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points.

  2. [Montessori method applied to dementia - literature review].

    Science.gov (United States)

    Brandão, Daniela Filipa Soares; Martín, José Ignacio

    2012-06-01

    The Montessori method was initially applied to children, but now it has also been applied to people with dementia. The purpose of this study is to systematically review the research on the effectiveness of this method using Medical Literature Analysis and Retrieval System Online (Medline) with the keywords dementia and Montessori method. We selected lo studies, in which there were significant improvements in participation and constructive engagement, and reduction of negative affects and passive engagement. Nevertheless, systematic reviews about this non-pharmacological intervention in dementia rate this method as weak in terms of effectiveness. This apparent discrepancy can be explained because the Montessori method may have, in fact, a small influence on dimensions such as behavioral problems, or because there is no research about this method with high levels of control, such as the presence of several control groups or a double-blind study.

  3. Comparative analysis of nodal and edge finite element method for numerical analysis of 3-D magnetostatic systems

    International Nuclear Information System (INIS)

    Mintchev, Pavel; Dimitrov, Marin; Balinov, Stoimen

    2002-01-01

    The possibilities for applying the Finite Element Method (FEM) with gauged magnetic vector potential and the Edge Element Method (EEM) for three-dimensional numerical analysis of magnetostatic systems are analyzed. It is established that the EEM ensures sufficient accuracy for engineering calculations but in some cases its use results in bad convergence. The use of the FEM with gauged magnetic vector potential instead of the EEM is recommended for preliminary calculations of devices with complex geometry and large air gaps between the ferromagnetic parts. (Author)

  4. A closed-form solution for the two-dimensional transport equation by the LTS{sub N} nodal method in the energy range of Compton effect

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, B.D.A., E-mail: barbararodriguez@furg.b [Universidade Federal do Rio Grande, Instituto de Matematica, Estatistica e Fisica, Rio Grande, RS (Brazil); Vilhena, M.T., E-mail: vilhena@mat.ufrgs.b [Universidade Federal do Rio Grande do Sul, Departamento de Matematica Pura e Aplicada, Porto Alegre, RS (Brazil); Hoff, G., E-mail: hoff@pucrs.b [Pontificia Universidade Catolica do Rio Grande do Sul, Faculdade de Fisica, Porto Alegre, RS (Brazil); Bodmann, B.E.J., E-mail: bardo.bodmann@ufrgs.b [Universidade Federal do Rio Grande do Sul, Departamento de Matematica Pura e Aplicada, Porto Alegre, RS (Brazil)

    2011-01-15

    In the present work we report on a closed-form solution for the two-dimensional Compton transport equation by the LTS{sub N} nodal method in the energy range of Compton effect. The solution is determined using the LTS{sub N} nodal approach for homogeneous and heterogeneous rectangular domains, assuming the Klein-Nishina scattering kernel and a multi-group model. The solution is obtained by two one-dimensional S{sub N} equation systems resulting from integrating out one of the orthogonal variables of the S{sub N} equations in the rectangular domain. The leakage angular fluxes are approximated by exponential forms, which allows to determine a closed-form solution for the photons transport equation. The angular flux and the parameters of the medium are used for the calculation of the absorbed energy in rectangular domains with different dimensions and compositions. In this study, only the absorbed energy by Compton effect is considered. We present numerical simulations and comparisons with results obtained by using the simulation platform GEANT4 (version 9.1) with its low energy libraries.

  5. Geostatistical methods applied to field model residuals

    DEFF Research Database (Denmark)

    Maule, Fox; Mosegaard, K.; Olsen, Nils

    consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...

  6. Computation of Steady State Nodal Voltages for Fast Security Assessment in Power Systems

    DEFF Research Database (Denmark)

    Møller, Jakob Glarbo; Jóhannsson, Hjörtur; Østergaard, Jacob

    2014-01-01

    Development of a method for real-time assess-ment of post-contingency nodal voltages is introduced. Linear network theory is applied in an algorithm that utilizes Thevenin equivalent representation of power systems as seen from every voltage-controlled node in a network. The method is evaluated b...

  7. NESTLE: A nodal kinetics code

    International Nuclear Information System (INIS)

    Al-Chalabi, R.M.; Turinsky, P.J.; Faure, F.-X.; Sarsour, H.N.; Engrand, P.R.

    1993-01-01

    The NESTLE nodal kinetics code has been developed for utilization as a stand-alone code for steady-state and transient reactor neutronic analysis and for incorporation into system transient codes, such as TRAC and RELAP. The latter is desirable to increase the simulation fidelity over that obtained from currently employed zero- and one-dimensional neutronic models and now feasible due to advances in computer performance and efficiency of nodal methods. As a stand-alone code, requirements are that it operate on a range of computing platforms from memory-limited personal computers (PCs) to supercomputers with vector processors. This paper summarizes the features of NESTLE that reflect the utilization and requirements just noted

  8. Magnonic triply-degenerate nodal points

    Science.gov (United States)

    Owerre, S. A.

    2017-12-01

    We generalize the concept of triply-degenerate nodal points to non-collinear antiferromagnets. Here, we introduce this concept to insulating quantum antiferromagnets on the decorated honeycomb lattice, with spin-1 bosonic quasiparticle excitations known as magnons. We demonstrate the existence of magnonic surface states with constant energy contours that form pairs of magnonic arcs connecting the surface projection of the magnonic triple nodal points. The quasiparticle excitations near the triple nodal points represent three-component bosons beyond that of magnonic Dirac, Weyl, and nodal-line cases. They can be regarded as a direct reflection of the intrinsic spin carried by magnons. Furthermore, we show that the magnonic triple nodal points can split into magnonic Weyl points, as the system transits from a non-collinear spin structure to a non-coplanar one with a non-zero scalar spin chirality. Our results not only apply to insulating antiferromagnets, but also provide a platform to seek for triple nodal points in metallic antiferromagnets.

  9. Group-decoupled multi-group pin power reconstruction utilizing nodal solution 1D flux profiles

    International Nuclear Information System (INIS)

    Yu, Lulin; Lu, Dong; Zhang, Shaohong; Wang, Dezhong

    2014-01-01

    Highlights: • A direct fitting multi-group pin power reconstruction method is developed. • The 1D nodal solution flux profiles are used as the condition. • The least square fit problem is analytically solved. • A slowing down source improvement method is applied. • The method shows good accuracy for even challenging problems. - Abstract: A group-decoupled direct fitting method is developed for multi-group pin power reconstruction, which avoids both the complication of obtaining 2D analytic multi-group flux solution and any group-coupled iteration. A unique feature of the method is that in addition to nodal volume and surface average fluxes and corner fluxes, transversely-integrated 1D nodal solution flux profiles are also used as the condition to determine the 2D intra-nodal flux distribution. For each energy group, a two-dimensional expansion with a nine-term polynomial and eight hyperbolic functions is used to perform a constrained least square fit to the 1D intra-nodal flux solution profiles. The constraints are on the conservation of nodal volume and surface average fluxes and corner fluxes. Instead of solving the constrained least square fit problem numerically, we solve it analytically by fully utilizing the symmetry property of the expansion functions. Each of the 17 unknown expansion coefficients is expressed in terms of nodal volume and surface average fluxes, corner fluxes and transversely-integrated flux values. To determine the unknown corner fluxes, a set of linear algebraic equations involving corner fluxes is established via using the current conservation condition on all corners. Moreover, an optional slowing down source improvement method is also developed to further enhance the accuracy of the reconstructed flux distribution if needed. Two test examples are shown with very good results. One is a four-group BWR mini-core problem with all control blades inserted and the other is the seven-group OECD NEA MOX benchmark, C5G7

  10. Multigrid method applied to the solution of an elliptic, generalized eigenvalue problem

    Energy Technology Data Exchange (ETDEWEB)

    Alchalabi, R.M. [BOC Group, Murray Hill, NJ (United States); Turinsky, P.J. [North Carolina State Univ., Raleigh, NC (United States)

    1996-12-31

    The work presented in this paper is concerned with the development of an efficient MG algorithm for the solution of an elliptic, generalized eigenvalue problem. The application is specifically applied to the multigroup neutron diffusion equation which is discretized by utilizing the Nodal Expansion Method (NEM). The underlying relaxation method is the Power Method, also known as the (Outer-Inner Method). The inner iterations are completed using Multi-color Line SOR, and the outer iterations are accelerated using Chebyshev Semi-iterative Method. Furthermore, the MG algorithm utilizes the consistent homogenization concept to construct the restriction operator, and a form function as a prolongation operator. The MG algorithm was integrated into the reactor neutronic analysis code NESTLE, and numerical results were obtained from solving production type benchmark problems.

  11. Nodal lymphomas of the abdomen

    International Nuclear Information System (INIS)

    Bruneton, J.N.; Caramella, E.; Manzino, J.J.

    1986-01-01

    Modern imaging modalities have greatly contributed to current knowledge about intra-abdominal nodal lymphomas. Since both intra and retroperitoneal node involvement can be demonstrated by computed tomography (CT) and ultrasonography, it seems legitimate to treat these two sites together in the same chapter, particularly since the older separation between intraperitoneal and retroperitoneal nodal disease was based to a large degree on the limitations of lymphography. Hodgkin's disease (HD) has benefited less from recent technological advances. The diversity in the incidence of nodal involvement between HD and NHL, the diagnostic capabilities of modern imaging techniques, and the histopathological features of lymphomatous non-Hodgkin and Hodgkin nodes, justify adoption of an investigatory approach which takes all of these factors into account. Details of this investigative strategy are discussed in this paper following a review of available imaging modalities. In current practice, the four main methods for the exploration of abdominal lymph nodes are lymphography, ultrasonography, CT, and radionuclide studies. The first three techniques are also utilized to guide biopsies for staging purposes and for the evaluation of response to treatment

  12. Applied mathematical methods in nuclear thermal hydraulics

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1983-01-01

    Applied mathematical methods are used extensively in modeling of nuclear reactor thermal-hydraulic behavior. This application has required significant extension to the state-of-the-art. The problems encountered in modeling of two-phase fluid transients and the development of associated numerical solution methods are reviewed and quantified using results from a numerical study of an analogous linear system of differential equations. In particular, some possible approaches for formulating a well-posed numerical problem for an ill-posed differential model are investigated and discussed. The need for closer attention to numerical fidelity is indicated

  13. Entropy viscosity method applied to Euler equations

    International Nuclear Information System (INIS)

    Delchini, M. O.; Ragusa, J. C.; Berry, R. A.

    2013-01-01

    The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)

  14. Analytical methods applied to water pollution

    International Nuclear Information System (INIS)

    Baudin, G.

    1977-01-01

    A comparison of different methods applied to water analysis is given. The discussion is limited to the problems presented by inorganic elements, accessible to nuclear activation analysis methods. The following methods were compared: activation analysis: with gamma-ray spectrometry, atomic absorption spectrometry, fluorimetry, emission spectrometry, colorimetry or spectrophotometry, X-ray fluorescence, mass spectrometry, voltametry, polarography or other electrochemical methods, activation analysis-beta measurements. Drinking-water, irrigation waters, sea waters, industrial wastes and very pure waters are the subjects of the investigations. The comparative evaluation is made on the basis of storage of samples, in situ analysis, treatment and concentration, specificity and interference, monoelement or multielement analysis, analysis time and accuracy. The significance of the neutron analysis is shown. (T.G.)

  15. On the non-uniqueness of the nodal mathematical adjoint

    International Nuclear Information System (INIS)

    Müller, Erwin

    2014-01-01

    Highlights: • We evaluate three CMFD schemes for computing the nodal mathematical adjoint. • The nodal mathematical adjoint is not unique and can be non-positive (nonphysical). • Adjoint and forward eigenmodes are compatible if produced by the same CMFD method. • In nodal applications the excited eigenmodes are purely mathematical entities. - Abstract: Computation of the neutron adjoint flux within the framework of modern nodal diffusion methods is often facilitated by reducing the nodal equation system for the forward flux into a simpler coarse-mesh finite-difference form and then transposing the resultant matrix equations. The solution to the transposed problem is known as the nodal mathematical adjoint. Since the coarse-mesh finite-difference reduction of a given nodal formulation can be obtained in a number of ways, different nodal mathematical adjoint solutions can be computed. This non-uniqueness of the nodal mathematical adjoint challenges the credibility of the reduction strategy and demands a verdict as to its suitability in practical applications. This is the matter under consideration in this paper. A selected number of coarse-mesh finite-difference reduction schemes are described and compared. Numerical calculations are utilised to illustrate the differences in the adjoint solutions as well as to appraise the impact on such common applications as the computation of core point kinetics parameters. Recommendations are made for the proper application of the coarse-mesh finite-difference reduction approach to the nodal mathematical adjoint problem

  16. Nodal-chain metals.

    Science.gov (United States)

    Bzdušek, Tomáš; Wu, QuanSheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A

    2016-10-06

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain-a chain of connected loops in momentum space-along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF 4 ), as well as in other compounds of this class of materials. Using IrF 4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  17. Spectral Green’s function nodal method for multigroup SN problems with anisotropic scattering in slab-geometry non-multiplying media

    International Nuclear Information System (INIS)

    Menezes, Welton A.; Filho, Hermes Alves; Barros, Ricardo C.

    2014-01-01

    Highlights: • Fixed-source S N transport problems. • Energy multigroup model. • Anisotropic scattering. • Slab-geometry spectral nodal method. - Abstract: A generalization of the spectral Green’s function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S N ) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup, slab-geometry S N problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, we describe in this paper a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method’s accuracy

  18. Experimental discovery of nodal chains

    Science.gov (United States)

    Yan, Qinghui; Liu, Rongjuan; Yan, Zhongbo; Liu, Boyuan; Chen, Hongsheng; Wang, Zhong; Lu, Ling

    2018-05-01

    Three-dimensional Weyl and Dirac nodal points1 have attracted widespread interest across multiple disciplines and in many platforms but allow for few structural variations. In contrast, nodal lines2-4 can have numerous topological configurations in momentum space, forming nodal rings5-9, nodal chains10-15, nodal links16-20 and nodal knots21,22. However, nodal lines are much less explored because of the lack of an ideal experimental realization23-25. For example, in condensed-matter systems, nodal lines are often fragile to spin-orbit coupling, located away from the Fermi level, coexist with energy-degenerate trivial bands or have a degeneracy line that disperses strongly in energy. Here, overcoming all these difficulties, we theoretically predict and experimentally observe nodal chains in a metallic-mesh photonic crystal having frequency-isolated linear band-touching rings chained across the entire Brillouin zone. These nodal chains are protected by mirror symmetry and have a frequency variation of less than 1%. We use angle-resolved transmission measurements to probe the projected bulk dispersion and perform Fourier-transformed field scans to map out the dispersion of the drumhead surface state. Our results establish an ideal nodal-line material for further study of topological line degeneracies with non-trivial connectivity and consequent wave dynamics that are richer than those in Weyl and Dirac materials.

  19. Applied Mathematical Methods in Theoretical Physics

    Science.gov (United States)

    Masujima, Michio

    2005-04-01

    All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.

  20. An entropy stable nodal discontinuous Galerkin method for the two dimensional shallow water equations on unstructured curvilinear meshes with discontinuous bathymetry

    Energy Technology Data Exchange (ETDEWEB)

    Wintermeyer, Niklas [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Winters, Andrew R., E-mail: awinters@math.uni-koeln.de [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Gassner, Gregor J. [Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln (Germany); Kopriva, David A. [Department of Mathematics, The Florida State University, Tallahassee, FL 32306 (United States)

    2017-07-01

    We design an arbitrary high-order accurate nodal discontinuous Galerkin spectral element approximation for the non-linear two dimensional shallow water equations with non-constant, possibly discontinuous, bathymetry on unstructured, possibly curved, quadrilateral meshes. The scheme is derived from an equivalent flux differencing formulation of the split form of the equations. We prove that this discretization exactly preserves the local mass and momentum. Furthermore, combined with a special numerical interface flux function, the method exactly preserves the mathematical entropy, which is the total energy for the shallow water equations. By adding a specific form of interface dissipation to the baseline entropy conserving scheme we create a provably entropy stable scheme. That is, the numerical scheme discretely satisfies the second law of thermodynamics. Finally, with a particular discretization of the bathymetry source term we prove that the numerical approximation is well-balanced. We provide numerical examples that verify the theoretical findings and furthermore provide an application of the scheme for a partial break of a curved dam test problem.

  1. A new coupling kernel for the three-dimensional simulation of a boiling water reactor core by the nodal coupling method

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1981-01-01

    A new coupling kernel is developed for the three-dimensional (3-D) simulation of Boiling Water Reactors (BWR's) by the nodal coupling method. The new kernel depends not only on the properties of the node under consideration but also on the properties of its neighbouring nodes. This makes the kernel more useful in particular for fuel bundles lying in a surrounding of different nuclear characteristics, e.g. for a controlled bundle in the surrounding of uncontrolled bundles or vice-versa. The main parameter in the new kernel is a space-dependent factor obtained from the ratio of thermal-to-fast flux. The average value of the above ratio for each node is evaluated analytically. The kernel is incorporated in a 3-D BWR core simulation program MOGS. As an experimental verification of the model, the cycle-6 operations of the two units of the Tarapur Atomic Power Station (TAPS) are simulated and the result of the simulation are compared with Travelling Incore Probe (TIP) data. (orig.)

  2. Avoided intersections of nodal lines

    International Nuclear Information System (INIS)

    Monastra, Alejandro G; Smilansky, Uzy; Gnutzmann, Sven

    2003-01-01

    We consider real eigenfunctions of the Schroedinger operator in 2D. The nodal lines of separable systems form a regular grid, and the number of nodal crossings equals the number of nodal domains. In contrast, for wavefunctions of non-integrable systems nodal intersections are rare, and for random waves, the expected number of intersections in any finite area vanishes. However, nodal lines display characteristic avoided crossings which we study in this work. We define a measure for the avoidance range and compute its distribution for the random wave ensemble. We show that the avoidance range distribution of wavefunctions of chaotic systems follows the expected random wave distributions, whereas for wavefunctions of classically integrable but quantum non-separable systems, the distribution is quite different. Thus, the study of the avoidance distribution provides more support to the conjecture that nodal structures of chaotic systems are reproduced by the predictions of the random wave ensemble

  3. Applying scrum methods to ITS projects.

    Science.gov (United States)

    2017-08-01

    The introduction of new technology generally brings new challenges and new methods to help with deployments. Agile methodologies have been introduced in the information technology industry to potentially speed up development. The Federal Highway Admi...

  4. Applying Fuzzy Possibilistic Methods on Critical Objects

    DEFF Research Database (Denmark)

    Yazdani, Hossein; Ortiz-Arroyo, Daniel; Choros, Kazimierz

    2016-01-01

    Providing a flexible environment to process data objects is a desirable goal of machine learning algorithms. In fuzzy and possibilistic methods, the relevance of data objects is evaluated and a membership degree is assigned. However, some critical objects objects have the potential ability to affect...... the performance of the clustering algorithms if they remain in a specific cluster or they are moved into another. In this paper we analyze and compare how critical objects affect the behaviour of fuzzy possibilistic methods in several data sets. The comparison is based on the accuracy and ability of learning...... methods to provide a proper searching space for data objects. The membership functions used by each method when dealing with critical objects is also evaluated. Our results show that relaxing the conditions of participation for data objects in as many partitions as they can, is beneficial....

  5. The SINTRAN III NODAL system

    International Nuclear Information System (INIS)

    Skaali, T.B.

    1980-10-01

    NODAL is a high level programming language based on FOCAL and SNOBOL4, with some influence from BASIC. The language was developed to operate on the computer network controlling the SPS accelerator at CERN. NODAL is an interpretive language designed for interactive use. This is the most important aspect of the language, and is reflected in its structure. The interactive facilities make it possible to write, debug and modify programs much faster than with compiler based languages like FORTRAN and ALGOL. Apart from a few minor modifications, the basic part of the Oslo University NODAL system does not differ from the CERN version. However, the Oslo University implementation has been expanded with new functions which enable the user to execute many of the SINTRAN III monitor calls from the NODAL level. In particular the most important RT monitor calls have been implemented in this way, a property which renders possible the use of NODAL as a RT program administrator. (JIW)

  6. Quality assurance and applied statistics. Method 3

    International Nuclear Information System (INIS)

    1992-01-01

    This German-Industry-Standards-paperback contains the International Standards from the Series ISO 9000 (or, as the case may be, the European Standards from the Series EN 29000) concerning quality assurance and including the already completed supplementary guidelines with ISO 9000- and ISO 9004-section numbers, which have been adopted as German Industry Standards and which are observed and applied world-wide to a great extent. It also includes the German-Industry-Standards ISO 10011 parts 1, 2 and 3 concerning the auditing of quality-assurance systems and the German-Industry-Standard ISO 10012 part 1 concerning quality-assurance demands (confirmation system) for measuring devices. The standards also include English and French versions. They are applicable independent of the user's line of industry and thus constitute basic standards. (orig.) [de

  7. Lavine method applied to three body problems

    International Nuclear Information System (INIS)

    Mourre, Eric.

    1975-09-01

    The methods presently proposed for the three body problem in quantum mechanics, using the Faddeev approach for proving the asymptotic completeness, come up against the presence of new singularities when the potentials considered v(α)(x(α)) for two-particle interactions decay less rapidly than /x(α)/ -2 ; and also when trials are made for solving the problem with a representation space whose dimension for a particle is lower than three. A method is given that allows the mathematical approach to be extended to three body problem, in spite of singularities. Applications are given [fr

  8. Applying Human Computation Methods to Information Science

    Science.gov (United States)

    Harris, Christopher Glenn

    2013-01-01

    Human Computation methods such as crowdsourcing and games with a purpose (GWAP) have each recently drawn considerable attention for their ability to synergize the strengths of people and technology to accomplish tasks that are challenging for either to do well alone. Despite this increased attention, much of this transformation has been focused on…

  9. Applying Mixed Methods Techniques in Strategic Planning

    Science.gov (United States)

    Voorhees, Richard A.

    2008-01-01

    In its most basic form, strategic planning is a process of anticipating change, identifying new opportunities, and executing strategy. The use of mixed methods, blending quantitative and qualitative analytical techniques and data, in the process of assembling a strategic plan can help to ensure a successful outcome. In this article, the author…

  10. Development of a qualified nodalization for small-break LOCA transient analysis in PSB-VVER integral test facility by RELAP5 system code

    Energy Technology Data Exchange (ETDEWEB)

    Shahedi, S. [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Jafari, J., E-mail: jalil_jafari@yahoo.co [Reactors and Accelerators R and D School, Nuclear Science and Technology Research Institute, North Kargar Street, Tehran (Iran, Islamic Republic of); Boroushaki, M. [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); D' Auria, F. [DIMNP, University of Pisa, Via Diotisalvi 2, 56126 Pisa (Italy)

    2010-10-15

    This paper deals with development and qualification of a nodalization for modeling of the PSB-VVER integral test facility (ITF) by RELAP5/MOD3.2 code and prediction of its primary and secondary systems behaviors at steady state and transient conditions. The PSB-VVER is a full-height, 1/300 volume and power scale representation of a VVER-1000 NPP. A RELAP5 nodalization has been developed for PSB-VVER modeling and a nodalization qualification process has been applied for the developed nodalization at steady state and transient levels and a qualified nodalization has been proposed for modeling of the PSB ITF. The 11% small-break loss-of-coolant-accident (SBLOCA), i.e. rupture of one of the hydroaccumulators (HA) injection lines in the upper plenum (UP) region of reactor pressure vessel (RPV) below the hot legs (HL), inlets has been considered for nodalization qualification process. The influence of the different steam generator (SG) nodalizations on the RELAP5 results and on the nodalization qualification process has been examined. The 'steady state' qualification level includes checking the correctness of the initial and boundary conditions and geometrical fidelity. In the 'transient' qualification level, the time dependent results of the code calculation are compared with the experimental time trends from both the qualitative and quantitative point of view. For quantitative assessment of the results, a Fast Fourier Transform Based Method (FFTBM) has been used. The FFTBM was used to establish a range in which the steam generators nodalizations can vary.

  11. Acceleration of the FERM nodal program

    International Nuclear Information System (INIS)

    Nakata, H.

    1985-01-01

    It was tested three acceleration methods trying to reduce the number of outer iterations in the FERM nodal program. The results obtained indicated that the Chebychev polynomial acceleration method with variable degree results in a economy of 50% in the computer time. Otherwise, the acceleration method by source asymptotic extrapolation or by zonal rebalance did not result in economy of the global computer time, however some acceleration had been verified in outer iterations. (M.C.K.) [pt

  12. Acceleration of the nodal program FERM

    International Nuclear Information System (INIS)

    Nakata, H.

    1985-01-01

    Acceleration of the nodal FERM was tried by three acceleration schemes. Results of the calculations showed the best acceleration with the Tchebyshev method where the savings in the computing time were of the order of 50%. Acceleration with the Assymptotic Source Extrapoltation Method and with the Coarse-Mesh Rebalancing Method did not result in any improvement on the global computational time, although a reduction in the number of outer iterations was observed. (Author) [pt

  13. [The diagnostic methods applied in mycology].

    Science.gov (United States)

    Kurnatowska, Alicja; Kurnatowski, Piotr

    2008-01-01

    The systemic fungal invasions are recognized with increasing frequency and constitute a primary cause of morbidity and mortality, especially in immunocompromised patients. Early diagnosis improves prognosis, but remains a problem because there is lack of sensitive tests to aid in the diagnosis of systemic mycoses on the one hand, and on the other the patients only present unspecific signs and symptoms, thus delaying early diagnosis. The diagnosis depends upon a combination of clinical observation and laboratory investigation. The successful laboratory diagnosis of fungal infection depends in major part on the collection of appropriate clinical specimens for investigations and on the selection of appropriate microbiological test procedures. So these problems (collection of specimens, direct techniques, staining methods, cultures on different media and non-culture-based methods) are presented in article.

  14. Monte Carlo method applied to medical physics

    International Nuclear Information System (INIS)

    Oliveira, C.; Goncalves, I.F.; Chaves, A.; Lopes, M.C.; Teixeira, N.; Matos, B.; Goncalves, I.C.; Ramalho, A.; Salgado, J.

    2000-01-01

    The main application of the Monte Carlo method to medical physics is dose calculation. This paper shows some results of two dose calculation studies and two other different applications: optimisation of neutron field for Boron Neutron Capture Therapy and optimization of a filter for a beam tube for several purposes. The time necessary for Monte Carlo calculations - the highest boundary for its intensive utilisation - is being over-passed with faster and cheaper computers. (author)

  15. Proteomics methods applied to malaria: Plasmodium falciparum

    International Nuclear Information System (INIS)

    Cuesta Astroz, Yesid; Segura Latorre, Cesar

    2012-01-01

    Malaria is a parasitic disease that has a high impact on public health in developing countries. The sequencing of the plasmodium falciparum genome and the development of proteomics have enabled a breakthrough in understanding the biology of the parasite. Proteomics have allowed to characterize qualitatively and quantitatively the parasite s expression of proteins and has provided information on protein expression under conditions of stress induced by antimalarial. Given the complexity of their life cycle, this takes place in the vertebrate host and mosquito vector. It has proven difficult to characterize the protein expression during each stage throughout the infection process in order to determine the proteome that mediates several metabolic, physiological and energetic processes. Two dimensional electrophoresis, liquid chromatography and mass spectrometry have been useful to assess the effects of antimalarial on parasite protein expression and to characterize the proteomic profile of different p. falciparum stages and organelles. The purpose of this review is to present state of the art tools and advances in proteomics applied to the study of malaria, and to present different experimental strategies used to study the parasite's proteome in order to show the advantages and disadvantages of each one.

  16. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    Science.gov (United States)

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  17. Versatile Formal Methods Applied to Quantum Information.

    Energy Technology Data Exchange (ETDEWEB)

    Witzel, Wayne [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rudinger, Kenneth Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Sarovar, Mohan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Using a novel formal methods approach, we have generated computer-veri ed proofs of major theorems pertinent to the quantum phase estimation algorithm. This was accomplished using our Prove-It software package in Python. While many formal methods tools are available, their practical utility is limited. Translating a problem of interest into these systems and working through the steps of a proof is an art form that requires much expertise. One must surrender to the preferences and restrictions of the tool regarding how mathematical notions are expressed and what deductions are allowed. Automation is a major driver that forces restrictions. Our focus, on the other hand, is to produce a tool that allows users the ability to con rm proofs that are essentially known already. This goal is valuable in itself. We demonstrate the viability of our approach that allows the user great exibility in expressing state- ments and composing derivations. There were no major obstacles in following a textbook proof of the quantum phase estimation algorithm. There were tedious details of algebraic manipulations that we needed to implement (and a few that we did not have time to enter into our system) and some basic components that we needed to rethink, but there were no serious roadblocks. In the process, we made a number of convenient additions to our Prove-It package that will make certain algebraic manipulations easier to perform in the future. In fact, our intent is for our system to build upon itself in this manner.

  18. Optimization methods applied to hybrid vehicle design

    Science.gov (United States)

    Donoghue, J. F.; Burghart, J. H.

    1983-01-01

    The use of optimization methods as an effective design tool in the design of hybrid vehicle propulsion systems is demonstrated. Optimization techniques were used to select values for three design parameters (battery weight, heat engine power rating and power split between the two on-board energy sources) such that various measures of vehicle performance (acquisition cost, life cycle cost and petroleum consumption) were optimized. The apporach produced designs which were often significant improvements over hybrid designs already reported on in the literature. The principal conclusions are as follows. First, it was found that the strategy used to split the required power between the two on-board energy sources can have a significant effect on life cycle cost and petroleum consumption. Second, the optimization program should be constructed so that performance measures and design variables can be easily changed. Third, the vehicle simulation program has a significant effect on the computer run time of the overall optimization program; run time can be significantly reduced by proper design of the types of trips the vehicle takes in a one year period. Fourth, care must be taken in designing the cost and constraint expressions which are used in the optimization so that they are relatively smooth functions of the design variables. Fifth, proper handling of constraints on battery weight and heat engine rating, variables which must be large enough to meet power demands, is particularly important for the success of an optimization study. Finally, the principal conclusion is that optimization methods provide a practical tool for carrying out the design of a hybrid vehicle propulsion system.

  19. Applying the Socratic Method to Physics Education

    Science.gov (United States)

    Corcoran, Ed

    2005-04-01

    We have restructured University Physics I and II in accordance with methods that PER has shown to be effective, including a more interactive discussion- and activity-based curriculum based on the premise that developing understanding requires an interactive process in which students have the opportunity to talk through and think through ideas with both other students and the teacher. Studies have shown that in classes implementing this approach to teaching as compared to classes using a traditional approach, students have significantly higher gains on the Force Concept Inventory (FCI). This has been true in UPI. However, UPI FCI results seem to suggest that there is a significant conceptual hole in students' understanding of Newton's Second Law. Two labs in UPI which teach Newton's Second Law will be redesigned replacing more activity with students as a group talking through, thinking through, and answering conceptual questions asked by the TA. The results will be measured by comparing FCI results to those from previous semesters, coupled with interviews. The results will be analyzed, and we will attempt to understand why gains were or were not made.

  20. Scanning probe methods applied to molecular electronics

    Energy Technology Data Exchange (ETDEWEB)

    Pavlicek, Niko

    2013-08-01

    Scanning probe methods on insulating films offer a rich toolbox to study electronic, structural and spin properties of individual molecules. This work discusses three issues in the field of molecular and organic electronics. An STM head to be operated in high magnetic fields has been designed and built up. The STM head is very compact and rigid relying on a robust coarse approach mechanism. This will facilitate investigations of the spin properties of individual molecules in the future. Combined STM/AFM studies revealed a reversible molecular switch based on two stable configurations of DBTH molecules on ultrathin NaCl films. AFM experiments visualize the molecular structure in both states. Our experiments allowed to unambiguously determine the pathway of the switch. Finally, tunneling into and out of the frontier molecular orbitals of pentacene molecules has been investigated on different insulating films. These experiments show that the local symmetry of initial and final electron wave function are decisive for the ratio between elastic and vibration-assisted tunneling. The results can be generalized to electron transport in organic materials.

  1. Comparison of PANTHER nodal solutions in hexagonal-z geometry

    International Nuclear Information System (INIS)

    Knight, M.; Hutt, P.; Lewis, I.

    1995-01-01

    The reactor physics code PANTHER has been extended to hexagonal geometries. Steady-state, depletion, and transient calculations with feedback can all be performed. Two hexagonal nodal flux solutions have been developed. In the first method, transverse integration is performed exactly as in the rectangular case. The resulting transverse integrated equation has singular terms, which are simply ignored. The second approach applies a conformal mapping that transforms the hexagon onto a rectangle. Pin power reconstruction has also been developed with both methods. For a benchmark VVER-1000 reactor depletion problem, both methods give accurate results for standard depletion calculations. In the more extreme situation with all rods inserted, the simpler method breaks down. However, the accuracy of the conformal solution was found to be excellent in all cases studied

  2. Reflections on Mixing Methods in Applied Linguistics Research

    Science.gov (United States)

    Hashemi, Mohammad R.

    2012-01-01

    This commentary advocates the use of mixed methods research--that is the integration of qualitative and quantitative methods in a single study--in applied linguistics. Based on preliminary findings from a research project in progress, some reflections on the current practice of mixing methods as a new trend in applied linguistics are put forward.…

  3. Applying homotopy analysis method for solving differential-difference equation

    International Nuclear Information System (INIS)

    Wang Zhen; Zou Li; Zhang Hongqing

    2007-01-01

    In this Letter, we apply the homotopy analysis method to solving the differential-difference equations. A simple but typical example is applied to illustrate the validity and the great potential of the generalized homotopy analysis method in solving differential-difference equation. Comparisons are made between the results of the proposed method and exact solutions. The results show that the homotopy analysis method is an attractive method in solving the differential-difference equations

  4. NODAL interpreter for CP/M

    International Nuclear Information System (INIS)

    Oide, Katsunobu.

    1982-11-01

    A NODAL interpreter which works under CP/M operating system is made for microcomputers. This interpreter language named NODAL-80 has a similar structure to the NODAL of SPS, but its commands, variables, and expressions are modified to increase the flexibility of programming. NODAL-80 also uses a simple intermediate code to make the execution speed fast without imposing any restriction on the dynamic feature of NODAL language. (author)

  5. Systematic homogenization and self-consistent flux and pin power reconstruction for nodal diffusion methods. 1: Diffusion equation-based theory

    International Nuclear Information System (INIS)

    Zhang, H.; Rizwan-uddin; Dorning, J.J.

    1995-01-01

    A diffusion equation-based systematic homogenization theory and a self-consistent dehomogenization theory for fuel assemblies have been developed for use with coarse-mesh nodal diffusion calculations of light water reactors. The theoretical development is based on a multiple-scales asymptotic expansion carried out through second order in a small parameter, the ratio of the average diffusion length to the reactor characteristic dimension. By starting from the neutron diffusion equation for a three-dimensional heterogeneous medium and introducing two spatial scales, the development systematically yields an assembly-homogenized global diffusion equation with self-consistent expressions for the assembly-homogenized diffusion tensor elements and cross sections and assembly-surface-flux discontinuity factors. The rector eigenvalue 1/k eff is shown to be obtained to the second order in the small parameter, and the heterogeneous diffusion theory flux is shown to be obtained to leading order in that parameter. The latter of these two results provides a natural procedure for the reconstruction of the local fluxes and the determination of pin powers, even though homogenized assemblies are used in the global nodal diffusion calculation

  6. An Adaptive Approach to Variational Nodal Diffusion Problems

    International Nuclear Information System (INIS)

    Zhang Hui; Lewis, E.E.

    2001-01-01

    An adaptive grid method is presented for the solution of neutron diffusion problems in two dimensions. The primal hybrid finite elements employed in the variational nodal method are used to reduce the diffusion equation to a coupled set of elemental response matrices. An a posteriori error estimator is developed to indicate the magnitude of local errors stemming from the low-order elemental interface approximations. An iterative procedure is implemented in which p refinement is applied locally by increasing the polynomial order of the interface approximations. The automated algorithm utilizes the a posteriori estimator to achieve local error reductions until an acceptable level of accuracy is reached throughout the problem domain. Application to a series of X-Y benchmark problems indicates the reduction of computational effort achievable by replacing uniform with adaptive refinement of the spatial approximations

  7. Printing method and printer used for applying this method

    NARCIS (Netherlands)

    2006-01-01

    The invention pertains to a method for transferring ink to a receiving material using an inkjet printer having an ink chamber (10) with a nozzle (8) and an electromechanical transducer (16) in cooperative connection with the ink chamber, comprising actuating the transducer to generate a pressure

  8. Nodal metastasis in thyroid cancer

    International Nuclear Information System (INIS)

    Samuel, A.M.

    1999-01-01

    The biological behavior and hence the prognosis of thyroid cancer (TC) depends among other factors on the extent of spread of the disease outside the thyroid bed. This effect is controversial, especially for nodal metastasis of well differentiated thyroid carcinoma (WDC). Nodal metastasis at the time of initial diagnosis behaves differently depending on the histology, age of the patient, presence of extrathyroidal extension, and the sex of the individual. The type of the surgery, administration of 131 I and thyroxin suppression also to some extent influence the rate of recurrence and mortality. Experience has shown that it is not as innocuous as a small intrathyroidal tumor without any invasion outside the thyroid bed and due consideration should be accorded to the management strategies for handling patients with nodal metastasis

  9. Discrimination symbol applying method for sintered nuclear fuel product

    International Nuclear Information System (INIS)

    Ishizaki, Jin

    1998-01-01

    The present invention provides a symbol applying method for applying discrimination information such as an enrichment degree on the end face of a sintered nuclear product. Namely, discrimination symbols of information of powders are applied by a sintering aid to the end face of a molded member formed by molding nuclear fuel powders under pressure. Then, the molded product is sintered. The sintering aid comprises aluminum oxide, a mixture of aluminum oxide and silicon dioxide, aluminum hydride or aluminum stearate alone or in admixture. As an applying means of the sintering aid, discrimination symbols of information of powders are drawn by an isostearic acid on the end face of the molded product, and the sintering aid is sprayed thereto, or the sintering aid is applied directly, or the sintering aid is suspended in isostearic acid, and the suspension is applied with a brush. As a result, visible discrimination information can be applied to the sintered member easily. (N.H.)

  10. Building "Applied Linguistic Historiography": Rationale, Scope, and Methods

    Science.gov (United States)

    Smith, Richard

    2016-01-01

    In this article I argue for the establishment of "Applied Linguistic Historiography" (ALH), that is, a new domain of enquiry within applied linguistics involving a rigorous, scholarly, and self-reflexive approach to historical research. Considering issues of rationale, scope, and methods in turn, I provide reasons why ALH is needed and…

  11. Applying Mixed Methods Research at the Synthesis Level: An Overview

    Science.gov (United States)

    Heyvaert, Mieke; Maes, Bea; Onghena, Patrick

    2011-01-01

    Historically, qualitative and quantitative approaches have been applied relatively separately in synthesizing qualitative and quantitative evidence, respectively, in several research domains. However, mixed methods approaches are becoming increasingly popular nowadays, and practices of combining qualitative and quantitative research components at…

  12. Analysis of nodal coverage utilizing image guided radiation therapy for primary gynecologic tumor volumes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Faisal [University of Utah School of Medicine, Salt Lake City, UT (United States); Loma Linda University Medical Center, Department of Radiation Oncology, Loma Linda, CA (United States); Sarkar, Vikren; Gaffney, David K.; Salter, Bill [Department of Radiation Oncology, University of Utah, Salt Lake City, UT (United States); Poppe, Matthew M., E-mail: matthew.poppe@hci.utah.edu [Department of Radiation Oncology, University of Utah, Salt Lake City, UT (United States)

    2016-10-01

    Purpose: To evaluate radiation dose delivered to pelvic lymph nodes, if daily Image Guided Radiation Therapy (IGRT) was implemented with treatment shifts based on the primary site (primary clinical target volume [CTV]). Our secondary goal was to compare dosimetric coverage with patient outcomes. Materials and methods: A total of 10 female patients with gynecologic malignancies were evaluated retrospectively after completion of definitive intensity-modulated radiation therapy (IMRT) to their pelvic lymph nodes and primary tumor site. IGRT consisted of daily kilovoltage computed tomography (CT)-on-rails imaging fused with initial planning scans for position verification. The initial plan was created using Varian's Eclipse treatment planning software. Patients were treated with a median radiation dose of 45 Gy (range: 37.5 to 50 Gy) to the primary volume and 45 Gy (range: 45 to 64.8 Gy) to nodal structures. One IGRT scan per week was randomly selected from each patient's treatment course and re-planned on the Eclipse treatment planning station. CTVs were recreated by fusion on the IGRT image series, and the patient's treatment plan was applied to the new image set to calculate delivered dose. We evaluated the minimum, maximum, and 95% dose coverage for primary and nodal structures. Reconstructed primary tumor volumes were recreated within 4.7% of initial planning volume (0.9% to 8.6%), and reconstructed nodal volumes were recreated to within 2.9% of initial planning volume (0.01% to 5.5%). Results: Dosimetric parameters averaged less than 10% (range: 1% to 9%) of the original planned dose (45 Gy) for primary and nodal volumes on all patients (n = 10). For all patients, ≥99.3% of the primary tumor volume received ≥ 95% the prescribed dose (V95%) and the average minimum dose was 96.1% of the prescribed dose. In evaluating nodal CTV coverage, ≥ 99.8% of the volume received ≥ 95% the prescribed dose and the average minimum dose was 93%. In

  13. Nodal in computerized control systems of accelerators

    International Nuclear Information System (INIS)

    Kagarmanov, A.A.; Koval'tsov, V.I.; Korobov, S.A.

    1994-01-01

    Brief description of the Nodal language programming structure is presented. Its possibilities as high-level programming language for accelerator control systems are considered. The status of the Nodal language in the HEPI is discussed. 3 refs

  14. Development and validation of a nodal code for core calculation

    International Nuclear Information System (INIS)

    Nowakowski, Pedro Mariano

    2004-01-01

    The code RHENO solves the multigroup three-dimensional diffusion equation using a nodal method of polynomial expansion.A comparative study has been made between this code and present internationals nodal diffusion codes, resulting that the RHENO is up to date.The RHENO has been integrated to a calculation line and has been extend to make burnup calculations.Two methods for pin power reconstruction were developed: modulation and imbedded. The modulation method has been implemented in a program, while the implementation of the imbedded method will be concluded shortly.The validation carried out (that includes experimental data of a MPR) show very good results and calculation efficiency

  15. Quantitative EEG Applying the Statistical Recognition Pattern Method

    DEFF Research Database (Denmark)

    Engedal, Knut; Snaedal, Jon; Hoegh, Peter

    2015-01-01

    BACKGROUND/AIM: The aim of this study was to examine the discriminatory power of quantitative EEG (qEEG) applying the statistical pattern recognition (SPR) method to separate Alzheimer's disease (AD) patients from elderly individuals without dementia and from other dementia patients. METHODS...

  16. Nodal line optimization and its application to violin top plate design

    Science.gov (United States)

    Yu, Yonggyun; Jang, In Gwun; Kim, In Kyum; Kwak, Byung Man

    2010-10-01

    In the literature, most problems of structural vibration have been formulated to adjust a specific natural frequency: for example, to maximize the first natural frequency. In musical instruments like a violin; however, mode shapes are equally important because they are related to sound quality in the way that natural frequencies are related to the octave. The shapes of nodal lines, which represent the natural mode shapes, are generally known to have a unique feature for good violins. Among the few studies on mode shape optimization, one typical study addresses the optimization of nodal point location for reducing vibration in a one-dimensional beam structure. However, nodal line optimization, which is required in violin plate design, has not yet been considered. In this paper, the central idea of controlling the shape of the nodal lines is proposed and then applied to violin top plate design. Finite element model for a violin top plate was constructed using shell elements. Then, optimization was performed to minimize the square sum of the displacement of selected nodes located along the target nodal lines by varying the thicknesses of the top plate. We conducted nodal line optimization for the second and the fifth modes together at the same time, and the results showed that the nodal lines obtained match well with the target nodal lines. The information on plate thickness distribution from nodal line optimization would be valuable for tailored trimming of a violin top plate for the given performances.

  17. Electronic-projecting Moire method applying CBR-technology

    Science.gov (United States)

    Kuzyakov, O. N.; Lapteva, U. V.; Andreeva, M. A.

    2018-01-01

    Electronic-projecting method based on Moire effect for examining surface topology is suggested. Conditions of forming Moire fringes and their parameters’ dependence on reference parameters of object and virtual grids are analyzed. Control system structure and decision-making subsystem are elaborated. Subsystem execution includes CBR-technology, based on applying case base. The approach related to analysing and forming decision for each separate local area with consequent formation of common topology map is applied.

  18. New methods applied to the analysis and treatment of ovarian cancer

    International Nuclear Information System (INIS)

    Order, S.E.; Rosenshein, N.B.; Klein, J.L.; Lichter, A.S.; Ettinger, D.S.; Dillon, M.B.; Leibel, S.A.

    1979-01-01

    The development of rigorous staging methods, appreciation of new knowledge concerning ovarian cancer dissemination, and administration of new treatment techniques have been applied to ovarian cancer. The method of staging consists of peritoneal cytology, total abdominal hysterectomy-bilateral salpingo oophorectomy (TAH-BSO), omentectomy, nodal biopsy, diaphragmatic inspection and is coupled with maximal surgical resection. An additional examination being evaluated for usefulness in future staging is intraperitoneal /sup 99m/Tc sulfur colloid scans. Nineteen patients have entered the pilot studies. Sixteen patients (5 Stage 2, 10 Stage 3 micrometastatic, and 1 Stage 4) have been treated with colloidal 32 P, i.p. followed 2 weeks later by split abdominal irradiation (200 rad fractions pelvis-2 hr rest-150 rad upper abdomen) to a total abdominal dose of 3000 rad with a pelvic cone down to 4000 rad. Five of these patients received Phenylalanine mustard (L-PAM) (7 mg/m 2 ) maintenance therapy. The 3 year actuarial survival was 78% and the 3 year disease free actuarial survival 68%. Seven patients were treated with intraperitoneal tumor antisera and 4/7 remain in complete remission as of this writing. The specificity of the antiserum has been demonstrated by immunoelectrophoresis in 4/4 patients, and by live cell fluorescence in 1 patient. Rabbit IgG levels revealed significant increasing titers in 4/6 patients following i.p. antiovarian antiserum. Radiolabeled IgG derived from the antiserum demonstrated tumor localization and correlation with conventional radiograhy and computerized axial tomograhy (CAT) scans in 2 patients studied to date. Biomarker analysis reveals that free secretory protein 6/6, apha globulin 5/6, and CEA (carcinoembryonic antigen) 3/6 were elevated in the 6 patients studied. Two patients whose disease progressed demonstrated elevated levels of all three biomarkers

  19. A Lagrangian meshfree method applied to linear and nonlinear elasticity.

    Science.gov (United States)

    Walker, Wade A

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.

  20. Nodal algorithm derived from a new variational principle

    International Nuclear Information System (INIS)

    Watson, Fernando V.

    1995-01-01

    As a by-product of the research being carried on by the author on methods of recovering pin power distribution of PWR cores, a nodal algorithm based on a modified variational principle for the two group diffusion equations has been obtained. The main feature of the new algorithm is the low dimensionality achieved by the reduction of the original diffusion equations to a system of algebraic Eigen equations involving the average sources only, instead of sources and interface group currents used in conventional nodal methods. The advantage of this procedure is discussed and results generated by the new algorithm and by a finite difference code are compared. (author). 2 refs, 7 tabs

  1. Applying the Taguchi method for optimized fabrication of bovine ...

    African Journals Online (AJOL)

    SERVER

    2008-02-19

    Feb 19, 2008 ... Nanobiotechnology Research Lab., School of Chemical Engineering, Babol University of Technology, Po.Box: 484, ... nanoparticle by applying the Taguchi method with characterization of the ... of BSA/ethanol and organic solvent adding rate. ... Sodium aside and all other chemicals were purchased from.

  2. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  3. Magnetic stirring welding method applied to nuclear power plant

    International Nuclear Information System (INIS)

    Hirano, Kenji; Watando, Masayuki; Morishige, Norio; Enoo, Kazuhide; Yasuda, Yuuji

    2002-01-01

    In construction of a new nuclear power plant, carbon steel and stainless steel are used as base materials for the bottom linear plate of Reinforced Concrete Containment Vessel (RCCV) to achieve maintenance-free requirement, securing sufficient strength of structure. However, welding such different metals is difficult by ordinary method. To overcome the difficulty, the automated Magnetic Stirring Welding (MSW) method that can demonstrate good welding performance was studied for practical use, and weldability tests showed the good results. Based on the study, a new welding device for the MSW method was developed to apply it weld joints of different materials, and it practically used in part of a nuclear power plant. (author)

  4. Linear algebraic methods applied to intensity modulated radiation therapy.

    Science.gov (United States)

    Crooks, S M; Xing, L

    2001-10-01

    Methods of linear algebra are applied to the choice of beam weights for intensity modulated radiation therapy (IMRT). It is shown that the physical interpretation of the beam weights, target homogeneity and ratios of deposited energy can be given in terms of matrix equations and quadratic forms. The methodology of fitting using linear algebra as applied to IMRT is examined. Results are compared with IMRT plans that had been prepared using a commercially available IMRT treatment planning system and previously delivered to cancer patients.

  5. Nodal approximations in space and time for neutron kinetics

    International Nuclear Information System (INIS)

    Grossman, L.M.; Hennart, J.P.

    2005-01-01

    A general formalism is described of the nodal type in time and space for the neutron kinetics equations. In space, several nodal methods are given of the Raviart-Thomas type (RT0 and RT1), of the Brezzi-Douglas-Marini type (BDM0 and BDM1) and of the Brezzi-Douglas-Fortin-Marini type (BDFM 1). In time, polynomial and analytical approximations are derived. In the analytical case, they are based on the inclusion of an exponential term in the basis function. They can be continuous or discontinuous in time, leading in particular to the well-known Crank-Nicolson, Backward Euler and θ schemes

  6. Methods of applied mathematics with a software overview

    CERN Document Server

    Davis, Jon H

    2016-01-01

    This textbook, now in its second edition, provides students with a firm grasp of the fundamental notions and techniques of applied mathematics as well as the software skills to implement them. The text emphasizes the computational aspects of problem solving as well as the limitations and implicit assumptions inherent in the formal methods. Readers are also given a sense of the wide variety of problems in which the presented techniques are useful. Broadly organized around the theme of applied Fourier analysis, the treatment covers classical applications in partial differential equations and boundary value problems, and a substantial number of topics associated with Laplace, Fourier, and discrete transform theories. Some advanced topics are explored in the final chapters such as short-time Fourier analysis and geometrically based transforms applicable to boundary value problems. The topics covered are useful in a variety of applied fields such as continuum mechanics, mathematical physics, control theory, and si...

  7. Rules for Phase Shifts of Quantum Oscillations in Topological Nodal-Line Semimetals

    Science.gov (United States)

    Li, Cequn; Wang, C. M.; Wan, Bo; Wan, Xiangang; Lu, Hai-Zhou; Xie, X. C.

    2018-04-01

    Nodal-line semimetals are topological semimetals in which band touchings form nodal lines or rings. Around a loop that encloses a nodal line, an electron can accumulate a nontrivial π Berry phase, so the phase shift in the Shubnikov-de Haas (SdH) oscillation may give a transport signature for the nodal-line semimetals. However, different experiments have reported contradictory phase shifts, in particular, in the WHM nodal-line semimetals (W =Zr /Hf , H =Si /Ge , M =S /Se /Te ). For a generic model of nodal-line semimetals, we present a systematic calculation for the SdH oscillation of resistivity under a magnetic field normal to the nodal-line plane. From the analytical result of the resistivity, we extract general rules to determine the phase shifts for arbitrary cases and apply them to ZrSiS and Cu3 PdN systems. Depending on the magnetic field directions, carrier types, and cross sections of the Fermi surface, the phase shift shows rich results, quite different from those for normal electrons and Weyl fermions. Our results may help explore transport signatures of topological nodal-line semimetals and can be generalized to other topological phases of matter.

  8. Radiotherapy of adult nodal non Hodgkin's lymphoma

    International Nuclear Information System (INIS)

    Gamen, G.; Thirion, P.

    1999-01-01

    The role of radiotherapy in the treatment of nodal non-Hodgkin's lymphoma has been modified by the introduction of efficient chemotherapy and the development of different pathological classifications. The recommended treatment of early-stage aggressive lymphomas is primarily a combination chemotherapy. The interest of adjuvant radiotherapy remains unclear and has to be established through large prospective trials. If radiation therapy has to be delivered, the historical results of exclusive radiation therapy showed that involved-fields and a dose of 35-40 Gy (daily fraction of 1.8 Gy, 5 days a week) are the optimal schedule. The interest of radiotherapy in the treatment of advanced-stage aggressive lymphoma is yet to be proven. Further studies had to stratify localized stages according to the factors of the International Prognostic Index. For easy-stage low-grade lymphoma, radiotherapy remains the standard treatment. However, the appropriate technique to use is controversial. Involved-field irradiation at a dose of 35 Gy seems to be the optimal schedule, providing a 10 year disease-free survival rate of 50 % and no major toxicity. There is no standard indication of radiotherapy in the treatment advanced-stage low-grade lymphoma. For 'new' nodal lymphoma's types, the indication of radiotherapy cannot be established (mantle-zone lymphoma, marginal zone B-cell lymphoma) or must take into account the natural history (Burkitt's lymphoma, peripheral T-cell lymphoma) and the sensibility to others therapeutic methods. (authors)

  9. Which DTW Method Applied to Marine Univariate Time Series Imputation

    OpenAIRE

    Phan , Thi-Thu-Hong; Caillault , Émilie; Lefebvre , Alain; Bigand , André

    2017-01-01

    International audience; Missing data are ubiquitous in any domains of applied sciences. Processing datasets containing missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). Therefore, the aim of this paper is to build a framework for filling missing values in univariate time series and to perform a comparison of different similarity metrics used for the imputation task. This allows to suggest the most suitable methods for the imp...

  10. Applying Qualitative Research Methods to Narrative Knowledge Engineering

    OpenAIRE

    O'Neill, Brian; Riedl, Mark

    2014-01-01

    We propose a methodology for knowledge engineering for narrative intelligence systems, based on techniques used to elicit themes in qualitative methods research. Our methodology uses coding techniques to identify actions in natural language corpora, and uses these actions to create planning operators and procedural knowledge, such as scripts. In an iterative process, coders create a taxonomy of codes relevant to the corpus, and apply those codes to each element of that corpus. These codes can...

  11. APPLYING SPECTROSCOPIC METHODS ON ANALYSES OF HAZARDOUS WASTE

    OpenAIRE

    Dobrinić, Julijan; Kunić, Marija; Ciganj, Zlatko

    2000-01-01

    Abstract The paper presents results of measuring the content of heavy and other metals in waste samples from the hazardous waste disposal site of Sovjak near Rijeka. The preliminary design elaboration and the choice of the waste disposal sanification technology were preceded by the sampling and physico-chemical analyses of disposed waste, enabling its categorization. The following spectroscopic methods were applied on metal content analysis: Atomic absorption spectroscopy (AAS) and plas...

  12. A new method of AHP applied to personal credit evaluation

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-hui; XIONG Qi; CAO Jing

    2006-01-01

    This paper presents a new negative judgment matrix that combines the advantages of the reciprocal judgment matrix and the fuzzy complementary judgment matrix, and then puts forth the properties of this new matrix. In view of these properties, this paper derives a clear sequencing formula for the new negative judgment matrix, which improves the sequencing principle of AHP. Finally, this new method is applied to personal credit evaluation to show its advantages of conciseness and swiftness.

  13. Novel biodosimetry methods applied to victims of the Goiania accident

    International Nuclear Information System (INIS)

    Straume, T.; Langlois, R.G.; Lucas, J.; Jensen, R.H.; Bigbee, W.L.; Ramalho, A.T.; Brandao-Mello, C.E.

    1991-01-01

    Two biodosimetric methods under development at the Lawrence Livermore National Laboratory were applied to five persons accidentally exposed to a 137Cs source in Goiania, Brazil. The methods used were somatic null mutations at the glycophorin A locus detected as missing proteins on the surface of blood erythrocytes and chromosome translocations in blood lymphocytes detected using fluorescence in-situ hybridization. Biodosimetric results obtained approximately 1 y after the accident using these new and largely unvalidated methods are in general agreement with results obtained immediately after the accident using dicentric chromosome aberrations. Additional follow-up of Goiania accident victims will (1) help provide the information needed to validate these new methods for use in biodosimetry and (2) provide independent estimates of dose

  14. Newton-Krylov methods applied to nonequilibrium radiation diffusion

    International Nuclear Information System (INIS)

    Knoll, D.A.; Rider, W.J.; Olsen, G.L.

    1998-01-01

    The authors present results of applying a matrix-free Newton-Krylov method to a nonequilibrium radiation diffusion problem. Here, there is no use of operator splitting, and Newton's method is used to convert the nonlinearities within a time step. Since the nonlinear residual is formed, it is used to monitor convergence. It is demonstrated that a simple Picard-based linearization produces a sufficient preconditioning matrix for the Krylov method, thus elevating the need to form or store a Jacobian matrix for Newton's method. They discuss the possibility that the Newton-Krylov approach may allow larger time steps, without loss of accuracy, as compared to an operator split approach where nonlinearities are not converged within a time step

  15. The Nodal Location of Metastases in Melanoma Sentinel Lymph Nodes

    DEFF Research Database (Denmark)

    Riber-Hansen, Rikke; Nyengaard, Jens; Hamilton-Dutoit, Stephen

    2009-01-01

    BACKGROUND: The design of melanoma sentinel lymph node (SLN) histologic protocols is based on the premise that most metastases are found in the central parts of the nodes, but the evidence for this belief has never been thoroughly tested. METHODS: The nodal location of melanoma metastases in 149...

  16. Development of nodal interface conditions for a PN approximation nodal model

    International Nuclear Information System (INIS)

    Feiz, M.

    1993-01-01

    A relation was developed for approximating higher order odd-moments from lower order odd-moments at the nodal interfaces of a Legendre polynomial nodal model. Two sample problems were tested using different order P N expansions in adjacent nodes. The developed relation proved to be adequate and matched the nodal interface flux accurately. The development allows the use of different order expansions in adjacent nodes, and will be used in a hybrid diffusion-transport nodal model. (author)

  17. GPS surveying method applied to terminal area navigation flight experiments

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M; Shingu, H; Satsushima, K; Tsuji, T; Ishikawa, K; Miyazawa, Y; Uchida, T [National Aerospace Laboratory, Tokyo (Japan)

    1993-03-01

    With an objective of evaluating accuracy of new landing and navigation systems such as microwave landing guidance system and global positioning satellite (GPS) system, flight experiments are being carried out using experimental aircraft. This aircraft mounts a GPS and evaluates its accuracy by comparing the standard orbits spotted by a Kalman filter from the laser tracing data on the aircraft with the navigation results. The GPS outputs position and speed information from an earth-centered-earth-fixed system called the World Geodetic System, 1984 (WGS84). However, in order to compare the navigation results with output from a reference orbit sensor or other navigation sensor, it is necessary to structure a high-precision reference coordinates system based on the WGS84. A method that applies the GPS phase interference measurement for this problem was proposed, and used actually in analyzing a flight experiment data. As referred to a case of the method having been applied to evaluating an independent navigation accuracy, the method was verified sufficiently effective and reliable not only in navigation method analysis, but also in the aspect of navigational operations. 12 refs., 10 figs., 5 tabs.

  18. Methods for model selection in applied science and engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2004-10-01

    Mathematical models are developed and used to study the properties of complex systems and/or modify these systems to satisfy some performance requirements in just about every area of applied science and engineering. A particular reason for developing a model, e.g., performance assessment or design, is referred to as the model use. Our objective is the development of a methodology for selecting a model that is sufficiently accurate for an intended use. Information on the system being modeled is, in general, incomplete, so that there may be two or more models consistent with the available information. The collection of these models is called the class of candidate models. Methods are developed for selecting the optimal member from a class of candidate models for the system. The optimal model depends on the available information, the selected class of candidate models, and the model use. Classical methods for model selection, including the method of maximum likelihood and Bayesian methods, as well as a method employing a decision-theoretic approach, are formulated to select the optimal model for numerous applications. There is no requirement that the candidate models be random. Classical methods for model selection ignore model use and require data to be available. Examples are used to show that these methods can be unreliable when data is limited. The decision-theoretic approach to model selection does not have these limitations, and model use is included through an appropriate utility function. This is especially important when modeling high risk systems, where the consequences of using an inappropriate model for the system can be disastrous. The decision-theoretic method for model selection is developed and applied for a series of complex and diverse applications. These include the selection of the: (1) optimal order of the polynomial chaos approximation for non-Gaussian random variables and stationary stochastic processes, (2) optimal pressure load model to be

  19. Analysis of concrete beams using applied element method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a displacement based method of structural analysis. Some of its features are similar to that of Finite Element Method (FEM). In AEM, the structure is analysed by dividing it into several elements similar to FEM. But, in AEM, elements are connected by springs instead of nodes as in the case of FEM. In this paper, background to AEM is discussed and necessary equations are derived. For illustrating the application of AEM, it has been used to analyse plain concrete beam of fixed support condition. The analysis is limited to the analysis of 2-dimensional structures. It was found that the number of springs has no much influence on the results. AEM could predict deflection and reactions with reasonable degree of accuracy.

  20. The Lattice Boltzmann Method applied to neutron transport

    International Nuclear Information System (INIS)

    Erasmus, B.; Van Heerden, F. A.

    2013-01-01

    In this paper the applicability of the Lattice Boltzmann Method to neutron transport is investigated. One of the main features of the Lattice Boltzmann method is the simultaneous discretization of the phase space of the problem, whereby particles are restricted to move on a lattice. An iterative solution of the operator form of the neutron transport equation is presented here, with the first collision source as the starting point of the iteration scheme. A full description of the discretization scheme is given, along with the quadrature set used for the angular discretization. An angular refinement scheme is introduced to increase the angular coverage of the problem phase space and to mitigate lattice ray effects. The method is applied to a model problem to investigate its applicability to neutron transport and the results are compared to a reference solution calculated, using MCNP. (authors)

  1. Advanced methods for image registration applied to JET videos

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, Teddy, E-mail: teddy.craciunescu@jet.uk [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Murari, Andrea [Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova (Italy); Gelfusa, Michela [Associazione EURATOM-ENEA – University of Rome “Tor Vergata”, Roma (Italy); Tiseanu, Ion; Zoita, Vasile [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Arnoux, Gilles [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)

    2015-10-15

    Graphical abstract: - Highlights: • Development of an image registration method for JET IR and fast visible cameras. • Method based on SIFT descriptors and coherent point drift points set registration technique. • Method able to deal with extremely noisy images and very low luminosity images. • Computation time compatible with the inter-shot analysis. - Abstract: The last years have witnessed a significant increase in the use of digital cameras on JET. They are routinely applied for imaging in the IR and visible spectral regions. One of the main technical difficulties in interpreting the data of camera based diagnostics is the presence of movements of the field of view. Small movements occur due to machine shaking during normal pulses while large ones may arise during disruptions. Some cameras show a correlation of image movement with change of magnetic field strength. For deriving unaltered information from the videos and for allowing correct interpretation an image registration method, based on highly distinctive scale invariant feature transform (SIFT) descriptors and on the coherent point drift (CPD) points set registration technique, has been developed. The algorithm incorporates a complex procedure for rejecting outliers. The method has been applied for vibrations correction to videos collected by the JET wide angle infrared camera and for the correction of spurious rotations in the case of the JET fast visible camera (which is equipped with an image intensifier). The method has proved to be able to deal with the images provided by this camera frequently characterized by low contrast and a high level of blurring and noise.

  2. Topological transport in Dirac nodal-line semimetals

    Science.gov (United States)

    Rui, W. B.; Zhao, Y. X.; Schnyder, Andreas P.

    2018-04-01

    Topological nodal-line semimetals are characterized by one-dimensional Dirac nodal rings that are protected by the combined symmetry of inversion P and time-reversal T . The stability of these Dirac rings is guaranteed by a quantized ±π Berry phase and their low-energy physics is described by a one-parameter family of (2+1)-dimensional quantum field theories exhibiting the parity anomaly. Here we study the Berry-phase supported topological transport of P T -invariant nodal-line semimetals. We find that small inversion breaking allows for an electric-field-induced anomalous transverse current, whose universal component originates from the parity anomaly. Due to this Hall-like current, carriers at opposite sides of the Dirac nodal ring flow to opposite surfaces when an electric field is applied. To detect the topological currents, we propose a dumbbell device, which uses surface states to filter charges based on their momenta. Suggestions for experiments and device applications are discussed.

  3. Classification of Specialized Farms Applying Multivariate Statistical Methods

    Directory of Open Access Journals (Sweden)

    Zuzana Hloušková

    2017-01-01

    Full Text Available Classification of specialized farms applying multivariate statistical methods The paper is aimed at application of advanced multivariate statistical methods when classifying cattle breeding farming enterprises by their economic size. Advantage of the model is its ability to use a few selected indicators compared to the complex methodology of current classification model that requires knowledge of detailed structure of the herd turnover and structure of cultivated crops. Output of the paper is intended to be applied within farm structure research focused on future development of Czech agriculture. As data source, the farming enterprises database for 2014 has been used, from the FADN CZ system. The predictive model proposed exploits knowledge of actual size classes of the farms tested. Outcomes of the linear discriminatory analysis multifactor classification method have supported the chance of filing farming enterprises in the group of Small farms (98 % filed correctly, and the Large and Very Large enterprises (100 % filed correctly. The Medium Size farms have been correctly filed at 58.11 % only. Partial shortages of the process presented have been found when discriminating Medium and Small farms.

  4. Assessment of Effect on LBLOCA PCT for Change in Upper Head Nodalization

    International Nuclear Information System (INIS)

    Kang, Dong Gu; Huh, Byung Gil; Yoo, Seung Hun; Bang, Youngseok; Seul, Kwangwon; Cho, Daehyung

    2014-01-01

    In this study, the best estimate plus uncertainty (BEPU) analysis of LBLOCA for original and modified nodalizations was performed, and the effect on LBLOCA PCT for change in upper head nodalization was assessed. In this study, the best estimate plus uncertainty (BEPU) analysis of LBLOCA for original and modified nodalizations was performed, and the effect on LBLOCA PCT for change in upper head nodalization was assessed. It is confirmed that modification of upper head nodalization influences PCT behavior, especially in the reflood phase. In conclusions, the modification of nodalization to reflect design characteristic of upper head temperature should be done to predict PCT behavior accurately in LBLOCA analysis. In the best estimate (BE) method with the uncertainty evaluation, the system nodalization is determined by the comparative studies of the experimental data. Up to now, it was assumed that the temperature of the upper dome in OPR-1000 was close to that of the cold leg. However, it was found that the temperature of the upper head/dome might be a little lower than or similar to that of the hot leg through the evaluation of the detailed design data. Since the higher upper head temperature affects blowdown quenching and peak cladding temperature in the reflood phase, the nodalization for upper head should be modified

  5. Metrological evaluation of characterization methods applied to nuclear fuels

    International Nuclear Information System (INIS)

    Faeda, Kelly Cristina Martins; Lameiras, Fernando Soares; Camarano, Denise das Merces; Ferreira, Ricardo Alberto Neto; Migliorini, Fabricio Lima; Carneiro, Luciana Capanema Silva; Silva, Egonn Hendrigo Carvalho

    2010-01-01

    In manufacturing the nuclear fuel, characterizations are performed in order to assure the minimization of harmful effects. The uranium dioxide is the most used substance as nuclear reactor fuel because of many advantages, such as: high stability even when it is in contact with water at high temperatures, high fusion point, and high capacity to retain fission products. Several methods are used for characterization of nuclear fuels, such as thermogravimetric analysis for the ratio O / U, penetration-immersion method, helium pycnometer and mercury porosimetry for the density and porosity, BET method for the specific surface, chemical analyses for relevant impurities, and the laser flash method for thermophysical properties. Specific tools are needed to control the diameter and the sphericity of the microspheres and the properties of the coating layers (thickness, density, and degree of anisotropy). Other methods can also give information, such as scanning and transmission electron microscopy, X-ray diffraction, microanalysis, and mass spectroscopy of secondary ions for chemical analysis. The accuracy of measurement and level of uncertainty of the resulting data are important. This work describes a general metrological characterization of some techniques applied to the characterization of nuclear fuel. Sources of measurement uncertainty were analyzed. The purpose is to summarize selected properties of UO 2 that have been studied by CDTN in a program of fuel development for Pressurized Water Reactors (PWR). The selected properties are crucial for thermalhydraulic codes to study basic design accidents. The thermal characterization (thermal diffusivity and thermal conductivity) and the penetration immersion method (density and open porosity) of UO 2 samples were focused. The thermal characterization of UO 2 samples was determined by the laser flash method between room temperature and 448 K. The adaptive Monte Carlo Method was used to obtain the endpoints of the

  6. Nuclear and nuclear related analytical methods applied in environmental research

    International Nuclear Information System (INIS)

    Popescu, Ion V.; Gheboianu, Anca; Bancuta, Iulian; Cimpoca, G. V; Stihi, Claudia; Radulescu, Cristiana; Oros Calin; Frontasyeva, Marina; Petre, Marian; Dulama, Ioana; Vlaicu, G.

    2010-01-01

    Nuclear Analytical Methods can be used for research activities on environmental studies like water quality assessment, pesticide residues, global climatic change (transboundary), pollution and remediation. Heavy metal pollution is a problem associated with areas of intensive industrial activity. In this work the moss bio monitoring technique was employed to study the atmospheric deposition in Dambovita County Romania. Also, there were used complementary nuclear and atomic analytical methods: Neutron Activation Analysis (NAA), Atomic Absorption Spectrometry (AAS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). These high sensitivity analysis methods were used to determine the chemical composition of some samples of mosses placed in different areas with different pollution industrial sources. The concentrations of Cr, Fe, Mn, Ni and Zn were determined. The concentration of Fe from the same samples was determined using all these methods and we obtained a very good agreement, in statistical limits, which demonstrate the capability of these analytical methods to be applied on a large spectrum of environmental samples with the same results. (authors)

  7. Applied systems ecology: models, data, and statistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, L L

    1976-01-01

    In this report, systems ecology is largely equated to mathematical or computer simulation modelling. The need for models in ecology stems from the necessity to have an integrative device for the diversity of ecological data, much of which is observational, rather than experimental, as well as from the present lack of a theoretical structure for ecology. Different objectives in applied studies require specialized methods. The best predictive devices may be regression equations, often non-linear in form, extracted from much more detailed models. A variety of statistical aspects of modelling, including sampling, are discussed. Several aspects of population dynamics and food-chain kinetics are described, and it is suggested that the two presently separated approaches should be combined into a single theoretical framework. It is concluded that future efforts in systems ecology should emphasize actual data and statistical methods, as well as modelling.

  8. Analysis of Brick Masonry Wall using Applied Element Method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a versatile tool for structural analysis. Analysis is done by discretising the structure as in the case of Finite Element Method (FEM). In AEM, elements are connected by a set of normal and shear springs instead of nodes. AEM is extensively used for the analysis of brittle materials. Brick masonry wall can be effectively analyzed in the frame of AEM. The composite nature of masonry wall can be easily modelled using springs. The brick springs and mortar springs are assumed to be connected in series. The brick masonry wall is analyzed and failure load is determined for different loading cases. The results were used to find the best aspect ratio of brick to strengthen brick masonry wall.

  9. Thermally stimulated current method applied to highly irradiated silicon diodes

    CERN Document Server

    Pintilie, I; Pintilie, I; Moll, Michael; Fretwurst, E; Lindström, G

    2002-01-01

    We propose an improved method for the analysis of Thermally Stimulated Currents (TSC) measured on highly irradiated silicon diodes. The proposed TSC formula for the evaluation of a set of TSC spectra obtained with different reverse biases leads not only to the concentration of electron and hole traps visible in the spectra but also gives an estimation for the concentration of defects which not give rise to a peak in the 30-220 K TSC temperature range (very shallow or very deep levels). The method is applied to a diode irradiated with a neutron fluence of phi sub n =1.82x10 sup 1 sup 3 n/cm sup 2.

  10. The Nudo, Rollo, Melon codes and nodal correlations

    International Nuclear Information System (INIS)

    Perlado, J.M.; Aragones, J.M.; Minguez, E.; Pena, J.

    1975-01-01

    Analysis of nodal calculation and checking results by the reference reactor experimental data. Nudo code description, adapting experimental data to nodal calculations. Rollo, Melon codes as improvement in the cycle life calculations of albedos, mixing parameters and nodal correlations. (author)

  11. Hybrid electrokinetic method applied to mix contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Mansour, H.; Maria, E. [Dept. of Building Civil and Environmental Engineering, Concordia Univ., Montreal (Canada)

    2001-07-01

    Several industrials and municipal areas in North America are contaminated with heavy metals and petroleum products. This mix contamination presents a particularly difficult task for remediation when is exposed in clayey soil. The objective of this research was to find a method to cleanup mix contaminated clayey soils. Finally, a multifunctional hybrid electrokinetic method was investigated. Clayey soil was contaminated with lead and nickel (heavy metals) at the level of 1000 ppm and phenanthrene (PAH) of 600 ppm. Electrokinetic surfactant supply system was applied to mobilize, transport and removal of phenanthrene. A chelation agent (EDTA) was also electrokinetically supplied to mobilize heavy metals. The studies were performed on 8 lab scale electrokinetic cells. The mix contaminated clayey soil was subjected to DC total voltage gradient of 0.3 V/cm. Supplied liquids (surfactant and EDTA) were introduced in different periods of time (22 days, 42 days) in order to optimize the most excessive removal of contaminants. The ph, electrical parameters, volume supplied, and volume discharged was monitored continuously during each experiment. At the end of these tests soil and cathalyte were subjected to physico-chemical analysis. The paper discusses results of experiments including the optimal energy use, removal efficiency of phenanthrene, as well, transport and removal of heavy metals. The results of this study can be applied for in-situ hybrid electrokinetic technology to remediate clayey sites contaminated with petroleum product mixed with heavy metals (e.g. manufacture Gas Plant Sites). (orig.)

  12. On the extension of the analytic nodal diffusion solver ANDES to sodium fast reactors

    International Nuclear Information System (INIS)

    Ochoa, R.; Herrero, J.J.; Garcia-Herranz, N.

    2011-01-01

    Within the framework of the Collaborative Project for a European Sodium Fast Reactor, the reactor physics group at UPM is working on the extension of its in-house multi-scale advanced deterministic code COBAYA3 to Sodium Fast Reactors (SFR). COBAYA3 is a 3D multigroup neutron kinetics diffusion code that can be used either as a pin-by-pin code or as a stand-alone nodal code by using the analytic nodal diffusion solver ANDES. It is coupled with thermal-hydraulics codes such as COBRA-TF and FLICA, allowing transient analysis of LWR at both fine-mesh and coarse-mesh scales. In order to enable also 3D pin-by-pin and nodal coupled NK-TH simulations of SFR, different developments are in progress. This paper presents the first steps towards the application of COBAYA3 to this type of reactors. ANDES solver, already extended to triangular-Z geometry, has been applied to fast reactor steady-state calculations. The required cross section libraries were generated with ERANOS code for several configurations. Here some of the limitations encountered when attempting to apply the Analytical Coarse Mesh Finite Difference (ACMFD) method - implemented inside ANDES - to fast reactor calculations are discussed and the sensitivity of the method to the energy-group structure is studied. In order to reinforce some of the conclusions obtained two calculations are presented. The first one involves a 3D mini-core model in 33 groups, where the ANDES solver presents several issues. And secondly, a benchmark from the NEA for a small 3D FBR in hexagonal-Z geometry in 4 energy groups is used to verify the good convergence of the code in a few-energy-group structure. (author)

  13. A Multifactorial Analysis of Reconstruction Methods Applied After Total Gastrectomy

    Directory of Open Access Journals (Sweden)

    Oktay Büyükaşık

    2010-12-01

    Full Text Available Aim: The aim of this study was to evaluate the reconstruction methods applied after total gastrectomy in terms of postoperative symptomology and nutrition. Methods: This retrospective study was conducted on 31 patients who underwent total gastrectomy due to gastric cancer in 2. Clinic of General Surgery, SSK Ankara Training Hospital. 6 different reconstruction methods were used and analyzed in terms of age, sex and postoperative complications. One from esophagus and two biopsy specimens from jejunum were taken through upper gastrointestinal endoscopy from all cases, and late period morphological and microbiological changes were examined. Postoperative weight change, dumping symptoms, reflux esophagitis, solid/liquid dysphagia, early satiety, postprandial pain, diarrhea and anorexia were assessed. Results: Of 31 patients,18 were males and 13 females; the youngest one was 33 years old, while the oldest- 69 years old. It was found that reconstruction without pouch was performed in 22 cases and with pouch in 9 cases. Early satiety, postprandial pain, dumping symptoms, diarrhea and anemia were found most commonly in cases with reconstruction without pouch. The rate of bacterial colonization of the jejunal mucosa was identical in both groups. Reflux esophagitis was most commonly seen in omega esophagojejunostomy (EJ, while the least-in Roux-en-Y, Tooley and Tanner 19 EJ. Conclusion: Reconstruction with pouch performed after total gastrectomy is still a preferable method. (The Medical Bulletin of Haseki 2010; 48:126-31

  14. Hybrid microscopic depletion model in nodal code DYN3D

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kotlyar, D.; Shwageraus, E.; Fridman, E.; Kliem, S.

    2016-01-01

    Highlights: • A new hybrid method of accounting for spectral history effects is proposed. • Local concentrations of over 1000 nuclides are calculated using micro depletion. • The new method is implemented in nodal code DYN3D and verified. - Abstract: The paper presents a general hybrid method that combines the micro-depletion technique with correction of micro- and macro-diffusion parameters to account for the spectral history effects. The fuel in a core is subjected to time- and space-dependent operational conditions (e.g. coolant density), which cannot be predicted in advance. However, lattice codes assume some average conditions to generate cross sections (XS) for nodal diffusion codes such as DYN3D. Deviation of local operational history from average conditions leads to accumulation of errors in XS, which is referred as spectral history effects. Various methods to account for the spectral history effects, such as spectral index, burnup-averaged operational parameters and micro-depletion, were implemented in some nodal codes. Recently, an alternative method, which characterizes fuel depletion state by burnup and 239 Pu concentration (denoted as Pu-correction) was proposed, implemented in nodal code DYN3D and verified for a wide range of history effects. The method is computationally efficient, however, it has applicability limitations. The current study seeks to improve the accuracy and applicability range of Pu-correction method. The proposed hybrid method combines the micro-depletion method with a XS characterization technique similar to the Pu-correction method. The method was implemented in DYN3D and verified on multiple test cases. The results obtained with DYN3D were compared to those obtained with Monte Carlo code Serpent, which was also used to generate the XS. The observed differences are within the statistical uncertainties.

  15. Single-Case Designs and Qualitative Methods: Applying a Mixed Methods Research Perspective

    Science.gov (United States)

    Hitchcock, John H.; Nastasi, Bonnie K.; Summerville, Meredith

    2010-01-01

    The purpose of this conceptual paper is to describe a design that mixes single-case (sometimes referred to as single-subject) and qualitative methods, hereafter referred to as a single-case mixed methods design (SCD-MM). Minimal attention has been given to the topic of applying qualitative methods to SCD work in the literature. These two…

  16. Analytical methods applied to diverse types of Brazilian propolis

    Directory of Open Access Journals (Sweden)

    Marcucci Maria

    2011-06-01

    Full Text Available Abstract Propolis is a bee product, composed mainly of plant resins and beeswax, therefore its chemical composition varies due to the geographic and plant origins of these resins, as well as the species of bee. Brazil is an important supplier of propolis on the world market and, although green colored propolis from the southeast is the most known and studied, several other types of propolis from Apis mellifera and native stingless bees (also called cerumen can be found. Propolis is usually consumed as an extract, so the type of solvent and extractive procedures employed further affect its composition. Methods used for the extraction; analysis the percentage of resins, wax and insoluble material in crude propolis; determination of phenolic, flavonoid, amino acid and heavy metal contents are reviewed herein. Different chromatographic methods applied to the separation, identification and quantification of Brazilian propolis components and their relative strengths are discussed; as well as direct insertion mass spectrometry fingerprinting. Propolis has been used as a popular remedy for several centuries for a wide array of ailments. Its antimicrobial properties, present in propolis from different origins, have been extensively studied. But, more recently, anti-parasitic, anti-viral/immune stimulating, healing, anti-tumor, anti-inflammatory, antioxidant and analgesic activities of diverse types of Brazilian propolis have been evaluated. The most common methods employed and overviews of their relative results are presented.

  17. Teaching organization theory for healthcare management: three applied learning methods.

    Science.gov (United States)

    Olden, Peter C

    2006-01-01

    Organization theory (OT) provides a way of seeing, describing, analyzing, understanding, and improving organizations based on patterns of organizational design and behavior (Daft 2004). It gives managers models, principles, and methods with which to diagnose and fix organization structure, design, and process problems. Health care organizations (HCOs) face serious problems such as fatal medical errors, harmful treatment delays, misuse of scarce nurses, costly inefficiency, and service failures. Some of health care managers' most critical work involves designing and structuring their organizations so their missions, visions, and goals can be achieved-and in some cases so their organizations can survive. Thus, it is imperative that graduate healthcare management programs develop effective approaches for teaching OT to students who will manage HCOs. Guided by principles of education, three applied teaching/learning activities/assignments were created to teach OT in a graduate healthcare management program. These educationalmethods develop students' competency with OT applied to HCOs. The teaching techniques in this article may be useful to faculty teaching graduate courses in organization theory and related subjects such as leadership, quality, and operation management.

  18. Six Sigma methods applied to cryogenic coolers assembly line

    Science.gov (United States)

    Ventre, Jean-Marc; Germain-Lacour, Michel; Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Griot, René

    2009-05-01

    Six Sigma method have been applied to manufacturing process of a rotary Stirling cooler: RM2. Name of the project is NoVa as main goal of the Six Sigma approach is to reduce variability (No Variability). Project has been based on the DMAIC guideline following five stages: Define, Measure, Analyse, Improve, Control. Objective has been set on the rate of coolers succeeding performance at first attempt with a goal value of 95%. A team has been gathered involving people and skills acting on the RM2 manufacturing line. Measurement System Analysis (MSA) has been applied to test bench and results after R&R gage show that measurement is one of the root cause for variability in RM2 process. Two more root causes have been identified by the team after process mapping analysis: regenerator filling factor and cleaning procedure. Causes for measurement variability have been identified and eradicated as shown by new results from R&R gage. Experimental results show that regenerator filling factor impacts process variability and affects yield. Improved process haven been set after new calibration process for test bench, new filling procedure for regenerator and an additional cleaning stage have been implemented. The objective for 95% coolers succeeding performance test at first attempt has been reached and kept for a significant period. RM2 manufacturing process is now managed according to Statistical Process Control based on control charts. Improvement in process capability have enabled introduction of sample testing procedure before delivery.

  19. Metrological evaluation of characterization methods applied to nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Faeda, Kelly Cristina Martins; Lameiras, Fernando Soares; Camarano, Denise das Merces; Ferreira, Ricardo Alberto Neto; Migliorini, Fabricio Lima; Carneiro, Luciana Capanema Silva; Silva, Egonn Hendrigo Carvalho, E-mail: kellyfisica@gmail.co, E-mail: fernando.lameiras@pq.cnpq.b, E-mail: dmc@cdtn.b, E-mail: ranf@cdtn.b, E-mail: flmigliorini@hotmail.co, E-mail: lucsc@hotmail.co, E-mail: egonn@ufmg.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2010-07-01

    In manufacturing the nuclear fuel, characterizations are performed in order to assure the minimization of harmful effects. The uranium dioxide is the most used substance as nuclear reactor fuel because of many advantages, such as: high stability even when it is in contact with water at high temperatures, high fusion point, and high capacity to retain fission products. Several methods are used for characterization of nuclear fuels, such as thermogravimetric analysis for the ratio O / U, penetration-immersion method, helium pycnometer and mercury porosimetry for the density and porosity, BET method for the specific surface, chemical analyses for relevant impurities, and the laser flash method for thermophysical properties. Specific tools are needed to control the diameter and the sphericity of the microspheres and the properties of the coating layers (thickness, density, and degree of anisotropy). Other methods can also give information, such as scanning and transmission electron microscopy, X-ray diffraction, microanalysis, and mass spectroscopy of secondary ions for chemical analysis. The accuracy of measurement and level of uncertainty of the resulting data are important. This work describes a general metrological characterization of some techniques applied to the characterization of nuclear fuel. Sources of measurement uncertainty were analyzed. The purpose is to summarize selected properties of UO{sub 2} that have been studied by CDTN in a program of fuel development for Pressurized Water Reactors (PWR). The selected properties are crucial for thermalhydraulic codes to study basic design accidents. The thermal characterization (thermal diffusivity and thermal conductivity) and the penetration immersion method (density and open porosity) of UO{sub 2} samples were focused. The thermal characterization of UO{sub 2} samples was determined by the laser flash method between room temperature and 448 K. The adaptive Monte Carlo Method was used to obtain the endpoints of

  20. Can axial-based nodal size criteria be used in other imaging planes to accurately determine "enlarged" head and neck lymph nodes?

    Science.gov (United States)

    Bartlett, Eric S; Walters, Thomas D; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as "enlarged" if equal to or exceeding size criteria. Results. 222 lymph nodes were "enlarged" in one imaging plane; however, 53.2% (118/222) of these were "enlarged" in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = -0.09 and -0.07, resp., P planes. Conclusion. Classification of "enlarged" lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data.

  1. Applying systems ergonomics methods in sport: A systematic review.

    Science.gov (United States)

    Hulme, Adam; Thompson, Jason; Plant, Katherine L; Read, Gemma J M; Mclean, Scott; Clacy, Amanda; Salmon, Paul M

    2018-04-16

    As sports systems become increasingly more complex, competitive, and technology-centric, there is a greater need for systems ergonomics methods to consider the performance, health, and safety of athletes in context with the wider settings in which they operate. Therefore, the purpose of this systematic review was to identify and critically evaluate studies which have applied a systems ergonomics research approach in the context of sports performance and injury management. Five databases (PubMed, Scopus, ScienceDirect, Web of Science, and SPORTDiscus) were searched for the dates 01 January 1990 to 01 August 2017, inclusive, for original peer-reviewed journal articles and conference papers. Reported analyses were underpinned by a recognised systems ergonomics method, and study aims were related to the optimisation of sports performance (e.g. communication, playing style, technique, tactics, or equipment), and/or the management of sports injury (i.e. identification, prevention, or treatment). A total of seven articles were identified. Two articles were focussed on understanding and optimising sports performance, whereas five examined sports injury management. The methods used were the Event Analysis of Systemic Teamwork, Cognitive Work Analysis (the Work Domain Analysis Abstraction Hierarchy), Rasmussen's Risk Management Framework, and the Systems Theoretic Accident Model and Processes method. The individual sport application was distance running, whereas the team sports contexts examined were cycling, football, Australian Football League, and rugby union. The included systems ergonomics applications were highly flexible, covering both amateur and elite sports contexts. The studies were rated as valuable, providing descriptions of injury controls and causation, the factors influencing injury management, the allocation of responsibilities for injury prevention, as well as the factors and their interactions underpinning sports performance. Implications and future

  2. The virtual fields method applied to spalling tests on concrete

    Directory of Open Access Journals (Sweden)

    Forquin P.

    2012-08-01

    Full Text Available For one decade spalling techniques based on the use of a metallic Hopkinson bar put in contact with a concrete sample have been widely employed to characterize the dynamic tensile strength of concrete at strain-rates ranging from a few tens to two hundreds of s−1. However, the processing method mainly based on the use of the velocity profile measured on the rear free surface of the sample (Novikov formula remains quite basic and an identification of the whole softening behaviour of the concrete is out of reach. In the present paper a new processing method is proposed based on the use of the Virtual Fields Method (VFM. First, a digital high speed camera is used to record the pictures of a grid glued on the specimen. Next, full-field measurements are used to obtain the axial displacement field at the surface of the specimen. Finally, a specific virtual field has been defined in the VFM equation to use the acceleration map as an alternative ‘load cell’. This method applied to three spalling tests allowed to identify Young’s modulus during the test. It was shown that this modulus is constant during the initial compressive part of the test and decreases in the tensile part when micro-damage exists. It was also shown that in such a simple inertial test, it was possible to reconstruct average axial stress profiles using only the acceleration data. Then, it was possible to construct local stress-strain curves and derive a tensile strength value.

  3. Flood Hazard Mapping by Applying Fuzzy TOPSIS Method

    Science.gov (United States)

    Han, K. Y.; Lee, J. Y.; Keum, H.; Kim, B. J.; Kim, T. H.

    2017-12-01

    There are lots of technical methods to integrate various factors for flood hazard mapping. The purpose of this study is to suggest the methodology of integrated flood hazard mapping using MCDM(Multi Criteria Decision Making). MCDM problems involve a set of alternatives that are evaluated on the basis of conflicting and incommensurate criteria. In this study, to apply MCDM to assessing flood risk, maximum flood depth, maximum velocity, and maximum travel time are considered as criterion, and each applied elements are considered as alternatives. The scheme to find the efficient alternative closest to a ideal value is appropriate way to assess flood risk of a lot of element units(alternatives) based on various flood indices. Therefore, TOPSIS which is most commonly used MCDM scheme is adopted to create flood hazard map. The indices for flood hazard mapping(maximum flood depth, maximum velocity, and maximum travel time) have uncertainty concerning simulation results due to various values according to flood scenario and topographical condition. These kind of ambiguity of indices can cause uncertainty of flood hazard map. To consider ambiguity and uncertainty of criterion, fuzzy logic is introduced which is able to handle ambiguous expression. In this paper, we made Flood Hazard Map according to levee breach overflow using the Fuzzy TOPSIS Technique. We confirmed the areas where the highest grade of hazard was recorded through the drawn-up integrated flood hazard map, and then produced flood hazard map can be compared them with those indicated in the existing flood risk maps. Also, we expect that if we can apply the flood hazard map methodology suggested in this paper even to manufacturing the current flood risk maps, we will be able to make a new flood hazard map to even consider the priorities for hazard areas, including more varied and important information than ever before. Keywords : Flood hazard map; levee break analysis; 2D analysis; MCDM; Fuzzy TOPSIS

  4. Applying sociodramatic methods in teaching transition to palliative care.

    Science.gov (United States)

    Baile, Walter F; Walters, Rebecca

    2013-03-01

    We introduce the technique of sociodrama, describe its key components, and illustrate how this simulation method was applied in a workshop format to address the challenge of discussing transition to palliative care. We describe how warm-up exercises prepared 15 learners who provide direct clinical care to patients with cancer for a dramatic portrayal of this dilemma. We then show how small-group brainstorming led to the creation of a challenging scenario wherein highly optimistic family members of a 20-year-old young man with terminal acute lymphocytic leukemia responded to information about the lack of further anticancer treatment with anger and blame toward the staff. We illustrate how the facilitators, using sociodramatic techniques of doubling and role reversal, helped learners to understand and articulate the hidden feelings of fear and loss behind the family's emotional reactions. By modeling effective communication skills, the facilitators demonstrated how key communication skills, such as empathic responses to anger and blame and using "wish" statements, could transform the conversation from one of conflict to one of problem solving with the family. We also describe how we set up practice dyads to give the learners an opportunity to try out new skills with each other. An evaluation of the workshop and similar workshops we conducted is presented. Copyright © 2013 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.

  5. Type-I and type-II topological nodal superconductors with s -wave interaction

    Science.gov (United States)

    Huang, Beibing; Yang, Xiaosen; Xu, Ning; Gong, Ming

    2018-01-01

    Topological nodal superconductors with protected gapless points in momentum space are generally realized based on unconventional pairings. In this work we propose a minimal model to realize these topological nodal phases with only s -wave interaction. In our model the linear and quadratic spin-orbit couplings along the two orthogonal directions introduce anisotropic effective unconventional pairings in momentum space. This model may support different nodal superconducting phases characterized by either an integer winding number in BDI class or a Z2 index in D class at the particle-hole invariant axes. In the vicinity of the nodal points the effective Hamiltonian can be described by either type-I or type-II Dirac equations, and the Lifshitz transition from type-I nodal phases to type-II nodal phases can be driven by external in-plane magnetic fields. We show that these nodal phases are robust against weak impurities, which only slightly renormalizes the momentum-independent parameters in the impurity-averaged Hamiltonian, thus these phases are possible to be realized in experiments with real semi-Dirac materials. The smoking-gun evidences to verify these phases based on scanning tunneling spectroscopy method are also briefly discussed.

  6. Applying multi-resolution numerical methods to geodynamics

    Science.gov (United States)

    Davies, David Rhodri

    Computational models yield inaccurate results if the underlying numerical grid fails to provide the necessary resolution to capture a simulation's important features. For the large-scale problems regularly encountered in geodynamics, inadequate grid resolution is a major concern. The majority of models involve multi-scale dynamics, being characterized by fine-scale upwelling and downwelling activity in a more passive, large-scale background flow. Such configurations, when coupled to the complex geometries involved, present a serious challenge for computational methods. Current techniques are unable to resolve localized features and, hence, such models cannot be solved efficiently. This thesis demonstrates, through a series of papers and closely-coupled appendices, how multi-resolution finite-element methods from the forefront of computational engineering can provide a means to address these issues. The problems examined achieve multi-resolution through one of two methods. In two-dimensions (2-D), automatic, unstructured mesh refinement procedures are utilized. Such methods improve the solution quality of convection dominated problems by adapting the grid automatically around regions of high solution gradient, yielding enhanced resolution of the associated flow features. Thermal and thermo-chemical validation tests illustrate that the technique is robust and highly successful, improving solution accuracy whilst increasing computational efficiency. These points are reinforced when the technique is applied to geophysical simulations of mid-ocean ridge and subduction zone magmatism. To date, successful goal-orientated/error-guided grid adaptation techniques have not been utilized within the field of geodynamics. The work included herein is therefore the first geodynamical application of such methods. In view of the existing three-dimensional (3-D) spherical mantle dynamics codes, which are built upon a quasi-uniform discretization of the sphere and closely coupled

  7. Maternal Nodal inversely affects NODAL and STOX1 expression in the fetal placenta

    Directory of Open Access Journals (Sweden)

    Hari Krishna Thulluru

    2013-08-01

    Full Text Available Nodal, a secreted signaling protein from the TGFβ-super family plays a vital role during early embryonic development. Recently, it was found that maternal decidua-specific Nodal knockout mice show intrauterine growth restriction (IUGR and preterm birth. As the chromosomal location of NODAL is in the same linkage area as the susceptibility gene STOX1, associated with the familial form of early-onset, IUGR-complicated pre-eclampsia, their potential maternal-fetal interaction was investigated. Pre-eclamptic mothers with children who carried the STOX1 susceptibility allele themselves all carried the NODAL H165R SNP, which causes a 50% reduced activity. Surprisingly, in decidua Nodal knockout mice the fetal placenta showed up-regulation of STOX1 and NODAL expression. Conditioned media of human first trimester decidua and a human endometrial stromal cell line (T-HESC treated with siRNAs against NODAL or carrying the H165R SNP were also able to induce NODAL and STOX1 expression when added to SGHPL-5 first trimester extravillous trophoblast cells. Finally, a human TGFß-BMP-Signaling-Pathway PCR-Array on decidua and the T-HESC cell line with Nodal knockdown revealed upregulation of Activin-A, which was confirmed in conditioned media by ELISA. We show that maternal decidua Nodal knockdown gives upregulation of NODAL and STOX1 mRNA expression in fetal extravillous trophoblast cells, potentially via upregulation of Activin-A in the maternal decidua. As both Activin-A and Nodal have been implicated in pre-eclampsia, being increased in serum of pre-eclamptic women and upregulated in pre-eclamptic placentas respectively, this interaction at the maternal-fetal interface might play a substantial role in the development of pre-eclampsia.

  8. Analytic methods in applied probability in memory of Fridrikh Karpelevich

    CERN Document Server

    Suhov, Yu M

    2002-01-01

    This volume is dedicated to F. I. Karpelevich, an outstanding Russian mathematician who made important contributions to applied probability theory. The book contains original papers focusing on several areas of applied probability and its uses in modern industrial processes, telecommunications, computing, mathematical economics, and finance. It opens with a review of Karpelevich's contributions to applied probability theory and includes a bibliography of his works. Other articles discuss queueing network theory, in particular, in heavy traffic approximation (fluid models). The book is suitable

  9. Reactor calculation in coarse mesh by finite element method applied to matrix response method

    International Nuclear Information System (INIS)

    Nakata, H.

    1982-01-01

    The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt

  10. Quantum oscillations in nodal line systems

    Science.gov (United States)

    Yang, Hui; Moessner, Roderich; Lim, Lih-King

    2018-04-01

    We study signatures of magnetic quantum oscillations in three-dimensional nodal line semimetals at zero temperature. The extended nature of the degenerate bands can result in a Fermi surface geometry with topological genus one, as well as a Fermi surface of electron and hole pockets encapsulating the nodal line. Moreover, the underlying two-band model to describe a nodal line is not unique, in that there are two classes of Hamiltonian with distinct band topology giving rise to the same Fermi-surface geometry. After identifying the extremal cyclotron orbits in various magnetic field directions, we study their concomitant Landau levels and resulting quantum oscillation signatures. By Landau-fan-diagram analyses, we extract the nontrivial π Berry phase signature for extremal orbits linking the nodal line.

  11. Sensitivity of SBLOCA analysis to model nodalization

    International Nuclear Information System (INIS)

    Lee, C.; Ito, T.; Abramson, P.B.

    1983-01-01

    The recent Semiscale test S-UT-8 indicates the possibility for primary liquid to hang up in the steam generators during a SBLOCA, permitting core uncovery prior to loop-seal clearance. In analysis of Small Break Loss of Coolant Accidents with RELAP5, it is found that resultant transient behavior is quite sensitive to the selection of nodalization for the steam generators. Although global parameters such as integrated mass loss, primary inventory and primary pressure are relatively insensitive to the nodalization, it is found that the predicted distribution of inventory around the primary is significantly affected by nodalization. More detailed nodalization predicts that more of the inventory tends to remain in the steam generators, resulting in less inventory in the reactor vessel and therefore causing earlier and more severe core uncovery

  12. Twisted Vector Bundles on Pointed Nodal Curves

    Indian Academy of Sciences (India)

    Abstract. Motivated by the quest for a good compactification of the moduli space of -bundles on a nodal curve we establish a striking relationship between Abramovich's and Vistoli's twisted bundles and Gieseker vector bundles.

  13. The NODAL system for the SPS

    International Nuclear Information System (INIS)

    Crowley-Milling, M.C.; Shering, G.C.

    1978-01-01

    A comprehensive description is given of the NODAL system used for computer control of the CERN Super-Proton Synchrotron. Details are given of NODAL, a high-level programming language based on FOCAL and SNOBOL4, designed for interactive use. It is shown how this interpretive language is used with a network of computers and how it can be extended by adding machine-code modules. The report updates and replaces an earlier one published in 1974. (Auth.)

  14. Nodal coupling by response matrix principles

    International Nuclear Information System (INIS)

    Ancona, A.; Becker, M.; Beg, M.D.; Harris, D.R.; Menezes, A.D.; VerPlanck, D.M.; Pilat, E.

    1977-01-01

    The response matrix approach has been used in viewing a reactor node in isolation and in characterizing the node by reflection and trans-emission factors. These are then used to generate invariant imbedding parameters, which in turn are used in a nodal reactor simulator code to compute core power distributions in two and three dimensions. Various nodal techniques are analyzed and converted into a single invariant imbedding formalism

  15. HEXAN - a hexagonal nodal code for solving the diffusion equation

    International Nuclear Information System (INIS)

    Makai, M.

    1982-07-01

    This report describes the theory of and provides a user's manual for the HEXAN program, which is a nodal program for the solution of the few-group diffusion equation in hexagonal geometry. Based upon symmetry considerations, the theory provides an analytical solution in a homogeneous node. WWER and HTGR test problem solutions are presented. The equivalence of the finite-difference scheme and the response matrix method is proven. The properties of a symmetric node's response matrix are investigated. (author)

  16. Solution of the mathematical adjoint equations for an interface current nodal formulation

    International Nuclear Information System (INIS)

    Yang, W.S.; Taiwo, T.A.; Khalil, H.

    1994-01-01

    Two techniques for solving the mathematical adjoint equations of an interface current nodal method are described. These techniques are the ''similarity transformation'' procedure and a direct solution scheme. A theoretical basis is provided for the similarity transformation procedure originally proposed by Lawrence. It is shown that the matrices associated with the mathematical and physical adjoint equations are similar to each other for the flat transverse leakage approximation but not for the quadratic leakage approximation. It is also shown that a good approximate solution of the mathematical adjoint for the quadratic transverse leakage approximation is obtained by applying the similarity transformation for the flat transverse leakage approximation to the physical adjoint solution. The direct solution scheme, which was developed as an alternative to the similarity transformation procedure, yields the correct mathematical adjoint solution for both flat and quadratic transverse leakage approximations. In this scheme, adjoint nodal equations are cast in a form very similar to that of the forward equations by employing a linear transformation of the adjoint partial currents. This enables the use of the forward solution algorithm with only minor modifications for solving the mathematical adjoint equations. By using the direct solution scheme as a reference method, it is shown that while the results computed with the similarity transformation procedure are approximate, they are sufficiently accurate for calculations of global and local reactivity changes resulting from coolant voiding in a liquid-metal reactor

  17. Multiarea Transmission Cost Allocation in Large Power Systems Using the Nodal Pricing Control Approach

    Directory of Open Access Journals (Sweden)

    M. Ghayeni

    2010-12-01

    Full Text Available This paper proposes an algorithm for transmission cost allocation (TCA in a large power system based on nodal pricing approach using the multi-area scheme. The nodal pricing approach is introduced to allocate the transmission costs by the control of nodal prices in a single area network. As the number of equations is dependent on the number of buses and generators, this method will be very time consuming for large power systems. To solve this problem, the present paper proposes a new algorithm based on multi-area approach for regulating the nodal prices, so that the simulation time is greatly reduced and therefore the TCA problem with nodal pricing approach will be applicable for large power systems. In addition, in this method the transmission costs are allocated to users more equitable. Since the higher transmission costs in an area having a higher reliability are paid only by users of that area in contrast with the single area method, in which these costs are allocated to all users regardless of their locations. The proposed method is implemented on the IEEE 118 bus test system which comprises three areas. Results show that with application of multi-area approach, the simulation time is greatly reduced and the transmission costs are also allocated to users with less variation in new nodal prices with respect to the single area approach.

  18. Valuing national effects of digital health investments: an applied method.

    Science.gov (United States)

    Hagens, Simon; Zelmer, Jennifer; Frazer, Cassandra; Gheorghiu, Bobby; Leaver, Chad

    2015-01-01

    This paper describes an approach which has been applied to value national outcomes of investments by federal, provincial and territorial governments, clinicians and healthcare organizations in digital health. Hypotheses are used to develop a model, which is revised and populated based upon the available evidence. Quantitative national estimates and qualitative findings are produced and validated through structured peer review processes. This methodology has applied in four studies since 2008.

  19. A nodal collocation approximation for the multi-dimensional PL equations - 2D applications

    International Nuclear Information System (INIS)

    Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdu, G.

    2008-01-01

    A classical approach to solve the neutron transport equation is to apply the spherical harmonics method obtaining a finite approximation known as the P L equations. In this work, the derivation of the P L equations for multi-dimensional geometries is reviewed and a nodal collocation method is developed to discretize these equations on a rectangular mesh based on the expansion of the neutronic fluxes in terms of orthogonal Legendre polynomials. The performance of the method and the dominant transport Lambda Modes are obtained for a homogeneous 2D problem, a heterogeneous 2D anisotropic scattering problem, a heterogeneous 2D problem and a benchmark problem corresponding to a MOX fuel reactor core

  20. Dose rate reduction method for NMCA applied BWR plants

    International Nuclear Information System (INIS)

    Nagase, Makoto; Aizawa, Motohiro; Ito, Tsuyoshi; Hosokawa, Hideyuki; Varela, Juan; Caine, Thomas

    2012-09-01

    BRAC (BWR Radiation Assessment and Control) dose rate is used as an indicator of the incorporation of activated corrosion by products into BWR recirculation piping, which is known to be a significant contributor to dose rate received by workers during refueling outages. In order to reduce radiation exposure of the workers during the outage, it is desirable to keep BRAC dose rates as low as possible. After HWC was adopted to reduce IGSCC, a BRAC dose rate increase was observed in many plants. As a countermeasure to these rapid dose rate increases under HWC conditions, Zn injection was widely adopted in United States and Europe resulting in a reduction of BRAC dose rates. However, BRAC dose rates in several plants remain high, prompting the industry to continue to investigate methods to achieve further reductions. In recent years a large portion of the BWR fleet has adopted NMCA (NobleChem TM ) to enhance the hydrogen injection effect to suppress SCC. After NMCA, especially OLNC (On-Line NobleChem TM ), BRAC dose rates were observed to decrease. In some OLNC applied BWR plants this reduction was observed year after year to reach a new reduced equilibrium level. This dose rate reduction trends suggest the potential dose reduction might be obtained by the combination of Pt and Zn injection. So, laboratory experiments and in-plant tests were carried out to evaluate the effect of Pt and Zn on Co-60 deposition behaviour. Firstly, laboratory experiments were conducted to study the effect of noble metal deposition on Co deposition on stainless steel surfaces. Polished type 316 stainless steel coupons were prepared and some of them were OLNC treated in the test loop before the Co deposition test. Water chemistry conditions to simulate HWC were as follows: Dissolved oxygen, hydrogen and hydrogen peroxide were below 5 ppb, 100 ppb and 0 ppb (no addition), respectively. Zn was injected to target a concentration of 5 ppb. The test was conducted up to 1500 hours at 553 K. Test

  1. Ischemic stroke associated with radio frequency ablation for nodal reentry

    International Nuclear Information System (INIS)

    Diaz M, Juan C; Duran R, Carlos E; Perafan B, Pablo; Pava M, Luis F

    2010-01-01

    Atrioventricular nodal reentry tachycardia is the most common type of paroxysmal supraventricular tachycardia. In those patients in whom drug therapy is not effective or not desired, radio frequency ablation is an excellent therapeutic method. Although overall these procedures are fast and safe, several complications among which ischemic stroke stands out, have been reported. We present the case of a 41 year old female patient with repetitive episodes of tachycardia due to nodal reentry who was treated with radiofrequency ablation. Immediately after the procedure she presented focal neurologic deficit consistent with ischemic stroke in the right medial cerebral artery territory. Angiography with angioplastia and abxicimab was performed and then tissue plasminogen activator (rtPA) was locally infused, with appropriate clinical and angiographic outcome.

  2. Development of 3-D FBR heterogeneous core calculation method based on characteristics method

    International Nuclear Information System (INIS)

    Takeda, Toshikazu; Maruyama, Manabu; Hamada, Yuzuru; Nishi, Hiroshi; Ishibashi, Junichi; Kitano, Akihiro

    2002-01-01

    A new 3-D transport calculation method taking into account the heterogeneity of fuel assemblies has been developed by combining the characteristics method and the nodal transport method. In the axial direction the nodal transport method is applied, and the characteristics method is applied to take into account the radial heterogeneity of fuel assemblies. The numerical calculations have been performed to verify 2-D radial calculations of FBR assemblies and partial core calculations. Results are compared with the reference Monte-Carlo calculations. A good agreement has been achieved. It is shown that the present method has an advantage in calculating reaction rates in a small region

  3. The harmonics detection method based on neural network applied ...

    African Journals Online (AJOL)

    Several different methods have been used to sense load currents and extract its ... in order to produce a reference current in shunt active power filters (SAPF), and ... technique compared to other similar methods are found quite satisfactory by ...

  4. Muon radiography method for fundamental and applied research

    Science.gov (United States)

    Alexandrov, A. B.; Vladymyrov, M. S.; Galkin, V. I.; Goncharova, L. A.; Grachev, V. M.; Vasina, S. G.; Konovalova, N. S.; Malovichko, A. A.; Managadze, A. K.; Okat'eva, N. M.; Polukhina, N. G.; Roganova, T. M.; Starkov, N. I.; Tioukov, V. E.; Chernyavsky, M. M.; Shchedrina, T. V.

    2017-12-01

    This paper focuses on the basic principles of the muon radiography method, reviews the major muon radiography experiments, and presents the first results in Russia obtained by the authors using this method based on emulsion track detectors.

  5. Methodical Aspects of Applying Strategy Map in an Organization

    OpenAIRE

    Piotr Markiewicz

    2013-01-01

    One of important aspects of strategic management is the instrumental aspect included in a rich set of methods and techniques used at particular stages of strategic management process. The object of interest in this study is the development of views and the implementation of strategy as an element of strategic management and instruments in the form of methods and techniques. The commonly used method in strategy implementation and measuring progress is Balanced Scorecard (BSC). The method was c...

  6. Classical and modular methods applied to Diophantine equations

    NARCIS (Netherlands)

    Dahmen, S.R.

    2008-01-01

    Deep methods from the theory of elliptic curves and modular forms have been used to prove Fermat's last theorem and solve other Diophantine equations. These so-called modular methods can often benefit from information obtained by other, classical, methods from number theory; and vice versa. In our

  7. The pseudo-harmonics method applied to depletion calculation

    International Nuclear Information System (INIS)

    Silva, F.C. da; Amaral, J.A.C.; Thome, Z.D.

    1989-01-01

    In this paper, a new method for performing depletion calculations, based on the use of the Pseudo-Harmonics perturbation method, was developed. The fuel burnup was considered as a global perturbation and the multigroup difusion equations were rewriten in such a way as to treat the soluble boron concentration as the eigenvalue. By doing this, the critical boron concentration can be obtained by a perturbation method. A test of the new method was performed for a H 2 O-colled, D 2 O-moderated reactor. Comparison with direct calculation showed that this method is very accurate and efficient. (author) [pt

  8. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes

    International Nuclear Information System (INIS)

    Mugica R, C.A.; Valle G, E. del

    2005-01-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD 5,3 and WD 12,8 (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD 5,3 and WD 12,8 were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD 3 and SD 8 (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  9. CT simulation in nodal positive breast cancer

    International Nuclear Information System (INIS)

    Horst, E.; Schuck, A.; Moustakis, C.; Schaefer, U.; Micke, O.; Kronholz, H.L.; Willich, N.

    2001-01-01

    Background: A variety of solutions are used to match tangential fields and opposed lymph node fields in irradiation of nodal positive breast cancer. The choice is depending on the technical equipment which is available and the clinical situation. The CT simulation of a non-monoisocentric technique was evaluated in terms of accuracy and reproducibility. Patients, Material and Methods: The field match parameters were adjusted virtually at CT simulation and were compared with parameters derived mathematically. The coordinate transfer from the CT simulator to the conventional simulator was analyzed in 25 consecutive patients. Results: The angles adjusted virtually for a geometrically exact coplanar field match corresponded with the angles calculated for each set-up. The mean isocenter displacement was 5.7 mm and the total uncertainty of the coordinate transfer was 6.7 mm (1 SD). Limitations in the patient set-up became obvious because of the steep arm abduction necessary to fit the 70 cm CT gantry aperture. Required modifications of the arm position and coordinate transfer errors led to a significant shift of the marked matchline of >1.0 cm in eight of 25 patients (32%). Conclusion: The virtual CT simulation allows a precise and graphic definition of the field match parameters. However, modifications of the virtual set-up basically due to technical limitations were required in a total of 32% of cases, so that a hybrid technique was adapted at present that combines virtual adjustment of the ideal field alignment parameters with conventional simulation. (orig.) [de

  10. Present Status of GNF New Nodal Simulator

    International Nuclear Information System (INIS)

    Iwamoto, T.; Tamitani, M.; Moore, B.

    2001-01-01

    This paper presents core simulator consolidation work done at Global Nuclear Fuel (GNF). The unified simulator needs to supercede the capabilities of past simulator packages from the original GNF partners: GE, Hitachi, and Toshiba. At the same time, an effort is being made to produce a simulation package that will be a state-of-the-art analysis tool when released, in terms of the physics solution methodology and functionality. The core simulator will be capable and qualified for (a) high-energy cycles in the U.S. markets, (b) mixed-oxide (MOX) introduction in Japan, and (c) high-power density plants in Europe, etc. The unification of the lattice physics code is also in progress based on a transport model with collision probability methods. The AETNA core simulator is built upon the PANAC11 software base. The goal is to essentially replace the 1.5-energy-group model with a higher-order multigroup nonlinear nodal solution capable of the required modeling fidelity, while keeping highly automated library generation as well as functionality. All required interfaces to PANAC11 will be preserved, which minimizes the impact on users and process automation. Preliminary results show statistical accuracy improvement over the 1.5-group model

  11. Solution and Study of the Two-Dimensional Nodal Neutron Transport Equation

    International Nuclear Information System (INIS)

    Panta Pazos, Ruben; Biasotto Hauser, Eliete; Tullio de Vilhena, Marco

    2002-01-01

    In the last decade Vilhena and coworkers reported an analytical solution to the two-dimensional nodal discrete-ordinates approximations of the neutron transport equation in a convex domain. The key feature of these works was the application of the combined collocation method of the angular variable and nodal approach in the spatial variables. By nodal approach we mean the transverse integration of the SN equations. This procedure leads to a set of one-dimensional S N equations for the average angular fluxes in the variables x and y. These equations were solved by the old version of the LTS N method, which consists in the application of the Laplace transform to the set of nodal S N equations and solution of the resulting linear system by symbolic computation. It is important to recall that this procedure allow us to increase N the order of S N up to 16. To overcome this drawback we step forward performing a spectral painstaking analysis of the nodal S N equations for N up to 16 and we begin the convergence of the S N nodal equations defining an error for the angular flux and estimating the error in terms of the truncation error of the quadrature approximations of the integral term. Furthermore, we compare numerical results of this approach with those of other techniques used to solve the two-dimensional discrete approximations of the neutron transport equation. (authors)

  12. Encapsulation of nodal segments of lobelia chinensis

    Directory of Open Access Journals (Sweden)

    Weng Hing Thong

    2015-04-01

    Full Text Available Lobelia chinensis served as an important herb in traditional chinese medicine. It is rare in the field and infected by some pathogens. Therefore, encapsulation of axillary buds has been developed for in vitro propagation of L. chinensis. Nodal explants of L. chinensis were used as inclusion materials for encapsulation. Various combinations of calcium chloride and sodium alginate were tested. Encapsulation beads produced by mixing 50 mM calcium chloride and 3.5% sodium alginate supported the optimal in vitro conversion potential. The number of multiple shoots formed by encapsulated nodal segments was not significantly different from the average of shoots produced by non-encapsulated nodal segments. The encapsulated nodal segments regenerated in vitro on different medium. The optimal germination and regeneration medium was Murashige-Skoog medium. Plantlets regenerated from the encapsulated nodal segments were hardened, acclimatized and established well in the field, showing similar morphology with parent plants. This encapsulation technology would serve as an alternative in vitro regeneration system for L. chinensis.

  13. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  14. Decompositions of injection patterns for nodal flow allocation in renewable electricity networks

    Science.gov (United States)

    Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin

    2017-08-01

    The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.

  15. Flow-based market coupling. Stepping stone towards nodal pricing?

    International Nuclear Information System (INIS)

    Van der Welle, A.J.

    2012-07-01

    For achieving one internal energy market for electricity by 2014, market coupling is deployed to integrate national markets into regional markets and ultimately one European electricity market. The extent to which markets can be coupled depends on the available transmission capacities between countries. Since interconnections are congested from time to time, congestion management methods are deployed to divide the scarce available transmission capacities over market participants. For further optimization of the use of available transmission capacities while maintaining current security of supply levels, flow-based market coupling (FBMC) will be implemented in the CWE region by 2013. Although this is an important step forward, important hurdles for efficient congestion management remain. Hence, flow based market coupling is compared to nodal pricing, which is often considered as the most optimal solution from theoretical perspective. In the context of decarbonised power systems it is concluded that advantages of nodal pricing are likely to exceed its disadvantages, warranting further development of FBMC in the direction of nodal pricing.

  16. nuclear and atomic methods applied in the determination of some

    African Journals Online (AJOL)

    NAA is a quantitative and qualitative method for the precise determination of a number of major, minor and trace elements in different types of geological, environmental and biological samples. It is based on nuclear reaction between neutron and target nuclei of a sample material. It is a useful method for the simultaneous.

  17. Instructions for applying inverse method for reactivity measurement

    International Nuclear Information System (INIS)

    Milosevic, M.

    1988-11-01

    This report is a brief description of the completed method for reactivity measurement. It contains description of the experimental procedure needed instrumentation and computer code IM for determining reactivity. The objective of this instructions manual is to enable experiments and reactivity measurement on any critical system according to the methods adopted at the RB reactor

  18. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    International Nuclear Information System (INIS)

    Shih, Helen A.; Harisinghani, Mukesh; Zietman, Anthony L.; Wolfgang, John A.; Saksena, Mansi; Weissleder, Ralph

    2005-01-01

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to a common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities

  19. The spectral volume method as applied to transport problems

    International Nuclear Information System (INIS)

    McClarren, Ryan G.

    2011-01-01

    We present a new spatial discretization for transport problems: the spectral volume method. This method, rst developed by Wang for computational fluid dynamics, divides each computational cell into several sub-cells and enforces particle balance on each of these sub-cells. Also, these sub-cells are used to build a polynomial reconstruction in the cell. The idea of dividing cells into many cells is a generalization of the simple corner balance and other similar schemes. The spectral volume method preserves particle conservation and preserves the asymptotic diffusion limit. We present results from the method on two transport problems in slab geometry using discrete ordinates and second through sixth order spectral volume schemes. The numerical results demonstrate the accuracy and preservation of the diffusion limit of the spectral volume method. Future work will explore possible bene ts of the scheme for high-performance computing and for resolving diffusive boundary layers. (author)

  20. Literature Review of Applying Visual Method to Understand Mathematics

    Directory of Open Access Journals (Sweden)

    Yu Xiaojuan

    2015-01-01

    Full Text Available As a new method to understand mathematics, visualization offers a new way of understanding mathematical principles and phenomena via image thinking and geometric explanation. It aims to deepen the understanding of the nature of concepts or phenomena and enhance the cognitive ability of learners. This paper collates and summarizes the application of this visual method in the understanding of mathematics. It also makes a literature review of the existing research, especially with a visual demonstration of Euler’s formula, introduces the application of this method in solving relevant mathematical problems, and points out the differences and similarities between the visualization method and the numerical-graphic combination method, as well as matters needing attention for its application.

  1. Methodical Aspects of Applying Strategy Map in an Organization

    Directory of Open Access Journals (Sweden)

    Piotr Markiewicz

    2013-06-01

    Full Text Available One of important aspects of strategic management is the instrumental aspect included in a rich set of methods and techniques used at particular stages of strategic management process. The object of interest in this study is the development of views and the implementation of strategy as an element of strategic management and instruments in the form of methods and techniques. The commonly used method in strategy implementation and measuring progress is Balanced Scorecard (BSC. The method was created as a result of implementing the project “Measuring performance in the Organization of the future” of 1990, completed by a team under the supervision of David Norton (Kaplan, Norton 2002. The developed method was used first of all to evaluate performance by decomposition of a strategy into four perspectives and identification of measures of achievement. In the middle of 1990s the method was improved by enriching it, first of all, with a strategy map, in which the process of transition of intangible assets into tangible financial effects is reflected (Kaplan, Norton 2001. Strategy map enables illustration of cause and effect relationship between processes in all four perspectives and performance indicators at the level of organization. The purpose of the study being prepared is to present methodical conditions of using strategy maps in the strategy implementation process in organizations of different nature.

  2. Applying a life cycle approach to project management methods

    OpenAIRE

    Biggins, David; Trollsund, F.; Høiby, A.L.

    2016-01-01

    Project management is increasingly important to organisations because projects are the method\\ud by which organisations respond to their environment. A key element within project management\\ud is the standards and methods that are used to control and conduct projects, collectively known as\\ud project management methods (PMMs) and exemplified by PRINCE2, the Project Management\\ud Institute’s and the Association for Project Management’s Bodies of Knowledge (PMBOK and\\ud APMBOK. The purpose of t...

  3. Method for curing alkyd resin compositions by applying ionizing radiation

    International Nuclear Information System (INIS)

    Watanabe, T.; Murata, K.; Maruyama, T.

    1975-01-01

    An alkyd resin composition is prepared by dissolving a polymerizable alkyd resin having from 10 to 50 percent of oil length into a vinyl monomer. The polymerizable alkyd resin is obtained by a half-esterification reaction of an acid anhydride having a polymerizable unsaturated group and an alkyd resin modified with conjugated unsaturated oil having at least one reactive hydroxyl group per one molecule. The alkyd resin composition thus obtained is coated on an article, and ionizing radiation is applied on the article to cure the coated film thereon. (U.S.)

  4. The integral equation method applied to eddy currents

    International Nuclear Information System (INIS)

    Biddlecombe, C.S.; Collie, C.J.; Simkin, J.; Trowbridge, C.W.

    1976-04-01

    An algorithm for the numerical solution of eddy current problems is described, based on the direct solution of the integral equation for the potentials. In this method only the conducting and iron regions need to be divided into elements, and there are no boundary conditions. Results from two computer programs using this method for iron free problems for various two-dimensional geometries are presented and compared with analytic solutions. (author)

  5. Nodal wear model: corrosion in carbon blast furnace hearths

    International Nuclear Information System (INIS)

    Verdeja, L. F.; Gonzalez, R.; Alfonso, A.; Barbes, M. F.

    2003-01-01

    Criteria developed for the Nodal Wear Model (NWM) were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node) of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid. (Author) 31 refs

  6. Complex models of nodal nuclear data

    International Nuclear Information System (INIS)

    Dufek, Jan

    2011-01-01

    During the core simulations, nuclear data are required at various nodal thermal-hydraulic and fuel burnup conditions. The nodal data are also partially affected by thermal-hydraulic and fuel burnup conditions in surrounding nodes as these change the neutron energy spectrum in the node. Therefore, the nodal data are functions of many parameters (state variables), and the more state variables are considered by the nodal data models the more accurate and flexible the models get. The existing table and polynomial regression models, however, cannot reflect the data dependences on many state variables. As for the table models, the number of mesh points (and necessary lattice calculations) grows exponentially with the number of variables. As for the polynomial regression models, the number of possible multivariate polynomials exceeds the limits of existing selection algorithms that should identify a few dozens of the most important polynomials. Also, the standard scheme of lattice calculations is not convenient for modelling the data dependences on various burnup conditions since it performs only a single or few burnup calculations at fixed nominal conditions. We suggest a new efficient algorithm for selecting the most important multivariate polynomials for the polynomial regression models so that dependences on many state variables can be considered. We also present a new scheme for lattice calculations where a large number of burnup histories are accomplished at varied nodal conditions. The number of lattice calculations being performed and the number of polynomials being analysed are controlled and minimised while building the nodal data models of a required accuracy. (author)

  7. Intra nodal reconstruction of the numerical solution generated by the spectro nodal constant for Sn problems of eigenvalues in two-dimensional rectangular geometry

    International Nuclear Information System (INIS)

    Menezes, Welton Alves de

    2009-01-01

    In this dissertation the spectral nodal method SD-SGF-CN, cf. spectral diamond - spectral Green's function - constant nodal, is used to determine the angular fluxes averaged along the edges of the homogenized nodes in heterogeneous domains. Using these results, we developed an algorithm for the reconstruction of the node-edge average angular fluxes within the nodes of the spatial grid set up on the domain, since more localized numerical solutions are not generated by coarse-mesh numerical methods. Numerical results are presented to illustrate the accuracy of the algorithm we offer. (author)

  8. Apply of torque method at rationalization of work

    Directory of Open Access Journals (Sweden)

    Bandurová Miriam

    2001-03-01

    Full Text Available Aim of the study was to analyse consumption of time for profession - cylinder grinder, by torque method.Method of torque following is used for detection of sorts and size of time slope, on detection of portion of individual sorts of time consumption and cause of time slope. By this way it is possible to find out coefficient of employment and recovery of workers in organizational unit. Advantage of torque survey is low costs on informations acquirement, non-fastidiousness per worker and observer, which is easy trained. It is mentally acceptable method for objects of survey.Finding and detection of reserves in activity of cylinders grinder result of torque was surveys. Loss of time presents till 8% of working time. In 5 - shift service and average occupiying of shift by 4,4 grinder ( from statistic information of service , loss at grinder of cylinders are for whole centre 1,48 worker.According presented information it was recommended to cancel one job place - grinder of cylinders - and reduce state about one grinder. Next job place isn't possible cancel, because grindery of cylinders must to adapt to the grind line by number of polished cylinders in shift and semi - finishing of polished cylinders can not be high for often changes in area of grinding and sortiment changes.By this contribution we confirmed convenience of exploitation of torque method as one of the methods using during the job rationalization.

  9. Thermoluminescence as a dating method applied to the Morocco Neolithic

    International Nuclear Information System (INIS)

    Ousmoi, M.

    1989-09-01

    Thermoluminescence is an absolute dating method which is well adapted to the study of burnt clays and so of the prehistoric ceramics belonging to the Neolithic period. The purpose of this study is to establish a first absolute chronology of the septentrional morocco Neolithic between 3000 and 7000 years before us and some improvements of the TL dating. The first part of the thesis contains some hypothesis about the morocco Neolithic and some problems to solve. Then we study the TL dating method along with new process to ameliorate the quality of the results like the shift of quartz TL peaks or the crushing of samples. The methods which were employed using 24 samples belonging to various civilisations are: the quartz inclusion method and the fine grain technique. For the dosimetry, several methods were used: determination of the K 2 O contents, alpha counting, site dosimetry using TL dosimeters and a scintillation counter. The results which were found bring some interesting answers to the archeologic question and ameliorate the chronologic schema of the Northern morocco Neolithic: development of the old cardial Neolithic in the North, and perhaps in the center of Morocco (the region of Rabat), between 5500 and 7000 before us. Development of the recent middle Neolithic around 4000-5000 before us, with a protocampaniforme (Skhirat), little older than the campaniforme recognized in the south of Spain. Development of the bronze age around 2000-4000 before us [fr

  10. Modal method for crack identification applied to reactor recirculation pump

    International Nuclear Information System (INIS)

    Miller, W.H.; Brook, R.

    1991-01-01

    Nuclear reactors have been operating and producing useful electricity for many years. Within the last few years, several plants have found cracks in the reactor coolant pump shaft near the thermal barrier. The modal method and results described herein show the analytical results of using a Modal Analysis test method to determine the presence, size, and location of a shaft crack. The authors have previously demonstrated that the test method can analytically and experimentally identify shaft cracks as small as five percent (5%) of the shaft diameter. Due to small differences in material property distribution, the attempt to identify cracks smaller than 3% of the shaft diameter has been shown to be impractical. The rotor dynamics model includes a detailed motor rotor, external weights and inertias, and realistic total support stiffness. Results of the rotor dynamics model have been verified through a comparison with on-site vibration test data

  11. Boron autoradiography method applied to the study of steels

    International Nuclear Information System (INIS)

    Gugelmeier, R.; Barcelo, G.N.; Boado, J.H.; Fernandez, C.

    1986-01-01

    The boron state, contained in the steel microestructure, is determined. The autoradiography by neutrons is used, permiting to obtain boron distribution images by means of additional information which is difficult to acquire by other methods. The application of the method is described, based on the neutronic irradiation of a polished steel sample, over which a celulose nitrate sheet or other appropriate material is fixed to constitute the detector. The particles generated by the neutron-boron interaction affect the detector sheet, which is subsequently revealed with a chemical treatment and can be observed at the optical microscope. In the case of materials used for the construction of nuclear reactors, special attention must be given to the presence of boron, since owing to the exceptionaly high capacity of neutron absorption, lowest quantities of boron acquire importance. The adaption of the method to metallurgical problems allows the obtainment of a correlation between the boron distribution images and the material's microstructure. (M.E.L.) [es

  12. Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model

    Directory of Open Access Journals (Sweden)

    Oluwaseun Egbelowo

    2017-05-01

    Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.

  13. Applying Nyquist's method for stability determination to solar wind observations

    Science.gov (United States)

    Klein, Kristopher G.; Kasper, Justin C.; Korreck, K. E.; Stevens, Michael L.

    2017-10-01

    The role instabilities play in governing the evolution of solar and astrophysical plasmas is a matter of considerable scientific interest. The large number of sources of free energy accessible to such nearly collisionless plasmas makes general modeling of unstable behavior, accounting for the temperatures, densities, anisotropies, and relative drifts of a large number of populations, analytically difficult. We therefore seek a general method of stability determination that may be automated for future analysis of solar wind observations. This work describes an efficient application of the Nyquist instability method to the Vlasov dispersion relation appropriate for hot, collisionless, magnetized plasmas, including the solar wind. The algorithm recovers the familiar proton temperature anisotropy instabilities, as well as instabilities that had been previously identified using fits extracted from in situ observations in Gary et al. (2016). Future proposed applications of this method are discussed.

  14. Efficient electronic structure methods applied to metal nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Ask Hjorth

    of efficient approaches to density functional theory and the application of these methods to metal nanoparticles. We describe the formalism and implementation of localized atom-centered basis sets within the projector augmented wave method. Basis sets allow for a dramatic increase in performance compared....... The basis set method is used to study the electronic effects for the contiguous range of clusters up to several hundred atoms. The s-electrons hybridize to form electronic shells consistent with the jellium model, leading to electronic magic numbers for clusters with full shells. Large electronic gaps...... and jumps in Fermi level near magic numbers can lead to alkali-like or halogen-like behaviour when main-group atoms adsorb onto gold clusters. A non-self-consistent NewnsAnderson model is used to more closely study the chemisorption of main-group atoms on magic-number Au clusters. The behaviour at magic...

  15. Variance reduction methods applied to deep-penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    All deep-penetration Monte Carlo calculations require variance reduction methods. Before beginning with a detailed approach to these methods, several general comments concerning deep-penetration calculations by Monte Carlo, the associated variance reduction, and the similarities and differences of these with regard to non-deep-penetration problems will be addressed. The experienced practitioner of Monte Carlo methods will easily find exceptions to any of these generalities, but it is felt that these comments will aid the novice in understanding some of the basic ideas and nomenclature. Also, from a practical point of view, the discussions and developments presented are oriented toward use of the computer codes which are presented in segments of this Monte Carlo course

  16. Nodal Structure of the Electronic Wigner Function

    DEFF Research Database (Denmark)

    Schmider, Hartmut; Dahl, Jens Peder

    1996-01-01

    On the example of several atomic and small molecular systems, the regular behavior of nodal patterns in the electronic one-particle reduced Wigner function is demonstrated. An expression found earlier relates the nodal pattern solely to the dot-product of the position and the momentum vector......, if both arguments are large. An argument analogous to the ``bond-oscillatory principle'' for momentum densities links the nuclear framework in a molecule to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic...

  17. Non-perturbative methods applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-09-01

    The use of non-perturbative methods in the treatment of atomic ionization is discussed. Particular attention is given to schemes of the type proposed by Keldysh where multiphoton ionization and tunnel auto-ionization occur for high intensity fields. These methods are shown to correspond to a certain type of expansion of the T-matrix in the intra-atomic potential; in this manner a criterium concerning the range of application of these non-perturbative schemes is suggested. A brief comparison between the ionization rate of atoms in the presence of linearly and circularly polarized light is presented. (Author) [pt

  18. On second quantization methods applied to classical statistical mechanics

    International Nuclear Information System (INIS)

    Matos Neto, A.; Vianna, J.D.M.

    1984-01-01

    A method of expressing statistical classical results in terms of mathematical entities usually associated to quantum field theoretical treatment of many particle systems (Fock space, commutators, field operators, state vector) is discussed. It is developed a linear response theory using the 'second quantized' Liouville equation introduced by Schonberg. The relationship of this method to that of Prigogine et al. is briefly analyzed. The chain of equations and the spectral representations for the new classical Green's functions are presented. Generalized operators defined on Fock space are discussed. It is shown that the correlation functions can be obtained from Green's functions defined with generalized operators. (Author) [pt

  19. Experimental Methods Applied in a Study of Stall Flutter in an Axial Flow Fan

    Directory of Open Access Journals (Sweden)

    John D. Gill

    2004-01-01

    Full Text Available Flutter testing is an integral part of aircraft gas turbine engine development. In typical flutter testing blade mounted sensors in the form of strain gages and casing mounted sensors in the form of light probes (NSMS are used. Casing mounted sensors have the advantage of being non-intrusive and can detect the vibratory response of each rotating blade. Other types of casing mounted sensors can also be used to detect flutter of rotating blades. In this investigation casing mounted high frequency response pressure transducers are used to characterize the part-speed stall flutter response of a single stage unshrouded axial-flow fan. These dynamic pressure transducers are evenly spaced around the circumference at a constant axial location upstream of the fan blade leading edge plane. The pre-recorded experimental data at 70% corrected speed is analyzed for the case where the fan is back-pressured into the stall flutter zone. The experimental data is analyzed using two probe and multi-probe techniques. The analysis techniques for each method are presented. Results from these two analysis methods indicate that flutter occurred at a frequency of 411 Hz with a dominant nodal diameter of 2. The multi-probe analysis technique is a valuable method that can be used to investigate the initiation of flutter in turbomachines.

  20. Review of PCMS and heat transfer enhancement methods applied ...

    African Journals Online (AJOL)

    Most available PCMs have low thermal conductivity making heat transfer enhancement necessary for power applications. The various methods of heat transfer enhancement in latent heat storage systems were also reviewed systematically. The review showed that three commercially - available PCMs are suitable in the ...

  1. E-LEARNING METHOD APPLIED TO TECHNICAL GRAPHICS SUBJECTS

    Directory of Open Access Journals (Sweden)

    GOANTA Adrian Mihai

    2011-11-01

    Full Text Available The paper presents some of the author’s endeavors in creating video courses for the students from the Faculty of Engineering in Braila related to subjects involving technical graphics . There are also mentioned the steps taken in completing the method and how to achieve a feedback on the rate of access to these types of courses by the students.

  2. A procedure for solving the neutron diffusion equation on a parallel micro-processor; modifications to the nodal expansion codes RECNEC and HEXNEC to implement the procedure

    International Nuclear Information System (INIS)

    Putney, J.M.

    1983-05-01

    The characteristics of a simple parallel micro-processor (PMP) are reviewed and its software requirements discussed. One of the more immediate applications is the multi-spatial simulation of a nuclear reactor station. This is of particular interest because 3D reactor simulation might then be possible as part of operating procedure for PFR and CDFR. A major part of a multi-spatial reactor simulator is the solution of the neutron diffusion equation. A procedure is described for solving the equation on a PMP, which is applied to the nodal expansion method with modifications to the nodal expansion codes RECNEC and HEXNEC. Estimations of the micro-processor requirements for the simulation of both PFR and CDFR are given. (U.K.)

  3. Current Human Reliability Analysis Methods Applied to Computerized Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring

    2012-06-01

    Computerized procedures (CPs) are an emerging technology within nuclear power plant control rooms. While CPs have been implemented internationally in advanced control rooms, to date no US nuclear power plant has implemented CPs in its main control room (Fink et al., 2009). Yet, CPs are a reality of new plant builds and are an area of considerable interest to existing plants, which see advantages in terms of enhanced ease of use and easier records management by omitting the need for updating hardcopy procedures. The overall intent of this paper is to provide a characterization of human reliability analysis (HRA) issues for computerized procedures. It is beyond the scope of this document to propose a new HRA approach or to recommend specific methods or refinements to those methods. Rather, this paper serves as a review of current HRA as it may be used for the analysis and review of computerized procedures.

  4. Probabilist methods applied to electric source problems in nuclear safety

    International Nuclear Information System (INIS)

    Carnino, A.; Llory, M.

    1979-01-01

    Nuclear Safety has frequently been asked to quantify safety margins and evaluate the hazard. In order to do so, the probabilist methods have proved to be the most promising. Without completely replacing determinist safety, they are now commonly used at the reliability or availability stages of systems as well as for determining the likely accidental sequences. In this paper an application linked to the problem of electric sources is described, whilst at the same time indicating the methods used. This is the calculation of the probable loss of all the electric sources of a pressurized water nuclear power station, the evaluation of the reliability of diesels by event trees of failures and the determination of accidental sequences which could be brought about by the 'total electric source loss' initiator and affect the installation or the environment [fr

  5. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  6. Applying probabilistic methods for assessments and calculations for accident prevention

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The guidelines for the prevention of accidents require plant design-specific and radioecological calculations to be made in order to show that maximum acceptable expsoure values will not be exceeded in case of an accident. For this purpose, main parameters affecting the accident scenario have to be determined by probabilistic methods. This offers the advantage that parameters can be quantified on the basis of unambigious and realistic criteria, and final results can be defined in terms of conservativity. (DG) [de

  7. Applying flow chemistry: methods, materials, and multistep synthesis.

    Science.gov (United States)

    McQuade, D Tyler; Seeberger, Peter H

    2013-07-05

    The synthesis of complex molecules requires control over both chemical reactivity and reaction conditions. While reactivity drives the majority of chemical discovery, advances in reaction condition control have accelerated method development/discovery. Recent tools include automated synthesizers and flow reactors. In this Synopsis, we describe how flow reactors have enabled chemical advances in our groups in the areas of single-stage reactions, materials synthesis, and multistep reactions. In each section, we detail the lessons learned and propose future directions.

  8. Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods

    Science.gov (United States)

    Stolzer, Alan J.; Halford, Carl

    2007-01-01

    In a previous study, multiple regression techniques were applied to Flight Operations Quality Assurance-derived data to develop parsimonious model(s) for fuel consumption on the Boeing 757 airplane. The present study examined several data mining algorithms, including neural networks, on the fuel consumption problem and compared them to the multiple regression results obtained earlier. Using regression methods, parsimonious models were obtained that explained approximately 85% of the variation in fuel flow. In general data mining methods were more effective in predicting fuel consumption. Classification and Regression Tree methods reported correlation coefficients of .91 to .92, and General Linear Models and Multilayer Perceptron neural networks reported correlation coefficients of about .99. These data mining models show great promise for use in further examining large FOQA databases for operational and safety improvements.

  9. The colour analysis method applied to homogeneous rocks

    Directory of Open Access Journals (Sweden)

    Halász Amadé

    2015-12-01

    Full Text Available Computer-aided colour analysis can facilitate cyclostratigraphic studies. Here we report on a case study involving the development of a digital colour analysis method for examination of the Boda Claystone Formation which is the most suitable in Hungary for the disposal of high-level radioactive waste. Rock type colours are reddish brown or brownish red, or any shade between brown and red. The method presented here could be used to differentiate similar colours and to identify gradual transitions between these; the latter are of great importance in a cyclostratigraphic analysis of the succession. Geophysical well-logging has demonstrated the existence of characteristic cyclic units, as detected by colour and natural gamma. Based on our research, colour, natural gamma and lithology correlate well. For core Ib-4, these features reveal the presence of orderly cycles with thicknesses of roughly 0.64 to 13 metres. Once the core has been scanned, this is a time- and cost-effective method.

  10. Comparison Study of Subspace Identification Methods Applied to Flexible Structures

    Science.gov (United States)

    Abdelghani, M.; Verhaegen, M.; Van Overschee, P.; De Moor, B.

    1998-09-01

    In the past few years, various time domain methods for identifying dynamic models of mechanical structures from modal experimental data have appeared. Much attention has been given recently to so-called subspace methods for identifying state space models. This paper presents a detailed comparison study of these subspace identification methods: the eigensystem realisation algorithm with observer/Kalman filter Markov parameters computed from input/output data (ERA/OM), the robust version of the numerical algorithm for subspace system identification (N4SID), and a refined version of the past outputs scheme of the multiple-output error state space (MOESP) family of algorithms. The comparison is performed by simulating experimental data using the five mode reduced model of the NASA Mini-Mast structure. The general conclusion is that for the case of white noise excitations as well as coloured noise excitations, the N4SID/MOESP algorithms perform equally well but give better results (improved transfer function estimates, improved estimates of the output) compared to the ERA/OM algorithm. The key computational step in the three algorithms is the approximation of the extended observability matrix of the system to be identified, for N4SID/MOESP, or of the observer for the system to be identified, for the ERA/OM. Furthermore, the three algorithms only require the specification of one dimensioning parameter.

  11. Applying Hierarchical Task Analysis Method to Discovery Layer Evaluation

    Directory of Open Access Journals (Sweden)

    Marlen Promann

    2015-03-01

    Full Text Available Libraries are implementing discovery layers to offer better user experiences. While usability tests have been helpful in evaluating the success or failure of implementing discovery layers in the library context, the focus has remained on its relative interface benefits over the traditional federated search. The informal site- and context specific usability tests have offered little to test the rigor of the discovery layers against the user goals, motivations and workflow they have been designed to support. This study proposes hierarchical task analysis (HTA as an important complementary evaluation method to usability testing of discovery layers. Relevant literature is reviewed for the discovery layers and the HTA method. As no previous application of HTA to the evaluation of discovery layers was found, this paper presents the application of HTA as an expert based and workflow centered (e.g. retrieving a relevant book or a journal article method to evaluating discovery layers. Purdue University’s Primo by Ex Libris was used to map eleven use cases as HTA charts. Nielsen’s Goal Composition theory was used as an analytical framework to evaluate the goal carts from two perspectives: a users’ physical interactions (i.e. clicks, and b user’s cognitive steps (i.e. decision points for what to do next. A brief comparison of HTA and usability test findings is offered as a way of conclusion.

  12. Evaluation of Slow Release Fertilizer Applying Chemical and Spectroscopic methods

    International Nuclear Information System (INIS)

    AbdEl-Kader, A.A.; Al-Ashkar, E.A.

    2005-01-01

    Controlled-release fertilizer offers a number of advantages in relation to crop production in newly reclaimed soils. Butadiene styrene latex emulsion is one of the promising polymer for different purposes. In this work, laboratory evaluation of butadiene styrene latex emulsion 24/76 polymer loaded with a mixed fertilizer was carried out. Macro nutrients (N, P and K) and micro-nutrients(Zn, Fe, and Cu) were extracted by basic extract from the polymer fertilizer mixtures. Micro-sampling technique was investigated and applied to measure Zn, Fe, and Cu using flame atomic absorption spectrometry in order to overcome the nebulization difficulties due to high salt content samples. The cumulative releases of macro and micro-nutrients have been assessed. From the obtained results, it is clear that the release depends on both nutrients and polymer concentration in the mixture. Macro-nutrients are released more efficient than micro-nutrients of total added. Therefore it can be used for minimizing micro-nutrients hazard in soils

  13. VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2015-10-01

    Full Text Available ABSTRACT VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS. The coupled neutronic and thermal-hydraulic (T/H code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR ejection at peripheral core using a full core geometry model, the C1 and C2 cases.  By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM and the improved quasistatic method (IQS. All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16% occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4% for C2 case.  All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. Keywords: nodal method, coupled neutronic and thermal-hydraulic code, PWR, transient case, control rod ejection.   ABSTRAK VALIDASI MODEL GEOMETRI TERAS PENUH PAKET PROGRAM NODAL3 DALAM PROBLEM BENCHMARK GAYUT WAKTU PWR. Paket program kopel neutronik dan termohidraulika (T/H, NODAL3, telah divalidasi dengan beberapa kasus benchmark statis PWR dan kasus benchmark gayut waktu PWR NEACRP.  Akan tetapi, paket program NODAL3 belum divalidasi dalam kasus benchmark gayut waktu akibat penarikan sebuah perangkat batang kendali (CR di tepi teras menggunakan model geometri teras penuh, yaitu kasus C1 dan C2. Dengan penelitian ini, akurasi paket program

  14. The lumped heat capacity method applied to target heating

    OpenAIRE

    Rickards, J.

    2013-01-01

    The temperature of metal samples was measured while they were bombarded by the beam from the a particle accelerator. The evolution of the temperature with time can be explained using the lumped heat capacity method of heat transfer. A strong dependence on the type of mounting was found. Se midió la temperatura de muestras metálicas al ser bombardeadas por el haz de iones del Acelerador Pelletron del Instituto de Física. La evolución de la temperatura con el tiempo se puede explicar usando ...

  15. Validation of full core geometry model of the NODAL3 code in the PWR transient Benchmark problems

    International Nuclear Information System (INIS)

    T-M Sembiring; S-Pinem; P-H Liem

    2015-01-01

    The coupled neutronic and thermal-hydraulic (T/H) code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR) ejection at peripheral core using a full core geometry model, the C1 and C2 cases. By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM) and the improved quasistatic method (IQS). All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16 % occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4 % for C2 case. All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. (author)

  16. Approximate Schur complement preconditioning of the lowest order nodal discretizations

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, J.D.; Ascher, U.M. [Univ. of British Columbia, Vancouver, British Columbia (Canada); Morel, J.E. [Los Alamos National Lab., NM (United States)

    1996-12-31

    Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.

  17. Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation

    Science.gov (United States)

    Sun, Xin; Xu, Ming; Zhong, Rui

    2017-10-01

    Long space tethers are becoming a rising concern as an alternate way for transportation in space. It benefits from fuel economizing. This paper focuses on the dynamics of the tether transportation system, which consists of two end satellites connected by a flexible tether, and a movable vehicle driven by the actuator carried by itself. The Absolute Nodal Coordinate Formulation is applied to the establishment of the equation of motion, so that the influence caused by the distributed mass and elasticity of the tether is introduced. Moreover, an approximated method for accelerating the calculation of the generalized gravitational forces on the tether is proposed by substituting the volume integral every step into summation of finite terms. Afterwards, dynamic evolutions of such a system in different configurations are illustrated using numerical simulations. The deflection of the tether and the trajectory of the crawler during the transportation is investigated. Finally, the effect on the orbit of the system due to the crawler is revealed.

  18. Modern analytic methods applied to the art and archaeology

    International Nuclear Information System (INIS)

    Tenorio C, M. D.; Longoria G, L. C.

    2010-01-01

    The interaction of diverse areas as the analytic chemistry, the history of the art and the archaeology has allowed the development of a variety of techniques used in archaeology, in conservation and restoration. These methods have been used to date objects, to determine the origin of the old materials and to reconstruct their use and to identify the degradation processes that affect the integrity of the art works. The objective of this chapter is to offer a general vision on the researches that have been realized in the Instituto Nacional de Investigaciones Nucleares (ININ) in the field of cultural goods. A series of researches carried out in collaboration with national investigators and of the foreigner is described shortly, as well as with the great support of degree students and master in archaeology of the National School of Anthropology and History, since one of the goals that have is to diffuse the knowledge of the existence of these techniques among the young archaeologists, so that they have a wider vision of what they could use in an in mediate future and they can check hypothesis with scientific methods. (Author)

  19. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    Science.gov (United States)

    Lynnes, Chris; Little, Mike; Huang, Thomas; Jacob, Joseph; Yang, Phil; Kuo, Kwo-Sen

    2016-01-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based file systems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  20. Benchmark Comparison of Cloud Analytics Methods Applied to Earth Observations

    Science.gov (United States)

    Lynnes, C.; Little, M. M.; Huang, T.; Jacob, J. C.; Yang, C. P.; Kuo, K. S.

    2016-12-01

    Cloud computing has the potential to bring high performance computing capabilities to the average science researcher. However, in order to take full advantage of cloud capabilities, the science data used in the analysis must often be reorganized. This typically involves sharding the data across multiple nodes to enable relatively fine-grained parallelism. This can be either via cloud-based filesystems or cloud-enabled databases such as Cassandra, Rasdaman or SciDB. Since storing an extra copy of data leads to increased cost and data management complexity, NASA is interested in determining the benefits and costs of various cloud analytics methods for real Earth Observation cases. Accordingly, NASA's Earth Science Technology Office and Earth Science Data and Information Systems project have teamed with cloud analytics practitioners to run a benchmark comparison on cloud analytics methods using the same input data and analysis algorithms. We have particularly looked at analysis algorithms that work over long time series, because these are particularly intractable for many Earth Observation datasets which typically store data with one or just a few time steps per file. This post will present side-by-side cost and performance results for several common Earth observation analysis operations.

  1. Artificial Intelligence Methods Applied to Parameter Detection of Atrial Fibrillation

    Science.gov (United States)

    Arotaritei, D.; Rotariu, C.

    2015-09-01

    In this paper we present a novel method to develop an atrial fibrillation (AF) based on statistical descriptors and hybrid neuro-fuzzy and crisp system. The inference of system produce rules of type if-then-else that care extracted to construct a binary decision system: normal of atrial fibrillation. We use TPR (Turning Point Ratio), SE (Shannon Entropy) and RMSSD (Root Mean Square of Successive Differences) along with a new descriptor, Teager- Kaiser energy, in order to improve the accuracy of detection. The descriptors are calculated over a sliding window that produce very large number of vectors (massive dataset) used by classifier. The length of window is a crisp descriptor meanwhile the rest of descriptors are interval-valued type. The parameters of hybrid system are adapted using Genetic Algorithm (GA) algorithm with fitness single objective target: highest values for sensibility and sensitivity. The rules are extracted and they are part of the decision system. The proposed method was tested using the Physionet MIT-BIH Atrial Fibrillation Database and the experimental results revealed a good accuracy of AF detection in terms of sensitivity and specificity (above 90%).

  2. Frequency domain methods applied to forecasting electricity markets

    International Nuclear Information System (INIS)

    Trapero, Juan R.; Pedregal, Diego J.

    2009-01-01

    The changes taking place in electricity markets during the last two decades have produced an increased interest in the problem of forecasting, either load demand or prices. Many forecasting methodologies are available in the literature nowadays with mixed conclusions about which method is most convenient. This paper focuses on the modeling of electricity market time series sampled hourly in order to produce short-term (1 to 24 h ahead) forecasts. The main features of the system are that (1) models are of an Unobserved Component class that allow for signal extraction of trend, diurnal, weekly and irregular components; (2) its application is automatic, in the sense that there is no need for human intervention via any sort of identification stage; (3) the models are estimated in the frequency domain; and (4) the robustness of the method makes possible its direct use on both load demand and price time series. The approach is thoroughly tested on the PJM interconnection market and the results improve on classical ARIMA models. (author)

  3. Interesting Developments in Testing Methods Applied to Foundation Piles

    Science.gov (United States)

    Sobala, Dariusz; Tkaczyński, Grzegorz

    2017-10-01

    Both: piling technologies and pile testing methods are a subject of current development. New technologies, providing larger diameters or using in-situ materials, are very demanding in terms of providing proper quality of execution of works. That concerns the material quality and continuity which define the integral strength of pile. On the other side we have the capacity of the ground around the pile and its ability to carry the loads transferred by shaft and pile base. Inhomogeneous nature of soils and a relatively small amount of tested piles imposes very good understanding of small amount of results. In some special cases the capacity test itself form an important cost in the piling contract. This work presents a brief description of selected testing methods and authors remarks based on cooperation with Universities constantly developing new ideas. Paper presents some experience based remarks on integrity testing by means of low energy impact (low strain) and introduces selected (Polish) developments in the field of closed-end pipe piles testing based on bi-directional loading, similar to Osterberg idea, but without sacrificial hydraulic jack. Such test is suitable especially when steel piles are used for temporary support in the rivers, where constructing of conventional testing appliance with anchor piles or kentledge meets technical problems. According to the author’s experience, such tests were not yet used on the building site but they bring a real potential especially, when the displacement control can be provided from the river bank using surveying techniques.

  4. Finite difference applied to the reconstruction method of the nuclear power density distribution

    International Nuclear Information System (INIS)

    Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2016-01-01

    Highlights: • A method for reconstruction of the power density distribution is presented. • The method uses discretization by finite differences of 2D neutrons diffusion equation. • The discretization is performed homogeneous meshes with dimensions of a fuel cell. • The discretization is combined with flux distributions on the four node surfaces. • The maximum errors in reconstruction occur in the peripheral water region. - Abstract: In this reconstruction method the two-dimensional (2D) neutron diffusion equation is discretized by finite differences, employed to two energy groups (2G) and meshes with fuel-pin cell dimensions. The Nodal Expansion Method (NEM) makes use of surface discontinuity factors of the node and provides for reconstruction method the effective multiplication factor of the problem and the four surface average fluxes in homogeneous nodes with size of a fuel assembly (FA). The reconstruction process combines the discretized 2D diffusion equation by finite differences with fluxes distribution on four surfaces of the nodes. These distributions are obtained for each surfaces from a fourth order one-dimensional (1D) polynomial expansion with five coefficients to be determined. The conditions necessary for coefficients determination are three average fluxes on consecutive surfaces of the three nodes and two fluxes in corners between these three surface fluxes. Corner fluxes of the node are determined using a third order 1D polynomial expansion with four coefficients. This reconstruction method uses heterogeneous nuclear parameters directly providing the heterogeneous neutron flux distribution and the detailed nuclear power density distribution within the FAs. The results obtained with this method has good accuracy and efficiency when compared with reference values.

  5. Applying Simulation Method in Formulation of Gluten-Free Cookies

    Directory of Open Access Journals (Sweden)

    Nikitina Marina

    2017-01-01

    Full Text Available At present time priority direction in the development of new food products its developing of technology products for special purposes. These types of products are gluten-free confectionery products, intended for people with celiac disease. Gluten-free products are in demand among consumers, it needs to expand assortment, and improvement of quality indicators. At this article results of studies on the development of pastry products based on amaranth flour does not contain gluten. Study based on method of simulation recipes gluten-free confectionery functional orientation to optimize their chemical composition. The resulting products will allow to diversify and supplement the necessary nutrients diet for people with gluten intolerance, as well as for those who follow a gluten-free diet.

  6. Nuclear method applied in archaeological sites at the Amazon basin

    International Nuclear Information System (INIS)

    Nicoli, Ieda Gomes; Bernedo, Alfredo Victor Bellido; Latini, Rose Mary

    2002-01-01

    The aim of this work was to use the nuclear methodology to character pottery discovered inside archaeological sites recognized with circular earth structure in Acre State - Brazil which may contribute to the research in the reconstruction of part of the pre-history of the Amazonic Basin. The sites are located mainly in the Hydrographic Basin of High Purus River. Three of them were strategic chosen to collect the ceramics: Lobao, in Sena Madureira County at north; Alto Alegre in Rio Branco County at east and Xipamanu I, in Xapuri County at south. Neutron Activation Analysis in conjunction with multivariate statistical methods were used for the ceramic characterization and classification. An homogeneous group was established by all the sherds collected from Alto Alegre and was distinct from the other two groups analyzed. Some of the sherds collected from Xipamunu I appeared in Lobao's urns, probably because they had the same fabrication process. (author)

  7. Applying Multi-Criteria Analysis Methods for Fire Risk Assessment

    Directory of Open Access Journals (Sweden)

    Pushkina Julia

    2015-11-01

    Full Text Available The aim of this paper is to prove the application of multi-criteria analysis methods for optimisation of fire risk identification and assessment process. The object of this research is fire risk and risk assessment. The subject of the research is studying the application of analytic hierarchy process for modelling and influence assessment of various fire risk factors. Results of research conducted by the authors can be used by insurance companies to perform the detailed assessment of fire risks on the object and to calculate a risk extra charge to an insurance premium; by the state supervisory institutions to determine the compliance of a condition of object with requirements of regulations; by real state owners and investors to carry out actions for decrease in degree of fire risks and minimisation of possible losses.

  8. Applied statistical methods in agriculture, health and life sciences

    CERN Document Server

    Lawal, Bayo

    2014-01-01

    This textbook teaches crucial statistical methods to answer research questions using a unique range of statistical software programs, including MINITAB and R. This textbook is developed for undergraduate students in agriculture, nursing, biology and biomedical research. Graduate students will also find it to be a useful way to refresh their statistics skills and to reference software options. The unique combination of examples is approached using MINITAB and R for their individual strengths. Subjects covered include among others data description, probability distributions, experimental design, regression analysis, randomized design and biological assay. Unlike other biostatistics textbooks, this text also includes outliers, influential observations in regression and an introduction to survival analysis. Material is taken from the author's extensive teaching and research in Africa, USA and the UK. Sample problems, references and electronic supplementary material accompany each chapter.

  9. A new deconvolution method applied to ultrasonic images

    International Nuclear Information System (INIS)

    Sallard, J.

    1999-01-01

    This dissertation presents the development of a new method for restoration of ultrasonic signals. Our goal is to remove the perturbations induced by the ultrasonic probe and to help to characterize the defects due to a strong local discontinuity of the acoustic impedance. The point of view adopted consists in taking into account the physical properties in the signal processing to develop an algorithm which gives good results even on experimental data. The received ultrasonic signal is modeled as a convolution between a function that represents the waveform emitted by the transducer and a function that is abusively called the 'defect impulse response'. It is established that, in numerous cases, the ultrasonic signal can be expressed as a sum of weighted, phase-shifted replicas of a reference signal. Deconvolution is an ill-posed problem. A priori information must be taken into account to solve the problem. The a priori information translates the physical properties of the ultrasonic signals. The defect impulse response is modeled as a Double-Bernoulli-Gaussian sequence. Deconvolution becomes the problem of detection of the optimal Bernoulli sequence and estimation of the associated complex amplitudes. Optimal parameters of the sequence are those which maximize a likelihood function. We develop a new estimation procedure based on an optimization process. An adapted initialization procedure and an iterative algorithm enables to quickly process a huge number of data. Many experimental ultrasonic data that reflect usual control configurations have been processed and the results demonstrate the robustness of the method. Our algorithm enables not only to remove the waveform emitted by the transducer but also to estimate the phase. This parameter is useful for defect characterization. At last the algorithm makes easier data interpretation by concentrating information. So automatic characterization should be possible in the future. (author)

  10. Applying Human-Centered Design Methods to Scientific Communication Products

    Science.gov (United States)

    Burkett, E. R.; Jayanty, N. K.; DeGroot, R. M.

    2016-12-01

    Knowing your users is a critical part of developing anything to be used or experienced by a human being. User interviews, journey maps, and personas are all techniques commonly employed in human-centered design practices because they have proven effective for informing the design of products and services that meet the needs of users. Many non-designers are unaware of the usefulness of personas and journey maps. Scientists who are interested in developing more effective products and communication can adopt and employ user-centered design approaches to better reach intended audiences. Journey mapping is a qualitative data-collection method that captures the story of a user's experience over time as related to the situation or product that requires development or improvement. Journey maps help define user expectations, where they are coming from, what they want to achieve, what questions they have, their challenges, and the gaps and opportunities that can be addressed by designing for them. A persona is a tool used to describe the goals and behavioral patterns of a subset of potential users or customers. The persona is a qualitative data model that takes the form of a character profile, built upon data about the behaviors and needs of multiple users. Gathering data directly from users avoids the risk of basing models on assumptions, which are often limited by misconceptions or gaps in understanding. Journey maps and user interviews together provide the data necessary to build the composite character that is the persona. Because a persona models the behaviors and needs of the target audience, it can then be used to make informed product design decisions. We share the methods and advantages of developing and using personas and journey maps to create more effective science communication products.

  11. Isospectral graphs with identical nodal counts

    International Nuclear Information System (INIS)

    Oren, Idan; Band, Ram

    2012-01-01

    According to a recent conjecture, isospectral objects have different nodal count sequences (Gnutzmann et al 2005 J. Phys. A: Math. Gen. 38 8921–33). We study generalized Laplacians on discrete graphs, and use them to construct the first non-trivial counterexamples to this conjecture. In addition, these examples demonstrate a surprising connection between isospectral discrete and quantum graphs. (paper)

  12. Comparison between 18F-Fluorodeoxyglucose Positron Emission Tomography and Sentinel Lymph Node Biopsy for Regional Lymph Nodal Staging in Patients with Melanoma: A Review of the Literature

    International Nuclear Information System (INIS)

    Mirk, Paoletta; Treglia, Giorgio; Salsano, Marco; Basile, Pietro; Giordano, Alessandro; Bonomo, Lorenzo

    2011-01-01

    Aim. to compare 18 F-Fluorodeoxyglucose positron emission tomography (FDG-PET) to sentinel lymph node biopsy (SLNB) for regional lymph nodal staging in patients with melanoma. Methods. We performed a literature review discussing original articles which compared FDG-PET to SLNB for regional lymph nodal staging in patients with melanoma. Results and Conclusions. There is consensus in the literature that FDG-PET cannot replace SLNB for regional lymph nodal staging in patients with melanoma

  13. Applying the partitioned multiobjective risk method (PMRM) to portfolio selection.

    Science.gov (United States)

    Reyes Santos, Joost; Haimes, Yacov Y

    2004-06-01

    The analysis of risk-return tradeoffs and their practical applications to portfolio analysis paved the way for Modern Portfolio Theory (MPT), which won Harry Markowitz a 1992 Nobel Prize in Economics. A typical approach in measuring a portfolio's expected return is based on the historical returns of the assets included in a portfolio. On the other hand, portfolio risk is usually measured using volatility, which is derived from the historical variance-covariance relationships among the portfolio assets. This article focuses on assessing portfolio risk, with emphasis on extreme risks. To date, volatility is a major measure of risk owing to its simplicity and validity for relatively small asset price fluctuations. Volatility is a justified measure for stable market performance, but it is weak in addressing portfolio risk under aberrant market fluctuations. Extreme market crashes such as that on October 19, 1987 ("Black Monday") and catastrophic events such as the terrorist attack of September 11, 2001 that led to a four-day suspension of trading on the New York Stock Exchange (NYSE) are a few examples where measuring risk via volatility can lead to inaccurate predictions. Thus, there is a need for a more robust metric of risk. By invoking the principles of the extreme-risk-analysis method through the partitioned multiobjective risk method (PMRM), this article contributes to the modeling of extreme risks in portfolio performance. A measure of an extreme portfolio risk, denoted by f(4), is defined as the conditional expectation for a lower-tail region of the distribution of the possible portfolio returns. This article presents a multiobjective problem formulation consisting of optimizing expected return and f(4), whose solution is determined using Evolver-a software that implements a genetic algorithm. Under business-as-usual market scenarios, the results of the proposed PMRM portfolio selection model are found to be compatible with those of the volatility-based model

  14. Simplified Methods Applied to Nonlinear Motion of Spar Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Haslum, Herbjoern Alf

    2000-07-01

    Simplified methods for prediction of motion response of spar platforms are presented. The methods are based on first and second order potential theory. Nonlinear drag loads and the effect of the pumping motion in a moon-pool are also considered. Large amplitude pitch motions coupled to extreme amplitude heave motions may arise when spar platforms are exposed to long period swell. The phenomenon is investigated theoretically and explained as a Mathieu instability. It is caused by nonlinear coupling effects between heave, surge, and pitch. It is shown that for a critical wave period, the envelope of the heave motion makes the pitch motion unstable. For the same wave period, a higher order pitch/heave coupling excites resonant heave response. This mutual interaction largely amplifies both the pitch and the heave response. As a result, the pitch/heave instability revealed in this work is more critical than the previously well known Mathieu's instability in pitch which occurs if the wave period (or the natural heave period) is half the natural pitch period. The Mathieu instability is demonstrated both by numerical simulations with a newly developed calculation tool and in model experiments. In order to learn more about the conditions for this instability to occur and also how it may be controlled, different damping configurations (heave damping disks and pitch/surge damping fins) are evaluated both in model experiments and by numerical simulations. With increased drag damping, larger wave amplitudes and more time are needed to trigger the instability. The pitch/heave instability is a low probability of occurrence phenomenon. Extreme wave periods are needed for the instability to be triggered, about 20 seconds for a typical 200m draft spar. However, it may be important to consider the phenomenon in design since the pitch/heave instability is very critical. It is also seen that when classical spar platforms (constant cylindrical cross section and about 200m draft

  15. Variational methods applied to problems of diffusion and reaction

    CERN Document Server

    Strieder, William

    1973-01-01

    This monograph is an account of some problems involving diffusion or diffusion with simultaneous reaction that can be illuminated by the use of variational principles. It was written during a period that included sabbatical leaves of one of us (W. S. ) at the University of Minnesota and the other (R. A. ) at the University of Cambridge and we are grateful to the Petroleum Research Fund for helping to support the former and the Guggenheim Foundation for making possible the latter. We would also like to thank Stephen Prager for getting us together in the first place and for showing how interesting and useful these methods can be. We have also benefitted from correspondence with Dr. A. M. Arthurs of the University of York and from the counsel of Dr. B. D. Coleman the general editor of this series. Table of Contents Chapter 1. Introduction and Preliminaries . 1. 1. General Survey 1 1. 2. Phenomenological Descriptions of Diffusion and Reaction 2 1. 3. Correlation Functions for Random Suspensions 4 1. 4. Mean Free ...

  16. Nondestructive methods of analysis applied to oriental swords

    Directory of Open Access Journals (Sweden)

    Edge, David

    2015-12-01

    Full Text Available Various neutron techniques were employed at the Budapest Nuclear Centre in an attempt to find the most useful method for analysing the high-carbon steels found in Oriental arms and armour, such as those in the Wallace Collection, London. Neutron diffraction was found to be the most useful in terms of identifying such steels and also indicating the presence of hidden patternEn el Centro Nuclear de Budapest se han empleado varias técnicas neutrónicas con el fin de encontrar un método adecuado para analizar las armas y armaduras orientales con un alto contenido en carbono, como algunas de las que se encuentran en la Colección Wallace de Londres. El empleo de la difracción de neutrones resultó ser la técnica más útil de cara a identificar ese tipo de aceros y también para encontrar patrones escondidos.

  17. Perturbation Method of Analysis Applied to Substitution Measurements of Buckling

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Rolf

    1966-11-15

    Calculations with two-group perturbation theory on substitution experiments with homogenized regions show that a condensation of the results into a one-group formula is possible, provided that a transition region is introduced in a proper way. In heterogeneous cores the transition region comes in as a consequence of a new cell concept. By making use of progressive substitutions the properties of the transition region can be regarded as fitting parameters in the evaluation procedure. The thickness of the region is approximately equal to the sum of 1/(1/{tau} + 1/L{sup 2}){sup 1/2} for the test and reference regions. Consequently a region where L{sup 2} >> {tau}, e.g. D{sub 2}O, contributes with {radical}{tau} to the thickness. In cores where {tau} >> L{sup 2} , e.g. H{sub 2}O assemblies, the thickness of the transition region is determined by L. Experiments on rod lattices in D{sub 2}O and on test regions of D{sub 2}O alone (where B{sup 2} = - 1/L{sup 2} ) are analysed. The lattice measurements, where the pitches differed by a factor of {radical}2, gave excellent results, whereas the determination of the diffusion length in D{sub 2}O by this method was not quite successful. Even regions containing only one test element can be used in a meaningful way in the analysis.

  18. Complexity methods applied to turbulence in plasma astrophysics

    Science.gov (United States)

    Vlahos, L.; Isliker, H.

    2016-09-01

    In this review many of the well known tools for the analysis of Complex systems are used in order to study the global coupling of the turbulent convection zone with the solar atmosphere where the magnetic energy is dissipated explosively. Several well documented observations are not easy to interpret with the use of Magnetohydrodynamic (MHD) and/or Kinetic numerical codes. Such observations are: (1) The size distribution of the Active Regions (AR) on the solar surface, (2) The fractal and multi fractal characteristics of the observed magnetograms, (3) The Self-Organised characteristics of the explosive magnetic energy release and (4) the very efficient acceleration of particles during the flaring periods in the solar corona. We review briefly the work published the last twenty five years on the above issues and propose solutions by using methods borrowed from the analysis of complex systems. The scenario which emerged is as follows: (a) The fully developed turbulence in the convection zone generates and transports magnetic flux tubes to the solar surface. Using probabilistic percolation models we were able to reproduce the size distribution and the fractal properties of the emerged and randomly moving magnetic flux tubes. (b) Using a Non Linear Force Free (NLFF) magnetic extrapolation numerical code we can explore how the emerged magnetic flux tubes interact nonlinearly and form thin and Unstable Current Sheets (UCS) inside the coronal part of the AR. (c) The fragmentation of the UCS and the redistribution of the magnetic field locally, when the local current exceeds a Critical threshold, is a key process which drives avalanches and forms coherent structures. This local reorganization of the magnetic field enhances the energy dissipation and influences the global evolution of the complex magnetic topology. Using a Cellular Automaton and following the simple rules of Self Organized Criticality (SOC), we were able to reproduce the statistical characteristics of the

  19. Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Ferrer, R.M.

    2010-01-01

    The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hence the resulting inadequacy of traditional homogenization methods, as these 'spread' the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.

  20. Discrete rod burnup analysis capability in the Westinghouse advanced nodal code

    International Nuclear Information System (INIS)

    Buechel, R.J.; Fetterman, R.J.; Petrunyak, M.A.

    1992-01-01

    Core design analysis in the last several years has evolved toward the adoption of nodal-based methods to replace traditional fine-mesh models as the standard neutronic tool for first core and reload design applications throughout the nuclear industry. The accuracy, speed, and reduction in computation requirements associated with the nodal methods have made three-dimensional modeling the preferred approach to obtain the most realistic core model. These methods incorporate detailed rod power reconstruction as well. Certain design applications such as confirmation of fuel rod design limits and fuel reconstitution considerations, for example, require knowledge of the rodwise burnup distribution to avoid unnecessary conservatism in design analyses. The Westinghouse Advanced Nodal Code (ANC) incorporates the capability to generate the intra-assembly pin burnup distribution using an efficient algorithm

  1. Near-infrared radiation curable multilayer coating systems and methods for applying same

    Science.gov (United States)

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  2. Status on development and verification of reactivity initiated accident analysis code for PWR (NODAL3)

    International Nuclear Information System (INIS)

    Peng Hong Liem; Surian Pinem; Tagor Malem Sembiring; Tran Hoai Nam

    2015-01-01

    A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the nodal few-group neutron diffusion theory in 3-dimensional Cartesian geometry for a typical pressurized water reactor (PWR) static and transient analyses, especially for reactivity initiated accidents (RIA). The spatial variables are treated by using a polynomial nodal method (PNM) while for the neutron dynamic solver the adiabatic and improved quasi-static methods are adopted. A simple single channel thermal-hydraulics module and its steam table is implemented into the code. Verification works on static and transient benchmarks are being conducting to assess the accuracy of the code. For the static benchmark verification, the IAEA-2D, IAEA-3D, BIBLIS and KOEBERG light water reactor (LWR) benchmark problems were selected, while for the transient benchmark verification, the OECD NEACRP 3-D LWR Core Transient Benchmark and NEA-NSC 3-D/1-D PWR Core Transient Benchmark (Uncontrolled Withdrawal of Control Rods at Zero Power). Excellent agreement of the NODAL3 results with the reference solutions and other validated nodal codes was confirmed. (author)

  3. Development and qualification of a thermal-hydraulic nodalization for modeling station blackout accident in PSB-VVER test facility

    Energy Technology Data Exchange (ETDEWEB)

    Saghafi, Mahdi [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Ghofrani, Mohammad Bagher, E-mail: ghofrani@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); D’Auria, Francesco [San Piero a Grado Nuclear Research Group (GRNSPG), University of Pisa, Via Livornese 1291, San Piero a Grado, Pisa (Italy)

    2016-07-15

    Highlights: • A thermal-hydraulic nodalization for PSB-VVER test facility has been developed. • Station blackout accident is modeled with the developed nodalization in MELCOR code. • The developed nodalization is qualified at both steady state and transient levels. • MELCOR predictions are qualitatively and quantitatively in acceptable range. • Fast Fourier Transform Base Method is used to quantify accuracy of code predictions. - Abstract: This paper deals with the development of a qualified thermal-hydraulic nodalization for modeling Station Black-Out (SBO) accident in PSB-VVER Integral Test Facility (ITF). This study has been performed in the framework of a research project, aiming to develop an appropriate accident management support tool for Bushehr nuclear power plant. In this regard, a nodalization has been developed for thermal-hydraulic modeling of the PSB-VVER ITF by MELCOR integrated code. The nodalization is qualitatively and quantitatively qualified at both steady-state and transient levels. The accuracy of the MELCOR predictions is quantified in the transient level using the Fast Fourier Transform Base Method (FFTBM). FFTBM provides an integral representation for quantification of the code accuracy in the frequency domain. It was observed that MELCOR predictions are qualitatively and quantitatively in the acceptable range. In addition, the influence of different nodalizations on MELCOR predictions was evaluated and quantified using FFTBM by developing 8 sensitivity cases with different numbers of control volumes and heat structures in the core region and steam generator U-tubes. The most appropriate case, which provided results with minimum deviations from the experimental data, was then considered as the qualified nodalization for analysis of SBO accident in the PSB-VVER ITF. This qualified nodalization can be used for modeling of VVER-1000 nuclear power plants when performing SBO accident analysis by MELCOR code.

  4. Further Insight and Additional Inference Methods for Polynomial Regression Applied to the Analysis of Congruence

    Science.gov (United States)

    Cohen, Ayala; Nahum-Shani, Inbal; Doveh, Etti

    2010-01-01

    In their seminal paper, Edwards and Parry (1993) presented the polynomial regression as a better alternative to applying difference score in the study of congruence. Although this method is increasingly applied in congruence research, its complexity relative to other methods for assessing congruence (e.g., difference score methods) was one of the…

  5. Pathology of nodal marginal zone lymphomas.

    Science.gov (United States)

    Pileri, Stefano; Ponzoni, Maurilio

    Nodal marginal zone B cell lymphomas (NMZLs) are a rare group of lymphoid disorders part of the spectrum of marginal zone B-cell lymphomas, which encompass splenic marginal one B-cell lymphoma (SMZL) and extra nodal marginal zone of B-cell lymphoma (EMZL), often of MALT-type. Two clinicopathological forms of NMZL are recognized: adult-type and pediatric-type, respectively. NMZLs show overlapping features with other types of MZ, but distinctive features as well. In this review, we will focus on the salient distinguishing features of NMZL mostly under morphological/immunophenotypical/molecular perspectives in views of the recent acquisitions and forthcoming updated 2016 WHO classification of lymphoid malignancies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Quantum anomalies in nodal line semimetals

    Science.gov (United States)

    Burkov, A. A.

    2018-04-01

    Topological semimetals are a new class of condensed matter systems with nontrivial electronic structure topology. Their unusual observable properties may often be understood in terms of quantum anomalies. In particular, Weyl and Dirac semimetals, which have point band-touching nodes, are characterized by the chiral anomaly, which leads to the Fermi arc surface states, anomalous Hall effect, negative longitudinal magnetoresistance, and planar Hall effect. In this paper, we explore analogous phenomena in nodal line semimetals. We demonstrate that such semimetals realize a three-dimensional analog of the parity anomaly, which is a known property of two-dimensional Dirac semimetals arising, for example, on the surface of a three-dimensional topological insulator. We relate one of the characteristic properties of nodal line semimetals, namely, the drumhead surface states, to this anomaly, and derive the field theory, which encodes the corresponding anomalous response.

  7. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    Directory of Open Access Journals (Sweden)

    Moges Woldemeskel

    2014-11-01

    Full Text Available Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4 was significantly higher (p < 0.05 than that in the control (0.83 ± 0.3 and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009. Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended.

  8. Tumor microvessel density–associated mast cells in canine nodal lymphoma

    Science.gov (United States)

    Mann, Elizabeth; Whittington, Lisa

    2014-01-01

    Objective: Mast cells are associated in angiogenesis in various human and animal neoplasms. However, association of mast cells with tumor microvessel density in canine lymphoma was not previously documented. The objective of the study is to determine if mast cells are increased in canine nodal lymphomas and to evaluate their correlation with tumor microvessel density and grading of lymphomas. Methods: Nodal lymphomas from 33 dogs were studied and compared with nonneoplastic lymph nodes from 6 dogs as control. Mast cell count was made on Toluidine blue stained sections. Immunohistochemistry using antibody against Factor VIII was employed to visualize and determine microvessel density. Results: The mast cell count in lymphoma (2.95 ± 2.4) was significantly higher (p < 0.05) than that in the control (0.83 ± 0.3) and was positively correlated with tumor microvessel density (r = 0.44, p = 0.009). Significant difference was not observed in mast cell count and tumor microvessel density among different gradings of lymphomas. Conclusions: Mast cells are associated with tumor microvessel density in canine nodal lymphoma with no significant difference among gradings of lymphomas. Mast cells may play an important role in development of canine nodal lymphomas. Further detailed investigation on the role of mast cells as important part of tumor microenvironment in canine nodal lymphomas is recommended. PMID:26770752

  9. SIRIUS - A one-dimensional multigroup analytic nodal diffusion theory code

    Energy Technology Data Exchange (ETDEWEB)

    Forslund, P. [Westinghouse Atom AB, Vaesteraas (Sweden)

    2000-09-01

    In order to evaluate relative merits of some proposed intranodal cross sections models, a computer code called Sirius has been developed. Sirius is a one-dimensional, multigroup analytic nodal diffusion theory code with microscopic depletion capability. Sirius provides the possibility of performing a spatial homogenization and energy collapsing of cross sections. In addition a so called pin power reconstruction method is available for the purpose of reconstructing 'heterogeneous' pin qualities. consequently, Sirius has the capability of performing all the calculations (incl. depletion calculations) which are an integral part of the nodal calculation procedure. In this way, an unambiguous numerical analysis of intranodal cross section models is made possible. In this report, the theory of the nodal models implemented in sirius as well as the verification of the most important features of these models are addressed.

  10. On the treatment of nonlinear local feedbacks within advanced nodal generalized perturbation theory

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Turinsky, P.J.; Kropaczek, D.J.

    1993-01-01

    Recent efforts to upgrade the underlying neutronics formulations within the in-core nuclear fuel management optimization code FORMOSA (Ref. 1) have produced two important developments; first, a computationally efficient and second-order-accurate advanced nodal generalized perturbation theory (GPT) model [derived from the nonlinear iterative nodal expansion method (NEM)] for evaluating core attributes (i.e., k eff and power distribution versus cycle burnup), and second, an equally efficient and accurate treatment of local thermal-hydraulic and fission product feedbacks embedded within NEM GPT. The latter development is the focus of this paper

  11. Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates

    Science.gov (United States)

    Chang, Shu-Ming; Lin, Chang-Shou; Lin, Tai-Chia; Lin, Wen-Wei

    2004-09-01

    In this paper, we study the distribution of m segregated nodal domains of the m-mixture of Bose-Einstein condensates under positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple verticillate structures. In addition, our proposed Gauss-Seidel-type iteration method is very effective in that it converges linearly in 10-20 steps.

  12. One-dimensional nodal neutronics routines for the TRAC-BD1 thermal-hydraulics program

    International Nuclear Information System (INIS)

    Nigg, D.W.

    1983-09-01

    Nuclear reactor core transient neutronic behavior is currently modeled in the TRAC-BD1 code using a point-reactor kinetics formulation. This report describes a set of subroutines based on the Analytic Nodal Method that were written to provide TRAC-BD1 with a one-dimensional space-dependent neutronics capability. Use of the routines is illustrated with several test problems. The results of these problems show that the Analytic Nodal neutronics routines have desirable accuracy and computing time characteristics and should be a useful addition to TRAC-BD1

  13. Impacts of Contingency Reserve on Nodal Price and Nodal Reliability Risk in Deregulated Power Systems

    DEFF Research Database (Denmark)

    Zhao, Qian; Wang, Peng; Goel, Lalit

    2013-01-01

    The deregulation of power systems allows customers to participate in power market operation. In deregulated power systems, nodal price and nodal reliability are adopted to represent locational operation cost and reliability performance. Since contingency reserve (CR) plays an important role...... in reliable operation, the CR commitment should be considered in operational reliability analysis. In this paper, a CR model based on customer reliability requirements has been formulated and integrated into power market settlement. A two-step market clearing process has been proposed to determine generation...

  14. A proposal for combined MRI and PET/CT interpretation criteria for preoperative nodal staging in non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Kim, Yoo Na; Yi, Chin A.; Lee, Kyung Soo; Lee, Ho Yun; Kim, Tae Sung; Chung, Myung Jin; Kwon, O.Jung; Chung, Man Pyo; Kim, Byung-Tae; Choi, Joon Young; Kim, Seon Woo; Han, Joungho; Shim, Young Mog

    2012-01-01

    To determine the positive reading criteria for malignant nodes when interpreting combined MRI and PET/CT images for preoperative nodal staging in non-small-cell lung cancer (NSCLC). Forty-nine patients with biopsy-proven NSCLC underwent both PET/CT and thoracic MRI [diffusion weighted imaging (DWI)]. Each nodal station was evaluated for the presence of metastasis by applying either inclusive (positive if either one read positive) or exclusive (positive if both read positive) criteria in the combined interpretation of PET/CT and MRI. Nodal stage was confirmed pathologically. The combined diagnostic accuracy of PET/CT and MRI was determined on per-nodal station and per-patient bases and compared with that of PET/CT alone. In 49 patients, 39 (19%) of 206 nodal stations harboured malignant cells. Out of 206 nodal stations, 186 (90%) had concordant readings, while the rest (10%) had discordant readings. Inclusive criteria of combined PET/CT and MRI helped increase sensitivity for detecting nodal metastasis (69%) compared with PET/CT alone (46%; P = 0.003), while specificity was not significantly decreased. Inclusive criteria in combined MRI and PET/CT readings help improve significantly the sensitivity for detecting nodal metastasis compared with PET/CT alone and may decrease unnecessary open thoracotomy. (orig.)

  15. Exact boundary controllability of nodal profile for quasilinear hyperbolic systems

    CERN Document Server

    Li, Tatsien; Gu, Qilong

    2016-01-01

    This book provides a comprehensive overview of the exact boundary controllability of nodal profile, a new kind of exact boundary controllability stimulated by some practical applications. This kind of controllability is useful in practice as it does not require any precisely given final state to be attained at a suitable time t=T by means of boundary controls, instead it requires the state to exactly fit any given demand (profile) on one or more nodes after a suitable time t=T by means of boundary controls. In this book we present a general discussion of this kind of controllability for general 1-D first order quasilinear hyperbolic systems and for general 1-D quasilinear wave equations on an interval as well as on a tree-like network using a modular-structure construtive method, suggested in LI Tatsien's monograph "Controllability and Observability for Quasilinear Hyperbolic Systems"(2010), and we establish a complete theory on the local exact boundary controllability of nodal profile for 1-D quasilinear hyp...

  16. Solution of the Neutron transport equation in hexagonal geometry using strongly discontinuous nodal schemes; Solucion de la Ecuacion de transporte de neutrones en geometria hexagonal usando esquemas nodales fuertemente discontinuos

    Energy Technology Data Exchange (ETDEWEB)

    Mugica R, C.A.; Valle G, E. del [IPN, ESFM, Departamento de Ingenieria Nuclear, 07738 Mexico D.F. (Mexico)]. e-mail: cmugica@ipn.mx

    2005-07-01

    In 2002, E. del Valle and Ernest H. Mund developed a technique to solve numerically the Neutron transport equations in discrete ordinates and hexagonal geometry using two nodal schemes type finite element weakly discontinuous denominated WD{sub 5,3} and WD{sub 12,8} (of their initials in english Weakly Discontinuous). The technique consists on representing each hexagon in the union of three rhombuses each one of which it is transformed in a square in the one that the methods WD{sub 5,3} and WD{sub 12,8} were applied. In this work they are solved the mentioned equations of transport using the same discretization technique by hexagon but using two nodal schemes type finite element strongly discontinuous denominated SD{sub 3} and SD{sub 8} (of their initials in english Strongly Discontinuous). The application in each case as well as a reference problem for those that results are provided for the effective multiplication factor is described. It is carried out a comparison with the obtained results by del Valle and Mund for different discretization meshes so much angular as spatial. (Author)

  17. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

    Science.gov (United States)

    Leuschner, Matthias; Fritzen, Felix

    2017-11-01

    Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

  18. Fluorine-18-Fluorodeoxyglucose PET in the mediastinal nodal staging of bronchogenic carcinoma.

    Energy Technology Data Exchange (ETDEWEB)

    Berlangieri, S.U.; Scott, A.M.; Knight, S.; Pointon, O.; Thomas, D.L.; O``Keefe, G.; Chan, J.G.; Egen, G.F.; Tochon-Danguy, H.J.; Clarke, C.P.; McKay, W.J. [Austin Hospital, Melbourne, VIC (Australia). Centre for Positron Emission Tomography and the Departments of Nuclear Medicine and Thoracic Surgery

    1998-03-01

    Full text: Non-invasive methods of pre-operative staging of non-small cell bronchogenic carcinoma are inaccurate. To determine the clinical role of positron emission tomography (PET) in the mediastinal staging of lung carcinoma, {sup 18}F-fluorodeoxyglucose (FDG) studies were performed in 25 patients with suspected non-small cell bronchogenic carcinoma and correlated with pathology. The patients comprised 20 men and 5 women (mean age 63; range 43-78 y). All patients had proven non-small cell lung carcinoma, except two, one patient with benign inflammatory disease and the other with small cell carcinoma. The FDG PET studies were acquired on a Siemens 951131R body tomography over 2-3 bed positions to include the thorax and mediastinum. The PET images were interpreted for tumour involvement of mediastinal nodes according to the American Thoracic Society classification and scored for confidence of tumour presence on a 5 point scale. The intensity of glucose metabolism was compared to mediastinal blood pool activity and graded on a 4 point scale. FDG PET correctly excluded ipsilateral mediastinal nodal (N2) disease in 16 of 16 patients. Six of nine patients with N2 disease were correctly identified by FDG PET. Of the three patients with N2 nodal involvement not detected by PET, each had single station nodal disease, and in two patients the primary lesions abutted the involved nodal group. A total of 104 nodal stations were sampled or examined at surgery. FDG PET correctly excluded disease in 83/83 (100% specificity) negative nodal stations. FDG PET is a promising non-invasive functional imaging modality for the mediastinal staging of bronchogenic carcinoma.

  19. Prognostic value of nodal micrometastases in patients with cancer of the gastro-oesophageal junction

    NARCIS (Netherlands)

    Heeren, PAM; Kelder, W; Blondeel, [No Value; van Westreenen, HL; Hollema, H; Plukker, JT

    Aims. Aim of this study was to examine the presence and the prognostic impact of immunohistochemically identified nodal micrometastases in patients with astro-oesophageal junction (GEJ) carcinomas. Methods. Between January 1988 and December 2000, 148 patients underwent a radical (R0) resection with

  20. Clinical implementation of coverage probability planning for nodal boosting in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Ramlov, Anne; Assenholt, Marianne S; Jensen, Maria F

    2017-01-01

    PURPOSE: To implement coverage probability (CovP) for dose planning of simultaneous integrated boost (SIB) of pathologic lymph nodes in locally advanced cervical cancer (LACC). MATERIAL AND METHODS: CovP constraints for SIB of the pathological nodal target (PTV-N) with a central dose peak...

  1. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  2. Twisted vector bundles on pointed nodal curves

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    by identifying the points p1 and p2. If m ≥ 2, let R1,...,Rm−1 be m − 1 copies of the projective line P1 and let xi,yi be two distinct points in Ri. Let R be the nodal curve which arises from the union. R0 ⊔ R1 ⊔···⊔ Rm−1 ⊔ Rm by identifying p1 ∈ R0 and p2 ∈ Rm with x1 ∈ R1 and ym−1 ∈ Rm−1 respectively and by identifying ...

  3. The Use of System Codes in Scaling Studies: Relevant Techniques for Qualifying NPP Nodalizations for Particular Scenarios

    Directory of Open Access Journals (Sweden)

    V. Martinez-Quiroga

    2014-01-01

    Full Text Available System codes along with necessary nodalizations are valuable tools for thermal hydraulic safety analysis. Qualifying both codes and nodalizations is an essential step prior to their use in any significant study involving code calculations. Since most existing experimental data come from tests performed on the small scale, any qualification process must therefore address scale considerations. This paper describes the methodology developed at the Technical University of Catalonia in order to contribute to the qualification of Nuclear Power Plant nodalizations by means of scale disquisitions. The techniques that are presented include the so-called Kv-scaled calculation approach as well as the use of “hybrid nodalizations” and “scaled-up nodalizations.” These methods have revealed themselves to be very helpful in producing the required qualification and in promoting further improvements in nodalization. The paper explains both the concepts and the general guidelines of the method, while an accompanying paper will complete the presentation of the methodology as well as showing the results of the analysis of scaling discrepancies that appeared during the posttest simulations of PKL-LSTF counterpart tests performed on the PKL-III and ROSA-2 OECD/NEA Projects. Both articles together produce the complete description of the methodology that has been developed in the framework of the use of NPP nodalizations in the support to plant operation and control.

  4. Analysis of NEA-NSC PWR Uncontrolled Control Rod Withdrawal at Zero Power Benchmark Cases with NODAL3 Code

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2017-01-01

    Full Text Available The in-house coupled neutronic and thermal-hydraulic (N/T-H code of BATAN (National Nuclear Energy Agency of Indonesia, NODAL3, based on the few-group neutron diffusion equation in 3-dimensional geometry using the polynomial nodal method, has been verified with static and transient PWR benchmark cases. This paper reports the verification of NODAL3 code in the NEA-NSC PWR uncontrolled control rods withdrawal at zero power benchmark. The objective of this paper is to determine the accuracy of NODAL3 code in solving the continuously slow and fast reactivity insertions due to single and group of control rod bank withdrawn while the power and temperature increment are limited by the Doppler coefficient. The benchmark is chosen since many organizations participated using various methods and approximations, so the calculation results of NODAL3 can be compared to other codes’ results. The calculated parameters are performed for the steady-state, transient core averaged, and transient hot pellet results. The influence of radial and axial nodes number was investigated for all cases. The results of NODAL3 code are in very good agreement with the reference solutions if the radial and axial nodes number is 2 × 2 and 2 × 18 (total axial layers, respectively.

  5. EVALUATION OF METHODS FOR ESTIMATING FATIGUE PROPERTIES APPLIED TO STAINLESS STEELS AND ALUMINUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Taylor Mac Intyer Fonseca Junior

    2013-12-01

    Full Text Available This work evaluate seven estimation methods of fatigue properties applied to stainless steels and aluminum alloys. Experimental strain-life curves are compared to the estimations obtained by each method. After applying seven different estimation methods at 14 material conditions, it was found that fatigue life can be estimated with good accuracy only by the Bäumel-Seeger method for the martensitic stainless steel tempered between 300°C and 500°C. The differences between mechanical behavior during monotonic and cyclic loading are probably the reason for the absence of a reliable method for estimation of fatigue behavior from monotonic properties for a group of materials.

  6. ANDREA: Advanced nodal diffusion code for reactor analysis

    International Nuclear Information System (INIS)

    Belac, J.; Josek, R.; Klecka, L.; Stary, V.; Vocka, R.

    2005-01-01

    A new macro code is being developed at NRI which will allow coupling of the advanced thermal-hydraulics model with neutronics calculations as well as efficient use in core loading pattern optimization process. This paper describes the current stage of the macro code development. The core simulator is based on the nodal expansion method, Helios lattice code is used for few group libraries preparation. Standard features such as pin wise power reconstruction and feedback iterations on critical control rod position, boron concentration and reactor power are implemented. A special attention is paid to the system and code modularity in order to enable flexible and easy implementation of new features in future. Precision of the methods used in the macro code has been verified on available benchmarks. Testing against Temelin PWR operational data is under way (Authors)

  7. Robust doubly charged nodal lines and nodal surfaces in centrosymmetric systems

    Science.gov (United States)

    Bzdušek, Tomáš; Sigrist, Manfred

    2017-10-01

    Weyl points in three spatial dimensions are characterized by a Z -valued charge—the Chern number—which makes them stable against a wide range of perturbations. A set of Weyl points can mutually annihilate only if their net charge vanishes, a property we refer to as robustness. While nodal loops are usually not robust in this sense, it has recently been shown using homotopy arguments that in the centrosymmetric extension of the AI symmetry class they nevertheless develop a Z2 charge analogous to the Chern number. Nodal loops carrying a nontrivial value of this Z2 charge are robust, i.e., they can be gapped out only by a pairwise annihilation and not on their own. As this is an additional charge independent of the Berry π -phase flowing along the band degeneracy, such nodal loops are, in fact, doubly charged. In this manuscript, we generalize the homotopy discussion to the centrosymmetric extensions of all Atland-Zirnbauer classes. We develop a tailored mathematical framework dubbed the AZ +I classification and show that in three spatial dimensions such robust and multiply charged nodes appear in four of such centrosymmetric extensions, namely, AZ +I classes CI and AI lead to doubly charged nodal lines, while D and BDI support doubly charged nodal surfaces. We remark that no further crystalline symmetries apart from the spatial inversion are necessary for their stability. We provide a description of the corresponding topological charges, and develop simple tight-binding models of various semimetallic and superconducting phases that exhibit these nodes. We also indicate how the concept of robust and multiply charged nodes generalizes to other spatial dimensions.

  8. VARIANT: VARIational anisotropic nodal transport for multidimensional Cartesian and hexadgonal geometry calculation

    International Nuclear Information System (INIS)

    Palmiotti, G.; Carrico, C.B.; Lewis, E.E.

    1995-10-01

    The theoretical basis, implementation information and numerical results are presented for VARIANT (VARIational Anisotropic Neutron Transport), a FORTRAN module of the DIF3D code system at Argonne National Laboratory. VARIANT employs the variational nodal method to solve multigroup steady-state neutron diffusion and transport problems. The variational nodal method is a hybrid finite element method that guarantees nodal balance and permits spatial refinement through the use of hierarchical complete polynomial trial functions. Angular variables are expanded with complete or simplified P 1 , P 3 or P 5 5 spherical harmonics approximations with full anisotropic scattering capability. Nodal response matrices are obtained, and the within-group equations are solved by red-black or four-color iteration, accelerated by a partitioned matrix algorithm. Fission source and upscatter iterations strategies follow those of DIF3D. Two- and three-dimensional Cartesian and hexagonal geometries are implemented. Forward and adjoint eigenvalue, fixed source, gamma heating, and criticality (concentration) search problems may be performed

  9. The statistics of the points where nodal lines intersect a reference curve

    International Nuclear Information System (INIS)

    Aronovitch, Amit; Smilansky, Uzy

    2007-01-01

    We study the intersection points of a fixed planar curve Γ with the nodal set of a translationally invariant and isotropic Gaussian random field Ψ(r) and the zeros of its normal derivative across the curve. The intersection points form a discrete random process which is the object of this study. The field probability distribution function is completely specified by the correlation G(|r - r'|) = (Ψ(r)Ψ(r')). Given an arbitrary G(|r - r'|), we compute the two-point correlation function of the point process on the line, and derive other statistical measures (repulsion, rigidity) which characterize the short- and long-range correlations of the intersection points. We use these statistical measures to quantitatively characterize the complex patterns displayed by various kinds of nodal networks. We apply these statistics in particular to nodal patterns of random waves and of eigenfunctions of chaotic billiards. Of special interest is the observation that for monochromatic random waves, the number variance of the intersections with long straight segments grows like Lln L, as opposed to the linear growth predicted by the percolation model, which was successfully used to predict other long-range nodal properties of that field

  10. Nodalization qualification process of the PSBVVER facility for the Cathare2 thermal-hydraulic code

    International Nuclear Information System (INIS)

    Del Nevo, A.; Araneo, D.; D'Auria, F.; Galassi, G.

    2004-01-01

    The present document deals with the nodalization qualification process of the PSB-VVER test facility for Cathare2 code. PSB-VVER facility is a 1/300 volume scale model of a VVER-1000, reactor installed at Electrogorsk Research and Engineering Centre in 1998. The version V1.5b of the Cathare2 code has been used. In order to evaluate the nodalization performance, the qualifying procedure set up at the DIMNP of Pisa University (UNIPI) has been applied that foresees two qualification levels: a 'steady state' level and an 'on transient' level. After the steady state behavior check of the nodalization, it has been preformed the on transient qualification the PSB-VVER test 2. It is a 11% equivalent break in Upper Plenum with the actuation of one high pressure injection system, connected to the hot leg of the loop 4, and 4 passive systems (ECCS hydro-accumulators), connected to the outlet plenum and to the inlet chamber of the downcomer. The low-pressure injection system is not available in the test. The goal of this paper is to demonstrate that the first step of the nodalization qualification adopted for the PSB test analyses is achieved and the PSB facility input deck is available and ready to use. The quantitative accuracy of the performed calculation has been evaluated by using the FFT-BM tool developed at the University of Pisa.(author)

  11. Applying the Mixed Methods Instrument Development and Construct Validation Process: the Transformative Experience Questionnaire

    Science.gov (United States)

    Koskey, Kristin L. K.; Sondergeld, Toni A.; Stewart, Victoria C.; Pugh, Kevin J.

    2018-01-01

    Onwuegbuzie and colleagues proposed the Instrument Development and Construct Validation (IDCV) process as a mixed methods framework for creating and validating measures. Examples applying IDCV are lacking. We provide an illustrative case integrating the Rasch model and cognitive interviews applied to the development of the Transformative…

  12. An Aural Learning Project: Assimilating Jazz Education Methods for Traditional Applied Pedagogy

    Science.gov (United States)

    Gamso, Nancy M.

    2011-01-01

    The Aural Learning Project (ALP) was developed to incorporate jazz method components into the author's classical practice and her applied woodwind lesson curriculum. The primary objective was to place a more focused pedagogical emphasis on listening and hearing than is traditionally used in the classical applied curriculum. The components of the…

  13. Extension of the analytic nodal diffusion solver ANDES to triangular-Z geometry and coupling with COBRA-IIIc for hexagonal core analysis

    International Nuclear Information System (INIS)

    Lozano, Juan-Andres; Jimenez, Javier; Garcia-Herranz, Nuria; Aragones, Jose-Maria

    2010-01-01

    In this paper the extension of the multigroup nodal diffusion code ANDES, based on the Analytic Coarse Mesh Finite Difference (ACMFD) method, from Cartesian to hexagonal geometry is presented, as well as its coupling with the thermal-hydraulic (TH) code COBRA-IIIc for hexagonal core analysis. In extending the ACMFD method to hexagonal assemblies, triangular-Z nodes are used. In the radial plane, a direct transverse integration procedure is applied along the three directions that are orthogonal to the triangle interfaces. The triangular nodalization avoids the singularities, that appear when applying transverse integration to hexagonal nodes, and allows the advantage of the mesh subdivision capabilities implicit within that geometry. As for the thermal-hydraulics, the extension of the coupling scheme to hexagonal geometry has been performed with the capability to model the core using either assembly-wise channels (hexagonal mesh) or a higher refinement with six channels per fuel assembly (triangular mesh). Achieving this level of TH mesh refinement with COBRA-IIIc code provides a better estimation of the in-core 3D flow distribution, improving the TH core modelling. The neutronics and thermal-hydraulics coupled code, ANDES/COBRA-IIIc, previously verified in Cartesian geometry core analysis, can also be applied now to full three-dimensional VVER core problems, as well as to other thermal and fast hexagonal core designs. Verification results are provided, corresponding to the different cases of the OECD/NEA-NSC VVER-1000 Coolant Transient Benchmarks.

  14. Application of the Fast Fourier Transform Based Method to assist in the qualification process for the PSB-VVER1000 RELAP5 nodalisation

    International Nuclear Information System (INIS)

    Muellner, N.; Seidelberger, E.; Del Nevo, A.; D'Auria, F.

    2005-01-01

    One dimensional Thermal-Hydraulic-System (TH-SYS) codes like RELAP5 provide a degree of freedom that is significantly greater than desired. An undisciplined code user with some experience usually can achieve any pre-set results by tuning the nodalization. To take some freedom away from the user and achieve code user independent results several strategies were adopted. The approach of the UNIPI is to develop a multi purpose nodalization which must pass a rigorous nodalization qualification process. A qualified nodalization is also the basis to apply the Uncertainty Methodology based on Accuracy Extrapolation (UMAE) or to develop the accuracy database and to apply the Code with capability of Internal Assessment of Uncertainty (CIAU). An important part of the nodalization qualification is to verify the results of the nodalization approach against experimental data. In this context the Fast Fourier Transform Based Method (FFTBM) provides an independent tool to assess the quantitative accuracy of the analysis. This paper will present a series of RELAP5 calculations, each assessed by the FFTBM, which analyze an experiment at the PSB-VVER1000 facility This experiment is a 0.7% Small Break (SB) Loss Of Coolant Accident (LOCA) in the Cold Leg (CL) near the Reactor Pressure Vessel (RPV). The FFTBM was used to establish a range in which parameters like power, break area or total heat losses can vary, while the nodalization is still qualified from a quantitative point of view. (author)

  15. Complementary variational principle method applied to thermal conductivities of a plasma in a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, A K; Gupta, S C [Punjabi Univ., Patiala (India). Dept. of Physics

    1982-12-14

    The complementary variational principles method (CVP) is applied to the thermal conductivities of a plasma in a uniform magnetic field. The results of computations show that the CVP derived results are very useful.

  16. Final Report, Nuclear Energy Research Initiative (NERI) Project: An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model

    International Nuclear Information System (INIS)

    Anistratov, Dmitriy Y.; Adams, Marvin L.; Palmer, Todd S.; Smith, Kord S.; Clarno, Kevin; Hikaru Hiruta; Razvan Nes

    2003-01-01

    OAK (B204) Final Report, NERI Project: ''An Innovative Reactor Analysis Methodology Based on a Quasidiffusion Nodal Core Model'' The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations

  17. Nodal wear model: corrosion in carbon blast furnace hearths

    Directory of Open Access Journals (Sweden)

    Verdeja, L. F.

    2003-06-01

    Full Text Available Criterions developed for the Nodal Wear Model (NWM were applied to estimate the shape of the corrosion profiles that a blast furnace hearth may acquire during its campaign. Taking into account design of the hearth, the boundary conditions, the characteristics of the refractory materials used and the operation conditions of the blast furnace, simulation of wear profiles with central well, mushroom and elephant foot shape were accomplished. The foundations of the NWM are constructed considering that the corrosion of the refractory is a function of the temperature present at each point (node of the liquid metal-refractory interface and the corresponding physical and chemical characteristics of the corrosive fluid.

    Se aplican los criterios del Modelo de Desgaste Nodal (MDN para la estimación de los perfiles de corrosión que podría ir adquiriendo el crisol de un homo alto durante su campaña. Atendiendo al propio diseño del crisol, a las condiciones límites de contorno, a las características del material refractario utilizado y a las condiciones de operación del horno, se consiguen simular perfiles de desgaste con "pozo central", con "forma de seta" ó de "pie de elefante". Los fundamentos del MDN se apoyan en la idea de considerar que la corrosión del refractario es función de la temperatura que el sistema pueda presentar en cada punto (nodo de la intercara refractario-fundido y de las correspondientes características físico-químicas del fluido corrosivo.

  18. What is the method in applying formal methods to PLC applications?

    NARCIS (Netherlands)

    Mader, Angelika H.; Engel, S.; Wupper, Hanno; Kowalewski, S.; Zaytoon, J.

    2000-01-01

    The question we investigate is how to obtain PLC applications with confidence in their proper functioning. Especially, we are interested in the contribution that formal methods can provide for their development. Our maxim is that the place of a particular formal method in the total picture of system

  19. Torsionfree Sheaves over a Nodal Curve of Arithmetic Genus One

    Indian Academy of Sciences (India)

    We classify all isomorphism classes of stable torsionfree sheaves on an irreducible nodal curve of arithmetic genus one defined over C C . Let be a nodal curve of arithmetic genus one defined over R R , with exactly one node, such that does not have any real points apart from the node. We classify all isomorphism ...

  20. Formal methods applied to industrial complex systems implementation of the B method

    CERN Document Server

    Boulanger, Jean-Louis

    2014-01-01

    This book presents real-world examples of formal techniques in an industrial context. It covers formal methods such as SCADE and/or the B Method, in various fields such as railways, aeronautics, and the automotive industry. The purpose of this book is to present a summary of experience on the use of "formal methods" (based on formal techniques such as proof, abstract interpretation and model-checking) in industrial examples of complex systems, based on the experience of people currently involved in the creation and assessment of safety critical system software. The involvement of people from

  1. Two-dimensional analytical solution for nodal calculation of nuclear reactors

    International Nuclear Information System (INIS)

    Silva, Adilson C.; Pessoa, Paulo O.; Silva, Fernando C.; Martinez, Aquilino S.

    2017-01-01

    Highlights: • A proposal for a coarse mesh nodal method is presented. • The proposal uses the analytical solution of the two-dimensional neutrons diffusion equation. • The solution is performed homogeneous nodes with dimensions of the fuel assembly. • The solution uses four average fluxes on the node surfaces as boundary conditions. • The results show good accuracy and efficiency. - Abstract: In this paper, the two-dimensional (2D) neutron diffusion equation is analytically solved for two energy groups (2G). The spatial domain of reactor core is divided into a set of nodes with uniform nuclear parameters. To determine iteratively the multiplication factor and the neutron flux in the reactor we combine the analytical solution of the neutron diffusion equation with an iterative method known as power method. The analytical solution for different types of regions that compose the reactor is obtained, such as fuel and reflector regions. Four average fluxes in the node surfaces are used as boundary conditions for analytical solution. Discontinuity factors on the node surfaces derived from the homogenization process are applied to maintain averages reaction rates and the net current in the fuel assembly (FA). To validate the results obtained by the analytical solution a relative power density distribution in the FAs is determined from the neutron flux distribution and compared with the reference values. The results show good accuracy and efficiency.

  2. Numerical nodal simulation of the axial power distribution within nuclear reactors using a kinetics diffusion model. I

    International Nuclear Information System (INIS)

    Barros, R.C. de.

    1992-05-01

    Presented here is a new numerical nodal method for the simulation of the axial power distribution within nuclear reactors using the one-dimensional one speed kinetics diffusion model with one group of delayed neutron precursors. Our method is based on a spectral analysis of the nodal kinetics equations. These equations are obtained by integrating the original kinetics equations separately over a time step and over a spatial node, and then considering flat approximations for the forward difference terms. These flat approximations are the only approximations that are considered in the method. As a result, the spectral nodal method for space - time reactor kinetics generates numerical solutions for space independent problems or for time independent problems that are completely free from truncation errors. We show numerical results to illustrate the method's accuracy for coarse mesh calculations. (author)

  3. A new clamp method for firing bricks | Obeng | Journal of Applied ...

    African Journals Online (AJOL)

    A new clamp method for firing bricks. ... Journal of Applied Science and Technology ... To overcome this operational deficiencies, a new method of firing bricks that uses brick clamp technique that incorporates a clamp wall of 60 cm thickness, a six tier approach of sealing the top of the clamp (by combination of green bricks) ...

  4. A method to evaluate performance reliability of individual subjects in laboratory research applied to work settings.

    Science.gov (United States)

    1978-10-01

    This report presents a method that may be used to evaluate the reliability of performance of individual subjects, particularly in applied laboratory research. The method is based on analysis of variance of a tasks-by-subjects data matrix, with all sc...

  5. Determination methods for plutonium as applied in the field of reprocessing

    International Nuclear Information System (INIS)

    1983-07-01

    The papers presented report on Pu-determination methods, which are routinely applied in process control, and also on new developments which could supercede current methods either because they are more accurate or because they are simpler and faster. (orig./DG) [de

  6. A nodalization study of steam separator in real time simulation

    International Nuclear Information System (INIS)

    Horugshyang, Lein; Luh, R.T.J.; Zen-Yow, Wang

    1999-01-01

    The motive of this paper is to investigate the influence of steam separator nodalization on reactor thermohydraulics in terms of stability and level response. Three different nodalizations of steam separator are studied by using THEATRE and REMARK Code in a BWR simulator. The first nodalization is the traditional one with two nodes for steam separator. In this nodalization, the steam separation is modeled in the outer node, i.e., upper downcomer. Separated steam enters the Steen dome node and the liquid goes to the feedwater node. The second nodalization is similar to the first one with the steam separation modeled in the inner node. There is one additional junction connecting steam dome node and the inner node. The liquid fallback junction connects the inner node and feedwater node. The third nodalization is a combination of the former two with an integrated node for steam separator. Boundary conditions in this study are provided by a simplified feedwater and main steam driver. For comparison purpose, three tests including full power steady state initialisation, recirculation pumps runback and reactor scram are conducted. Major parameters such as reactor pressure, reactor level, void fractions, neutronic power and junction flows are recorded for analysis. Test results clearly show that the first nodalization is stable for steady state initialisation. However it has too responsive level performance in core flow reduction transients. The second nodalization is the closest representation of real plant structure, but not the performance. Test results show that an instability occurs in the separator region for both steady state initialisation and transients. This instability is caused by an unbalanced momentum in the dual loop configuration. The magnitude of the oscillation reduces as the power decreases. No superiority to the other nodalizations is shown in the test results. The third nodalization shows both stability and responsiveness in the tests. (author)

  7. Water Permeability of Pervious Concrete Is Dependent on the Applied Pressure and Testing Methods

    Directory of Open Access Journals (Sweden)

    Yinghong Qin

    2015-01-01

    Full Text Available Falling head method (FHM and constant head method (CHM are, respectively, used to test the water permeability of permeable concrete, using different water heads on the testing samples. The results indicate the apparent permeability of pervious concrete decreasing with the applied water head. The results also demonstrate the permeability measured from the FHM is lower than that from the CHM. The fundamental difference between the CHM and FHM is examined from the theory of fluid flowing through porous media. The testing results suggest that the water permeability of permeable concrete should be reported with the applied pressure and the associated testing method.

  8. Accurate simulation of MPPT methods performance when applied to commercial photovoltaic panels.

    Science.gov (United States)

    Cubas, Javier; Pindado, Santiago; Sanz-Andrés, Ángel

    2015-01-01

    A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers' datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature) and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions.

  9. Accurate Simulation of MPPT Methods Performance When Applied to Commercial Photovoltaic Panels

    Directory of Open Access Journals (Sweden)

    Javier Cubas

    2015-01-01

    Full Text Available A new, simple, and quick-calculation methodology to obtain a solar panel model, based on the manufacturers’ datasheet, to perform MPPT simulations, is described. The method takes into account variations on the ambient conditions (sun irradiation and solar cells temperature and allows fast MPPT methods comparison or their performance prediction when applied to a particular solar panel. The feasibility of the described methodology is checked with four different MPPT methods applied to a commercial solar panel, within a day, and under realistic ambient conditions.

  10. Topological surface states in nodal superconductors

    International Nuclear Information System (INIS)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-01-01

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. (topical review)

  11. Can Axial-Based Nodal Size Criteria Be Used in Other Imaging Planes to Accurately Determine “Enlarged” Head and Neck Lymph Nodes?

    Science.gov (United States)

    Bartlett, Eric S.; Walters, Thomas D.; Yu, Eugene

    2013-01-01

    Objective. We evaluate if axial-based lymph node size criteria can be applied to coronal and sagittal planes. Methods. Fifty pretreatment computed tomographic (CT) neck exams were evaluated in patients with head and neck squamous cell carcinoma (SCCa) and neck lymphadenopathy. Axial-based size criteria were applied to all 3 imaging planes, measured, and classified as “enlarged” if equal to or exceeding size criteria. Results. 222 lymph nodes were “enlarged” in one imaging plane; however, 53.2% (118/222) of these were “enlarged” in all 3 planes. Classification concordance between axial versus coronal/sagittal planes was poor (kappa = −0.09 and −0.07, resp., P planes. Conclusion. Classification of “enlarged” lymph nodes differs between axial versus coronal/sagittal imaging planes when axial-based nodal size criteria are applied independently to all three imaging planes, and exclusively used without other morphologic nodal data. PMID:23984099

  12. Diamond difference method with hybrid angular quadrature applied to neutron transport problems

    International Nuclear Information System (INIS)

    Zani, Jose H.; Barros, Ricardo C.; Alves Filho, Hermes

    2005-01-01

    In this work we presents the results for the calculations of the disadvantage factor in thermal nuclear reactor physics. We use the one-group discrete ordinates (S N ) equations to mathematically model the flux distributions in slab lattices. We apply the diamond difference method with source iteration iterative scheme to numerically solve the discretized systems equations. We used special interface conditions to describe the method with hybrid angular quadrature. We show numerical results to illustrate the accuracy of the hybrid method. (author)

  13. Proposal and Evaluation of Management Method for College Mechatronics Education Applying the Project Management

    Science.gov (United States)

    Ando, Yoshinobu; Eguchi, Yuya; Mizukawa, Makoto

    In this research, we proposed and evaluated a management method of college mechatronics education. We applied the project management to college mechatronics education. We practiced our management method to the seminar “Microcomputer Seminar” for 3rd grade students who belong to Department of Electrical Engineering, Shibaura Institute of Technology. We succeeded in management of Microcomputer Seminar in 2006. We obtained the good evaluation for our management method by means of questionnaire.

  14. Perspective for applying traditional and inovative teaching and learning methods to nurses continuing education

    OpenAIRE

    Bendinskaitė, Irmina

    2015-01-01

    Bendinskaitė I. Perspective for applying traditional and innovative teaching and learning methods to nurse’s continuing education, magister thesis / supervisor Assoc. Prof. O. Riklikienė; Departament of Nursing and Care, Faculty of Nursing, Lithuanian University of Health Sciences. – Kaunas, 2015, – p. 92 The purpose of this study was to investigate traditional and innovative teaching and learning methods perspective to nurse’s continuing education. Material and methods. In a period fro...

  15. Cluster detection methods applied to the Upper Cape Cod cancer data

    Directory of Open Access Journals (Sweden)

    Ozonoff David

    2005-09-01

    Full Text Available Abstract Background A variety of statistical methods have been suggested to assess the degree and/or the location of spatial clustering of disease cases. However, there is relatively little in the literature devoted to comparison and critique of different methods. Most of the available comparative studies rely on simulated data rather than real data sets. Methods We have chosen three methods currently used for examining spatial disease patterns: the M-statistic of Bonetti and Pagano; the Generalized Additive Model (GAM method as applied by Webster; and Kulldorff's spatial scan statistic. We apply these statistics to analyze breast cancer data from the Upper Cape Cancer Incidence Study using three different latency assumptions. Results The three different latency assumptions produced three different spatial patterns of cases and controls. For 20 year latency, all three methods generally concur. However, for 15 year latency and no latency assumptions, the methods produce different results when testing for global clustering. Conclusion The comparative analyses of real data sets by different statistical methods provides insight into directions for further research. We suggest a research program designed around examining real data sets to guide focused investigation of relevant features using simulated data, for the purpose of understanding how to interpret statistical methods applied to epidemiological data with a spatial component.

  16. Apparatus and method for applying an end plug to a fuel rod tube end

    International Nuclear Information System (INIS)

    Rieben, S.L.; Wylie, M.E.

    1987-01-01

    An apparatus is described for applying an end plug to a hollow end of a nuclear fuel rod tube, comprising: support means mounted for reciprocal movement between remote and adjacent positions relative to a nuclear fuel rod tube end to which an end plug is to be applied; guide means supported on the support means for movement; and drive means coupled to the support means and being actuatable for movement between retracted and extended positions for reciprocally moving the support means between its respective remote and adjacent positions. A method for applying an end plug to a hollow end of a nuclear fuel rod tube is also described

  17. Method of levelized discounted costs applied in economic evaluation of nuclear power plant project

    International Nuclear Information System (INIS)

    Tian Li; Wang Yongqing; Liu Jingquan; Guo Jilin; Liu Wei

    2000-01-01

    The main methods of economic evaluation of bid which are in common use are introduced. The characteristics of levelized discounted cost method and its application are presented. The method of levelized discounted cost is applied to the cost calculation of a 200 MW nuclear heating reactor economic evaluation. The results indicate that the method of levelized discounted costs is simple, feasible and which is considered most suitable for the economic evaluation of various case. The method is suggested which is used in the national economic evaluation

  18. Local regression type methods applied to the study of geophysics and high frequency financial data

    Science.gov (United States)

    Mariani, M. C.; Basu, K.

    2014-09-01

    In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.

  19. The Verification of Coupled Neutronics Thermal-Hydraulics Code NODAL3 in the PWR Rod Ejection Benchmark

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2014-01-01

    Full Text Available A coupled neutronics thermal-hydraulics code NODAL3 has been developed based on the few-group neutron diffusion equation in 3-dimensional geometry for typical PWR static and transient analyses. The spatial variables are treated by using a polynomial nodal method while for the neutron dynamic solver the adiabatic and improved quasistatic methods are adopted. In this paper we report the benchmark calculation results of the code against the OECD/NEA CRP PWR rod ejection cases. The objective of this work is to determine the accuracy of NODAL3 code in analysing the reactivity initiated accident due to the control rod ejection. The NEACRP PWR rod ejection cases are chosen since many organizations participated in the NEA project using various methods as well as approximations, so that, in addition to the reference solutions, the calculation results of NODAL3 code can also be compared to other codes’ results. The transient parameters to be verified are time of power peak, power peak, final power, final average Doppler temperature, maximum fuel temperature, and final coolant temperature. The results of NODAL3 code agree well with the PHANTHER reference solutions in 1993 and 1997 (revised. Comparison with other validated codes, DYN3D/R and ANCK, shows also a satisfactory agreement.

  20. Method to detect substances in a body and device to apply the method

    International Nuclear Information System (INIS)

    Voigt, H.

    1978-01-01

    The method and the measuring disposition serve to localize pellets doped with Gd 2 O 3 , lying between UO 2 pellets within a reactor fuel rod. The fuel rod is penetrating a homogeneous magnetic field generated between two pole shoes. The magnetic stray field caused by the doping substances is then measured by means of Hall probes (e.g. InAs) for quantitative discrimination from UO 2 . The position of the Gd 2 O 3 -doped pellets is determined by moving the fuel rod through the magnetic field in a direction perpendicular to the homogeneous field. The measuring signal is caused by the different susceptibility of Gd 2 O 3 with respect to UO 2 . (DG) [de

  1. Combined-modality therapy for patients with regional nodal metastases from melanoma

    International Nuclear Information System (INIS)

    Ballo, Matthew T.; Ross, Merrick I.; Cormier, Janice N.; Myers, Jeffrey N.; Lee, Jeffrey E.; Gershenwald, Jeffrey E.; Hwu, Patrick; Zagars, Gunar K.

    2006-01-01

    Purpose: To evaluate the outcome and patterns of failure for patients with nodal metastases from melanoma treated with combined-modality therapy. Methods and Materials: Between 1983 and 2003, 466 patients with nodal metastases from melanoma were managed with lymphadenectomy and radiation, with or without systemic therapy. Surgery was a therapeutic procedure for clinically apparent nodal disease in 434 patients (regionally advanced nodal disease). Adjuvant radiation was generally delivered with a hypofractionated regimen. Adjuvant systemic therapy was delivered to 154 patients. Results: With a median follow-up of 4.2 years, 252 patients relapsed and 203 patients died of progressive disease. The actuarial 5-year disease-specific, disease-free, and distant metastasis-free survival rates were 49%, 42%, and 44%, respectively. By multivariate analysis, increasing number of involved lymph nodes and primary ulceration were associated with an inferior 5-year actuarial disease-specific and distant metastasis-free survival. Also, the number of involved lymph nodes was associated with the development of brain metastases, whereas thickness was associated with lung metastases, and primary ulceration was associated with liver metastases. The actuarial 5-year regional (in-basin) control rate for all patients was 89%, and on multivariate analysis there were no patient or disease characteristics associated with inferior regional control. The risk of lymphedema was highest for those patients with groin lymph node metastases. Conclusions: Although regional nodal disease can be satisfactorily controlled with lymphadenectomy and radiation, the risk of distant metastases and melanoma death remains high. A management approach to these patients that accounts for the competing risks of distant metastases, regional failure, and long-term toxicity is needed

  2. Radiotherapy for Esthesioneuroblastoma: Is Elective Nodal Irradiation Warranted in the Multimodality Treatment Approach?

    International Nuclear Information System (INIS)

    Noh, O Kyu; Lee, Sang-wook; Yoon, Sang Min; Kim, Sung Bae; Kim, Sang Yoon; Kim, Chang Jin; Jo, Kyung Ja; Choi, Eun Kyung; Song, Si Yeol; Kim, Jong Hoon; Ahn, Seung Do

    2011-01-01

    Purpose: The role of elective nodal irradiation (ENI) in radiotherapy for esthesioneuroblastoma (ENB) has not been clearly defined. We analyzed treatment outcomes of patients with ENB and the frequency of cervical nodal failure in the absence of ENI. Methods and Materials: Between August 1996 and December 2007, we consulted with 19 patients with ENB regarding radiotherapy. Initial treatment consisted of surgery alone in 2 patients; surgery and postoperative radiotherapy in 4; surgery and adjuvant chemotherapy in 1; surgery, postoperative radiotherapy, and chemotherapy in 3; and chemotherapy followed by radiotherapy or concurrent chemoradiotherapy in 5. Five patients did not receive planned radiotherapy because of disease progression. Including 2 patients who received salvage radiotherapy, 14 patients were treated with radiotherapy. Elective nodal irradiation was performed in 4 patients with high-risk factors, including 3 with cervical lymph node metastasis at presentation. Results: Fourteen patients were analyzable, with a median follow-up of 27 months (range, 7-64 months). The overall 3-year survival rate was 73.4%. Local failure occurred in 3 patients (21.4%), regional cervical failure in 3 (21.4%), and distant failure in 2 (14.3%). No cervical nodal failure occurred in patients treated with combined systemic chemotherapy regardless of ENI. Three cervical failures occurred in the 4 patients treated with ENI or neck dissection (75%), none of whom received systemic chemotherapy. Conclusions: ENI during radiotherapy for ENB seems to play a limited role in preventing cervical nodal failure. Omitting ENI may be an option if patients are treated with a combination of radiotherapy and chemotherapy.

  3. Role of CT/PET in predicting nodal disease in head and neck cancers

    International Nuclear Information System (INIS)

    Singham, S.; Iyer, G.; Clark, J.

    2009-01-01

    Full text:Introduction: Pre-treatment evaluation of the presence of cervical nodal metastases is important in head and neck cancers and has major prognostic implications. In this study, we aim to determine the accuracy of CT/PET as a tool for identifying such metastases. Methods: All patients from Royal Prince Alfred and Liverpool Hospitals, who underwent CT/PET for any cancer arising from the head and neck, and who underwent subsequent surgery (which included a neck dissection) within 8 weeks of the CT/PET were included. Nodal staging was undertaken by utilising imaging-based nodal classification, and comparison with pathologic data from the surgical specimen was made. PET was considered positive if the SUV was greater than 2. Results: We identified 111 patients from the above criteria. 80 of such patients were treated for squamous cell carcinoma (SCC). CT/PET identified unsuspected metastatic disease in 6 patients. Correlation of CT/PET findings and the presence of disease at the primary site: sensitivity: 98%, specificity: 93%, positive predictive value (PPV): 98% and negative predictive value (NPV): 93%. Correlating CT/PET findings with the presence of nodal disease at any level: sensitivity: 95%, specificity: 88%, PPV: 95% and NPV: 88%. CT/PET was anatomically accurate in predicting the site of metastases in 62/74 (84%). Conclusion: PET is accurate in predicting both presence of nodal metastases and the level of involvement. CT/PET should be undertaken as a pre-operative tool to assist in planning the extent of surgery required in head and neck cancers.

  4. The exponential function expansion of the intra-nodal cross sections for the spectral history gradient correction

    International Nuclear Information System (INIS)

    Cho, J. Y.; Noh, J. M.; Cheong, H. K.; Choo, H. K.

    1998-01-01

    In order to simplify the previous spectral history effect correction based on the polynomial expansion nodal method, a new spectral history effect correction is proposed. The new spectral history correction eliminates four microscopic depletion points out of total 13 depletion points in the previous correction by approximating the group cross sections with exponential function. The neutron flux to homogenize the group cross sections for the correction of the spectral history effect is calculated by the analytic function expansion nodal method in stead of the conventional polynomial expansion nodal method. This spectral history correction model is verified against the three MOX benchmark cores: a checkerboard type, a small core with 25 fuel assemblies, and a large core with 177 fuel assemblies. The benchmark results prove that this new spectral history correction model is superior to the previous one even with the reduced number of the local microscopic depletion points

  5. The BWR core simulator COSIMA with 2 group nodal flux expansion and control rod history

    International Nuclear Information System (INIS)

    Hoejerup, C.F.

    1989-08-01

    The boiling water simulator NOTAM has been modified and improved in several aspects: - The ''1 1/2'' energy group TRILUX nodal flux solution method has been exchanged with a 2 group modal expansion method. - Control rod ''history'' has been introduced. - Precalculated instrument factors have been introduced. The paper describes these improvements, which were considered sufficiently large to justify a new name to the programme: COSIMA. (author)

  6. Nuclear movement regulated by non-Smad Nodal signaling via JNK is associated with Smad signaling during zebrafish endoderm specification.

    Science.gov (United States)

    Hozumi, Shunya; Aoki, Shun; Kikuchi, Yutaka

    2017-11-01

    Asymmetric nuclear positioning is observed during animal development, but its regulation and significance in cell differentiation remain poorly understood. Using zebrafish blastulae, we provide evidence that nuclear movement towards the yolk syncytial layer, which comprises extraembryonic tissue, occurs in the first cells fated to differentiate into the endoderm. Nodal signaling is essential for nuclear movement, whereas nuclear envelope proteins are involved in movement through microtubule formation. Positioning of the microtubule-organizing center, which is proposed to be crucial for nuclear movement, is regulated by Nodal signaling and nuclear envelope proteins. The non-Smad JNK signaling pathway, which is downstream of Nodal signaling, regulates nuclear movement independently of the Smad pathway, and this nuclear movement is associated with Smad signal transduction toward the nucleus. Our study provides insight into the function of nuclear movement in Smad signaling toward the nucleus, and could be applied to the control of TGFβ signaling. © 2017. Published by The Company of Biologists Ltd.

  7. Criticality analysis of thermal reactors for two energy groups applying Monte Carlo and neutron Albedo method

    International Nuclear Information System (INIS)

    Terra, Andre Miguel Barge Pontes Torres

    2005-01-01

    The Albedo method applied to criticality calculations to nuclear reactors is characterized by following the neutron currents, allowing to make detailed analyses of the physics phenomena about interactions of the neutrons with the core-reflector set, by the determination of the probabilities of reflection, absorption, and transmission. Then, allowing to make detailed appreciations of the variation of the effective neutron multiplication factor, keff. In the present work, motivated for excellent results presented in dissertations applied to thermal reactors and shieldings, was described the methodology to Albedo method for the analysis criticality of thermal reactors by using two energy groups admitting variable core coefficients to each re-entrant current. By using the Monte Carlo KENO IV code was analyzed relation between the total fraction of neutrons absorbed in the core reactor and the fraction of neutrons that never have stayed into the reflector but were absorbed into the core. As parameters of comparison and analysis of the results obtained by the Albedo method were used one dimensional deterministic code ANISN (ANIsotropic SN transport code) and Diffusion method. The keff results determined by the Albedo method, to the type of analyzed reactor, showed excellent agreement. Thus were obtained relative errors of keff values smaller than 0,78% between the Albedo method and code ANISN. In relation to the Diffusion method were obtained errors smaller than 0,35%, showing the effectiveness of the Albedo method applied to criticality analysis. The easiness of application, simplicity and clarity of the Albedo method constitute a valuable instrument to neutronic calculations applied to nonmultiplying and multiplying media. (author)

  8. Applying electric field to charged and polar particles between metallic plates: extension of the Ewald method.

    Science.gov (United States)

    Takae, Kyohei; Onuki, Akira

    2013-09-28

    We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.

  9. Incidental Prophylactic Nodal Irradiation and Patterns of Nodal Relapse in Inoperable Early Stage NSCLC Patients Treated With SBRT: A Case-Matched Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lao, Louis [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Department of Radiation Oncology, Auckland City Hospital, Auckland (New Zealand); Hope, Andrew J. [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Maganti, Manjula [Department of Biostatistics, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Brade, Anthony; Bezjak, Andrea; Saibishkumar, Elantholi P.; Giuliani, Meredith; Sun, Alexander [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada); Cho, B. C. John, E-mail: john.cho@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontario (Canada)

    2014-09-01

    Purpose: Reported rates of non-small cell lung cancer (NSCLC) nodal failure following stereotactic body radiation therapy (SBRT) are lower than those reported in the surgical series when matched for stage. We hypothesized that this effect was due to incidental prophylactic nodal irradiation. Methods and Materials: A prospectively collected group of medically inoperable early stage NSCLC patients from 2004 to 2010 was used to identify cases with nodal relapses. Controls were matched to cases, 2:1, controlling for tumor volume (ie, same or greater) and tumor location (ie, same lobe). Reference (normalized to equivalent dose for 2-Gy fractions [EQD2]) point doses at the ipsilateral hilum and carina, demographic data, and clinical outcomes were extracted from the medical records. Univariate conditional logistical regression analyses were performed with variables of interest. Results: Cases and controls were well matched except for size. The controls, as expected, had larger gross tumor volumes (P=.02). The mean ipsilateral hilar doses were 9.6 Gy and 22.4 Gy for cases and controls, respectively (P=.014). The mean carinal doses were 7.0 Gy and 9.2 Gy, respectively (P=.13). Mediastinal nodal relapses, with and without ipsilateral hilar relapse, were associated with mean ipsilateral hilar doses of 3.6 Gy and 19.8 Gy, respectively (P=.01). The conditional density plot appears to demonstrate an inverse dose-effect relationship between ipsilateral hilar normalized total dose and risk of ipsilateral hilar relapse. Conclusions: Incidental hilar dose greater than 20 Gy is significantly associated with fewer ipsilateral hilar relapses in inoperable early stage NSCLC patients treated with SBRT.

  10. Incidental Prophylactic Nodal Irradiation and Patterns of Nodal Relapse in Inoperable Early Stage NSCLC Patients Treated With SBRT: A Case-Matched Analysis

    International Nuclear Information System (INIS)

    Lao, Louis; Hope, Andrew J.; Maganti, Manjula; Brade, Anthony; Bezjak, Andrea; Saibishkumar, Elantholi P.; Giuliani, Meredith; Sun, Alexander; Cho, B. C. John

    2014-01-01

    Purpose: Reported rates of non-small cell lung cancer (NSCLC) nodal failure following stereotactic body radiation therapy (SBRT) are lower than those reported in the surgical series when matched for stage. We hypothesized that this effect was due to incidental prophylactic nodal irradiation. Methods and Materials: A prospectively collected group of medically inoperable early stage NSCLC patients from 2004 to 2010 was used to identify cases with nodal relapses. Controls were matched to cases, 2:1, controlling for tumor volume (ie, same or greater) and tumor location (ie, same lobe). Reference (normalized to equivalent dose for 2-Gy fractions [EQD2]) point doses at the ipsilateral hilum and carina, demographic data, and clinical outcomes were extracted from the medical records. Univariate conditional logistical regression analyses were performed with variables of interest. Results: Cases and controls were well matched except for size. The controls, as expected, had larger gross tumor volumes (P=.02). The mean ipsilateral hilar doses were 9.6 Gy and 22.4 Gy for cases and controls, respectively (P=.014). The mean carinal doses were 7.0 Gy and 9.2 Gy, respectively (P=.13). Mediastinal nodal relapses, with and without ipsilateral hilar relapse, were associated with mean ipsilateral hilar doses of 3.6 Gy and 19.8 Gy, respectively (P=.01). The conditional density plot appears to demonstrate an inverse dose-effect relationship between ipsilateral hilar normalized total dose and risk of ipsilateral hilar relapse. Conclusions: Incidental hilar dose greater than 20 Gy is significantly associated with fewer ipsilateral hilar relapses in inoperable early stage NSCLC patients treated with SBRT

  11. Non-invasive imaging methods applied to neo- and paleo-ontological cephalopod research

    Science.gov (United States)

    Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.

    2014-05-01

    Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum/maximum size of objects that can be studied, the degree of post-processing needed and availability. The main application of the methods is seen in morphometry and volumetry of cephalopod shells. In particular we present a method for precise buoyancy calculation. Therefore, cephalopod shells were scanned together with different reference bodies, an approach developed in medical sciences. It is necessary to know the volume of the reference bodies, which should have similar absorption properties like the object of interest. Exact volumes can be obtained from surface scanning. Depending on the dimensions of the study object different computed tomography techniques were applied.

  12. Reconstruction of pin burnup characteristics from nodal calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Yang, W.S.; Finck, P.J.; Khalil, H.S.

    1990-01-01

    A reconstruction method has been developed for recovering pin burnup characteristics from fuel cycle calculations performed in hexagonal-z geometry using the nodal diffusion option of the DIF3D/REBUS-3 code system. Intra-modal distributions of group fluxes, nuclide densities, power density, burnup, and fluence are efficiently computed using polynomial shapes constrained to satisfy nodal information. The accuracy of the method has been tested by performing several numerical benchmark calculations and by comparing predicted local burnups to values measured for experimental assemblies in EBR-11. The results indicate that the reconstruction methods are quite accurate, yielding maximum errors in power and nuclide densities that are less than 2% for driver assemblies and typically less than 5% for blanket assemblies. 14 refs., 2 figs., 5 tabs

  13. Determination and delineation of nodal target volumes for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT

    International Nuclear Information System (INIS)

    Chao, K.S. Clifford; Wippold, Franz J.; Ozyigit, Gokhan; Tran, Binh N.; Dempsey, James F.

    2002-01-01

    Purpose: We present the guidelines for target volume determination and delineation of head-and-neck lymph nodes based on the analysis of the patterns of nodal failure in patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Data pertaining to the natural course of nodal metastasis for each head-and-neck cancer subsite were reviewed. A system was established to provide guidance for nodal target volume determination and delineation. Following these guidelines, 126 patients (52 definitive, 74 postoperative) were treated between February 1997 and December 2000 with IMRT for head-and-neck cancer. The median follow-up was 26 months (range 12-55), and the patterns of nodal failure were analyzed. Results: These guidelines define the nodal target volume based on the location of the primary tumor and the probability of microscopic metastasis to the ipsilateral and contralateral (Level I-V) nodal regions. Following these guidelines, persistent or recurrent nodal disease was found in 6 (12%) of 52 patients receiving definitive IMRT, and 7 (9%) of 74 patients receiving postoperative IMRT had failure in the nodal region. Conclusion: On the basis of our clinical experience in implementing inverse-planning IMRT for head-and-neck cancer, we present guidelines using a simplified, but clinically relevant, method for nodal target volume determination and delineation. The intention was to provide a foundation that enables different institutions to exchange clinical experiences in head-and-neck IMRT. These guidelines will be subject to future refinement when the clinical experience in head-and-neck IMRT advances

  14. Applying terminological methods and description logic for creating and implementing and ontology on inhibition

    DEFF Research Database (Denmark)

    Zambach, Sine; Madsen, Bodil Nistrup

    2009-01-01

    By applying formal terminological methods to model an ontology within the domain of enzyme inhibition, we aim to clarify concepts and to obtain consistency. Additionally, we propose a procedure for implementing this ontology in OWL with the aim of obtaining a strict structure which can form...

  15. Method of applying single higher order polynomial basis function over multiple domains

    CSIR Research Space (South Africa)

    Lysko, AA

    2010-03-01

    Full Text Available A novel method has been devised where one set of higher order polynomial-based basis functions can be applied over several wire segments, thus permitting to decouple the number of unknowns from the number of segments, and so from the geometrical...

  16. Applied probabilistic methods in the field of reactor safety in Germany

    International Nuclear Information System (INIS)

    Heuser, F.W.

    1982-01-01

    Some aspects of applied reliability and risk analysis methods in nuclear safety and the present role of both in Germany, are discussed. First, some comments on the status and applications of reliability analysis are given. Second, some conclusions that can be drawn from previous work on the German Risk Study are summarized. (orig.)

  17. 21 CFR 111.320 - What requirements apply to laboratory methods for testing and examination?

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What requirements apply to laboratory methods for testing and examination? 111.320 Section 111.320 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING...

  18. Splendor and misery of the distorted wave method applied to heavy ions transfer reactions

    International Nuclear Information System (INIS)

    Mermaz, M.C.

    1979-01-01

    The success and failure of the Distorted Wave Method (DWM) applied to heavy ion transfer reactions are illustrated by few examples: one and multi-nucleon transfer reactions induced by 15 N and 18 O on 28 Si target nucleus performed on the vicinity of Coulomb barrier respectively at 44 and 56 MeV incident energy

  19. Trends in Research Methods in Applied Linguistics: China and the West.

    Science.gov (United States)

    Yihong, Gao; Lichun, Li; Jun, Lu

    2001-01-01

    Examines and compares current trends in applied linguistics (AL) research methods in China and the West. Reviews AL articles in four Chinese journals, from 1978-1997, and four English journals from 1985 to 1997. Articles are categorized and subcategorized. Results show that in China, AL research is heading from non-empirical toward empirical, with…

  20. Critical path method applied to research project planning: Fire Economics Evaluation System (FEES)

    Science.gov (United States)

    Earl B. Anderson; R. Stanton Hales

    1986-01-01

    The critical path method (CPM) of network analysis (a) depicts precedence among the many activities in a project by a network diagram; (b) identifies critical activities by calculating their starting, finishing, and float times; and (c) displays possible schedules by constructing time charts. CPM was applied to the development of the Forest Service's Fire...

  1. Applying Activity Based Costing (ABC) Method to Calculate Cost Price in Hospital and Remedy Services.

    Science.gov (United States)

    Rajabi, A; Dabiri, A

    2012-01-01

    Activity Based Costing (ABC) is one of the new methods began appearing as a costing methodology in the 1990's. It calculates cost price by determining the usage of resources. In this study, ABC method was used for calculating cost price of remedial services in hospitals. To apply ABC method, Shahid Faghihi Hospital was selected. First, hospital units were divided into three main departments: administrative, diagnostic, and hospitalized. Second, activity centers were defined by the activity analysis method. Third, costs of administrative activity centers were allocated into diagnostic and operational departments based on the cost driver. Finally, with regard to the usage of cost objectives from services of activity centers, the cost price of medical services was calculated. The cost price from ABC method significantly differs from tariff method. In addition, high amount of indirect costs in the hospital indicates that capacities of resources are not used properly. Cost price of remedial services with tariff method is not properly calculated when compared with ABC method. ABC calculates cost price by applying suitable mechanisms but tariff method is based on the fixed price. In addition, ABC represents useful information about the amount and combination of cost price services.

  2. An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem

    International Nuclear Information System (INIS)

    Filho, J. F. P.; Barichello, L. B.

    2013-01-01

    In this work, an analytical discrete ordinates method is used to solve a nodal formulation of a neutron transport problem in x, y-geometry. The proposed approach leads to an important reduction in the order of the associated eigenvalue systems, when combined with the classical level symmetric quadrature scheme. Auxiliary equations are proposed, as usually required for nodal methods, to express the unknown fluxes at the boundary introduced as additional unknowns in the integrated equations. Numerical results, for the problem defined by a two-dimensional region with a spatially constant and isotropically emitting source, are presented and compared with those available in the literature. (authors)

  3. A new effective Monte Carlo Midway coupling method in MCNP applied to a well logging problem

    Energy Technology Data Exchange (ETDEWEB)

    Serov, I.V.; John, T.M.; Hoogenboom, J.E

    1998-12-01

    The background of the Midway forward-adjoint coupling method including the black absorber technique for efficient Monte Carlo determination of radiation detector responses is described. The method is implemented in the general purpose MCNP Monte Carlo code. The utilization of the method is fairly straightforward and does not require any substantial extra expertise. The method was applied to a standard neutron well logging porosity tool problem. The results exhibit reliability and high efficiency of the Midway method. For the studied problem the efficiency gain is considerably higher than for a normal forward calculation, which is already strongly optimized by weight-windows. No additional effort is required to adjust the Midway model if the position of the detector or the porosity of the formation is changed. Additionally, the Midway method can be used with other variance reduction techniques if extra gain in efficiency is desired.

  4. Determination of activity of I-125 applying sum-peak methods

    International Nuclear Information System (INIS)

    Arbelo Penna, Y.; Hernandez Rivero, A.T.; Oropesa Verdecia, P.; Serra Aguila, R.; Moreno Leon, Y.

    2011-01-01

    The determination of activity of I-125 in radioactive solutions, applying sum-peak methods, by using an n-type HPGe detector of extended range is described. Two procedures were used for obtaining I-125 specific activity in solutions: a) an absolute method, which is independent of nuclear parameters and detector efficiency, and b) an option which consider constant the efficiency in the region of interest and involves calculations using nuclear parameters. The measurement geometries studied are specifically solid point sources. The relative deviations between specific activities, obtained by these different procedures are not higher than 1 %. Moreover, the activity of the radioactive solution was obtained by measuring it in NIST ampoule using a CAPINTEC CRC 35R dose calibrator. The consistency of obtained results, confirm the feasibility of applying direct methods of measurement for I-125 activity determinations, which allow us to achieve lower uncertainties in comparison with the relative methods of measurement. The establishment of these methods is aimed to be applied for the calibration of equipment and radionuclide dose calibrators used currently in clinical RIA/IRMA assays and Nuclear medicine practice respectively. (Author)

  5. Aircraft Nodal Data Acquisition System (ANDAS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of an Aircraft Nodal Data Acquisition System (ANDAS) based upon the short haul Zigbee networking standard is proposed. It employs a very thin (135 um)...

  6. Hybrid nodal loop metal: Unconventional magnetoresponse and material realization

    Science.gov (United States)

    Zhang, Xiaoming; Yu, Zhi-Ming; Lu, Yunhao; Sheng, Xian-Lei; Yang, Hui Ying; Yang, Shengyuan A.

    2018-03-01

    A nodal loop is formed by a band crossing along a one-dimensional closed manifold, with each point on the loop a linear nodal point in the transverse dimensions, and can be classified as type I or type II depending on the band dispersion. Here, we propose a class of nodal loops composed of both type-I and type-II points, which are hence termed as hybrid nodal loops. Based on first-principles calculations, we predict the realization of such loops in the existing electride material Ca2As . For a hybrid loop, the Fermi surface consists of coexisting electron and hole pockets that touch at isolated points for an extended range of Fermi energies, without the need for fine-tuning. This leads to unconventional magnetic responses, including the zero-field magnetic breakdown and the momentum-space Klein tunneling observable in the magnetic quantum oscillations, as well as the peculiar anisotropy in the cyclotron resonance.

  7. Nodal prices determination with wind integration for radial ...

    African Journals Online (AJOL)

    With competitive electricity market operation, open access to the transmission and distribution network is essential ... The results have been obtained for IEEE 33 ...... The value of intermittent wind DG under nodal prices and amp – mile tariffs.

  8. Nodal aberration theory for wild-filed asymmetric optical systems

    Science.gov (United States)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  9. An applied study using systems engineering methods to prioritize green systems options

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sonya M [Los Alamos National Laboratory; Macdonald, John M [Los Alamos National Laboratory

    2009-01-01

    For many years, there have been questions about the effectiveness of applying different green solutions. If you're building a home and wish to use green technologies, where do you start? While all technologies sound promising, which will perform the best over time? All this has to be considered within the cost and schedule of the project. The amount of information available on the topic can be overwhelming. We seek to examine if Systems Engineering methods can be used to help people choose and prioritize technologies that fit within their project and budget. Several methods are used to gain perspective into how to select the green technologies, such as the Analytic Hierarchy Process (AHP) and Kepner-Tregoe. In our study, subjects applied these methods to analyze cost, schedule, and trade-offs. Results will document whether the experimental approach is applicable to defining system priorities for green technologies.

  10. Economic consequences assessment for scenarios and actual accidents do the same methods apply

    International Nuclear Information System (INIS)

    Brenot, J.

    1991-01-01

    Methods for estimating the economic consequences of major technological accidents, and their corresponding computer codes, are briefly presented with emphasis on the basic choices. When applied to hypothetic scenarios, those methods give results that are of interest for risk managers with a decision aiding perspective. Simultaneously the various costs, and the procedures for their estimation are reviewed for some actual accidents (Three Mile Island, Chernobyl,..). These costs are used in a perspective of litigation and compensation. The comparison of the methods used and cost estimates obtained for scenarios and actual accidents shows the points of convergence and discrepancies that are discussed

  11. Non-invasive imaging methods applied to neo- and paleontological cephalopod research

    Science.gov (United States)

    Hoffmann, R.; Schultz, J. A.; Schellhorn, R.; Rybacki, E.; Keupp, H.; Gerden, S. R.; Lemanis, R.; Zachow, S.

    2013-11-01

    Several non-invasive methods are common practice in natural sciences today. Here we present how they can be applied and contribute to current topics in cephalopod (paleo-) biology. Different methods will be compared in terms of time necessary to acquire the data, amount of data, accuracy/resolution, minimum-maximum size of objects that can be studied, of the degree of post-processing needed and availability. Main application of the methods is seen in morphometry and volumetry of cephalopod shells in order to improve our understanding of diversity and disparity, functional morphology and biology of extinct and extant cephalopods.

  12. Covariance methodology applied to 35S disintegration rate measurements by the CIEMAT/NIST method

    International Nuclear Information System (INIS)

    Koskinas, M.F.; Nascimento, T.S.; Yamazaki, I.M.; Dias, M.S.

    2014-01-01

    The Nuclear Metrology Laboratory (LMN) at IPEN is carrying out measurements in a LSC (Liquid Scintillation Counting system), applying the CIEMAT/NIST method. In this context 35 S is an important radionuclide for medical applications and it is difficult to be standardized by other primary methods due to low beta ray energy. The CIEMAT/NIST is a standard technique used by most metrology laboratories in order to improve accuracy and speed up beta emitter standardization. The focus of the present work was to apply the covariance methodology for determining the overall uncertainty in the 35 S disintegration rate. All partial uncertainties involved in the measurements were considered, taking into account all possible correlations between each pair of them. - Highlights: ► 35 S disintegration rate measured in Liquid Scintillator system using CIEMAT/NIST method. ► Covariance methodology applied to the overall uncertainty in the 35 S disintegration rate. ► Monte Carlo simulation was applied to determine 35 S activity in the 4πβ(PC)-γ coincidence system

  13. Power System Oscillation Modes Identifications: Guidelines for Applying TLS-ESPRIT Method

    Science.gov (United States)

    Gajjar, Gopal R.; Soman, Shreevardhan

    2013-05-01

    Fast measurements of power system quantities available through wide-area measurement systems enables direct observations for power system electromechanical oscillations. But the raw observations data need to be processed to obtain the quantitative measures required to make any inference regarding the power system state. A detailed discussion is presented for the theory behind the general problem of oscillatory mode indentification. This paper presents some results on oscillation mode identification applied to a wide-area frequency measurements system. Guidelines for selection of parametes for obtaining most reliable results from the applied method are provided. Finally, some results on real measurements are presented with our inference on them.

  14. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code.

  15. DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Lawrence, R.D.

    1983-03-01

    A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code

  16. Correlation between the sudden jump-like increases of the atrio-Hisian interval induced during burst atrial pacing and during programmed atrial stimulation in patients with atrioventricular nodal reentrant tachycardia.

    Science.gov (United States)

    Bayraktarova, Iskra H; Stoyanov, Milko K; Kunev, Boyan T; Shalganov, Tchavdar N

    To study the correlation between the sudden prolongations of the atrio-Hisian (AH) interval with ≥50 ms during burst and programmed atrial stimulation, and to define whether the AH jump during burst atrial pacing is a reliable diagnostic criterion for dual AV nodal physiology. Retrospective data on 304 patients with preliminary ECG diagnosis of AV nodal reentrant tachycardia (AVNRT), confirmed during electrophysiological study, was analyzed for the presence of AH jump during burst and programmed atrial stimulation, and for correlation between the pacing modes for inducing the jump. Wilcoxon signed-ranks test and Spearman's bivariate correlation coefficient were applied, significant was P-value jump occurred during burst atrial pacing in 81% of the patients, and during programmed stimulation - in 78%, P = 0.366. In 63.2% AH jump was induced by both pacing modes; in 17.8% - only by burst pacing; in 14.8% - only by programmed pacing; in 4.2% there was no inducible jump. There was negative correlation between both pacing modes, ρ = -0.204, Р<0.001. Burst and programmed atrial stimulation separately prove the presence of dual AV nodal physiology in 81 and 78% of the patients with AVNRT, respectively. There is negative correlation between the two pacing modes, allowing the combination of the two methods to prove diagnostic in 95.8% of the patients. Copyright © 2017 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  17. Dynamic Analysis of Offshore Oil Pipe Installation Using the Absolute Nodal Coordinate Formulation

    DEFF Research Database (Denmark)

    Nielsen, Jimmy D; Madsen, Søren B; Hyldahl, Per Christian

    2013-01-01

    The Absolute Nodal Coordinate Formulation (ANCF) has shown promising results in dynamic analysis of structures that undergo large deformation. The method relaxes the assumption of infinitesimal rotations. Being based in a fixed inertial reference frame leads to a constant mass matrix and zero......, are included to mimic the external forces acting on the pipe during installation. The scope of this investigation is to demonstrate the ability using the ANCF to analyze the dynamic behavior of an offshore oil pipe during installation...

  18. Least Square NUFFT Methods Applied to 2D and 3D Radially Encoded MR Image Reconstruction

    Science.gov (United States)

    Song, Jiayu; Liu, Qing H.; Gewalt, Sally L.; Cofer, Gary; Johnson, G. Allan

    2009-01-01

    Radially encoded MR imaging (MRI) has gained increasing attention in applications such as hyperpolarized gas imaging, contrast-enhanced MR angiography, and dynamic imaging, due to its motion insensitivity and improved artifact properties. However, since the technique collects k-space samples nonuniformly, multidimensional (especially 3D) radially sampled MRI image reconstruction is challenging. The balance between reconstruction accuracy and speed becomes critical when a large data set is processed. Kaiser-Bessel gridding reconstruction has been widely used for non-Cartesian reconstruction. The objective of this work is to provide an alternative reconstruction option in high dimensions with on-the-fly kernels calculation. The work develops general multi-dimensional least square nonuniform fast Fourier transform (LS-NUFFT) algorithms and incorporates them into a k-space simulation and image reconstruction framework. The method is then applied to reconstruct the radially encoded k-space, although the method addresses general nonuniformity and is applicable to any non-Cartesian patterns. Performance assessments are made by comparing the LS-NUFFT based method with the conventional Kaiser-Bessel gridding method for 2D and 3D radially encoded computer simulated phantoms and physically scanned phantoms. The results show that the LS-NUFFT reconstruction method has better accuracy-speed efficiency than the Kaiser-Bessel gridding method when the kernel weights are calculated on the fly. The accuracy of the LS-NUFFT method depends on the choice of scaling factor, and it is found that for a particular conventional kernel function, using its corresponding deapodization function as scaling factor and utilizing it into the LS-NUFFT framework has the potential to improve accuracy. When a cosine scaling factor is used, in particular, the LS-NUFFT method is faster than Kaiser-Bessel gridding method because of a quasi closed-form solution. The method is successfully applied to 2D and

  19. Effect of interfractional shoulder motion on low neck nodal targets for patients treated using volume modulated arc therapy (VMAT

    Directory of Open Access Journals (Sweden)

    Kevin Casey

    2014-03-01

    Full Text Available Purpose: To quantify the dosimetric impact of interfractional shoulder motion on targets in the low neck for head and neck patients treated with volume modulated arc therapy (VMAT.Methods: Three patients with head and neck cancer were selected. All three required treatment to nodal regions in the low neck in addition to the primary tumor site. The patients were immobilized during simulation and treatment with a custom thermoplastic mask covering the head and shoulders. One VMAT plan was created for each patient utilizing two full 360° arcs and a second plan was created consisting of two superior VMAT arcs matched to an inferior static AP supraclavicular field. A CT-on-rails alignment verification was performed weekly during each patient’s treatment course. The weekly CT images were registered to the simulation CT and the target contours were deformed and applied to the weekly CT. The two VMAT plans were copied to the weekly CT datasets and recalculated to obtain the dose to the deformed low neck contours.Results: The average observed shoulder position shift in any single dimension relative to simulation was 2.5 mm. The maximum shoulder shift observed in a single dimension was 25.7 mm. Low neck target mean doses, normalized to simulation and averaged across all weekly recalculations were 0.996, 0.991, and 1.033 (Full VMAT plan and 0.986, 0.995, and 0.990 (Half-Beam VMAT plan for the three patients, respectively. The maximum observed deviation in target mean dose for any individual weekly recalculation was 6.5%, occurring with the Full VMAT plan for Patient 3.Conclusion: Interfractional variation in dose to low neck nodal regions was quantified for three head and neck patients treated with VMAT. Mean dose was 3.3% higher than planned for one patient using a Full VMAT plan. A Half-Beam technique is likely a safer choice when treating the supraclavicular region with VMAT.-------------------------------------------Cite this article as: Casey K

  20. Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems

    International Nuclear Information System (INIS)

    Capilla, M.; Talavera, C.F.; Ginestar, D.; Verdú, G.

    2012-01-01

    Highlights: ► The multidimensional P L approximation to the nuclear transport equation is reviewed. ► A nodal collocation method is developed for the spatial discretization of P L equations. ► Advantages of the method are lower dimension and good characterists of the associated algebraic eigenvalue problem. ► The P L nodal collocation method is implemented into the computer code SHNC. ► The SHNC code is verified with 2D and 3D benchmark eigenvalue problems from Takeda and Ikeda, giving satisfactory results. - Abstract: P L equations are classical approximations to the neutron transport equations, which are obtained expanding the angular neutron flux in terms of spherical harmonics. These approximations are useful to study the behavior of reactor cores with complex fuel assemblies, for the homogenization of nuclear cross-sections, etc., and most of these applications are in three-dimensional (3D) geometries. In this work, we review the multi-dimensional P L equations and describe a nodal collocation method for the spatial discretization of these equations for arbitrary odd order L, which is based on the expansion of the spatial dependence of the fields in terms of orthonormal Legendre polynomials. The performance of the nodal collocation method is studied by means of obtaining the k eff and the stationary power distribution of several 3D benchmark problems. The solutions are obtained are compared with a finite element method and a Monte Carlo method.

  1. Designing Targets for Elective Nodal Irradiation in Lung Cancer Radiotherapy: A Planning Study

    International Nuclear Information System (INIS)

    Kepka, Lucyna; Tatro, Daniel; Moran, Jean M.; Quint, Leslie E.; Hayman, James A.; Ten Haken, Randall K.; Kong Fengming

    2009-01-01

    Purpose: To assess doses received by mediastinal and hilar lymph node stations (LNS) delineated according to published recommendations when 'standard' two-dimensional (2D) elective fields are applied and to assess doses to critical structures when fields are designed using 2D and three-dimensional (3D) treatment planning for elective irradiation. Methods and Materials: LNS were delineated on axial CT scans according to existing recommendations. For each case and tumor location, 2D anteroposterior-posteroanterior (AP-PA) elective fields were applied using the AP-PA CT topograms. From the 2D portal fields, 3D dose distributions were then calculated to particular LNS. Next, 3D plans were prepared for elective nodal irradiation for tumors of different lobes. Doses for critical structures were compared for 2D and 3D plans. Results: LNS 1/2R, 1/2L, 3A, 3P, 5, 6, and 8 were not adequately covered in a substantial part of plans by standard 2D portals when guidelines for delineation were strictly followed. The magnitude of the lack of coverage increased with margin application. There was a trend for a higher yet probably still safe dose delivered to lung for 3D plans compared with 2D plans with a prescription dose of 45 Gy. Conclusions: 2D fields did not entirely cover LNS delineated according to the recommendations for 3D techniques. A strict adherence to these guidelines may lead to larger portals than traditionally constructed using 2D methods. Some modifications for clinical implementation are discussed.

  2. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Science.gov (United States)

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  3. Applied ecosystem analysis - a primer; the ecosystem diagnosis and treatment method

    International Nuclear Information System (INIS)

    Lestelle, L.C.; Mobrand, L.E.; Lichatowich, J.A.; Vogel, T.S.

    1996-05-01

    The aim of this document is to inform and instruct the reader about an approach to ecosystem management that is based upon salmon as an indicator species. It is intended to provide natural resource management professionals with the background information needed to answer questions about why and how to apply the approach. The methods and tools the authors describe are continually updated and refined, so this primer should be treated as a first iteration of a sequentially revised manual

  4. An Ultrasonic Guided Wave Method to Estimate Applied Biaxial Loads (Preprint)

    Science.gov (United States)

    2011-11-01

    VALIDATION A fatigue test was performed with an array of six surface-bonded PZT transducers on a 6061 aluminum plate as shown in Figure 4. The specimen...direct paths of propagation are oriented at different angles. This method is applied to experimental sparse array data recorded during a fatigue test...and the additional complication of the resulting fatigue cracks interfering with some of the direct arrivals is addressed via proper selection of

  5. Accuracy of the Adomian decomposition method applied to the Lorenz system

    International Nuclear Information System (INIS)

    Hashim, I.; Noorani, M.S.M.; Ahmad, R.; Bakar, S.A.; Ismail, E.S.; Zakaria, A.M.

    2006-01-01

    In this paper, the Adomian decomposition method (ADM) is applied to the famous Lorenz system. The ADM yields an analytical solution in terms of a rapidly convergent infinite power series with easily computable terms. Comparisons between the decomposition solutions and the fourth-order Runge-Kutta (RK4) numerical solutions are made for various time steps. In particular we look at the accuracy of the ADM as the Lorenz system changes from a non-chaotic system to a chaotic one

  6. Applying the Delphi method to assess impacts of forest management on biodiversity and habitat preservation

    DEFF Research Database (Denmark)

    Filyushkina, Anna; Strange, Niels; Löf, Magnus

    2018-01-01

    This study applied a structured expert elicitation technique, the Delphi method, to identify the impacts of five forest management alternatives and several forest characteristics on the preservation of biodiversity and habitats in the boreal zone of the Nordic countries. The panel of experts...... as a valuable addition to on-going empirical and modeling efforts. The findings could assist forest managers in developing forest management strategies that generate benefits from timber production while taking into account the trade-offs with biodiversity goals....

  7. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation

    Directory of Open Access Journals (Sweden)

    Vitanov Nikolay K.

    2018-03-01

    Full Text Available We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

  8. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation

    Science.gov (United States)

    Vitanov, Nikolay K.; Dimitrova, Zlatinka I.

    2018-03-01

    We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

  9. Applied Ecosystem Analysis - - a Primer : EDT the Ecosystem Diagnosis and Treatment Method.

    Energy Technology Data Exchange (ETDEWEB)

    Lestelle, Lawrence C.; Mobrand, Lars E.

    1996-05-01

    The aim of this document is to inform and instruct the reader about an approach to ecosystem management that is based upon salmon as an indicator species. It is intended to provide natural resource management professionals with the background information needed to answer questions about why and how to apply the approach. The methods and tools the authors describe are continually updated and refined, so this primer should be treated as a first iteration of a sequentially revised manual.

  10. The LTSN method used in transport equation, applied in nuclear engineering problems

    International Nuclear Information System (INIS)

    Borges, Volnei; Vilhena, Marco Tulio de

    2002-01-01

    The LTS N method solves analytically the S N equations, applying the Laplace transform in the spatial variable. This methodology is used in determination of scalar flux for neutrons and photons, absorbed dose rate, buildup factors and power for a heterogeneous planar slab. This procedure leads to the solution of a transcendental equations for effective multiplication, critical thickness and the atomic density. In this work numerical results are reported, considering multigroup problem in heterogeneous slab. (author)

  11. Machine Learning Method Applied in Readout System of Superheated Droplet Detector

    Science.gov (United States)

    Liu, Yi; Sullivan, Clair Julia; d'Errico, Francesco

    2017-07-01

    Direct readability is one advantage of superheated droplet detectors in neutron dosimetry. Utilizing such a distinct characteristic, an imaging readout system analyzes image of the detector for neutron dose readout. To improve the accuracy and precision of algorithms in the imaging readout system, machine learning algorithms were developed. Deep learning neural network and support vector machine algorithms are applied and compared with generally used Hough transform and curvature analysis methods. The machine learning methods showed a much higher accuracy and better precision in recognizing circular gas bubbles.

  12. Translation Methods Applied in Translating Quotations in “the Secret” by Rhonda

    OpenAIRE

    FEBRIANTI, VICKY

    2014-01-01

    Keywords: Translation Methods, The Secret, Quotations.Translation helps human to get information written in any language evenwhen it is written in foreign languages. Therefore translation happens in printed media. Books have been popular printed media. The Secret written by Rhonda Byrne is a popular self-help book which has been translated into 50 languages including Indonesian (“The Secret”, n.d., para.5-6).This study is meant to find out the translation methods applied in The Secret. The wr...

  13. Impact of radiation dose and standardized uptake value of (18)FDG PET on nodal control in locally advanced cervical cancer

    DEFF Research Database (Denmark)

    Ramlov, Anne; Kroon, Petra S; Jürgenliemk-Schulz, Ina M

    2015-01-01

    BACKGROUND: Despite local control now exceeding 90% with image-guided adaptive brachytherapy (IGABT), regional and distant metastases continue to curb survival in locally advanced cervical cancer. As regional lymph nodes often represent first site of metastatic spread, improved nodal control could...... improve survival. The aim of this study was to examine optimal volume and dose of external beam radiotherapy (EBRT) to maximize regional control including dose contribution from IGABT. MATERIAL AND METHODS: In total 139 patients from the EMBRACE study were analyzed. Individual nodal dose was determined...

  14. Impact of receptor phenotype on nodal burden in patients with breast cancer who have undergone neoadjuvant chemotherapy

    LENUS (Irish Health Repository)

    Boland, M. R.

    2017-07-31

    Optimal evaluation and management of the axilla following neoadjuvant chemotherapy(NAC) in patients with node-positive breast cancer remains controversial. The aim of this study wasto examine the impact of receptor phenotype in patients with nodal metastases who undergo NAC to seewhether this approach can identify those who may be suitable for conservative axillary management.Methods: Between 2009 and 2014, all patients with breast cancer and biopsy-proven nodal diseasewho received NAC were identied from prospectively developed databases. Details of patients who hadaxillary lymph node dissection (ALND) following NAC were recorded and rates of pathological completeresponse (pCR) were evaluated for receptor phenotype.

  15. Development of a tracking method for augmented reality applied to nuclear plant maintenance work

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Maeshima, Masayuki; Nakai, Toshinori; Bian, Zhiqiang; Ishii, Hirotake; Yoshikawa, Hidekazu

    2005-01-01

    In this paper, a plant maintenance support method is described, which employs the state-of-the-art information technology, Augmented Reality (AR), in order to improve efficiency of NPP maintenance work and to prevent from human error. Although AR has a great possibility to support various works in real world, it is difficult to apply it to actual work support because the tracking method is the bottleneck for the practical use. In this study, a bar code marker tracking method is proposed to apply AR system for a maintenance work support in NPP field. The proposed method calculates the users position and orientation in real time by two long markers, which are captured by the user-mounted camera. The markers can be easily pasted on the pipes in plant field, and they can be easily recognized in long distance in order to reduce the number of pasted markers in the work field. Experiments were conducted in a laboratory and plant field to evaluate the proposed method. The results show that (1) fast and stable tracking can be realized, (2) position error in camera view is less than 1%, which is almost perfect under the limitation of camera resolution, and (3) it is relatively difficult to catch two markers in one camera view especially in short distance

  16. Regeneration of three sweet potato (Ipomea batatas (L.)) accessions via meristem, Nodal and callus induction

    International Nuclear Information System (INIS)

    Addae-Frimpomaah, F.

    2012-11-01

    .3%) was obtained from 4.0mg/1 2,4-D-derived callus. The successful regeneration of sweet potato plantlets in vitro using meristem and nodal cutting explants as well as via indirect shoot development via a callus phase could be used to complement conventional propagation methods and integration into plant breeding programmes for sweet potato. (au)

  17. Applying the response matrix method for solving coupled neutron diffusion and transport problems

    International Nuclear Information System (INIS)

    Sibiya, G.S.

    1980-01-01

    The numerical determination of the flux and power distribution in the design of large power reactors is quite a time-consuming procedure if the space under consideration is to be subdivided into very fine weshes. Many computing methods applied in reactor physics (such as the finite-difference method) require considerable computing time. In this thesis it is shown that the response matrix method can be successfully used as an alternative approach to solving the two-dimension diffusion equation. Furthermore it is shown that sufficient accuracy of the method is achieved by assuming a linear space dependence of the neutron currents on the boundaries of the geometries defined for the given space. (orig.) [de

  18. Method to integrate clinical guidelines into the electronic health record (EHR) by applying the archetypes approach.

    Science.gov (United States)

    Garcia, Diego; Moro, Claudia Maria Cabral; Cicogna, Paulo Eduardo; Carvalho, Deborah Ribeiro

    2013-01-01

    Clinical guidelines are documents that assist healthcare professionals, facilitating and standardizing diagnosis, management, and treatment in specific areas. Computerized guidelines as decision support systems (DSS) attempt to increase the performance of tasks and facilitate the use of guidelines. Most DSS are not integrated into the electronic health record (EHR), ordering some degree of rework especially related to data collection. This study's objective was to present a method for integrating clinical guidelines into the EHR. The study developed first a way to identify data and rules contained in the guidelines, and then incorporate rules into an archetype-based EHR. The proposed method tested was anemia treatment in the Chronic Kidney Disease Guideline. The phases of the method are: data and rules identification; archetypes elaboration; rules definition and inclusion in inference engine; and DSS-EHR integration and validation. The main feature of the proposed method is that it is generic and can be applied toany type of guideline.

  19. Lessons learned applying CASE methods/tools to Ada software development projects

    Science.gov (United States)

    Blumberg, Maurice H.; Randall, Richard L.

    1993-01-01

    This paper describes the lessons learned from introducing CASE methods/tools into organizations and applying them to actual Ada software development projects. This paper will be useful to any organization planning to introduce a software engineering environment (SEE) or evolving an existing one. It contains management level lessons learned, as well as lessons learned in using specific SEE tools/methods. The experiences presented are from Alpha Test projects established under the STARS (Software Technology for Adaptable and Reliable Systems) project. They reflect the front end efforts by those projects to understand the tools/methods, initial experiences in their introduction and use, and later experiences in the use of specific tools/methods and the introduction of new ones.

  20. Building the nodal nuclear data dependences in a many-dimensional state-variable space

    International Nuclear Information System (INIS)

    Dufek, Jan

    2011-01-01

    Highlights: → The Abstract and Introduction are revised to reflect reviewers' comments. → Section is revised and simplified. → The third paragraph in Section is revised. → All typos are fixed. - Abstract: We present new methods for building the polynomial-regression based nodal nuclear data models. The data models can reflect dependences on a large number of state variables, and they can consider various history effects. Suitable multivariate polynomials that approximate the nodal data dependences are identified efficiently in an iterative manner. The history effects are analysed using a new sampling scheme for lattice calculations where the traditional base burnup and branch calculations are replaced by a large number of diverse burnup histories. The total number of lattice calculations is controlled so that the data models are built to a required accuracy.